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ABSTRACT OF DISSERTATION

STATISTICAL INFERENCE ON DYNAMICAL SYSTEMS

The ordinary differential equation (ODE) is one representative and popular tool
in modeling dynamical systems, which are widely implemented in physics, biology,
economics, chemistry and biomedical sciences, etc. Because of the importance of
dynamical systems in scientific studies, they are the main focuses of my dissertation.

The first chapter of the dissertation is introduction and literature review, which
mainly focuses on numerical integration algorithms of ODEs that are difficult to solve
analytically, as well as derivative-free optimization algorithms for the so-called inverse
problem.

The second chapter is on the estimation method based on numerical solvers of
differential equations. We start by reviewing the state-of-the-art Gauss-Newton al-
gorithm based method, with the derivation of approximate confidence intervals. Fur-
thermore, we propose and illustrate a method using Differential Evolution along with
numerical ODE integration algorithms, as well as a hybrid method to improve the
convergence issue for Gauss-Newton algorithm. A numerical comparison study shows
the hybrid method is more numerically stable than the traditional Gauss-Newton
algorithm based estimation method.

In Chapter 3 we propose a novel two-step estimation method based on Fourier
basis smoothing and pseudo least square estimator. It is less computationally inten-
sive than methods using numerical ODE integration algorithms, and it works better
on periodic or near periodic ODE model functions.

In Chapter 4 we expand our study to a population-based hierarchical model to
study the correlation between individual features and certain parameter values. Both
ML and REML estimation are studied, with more emphasis on REML. An itera-
tive estimation method that incorporates numerical ODE solver into the stochastic
approximation EM algorithm for the hierarchical model is proposed and illustrated.
Several simulation studies are presented, and a parallel version of the algorithm is
implemented as well.

KEYWORDS: Dynamical System, ODE, Computational Statistics, EM Algorithm
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Chapter 1 Introduction and Literature Review

The ordinary differential equation (ODE) is one representative and popular tool

in modeling dynamical systems, which are widely implemented in physics, biology,

economics, chemistry and biomedical sciences, etc. There are relatively few published

studies on estimation methods of complicated dynamical systems. Because of the

importance of dynamical systems in scientific studies, they are the main focuses of

my dissertation. Here, some of the methodology used is reviewed with research and

review paper cited.

1.1 Dynamical System

A dynamical system is about evolution of something over time. Usually there

are a finite set of states and a set of variables associated with each state. There

are rules governing how the state variable change over time. A system of ordinary

differential equations is an example of a dynamical system and is one of the focuses

of this dissertation.

McGoff et al. (2015) provides a survey on statistical inference of dynamical sys-

tems, in which a dynamical system is defined by a stochastic process of the form

(Xn, Yn)n, where Xn+1 depends only on Xn and possibly some noise, and Yn depends

only on Xn plus some possible noise. Different model structures, such as differen-

tial equation model, hidden Markov model and general state space model have been

described, and cases with or without observational and dynamical noises have been
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discussed and summarized in the paper.

Differential equations describe mathematical relations between some unknown

function and its derivatives. In applications, the functions usually represent physical

quantities, the derivatives represent their rates of change, and the equation defines

a relationship between the two. Since these types of relations are quite common,

differential equations are widely used in physics, biology, economics, chemistry and

biomedical sciences, etc.

Differential equations can be classified into two categories: ordinary differential

equation (ODE) and partial differential equation (PDE). ODEs involve one or more

functions of a single variable while PDEs allow functions of several variables and

partial derivatives of the unknown functions with respect to those variables. Solving

a differential equation means to find a function that satisfies the relation, as well as

some additional conditions, like initial value condition or boundary value condition.

Some ODEs can be solved explicitly while most of the complicated ODEs are difficult

or impossible to be solved in exact form.

1.2 Compartmental Models

Compartmental model is a representative tool in modeling pharmacokinetics and

pharmacodynamics. A compartmental model can simulate the biologic process in-

volved in the kinetic behavior of a drug after it has been introduced into the body,

leading to a better understanding of its pharmacodynamics effects. The objectives of

modeling include to make inference about: the uptake rate and steady state level of

a heavy metal in animal tissue; the average time of certain drug stays at its site of

2



action; the relative bioavailability of two drugs, etc. Based on Matis et al. (1983), the

basic definition for deterministic compartmental model without measurement errors

is:

1. LetXij(t), i, j = 1, . . . ,m denote the amount of drug that originated in compart-

ment i at time 0 that is in compartment j at time t. Let X·j(t) =
∑m

i=1Xij(t)

be the total amount of drug in j at time t.

2. Let X(t) = [Xij(t)] be the m×m matrix.

3. Let Aij for i = 1, . . . ,m; j = 0, . . . ,m and i 6= j denote the constant nonnegative

and time independent transfer rate at time t of drug from compartment i to j.

The units of the transfer rates are time−1 and 0 represents the system exterior.

4. Let aii = −
∑m

j=0,j 6=i aij be the total output transfer rate from compartment i.

5. Let A = [aij]m×m, i, j = 1, . . . ,m be the matrix of transfer coefficients.

6. Let λ1, . . . , λm be the eigenvalues of matrix A.

7. Let T 1, . . . ,Tm be the corresponding eigenvectors of matrix A.

Then it follows now by definition of compartment model

Ẋ(t) = X(t)A (1.1)

where Ẋ(t) is the m×m matrix of derivatives with Ẋij = dXij(t)/ dt.

Generally, based on this definition the drug amount in each compartment j is

partitioned into the amounts from all the compartments, which gives the X matrix.

3



A common simplification of the equation is to set X ·(t) = [X ·j(t)], where X ·(t) is

an m dimension vector representing the amount of drug in all the states at time t.

The solution to Equation 1.1 under some regularity conditions is

X(t) = TeΛtT−1X(0) (1.2)

where eΛt is the diagonal matrix with elements eλit and X(0) is the initial condition

diagonal matrix. In application, this usually leads to an explicit ‘sum of exponential’

form, i.e.,

X ij(t) =
∑

cije
λgt (1.3)

where cij and λg are functions that involve the coefficients aij. This is the general form

of explicit solutions for linear deterministic compartmental models. In applications,

the first step is to set up the compartment diagram, then system of ODEs could be

set up based on the diagram. After the model is built, some additional parameters

could be estimated, such as bioavailability: the percentage of administered dose which

reaches the systemic circulation of the patient; AUC: area under the plasma curve;

mean residence time: the average time that the drug stays at the site of action.

1.3 Numerical Solution to Differential Equations

Some ODEs can be solved explicitly while most of the complicated ODEs are

difficult to solve in exact form. The theory of dynamical systems puts emphasis on

qualitative analysis of systems described by differential equations. Many numerical

4



methods have been developed to determine solutions with a given degree of accuracy.

For initial value problems of ODEs, the general model can be written as:

Ẋ(t) = f(X(t), θ), X(t0) = X0 (1.4)

Where f is a known function and X is often called state variable. When the

equation is unsolvable, numerical methods could be used to approximate the ODE

solutions. Before numerically solving an ODE, we would like to know if a unique

solution exists or not for a specific initial value problem. The Picard Lindelof theo-

rem (Coddington and Levinson, 1955) guarantees a unique solution on some interval

containing t0 if f is continuous on a region containing t0 and X0 and satisfies the

Lipschitz condition on the variable X: given two metric spaces (X, dX) and (Y, dY ),

where dX denotes the metric on the set X and dY is the metric on set Y (for example,

Y might be the set of real numbers IR with the metric dY (x, y) = |x − y|, and X

might be a subset of IR), a function f : X → Y is called Lipschitz continuous if there

exists a real constant K ≥ 0 such that, for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2) (1.5)

Lipschitz condition is a strong form of uniform continuity for functions, basically

saying that the function is limited in how fast it can change. In general, ODE

numerical integration methods can be classified into two categories: one-step methods

and multi-step methods. Basic one-step methods include Euler’s method, midpoint

method, Runge-Kutta method and Bulirsch-Stoer method. Three commonly used

5



multi-step methods are Adams-Bashforth methods, Adams-Moulton methods, and

the backward differentiation formulas (BDFs) (Bulirsch and Stoer, 2002). Every

integration method is different in terms of orders of accuracy, computation efficiency

and stability, etc. Different methods may be appropriate depending on characteristic

of the system.

Here, several representative numerical methods are introduced. Euler’s method

is the most simple and basic explicit method for numerically solving ODEs with a

given initial value. The basic formula for the Euler’s method is:

Xn+1 = Xn + hf(Xn, tn) (1.6)

which advances a solution from tn to tn+1 = tn + h. Even though it has limited

use since it has second order local error and first order global error, which would

cause larger error that is accumulated with each successive step, it has serves as an

illustration of the concepts involves in the advanced methods.

Runge-Kutta methods propagate a solution over an interval by combining the

information from several Euler-style steps (each involving one evaluation of the right-

hand f), and then using the information obtained to match a Taylor series expansion

up to some higher order. Runge-Kutta methods are among the most popular ODE

solvers. They were first studied by Carle Runge and Martin Kutta around 1900.

Modern developments are mostly due to Butcher (1963). According to Bulirsch and

Stoer (2002), by far the most often used is the classical fourth-order Runge-Kutta

formula. The classical Runge-Kutta method has the advantage of self starting, simple

6



to handle, fixed local error order O(h5), and easy to conduct automatic step size

control, even though the computation cost of four functions per step is relatively

high. The original Runge-Kutta methods are explicit, however since the problem of

stiff equations arises, implicit Runge-Kutta methods have been developed to handle

the stability issue.

The methods discussed above are all one-step methods, which only require infor-

mation about the solution at one time say t = tn−1 to compute the solution at an

advanced time t = tn. After several points have been found, it is feasible to use sev-

eral prior points in the calculation. The Adams-Bashforth-Moulton method (Brown

et al., 1965) uses Xn−3, Xn−2, Xn−1 and Xn to compute Xn+1. A desirable feature

of a multi-step method is that the local truncation error could be determined and

a correction term can be included, which improves the accuracy of the solution at

each step. So the Adams-Bashforth-Moulton methods are also known as the most

common predictor corrector algorithm, which has the scheme:

Predictor : Xn+1 = Xn +
h

12
(23X ′n − 16X ′n−1 + 5X ′n−2) +O(h4) (1.7)

Corrector : Xn+1 = Xn +
h

12
(5X ′n+1 + 8X ′n −X ′n−1) +O(h4) (1.8)

Multi-step methods usually suffer from two difficulties in implementation: one is that

adjusting the step size is difficult since the formulas require results from equally spaced

steps, the other is that it has issue in starting and ending period of the algorithm.

A differential equation of the form Ẋ(t) = f(X, t) is said to be stiff if its exact

solution X(t) includes a term that decays exponentially to zero as t increases, but its

7



derivatives are much greater in magnitude than the term itself. An example is e−ct

,where c is large, positive constant. A large derivative would cause problem unless

the step size is sufficiently small. Implicit multi-step methods are commonly used for

stiff systems, like implicit Trapezoidal method, etc.

All those methods depend on the choice of step size and other tuning constants.

There are recommendations on what method to use for different situations. For exam-

ple, Petzold (1983) proposes a automatic scheme for determining whether a problem

can be solved more efficiently using a class of methods suited for non-stiff problems

or a class of methods designed for stiff problems. Liu et al. (2010) provides a numer-

ical simulation of four popular ODE solvers for different problems with continuous,

stiff, and hybrid behavior. Some important features, such as number of steps, ac-

curacy, CPU time and the event handling capability, are examined and advice for

solver selection is given. An excellent overview of computer methods for numerical

ODE solvers is given by Ascher and Petzold (1998). In the implementation, the R

package desolve (Soetaert et al., 2010) is mainly used for numerical study and real

data analysis purposes.

1.4 Derivative Free Optimizations

In general, estimation involves optimizing an objective function with respect to

the parameters of the model. In many cases the objective function is the likelihood

function. In some cases the objective is to minimize a sum of squares function.

When the ODE above could be solved analytically, the parameter estimation of

this model becomes a regular nonlinear least squares optimization problem. However,
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when the ODE is not solvable, some proper derivative-free optimization algorithms

need to be utilized along with the ODE numerical integrators to do model inference.

Based on Rios and Sahinidis (2013), the development of derivative-free algorithms

dates back to the works of Spendley et al. (1962) and Nelder and Mead (1965) with

their simplex-based algorithms. Other derivative-free optimization techniques like ge-

netic algorithm, hit-and-run algorithm, implicit filtering were proposed later. Signifi-

cant progress has been made on the algorithmic and theoretical aspects of derivative-

free optimization over the past two decades.

The Nelder-Mead uses the concept of a simplex, which is a special polytope of

N + 1 vertices in N dimensions. It begins with a set of n+ 1 points x0, . . . , xn ∈ IRn

that are considered as the vertices of a working simplex S. The method then performs

a sequence of transformations of the working simplex S determined by computing one

or more test points, together with their function values, and by comparison of these

function values with those at the vertices, to decrease the target function values at its

vertices. The Nelder-Mead method frequently gives significant improvements in the

first few iterations and quickly produces quite satisfactory results. Also, the method

typically requires only one or two function evaluations per iteration. On the other

hand, the lack of convergence theory is often reflected in practice as a numerical

breakdown of the algorithm, even for smooth and well-behaved functions.

Differential evolution (DE), originally proposed by Storn and Price (1997), is an

algorithm that optimizes a problem by iteratively trying to improve a candidate so-

lution with regard to a given measure of quality. It is developed to optimize real

parameter, real valued functions which can be non-differentiable, non-continuous,

9



non-linear or multi-dimensional. Differential evolution is crudely mimicking the evo-

lution of population members from generation to generation. Instead of one starting

value, we need to generate a population of candidates as starting values and can search

very large spaces of candidate solutions. It has the advantage of simple structure,

easy to use, high speed and robust.

Some selected previous work include: Chen et al. (1999) proposed a method to

model gene expression with differential equations. A linear differential equation sys-

tem was explicitly solved and model was reconstructed for further inference. Soetaert

et al. (2010) created an R package desolve to solve initial value problems of ODEs

using methods like Runge-Kutta. Iba (2008) presented a method to acquire the

structure of differential equations by genetic programming from the observed time

series. However the statistical inference for identified model is not discussed in the

paper. Haario et al. (2013) presented a general scheme for reduction and identifi-

cation of dynamic models using MCMC and asymptotic model reduction techniques

when experimental data from field measurements is noisy and incomplete.

1.5 Population Models

In Chapter 4 population dynamical system models are discussed. Adapting mixed

model into dynamical systems enables us to model and make inferences on dynamical

systems in a population setting. We could not only characterize the typical parameter

values in the population and the extent of their variation, but also study the corre-

lation between individual features and certain parameter values. For instance, if one

would like to study if there is a correlation between the eliminating rate of a certain
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drug and patients’ clinical information, such as age, gender, weight or treatment ef-

fect, the population dynamical system model would be built since those assumptions

could be well represented in the model settings. Therefore population dynamical

system model is an practical tool quite routinely used to assess the drug efficacy

and safety during the early phase of clinical trials, as well as to aid in the design of

pharmaceuticals with desired properties.

A popular tool in longitudinal data analysis of biometric studies is mixed effect

modeling. During the development process a lot of different methodologies have been

proposed and implemented in the linear mixed model framework (Cnaan et al., 1997).

Furthermore, nonlinear mixed effect models has been developed that focuses on fea-

tures or mechanisms that underlie individual profiles of repeated measurements of

the response and how these vary in the population. Some representative estima-

tion algorithms include the Laplace’s approximation for nonlinear mixed models by

Wolfinger (1993), Gaussian quadrature method by Pinheiro and Bates (1995), etc.

Population dynamical system model could be seen as an extension of nonlinear mixed

effect models. A lot of methodologies and schema in nonlinear mixed modeled could

be adapted and applied in population dynamical system models.

Restricted maximum likelihood (REML) approach is a particular form of max-

imum likelihood estimation which uses a likelihood of a set of residual contrasts

in order to reduce the bias in the estimation of variance components (Patterson

and Thompson, 1975). Recently, REML estimation algorithms for generalized linear

mixed models and nonlinear mixed effects models have been developed by Liao and

Lipsitz (2002) and Meza et al. (2007). An Algorithm for MLE and REML estimation
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for population dynamical system models is studied and implemented in Chapter 4.

Copyright c© Hongyuan Wang, 2016.
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Chapter 2 Estimation Methods Based on Numerical Integration of

Differential Equations

2.1 Review: Gauss-Newton Algorithm Based Method

When using software for numerically solving differential equations, one supplies

the set of times for which the system is observed, t0, t1, · · · , tm. The software returns

X(t0), X(t1), · · · , X(tm). Rarely would every compartment be observed at each

time point. A notation for the observational model is required. Let yij represent the

observation on the ith compartment at time tj. The combination of times and com-

partments observed must be such the parameters are identifiable. Mock-up notation

for a small data set is

y =



y10

y11

y12

y13

y14

y21

y25



and η(θ) =



x1(t0)

x1(t1)

x1(t2)

x1(t3)

x1(t4)

x2(t1)

x2(t5)



. (2.1)

Here θ is a vector containing all the unknown parameters of the system of differ-

ential equations including the initial values.
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For many cases the solution of the differential equations represent the expected

value of a set of observations. In this case, the observation model may be written as:

y = η(θ, t) + ε. (2.2)

The vector η(θ, t) is defined by selected elements of the solution of the differential

equation

Ẋ(t) = f(X, t,θ), X(t0) = X0 (2.3)

evaluated at times where observations are made. we refer (2.3) as differential equation

model.

One of the well-known parameter estimation methods is based on Gauss-Newton

algorithm and numerical differential equation approximations (Englezos and Kaloger-

akis, 2000). Newton’s method is a descent method with a specific choice of a descent

direction by iteratively adjusting itself to the local geometry of the function to be

minimized. The Gauss-Newton method is an approximation of Newton’s method for

minimizing the nonlinear least squares problem. It has the property of relatively

high convergence rate and easy implementation. Moreover, explicitly solving the

differential equations prior to model fitting is not necessary, therefore it could be

applied to circumstances when analytical differential equation solutions are difficult

or impossible to achieve.

In the estimation of the maximum likelihood estimates of the length m vector θ,

Newton’s method sets up some initial values for θ and then takes iterative steps to

find the estimates that minimize the target function d(θ) = −l(θ;y). The gradient
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function and Hessian matrix of the target function is defined as:

g(θ) =

[
∂

∂θi
d(θ)

]
m×1

(2.4)

H(θ) =

[
∂2

∂θi∂θj
d(θ)

]
m×m

(2.5)

Then the quadratic function is obtained from a truncated Taylor’s series expansion

of the function d(θ) at θ(i).

d(θ(i) + δ) ≈ q(δ) = d(θ(i)) + g(θ(i))Tδ +
1

2
δTH(θ(i))δ (2.6)

If H(θ(i)) is positive definite, then δTH(θ(i))δ > 0. If we could find a direction

δ(i) that satisfies g(θ(i))Tδ+ 1
2
δTH(θ(i))δ < 0, then q(δ)−d(θ(i)) < 0, such δ is called

the descent direction. If H(θ(i)) is not positive definite, it is replaced by a ‘nearby’

positive definite matrix. To take the first order derivative of q(δ) with respect to δ

∂

∂δ
q(δ) = H(θ(i))δ + g(θ(i)) (2.7)

In the Newton’s method, the next iteration of the parameters is simply taken to be

θ(i+1) = θ(i) + δ(i), where δ(i) minimizes q(δ), in this case δ is computed by setting

∂q(δ)/∂δ = 0. So Newton’s method updates the parameter in each iterate as:

θ(i+1) = θ(i) −H−1(θ(i))g(θ(i)) (2.8)
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The following is a theorem to show the convergence of Newton’s method.

Theorem 2.1.1. If θ(i) is sufficiently close to the true minimizer θ̂ at given iteration,

and H(θ(i)) is positive definite, then the Newton’s method is well defined for the

following iterations, and converges at a second order rate.

Proof. Assume that the elements of the Hessian matrix H(θ) satisfy the Lipschitz

condition |Hij(θ) − Hij(θ
′)| ≤ k||θ − θ′||, for a constant k. Then by Taylor series

expansion of the gradient function g(θ),

g(θ̂) = g(θ(i)) +H(θ(i))(θ̂ − θ(i)) +O(||θ̂ − θ(i)||2) (2.9)

Since H(θ(i)) is positive definite, d(θ) is convex and H−1(θ(i)) exists. If we multiply

H−1(θ(i)) on both sides of the equation

0 = −δ(i) + θ̂ − θ(i) +O(||θ̂ − θ(i)||2H−1(θ(i))) (2.10)

Then we have

||θ̂ − (θ(i) + δ(i))|| ≤ c||θ̂ − θ(i)||2 (2.11)

For some constant c. If θ(i) is in a close neighborhood of θ̂ such as ||θ̂−θ(i)|| < m/c,

where 0 < m < 1, then we have

||θ̂ − (θ(i) + δ(i))|| ≤ c||θ̂ − θ(i)|| ∗ m
c
≤ m||θ̂ − θ(i)|| < ||θ̂ − θ(i)|| (2.12)

So the sequence would converge to θ̂ and the rate is shown to be second order from
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equation 2.11.

Gauss-Newton algorithm is a common iterative method used for non-linear least

square problems and is an approximation of Newton’s method using only first order

derivatives. The target function to optimize has the form

S(θ) =
m∑
i=1

di(x, θ)
2 (2.13)

Starting with an initial guess θ(0), the algorithm proceeds by the iteration

θ(s+1) = θ(s) − (JTJ)−1JTD(x, θ(s)) (2.14)

Repeat until the predefined convergence criteria has reached. Here D = (d1, . . . , dm)

and J is the Jacobian matrix.

(J)ij =
∂di(θ

(s))

∂θj
(2.15)

In a general non-linear regression model, the Jacobian matrix could be derived

in exact form. Thus Gauss-Newton method could easily be implemented. How-

ever, when the model is in differential equation form, the Jacobian matrix is no

longer available analytically, even though the value of first order derivatives is es-

sentially necessary for Gauss-Newton algorithm. Under this specific circumstance,

we would implement a framework to approximate Jacobian matrix using numerical

discretization-based ordinary differential equation approximations by expanding the

17



ODE equations.

To apply Gauss-Newton algorithm to do least squares estimation, which is to

minimize the objective function

S(θ) =
m∑
i=1

(yi − η(ti, θ))
2 (2.16)

The first order derivative of η(θ, t) with respect to θ is

U(θ, t) =



∂
∂θ1
η(θ, t1)

∂
∂θ2
η(θ, t1) . . . ∂

∂θn
η(θ, t1)

∂
∂θ1
η(θ, t2)

∂
∂θ2
η(θ, t2) . . . ∂

∂θn
η(θ, t2)

. . .

∂
∂θ1
η(θ, tm) ∂

∂θ2
η(θ, tm) . . . ∂

∂θn
η(θ, tm)


(2.17)

Consider the basic form for compartmental models

Ẋ(t) = AX(t) (2.18)

where A is a matrix composed by parameters. d
dθ
X(t) is needed to construct the

Jacobian matrix. Since we have:

d

dθ
˙X(t) =

d

dθ
A ·X(t) + A · d

dθ
X(t) (2.19)

Let’s assume U(t) = d
dθ
X(t), then d

dθ
˙X(t) = U̇(t). Then the model could be ex-
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panded to the following form:

 Ẋ(t)

U̇(t)

 =

 A 0

d
dθ
A A


 X(t)

U(t)

 (2.20)

Then numerical ODE approximation methods like Runge-Kutta, Adams-Bashforth-

Moulton, etc could be used to get the approximation for both X(t) and U (t), for

t = t0, . . . , tn. In this way the Jacobian matrix for Gauss-Newton algorithm is also

built. Then the least square estimator or weighted least squares estimator could be

derived. Here θ could be a scalar or vector. It could be assumed that as the approxi-

mation from selected numerical ODE integration gets close enough to the true value,

the properties of Gauss-Newton algorithm will hold. It is worth noticing that the

convergence of Gauss-Newton algorithm is conditional on the fact that the starting

value is in the neighborhood of the true parameter values.

Approximate Confidence Intervals

Besides point estimation for parameters, we would like to obtain the confidence

intervals for the parameters and furthermore perform hypothesis tests like the Wald

test. Based on the observation model

Yi = X(ti) + εi i = 1, . . . , n (2.21)
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By assumption the residual error εi, i = 1, . . . , n are independent and identically

distributed, the least square estimator θ̂ of θ minimizes

L(θ) =
n∑
i=1

(yi −X(ti))
2 (2.22)

So least square estimator θ̂ satisfies

∂L(θ)

∂θ

∣∣∣∣
θ̂

= 0 (2.23)

Based on non-linear regression inference, the Jacobian matrix plays the same role as

X in linear regression.

θ − θ̂ = (JTJ)−1J ′ε (2.24)

If we assume ε ∼ N(0, σ2I), we have

θ − θ̂ ∼ N(0, σ2(JTJ)−1) (2.25)

where σ2 is estimated by s2 = L(θ̂)
n−m . Therefore, the marginal confidence intervals for

elements of θ could be represented as:

θ̂ ± t1−α/2,n−m · s · (diag(JTJ)−1)1/2 (2.26)

The Jacobian matrix J is provided by the proposed Gauss-Newton based method,

thus the confidence interval could be computed without any extra effort. Hypothesis
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tests on θ could be conducted similarly.

Simulation Study: a 2-Compartment Model

A compartment model can simulate the biologic process involved in the kinetic

behavior of a drug after it has been introduced into the body, leading to a better

understanding of its pharmacodynamics effects.

For a specific 2-compartment model illustrated in Figure 2.1, we have

A =

 −θ1 θ2

θ1 −θ2 − θ3

 (2.27)

Since θ = [θ1, θ2, θ3] is a 3 dimension vector. We define Uj(t) = d
dθj
X(t) and

U (t) = (U1(t), U2(t), U3(t))
′, then d

dθj
˙X(t) = U̇j(t), j = 1, 2, 3. Then the model

becomes:

 Ẋ(t)

U̇j(t)

 =

 A 0

d
dθj
A A


 X(t)

Uj(t)

 (2.28)

for θj equals θ1, θ2, θ3 respectively. The initial value for X(t) is usually predefined.

If not we could set them as parameters and get their least squares estimator. The

initial value for U (t) should be set to zero.

For the observed data set: {ti, y1i, y2i}; i = 1, . . . , n. To get the least square
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estimation of θ is to minimize

n∑
i=1

(X1(ti)− y1i)2 +
n∑
i=1

(X2(ti)− y2i)2 (2.29)

with respect to θ1, θ2, θ3. In many situations it is appropriate to give different weights

to those terms.

To make it easier to read, we concatenate y1 and y2 and name it y. We did the

same thing to X1(t) and X2(t) and get X(t). Let f(x) =
∑n

i=1 r
2
1i +

∑n
i=1 r

2
2i = ‖r‖2,

where r1i = y1i −X1(ti) and r2i = y2i −X2(ti). Then

J1 =


∂r11
∂θ1

. . . ∂r11
∂θm

...
...

∂r1n
∂θ1

. . . ∂r1n
∂θm

 = −


∂X1(t1)
∂θ1

. . . ∂X1(t1)
∂θm

...
...

∂X1(tn)
∂θ1

. . . ∂X1(tn)
∂θm

 (2.30)

J2 =


∂r21
∂θ1

. . . ∂r21
∂θm

...
...

∂r2n
∂θ1

. . . ∂r2n
∂θm

 = −


∂X2(t1)
∂θ1

. . . ∂X2(t1)
∂θm

...
...

∂X2(tn)
∂θ1

. . . ∂X2(tn)
∂θm

 (2.31)

And

J =

 J1

J2

 (2.32)

is the Jacobian matrix.

The Algorithm is:
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Application: Two Compartment Model
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Figure: Pharmacokinetic Two Compartment Model

Hongyuan Wang (Department of Statistics University of Kentucky)Dynamical Systems Models August 12, 2016 16 / 36

Figure 2.1: Example diagram of the 2-compartment model

1. Set θ(0) and set s = 0.

2. Compute X(ti), U1(ti), U2(ti), U3(ti), i = 1, . . . , n using initial value numerical

ODE approximations based on θ(s). Form the Jacobian matrix J .

3. Update θ(s+1) = θ(s) − (JTJ)−1JT (y−X(t))

4. Test convergence. Stop if convergence is reached, otherwise set s = s + 1 and

go back to step 2.

Furthermore we would like to apply the method described above on a real dataset.

We would like to build a pharmacokinetic two compartment model with two sets of

observation data (Karline Soetaert, 2011): a substance accumulated in the fat and

eliminated by the liver. We got 8 different time points: 0, 4, 8, 12, 16, 20, 24, 28. The

observed concentration on fat are X1 : 0.0001, 0.041, 0.05, 0.039, 0.031, 0.025, 0.017,

0.012 at each time point. The concentration on liver are X2 : 1.31, 0.61, 0.49, 0.41,

0.20, 0.12, 0.16, 0.21 respectively.

A dynamic 2-compartment model is built as section 2.1 illustrates. Using the

method described in section 2.1, the least square estimator and the appropriate con-
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fidence interval for θ is obtained. The result shows that our algorithm takes about

15 iterations to converge and the estimation of θ is (0.673, 0.070, 0.085) with 95%

confidence intervals [−9.401, 10.747], [−0.993, 1.133], [0.058, 0.113] respectively. The

plots of the model along with observations is on Figure 2.2.
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Figure 2.2: Plots of 2-compartment model with observations

2.2 Application: Acetaminophen in a Lactating Goat

Wilson et al. (1986) conducted a study to examine the relationship of milk and

plasma levels of a drug. A solution of acetaminophen was infused into a lactating

goat through an EJV catheter using an IVAC 630 pump. Levels of concentration in

plasma and milk were measured at selected points in time but not the same time for

each compartment. The three compartment system shown in Figure 2.3 is considered

appropriate for modeling this biological system.

Time t is measured from zero at the time infusion starts. Infusion stops at t = 63.3,
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Figure: The Compartmental Diagram. The infusion input parameter,
α is set to zero at t = 63.3 min.
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Figure 2.3: The compartmental diagram. The infusion input parameter, α is set to
0 after t = 63.3 min.

but observations continue through 300 minutes. Levels of drug concentration in both

plasma and milk are sampled but not at exactly the same times.

The model structure is

Ẋ(t) = ai + AX(t) X(t0) = X0, i = 1, 2 (2.33)

The system matrix is:

A =


−(θ5 + θ1) θ2 0

θ1 −(θ2 + θ3) θ4

0 θ3 −θ4

 (2.34)

This matrix applies through both phases. The infusion input vectors are

a1 =


1

0

0

α a2 =


0

0

0

 (2.35)
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Plasma Milk
Time Concentration Time Concentration
10.47 13.08 10.00 0.29
20.00 18.62 20.00 3.36
30.00 22.05 30.00 4.01
40.00 24.79 40.00 7.74
50.00 25.71 50.00 10.40
61.00 28.11 60.00 12.86
70.17 17.94 70.52 12.41
80.00 9.89 80.33 17.86
90.80 6.20 91.13 16.22
100.22 4.04 100.75 11.39
109.73 3.58 110.33 14.60
119.88 2.27 120.47 13.09
149.92 0.69 150.33 7.31
180.00 0.36 180.60 4.89
210.63 0.23 211.07 2.47
240.00 0.14 240.38 2.32

280.33 1.99
300.42 0.67

Table 2.1: Observations for concentration in plasma and milk level of a drug.

The experimental dataset is shown in Table 2.1. As we can see, the challenging

part of model estimation is that: the ODE system changes in two consecutive stages

divided by a given time point. So initial value of ODE system during the second

stage (after t = 63.3) is unknown and needs to estimate using the information in the

first stage. Moreover, the number of observations and observation time are different

for milk and plasma level, which increases the complexity of our computation.

We use Gauss-Newton based algorithm for parameter estimation, and the approx-

imate confidence interval for the 6 parameters is also been calculated. The validity of

approximate confidence intervals produced by Gauss-Newton Algorithm is assessed

by comparing with bootstrap confidence intervals. The final result is shown in Table

2.2. As we can see those two sets of confidence intervals are consistent in a certain
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Parameter Estimation Approximate CLs Bootstrap CLs
α 1.562 [ 1.34, 1.77 ] [ 1.45, 1.68 ]
θ1 0.014 [ 0.012, 0.017 ] [ 0.012, 0.015 ]
θ2 0.004 [ -0.004, 0.012 ] [ -0.004, 0.006]
θ3 0.008 [ -0.001, 0.017 ] [ 0.004, 0.016 ]
θ4 0.000 [-0.003, 0.003 ] [-0.002, 0.002 ]
θ5 0.043 [0.030, 0.056 ] [ 0.036, 0.049 ]

Table 2.2: Summary statistics for parameter estimations for Gauss-Newton based
algorithm.

level, which proves the validity of the approximate confidence interval generated using

information from Gauss-Newton algorithm. Figure 2.4 shows the fitted value versus

actual observations. As we can see not only the fitted value for observed compart-

ment (plasma and milk) can be obtained, the unobserved other compartment could

also be predicted by the ODE model.
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Figure 2.4: Model fit versus actual observations. Concentrations in plasma, milk and
other compartment are in the plot.
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2.3 Differential Evolution Based Method

One issue with the conventional gradient-based optimization methods such as the

Gauss-Newton method is that it may fail to converge or may converge to a local

minimum if the initial values of the unknown parameters and the state variables are

not close enough to the true values, as shown in 2.1.1. Therefore, global optimiza-

tion method is needed when there is no accurate enough prior information for the

parameters or when the Gauss-newton algorithm fails to converge.

Differential Evolution is a very simple and powerful population based, stochastic

function minimizer in the continuous search domain which belongs to the class of

genetic algorithms. It is based on a particular way of constructing so-called mutant

vectors by using differences between randomly selected elements from the current

population. It is designed to be a stochastic direct search method thus it has the

ability to handle non-differentiable, nonlinear and multi-modal cost functions. In

what follows, a brief sketch of Differential Evolution algorithm is presented.

Differential Evolution

Let’s assume Np to be the number of parameter vectors x ∈ IRd, where d de-

notes dimension. The initial Np parameter vectors are generated either by random

values between upper and lower bounds defined by user, or using values assigned by

user. Each generation involves creation of a new population from the current popu-

lation members {xi, i = 1, . . . , Np}, which is accomplished by mutation of population

members. Each member will go through mutation, recombination and selection step
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iteratively until some stopping criterion is reached. An initial mutant parameter vec-

tor vi is built by randomly selecting three population members, xi1 , xi2 and xi3 . Then

vi = xi1 + F (xi2 − xi3) (2.36)

where F is a positive scale factor. In some implementations, Equation 2.36 would

include a term in direction of the best member as shown in (2.40). After the first

mutation operation, mutation is continued until d mutations have been made, with an

optional crossover probability CR ∈ [0, 1]. The crossover probability CR controls the

fraction of the parameter values that are copied from the mutant. Mutation is applied

in this way to each member of the population. If an element of the trial parameter

vector is found to violate the bounds after mutation and crossover, it is reset in such

a way that the bounds are respected (with the specific protocol depending on the

implementation). Then, the objective function values associated with the children

are determined. If a trial vector has equal or lower objective function value than the

previous vector, then it replaces the previous vector in the population; otherwise the

previous vector retains.

It has been shown to be effective on a large range of classic optimization problems.

Ali and Törn (2004) found that Differential Evolution was more accurate and effi-

cient than controlled random search and another genetic algorithm. Lampinen and

Storn (2004) showed that it was more accurate than some alternative optimization

approaches, such as four genetic algorithms, etc.

The general structure of combining Differential Evolution with numerical ODE
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approximation goes below:

1. Set up the population size Np, the weighting factor F and mutation factor M .

2. Create initial population. Set up the upper and lower bound for each parameter

xLj ≤ xij ≤ xUj (2.37)

Randomly select the initial parameter x = {xij}, i = 1, . . . , Np, j = 1, . . . , d

uniformly on [xLj , x
U
j ].

3. Use numerical ODE solver to compute and store the best parameter set that

maximizes the log likelihood (or minimize the mean square error), call it xib.

4. Create difference vectors

Di = xi1 − xi2 , i = 1, . . . , Np (2.38)

where i1 and i2 are randomly selected from the population index.

5. Apply mutation on difference vectors

Dik =


−Dik if runif < M

Dik otherwise

(2.39)

where i = 1, . . . , Np and k = 1, . . . , d.
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6. Form and check offspring.

T i = xi + F ·Di + F · (xib − xi) (2.40)

xi =


T i if `(T i) > `(xi)

xi otherwise

i = 1, . . . , Np (2.41)

where ` represents the log likelihood function that computed by selected nu-

merical ODE solvers.

7. Repeat step 3 to 6 until the stopping criteria is met

Hybrid Method

Despite of all the excellent features about Differential Evolution, there is no proof

of convergence for the algorithm. Moreover, incorporating numerical ODE integra-

tions into Differential Evolution is quite computationally intensive for complicated

ODE models with a relatively large set of parameters to estimate, since numerical

ODE solvers need to be called multiple times for all members in the population in

each iteration. On the other hand, the rate of convergence of Gauss-Newton algo-

rithm can approach quadratic. So under certain circumstances the it be more efficient

in searching for optimal values than Differential Evolution. However, Gauss-Newton

algorithm may converge slowly or not at all if the starting value is far from optimal

or the matrix JTJ is ill-conditioned, even on the situation when the approximate

Jacobian matrix using numerical ODE integration is accurate enough.
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To take the advantage of both optimization algorithms, we propose and imple-

ment a hybrid method which uses Differential Evolution to do a pre-selection for

starting values that would be used in Gauss-Newton algorithm. The input parameter

is number of generations (iterations) for Differential Evolution, which can be a small

integer like 5 or 10. The hybrid method is expected to be more stable and efficient

than Gauss-Newton method under some circumstances.

In Section 2.5 a series of numerical study is conducted to compare the performance

of the hybrid method with Gauss-Newton algorithm based method and Differential

Evolution based method under the situation of a linear ODE system.

Application: FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) model is a two-dimensional model that describes

the voltage potential across the cell membrane of the axon of giant squid neurons.

The motivation for the FHN model was to isolate conceptually the essentially mathe-

matical properties of excitation and propagation from the electrochemical properties

of sodium and potassium ion flow.

dV

dt
= γ(V − V 3

3
+R)

dR

dt
= −1

γ
(V − α + βR)

Where V is the membrane potential that depends on a recovery variable R, and

α, β, γ ∈ IR+ are model parameters.

This is a typical nonlinear differential equation model in which the parameters
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are hardly accessible for direct measurement. Differential Evolution is applied here

along with numerical simulation to do parameter estimation and bootstrap method

is used to generate confidence intervals.
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Figure 2.5: Plots of simulated data and solution to the true model with α = β = 0.2,
γ = 3 and initial conditions V = −1, R = 1.

Samples were generated at 20 equally spaced time points from 0 to 20 by numeri-

cally solving the differential equations with parameters α = 0.2, β = 0.2, γ = 3.0 and

initial values V = −1, R = 1. Normal random numbers with mean 0 and standard

deviations 0.5 were added to the data as noise. The simulated dataset with the true

FHN model are shown in Figure 2.5.

Bootstrap was performed to get confidence intervals for parameters. The residuals

from original model were resampled with replacement 500 times and added to the data

to get 500 new datasets. Models were refitted each time with a new dataset to get a

set of estimations for all parameters. Those sample quantiles are derived as bootstrap
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Parameter True Value Estimation Confidence Limits
α 0.2 0.189 [ 0.13, 0.32 ]
β 0.2 0.442 [ 0.06, 0.63 ]
γ 3.0 2.831 [ 2.54, 3.05 ]

Table 2.3: Summary statistics for parameter estimates of the FHN model.

confidence limits.

The least square estimators for parameters α, β, γ and confidence intervals are

shown in Table 2.3.

2.4 Monte Carlo Approach

One disadvantage about the Differential Evolution based method is that there is

no closed form solution for the confidence intervals and bootstrap procedure is very

time-consuming. Monte Carlo method could be utilized as an alternate approach.

Since the observation model is

Y i = X(ti) + εi, i = 1, . . . , n (2.42)

If we assume εi are independent and normally distributed as N(0, σ2), then the

model likelihood could be written as:

p(Y |X(θ)) =
∏
k∈K

N(Xk(θ), σ2
kIdk) (2.43)

where k is the index for a total of K state variables. dk stands for the number

of observations for the state variable xk. σ
2 = (σ2

1, . . . , σ
2
K) are the observational
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Parameter True Value Posterior Mean Credible Interval
α 0.2 0.196 [ 0.09, 0.29 ]
β 0.2 0.351 [ 0.03, 0.66 ]
γ 3.0 2.822 [ 2.50, 3.04 ]

Table 2.4: Summary statistics for parameter estimates of the FHN model by MCMC
method.

variances. We could assign prior distribution to θ = (α, β, γ). Then the posterior

distribution for θ could be written as:

p(θ|Y ) = π(θ)p(Y |X(θ)) (2.44)

A wide prior Γ(1, 3) is assigned to each of the parameters α, β and γ. Since

X(θ) has no closed form solution, the posterior distribution could not be computed

directly. Thus Markov Chain Monte Carlo (MCMC) method are required to draw

samples from the posterior distribution.

The MCMC algorithm used here is the robust adaptive Metropolis sampler. 5000

posterior samples were generated from 51000 iterations of the MCMC algorithm,

where the first 1000 values were used as burn-in and the remaining samples were

thinned by a factor of 10. Initial values are randomly drawn from the prior distri-

bution. The trace plots for the MCMC algorithms are shown in Figure 2.6, which

indicates that the prior distribution is well calibrated since the parameters is shown

to have sufficient state changes as the algorithm runs.

Figure 2.7 shows the two fitted model, compared with the true model. We can see

that the two fitted model are almost identical and they are both quite close to the true

model. This is also demonstrated from Table 2.4. The posterior mean and credible
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Figure 2.6: Trace plots. The true parameters values are depicted by the red line.
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Figure 2.7: Model fit plots for Differential Evolution based method and Monte Carlo
method.

intervals are close to the estimation by Differential evolution and bootstrap confidence

intervals. A major concern for the Monte Carlo method is the time-consuming issue,

since generating Markov chains by calling numerical ODE solvers in each iteration

could be quite computationally intensive.
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2.5 Numerical Study and Method Comparison

To compare the accuracy, convergence rate and other performances of the nu-

merical ODE integration based methods under different scenarios, we conducted a

series of simulation study. The study is based on a two-compartment model. The

experiment data is simulated with a given set of true parameters , and random errors

with mean zero and known standard deviance is added to simulate the real data that

are often contaminated with measurement error. The variance of random errors is

increasing in each sequence of simulation study.

The methods that been compared in this section are: the state-of-the-art Gauss-

Newton algorithm based method which is recommended by Englezos and Kalogerakis

(2000), the proposed Differential Evolution based method and the hybrid method that

combines Differential Evolution and Gauss-Newton Algorithm.

Even though Gauss-Newton Algorithm based method is a relatively efficient method

since it exhibits quadratic convergence to the optimum, numerical stability and pa-

rameter initial value issue is the drawback. It is possible to converge to a local

minimum or even fail to converge when starting with a poor initial point. Thus it

is crucial to be prudential when it comes to selecting the initial values. It is always

helpful if there is an expertise of where the parameter value should be around that we

can directly use as initial point. However when there is no such expertise, we propose

the idea of searching for appropriate initial value in a given range using Differential

Evolution first and then inputting it into the Gauss-Newton algorithm.

We compared the performance of these methods by average relative error (ARE)
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and mean square error (MSE) in the numerical study as

ARE =
1

n

n∑
i=1

∣∣∣∣∣ θ̂i − θθ

∣∣∣∣∣ (2.45)

where θ̂i is the estimator of θ in the ith simulation run and i = 1, . . . , n.

MSE =
1

n

n∑
i=1

(θ̂i − θ)2 (2.46)

The convergence rate is the proportion of times when the algorithm converges, and

is also considered as a criteria in the numerical study.

Table 2.5 and 2.6 summarizes the average relative error, mean square error and

convergence rate of the three tested estimators based on 1000 simulation runs under

different standard deviance scenarios. The true parameter value is: θ1 = 0.670, θ2 =

0.069 and θ3 = 0.085. We assume there’s no prior information about the parameters,

and the initial points were randomly selected from a uniform distribution from 0 to 1

for the Gauss-Newton algorithm. The initial population is also uniformly generated

from 0 to 1 for Differential Evolution algorithm. Same initial value generation strategy

is used in the hybrid method, in which we use Differential Evolution to run 10 steps

to generate the input for Gauss-Newton algorithm. As we can see from the table, the

estimation accuracy tends to get lower as the noise of data getting larger for both

Differential Evolution method and proposed hybrid method. The damped Gauss-

Newton method is unstable and generates large estimation errors compared to the

other two. Moreover, as we mentioned before the original Gauss-Newton algorithm

38



(σ1, σ2) parameter θ̂GN θ̂DE θ̂Hybrid
(0.001, 0.001) θ1 ARE 211.64 5.50 5.46

θ2 845.95 5.63 5.59
θ3 78.29 0.13 0.13

Converge 0.70 1.00 1.00
(0.001, 0.002) θ1 ARE 217.24 78.87 29.17

θ2 141.65 85.29 31.05
θ3 152.39 0.29 0.29

Converge 0.84 1.00 1.00
(0.001, 0.005) θ1 ARE 308.38 78.01 57.51

θ2 182.38 83.29 57.93
θ3 63.47 0.68 0.69

Converge 0.82 1.00 1.00
(0.002, 0.001) θ1 ARE 269.81 16.45 18.14

θ2 213.65 17.45 18.12
θ3 108.72 0.17 0.20

Converge 0.78 1.00 1.00
(0.005, 0.001) θ1 ARE 212.37 46.31 62.71

θ2 166.22 49.13 65.07
θ3 97.79 0.34 0.41

Converge 0.90 1.00 1.00

Table 2.5: Average relative error (ARE) of three methods. θ̂GN represents estimation
using Gauss-Newton algorithm based method, θ̂DE represents estimation using the
proposed Differential Evolution based method and θ̂Hybrid represent estimation using
the proposed hybrid method.

is not guaranteed to converge depends on the initial points and the proposed Hybrid

method could overcome this issue. As we can see the average convergence rate for

Gauss-Newton Algorithm in this numerical study is around 80 percent and the Hybrid

algorithm has almost 100 percent convergence rate.

Copyright c© Hongyuan Wang, 2016.
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(σ1, σ2) parameter θ̂GN θ̂DE θ̂Hybrid
(0.001, 0.001) θ1 MSE 8.70 0.23e-2 0.22e-2

θ2 9.58 0.26e-6 0.25e-6
θ3 0.18e-01 0.18e-7 0.19e-7

Converge 0.70 1.00 1.00
(0.001, 0.002) θ1 MSE 4.39 4.33 0.24

θ2 0.03 0.05 0.003
θ3 0.61e-01 0.15e-6 0.12e-6

Converge 0.84 1.00 1.00
(0.001, 0.005) θ1 MSE 9.73 2.27 0.54

θ2 0.04 0.03 0.01
θ3 0.10e-01 0.51e-6 0.50e-6

Converge 0.84 1.00 1.00
(0.002, 0.001) θ1 MSE 13.03 0.05 0.07

θ2 0.15 0.07e-2 0.07e-2
θ3 0.31e-01 0.36e-7 0.10e-6

Converge 0.78 1.00 1.00
(0.005, 0.001) θ1 MSE 6.85 0.24 0.43

θ2 0.74e-1 0.29e-2 0.52e-2
θ3 0.27e-01 0.13e-6 0.22e-6

Converge 0.90 1.00 1.00

Table 2.6: Mean square error (MSE) of three methods. θ̂GN represents estimation
using Gauss-Newton algorithm based method, θ̂DE represents estimation using the
proposed Differential Evolution based method and θ̂Hybrid represent estimation using
the proposed hybrid method.
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Chapter 3 Estimation Method Based on Fourier Basis Smoothing

3.1 Introduction

Since the estimation methods based on numerical integration of differential equa-

tions require solving ODE initial value problems numerically in a repeated manner,

usually it is computationally intensive and time consuming on large datasets. Some

alternative methods have been proposed. Varah (1982) proposed a two stage es-

timation method for differential equations using cubic spline. Ramsay et al. (2007)

proposed a parameter estimation method based on a penalized data smoothing meth-

ods along with a generalization of profiled estimation. Liang and Wu (2012) proposed

a two-step method and estimate the derivative using local polynomial regression.

One issue with the cubic spline or penalized spline based method is that when

the sample size is small, it is difficult to pick the knots and do smoothing. Due to

the nature of pharmacokinetic study, usually the number of observations is limited.

While on the other hand, using Fourier basis would avoid the procedure of choosing

knots, thus more flexible to small sample dataset.

Motivated by Varah (1982) and Ramsay et al. (2007), we propose an estimation

method using Fourier basis smoothing and pseudo least square estimation. It has

the advantage of being less time consuming, and it does not have the initial value

problem that is presented when using ODE numerical solvers. Comparing to spline

based method, it works better on periodic or near periodic ODE model functions.
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Moreover, the derivative with respect to time is simple and fast to get using Fourier

transformation, and it plays an important role in the estimation procedure.

3.2 Model and Estimation Method

Fourier basis is formed by a sequence of sine and cosine with increasing frequency

and equation is:

x(t) =
K∑
k=1

ckΦk(t) (3.1)

Where Φ1(t) = 1, Φ2(t) = sin(ωt), Φ3(t) = cos(ωt), Φ4(t) = sin(2ωt), Φ5(t) =

cos(2ωt), . . . , ΦK−1(t) = sin( (K−1)ωt
2

), ΦK(t) = cos( (K−1)ωt
2

), where constant ω =

2π/P defines the period P of oscillation of the first sine/cosine pair. The dimension

of basis K is always odd.

To fully declare a Fourier basis system we need to define the dimension of basis

K, and the period width P . K needs to be properly chosen so that the basis can

capture enough information while not over fitting the data, and P can be decided by

a preliminary study. Often the default is the range of t values spanned by the data

to indicate a non-periodic function.

The Fourier basis system is straightforward and fast to implement. It is very

appropriate for describing periodic or near periodic data by natural, and it has decent

computational properties. Moreover, it is not necessary to choose the cutting point

therefore it works more naturally on small sample dataset. So the Fourier basis is

selected as the data smoothing technique in the parameter estimation procedure.
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To further describe the problem, we refer the definition of compartment models

in Section 1.2 and define the model equation to be:

Yij = Xi(tj) + εij, i = 1, . . . , N, j = 1, . . . , ni (3.2)

Where Yi1, . . . , Yini
are a sequence of observed data on successive time points

t1, . . . , tni
for compartment i, and εi1, . . . , εini

are by assumption uncorrelated errors

with zero mean and variance-covariance matrix Σi. There are two ways to define the

residuals in the observation model: one is additive error, assuming Σi = Iσ2; the

other is proportional error, which assumes the noise is proportional to the expected

value, then Σi = Xiσ
2, where Xi = diag(Xi(t1), . . . , Xi(tni

)). It may be appropriate

to apply a variance stabilization transformation, such as log or square root, to both

side of the model equation. Carroll and Ruppert (1988) gives a detailed illustration on

how appropriate transformations could remove heteroscedasticity when the variance

is a function of the mean and how the convexity, or concavity, of a transformation

determines its effect upon skewness, therefore the intelligent use of transformation

requires understanding of their effects upon non-normality and heterogeneity of vari-

ance components.

Xi(tj) is defined by solution of the following differential equation on the corre-

sponding compartment i evaluated at given time point tj

dX(t)

dt
= f(X, t,β), X(t0) = X0 (3.3)
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Sometimes we refer (3.2) as observation model and (3.3) as differential equation

model. Here X(t) and Y (t) could be scaler or vector, depending on the number

of compartments or number of observed compartments in the system. The initial

condition (t0,X0) could be known or unknown. When it’s unknown we usually treat

it as an additional parameter. When multiple compartments are observed, X(t) =

(X1(t), . . . , XN(t)).

Assuming the additive error structure and defining ntot be the total number of

observations, the model likelihood can be derived as:

L(β, σ2) =
n∏
i=1

P (Y i|β, σ2) (3.4)

= (2πσ2)−ntot/2 exp(− 1

2σ2

N∑
i=1

|Y i −X i(t,β)|2) (3.5)

For parameter estimation, we use a computation approach to first smooth the

data then minimize the derivative error. The purpose of the Fourier basis system

is to smooth the data, namely, to remove the measurement error from the data, as

well as to evaluate rates of change (derivatives) which play an important role in next

stage.

• Step 1: Build a Fourier basis for data smoothing. For each ti, obtain the Fourier

estimate F̂(ti) and its derivate F̂ ′(ti).

• Step 2: Minimize the so-called pseudo least square objective function

β̂ = argmin
β

n∑
i=1

[F̂ ′(ti)− f(F̂(ti), ti,β)]2 (3.6)
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Liang and Wu (2012) proves the pseudo least square estimator has good asymp-

totic properties such as consistency and asymptotically normal. The estimator has

closed form if f is a linear function and if it’s nonlinear, Gauss-Newton, Nelder-Mead

or another optimization method could be used.

The purpose of Fourier basis smoothing in step 1 is to remove only the measure-

ment noises from the observational data, and the dimension of Fourier basis should

be the lowest possible that fits the measurements satisfactorily. If the ODE model

is indeed the true model then computed output vector from the ODE model should

correspond to the error-free measurements. So a convenient way to validate if the

Fourier smoothing is satisfactory is to plot the raw data, the smoothed data and the

output from the final ODE model in one graph for visualization. If the initial fit

from Fourier basis smoothing is reasonably close to the final ODE model fit, and the

residuals appear to be normal, then the Fourier basis smoothing is done in a correct

way. If not, it is always a valid option to go back and redo the Fourier smoothing.

3.3 Simulation Study

To test the performance of the proposed method on complicated ODE model

structures, especially on those differential equations that do not have analytical so-

lutions, a simulation study is conducted. The FitzHugh-Nagumo (FHN) model is a

two-dimensional model that describes the voltage potential across the cell membrane

of the axon of giant squid neurons. The motivation for the FHN model was to isolate

conceptually the essentially mathematical properties of excitation and propagation

from the electrochemical properties of sodium and potassium ion flow. The ODE
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Figure 3.1: Number of parameters versus residual sum of squares (RSS) for V and R.

model structure of FHN model is:

dV

dt
= γ(V − V 3

3
+R) (3.7)

dR

dt
= −1

γ
(V − α + βR) (3.8)

where V is the membrane potential that depends on a recovery variable R, and

α, β, γ ∈ IR+ are model parameters.

As an example, 80 observations are simulated from time = 0 to time = 20 by

increment of 0.25. Using the proposed two step estimation method with Fourier

transformation. After a preliminary study we set period value P = 9. Then based

on Figure 3.1 we checked the residual sum of squares (RSS) versus dimension of

Fourier basis. We also checked the plots of the actual fit to make sure there is no

over-fitting. If the Fourier curve overfits the data, not only the initial fit would be
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affected by random observation errors, but also the estimation of time derivatives

would potentially be seriously biased, which would cause the pseudo least square

function in step 2 to be biased and unreliable. As we know that as the dimension

of basis gets larger, the RSS is always getting smaller, as shown in Figure 3.1. It is

appropriate to stop at the number of dimension where the RSS is not dramatically

decreasing, and no signs of over fitting is detected. Meanwhile, the plot of derivatives

is another tool in determining the validity of the initial fit. In the example we select

the dimension of basis for V and R to be 17 and 9 respectively. The initial Fourier

basis smoothing is shown on Figure 3.2.

Once we obtain the Fourier estimate V̂(ti), R̂(ti) and its derivate V̂ ′(ti), R̂′(ti).

We go to step 2 and obtain the pseudo least square estimator for α, β and γ.

{α̂, β̂, γ̂} = argmin
α,β,γ

n∑
i=1


[
V̂ ′(ti)− γ

(
V̂(ti)−

V̂3(ti)

3
+ R̂(ti)

)]2

+

[
R̂′(ti) +

V̂(ti)− α + βR̂(ti)

γ

]2
(3.9)

The final fit is shown on Figure 3.3. Compared with the initial fit, the final fit is

more smooth and it better represents the dynamics of the ODE model, and is less

influenced by the observation noise. These final plots show relatively high accuracy

and since the method bypasses calling a numerical ODE solver, the estimation speed

is much improved.

As we can imagine, the accuracy of this method could not surpass that of the

numerical ODE integration based method, especially for limited sample size situa-
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Figure 3.2: Initial fit using Fourier basis smoothing.

tion, or heavily noised data. However, in ideal cases the results could be as good,

with much less computation time to gather the results, and it could also provide

useful preliminary information for numerical ODE integration based method. In the

following simulation studies, a hybrid method is proposed, using a two stage estima-

tion schema, whereas in stage one the estimation based on Fourier basis smoothing

is performed, and in stage two the Gauss-Newton based method is conducted, using

the output of stage one as initial values for the parameters.

A series of simulation studies has been conducted to assess the accuracy and

validity of the proposed estimation algorithm based on the FitzHugh-Nagumo (FHN)

model. Different simulation scenarios is set up, with number of observations varies

from 20 to 80 and standard deviation of observation noises changes from 0.05 to 0.1.

For each scenario, 1000 datasets with observation noises are simulated, and the mean,

standard deviation, average relative error (ARE), mean square error (MSE) and mean
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Figure 3.3: Final fit using numerical ODE solver with estimated parameters.

computation time is recorded in Table 3.1.

First of all, as we can see from the results, the running time for the estimation

algorithm is quite low since we bypassed the numerical ODE solver; secondly, it is

noticed that as the number of observations going up, the estimation is getting more

accurate and stable with less ARE and MSE value. This is because when more data

points are observed, the Fourier basis would better smooth and represent the data

curvature, which leads to a better approximate of the true model. In the end, we can

see that as the random observation noise gets larger, the results get less accurate and

the estimation variance gets larger. Moreover, it can be assumed that for small sample

size situations, this method would not work as well as the numerical ODE integration

based method, as the true longitudinal curve would be difficult to capture accurately.

But even in that situation, this method is still valuable because the estimation is fast

to get and it could serve as the initial value for the numerical ODE integration based
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Num Obs (σ1, σ2) Parameter Mean Std ARE MSE Time
α 0.34 0.011 0.170 1.3e-3

20 (0.05, 0.05) β 0.021 0.039 0.894 3.3e-2 0.043
γ 2.28 0.081 0.238 5.1e-1
α 0.243 0.025 0.221 2.4e-3

20 (0.1, 0.1) β 0.0093 0.077 0.915 4.3e-2 0.043
γ 2.22 0.156 0.259 6.2e-1
α 0.209 0.011 0.058 2.1e-4

40 (0.05, 0.05) β 0.177 0.030 0.154 1.4e-3 0.051
γ 3.01 0.101 0.0267 1.0e-2
α 0.212 0.020 0.097 5.7e-4

40 (0.1, 0.1) β 0.172 0.058 0.255 4.2e-3 0.050
γ 2.900 0.183 0.0566 4.3e-2
α 0.211 0.007 0.057 1.8e-4

80 (0.05, 0.05) β 0.183 0.022 0.113 7.7e-4 0.060
γ 2.88 0.054 0.0408 1.8e-2
α 0.214 0.015 0.083 4.1e-4

80 (0.1, 0.1) β 0.179 0.043 0.188 2.3e-3 0.063
γ 2.78 0.099 0.0727 5.6e-2

Table 3.1: Simulation results for the method based on Fourier basis smoothing. The
estimation mean, standard deviation, average relative error (ARE), mean square error
(MSE) and mean computation time (in second) is presented for each parameter under
different scenarios.

method which could lead to a more accurate and stable estimation.

To compare the performance of the Fourier basis smoothing based method with the

numerical ODE integration based method, a series of simulation study is conducted.

The FHN model is used as the settings of the simulation, two different scenarios for

the random measurement errors are implemented. The three methods being tested

are: Fourier basis smoothing based method (FS), Gauss-Newton based method (GN)

and a hybrid method, in which the Fourier basis smoothing based method is con-

ducted first and then its output is used as the initial value for the Gauss Newton

based method. For the Gauss-Newton method, random numbers are generated as
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the starting parameter values for the algorithm. Based on the validity of the model,

we generated α and β from unif(0, 1) distribution, and γ from unif(1, 10).

(σ1, σ2) Parameter Method Mean Std ARE MSE Time
FS 0.209 0.011 0.058 2.1e-4 0.051

α GN 0.238 0.132 0.296 1.8e-2 1.97
Hybrid 0.201 0.006 0.019 3.3e-5 1.56

FS 0.177 0.030 0.154 1.4e-3 0.051
(0.05, 0.05) β GN 0.307 0.213 0.661 5.7e-2 1.97

Hybrid 0.199 0.028 0.098 7.6e-4 1.56
FS 3.01 0.101 0.0267 1.0e-2 0.051

γ GN 3.38 1.20 0.171 1.6e+1 1.97
Hybrid 3.00 0.023 0.004 5.3e-4 1.56

FS 0.212 0.020 0.097 5.7e-4 0.050
α GN 0.251 0.139 0.360 2.2e-2 1.94

Hybrid 0.202 0.015 0.046 2.3e-4 1.61
FS 0.172 0.058 0.255 4.2e-3 0.050

(0.1, 0.1) β GN 0.332 0.230 0.793 7.0e-2 1.94
Hybrid 0.200 0.054 0.198 2.9e-3 1.61

FS 2.900 0.183 0.0566 4.3e-2 0.050
γ GN 3.50 1.369 0.223 2.1e+1 1.94

Hybrid 2.986 0.074 0.0104 5.7e-3 1.61

Table 3.2: Simulation results for the Fourier basis smoothing based method (FS),
Gauss-Newton based method (GN) and a hybrid method (Hybrid). The estimation
mean, standard deviation, average relative error (ARE), mean square error (MSE)
and mean computation time is presented for each parameter under different scenarios.

It is shown in the table that the Gauss-Newton based method is quite unstable

and inaccurate, the convergence rate is only 0.773 in the 1000 times of simulation for

the (σ1, σ2) = (0.05, 0.05) setting, and 0.769 for (σ1, σ2) = (0.1, 0.1), and the ARE

and MSE values are both the highest among these three methods. For the Fourier

basis smoothing based method, the estimation is decent with the highest computa-

tion speed, and from the table its mean computation time is significantly smaller

than the others. Moreover, there is still room for improvement in terms of estimation
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accuracy for FS method. The hybrid method could almost completely resolve the

convergence issue compared with using random starting points for the Gauss-Newton

based method since the convergence rate increases to 1 in the simulation study. Mean-

while, it could improve the estimation accuracy for the Fourier transformation based

method since the ARE and MSE are smaller than FS, and both way smaller than the

random initial value cases. In the end, it is interesting to see that the computation

time for the hybrid method is actually smaller than that of the Gauss-Newton based

method with random initial value, since a better starting point could make the algo-

rithm converge to the minimum in fewer iterative steps, and it could make up for the

time used to run the Fourier basis smoothing method.

3.4 Real Data Application

Wu et al. (2011) and Ding and Wu (2014) present a mechanistic differential equa-

tion model that describes the expansion, trafficking and disappearance of activated

virus-specific CD8+ T cells in lymph nodes (TmE ), spleens (T sE) and lungs (T lE) of

mice during primary influenza A Virus (IAV) infection with an intensive sampling

procedure. The dataset could be downloaded from the url in (Ding and Wu). The

ODE model could be written as
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d

dt
TmE = [ρmD

m(t− τ)− δm]TmE − (γms + γml)T
m
E (3.10)

d

dt
T sE = [ρsD

s(t− τ)− δs]T sE − γslT sE + γmsT
m
E (3.11)

d

dt
T lE = γmlT

m
E + γslT

s
E − δlT lE (3.12)

Based on Wu et al. (2011), Dm represents the number of mature Ag-bearing

dendritic cells (DC) in mediastinal lymph node (MLN); Ds is the number of nature

DCs in spleen, t is the time delay of the effects in DCs on the CD8+ T cell activation;

ρm and ρs are the proliferation rates of CD8+ T cell simulated by DCs in MLN

and spleen, respectively; δm, δw and δl are the loss rate in MLN, spleen and lung

respectively; γms, γml and γsl denote the migration rate from MLN to spleen, from

MLN to lung and from spleen to lung, respectively.

A total of n = 77 data points at 9 distinct time points for TmE , T
s
E, T

l
E are available,

as well as data for Dm. Data for Ds is not available, and it is approximated using Dm

based on Wu et al. (2011). The smoothed estimates of Dm are used in the analysis.

The time delay is set to τ = 3.08, and parameters δm, δs and γml are set to 0 based on

Wu et al. (2011). A log transformation to the observations are implemented to stabi-

lize the measurement error variance. Let (X1, X2, X3) = (log(TEm), log(T sE), log(T lE),
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Parameter Initial Estimation Std. Error
ρm 1.29e-5 1.66e-5 4.86e-6
ρs 1.58e-5 4.49e-5 3.61e-6
δl 4.65e-2 3.97 7.01e-1
γms 1.40e-1 1.57e-1 6.36e-2
γsl 2.42e-9 4.95e-1 6.06e-2

Table 3.3: Parameter estimation for the CD8+ T cell data model.

then the ODE model could be written as

d

dt
X1 = ρmD

m(t− τ)− δm]− γms − γml (3.13)

d

dt
X2 = ρsD

s(t− τ)− δs − γsl + γms exp(X1 −X2) (3.14)

d

dt
X3 = γml exp(X1 −X3) + γsl exp(X2 −X3)− δl (3.15)

The Fourier Basis Smoothing method is utilized to conduct a pre-analysis, and

generates estimations for the parameters. Then using the output, the Gauss-Newton

algorithm based method is implemented and final results are obtained. The final

model fit is shown in Figure 3.4. The estimation results shown in Table 3.3 is con-

sistent with Wu et al. (2011), which indicates that the proposed Hybrid method is

valid and efficient in estimating the ODE model in this real data analysis.

Copyright c© Hongyuan Wang, 2016.
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Figure 3.4: Data of CD8+ T cell in MLN, spleen and lung with fitted curve respec-
tively
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Chapter 4 Mixed Model for Population Dynamical Systems

Previously all the models are based on longitudinal data for a single observation

unit. In this section we would like to expand the model structure to include multiple

experiment units (individuals) into a population-based full model. In this way we can

characterize the typical parameter values in the population and the extent of their

variation. The idea of mixed effect modeling is implemented in this chapter.

4.1 Introduction

The mixed effect model is a popular tool in longitudinal data analysis of biomet-

ric studies, and during the development process a lot of different methodologies have

been proposed and implemented in the linear mixed model framework. Furthermore,

nonlinear mixed effect models has been developed that focuses on features or mecha-

nisms that underlie individual profiles of repeated measurements of the response and

how these vary in the population. Population dynamical system model could be seen

as an extension of nonlinear mixed effect models. A lot of methodologies and schema

in nonlinear mixed models could be adapted and applied in population dynamical

system models.

Traditional estimation method in nonlinear mixed effect model, especially popula-

tion Pharmacokinetic and Pharmacodynamic models are based on the linearization of

the nonlinear log likelihood function. The most representative method include first-

order method (FO), first-order conditional estimation method (FOCE) and Laplacian
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approximation. They are still quite popular and useful for many nonlinear mixed

model analysis problems. The common software packages are ‘nlme’ in R (Pinheiro

et al., 2006) and proc nlmixed in SAS. A potential issue with these methods is that

they are based on likelihood approximation, and therefore some properties for MLE,

such as the standard deviation derived from the Fisher information matrix, or the

likelihood ratio test for nested models do not hold for these methods in some situa-

tions (Meza et al., 2007).

More recently developed methods are the ’exact likelihood’ methods, where we

maximize the likelihood directly, using deterministic or stochastic approximation to

the integrals. Deterministic approximation methods include Gaussian quadrature and

adaptive Gaussian quadrature. Stochastic approximation methods include Monte

Carlo Expectation Maximization (MCEM) algorithm (Wei and Tanner, 1990) and

Stochastic Approximation EM algorithm (Delyon et al., 1999) based method. Since

no linear approximation is involved in these methods, the parameters obtained are

true maximum likelihood estimates that all statistical properties of MLE could be

applied.

The SAEM algorithm is a stochastic iterative algorithm for calculating the max-

imum likelihood estimator (MLE) in the general setting of incomplete data models.

Suppose for individual i there is a sequence of observations yi. Assuming the number

of individuals in the dataset to be N and the set of parameters to be Φ, let bi be the

random effect vector for individual i, and the function Q(Φ) be the expectation of

full log likelihood, then at each iteration m, the following steps are performed:
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1. Simulation step: for i = 1, 2, . . . , N , draw b
(m)
i from the conditional distribution

P (·|yi; Φm−1)

2. Stochastic approximation: update Qm(Φ) as

Qm(Φ) = Qm−1(Φ) + γm(log p(y, b(m); Φ)−Qm−1(Φ)) (4.1)

where (γm) is a decreasing sequence of positive numbers such that γ1 = 1,∑∞
m=1 γm =∞ and

∑∞
k=1 γ

2
m <∞.

3. Maximization step: update Φm according to

Φm = arg maxQm(Φ) (4.2)

The stochastic approximation step seems quite complex, but the implementation

will be much simplified when the complete model belongs to a regular exponential

family, whereas we can just update the sufficient statistic of the complete model

instead of updating the Q function, The sufficient statistic contains all needed in-

formation to compute any estimation. SAEM uses a recycling of simulated variates

from one iteration to another, thus it is more computationally efficient, and has better

convergence rate than the MCEM methods.

Most of the studies for mixed models are based on maximum likelihood estimation.

However, it is well known that the MLE for variance component of the random

effect parameters can be biased downwards since it does not adjust for the degree of

freedom lost by estimating the fixed effect. Restricted maximum likelihood (REML)
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estimation could correct this problem by maximizing the likelihood of a set of residual

contrasts. The original REML formation is only applied to linear mixed modeling,

as the zero-mean residual contrasts are uncommon in nonlinear models.

There are two ways to solve this problem. One is to correct the bias in the profile

score function of the variance components. The main step includes: integrate out the

random effects, use simulation to estimate the bias and then adjust for the bias. But

this method could be extremely time-consuming. Another more common method is

to integrate out the fixed effects, which could be done using Gaussian quadrature or

via stochastic methods (Meza et al., 2007). In the following section we presents a

method of REML implementation for population dynamical system models within

an exact likelihood estimation scheme, using SAEM, MCMC and numerical ODE

solvers.

4.2 Model Structure

We consider the following model structure:

yij = ηi(tij) + εij, i = 1, . . . , N, j = 1, . . . , ni (4.3)

where the within-group errors are i.i.d Gaussian random variables εij ∼ N(0, σ2).

tij is the jth time point for observation unit i. ηi is the solution of a set of ODE

equations:

dη

dt
= f(η, t, θi), η(t0) = ηi0, i = 1, . . . , N (4.4)
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Parameter θi is modeled by:

θi = Xβ + bi, bi ∼ N(0,Γ) (4.5)

Where β represents fixed effect coefficient and bi is the individual Gaussian random

effect. X is the known design matrix. Using this hierarchical structure the dynam-

ical system model could combine with mixed effect model to explore the correlation

between individual features, such as age, sex, etc, and parameter values such as

transmission rate, etc.

4.3 Estimation Method

The first estimation method we propose is to incorporating numerical ODE solvers

to Stochastic Approximation EM algorithm, considering the random effect as missing

data and building an iterative algorithm. We consider the complete data set to be

W = (y, b) and the parameter set we would like to estimate is Φ = (β, σ,Γ).

The complete data likelihood can be written as:

LW (Φ) =
N∏
i=1

p(yi|β, bi, σ2) · p(bi|Γ) (4.6)

The observed data likelihood can be written as:

Ly(Φ) =

∫ N∏
i=1

p(yi|β, bi, σ2) · p(bi|Γ)db (4.7)

For maximum likelihood estimation, the goal is to estimate Φ = (β, σ,Γ) by
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maximizing the observed data likelihood Ly(Φ). Expectation Maximization (EM)

algorithm, first proposed by Dempster et al. (1977), is one representative way of

modeling incomplete data. To use EM algorithm, we need to set up the complete

log-likelihood:

logLW =
N∑
i=1

{log p(yi|β, bi, σ2) + log p(bi|Γ)} (4.8)

As we notice that β and σ are only involved in the first term and Γ is only in the

second. Moreover the yis are independent given bi is known. So the basic schema of

the EM algorithm can be written as:

1. Select starting value for β(0), σ(0) and Γ(0). Set m = 0.

2. E step: compute the expected value E[logLW |y] under β(m), σ(m), Γ(m).

3. M step: find β(m+1), σ(m+1), Γ(m+1) that maximize E[logLW |y]. .

4. Return β(m+1), σ(m+1), Γ(m+1) as MLE if convergence is reached, otherwise set

m = m+ 1 and go to step 2.

In fact, in step 3 the maximization for β(m+1), σ(m+1) and that for Γ(m+1) can be

separated because the log-likelihood is separable. So step 3 can be divided into 2

parts: first find β(m+1), σ(m+1) that maximize E[log p(y|b, β, σ)|y], then find Γ(m+1)

that maximizes E[log p(b|Γ)|y].

EM algorithm alternates between performing the E step and M step until conver-

gence is reached. In the E step, the expected value of the full log likelihood function is

also called the Q function. It has been proved that the observed likelihood increases
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in each iteration, and it can converge to the maximum likelihood estimation under

mild regularity conditions.

In general the expectation in step 2 is difficult to compute in closed form, so

approximation method is necessary. It is possible to apply Metropolis-Hasting (MH)

algorithm to obtain an approximation of the full condition probability p(b|y). To

implement the MH algorithm, a candidate distribution for b is needed, from which

we can draw candidate samples. Here, p(b|Γ) is selected as candidate distribution.

Let b as the previous draw in MH and using candidate distribution we generate a

new value b?. The acceptance probability p(b, b?) = min{1, A(b, b?)}, where A(b, b?)

can be derived as

A(b, b?) =
p(b?|y, β, σ,Γ)p(b|Γ)

p(b|y, β, σ,Γ)p(b?|Γ)
(4.9)

=

∏N
i=1 p(yi|β, b?i , σ2) · p(b?i |Γ)

∏N
i=1 p(bi|Γ)∏N

i=1 p(yi|β, bi, σ2) · p(bi|Γ)
∏N

i=1 p(b
?
i |Γ)

(4.10)

=

∏N
i=1 p(yi|β, b?i , σ2)∏N
i=1 p(yi|β, bi, σ2)

(4.11)

Using this specific candidate distribution we can derive a neat format for accep-

tance rate that only depends on the conditional probability of y given b.
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Now we go back to look at the complete log-likelihood logLW :

logLW = −Ntot

2
log(σ2)− 1

2σ2

∑
i,j

(yij − ηi(tij))2 −
N

2
log(|Γ|)− 1

2

N∑
i=1

biΓ
−1bi

(4.12)

= −Ntot

2
log(σ2)− 1

2σ2

∑
i,j

(yij − η̂i(tij))2 −
N

2
log(|Γ|)− 1

2

N∑
i=1

biΓ
−1bi

(4.13)

where Ntot =
∑N

i=1 ni represents the total number of observations. Given β and b,

ηi(tij) in (4.18) can be approximated as η̂i(tij) using numerical ODE solvers intro-

duced in previous sections. Moreover, given certain b, we can update of β, Γ and σ2

using the sufficient statistics
∑

i bi,
∑

i bib
′
i and

∑
i,j ε

2
ij respectively.

By combining the Metropolis-Hasting sampling, numerical ODE solver and EM

algorithm, an SAEM algorithm is developed as follows:

1. Select starting value for β(0), σ(0) and Γ(0). Set m = 0.

2. Generate L Markov Chains to draw L values, b(1), b(2), . . . , b(L) from its full

conditional density function p(b?|y, β(m), σ(m),Γ(m)) using Metropolis-Hasting

algorithm and numerical ODE solver mentioned previously.

3. Find β? and σ? that maximize the Monte Carlo estimate of E[log p(y|b, β, σ)|y],

which is 1
L

∑L
l=1[−

Ntot

2
log(σ2) − 1

2σ2

∑
i,j(yij − η̂

(l)
i (tij))

2], where η̂(l) is the nu-

63



merical ODE approximation of η using b(l). Set

β(m+1) = β(m) + γm(β? − β(m)) (4.14)

σ(m+1) = σ(m) + γm(σ? − σ(m)) (4.15)

Where (γm) is a smoothing parameter, i.e. a decreasing sequence of positive

numbers which helps accelerating convergence.

4. Find Γ? that maximize 1
L

∑L
l=1[−

1
2

∑N
i=1 b

(l)′

i Γ−1b
(l)
i ]. Set

Γ(m+1) = Γ(m) + γm(Γ? − Γ(m)) (4.16)

Set m = m+ 1.

5. Return β(m+1), σ(m+1), Γ(m+1) as MLE if convergence is reached, otherwise set

m = m+ 1 and go to step 2.

The sequence γm plays a role of including previous information into the new step,

as well as help the algorithm reach convergence. A common choice for γm sequence

is γm = 1
m

, or a piecewise function

γm =


1 m ≤ K

1
m−K m > K

(4.17)

for a positive number K. In this way the algorithm would not utilize previous infor-

mation until it is getting closer to MLE. The validity of the SAEM-MLE algorithm

64



is discussed in the simulation study section.

4.4 REML Estimation

The maximum likelihood estimation for variance parameters is known to be biased

downwards. REML accounts for the degree of freedom lost by estimating the fixed

effects and makes a less biased estimation for the random effect variance. Therefore

it is a preferable estimation method, especially for small sample size situation. The

challenging part of implementing REML algorithm on the mixed model of dynamical

systems is due to the complex and non-analytical form of the likelihood function.

Following the idea of REML estimation for nonlinear mixed effect model by Meza et al.

(2007), a REML estimation for population dynamical system model is developed.

The combination of EM, Monte Caro simulation and numerical approximation for

differential equation model is incorporated in the REML estimation algorithm.

We treat fixed effect parameter β as random, assuming it to be non-informative

β ∼ N(0,V ), where |V | = ∞. Then the parameter to estimate is Φ? = (Γ, σ) for

REML and the complete log-likelihood can be written as:

logLW = −Ntot

2
log(σ2)− 1

2σ2

∑
i,j

(yij − ηi(tij))2−
N

2
log(|Γ|)− 1

2

N∑
i=1

biΓ
−1bi + const

(4.18)

The SAEM algorithm for REML estimation can be put as:

1. Select starting value for σ(0) and Γ(0). Set m = 0.

2. Generate LMarkov Chains to draw L values, b(1), b(2), . . . , b(L) and β(1), β(2), . . . , β(L)
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from p(b?, β?|y, σ(m),Γ(m)) using MCMC algorithm and numerical ODE solver

mentioned previously.

3. Find σ? that maximize the Monte Carlo estimate of E[log p(y|b, β, σ)|y], which

can be presented as 1
L

∑L
l=1[−

Ntot

2
log(σ2)− 1

2σ2

∑
i,j(yij − η̂

(l)
i (tij))

2], where η̂(l)

is the numerical ODE approximation of η using b(l) and β(l). Set

σ(m+1) = σ(m) + γm(σ? − σ(m)) (4.19)

Where (γm) is a smoothing parameter, i.e. a decreasing sequence of positive

numbers which helps accelerating convergence.

4. Find Γ? that maximize 1
L

∑L
l=1[−

1
2

∑N
i=1 b

(l)′

i Γ−1b
(l)
i ]. Set

Γ(m+1) = Γ(m) + γm(Γ? − Γ(m)) (4.20)

5. Return σ(m+1) and Γ(m+1) as REML estimation if convergence is reached, oth-

erwise set m = m+ 1 and go to step 2.

For step 2, to sample from the condition distribution of p(b?, β?|y, σ(m),Γ(m)) is

difficult since we can not directly calculate the probability density function. There-

fore MCMC scheme is utilized here. Compared to sampling from their joint con-

ditional density, it is more convenient to use the Gibbs sampling scheme. For ex-

ample, for the ith Markov chain, we can draw b(i) from the conditional distribution

p(b?|y, σ(m),Γ(m), β(i)′), where β(i)′ is the ith sampled β from previous iteration. This
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can be done using MH algorithm described in previous subsection. Then β(i) can be

drawn from p(β?|y, σ(m),Γ(m), b(i)) using MH algorithm with a Gaussian proposal

distribution centered at previous point. Let β be the previous draw in MH and using

candidate distribution we generate a new value β?. Since we have a non-informative

prior for β, the acceptance probability p(β, β?) = min{1, A(β, β?)}, where A(β, β?)

can be derived as

A(β, β?) =
p(β?|y, b, σ,Γ)p(β|β?)
p(β|y, b, σ,Γ)p(β?|β)

(4.21)

=

∏N
i=1 p(yi|β?, bi, σ2) · p(β?|V ) · p(β|β?)∏N
i=1 p(yi|β, bi, σ2) · p(β|V ) · p(β?|β)

(4.22)

=

∏N
i=1 p(yi|β?, bi, σ2) · p(β|β?)∏N
i=1 p(yi|β, bi, σ2) · p(β?|β)

(4.23)

The computation of p(yi|β, bi, σ2) is evaluated by the numerical ODE approximation

algorithm selected.

Step 3 and 4 can be reduced to updating Γ and σ2 without using optimization

algorithms. In the algorithm, they can be updated as:

σ2? =
1

L

L∑
l=1

[
1

Ntot

∑
i,j

(yij − η̂(l)i (tij))
2

]
(4.24)

Γ? =
1

L

L∑
l=1

[
1

N

N∑
i=1

(b
(l)
i b

(l)′

i )

]
(4.25)

In the following section, several simulation studies are conducted to validate and

compare the SAEM-MLE and SAEM-REML algorithm for population dynamical
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system models without analytic solutions. Moreover, a simulation study is done with

respect to parallelization of the SAEM algorithm, which significantly improves its

computation efficiency.

4.5 Simulation Study

Simulation Study 1: Modeling Mercury Pollution in Fish

Simulation study is conducted in order to test the properties of those two algo-

rithms. To model mercury pollution in fish, a compartment model can be used. Let

x(t) represent the concentration of mercury in the tissue of the fish at time t. The

differential equation is

dx(t)

dt
= θ0 − θ1x(t) (4.26)

The initial condition is assumed to be x(0) = 0. The parameters θ0 and θ1 are

rate constants associated with uptake and discharge for each object. The observation

model can be written as follows (for object i, at time tij):

yij = xij + εij (4.27)

Where εij is assumed to be i.i.d Gaussian distributed εij ∼ N(0, σ2). xij is the solution

of the corresponding differential equation:

dxi(t)

dt
= θ0i − θ1ix(t), i = 1, . . . , N (4.28)
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Figure 4.1: Example Simulated Data: 10 different observation units, each having 7
records.

at time tij, where i = 1, . . . , N and j = 1, . . . , ni. The two parameters of the model

θ0i and θ1i are assumed to be normally distributed.

θ0i = α + b0i, where b0i ∼ N(0, σ2
0) (4.29)

θ1i = β + b1i, where b1i ∼ N(0, σ2
1) (4.30)

where α and β are considered as fixed effects, i.e., with the same value for all fish.

Meanwhile b0i and b1i are Gaussian random effects for each object. The set of pa-

rameters to estimate is {α, β, σ, σ0, σ1}.

Data were simulated using the following parameter values: N = 10, ni = 7,

α = 0.15, β = 0.50, σ = 0.05, σ0 = 0.05, σ1 = 0.15. Using the estimation method

described previously, we simulated the dataset 1000 times. One of the example sim-

ulated sample is shown in Figure 4.1. The summary statistics for estimates are

obtained and displayed in Table 4.1 and 4.2. The estimation accuracy is evaluated
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Parameter True Value Estimation Std Dev ARE
α 0.15 0.144 0.0028 4.29
β 0.50 0.495 0.0081 1.60
σ 0.02 0.019 0.0016 7.32
σ0 0.05 0.048 0.0101 16.55
σ1 0.15 0.143 0.0290 16.84

Table 4.1: Summary statistics for parameter estimates using SAEM with Numerical
ODE solvers.

Method σ σ0 σ1
True Value 0.02 0.05 0.15

Mean ML 0.019 0.048 0.143
REML 0.019 0.049 0.142

SD ML 0.0016 0.0101 0.0290
REML 0.0018 0.0093 0.0265

ARE ML 7.32 16.55 16.84
REML 8.36 15.39 14.88

Table 4.2: Summary statistics for the variance parameter using SAEM-MLE and
SAEM-REML estimation

by average relative error (ARE), which is defined as

ARE =
1

n

n∑
i=1

∣∣∣∣∣ θ̂i − θθ

∣∣∣∣∣ (4.31)

where θ̂i is the estimator of θ in the ith simulation run and i = 1, . . . , n.

From the table, it can be seen that the SAEM-MLE could generate relative accu-

rate estimations for β and σ, however the estimation for the random effects variance

is not satisfying, with relatively large values of ARE. The SAEM-REML generates

slightly better estimation, even though it is not significant enough. It can be assumed

that when more random effect coefficients are included in the model, the difference

could be larger.
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Introduction Model and Estimation Methods Simulation Study Discussion

Pharmacokinetics Two Compartment Model

GI tract Plasma
θ1 θ2

Let x1(t) and x2(t) represent the respective amounts of substance in the
two compartments at time t. The differential equation is

dx1(t)
dt

= −θ1x1(t) (17)

dx2(t)
dt

= θ1x1(t)− θ2x2(t) (18)

The parameters θ1 and θ2 are transformation rate constants for each
individual.

Hongyuan Wang Advisors: David Allen and Arnold Stromberg Department of Statistics University of Kentucky
Approximate MLE and REML Estimation for Population Dynamical System Models

Figure 4.2: Compartmental diagram for a 2-compartment model in pharmacokinetics.

Simulation Study 2: Population PK Modeling Analysis

In this study a partially observed 2-compartment model in pharmacokinetics is

presented. Based on the compartmental diagram in Figure 4.2, the ODE model has

the following form:

dx1(t)

dt
= −θ1x1(t) (4.32)

dx2(t)

dt
= θ1x1(t)− θ2x2(t) (4.33)

By assumption we have the initial condition (x1(0), x2(0)) = (1, 0). Moreover,

usually only observations from the second compartment is available. The observation

model is:

y = x+ ε (4.34)

where y = (y1,y2, . . . ,yN) and x = (x1,x2, . . . ,xN). A proportional error term ε ∼

N(0,Σ) is assumed, where Σ = σ2x. Suppose we have N subjects in the experiments,

each having observations on time point ti1, ti2, . . . , tini
, then yi = (yi1, yi2, . . . , yini

)

and xi = (xi1, xi2, . . . , xini
). More specifically, the observation model can be written

as:
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yij = xij + εij (4.35)

where εij is assumed to be i.i.d Gaussian distributed as εij ∼ N(0, σ2x2ij). xij repre-

sents the solution of xi2(t) of the corresponding differential equation:

dxi1(t)

dt
= −θ1ixi1(t) (4.36)

dxi2(t)

dt
= θ1ixi1(t)− θ2ixi2(t) (4.37)

at time tij, where i = 1, . . . , N and j = 1, . . . , ni. The two individual parameters θ1i

and θ2i are composed of two sub parameters.

θ = β + b, where b ∼ N(0,Γ) (4.38)

where θ = (θ1i, θ2i) is the individual coefficient of population pharmacokinetics, β =

(α, β) are fixed effects, i.e. with the same value for all subjects, b = (b1i, b2i) are

individual Gaussian random effects, and Γ is the variance-covariance matrix. We can

specify different covariance structures for Γ. The set of parameters is {β,Γ, σ}.

We setN = 30, t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, and we assume (x1(0), x2(0)) =

(1000, 0). The true parameter is (0.50, 0.60, 0.10, 0.10, 0.05). The initial value for es-

timation is (0.80, 0.80, 0.20, 0.20, 0.05). The summary statistics for both MLE and

REML estimates are obtained. The simulation study shows that the algorithm is

relatively robust to starting values of the parameters. One example of simulated

dataset is plotted in Figure 4.3. Using the parameter estimation method described
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Figure 4.3: Example of simulated data: 30 different subjects, each having 13 obser-
vation records.

Parameter True Value Estimation Std Dev ARE
α 0.50 0.498 0.018 2.90
β 0.60 0.601 0.019 2.47
σ1 0.10 0.087 0.012 15.18
σ2 0.10 0.090 0.013 13.80
σ 0.05 0.0504 0.006 4.43

Table 4.3: Summary statistics for parameter estimations using SAEM with Numerical
ODE solvers.

previously, we got the results shown in Table 4.3 and 4.4. From the two tables, it

can be seen that the REML could correct the bias for the estimation of random effect

variance in a certain level. For model diagnostic purpose, a model fit plot for each

of the 30 individuals from one example run are generated in Figure 4.4. From the

plot, it can be seen that the final estimated model could precisely capture the actual

observations, and the difference between individuals could be discovered fairly well.
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Method σ σ1 σ2
True Value 0.05 0.10 0.10

Mean ML 0.0504 0.087 0.090
REML 0.0512 0.098 0.099

SD ML 0.006 0.012 0.013
REML 0.019 0.016 0.012

ARE ML 4.43 15.18 13.80
REML 7.36 13.11 9.96

Table 4.4: Summary statistics for the variance parameter using MLE and REML
estimation

Figure 4.4: Observations versus predictions: estimated dynamical system for different
individuals.

Simulation Study 3: Parallelized SAEM Algorithm

Since multiple Markov chains are generated each iteration of the SAEM algorithm

for each objects in the experiment, it is quite computationally intensive. Parallel

computing is one available option that could dramatically increase the efficiency of

the algorithm, therefore it is studied and implemented.

The simulation step in the SAEM algorithm is usually very time consuming since

likelihood has to be approximated many times for each subject on each Markov chain

that being generated. At the same time, it is noticed that those computations can
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Initialization 
pick initial value for 𝜎𝜎(0) and 𝚪𝚪(0). Set m=0. 

Simulation
Generate L Markov Chains to draw L values, 𝑏𝑏(1), 𝑏𝑏(2), … , 𝑏𝑏(𝐿𝐿) and  
from 𝑝𝑝 𝑏𝑏⋆ 𝒚𝒚, 𝛽𝛽 𝑚𝑚 , 𝜎𝜎 𝑚𝑚 ,𝚪𝚪 𝑚𝑚 , using MH algorithm and 
numercal ODE solver. 

Updating
𝛽𝛽(𝑚𝑚+1) = 𝛽𝛽(𝑚𝑚) + 𝛾𝛾𝑚𝑚 𝛽𝛽⋆ − 𝛽𝛽 𝑚𝑚

𝜎𝜎(𝑚𝑚+1) = 𝜎𝜎(𝑚𝑚) + 𝛾𝛾𝑚𝑚 𝜎𝜎⋆ − 𝜎𝜎 𝑚𝑚

𝚪𝚪(𝑚𝑚+1) = 𝚪𝚪(𝑚𝑚) + 𝛾𝛾𝑚𝑚 𝚪𝚪⋆ − 𝚪𝚪 𝑚𝑚

𝛽𝛽⋆,𝜎𝜎⋆,𝚪𝚪⋆ are values that maximize the Monte Carlo estimation of 
𝐸𝐸[ log 𝐿𝐿𝑤𝑤|𝒚𝒚 ] using simulated 𝒃𝒃. 

Convergence Checking
Return 𝛽𝛽(𝑚𝑚+1), 𝜎𝜎(𝑚𝑚+1) and 𝚪𝚪(𝑚𝑚+1) as MLE if convergence is 
reached. Set m=m+1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Basic structure of SAEM-MLE algorithm with numerical ODE solvers.
The simulation step is the part that parallel computing is implemented

be done separately and independently. So this makes a great example to do parallel

computing to improve the efficiency of the algorithm. Figure 4.5 and 4.6 shows the

part of SAEM algorithm where parallel computation could be implemented.

Basically there are two ways of doing parallel computation in the algorithm. One

is to parallelize on the Markov chains, the other is to parallelize on individual subjects.

Our simulation study shows that both parallel method could decrease the running

time for the algorithm while reaching the same level of accuracy on the parameter

estimation.
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Initialization 
pick initial value for 𝜎𝜎(0) and 𝚪𝚪(0). Set m=0. 

Simulation
Generate L Markov Chains to draw L values, 𝑏𝑏(1), 𝑏𝑏(2), … , 𝑏𝑏(𝐿𝐿) and 

𝛽𝛽(1),𝛽𝛽(2), … ,𝛽𝛽(𝐿𝐿) from 𝑝𝑝 𝒃𝒃⋆,𝛽𝛽⋆ 𝒚𝒚, 𝜎𝜎 𝑚𝑚 ,𝚪𝚪 𝑚𝑚 , using MCMC 
algorithm and numercal ODE solver. 

Updating
𝜎𝜎(𝑚𝑚+1) = 𝜎𝜎(𝑚𝑚) + 𝛾𝛾𝑚𝑚 𝜎𝜎⋆ − 𝜎𝜎 𝑚𝑚

𝚪𝚪(𝑚𝑚+1) = 𝚪𝚪(𝑚𝑚) + 𝛾𝛾𝑚𝑚 𝚪𝚪⋆ − 𝚪𝚪 𝑚𝑚

𝜎𝜎⋆,𝚪𝚪⋆ are values that maximize the Monte Carlo estimation of 
𝐸𝐸[ log 𝐿𝐿𝑤𝑤|𝒚𝒚 ] using simulated 𝒃𝒃 and 𝛽𝛽. 

Convergence Checking
Return 𝜎𝜎(𝑚𝑚+1) and 𝚪𝚪(𝑚𝑚+1) as REML estimation if convergence is 
reached. Set m=m+1. 

 

 

 

 

 

 

 

 

 

Figure 4.6: Basic structure of SAEM-REML algorithm with numerical ODE solvers.
The simulation step is the part that parallel computing is implemented

There are several packages that endow R with multi-threading capabilities (Eu-

bank and Kupresanin, 2011). The CRAN website has a task view for high-performance

computing that introduces the current state as well as future development of parallel

computing in R. In the simulation study two R packages ’doParallel’ (Analytics and

Weston, 2014) and ’foreach’ (Analytics and Weston, 2013) is used. The doParal-

lel package is a parallel back-end for the foreach package. It provides a mechanism

needed to execute foreach loops in parallel. All together they could provide a nice,

efficient parallel programming platform for multiprocessor/multi-core computers run-

76



NMC 1000 2000 3000 5000 10000
Regular 10.52 20.88 31.07 51.57 103.38
Parallel 2.99 6.02 8.77 14.57 28.92

SF 3.51 3.47 3.54 3.53 3.59

Table 4.5: Mean computation time and speedup factor for regular run and parallel
run for SAEM algorithm using ODE solvers based on different number of MCMC
samples. Nsub = 20.L = 5.

ning operating systems such as Linux and Mac OS.

To parallel on the Markov chain Monte Carlo samples, we set the number of

simulation trials to be 100, and we compute the mean computation time for both

paralleled and unparalleled version of code. In addition, we defined a speedup factor

as follows to compare their performance.

SF =
Mean Computation Time for Single CPU Run

Mean Computation Time for Parallel Run
(4.39)

The number of experiment subjects we use is 30. Based on this we increase the

number of MCMC samples from 1000 to 10000, and check the mean computation

time and speedup factor. The simulation study shows that parallel computation

could significantly improve the computation speed for the algorithm. Moreover, a

similar simulation study is conducted to parallelize on individual subjects, which also

shows that the parallel computation is much more efficient than regular run, and it

can be assumed that the performance of parallel computation will get better when

more powerful machine is used.
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Nsub 10 20 30 50 100
Regular 5.25 10.39 17.25 27.47 56.26
Parallel 1.68 3.05 4.39 6.97 13.83

SF 3.13 3.40 3.92 3.94 4.06

Table 4.6: Mean computation time and speedup factor for regular run and parallel run
for SAEM algorithm using ODE solvers based on different number of subjects.NMC =
1000, L = 5. The simulation is done on a Intel Core(TM) processor with 4 core CPU
and 8 logical processors.

4.6 Approximate Confidence Intervals

After we computed the point estimator for the parameters Φ = (β, σ,Γ), the

follow-up question is how confident are we on the accuracy of our estimation. The

Fisher information matrix is a way to assess the variance of parameter estimations.

Bauer and Guzy (2004) introduces a method to estimation Fisher information matrix

using Monte Carlo simulations from the final iteration of EM algorithms.

The Fisher information matrix of log likelihood is defined as:

I = Ey

[
−∂

2 log(p(y|Φ))

∂Φ2

]
(4.40)

where we define

p(yi|Φ) =

∫ ∞
−∞

pi(yi, bi|Φ)dΦ (4.41)

and

pi(yi, bi|Φ) = pi(yi|bi, β, σ)p(bi|Γ) (4.42)
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Then we have

Ey

[
−∂

2 log(p(y|Φ))

∂Φ2

]
(4.43)

=

∫
y

[
−∂

2 log(p(y|Φ))

∂Φ2

]
p(y|Φ)dy (4.44)

=

∫
y

[
− 1

p(y|Φ)

∂2p(y|Φ)

∂Φi∂Φj

+
∂ log(p(y|Φ))

∂Φi

∂ log(p(y|Φ))

∂Φj

]
p(y|Φ)dy (4.45)

=

∫
y

[
∂ log(p(y|Φ))

∂Φi

∂ log(p(y|Φ))

∂Φj

]
p(y|Φ)dy (4.46)

= Ey

[
∂ log(p(y|Φ))

∂Φi

∂ log(p(y|Φ))

∂Φj

]
(4.47)

Since

∫
y

− 1

p(y|Φ)

∂2p(y|Φ)

∂Φi∂Φj

p(y|Φ)dy =

∫
y

−∂
2p(y|Φ)

∂Φi∂Φj

dy (4.48)

= −
∂2
∫
y
p(y|Φ)dy

∂Φi∂Φj

(4.49)

= − ∂21

∂Φi∂Φj

(4.50)

= 0 (4.51)

This is a general equation for approximating the Fisher information matrix. Sup-

pose we have N independent subjects: y1, . . . , yN . It is proved in Bauer and Guzy

(2004) that under mild regularity conditions we have

Ey

[
∂ log(p(y|Φ))

∂Φi

∂ log(p(y|Φ))

∂Φj

]
(4.52)

=
N∑
i=1

E

[
−∂ log(p(yi, bi|Φ))

∂Φi

|yi,Φ
]
E

[
−∂ log(p(yi, bi|Φ))

∂Φj

|yi,Φ
]

(4.53)
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The problem is becoming that how to evaluate Ebk

[
−∂ log(p(yk,bk|Φ))

∂Φi
|yk,Φ

]
for each

Φi. we know Φ = (β, σ,Γ). By methods of differentiation, we have

Ebk

[
−∂ log(p(yk, bk|Φ))

∂β
|yk,Φ

]
= −Γ−1b̄k (4.54)

Ebk

[
−∂ log(p(yk, bk|Φ))

∂Γ
|yk,Φ

]
= Γ−1(Γ− Γ̄k)Γ

−1 − 1

2
diag[Γ−1(Γ− Γ̄k)Γ

−1] (4.55)

Ebk

[
−∂ log(p(yk, bk|Φ))

∂σ2
|yk,Φ

]
= −1

2
(

1

σ̂2
− (yk − ŷk)2

σ̂4
) (4.56)

where b̄k, Γ̄k are the posterior mean for each subject and ŷk are the predicted value

using maximum likelihood estimator and selected numerical ODE solver. To save

time sometimes we can compute the derivative with respect to σ2 numerically us-

ing finite difference method. The format of above equation may change based on

the assumption we made about the variance parameters. After the approximate

Fisher information matrix is computed, the inverse is an estimate for the parameter’s

variance-covariance matrix.

4.7 Summary

In this chapter, both SAEM-MLE and SAEM-REML with numerical ODE solver

is implemented in R. The simulation study shows that REML estimation procedure

can correct the bias on the variance components of random effects in a certain level.

The REML estimation is preferred especially in the situation when the sample size is

relative small, or there is a large number of random effect coefficients in the model.

Since the population Pharmacokinetic models can be under very complicated
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structures with lots of parameters involved, together with the time-consuming process

of running numerical ODE solvers, it is very important to maintain high computation

efficiency for the estimation algorithms. Therefore, parallel computing is essential in

the implementation of SAEM algorithms with MCMC and numerical ODE solver.

Different variance structure, like AR(1) or compound symmetry, could be imple-

mented and validated under the basic algorithm scheme. This could be a topic for

the future work.

Copyright c© Hongyuan Wang, 2016.
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Appendix

R code

This is the R code for the simulation study of numerical ODE integration based
method.

1 ###simluat i on study and method comparison f o r chapter 2
2

3 l i b r a r y ( deSolve )
4 l i b r a r y (MASS)
5

6 ###step 1 : s e t parameter o f i n t e r e s t
7

8 theta 1=0.67
9 theta 2=0.069

10 theta 3=0.085
11 Time=seq (0 , 28 , 4 )
12

13 ###step 2 : ac tua l data s imu la t i on
14

15 dataSim=func t i on (Theta1 , Theta2 , Theta3 ) {
16 parameters=c ( theta 1=Theta1 , theta 2=Theta2 , theta 3=Theta3 )
17 s t a t e=c (X 1=0,X 2=1)
18 Time=seq (0 , 28 , 4 )
19 compart=func t i on ( t , s ta te , parameters ) {
20 with ( as . l i s t ( c ( s ta te , parameters ) ) ,{
21 #rate o f change
22 dX 1=−theta 1∗X 1+theta 2∗X 2
23 dX 2=theta 1∗X 1+(−theta 2−theta 3) ∗X 2
24 #return the ra t e o f change
25 l i s t ( c (dX 1 ,dX 2) )
26 })
27 }
28 out=ode (y=state , t imes=Time , func=compart , parms=parameters , method=”

impAdams” )
29 re turn ( out [ , c ( ”X 1” , ”X 2” ) ] )
30 }
31 e r r o r 1=rnorm (8 , 0 , 0 . 0 01 )
32 e r r o r 2=rnorm (8 , 0 , 0 . 0 01 )
33 DataStore=dataSim ( theta 1 , theta 2 , theta 3)+cbind ( e r r o r 1 , e r r o r 2)
34

35 ### step 3 parameter e s t imat i on
36

37 ###method 1 : d i f f e r e n t i a l evo lu t i on
38 ###model ( theta ) e s t imat i on
39 NumApp=func t i on (Theta , data ) {
40 parameters=c ( theta 1=Theta [ 1 ] ,
41 theta 2=Theta [ 2 ] ,
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42 theta 3=Theta [ 3 ] )
43 s t a t e=c (X 1=0,
44 X 2=1)
45 compart=func t i on ( t , s ta te , parameters ) {
46 with ( as . l i s t ( c ( s ta te , parameters ) ) ,{
47 #rate o f change
48 dX 1=−theta 1∗X 1+theta 2∗X 2
49 dX 2=theta 1∗X 1+(−theta 2−theta 3) ∗X 2
50 #return the ra t e o f change
51 l i s t ( c (dX 1 ,dX 2) )
52 })
53 }
54 out=ode (y=state , t imes=Time , func=compart , parms=parameters , method=”

impAdams” )
55 re turn (sum( ( out [ , c ( ”X 1” , ”X 2” ) ]−data ) ˆ2) )
56 }
57

58 Di f fEvo lu t i on=func t i on ( data , ngen ) {
59 X 1=data [ , 1 ]
60 X 2=data [ , 2 ]
61 n=3 # dimension o f parameter space
62 npop=20 # number in populat ion
63 F=0.65 # the weight ing f a c t o r [ 0 . 5 , 1 . 0 ]
64 M=0.2 # mutation f a c t o r [ 0 . 0 , 0 . 3 ]
65 Theta=matrix ( nrow=n , nco l=npop ) # hold va lue s f o r cur rent gene ra t i on
66 D=matrix ( nrow=n , nco l=npop ) # hold part o f adjustment
67 co s t=vecto r ( ”numeric ” , npop )
68 # crea t e i n i t i a l populat ion
69 ib=1 # index o f bes t va lue so f a r
70 best=1e100 # best va lue so f a r
71 f o r ( j in 1 : npop )
72 {
73 Theta [ , j ]= run i f (n , 0 , 1 )
74 co s t [ j ]=NumApp(Theta [ , j ] , data )
75 i f ( c o s t [ j ]<best )
76 {
77 ib=j
78 best=cos t [ j ]
79 }
80 }
81

82 # begin the evo lu t i on
83 f o r ( i in 1 : ngen )
84 {
85 # crea t e d i f f e r e n c e ve c to r s
86 f o r ( j in 1 : npop )
87 {
88 l=sample ( 1 : npop , 2 )
89 D[ , j ]=Theta [ , l [ 1 ] ] −Theta [ , l [ 2 ] ]
90 }
91 # apply mutations
92 f o r ( j in 1 : npop )
93 f o r ( k in 1 : n)
94 i f ( r un i f (1 )<M)
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95 D[ k , j ]=−D[ k , j ]
96 # form and check o f f s p r i n g
97 f o r ( j in 1 : npop )
98 {
99 t r i a l=Theta [ , j ]+F∗D[ , j ]+F∗ ( Theta [ , ib ]−Theta [ , j ] )

100 i f (NumApp( t r i a l , data )<co s t [ j ] )
101 {
102 Theta [ , j ]= t r i a l
103 co s t [ j ]=NumApp( t r i a l , data )
104 }
105 }
106 # check f o r bes t i nd i v i dua l
107 f o r ( j in 1 : npop )
108 {
109 i f ( c o s t [ j ]<best )
110 {
111 best=cos t [ j ]
112 ib=j
113 }
114 }
115 # pr in t ( bes t )
116 }
117 re turn (Theta [ , ib ] )
118 }
119 Di f fEvo lu t i on ( DataStore , 100 )
120

121 ###Gauss−Newton Method
122

123 GaussNewton=func t i on ( data , Theta Star t ) {
124 Theta=Theta Star t
125 alpha=0.5
126 de l t a max=1
127 i t e r=1
128 i t e r max=10000
129 Time=seq (0 , 28 , 4)
130 X 1=data [ , 1 ]
131 X 2=data [ , 2 ]
132 whi le ( d e l t a max>10ˆ(−5)&&i t e r< i t e r max) {
133 parameters=c ( theta 1=Theta [ 1 ] ,
134 theta 2=Theta [ 2 ] ,
135 theta 3=Theta [ 3 ] )
136 s t a t e=c (X 1=0,
137 X 2=1,
138 U 1=0,
139 U 2=0,
140 U 3=0,
141 U 4=0,
142 U 5=0,
143 U 6=0)
144 compart=func t i on ( t , s ta te , parameters ) {
145 with ( as . l i s t ( c ( s ta te , parameters ) ) ,{
146 #rate o f change
147 dX 1=−theta 1∗X 1+theta 2∗X 2
148 dX 2=theta 1∗X 1+(−theta 2−theta 3) ∗X 2
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149 dU 1=−X 1−theta 1∗U 1+theta 2∗U 2
150 dU 2=X 1+theta 1∗U 1+(−theta 2−theta 3) ∗U 2
151 dU 3=X 2−theta 1∗U 3+theta 2∗U 4
152 dU 4=−X 2+theta 1∗U 3+(−theta 2−theta 3) ∗U 4
153 dU 5=−theta 1∗U 5+theta 2∗U 6
154 dU 6=−X 2+theta 1∗U 5+(−theta 2−theta 3) ∗U 6
155 #return the ra t e o f change
156 l i s t ( c (dX 1 ,dX 2 ,dU 1 ,dU 2 ,dU 3 ,dU 4 ,dU 5 ,dU 6) )
157 })
158 }
159 out=ode (y=state , t imes=Time , func=compart , parms=parameters )
160 J=−matrix ( c ( out [ , ”U 1” ] , out [ , ”U 2” ] , out [ , ”U 3” ] , out [ , ”U 4” ] , out [ , ”U 5” ] ,

out [ , ”U 6” ] ) , 16 ,3 )
161 de l t a X=c (X 1−out [ , ”X 1” ] ,X 2−out [ , ”X 2” ] )
162 Theta=Theta−alpha ∗ ginv ( t ( J )%∗%J)%∗%t (J )%∗%de l t a X
163 de l t a max=max( abs ( ginv ( t ( J )%∗%J)%∗%t (J )%∗%de l t a X) )
164 i t e r=i t e r+1
165 }
166 pr in t ( i t e r )
167 re turn (Theta )
168 }
169

170 Theta i n i t=run i f ( 3 , 0 , 1 )
171 GaussNewton ( DataStore , Theta i n i t )
172

173 ### Method 3 : Hybrid Method
174 Di f fEvo lu t i on=func t i on ( data , ngen ) {
175 X 1=data [ , 1 ]
176 X 2=data [ , 2 ]
177 n=3 # dimension o f parameter space
178 npop=20 # number in populat ion
179 F=0.65 # the weight ing f a c t o r [ 0 . 5 , 1 . 0 ]
180 M=0.2 # mutation f a c t o r [ 0 . 0 , 0 . 3 ]
181 Theta=matrix ( nrow=n , nco l=npop ) # hold va lue s f o r cur rent gene ra t i on
182 D=matrix ( nrow=n , nco l=npop ) # hold part o f adjustment
183 co s t=vecto r ( ”numeric ” , npop )
184 # crea t e i n i t i a l populat ion
185 ib=1 # index o f bes t va lue so f a r
186 best=1e100 # best va lue so f a r
187 f o r ( j in 1 : npop )
188 {
189 Theta [ , j ]= run i f (n , 0 , 1)
190 co s t [ j ]=NumApp(Theta [ , j ] , data )
191 i f ( c o s t [ j ]<best )
192 {
193 ib=j
194 best=cos t [ j ]
195 }
196 }
197 # begin the evo lu t i on
198 f o r ( i in 1 : ngen )
199 {
200 # crea t e d i f f e r e n c e ve c to r s
201 f o r ( j in 1 : npop )
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202 {
203 l=sample ( 1 : npop , 2 )
204 D[ , j ]=Theta [ , l [ 1 ] ] −Theta [ , l [ 2 ] ]
205 }
206 # apply mutations
207 f o r ( j in 1 : npop )
208 f o r ( k in 1 : n)
209 i f ( r un i f (1 )<M)
210 D[ k , j ]=−D[ k , j ]
211 # form and check o f f s p r i n g
212 f o r ( j in 1 : npop )
213 {
214 t r i a l=Theta [ , j ]+F∗D[ , j ]+F∗ ( Theta [ , ib ]−Theta [ , j ] )
215 i f (NumApp( t r i a l , data )<co s t [ j ] )
216 {
217 Theta [ , j ]= t r i a l
218 co s t [ j ]=NumApp( t r i a l , data )
219 }
220 }
221 # check f o r bes t i nd i v i dua l
222 f o r ( j in 1 : npop )
223 {
224 i f ( c o s t [ j ]<best )
225 {
226 best=cos t [ j ]
227 ib=j
228 }
229 }
230 # pr in t ( bes t )
231 }
232 re turn (Theta [ , ib ] )
233 }
234

235 theta s t a r t=Di f fEvo lu t i on ( DataStore , 5 )
236 GaussNewton ( DataStore , theta s t a r t )

Simluation study of numerical ODE integration based method

The following is the R code for the simulation Study on Chapter 3.

1

2 ###Method based on Four i e r Bas i s Smoothing , on FHN model
3

4 l i b r a r y ( deSolve )
5 l i b r a r y (MASS)
6

7 nsample=1000
8 p a r f i n a l=matrix (NA, nsample , 3 )
9 f o r ( i sample in 1 : nsample ) {

10 Time=seq (1 , 20 , 1 )
11 Theta r e a l=c ( 0 . 2 , 0 . 2 , 3 )
12 parameters=c ( alpha=Theta r e a l [ 1 ] , beta=Theta r e a l [ 2 ] , gamma=Theta r e a l [ 3 ] )
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13 s t a t e=c (X 1=−1,X 2=1)
14 compart=func t i on ( t , s ta te , parameters ) {
15 with ( as . l i s t ( c ( s ta te , parameters ) ) ,{
16 #rate o f change
17 dX 1=gamma∗ (X 1−X 1ˆ3/3+X 2)
18 dX 2=(−1/gamma) ∗ (X 1−alpha+beta ∗X 2)
19 #return the ra t e o f change
20 l i s t ( c (dX 1 ,dX 2) )
21 })
22 }
23

24 Time.1= seq ( 0 , 2 0 , 0 . 5 )
25 out=ode (y=state , t imes=Time . 1 , func=compart , parms=parameters , method=”

impAdams” )
26 n=length (Time . 1 )
27 V=out [ , ”X 1”]+rnorm (n , 0 , 0 . 1 )
28 R=out [ , ”X 2”]+rnorm (n , 0 , 0 . 1 )
29 suppressPackageStartupMessages ( l i b r a r y ( fda ) )
30 suppressPackageStartupMessages ( l i b r a r y ( fda . usc ) )
31 suppressPackageStartupMessages ( l i b r a r y ( reshape2 ) )
32 ### crea t e f o u r i e r ba s i s
33 ba s i s 9=c r ea t e . f o u r i e r . b a s i s ( rangeva l=range (Time . 1 ) , per iod=9, nbas i s=9)
34 f o u r i e r 9 . fd=smooth . ba s i s ( a r gva l s=Time . 1 , y=R, fdParobj=ba s i s 9 ) $ fd
35 fou x2 0=eva l . fd (Time . 1 , f o u r i e r 9 . fd )
36 fou x2 1=eva l . fd (Time . 1 , f o u r i e r 9 . fd , Lfdobj=1)
37 bas i s 17=c r ea t e . f o u r i e r . b a s i s ( rangeva l=range (Time . 1 ) , per iod=9, nbas i s =17)
38 f o u r i e r 1 7 . fd=smooth . ba s i s ( a r gva l s=Time . 1 , y=V, fdParobj=bas i s 17 ) $ fd
39 fou x1 0=eva l . fd (Time . 1 , f o u r i e r 1 7 . fd )
40 fou x1 1=eva l . fd (Time . 1 , f o u r i e r 1 7 . fd , Lfdobj=1)
41 x1hat=fou x1 0
42 x1de=fou x1 1
43 x2hat=fou x2 0
44 x2de=fou x2 1
45 e r r o r=func t i on ( vec , e r r=’ l 2 ’ ) {
46 i f ( e r r==’ l 2 ’ ) {
47 re turn ( sum( ( x1de−vec [ 3 ] ∗ ( x1hat−x1hat ˆ3/3+x2hat ) ) ˆ2)+sum( ( x2de+(x1hat−

vec [1 ]+ vec [ 2 ] ∗x2hat ) /vec [ 3 ] ) ˆ2) ) ;
48 } e l s e {
49 re turn ( sum( abs ( x1de−vec [ 3 ] ∗ ( x1hat−x1hat ˆ3/3+x2hat ) ) )+sum( abs ( x2de+(

x1hat−vec [1 ]+ vec [ 2 ] ∗x2hat ) /vec [ 3 ] ) ) ) ;
50 }
51 }
52 re=l i s t ( )
53 f o r ( i in 1 : 10 ) {
54 yyy=run i f (3 )
55 optim (yyy , e r ror , method=”Nelder−Mead” , c on t r o l=l i s t ( t r a c e=F, maxit=2000 ,

ab s t o l=1e−10, r e l t o l=1e−10) )−>re [ [ i ] ]
56 }
57 f i n a l par=re [ [ which . min ( u n l i s t ( l app ly ( re , f unc t i on (x ) x$ value ) ) ) ] ] $par
58 p a r f i n a l [ i sample , ]= f i n a l par
59 }
60 colMeans ( p a r f i n a l )

Simulation study on methods based on Fourier basis smoothing
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This is the R code for the simulation study on population dynamical system models.

1

2 r e qu i r e ( s t a t s )
3 r e qu i r e ( g raph i c s )
4 l i b r a r y (MASS)
5 l i b r a r y ( deSolve )
6 #### data s imu la t i on
7 time=c (0 : 1 2 , 2 4 )
8 nobs=length ( time )−1
9 alpha sim=0.5

10 beta sim=0.6
11 sigma1 sim=0.1
12 sigma2 sim=0.1
13 sigma sim=0.05
14 #### simluate data x .
15 x sim=func t i on ( alpha , beta , time ) {
16 parameters=c ( theta 1=alpha , theta 2=beta )
17 s t a t e=c (X1=1000 ,X2=0)
18 Time=time
19 compart=func t i on ( t , s ta te , parameters ) {
20 with ( as . l i s t ( c ( s ta te , parameters ) ) ,{
21 #rate o f change
22 dX1=−theta 1∗X1
23 dX2=theta 1∗X1−theta 2∗X2
24 l i s t ( c (dX1 , dX2) )
25 })
26 }
27 out=ode (y=state , t imes=as . vec to r ( u n l i s t (Time) ) , func=compart , parms=

parameters , method=”impAdams” )
28 sim x=out [−1 , c ( ”X2” ) ]
29 re turn ( sim x)
30 }
31 theta1=alpha sim+rnorm (1 ,0 , sigma1 sim )
32 theta2=beta sim+rnorm (1 ,0 , sigma2 sim )
33 x=x sim ( theta1 , theta2 , time )
34 y=x∗(1+rnorm ( nobs , 0 , sigma sim ) )
35 obj=1
36 tt ime=time [−1]
37 pat i en t=data . frame ( obj , ttime , y )
38 f o r ( i in 2 : 30 ) {
39 theta1=alpha sim+rnorm (1 ,0 , sigma1 sim )
40 theta2=beta sim+rnorm (1 ,0 , sigma2 sim )
41 x=x sim ( theta1 , theta2 , time )
42 y=x∗(1+rnorm ( nobs , 0 , sigma sim ) )
43 obj=i
44 tt ime=time [−1]
45 temp=data . frame ( obj , ttime , y )
46 pat i en t=rbind ( pat i ent , temp)
47 }
48 l i b r a r y ( l a t t i c e )
49 xyplot ( y˜ ttime , type=c ( ’ l ’ , ’ p ’ ) , groups=obj , data=pat ient , auto . key=F)
50

51 l l sim=func t i on (y pred , y , sigma ) {
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52 varc=y pred∗y pred∗ sigma∗ sigma ;
53 d pred=(y pred−y ) ˆ2
54 l l= −0.5∗sum(d pred/ varc+log ( varc )+log (2 ∗ pi ) )
55 }
56

57 #### Spec i f y i n i t i a l parameter va lue
58

59 n i t e r=5
60 n sub=30
61 alpha=0.6
62 beta=0.8
63 sigma1=0.20
64 sigma2=0.20
65 sigma=0.05
66 s i g updt=1
67 sigma h=0.00000001
68 n sim=1000
69 dpre=rep (0 , n sim )
70 dlds=rep (0 , n sim )
71 h ds=rep (0 , n sim )
72 l l i sim=rep (0 , n sim )
73 par par=matrix (NA, n sim , 2 )
74 l l par=rep (NA, n sim )
75 theta i=matrix (0 , n sub , 2 )
76 b i sim=matrix (0 , n sub , 4 )
77 sigma updt i sim=rep (0 , n sub )
78 sigma h updt i sim=rep (0 , n sub )
79 sigma va l i sim=rep (0 , n sub )
80 gam=rep (1 ,100)
81 f o r ( i in 1 : 100 ) {
82 gam [ i ]=1/ i
83 }
84

85 l i b r a r y ( doPa ra l l e l )
86 l i b r a r y ( f o r each )
87 #### EM Algorithm
88 f o r ( i i t e r in 1 : n i t e r ) {
89 c l=makeCluster (10)
90 r e g i s t e rDoPa r a l l e l ( c l )
91 r e s u l t=fo r each ( i sub=1:n sub , . combine=rbind , . packages=c ( ’MASS ’ , ’ deSolve ’

) )%dopar%
92 {
93 pat i ent sub=subset ( pat i ent , obj==i sub )
94 t=pat i ent sub [ , 2 ]
95 y=pat i ent sub [ , 3 ]
96 ## sampling random e f f e c t s
97 bsim=mvrnorm(1 , c (0 , 0 ) , d iag ( c ( sigma1 ˆ2 , sigma2 ˆ2) ) )
98 va l=c ( alpha , beta )+bsim
99 ## MCMC step

100 f o r ( i in 1 : n sim ) {
101 par o ld=va l
102 y old=y pred=x sim ( par o ld [ 1 ] , par o ld [ 2 ] , c (0 , t ) )
103 l l va l=l l o ld=l l sim (y old , y , sigma )
104 varc=y pred∗y pred∗ sigma∗ sigma
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105 dpred va l=d pred=(y pred−y ) ˆ2
106 s i g va l=dpred va l / ( y o ld ˆ2)
107 varc g1=y old ∗y old ∗ ( sigma+0.5∗ sigma h) ∗ ( sigma+0.5∗ sigma h)
108 varc g2=y old ∗y old ∗ ( sigma−0.5∗ sigma h) ∗ ( sigma−0.5∗ sigma h)
109 varc g=(varc g1−varc g2 ) / sigma h
110 dlds t 1=(( varc−d pred ) / (2 ∗ ( varc ˆ2) ) ) ∗varc g
111 dlds va l=dlds t 1
112 b new=mvrnorm(1 , c (0 , 0 ) , d iag ( c ( sigma1 ˆ2 , sigma2 ˆ2) ) )
113 par new=c ( alpha , beta )+b new
114 y new=y pred=x sim ( par new [ 1 ] , par new [ 2 ] , c (0 , t ) )
115 l l new=l l sim (y new , y , sigma )
116 varc=y pred∗y pred∗ sigma∗ sigma
117 d pred=(y pred−y ) ˆ2
118 varc g1=y old ∗y old ∗ ( sigma+0.5∗ sigma h) ∗ ( sigma+0.5∗ sigma h)
119 varc g2=y old ∗y old ∗ ( sigma−0.5∗ sigma h) ∗ ( sigma−0.5∗ sigma h)
120 varc g=(varc g1−varc g2 ) / sigma h
121 dlds t 2=(( varc−d pred ) / (2 ∗ ( varc ˆ2) ) ) ∗varc g
122 ruse=exp ( l l new− l l o ld )
123 u = run i f (1 )
124 i f ( ruse>l og (u) ) {
125 va l=par new
126 dpred va l=d pred
127 s i g va l=dpred va l / ( y newˆ2)
128 l l va l=l l new
129 dlds va l=dlds t 2
130 }
131

132 par par [ i , ]= va l
133 l l i sim [ i ]= l l va l
134 dpre [ i ]= s i g va l
135 dlds [ i ]=sum( d lds va l )
136 h ds [ i ]=sum( dlds va l ∗ dlds va l )
137 }
138 par=par par
139 l l i sim f=exp ( l l i sim−max( l l i sim ) )
140 l l i sim rat=l l i sim f /sum( l l i sim f )
141 theta i t=t ( par )%∗%matrix ( l l i sim rat , n sim , 1 )
142 theta i avg=matrix (0 , n sim , 2 )
143 theta i avg [ , 1 ]= theta i t [ 1 ]
144 theta i avg [ , 2 ]= theta i t [ 2 ]
145 b i sim t=t ( par∗ l l i sim rat−theta i avg∗ l l i sim rat )%∗% ( par−theta i

avg )
146 theta i [ i sub , ]= theta i t
147 b i sim [ i sub , ]= matrix (b i sim t , 4 , 1 )
148 sigma va l i sim [ i sub ]= t ( dpre )%∗%matrix ( l l i sim rat , n sim , 1 )
149 ###items used to update sigma
150 sigma updt i sim [ i sub ]=sum( l l i sim rat ∗ dlds )
151 sigma h updt i sim [ i sub ]=sum( l l i sim rat ∗h ds )
152 c ( theta i [ i sub , ] , b i sim [ i sub , ] , sigma updt i sim [ i sub ] , sigma h updt i

sim [ i sub ] , sigma va l i sim [ i sub ] )
153 }
154 s topClus t e r ( c l )
155 theta i=r e s u l t [ , 1 : 2 ]
156 b i sim=r e s u l t [ , 3 : 6 ]
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157 sigma updt i sim=r e s u l t [ , 7 ]
158 sigma h updt i sim=r e s u l t [ , 8 ]
159 ##updated populat ion mean and covar iance
160 omega tmp=matrix (0 , n sub , 4 )
161 MU new=apply ( theta i , 2 ,mean)
162 sigma new=sqr t (mean( r e s u l t [ , 9 ] ) )
163 f o r ( j in 1 : n sub ) {
164 theta tmp=theta i [ j , ]−MU new
165 theta tmp2=theta tmp%∗%t ( theta tmp)
166 omega tmp [ j , ]= matrix ( theta tmp2 , 4 , 1 )
167 }
168 omega new=colMeans ( omega tmp , na . rm=T)+colMeans (b i sim , na . rm=T)
169 sigma1 new=sqr t ( omega new [ 1 ] )
170 sigma2 new=sqr t ( omega new [ 4 ] )
171 sigma update=(1/sum( sigma h updt i sim ) ) ∗sum( sigma updt i sim )
172 alpha=alpha+gam [ i i t e r ] ∗ (MU new[1]− alpha )
173 beta=beta+gam [ i i t e r ] ∗ (MU new[2]− beta )
174 sigma1=sigma1+gam [ i i t e r ] ∗ ( sigma1 new−sigma1 )
175 sigma2=sigma2+gam [ i i t e r ] ∗ ( sigma2 new−sigma2 )
176 i f ( s i g updt==1){
177 sigma=sigma+gam [ i i t e r ] ∗ ( sigma new−sigma ) }
178 e l s e {
179 sigma=sigma−sigma update
180 }
181 }
182 p a r f i n a l=c ( alpha , beta , sigma1 , sigma2 , sigma )
183 ### Example code f o r SAEM−REML algor i thm f o r 2−compartmental model
184 ### data s imu la t i on
185 time=c (0 : 1 2 , 2 4 )
186 nobs=length ( time )−1
187 alpha sim=0.5
188 beta sim=0.6
189 sigma1 sim=0.1
190 sigma2 sim=0.1
191 sigma sim=0.05
192 #### simluate data x .
193 x sim=func t i on ( alpha , beta , time ) {
194 parameters=c ( theta 1=alpha , theta 2=beta )
195 s t a t e=c (X1=1000 ,X2=0)
196 Time=time
197 compart=func t i on ( t , s ta te , parameters ) {
198 with ( as . l i s t ( c ( s ta te , parameters ) ) ,{
199 #rate o f change
200 dX1=−theta 1∗X1
201 dX2=theta 1∗X1−theta 2∗X2
202 l i s t ( c (dX1 , dX2) )
203 })
204 }
205 out=ode (y=state , t imes=as . vec to r ( u n l i s t (Time) ) , func=compart , parms=

parameters , method=”impAdams” )
206 sim x=out [−1 , c ( ”X2” ) ]
207 re turn ( sim x)
208 }
209 theta1=alpha sim+rnorm (1 ,0 , sigma1 sim )
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210 theta2=beta sim+rnorm (1 ,0 , sigma2 sim )
211 x=x sim ( theta1 , theta2 , time )
212 y=x∗(1+rnorm ( nobs , 0 , sigma sim ) )
213 obj=1
214 tt ime=time [−1]
215 pat i en t=data . frame ( obj , ttime , y )
216 f o r ( i in 2 : 30 ) {
217 theta1=alpha sim+rnorm (1 ,0 , sigma1 sim )
218 theta2=beta sim+rnorm (1 ,0 , sigma2 sim )
219 x=x sim ( theta1 , theta2 , time )
220 y=x∗(1+rnorm ( nobs , 0 , sigma sim ) )
221 obj=i
222 tt ime=time [−1]
223 temp=data . frame ( obj , ttime , y )
224 pat i en t=rbind ( pat i ent , temp)
225 }
226 l i b r a r y ( l a t t i c e )
227 xyplot ( y˜ ttime , type=c ( ’ l ’ , ’ p ’ ) , groups=obj , data=pat ient , auto . key=F)
228 l l sim=func t i on (y pred , y , sigma ) {
229 varc=y pred∗y pred∗ sigma∗ sigma ;
230 d pred=(y pred−y ) ˆ2
231 l l =−0.5∗sum(d pred/ varc+log ( varc )+log (2 ∗ pi ) )
232 }
233 ### Spec i f y i n i t i a l parameter va lue
234 n i t e r=5
235 n sub=30
236 alpha=0.8
237 beta=0.8
238 sigma1=0.20
239 sigma2=0.20
240 sigma=0.05
241 sigma h=0.00000001
242 s i g updt=1
243 n bi=100
244 n1 sim=100
245 n2 sim=100
246 n sim=n1 sim∗n2 sim
247 #n sim=1000
248 dlds=rep (0 , n sim )
249 h ds=rep (0 , n sim )
250 l l i sim=rep (0 , n sim )
251 dpred sim=rep (0 , n sim )
252 par par=matrix (NA, n sim , 2 )
253 l l par=rep (NA, n sim )
254 theta i=matrix (0 , n sub , 2 )
255 b i sim=matrix (0 , n sub , 4 )
256 sigma updt i sim=rep (0 , n sub )
257 sigma h updt i sim=rep (0 , n sub )
258 sigma va l i sim=rep (0 , n sub )
259 gam=rep (1 ,100)
260 f o r ( i in 1 : 100 ) {
261 gam [ i ]=1/ i
262 }
263 l i b r a r y ( doPa ra l l e l )
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264 l i b r a r y ( f o r each )
265 ### EM Algorithm
266 f o r ( i i t e r in 1 : n i t e r ) {
267 c l=makeCluster (10)
268 r e g i s t e rDoPa r a l l e l ( c l )
269 r e s u l t=fo r each ( i sub=1:n sub , . combine=rbind , . packages=c ( ’MASS ’ , ’ deSolve ’

) )%dopar%
270 {
271 pat i ent sub=subset ( pat i ent , obj==i sub )
272 t=pat i ent sub [ , 2 ]
273 y=pat i ent sub [ , 3 ]
274 bi=mvrnorm(1 , c (0 , 0 ) , d iag ( c ( sigma1 ˆ2 , sigma2 ˆ2) ) )
275 beta i=mvrnorm(1 , c ( alpha , beta ) , d iag ( c ( sigma1 ˆ2 , sigma2 ˆ2) ) )
276 va l=bi+beta i
277 ### MCMC step
278 f o r ( i in 1 : n1 sim ) {
279 par o ld=va l
280 y old=y pred=x sim ( par o ld [ 1 ] , par o ld [ 2 ] , c (0 , t ) )
281 l l va l=l l o ld=l l sim (y old , y , sigma )
282 varc=y pred∗y pred∗ sigma∗ sigma
283 dpred va l=d pred=(y pred−y ) ˆ2
284 s i g va l=dpred va l / ( y o ld ˆ2)
285 varc g1=y old ∗y old ∗ ( sigma+0.5∗ sigma h) ∗ ( sigma+0.5∗ sigma h)
286 varc g2=y old ∗y old ∗ ( sigma−0.5∗ sigma h) ∗ ( sigma−0.5∗ sigma h)
287 varc g=(varc g1−varc g2 ) / sigma h
288 dlds t 1=(( varc−d pred ) / (2 ∗ ( varc ˆ2) ) ) ∗varc g
289 dlds va l=dlds t 1
290 f o r ( k in 1 : n b i ) {
291 bi new=mvrnorm(1 , c (0 , 0 ) , d iag ( c ( sigma1 ˆ2 , sigma2 ˆ2) ) )
292 par new=bi new+beta i
293 y new=y pred=x sim ( par new [ 1 ] , par new [ 2 ] , c (0 , t ) )
294 l l new=l l sim (y new , y , sigma )
295 ruse=exp ( l l new− l l o ld )
296 u=run i f (1 )
297 i f ( ruse>l og (u) ) {
298 bi=bi new
299 l l va l=l l new
300 }
301 }
302 f o r ( j in 1 : n2 sim ) {
303 beta j=mvrnorm(1 , c ( alpha , beta ) , d iag ( c ( sigma1 ˆ2 , sigma2 ˆ2) ) )
304 par new=bi+beta j
305 y new=y pred=x sim ( par new [ 1 ] , par new [ 2 ] , c (0 , t ) )
306 l l new=l l sim (y new , y , sigma )
307 varc=y pred∗y pred∗ sigma∗ sigma
308 d pred new=(y pred−y ) ˆ2
309 varc g1=y old ∗y old ∗ ( sigma+0.5∗ sigma h) ∗ ( sigma+0.5∗ sigma h) ;
310 varc g2=y old ∗y old ∗ ( sigma−0.5∗ sigma h) ∗ ( sigma−0.5∗ sigma h) ;
311 varc g=(varc g1−varc g2 ) / (1 ∗ sigma h) ;
312 dlds t 2=(( varc−d pred ) / (2 ∗ ( varc ˆ2) ) ) ∗varc g ;
313 ruse=exp ( l l new− l l o ld )
314 u=run i f (1 )
315 i f ( ruse>l og (u) ) {
316 va l=par new
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317 l l va l=l l new
318 dpred va l=d pred new
319 s i g va l=dpred va l / ( y newˆ2)
320 }
321 par par [ ( i −1)∗n1 sim+j , ]= va l
322 l l i sim [ ( i −1)∗n1 sim+j ]= l l va l
323 dpred sim [ ( i −1)∗n1 sim+j ]= s i g va l
324 dlds [ ( i −1)∗n1 sim+j ]=sum( dlds va l )
325 h ds [ ( i −1)∗n1 sim+j ]=sum( dlds va l ∗ dlds va l )
326 }
327 }
328 par=par par
329 l l i sim f=exp ( l l i sim−max( l l i sim ) )
330 l l i sim rat=l l i sim f /sum( l l i sim f )
331 theta i t=t ( par )%∗%matrix ( l l i sim rat , n sim , 1 )
332 theta i avg=matrix (0 , n sim , 2 )
333 theta i avg [ , 1 ]= theta i t [ 1 ]
334 theta i avg [ , 2 ]= theta i t [ 2 ]
335 b i sim t=t ( par∗ l l i sim rat−theta i avg∗ l l i sim rat )%∗% ( par−theta i

avg )
336 theta i [ i sub , ]= theta i t
337 b i sim [ i sub , ]= matrix (b i sim t , 4 , 1 )
338 ###update sigma
339 sigma va l i sim [ i sub ]= t ( dpred sim )%∗%matrix ( l l i sim rat , n sim , 1 )
340 sigma updt i sim [ i sub ]=sum( l l i sim rat ∗ dlds )
341 sigma h updt i sim [ i sub ]=sum( l l i sim rat ∗h ds )
342 c ( theta i [ i sub , ] , b i sim [ i sub , ] , sigma updt i sim [ i sub ] , sigma h

updt i sim [ i sub ] , sigma va l i sim [ i sub ] )
343 }
344 s topClus t e r ( c l )
345 theta i=r e s u l t [ , 1 : 2 ]
346 b i sim=r e s u l t [ , 3 : 6 ]
347 sigma updt i sim=r e s u l t [ , 7 ]
348 sigma h updt i sim=r e s u l t [ , 8 ]
349 ##updated populat ion mean and covar iance
350 MU new=apply ( theta i , 2 ,mean)
351 sigma new=sqr t (mean( r e s u l t [ , 9 ] ) )
352 sigma1 new=sqr t ( var ( theta i [ ,1 ]−MU new [ 1 ] ) )
353 sigma2 new=sqr t ( var ( theta i [ ,2 ]−MU new [ 2 ] ) )
354 alpha=alpha+gam [ i i t e r ] ∗ (MU new[1]− alpha )
355 beta=beta+gam [ i i t e r ] ∗ (MU new[2]− beta )
356 sigma1=sigma1+gam [ i i t e r ] ∗ ( sigma1 new−sigma1 )
357 sigma2=sigma2+gam [ i i t e r ] ∗ ( sigma2 new−sigma2 )
358 sigma update=(1/sum( sigma h updt i sim ) ) ∗sum( sigma updt i sim )
359 i f ( s i g updt==1){
360 sigma=sigma+gam [ i i t e r ] ∗ ( sigma new−sigma ) }
361 e l s e {
362 sigma=sigma−sigma update
363 }
364 }
365 p a r f i n a l=c ( sigma1 , sigma2 , sigma )

Simulation study on population dynamical system models
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This is the code for the real data application in Chapter 3.

1

2 l i b r a r y ( Co l l o c I n f e r )
3 l i b r a r y ( deSolve )
4 l i b r a r y ( l oke rn )
5 l i b r a r y (MASS)
6 s e t . seed (123)
7

8 ###Set ke rne l K(u)=(1−uˆ2) {+}
9 ke rne l . e=func t i on (x ) {

10 3/4∗(1−xˆ2) ∗(1>xˆ2)+1e−10
11 }
12 ### Input data
13 ### Here we have the data i s in the two csv f i l e s
14 workdata=read . csv ( ” . /data cd8 . csv ” ,
15 header=TRUE, sep=” , ” , quote=”\”” , dec=” . ” ,
16 f i l l =TRUE, comment . char=”” )
17 workdataD=read . csv ( ” . /data dc . csv ” ,
18 header=TRUE, sep=” , ” , quote=”\”” , dec=” . ” ,
19 f i l l =TRUE, comment . char=”” )
20

21 ### Clean data : drop the ”NA” case and f i t ODE from day 5 to day 14
22 workdata=data . frame ( workdata )
23 workdata=workdata [ ! i s . na ( workdata$data lun 2008) , ]
24 f i t t e dd a t a=workdata [ workdata$time>=5&workdata$time<=14,]
25

26 ### I n i t i a l f i t us ing Four i e r ba s i s smoothing
27 suppressPackageStartupMessages ( l i b r a r y ( fda ) )
28 suppressPackageStartupMessages ( l i b r a r y ( fda . usc ) )
29 suppressPackageStartupMessages ( l i b r a r y ( reshape2 ) )
30 ### Create and es t imate the Four i e r ba s i s system
31 ba s i s 3=c r ea t e . f o u r i e r . b a s i s ( rangeva l = range ( f i t t e dd a t a $ time ) , per iod=9,

nbas i s=3)
32 f o u r i e r 3 . fd=smooth . ba s i s ( a r gva l s=f i t t e dd a t a $time , y=log ( f i t t e dd a t a $data

mln 2008) , fdParobj = ba s i s 3 ) $ fd
33 fou x1 0=eva l . fd ( f i t t e dd a t a $time , f o u r i e r 3 . fd )
34 fou x1 1=eva l . fd ( f i t t e dd a t a $time , f o u r i e r 3 . fd , Lfdobj=1)
35 ba s i s 3=c r ea t e . f o u r i e r . b a s i s ( rangeva l=range ( f i t t e dd a t a $ time ) , per iod=12,

nbas i s=3)
36 f o u r i e r 3 . fd=smooth . ba s i s ( a r gva l s=f i t t e dd a t a $time , y=log ( f i t t e dd a t a $data

sp l 2008) , fdParobj=ba s i s 3 ) $ fd
37 fou x2 0=eva l . fd ( f i t t e dd a t a $time , f o u r i e r 3 . fd )
38 fou x2 1=eva l . fd ( f i t t e dd a t a $time , f o u r i e r 3 . fd , Lfdobj=1)
39 ba s i s 3=c r ea t e . f o u r i e r . b a s i s ( rangeva l=range ( f i t t e dd a t a $ time ) , per iod=10,

nbas i s=3)
40 f o u r i e r 3 . fd=smooth . ba s i s ( a r gva l s=f i t t e dd a t a $time , y=log ( f i t t e dd a t a $data

lun 2008) , fdParobj=ba s i s 3 ) $ fd
41 fou x3 0=eva l . fd ( f i t t e dd a t a $time , f o u r i e r 3 . fd )
42 fou x3 1=eva l . fd ( f i t t e dd a t a $time , f o u r i e r 3 . fd , Lfdobj=1)
43 x1hat=fou x1 0
44 x1de=fou x1 1
45 x2hat=fou x2 0
46 x2de=fou x2 1
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47 x3hat=fou x3 0
48 x3de=fou x3 1
49 ### Subst i tude f o u r i e r es imat ion in to l e a s t square ob j e c t i v e func t i on
50 e r r o r=func t i on ( vec ) {
51 rm=vec [ 1 ]
52 r s=vec [ 2 ]
53 dl=vec [ 3 ]
54 gms=vec [ 4 ]
55 g s l=vec [ 5 ]
56 Dt=10ˆ g lk e rn s (workdataD$TIME, workdataD$LOGDC, x . out=f i t t e dd a t a $time

−5+5−3.08, de r i v=0)$ e s t
57 re turn (sum( ( x1de−(exp (rm) ∗Dt−exp (gms) ) ) ˆ2/ ( l og (10) ∗ l og (10) ) )+sum( ( x2de

−(( exp ( r s ) ∗Dt−exp ( g s l ) ) + exp (gms) ∗exp ( x1hat−x2hat ) ) ) ˆ2/ ( l og (10) ∗ l og
(10) ) ) + sum( ( x3de−(0∗exp ( x1hat−x3hat )+exp ( g s l ) ∗exp ( x2hat−x3hat ) −
exp ( d l ) ) ) ˆ2/ ( l og (10) ∗ l og (10) ) ) ) ;

58 }
59 re=l i s t ( )
60 f o r ( i in 1 : 10 ) {
61 yyy=c ( r un i f (2 ,−20 ,−5) , r un i f ( 1 , 0 . 5 , 2 ) , r un i f (2 ,−20 ,0) )
62 optim (yyy , e r ror , method=”Nelder−Mead” , c on t r o l=l i s t ( t r a c e=F, maxit=2000 ,

ab s t o l=1e−10, r e l t o l=1e−10) )−>re [ [ i ] ]
63 }
64 i n i t par=re [ [ which . min ( u n l i s t ( l app ly ( re , f unc t i on (x ) x$ value ) ) ) ] ] $par
65 i n i t par
66 exp ( i n i t par )
67 #### Use s p l i n e to smooth cova r i a t e Dt f o r use in ODE
68 dt . s p l i n e=smooth . s p l i n e (workdataD$TIME, workdataD$LOGDC, a l l . knots=T)
69

70 ### Use Gauss−Newton method f o r f i n a l f i t
71 y f i t=log ( c ( f i t t e dd a t a $data mln 2008 , f i t t e dd a t a $data sp l 2008 , f i t t e dd a t a $

data lun 2008) )
72 ODEmodel=func t i on (Time , State , Pars ) {
73 with ( as . l i s t ( c ( State , Pars ) ) , {
74 Dt=10ˆ p r ed i c t ( dt . sp l i n e , Time+5−3.08)$y
75 dX1=(rm∗Dt−gms) #log (Tm)
76 dX2=( r s ∗Dt−g s l )+gms∗exp (X1−X2) #log (Ts )
77 dX3=g s l ∗exp (X2−X3)−dl #log (Tl )
78 re turn ( l i s t ( c (dX1 , dX2 , dX3) ) )
79 })
80 }
81 time . out=f i t t e dd a t a $time−5
82 time .0=unique ( time . out )
83 time . f r e q=time .0− time . 0
84 f o r ( i in seq ( l ength ( time . f r e q ) ) ) {
85 time . f r e q [ i ]=sum( time . out==time . 0 [ i ] ) }
86 Themodel=func t i on (X1 ,X2 ,X3 , theparms ) {
87 names (X1)=”X1”
88 names (X2)=”X2”
89 names (X3)=”X3”
90 names ( theparms )=c ( ”rm” , ” r s ” , ” d l ” ,
91 ”gms” , ” g s l ” )
92 tmp=ode ( func=ODEmodel , y=c (X1 ,X2 ,X3) , parms=theparms , t imes=time . 0 )
93 tmp=apply (tmp , 2 , f unc t i on (x ) rep (x , time . f r e q ) )
94 re turn ( c (tmp [ , ”X1” ] , tmp [ , ”X2” ] , tmp [ , ”X3” ] ) )
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95 }
96 x i n i=c (X1=log (3 . 96 e+3) ,X2=log (3 . 64 e+4) ,X3=log (1 . 31 e+3) )
97 dt . s p l i n e=smooth . s p l i n e (workdataD$TIME, workdataD$LOGDC, a l l . knots=T)
98 themodel=n l s ( y f i t ˜Themodel ( x1 , x2 , x3 , thepar ) ,
99 c on t r o l=n l s . c on t r o l (warnOnly=T, t o l=1e−4) ,

100 s t a r t=l i s t ( x1=x i n i [ 1 ] , x2=x i n i [ 2 ] , x3=x i n i [ 3 ] ,
101 thepar=exp ( i n i t par ) ) )
102 summary( themodel )

Real data application on CD8+ T cell data
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