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ABSTRACT OF DISSERTATION 

 
 
 

 
DEVELOPMENT AND APPLICATION OF GADOLINIUM FREE CARDIAC 

MAGNETIC RESONANCE FIBROSIS IMAGING FOR MULTISCALE STUDY OF 
HEART FAILURE IN PATIENTS WITH END STAGE RENAL DISEASE 

 
Cardiac magnetic resonance (CMR) is a powerful tool to noninvasively 

image ventricular fibrosis. Late gadolinium enhancement (LGE) CMR identifies 
focal and, with T1 mapping, diffuse fibrosis. Despite prevalent cardiac fibrosis 
and heart failure, patients with end stage renal disease (ESRD) are excluded 
from LGE. Absence of a suitable diagnostic has limited the understanding of 
heart failure and obstructed development of therapies in the setting of ESRD. A 
quantitative, gadolinium free fibrosis detection method could overcome this 
critical barrier, propelling the advancement of diagnostic, monitoring, and therapy 
options. This project describes the development of a gadolinium free CMR 
technique and application for cardiac fibrosis measurement in patients with 
ESRD. 

 
Magnetization transfer (MT) occurs during standard cine balanced steady 

state free precession (bSSFP) CMR, where extracellular matrix protons 
exchange magnetization with water molecules. Extracellular water volume 
expansion, concomitant with fibrosis, reduces MT and subtly elevates signal 
intensity. Our technique, 2-pt bSSFP, extracts endogenous contrast sensitive to 
tissue fibrosis by obtaining pairs of high and low MT-weighted images and 
calculating normalized signal differences, denoted by ΔS/So. 

 
We tested 2-pt bSSFP in patients referred for CMR and found excellent 

agreement spatially with LGE and quantitatively with extracellular volume 
fraction. Diagnostic and clinical application of 2-pt bSSFP was comparable to 
LGE. We applied 2-pt bSSFP to patients with ESRD for multiscale comparison 
with correlates of fibrosis ranging from blood biomarkers to whole organ function. 
Patients with ESRD displayed hypertrophy with reduced contraction, but elevated 
ΔS/So and fibrosis. Some biomarkers correlated with both hypertrophy and 
fibrosis, highlighting the need to distinguish between hypertrophic and fibrotic 
remodeling. We monitored fibrosis over 1 year using 2-pt bSSFP in a cohort of 



 
 

patients with ESRD. ΔS/So and fibrotic burden increased substantially, despite 
minor changes in structure and function. 

 
Collectively these studies validate and apply 2-pt bSSFP for gadolinium 

free fibrosis CMR in patients with ESRD. While ventricular structure and function 
are commensurate with progression toward heart failure, it is now possible to 
specifically describe global and focal patterns of cardiac fibrosis in ESRD, along 
with comparisons to blood biomarkers which may lead to improved diagnostics 
and molecular treatment targets. 
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CHAPTER 1: INTRODUCTION 

 

Heart Failure 

Epidemiology, Etiology, and Clinical Presentation 

Heart disease is currently the leading cause of death in the United States 

[1]. The prevalence of heart failure remains high at over 5.5 million adults in the 

United States [2]. Over $20 billion in medical expenses are attributed to heart 

failure. By the year 2030, the projected prevalence of heart failure is expected to 

exceed 8 million Americans costing over $53 billion [3]. This is driven by both the 

increasing incidence in a growing elderly population and improved survival due to 

advances in detection and treatments [3].  

Heart failure is defined as the inability of the heart to pump enough blood 

to meet the metabolic demands of the body. The etiology and clinical features 

are complex. Heart failure can result from filling and/or ejection abnormalities, 

caused by conduction, structural and/or functional alterations in the pericardium, 

myocardium, endocardium, valves, or vasculature [4,5]. Signs and symptoms are 

similarly complex and not specific to heart failure. Patients may present with 

dyspnea, exercise intolerance, fatigue, and fluid retention, although their 

manifestations are highly varied [4,6]. Many patients with heart failure remain 

asymptomatic. 

The majority of signs and symptoms of heart failure are caused by 

reduced left ventricular (LV) function. In fact, LV ejection fraction (EF) of <35% or 

<40% is often used as a cutoff to classify heart failure with reduced EF (HFrEF) 
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versus heart failure with preserved EF (HFpEF) [4,6]. HFrEF, or systolic heart 

failure, comprises about half of the heart failure population and is better 

understood than HFpEF, or diastolic heart failure [5]. This cutoff is prognostic and 

often used for enrollment into randomized controlled clinical trials [5], meaning 

efficacy for new treatments has been shown in HFrEF patients only [4]. The 

major influence of the LV in heart failure development, prognosis, and treatment 

is the motivation for focusing this project on investigating the LV only. 

 

Cardiac Remodeling  

Cardiac remodeling is the alteration of the structure (geometry, shape, and 

mass) and ultimately physiological function (contraction and relaxation) of the 

heart [7]. Particularly in the LV, remodeling is now appreciated as an important 

determinant in the progression and severity of heart disease to heart failure. 

Remodeling is a physiologic or pathophysiologic process mainly affecting the 

myocytes, but also the interstitium, fibroblasts, collagen, and vasculature in the 

ventricle [7]. Causes include, but are not limited to, myocardial infarction, volume 

or pressure overload, and inflammation.  

Following initial myocardial infarct, myocyte necrosis leaves reduced 

cellular mass and an area of thinned LV wall. In the first hours to weeks, the 

infarct region typically undergoes disproportionate thinning and dilation, known 

as infarct expansion [8-10], with a loss of regional myocardial mass [11]. 

Chronically, whole chamber dilation may follow, leading to increased end 

diastolic (EDV) and end systolic volumes (ESV) while restoring myocardial mass 
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to pre-infarct levels [12,13]. Increased chamber volume leads to volume overload 

in remote areas, causing hypertrophy in non-infarct zones [9]. These remodeling 

events aid in the maintenance of ejection fraction [12] and cardiac output [14], 

despite reduced contractility of the infarct segments, but at the cost of increased 

chamber volumes. Some patients may eventually progress to noncompensatory 

dilation and remodeling which leads to reduced EF [14] and can proceed to 

HFrEF. 

Hemodynamic overload increases myocyte stretch, a mechanical signal 

that initiates a complex intercellular cascade leading to cardiomyocyte growth 

and hypertrophy [15]. Systemic hypertension leads to pressure overload, causing 

elevated LV wall stress. This is counteracted by increasing wall thickness and 

mass. The resulting structural pattern is labeled concentric hypertrophy, in which 

LV chamber size, EDV and ESV [16], and cardiac output are reduced [15]. 

Thickened walls may also be stiffer thus unable to relax and fill with blood, 

leading to diastolic heart failure. Another pattern of LV growth—eccentric 

hypertrophy—is characterized by increased chamber size in conjunction with 

increased LV mass [15,16]. Often caused by volume overload, the LV wall 

responds by dilating, allowing preserved cardiac output and relatively normal wall 

thickness [16]. A third pattern of remodeling—concentric remodeling—has been 

described as normal LV mass with increased wall thickness [16]. While mass is 

unchanged, the decrease in chamber size leads to reduced cardiac output. 

Overall LV mass increases, independent of body size, as measured by left 

ventricular mass index (LVMI) are prognostic of clinical events and cardiac death 
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[17,18]. To support hypertrophic cardiomyocytes and their coordinated 

contraction, connective tissues of the extracellular matrix must remodel in parallel 

[19]. While initially adaptive, this matrix remodeling process can become 

pathological and lead to increased deposition of collagen in conjunction with 

hypertrophy (see Cardiac Fibrosis below). 

Additional causes can lead to pathological remodeling similar to those 

described above. Dilated cardiomyopathy, for example, may be idiopathic or due 

to non-ischemic influences such as heredity or alcoholism [20]. Hypertrophic 

cardiomyopathy may also be idiopathic or inherited [7,21]. Following 

hemodynamic or injurious insult, however, remodeling is an adaptive process to 

maintain cardiac function. The transition from compensatory to maladaptive 

remodeling may contribute to heart failure progression and deteriorating 

prognosis [7]. 

 

Cardiac Fibrosis 

 In healthy hearts, cardiomyocytes are surrounded by a lattice-like matrix of 

proteins and molecules along with other cell types like cardiac fibroblasts [22]. 

This extracellular matrix provides a scaffold for shape and structure and is 

required for proper function of the ventricles by assisting conduction and force 

generation. The equilibrium of the extracellular matrix, which consists primarily of 

collagen type I, is responsible for maintaining proper cardiac stiffness for efficient 

contraction and relaxation [23]. Cardiac fibrosis occurs from the remodeling of 

extracellular matrix and subsequent increase in collagen deposition.  
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Similar to and often in conjunction with structural remodeling, collagen 

deposition is a compensatory process to maintain proper ventricular stiffness. 

This is evident in myocardial infarction where necrotic cardiomyocytes are 

replaced with collagen [24] to form a dense scar. Fibrotic tissue protects the 

ventricle from rupture [25] and increases stiffness to maintain pump function. 

This replacement fibrosis process is typically characterized by a dense, focal 

pattern of scar.  

 Reactive fibrosis is a progressive process that develops from an increase 

in collagen production by cardiac fibroblasts [26]. Unlike replacement fibrosis, 

reactive fibrosis is characterized by a diffuse interstitial distribution. Hypertension, 

diabetes [27], and aging [22] contribute to the expansion of extracellular matrix 

and subsequent collagen deposition. Pressure overload induced hypertrophy (as 

seen in hypertension [28]) and hypertrophic cardiomyopathy [29] are also 

associated with diffuse, reactive fibrosis. Fibrosis has also been identified in 

volume overload-induced ventricular dilation without ischemia [30] and in dilated 

cardiomyopathy [31]. As described previously, infarcted hearts may also develop 

hypertrophy in remote zones [9] requiring subsequent adaptation by the 

extracellular matrix. Thus increased collagen content may also arise in this non-

infarcted tissue of ischemic hearts [31,32], particularly in areas of hypertrophy.  

 While reactive fibrosis can occur simultaneously or subsequently in 

structural remodeling, there is discrepancy whether dilation or hypertrophy 

directly correlates with fibrosis. An increase in collagen content is not absolute in 

areas of hypertrophy following myocardial infarction [24] or hypertension [33]. 
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Septal thickness and overall heart size are common clinical indicators of 

hypertrophy and often used as surrogates for fibrosis, yet some have found a 

lack of association with fibrotic burden [33]. While fibrosis is presumed to follow 

hypertrophy, there is also evidence that fibrosis can actually precede some forms 

of hypertrophy [34]. Particularly in the context of hypertrophy, then, myocardial 

fibrosis is not directly explained merely by growing cardiomyocytes [33]. Other 

unknown factors must be contributing to the development of reactive fibrosis. 

Importantly, fibrosis can lead to ventricular stiffening [35,36], which 

impacts pump function. Progressive collagen deposit causes stiffening, which 

typically affects diastolic relaxation followed by systolic contraction [37]. Fibrosis 

also disrupts the syncytium formed by healthy cardiomyocytes by isolating 

bundles of cardiomyocytes and disrupting gap junctions. The physical separation 

and disconnection of cardiomyocytes slows conduction and wave propagation, 

increasing the susceptibility to conduction block, which can initiate reentry and 

arrhythmia [38]. Thus, increased fibrosis is linked to worsening heart failure, 

arrythmogenesis, mortality risk [33], and sudden cardiac death [39]. 

 

Chronic Kidney Disease and End Stage Renal Disease 

Epidemiology and Etiology 

Over 13% of the United States adult population has persistent reduction of 

kidney function, or chronic kidney disease (CKD) [40]. Commensurate with 

current national health epidemics, primary risk factors for CKD include diabetes, 

hypertension, cardiovascular disease, and obesity [40]. Likely due to these 
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comorbidities, Blacks/African Americans are disproportionately affected by CKD. 

The severity of CKD is categorized by stages based on estimated glomerular 

filtration rate (eGFR) and albumin clearance. Patients are diagnosed with CKD if 

eGFR <60 ml/min/1.73m2 or urine albumin/creatinine ratio >30mg/g over 

persistent measurements. Patients who reach eGFR<15ml/min/m2 are 

considered CKD Stage 5, or complete renal failure. At this point, patients may be 

classified as end stage renal disease (ESRD), which indicates that they require 

renal replacement therapy for survival [41].  

 ESRD affects over 600,000 American adults and lends over $87 billion to 

total Medicare costs [42]. While overall incidence has plateaued, incident cases 

in middle aged and especially elderly populations are on the rise [40,41]. The 

leading primary causes of ESRD are diabetes, hypertension, glomerulonephritis, 

and cystic kidney disease [40]. Diabetes and hypertension as primary cause of 

ESRD are drastically higher in Blacks/African Americans than any other race 

[40].  

 

Treatments  

 Each year, over 100,000 patients begin renal replacement therapy for 

treatment of ESRD [40,42,43]. Of patients initiating renal replacement therapy, 

nearly 90% receive hemodialysis treatment, but peritoneal dialysis (9%) and 

kidney transplants (3%) are increasing [42], especially in younger patients [40]. In 

patients on hemodialysis, death rates are highest in the first year of treatment, 

then after a drastic drop at year 2, steadily increase over at least the next 5 years 
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[42]. Cardiovascular events are the leading cause of deaths in patients on 

hemodialysis for ESRD, encompassing over 50% of the known causes of death 

[44]. Within 3 years of ESRD therapy, only about 50% of patients are still alive 

[41].  

 

End Stage Renal Disease and Cardiac Risk 

 The term cardiorenal syndrome has been used to describe the combined 

failure of both heart and kidneys [45]. Five types have been identified based on 

the influence of and outcome in each organ. Cardiorenal Type IV comprises CKD 

as an independent cause of heart failure [45]. Renal dysfunction worsens 

hypertension, increases fluid retention, and elevates circulating uremic toxins. 

Thus, ESRD contributes to volume overload, pressure overload, and 

cardiomyopathy [46]. These are the fundamental causes of cardiac remodeling, 

resulting in eccentric hypertrophy, concentric hypertrophy, and dilation, 

respectively, and promote the transition toward heart failure and possibly death. 

In fact, cardiovascular disease is the leading cause of death in patients with 

ESRD [42] 

Hemodialysis exacerbates many cardiovascular risks in patients with 

ESRD. One in 4 patients on hemodialysis will die from sudden cardiac death [43]. 

For long term hemodialysis patients, risk of cardiovascular mortality is 10-20 

times greater than the general population [47]. Unique risk factors for sudden 

cardiac death include hyperphysiologic swings in electrolytes and blood volume 
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[48,49]. Extreme blood volume removal during hemodialysis may also lead to 

hypotension, cardiac stunning [50], and repeated ischemic events [45].  

 

End State Renal Disease and Cardiac Fibrosis 

Patients with ESRD almost ubiquitously develop dilation [51] and/or 

hypertrophic [52] remodeling but fibrosis is not certain. Hypertrophy seems to 

develop early in CKD, prior to hemodialysis initiation [53] and progresses with 

deteriorating eGFR [54]. Previous reports describe a varied but large 

proportion—up to 91% [55]—of hemodialysis patients who are hypertrophic [56-

58]. In hemodialysis patients, hypertrophy is associated with poorer systolic 

function [58] and worse prognosis. Elevated blood pressure and ventricular 

dilation—likely from chronic volume overload—associates with increased LV 

mass [56,57], making the interplay between patterns of structural remodeling 

complex.  

Myocardial infarction prevalence is about 14% in hemodialysis patients, 

yet cause of death is most often attributed to sudden cardiac death, not 

myocardial infarction [47]. While a fraction of patients on hemodialysis develop 

replacement fibrosis following myocardial infarction, a larger proportion develop 

reactive fibrosis, which can occur with or without infarct [59].  

Similar to the cardiac patient population, CKD patients can demonstrate 

fibrosis irrespective of hypertrophy [60]. It has been shown that diffuse fibrosis 

may not correlate with systolic function or low EF [58]. While an autopsy study 

revealed an association between fibrosis and hemodialysis vintage [61] (time of 
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hemodialysis treatment) others have not found a similar correlation [58]. It is 

understood that patients on hemodialysis with a greater fibrotic burden (>30% of 

tissue area) have significantly worse prognosis [51], despite the lack of 

association with systolic dysfunction. In fact, in a multivariate analysis including 

hypertension, diabetes, ejection fraction, LV dilation, and cardiomyocyte 

hypertrophy as predictors, only the percent area of LV fibrosis emerged as an 

independent predictor of cardiac death [51]. An experimental model in rabbits 

also linked induced renal failure to arrhythmias and increased fibrosis [62]. 

Therefore, cardiac fibrosis is an independent risk factor for death above and 

beyond the structural remodeling seen in patients with ESRD. As articulated by 

McCullogh et al., cardiac fibrosis is a common and significant substrate for pump 

dysfunction and sudden cardiac death due to arrhythmia, the two leading 

mechanisms of death in ESRD [45]. 

 

Measuring Cardiac Fibrosis  

Tissue Biopsy 

Since fibrosis is a crucial element in cardiac disease and heart failure, 

accurate measurement is essential for proper diagnosis, treatment selection, and 

survival—particularly in the ESRD population. The historical gold standard for 

fibrosis identification is collagen volume fraction measured by myocardial tissue 

biopsy. Biopsy studies in ESRD patients have identified cardiomyocyte 

hypertrophy along with replacement [50] and diffuse fibrosis [51,63,64]. 

Unfortunately, this technique is prone to falsely report the absence of fibrosis 
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[65], likely due to the heterogeneity of the disease. Additionally, clinicians must 

assume fibrotic content of non-biopsied regions from small tissue samples. Aoki 

et al. report a mean percent area of fibrosis in myocardial samples in 

hemodialysis patients that is only slightly elevated (22%) compared to controls 

(21%) [51], which highlights that wide distribution of fibrosis leaves biopsy 

susceptible to false underestimations of true, global fibrotic burden. The 

invasiveness of the biopsy procedure also renders it unsuitable for serial 

measurements, which is critical for monitoring the actively remodeling hearts of 

patients with ESRD. 

 

Echocardiography 

 Echocardiography is a widely available technology with the ability to 

rapidly acquire measurements of LV mass and monitor systolic and diastolic 

function. Due to the prevalence of LV hypertrophy in the ESRD population, 

echocardiography has been widely adopted for measurement of cardiac 

remodeling and dysfunction. Measures of mass and volume are obtained for 

assessment of hypertrophy and dilation as well as LV function assessed by EF 

[66]. Using deformation imaging, echocardiography can measure LV dysfunction 

through strain and strain rate measurement in radial, circumferential, and 

longitudinal directions to identify systolic dysfunction [67]. Diastolic dysfunction 

can be assessed by comparing early (E) and late (A) diastolic strain via the E/A 

ratio and is predictive of outcomes [67]. Location and extent of infarct patterns 

may be identified by wall reduced tissue velocity [66]. 
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 Due to the potential correlation between hypertrophy, dysfunction, and 

fibrosis, echocardiography has been extended to the assessment of fibrosis in 

patients with ESRD. The unique and hyperphysiologic hemodynamic variations 

experienced by patients with ESRD can influence the accuracy of 

echocardiography. Measurements via echocardiography depend on both loading 

conditions and an assumed symmetric geometry of the LV [52], which is 

problematic for the dynamically shifting blood volumes and remodeling ESRD 

heart. It has been shown that echocardiography systematically overestimates LV 

mass and volumes in patients on hemodialysis [52,68]. Since hypertrophy is 

often used as a correlate for fibrosis, this overestimation not only impacts the 

understanding of structural remodeling, but also the assumption of cardiac 

fibrotic burden in ESRD. While this noninvasive method is preferred over biopsy, 

echocardiographic functional biomarkers such as E/A ratio may be unable to 

distinguish cardiac fibrosis as measured by histology [51], leaving this technology 

unsuitable for fibrosis identification in patients with ESRD. 

 

Contrast Enhanced Cardiac Magnetic Resonance Imaging 

 Cardiac magnetic resonance imaging (CMR) with gadolinium contrast 

agents has emerged as the new clinical standard for detecting fibrosis, 

particularly following myocardial infarction, using a technique called late 

gadolinium enhancement (LGE) [69-71]. Gadolinium is an extracellular contrast 

agent, delivered intravenously. Upon perfusion into the myocardium, gadolinium 

accumulates in areas of expanded interstitial space, which occurs during the 
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development of fibrosis [72]. It shortens the T1 (longitudinal) relaxation of protons 

associated with nearby water molecules, leading to an increase in signal intensity 

in magnetic resonance imaging (MRI). Slower kinetics and increased 

concentrations of gadolinium in fibrotic areas can be detected as enhancement 

on images 5-20 min after contrast agent injection [72]. Thus, LGE creates 

contrast between fibrotic and healthy myocardial tissue, where gadolinium 

washes out more quickly. 

While adequate for identifying focal fibrosis, relatively low levels of signal 

enhancement preclude the identification of diffuse fibrosis by LGE [63]. 

Combining LGE with T1 mapping techniques allows for calculation of 

extracellular volume fraction and determination of diffuse fibrosis [73-76]. T1 

relaxation time is shortened in proportion to the local concentration of gadolinium. 

The absolute T1 time in all myocardial voxels is measured to expose subtle 

changes in gadolinium concentration due to interstitial volume expansion and 

fibrosis [72]. Gadolinium distributes into all extracellular fluid in the body, so by 

correcting for hematocrit, the extracellular volume (ECV) fraction of the 

myocardium can be calculated. ECV represents a quantitative measure of fibrotic 

burden and has been applied in a wide range of cardiac diseases [77] and 

validated with histological comparison of collagen volume fraction [63,78]. 

Increased ECV is also associated with mortality in cardiac patients [79]. 

Shortened post-contrast T1 times and increased ECV, consistent with diffuse 

fibrosis, have been correlated with ventricular stiffness, or diastolic dysfunction 

[64,80].  
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Contrast enhanced CMR plays an important role in tissue characterization 

and therefore differential diagnosis for cardiac patients with a wide variety of 

pathologies [72]. Reactive fibrosis in non-infarcted myocardium as measured by 

ECV is prognostic and has been associated with heart failure and death, 

independent of EF [81]. ECV measurement of fibrosis may also add incremental 

prognostic value on top of the well-established clinical risk factors for heart failure 

such as reduced EF, renal dysfunction, heart failure severity, and age. 

 Contrast enhanced CMR has been used to define patterns of fibrosis in 

patients with ESRD. Schietinger et al. described prevalent enhancement at LGE 

in hemodialysis patients, specifically identifying 3 patterns of fibrosis: (1) 

transmural enhancement consistent with an infarct pattern, and the more 

frequent non infarct-related (2) circumferential, diffuse enhancement, and (3) 

focal enhancement of the midwall [59]. In this study, LGE correlated with 

hypertrophy and systolic dysfunction on a global and segmental level, while a 

nonsignificant trend emerged for LGE and hemodialysis vintage. In a similar 

study, Mark et al. described 2 patterns of LGE, corresponding to ischemic 

(replacement) and non-ischemic (reactive) causes with high prevalence in ESRD 

patients [58]. Either type of LGE correlated with greater LV mass and dilation. 

Focal LGE associated with systolic dysfunction, while diffuse fibrosis did not. It is 

clear that a high rate of cardiac fibrosis is present in the ESRD population with 

varying structural and functional correlates. 

 In 2006, the U.S. Food and Drug Administration (FDA) issued several 

public health advisories resulting in updated product labeling and exclusion of 
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patients with renal insufficiency from gadolinium based imaging techniques 

[82,83]. These warnings resulted from the observation of nephrogenic systemic 

fibrosis in patients with ESRD supposedly caused by gadolinium [84] . Further 

evidence has established a causative role for gadolinium in the development of 

nephrogenic systemic fibrosis [84-87]. Despite the overwhelming benefits of LGE 

CMR for the identification of fibrotic burden and patterning, it is now unsuitable 

for use in patients with ESRD.  

Given the severe limitations in direct fibrosis measurement, the current 

dogma leans on the potential correlation between fibrosis and hypertrophy or 

dysfunction to predict fibrosis in patients with ESRD. The field has now reverted 

to non-contrast CMR or echocardiographic measurements of increased 

myocardial mass and reduced strain as surrogate measures of fibrosis. 

 

Non Contrast Cardiac MRI 

 Native T1 mapping without gadolinium is emerging as a non-contrast 

technique for tissue characterization [88,89], with valuable application for patients 

with ESRD [90]. As mentioned previously, T1 relaxation time measures the 

longitudinal relaxation of protons associated with water molecules. T1 is 

calculated using a curve-fitting algorithm based on samples taken at multiple 

inversion times [91]. The interstitial expansion occurring concomitantly with 

fibrosis development leads to an increase in extracellular water fraction, which 

can be detected as lengthened T1 times compared to healthy tissue. Modified 

Look-Locker inversion recovery (MOLLI) sequences are now widely used to 
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measure and map native T1 relaxation in a single acquisition during in CMR [92]. 

Using a threshold technique, native T1 mapping can distinguish infarcted tissue 

from normal tissue, in agreement with LGE, to identify replacement fibrosis [93]. 

Maps of T1 relaxation time allow both visual and quantitative analysis of fibrosis 

and have been correlated with histology [94] and contrast enhanced CMR 

measures of ECV [95,96]. T1 mapping in non-ischemic cardiomyopathy was 

correlated with dilation, ECV, and dysfunction [97], revealing a potential 

prognostic value for native T1 mapping. Others have shown no correlation 

between native T1 and histology [63] or calculation of ECV [98] though.  

 In a large study of patients with early CKD but not yet on dialysis, native 

T1 was increased and correlated with reduced strain but not LV mass [60]. 

Smaller reports of myocardial native T1 studies in patients on hemodialysis for 

ESRD are beginning to emerge [90,99]. Rutherford et al. demonstrated 

prolonged native T1 times along with hypertrophy and reduced strain in patients 

on hemodialysis [90]. Elevated T1 correlated with ventricular mass but not 

reduced strain. A recent case report also demonstrated the identification of non-

ischemic, reactive fibrosis patterns in one hemodialysis patient [99], 

demonstrating the utility of native T1 to identify specific patterns of fibrosis. 

Larger studies are warranted to investigate the role of T1 mapping in 

hemodialysis patients and its correlation with other cardiac remodeling 

measures. 

T1 mapping sequences are highly variable across centers resulting in 

varied reports of healthy myocardial T1 times [100]. T1 times in disease states 
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may be even more variable than healthy populations [101], leading to uncertainty 

in the accuracy for fibrosis identification. Ongoing efforts aim to standardize 

acquisition procedures and improve accuracy of normal myocardial T1 times so 

comparisons between sites and studies are more robust [96,100,102]. Heart rate 

variability, a common occurrence in ESRD, is a concern in T1 mapping, 

especially for long T1 values [91]. Additionally, the need to sample over multiple 

inversions, through a number of cardiac cycles, requires aggressive motion 

correction to be employed [103]. Due to motion correction artifacts, T1 

quantitative analysis has been predominantly limited to the interventricular 

septum [94,95,104]. It is known that patients on hemodialysis also tend to 

develop anemia which can exacerbate hypertrophy [105] and arbitrarily elevate 

native T1 times. Without correction for hematocrit, T1 mapping may not be an 

accurate fibrosis measurement option in this group. 

 Another non-contrast technique—magnetization transfer (MT) MRI—is 

emerging for myocardial tissue characterization. During standard clinical imaging 

using cine balanced steady state free precession (bSSFP) MRI, the transfer of 

saturated magnetization from extracellular matrix macromolecules to the 

surrounding bulk water occurs through a process called magnetization transfer 

(MT) [106], which reduces the myocardial signal intensity [107,108]. Expansion of 

extracellular water volume, which occurs concomitantly with progression of 

fibrosis, causes reduction in MT and subtle elevation of myocardial signal 

intensity. This endogenous contrast mechanism can be exploited for gadolinium 

free CMR fibrosis imaging.  
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 Simple visual identification of these myocardial signal elevations is 

challenging because of the subtle differences between healthy and fibrotic tissue. 

Advanced analysis of bSSFP images is required to extract the differences in MT 

caused by fibrosis. Two images with high and low MT-weighting are required. 

MT-weighting can be modulated by altering the radiofrequency (RF) pulse 

duration or flip angle such that long RF pulse duration or high flip angles (to a 

threshold) generate greater amounts of MT [108]. A pair of images is acquired 

with and without an off-resonance RF pulse [109] or at low and high flip angles to 

produce weak and strong MT effects, respectively. Effects of MT are typically 

measured as a ratio of signal intensity (SI) and presented as a percent following 

the formula: MT ratio=(SIweakMT – SIstrongMT )/ SIweakMT x100% [107]. Voxel-wise 

maps of MT ratio are generated to visually represent the alterations in myocardial 

MT allowing quantitative analysis per segment, slice, or whole ventricle. Notably, 

since MT-CMR is conducted using standard clinical bSSFP images, concurrent 

assessment of ventricular tissue characterization, structure, and function is 

possible. 

 MT effects have been investigated in select studies for cardiac fibrosis 

identification. In an experimental myocardial infarction model in rats, nuclear 

magnetic resonance measured the reduction of MT in acute and chronic 

myocardial infarction [110]. Vandsburger et al. described the identification and 

monitoring of scar formation by measurement of reduced MT ratio following 

induced myocardial infarction in mice [111]. MT-CMR showed excellent spatial 

association with LGE in this model. A study by Weber et al. in human participants 
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demonstrated uniform MT ratio in healthy myocardium, decreased MT ratio in 

infarcted tissue, and strong spatial agreement with LGE [108]. MT-CMR shows 

substantial promise for gadolinium free myocardial fibrosis measurement in 

patients with ESRD. The ability to combine structural, functional, and tissue 

characterization measurement in a single imaging technique means MT-CMR 

may be the key to multiscale study of fibrosis and its association with ventricular 

remodeling and dysfunction in hemodialysis patients with ESRD. 

 

Summary 

Patients with ESRD experience unique risk factors of heart failure and 

sudden cardiac death, unlike the general cardiac patient population. Clinical 

predictors of heart failure and sudden cardiac death are well established for 

cardiac patients but are complicated by comorbidities and unique exposures 

introduced by ESRD and hemodialysis treatment. Though these patients are 

highly attended in frequent hemodialysis treatment, the understanding of heart 

failure and sudden cardiac death in patients with ESRD remains obscure. 

Patients with ESRD, clearly suffer from a unique cardiomyopathy that is linked to 

their complex disease and treatment states. The current dogma treats 

hypertrophy or reduced strain as reliable surrogate measures of cardiac fibrosis 

in patients on hemodialysis. Conflicting evidence in a variety of studies illustrates 

the complex interaction and independence between structural remodeling, 

contractile dysfunction, and fibrosis while highlighting the inappropriateness of 

these dogmatic surrogate measures for fibrosis identification. While highly 
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related, hypertrophy, strain, and fibrosis should be treated as separate 

manifestations of a multifaceted disease. 

The exclusion of patients with ESRD from gadolinium enhanced CMR 

greatly hinders the capacity to safely identify and monitor fibrosis. Absence of a 

suitable cardiac fibrosis diagnostic has limited the understanding of heart failure 

in the setting of ESRD and obstructed development and testing of potential 

therapies in this unique population. Development of a gadolinium free and 

quantitative method of fibrosis detection could overcome this critical barrier and 

present better diagnostic and monitoring options to propel the development of 

targeted therapies. Accurate and safe measurement of fibrotic burden and 

distribution could inform appropriate pharmaceutical interventions or serve as 

selection criteria for alternative treatments such as radiofrequency ablation and 

implantable cardioverter-defibrillator to prevent arrhythmias and ultimately reduce 

the risk of sudden cardiac death in patients with ESRD. The following project 

describes the development of a gadolinium free, MT-CMR technique and its 

application for cardiac fibrosis measurement and monitoring in patients with 

ESRD.  

 

Copyright © Tori Ann Stromp 2016  
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CHAPTER 2: GADOLINIUM FREE CARDIAC MAGNETIC RESONANCE 

IMAGING WITH 2-POINT CINE BALANCED STEADY STATE FREE 

PRECESSION 

 
 

Preface 

This chapter is reprinted from: Stromp TA, Leung SW, Andres KN, Jing L, 

Fornwalt BK, Charnigo RJ, Sorrell VL, and Vandsburger MH. Gadolinium Free 

Cardiac Magnetic Resonance Imaging with 2-point Cine Balanced Steady State 

Free Precession. Journal of Cardiovascular Magnetic Resonance. 2015; 17.  

 

Alterations were made in agreement with the formatting requirements dictated by 

the University of Kentucky Graduate School and for clarity and continuity of this 

dissertation. 
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Synopsis 

Background: MRI of ventricular structure and function is widely performed using 

cine balanced steady state free precession (bSSFP) MRI. The bSSFP signal of 

myocardium is weighted by magnetization transfer (MT) and T1/T2-relaxation 

times. In edematous and fibrotic tissues, increased T2 and reduced MT lead to 

increased signal intensity on images acquired with high excitation flip angles. We 

hypothesized that acquisition of two differentially MT-weighted bSSFP images 

(termed 2-point bSSFP) can identify tissue that would enhance with gadolinium 

similar to standard of care late gadolinium enhancement (LGE).  

 

Methods: Cine bSSFP images (flip angles of 5º and 45º) and native-T1 and T2 

maps were acquired in one mid-ventricular slice in 47 patients referred for 

cardiac MRI and 10 healthy controls. Afterwards, LGE images and post-contrast 

T1 maps were acquired and gadolinium partition coefficient (GPC) was 

calculated. Maps of ΔS/So were calculated as (S45-S5)/S5*100 (%), where 

Sflip_angle is the voxel signal intensity.  

 

Results: Twenty three patients demonstrated areas of myocardial hyper-

enhancement with LGE. In enhanced regions, ΔS/So, native-T1, T2, and GPC 

were heightened (p<0.05 vs. non-enhanced tissues). ΔS/So, native-T1, and T2 all 

demonstrated association with GPC, however the association was strongest for 

ΔS/So. Bland-Altman analysis revealed a slight bias towards larger volume of 

enhancement with ΔS/So compared to LGE, and similar transmurality. Subjective 
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analysis with 2-blinded expert readers revealed agreement between ΔS/So and 

LGE of 73.4%, with false positive detection of 16.7% and false negative detection 

of 15.2%.  

 

Conclusions: Gadolinium free 2-point bSSFP identified tissue that enhances at 

LGE with strong association to GPC. Our results suggest that with further 

development, MT-weighted CMR could be used similar to LGE for diagnostic 

imaging.  
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Background 

Cardiac magnetic resonance imaging (CMR) has become a reference 

standard modality to image ventricular structure, contractile function, and 

perfusion [112]. Combined with intravenous administration of gadolinium contrast 

agents, late gadolinium enhancement (LGE) – CMR has become the standard of 

care to identify myocardial edema, necrosis, and focal fibrosis. The presence of 

LGE correlates with significantly increased risk of adverse cardiac events and 

mortality [113]. Recent studies that identify diffuse fibrosis through measurement 

of gadolinium partition coefficient (GPC) or the extracellular volume fraction 

(ECV) [77,114] have similarly demonstrated a strong correlation between diffuse 

fibrosis and increased mortality [115]. However, residual concerns surrounding 

gadolinium and nephrogenic systemic fibrosis [116] have spurred the 

development of gadolinium free methods to identify diseased myocardium.  

 Both edematous and fibrotic myocardium are characterized by an 

increased extracellular volume fraction, which results in lengthened native-T1 

and T2-relaxation times compared to healthy myocardium. These changes have 

been used to identify edema in acute MI [117,118] and fibrosis in select 

cardiomyopathies [119-121]. Recent studies using native T1-mapping to identify 

fibrosis are highly promising [122-124]. However, measured myocardial T1-

relaxation times vary between T1-mapping pulse sequences [125] and 

myocardial regions [126], require special sequence modifications to reduce 

arrhythmia sensitivity [127], and reconstruction of T1-maps requires motion 

correction [128] that has limited some prior measurements to the septum 
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[119,121,129,130]. In contrast, cine balanced steady state free precession 

(bSSFP) is ubiquitously used to image ventricular structure and function. While 

weighting of the bSSFP signal by a factor of √T2/T1 is established, modulation of 

the bSSFP signal by magnetization transfer (MT) from extracellular matrix 

macromolecules has only recently been understood [131,132]. Specifically, 

myocardium characterized by increased ECV demonstrates reduced MT 

compared to healthy myocardium, as demonstrated in a prior study of acute-MI 

[131]. However, whether MT-weighted CMR can be used to identify tissues that 

would enhance with gadolinium across a range of cardiomyopathies similar to 

LGE has not been examined. 

We hypothesized that acquisition of bSSFP cine image sets with different 

MT-weighting (termed 2-point bSSFP) could combine the changes in signal 

intensity due to both lengthened T1/T2-relaxation and reduced MT to identify 

tissue that would enhance with gadolinium in close agreement to LGE. We 

compared tissue characterization with 2-point bSSFP, native-T1 and T2-mapping 

to LGE in 47 patients referred for cardiac MRI at our institution. Our results 

demonstrate robust agreement between gadolinium free 2-point bSSFP imaging 

and standard of care LGE, with a strong association between 2-point bSSFP and 

GPC.  
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Methods 

Patient Selection, Ethics, Consent and Permissions 

 Fifty non-consecutive patients referred for clinically indicated CMR with 

gadolinium contrast were prospectively enrolled, however 3 were excluded due 

to inability to maintain breath-holds. All patients referred for CMR with gadolinium 

contrast at our institution over a six month period were approached for study 

participation, with the forty seven included in the study representing those that 

consented to participate. Afterwards, ten healthy age-matched controls were 

recruited but did not receive gadolinium. The research protocol was approved by 

our institutional review board (IRB 13-0914-F2L) and informed consent was 

obtained from all subjects for participation and publication of findings. 

Demographic characteristics are summarized in Table 1. Clinical CMR reports 

were used to obtain ejection fraction (EF), end-diastolic volume (EDV), and CMR 

diagnosis.  

 

Cardiac MRI Protocol 

CMR was performed on a 1.5T Siemens MAGNETOM Aera scanner 

(Siemens Medical Imaging Solutions, Erlanger, Germany) using an 18 channel 

body coil and 12 channel spine coil. A short-axis stack of bSSFP cine images 

were obtained with prospective ECG triggering to cover the entire heart (TE: 

1.2ms TR: 3.2ms, bandwidth: 930Hz, field of view: 260x260mm, slice thickness: 

8mm, flip angle: 50°, 256x256matrix, GRAPPA 2), from which one mid-

ventricular slice was identified for further imaging. The signal intensity of bSSFP 
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images acquired with high excitation flip angles and short repetition times is 

heavily weighted by MT, T1 and T2, while identical images acquired with low flip 

angles reflect proton density weighting with minimal contributions from MT. In the 

identified slice, pairs of bSSFP cine images were acquired with excitation flip 

angles of 5° (proton density reference) and 45° (MT, T1, T2-weighted) during 

end-expiratory breath-holds. Native myocardial T1-relaxation times were 

assessed using a modified Look-Locker imaging (MOLLI) sequence (5(3)3, 

TE:1.1ms, TR:2.7ms, flip angle:35°, bandwidth:1085Hz, field of view:272x 

272mm, slice thickness:8mm, 256 matrix with 66% phase resolution, partial 

Fourier transform 7/8, GRAPPA 2). T2-relaxation times were assessed using a 

gradient echo readout (T2 preparations of: 0ms, 25ms, 55ms with 3 heart beat 

recovery in between, TE:1.1ms, TR:3.2ms, bandwidth:1184Hz, field of 

view:272x272mm, slice thickness:8mm, 192 matrix with 75% phase resolution, 

partial Fourier transform 6/8, GRAPPA 2) in the same short axis slice during 

diastasis. Afterwards, gadolinium (0.2mmol/kg Gd-DTPA) was administered 

intravenously as a bolus (rates ranged from 2ml/s to 5ml/s) and after 15 minutes 

LGE images were obtained using segmented gradient recalled echo inversion 

recovery (TE:3.2ms, TR:8.3ms, flip angle:25°, Bandwidth:140Hz) with inversion 

time set to optimally null the myocardium. Finally, post-contrast MOLLI 

(4(1)3(1)2, TE: 1.1ms, TR: 2.7ms, flip angle: 35°, field of view: 272 x 272mm, 

GRAPPA 2) images were obtained in the same slice position as pre-contrast 

images. Normal volunteers only underwent non-contrast portions of the protocol. 
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Image Analysis 

Maps of T1 and T2-relaxation times were automatically reconstructed after 

motion correction using non-rigid body correction. The reproducibility of breath-

hold position and the degree of mis-alignment between 5° and 45° scans was 

assessed via calculation of the DICE similarity coefficient for both complete 

images and segmented images in which only the heart was included. 2-point 

bSSFP data was analyzed by calculating the normalized change in signal 

between images as (ΔS/So)i=[(S45-S5)/S5]i, where S45 and S5 represent the signal 

intensity for 45° and 5° excitations respectively for each cardiac phase (i). For 

each patient ΔS/So maps from 3 diastolic phases without cardiac motion were 

averaged together to reduce random noise. Maps of GPC were calculated as 

GPC=(ΔR1,myocardium/ΔR1,blood) from reconstructed T1-maps. 

Data from patients receiving gadolinium were divided and analyzed in a double-

blinded manner. An SCMR level-III reader (SWL) used a custom designed 

MATLAB script to segment the myocardium and define a non-enhanced region of 

interest (ROI) in each LGE image. Myocardial voxels with signal intensity greater 

than 5 standard deviations (SD) above the mean of the defined ROI were 

classified as enhanced at LGE. Maps defining LGE-enhanced and non-enhanced 

regions were saved, transmitted to MHV, and used to segment ΔS/So, native-T1, 

T2, and GPC maps. To avoid partial volume errors and account for minor 

differences in spatial resolution, endocardial and epicardial borders were slightly 

adjusted to remove the blood pool and pleural space. Measurements in healthy 
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controls and patients without LGE-enhancement were performed over all voxels 

in the myocardium.  

In data acquired from patients demonstrating enhancement at LGE, the 

enhanced area was calculated as the percentage of all myocardial voxels 

classified within the enhanced ROI. To calculate the enhanced area from maps 

of ΔS/So, a threshold value of 197% (representing the mean + 3 standard 

deviations of the mean from the healthy control cohort) was applied and used to 

calculate the fraction of myocardial voxels above the threshold. Transmurality 

was calculated as the percentage of enhancement along the radial direction at 

the center of the area of enhancement for LGE and ΔS/So maps. 

Figures were prepared using a median filter with a 3x2 kernel. The color 

scheme for maps of ΔS/So and native-T1 used in Figures 2.1-2.5 has been 

designed to emulate LGE, with non-enhanced tissue appearing dark, enhanced 

tissue appearing bright, and tissue that would demonstrate diffuse “gray” 

enhancement appearing red/yellow.  

 

Subjective Assessment by Blinded Readers 

 Subjective assessment of 2-point bSSFP in comparison to LGE was 

performed by two blinded readers with 1 and over 10 years’ experience. All 

ΔS/So maps and LGE images were compiled separately and randomized. The 

readers were asked to identify the presence, location, and type (focal vs. diffuse) 

of enhancement, and to delineate the extent of enhancement on each image. 
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Statistics 

 Numeric data are summarized as mean ± SD. For outcome variables we 

used Version 9.3 of SAS software (SAS Institute, Cary NC) to fit a linear mixed 

model comparing mean levels across four groups of heart tissue: healthy controls 

(Group I), patients without LGE-enhancement in the imaged slice (Group II), non-

enhanced regions of interest from patients with LGE-enhancement (Group III), 

and enhanced regions of interest from patients with LGE-enhancement (Group 

IV). We included random effects for subjects to account for correlations between 

measurements on non-enhanced and enhanced tissue from the same patient 

with LGE-enhancement. Linear contrasts were used for pairwise comparisons. 

Demographic variables were analyzed using SPSS (IBM Corp., 2013). The 

Shapiro-Wilk method was used to test normality of numeric data. Age, body 

mass index (BMI), and race were compared across all participants using the 

Kruskal-Wallis method. Fisher’s exact tests were used to compare gender across 

all participants and CMR diagnosis between the two patient groups. Differences 

in EF were compared via Mann-Whitney and EDV was analyzed by student’s t-

test. Statistical significance in pairwise comparisons was defined by a p-value < 

0.05 divided by the number of comparisons to control Type I testing error through 

Bonferroni adjustment. Otherwise, a p-value<0.05 defined statistical significance.  

 

Results  

Demographics and Ventricular Structure and Function 
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 Amongst 23 patients who demonstrated LGE-enhancement in the imaged 

slice, EDV trended higher and EF trended lower compared to patients who did 

not demonstrate LGE-enhancement (Table 2.1). There were no significant 

differences in age or BMI between patients with and without LGE enhancement. 

Control participants differed only in BMI compared to patients (p<0.001 for all). 

 

MR Tissue Characterization 

 The DICE similarity coefficient measured across all patients was 0.995 ± 

0.004 when comparing entire 5° and 45° images. Comparison of the same 

images following segmentation of only the heart revealed a DICE similarity 

coefficient of 0.991± 0.015. Representative bSSFP images and maps of ΔS/So in 

a healthy control subject and a patient without LGE-enhancement revealed 

uniformly low ΔS/So values across both hearts (Figure 2.1). In patients with acute 

(Figure 2.2-2.3) and chronic MI (Figure 2.4), CMR tissue characterization with 2-

point bSSFP demonstrated heightened ΔS/So values in close spatial agreement 

with LGE-CMR enhancement patterns. Representative images acquired in two 

patients with non-ischemic dilated cardiomyopathy demonstrate the accurate 

detection of fibrotic tissue using 2-point bSSFP (Figure 2.5). Elevated native T1-

relaxation times were also observed in agreement with LGE following MI (Figures 

2.2 and 2.4).  

Average myocardial ΔS/So, native-T1 and T2 relaxation-times were 

significantly higher in LGE-enhanced regions (Group IV) compared to all non-

enhanced regions (Groups II and III) and healthy controls (Group I, Figure 2.6). 
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The mean of the standard deviation of ΔS/So values amongst healthy controls 

was 27.1 ± 8.1 (%) in absolute terms. Segmentation of the heart into twelve 

equal circumferentially spaced sectors revealed moderately lower average ΔS/So 

values (118.8 ± 14.7 (%)) in the anterior-lateral wall compared to the rest of the 

myocardium. Additionally, GPC was significantly elevated in LGE-enhanced 

regions (Figure 2.6). Native-T1 and T2-relaxation times and ΔS/So did not differ 

significantly between non-enhanced myocardium in patients (Groups II and III) 

and healthy controls (Group I, Figure 2.6). Native-T1, T2 and ΔS/So all 

demonstrated strong association with GPC (Figure 2.7).  

Quantification of the percent of myocardium classified as enhanced at 2-

point bSSFP demonstrated a strong association (R2 = 0.84) with the percent of 

myocardium classified as enhanced at LGE (Figure 2.8), however a slight bias 

towards over-estimation of the enhanced area in patients with a higher 

percentage of enhancement was observed. Bland-Altman analysis (Figure 2.8) 

revealed a coefficient of covariance of 0.204. Measurement of the transmurality 

of enhancement was similar between 2-point bSSFP and LGE (R2 = 0.73), and 

Bland-Altman analysis revealed a coefficient of covariance of 0.0875 (Figure 

2.8).  

 

Subjective Assessment 

 Analysis of ΔS/So maps and LGE images by 2 blinded readers revealed 

an average agreement of 73.4% between methods. Among the patients 

demonstrating enhancement at LGE, the extent of enhancement on ΔS/So maps 
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was identified as the same in an average of 67.2% of individuals. The extent of 

enhancement was identified as greater in ΔS/So maps in 20.8% of individuals, 

and smaller in ΔS/So maps in 12.0% of individuals. An average of 4 out of 24 

patients in which enhancement was not identified in LGE images were classified 

as demonstrating enhancement on ΔS/So maps (Figure 2.9). Among the 23 

patients demonstrating enhanced tissue at LGE, an average of 3.5 were 

classified as normal by readers interpreting ΔS/So maps (Figure 2.10). In all such 

cases, enhancement patterns were consistent with small sub-endocardial 

enhancement at LGE.  

 

 Discussion 

 In this study we present a new 2-point bSSFP method for gadolinium free 

CMR. In 47 patients undergoing clinical LGE examination, 2-point bSSFP 

demonstrated a strong association between elevated ΔS/So and enhanced 

regions in LGE across a range of cardiomyopathies. Further, 2-point bSSFP 

demonstrated similar results to mapping of native-T1 relaxation times. 

Importantly, in this study we used a relatively simple method to generate MT 

contrast in bSSFP images. However, MT contrast can be further enhanced 

through the use of additional MT-preparation schemes, potentially increasing the 

sensitivity of CMR tissue characterization with MT contrast.  

 Heightened steady state signal in edematous cardiac tissue occurs in 

bSSFP images acquired with a short repetition time and high flip angle. In a 

study by Zhou et al. [132], edematous myocardium was visualized as hyper-
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intense on bSSFP images following ischemia-reperfusion injury in dogs. By 

comparison to T2-prepared SSFP images, the authors concluded that edema 

contrast in bSSFP was dominated by changes in MT and proton density (65%), 

with altered relaxation times having a more modest effect (35%). Similarly, 

Kumar et al. [133] observed a 50% increase in bSSFP signal in infarcted tissue in 

dogs and patients with acute MI. While we observed increased signal intensity in 

edematous areas on bSSFP images, we found that visualization required 

significant contrast adjustments and resulted in noisy images (Figure 2.3). In 2-

point bSSFP, changes in signal intensity on standard bSSFP cine images caused 

by increased T2 and reduced MT in tissue that enhances at LGE were extracted 

by normalization to images acquired with a 5° flip angle (proton density 

weighted). Measurement of ΔS/So, which was elevated in enhanced tissue in 

patients with acute MI, was consistent with signal intensity changes seen by 

Kumar et al. [133] and Zhou et al. [132] and demonstrated strong spatial 

agreement with LGE (Figure 2.2). In addition, patterns of heightened ΔS/So in 

patients with acute-MI mirrored T2-mapping (Figure 2.3), which is widely used to 

identify edema [117,118]. Our results further agreed with Weber et al. [131] who 

demonstrated altered MT-ratio in patients with sub-acute MI by acquiring pairs of 

bSSFP images with different MT-weighting. In the study by Weber et al. MT-

contrast was generated by altering the duration of the RF excitation pulse and 

the repetition time between cardiac phases causing reduced MT-ratio in 

edematous tissue in comparison to healthy tissue. However, elongation of the 

excitation pulse meant that differences in cardiac phase were present in images 
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used to calculate the MT ratio. We chose to change the excitation flip angle, and 

not duration, in order to have a consistent cardiac phase between MT-weighted 

and proton density weighted images. Subsequently, our measure of ΔS/So is 

heightened in tissues that would enhance with LGE.  

 Identification of focal fibrosis with LGE is the established clinical standard 

and in our study heightened ΔS/So occurred in tissues identified by LGE as 

replacement (Figure 2.4) and reactive fibrosis (Figure 2.5). Emerging techniques 

to image diffuse fibrosis including mapping of post-contrast T1-relaxation times 

and measurement of GPC or ECV [77,114] have been correlated to collagen 

volume fraction at biopsy [134] and demonstrated predictive value for clinically 

relevant outcomes [115,135,136]. In our study we did not have access to 

hematocrit, however GPC values measured in non-enhanced myocardium 

agreed with prior studies of healthy tissue [126,137,138] and were significantly 

elevated in regions of interest identified by LGE (Figure 2.6). Comparing ΔS/So to 

GPC revealed a strong and promising association (Figure 2.7). However, 

detection of diffuse fibrosis with 2-point bSSFP requires further study with a 

larger sample and a consistent phenotype such as hypertrophic cardiomyopathy.  

In order to further examine the impact of changes in T1 relaxation times 

on the steady state signal intensity, a series of simulations of the steady state 

magnetization using the closed form equation for cine bSSFP were performed in 

Matlab (Figure 2.11). For all simulations we assumed that proton density is 1. 

Since bSSFP images are weighted by √T2/T1, increased T1 relaxation times in 

fibrotic scar tissue will have the opposite effect of decreased MT on the steady 
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state signal in the high flip angle acquisition (Figure 2.11). While this may be 

partially mitigated by concomitant increases in T2 relaxation times (Figure 2.11), 

the balance between increased T1 and reduced MT, and the potential limits this 

imposes upon detection via measurement of ΔS/So, requires additional 

examination in a large cohort of patients with chronic MI. In addition, given the 

contributions of MT, T1, and T2 to ΔS/So, it is unclear whether measurement of 

specific ΔS/So values can be used to differentiate edema from fibrosis. Additional 

studies with larger cohorts of acute and chronic MI patients are necessary to 

examine this possibility.  

 Mapping of native myocardial T1-relaxation times is emerging as a highly 

promising method for gadolinium free imaging of fibrosis [122,124,126]. Recently, 

several studies demonstrated increased T1-relaxation times in patients with 

edema [139], aortic stenosis [119], myocarditis [120], and hypertrophic and non-

ischemic dilated cardiomyopathies [121]. Native T1-relaxation times measured in 

our study using a MOLLI acquisition scheme at 1.5T were comparable to those 

measured under similar settings [125,140] and were significantly elevated in 

enhanced myocardium (Figure 2.6). While we observed a strong association 

between heightened native-T1and GPC, our association was weaker than 

observed in prior studies [120,121]. One likely factor contributing to this 

difference is that unlike most prior studies that focused on patient cohorts with a 

specific and profound phenotype, we sampled patients with a range of 

cardiomyopathies and varying degrees of edema or fibrosis. Also, artifacts 

introduced by motion correction [128] have led many prior studies to restrict data 
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analysis to the interventricular septum [119,121,130]. We analyzed myocardium 

across an entire short-axis slice, defining regions of interest based on LGE 

patterns. Results from a recent multi-center T1 mapping study demonstrated 

considerable regional variability in segmental native-T1 values at 1.5T [126]. 

Thus, our results likely reflect the influence of both motion correction artifacts on 

T1-estimation and regional T1 heterogeneity of healthy tissue that were not 

included in prior studies. Additionally, our scanner was equipped only with a 

MOLLI acquisition scheme that has demonstrated sensitivity to MT-effects [123], 

and thus the sensitivity of native T1-mapping may have improved with other 

mapping methods now available [125], including recently developed arrhythmia 

insensitive T1 mapping protocols [127].  

Images acquired with an excitation flip angle of 5° demonstrate low signal 

to noise, potentially leading to artificially elevated measurement of ΔS/So. We 

sought to limit the effect of random noise by averaging over three identical end 

diastolic phases and applying a median filtering algorithm to reconstructed maps. 

However, subjective assessment of ΔS/So maps by two blinded expert readers 

resulted in the incorrect interpretation of diffuse enhancement in ΔS/So maps in 

all but one of the false positive cases (Figure 2.9). We chose to use a 5° 

excitation flip angle in order to maximize the potential difference in MT-weighting 

between images, however, the acquisition of such images with slightly higher flip 

angles may present a more promising route to maintaining MT-contrast between 

image pairs while reducing the presence of voxels with spuriously high ΔS/So 

values. Alternatively, future studies could examine MT-weighting without the use 
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of low flip angle acquisitions via various magnetization preparation schemes that 

encode greater MT-weighting directly into the steady state magnetization. In 

addition, subjective analysis of ΔS/So maps by expert readers revealed a 

propensity to misidentify small sub-endocardial enhancement patterns as blood 

instead of enhanced tissue (Figure 2.10). In future studies, the use of blood 

signal suppression should be investigated as a mechanism to mitigate fall 

negative interpretation of ΔS/So maps.  

 A limitation to our study was that due to time constraints we acquired data 

in only one slice per patient without prior knowledge of disease status. In several 

patients, the slice chosen for our study did not demonstrate LGE-enhancement 

(Group II), however LGE-enhancement was present in other slices. Additionally, 

limitations on T1 and T2-mapping protocols on our scanner resulted in 

acquisition of bSSFP images at slightly higher spatial resolution. Consequently, 

partial volume error is more likely to influence T2 maps, and to a lesser extent T1 

maps, than 2-point bSSFP results. Care was taken to adjust boundaries to 

exclude border pixels affected by partial volume artifacts, however registration of 

pre and post gadolinium maps was not performed. The sensitivity to B1 

inhomogeneity remains a significant concern in cine bSSFP, particularly at higher 

flip angles. We simulated the bSSFP signal using a range of myocardial 

relaxation times and excitation flip angles. Based on the results of our simulation 

(Figure 2.11), and prior evidence that MT is maximal and constant above 

excitation flip angles of 30° [131], we chose to use a 45° flip angle in order to 

minimize the potential effects of B1-inhomogeneity. Also, changes in through-
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plane motion can modulate steady state behavior in the myocardium. For this 

reason we chose to focus our analysis on end-diastolic cardiac phases. In 

addition, the acquisition of two separate end expiratory breath-held scans 

increases the potential for misalignment between scans. Measurement of the 

DICE similarity coefficient between image pairs in our study was high, however 

we benefited from placement of our scans at the end of the non-contrast CMR 

workup, thus reducing potential misalignment that could occur if such scans were 

performed at the initiation of the CMR examination. Importantly, while registration 

algorithms can be used to compensate as they are in T1 mapping protocols, 

simple image intensity based algorithms would not be effective for registration of 

images acquired with a 5° excitation flip angle. 

 2-point bSSFP utilizes endogenous contrast mechanisms for gadolinium 

free CMR imaging. In this study, we demonstrated across a range of patients 

strong association between 2-point bSSFP and standard of care LGE-CMR. 

Importantly, since MT-contrast is an endogenous mechanism, the sensitivity to 

changes in MT-weighting increases with spatial resolution. In addition, MT-

contrast can be further increased with MT-preparation schemes not used in this 

initial study. In contrast, differences in native-T1 between healthy and diseased 

tissue cannot be further increased without increasing the magnetic field strength. 

With further development, MT-weighted CMR could potentially enable diagnostic 

imaging similar to LGE CMR without the use of gadolinium. 
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Table 2.1. Participant Characteristics.  

Variable 
Healthy 
Control 

(Group I) 

(n=10) 

CVD without 
Enhancement 

(Group II) 

(n=24) 

CVD with 
Enhancement 
(Groups III, IV) 

 (n=23) 

p-
value 

Demographics     
 Age (yrs) 51.74 ± 4.7 47.7± 16.5 51.39 ± 15.4 .406 
 BMI (kg/m2) 23.32 ± 1.5 29.3 ± 6.7 27.4 ± 3.6 .007 
 Female 4 (50.0) 8 (33.3) 4 (17.4) .315 
 White 7 (40.0) 20 (83.3) 18 (78.3) .815 
 African American  0  3 (12.5) 3 (13.0) 1.00 
 Hispanic or Other Race 1 (10.0) 1 (4.2) 2 (8.7) .051 
CMR Indication     
 Cardiomyopathy  7  (29.2) 10  (43.5) .371 
 Hypertrophic Cardiomyopathy  2  (8.3) 1 (4.3) 1.000 
 Pericarditis, Myocarditis  2  (8.3) 2  (8.7) 1.000 
 Sarcoidosis  2  (8.3) 2  (8.7) 1.000 
 Syncope  4  (16.7) 0  .109 
 Viability  3  (12.5) 5  (21.1) .461 
 Other  4  (16.7) 3  (17.4) 1.000 
Diagnosis     
 Ischemic Cardiomyopathy  4  (16.7) 10  (43.5) .060 
 Non-Ischemic Cardiomyopathy  10  (41.7) 7  (30.4) .547 

   Cardiomyopathy  0 2  (8.7) .234 
 No Evidence of Cardiomyopathy  8  (33.3)  0  .416 
 Other  2  (8.3) 4  (17.4) .416 
Ejection Fraction (%)  50.13 ± 14.4 42.57 ± 14.6 .081 
End Diastolic Volume (mL)  190.6  ± 76.0 217.65 ± 81.1 .244 

CVD without Enhancement: Patients referred for CMR not demonstrating LGE enhancement in 
imaged slice. CVD with Enhancement: Patients referred for CMR demonstrating LGE 
enhancement in imaged slice. BMI: Body Mass Index (kg/m2). 
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Figure 2.1. 2-pt bSSFP Imaging Method. 
 (A-C) Representative data from a healthy control. End-diastolic reference 
bSSFP images acquired with (A) 45° and (B) 5° flip angles provide MT-weighted 
and proton density reference images, respectively. (C) Maps of ΔS/So that are 
calculated from A and B demonstrate uniform and low values throughout the 
heart. (D-F) Representative data from a patient without LGE-enhancement. End-
diastolic reference bSSFP images acquired with (D) 45° and (E) 5° flip angles. 
This patient demonstrated no myocardial enhancement at LGE. (F) Map of ΔS/So 
demonstrates uniformly low values similar to the healthy control. For all maps, 
the color scale was chosen to emulate LGE imaging, with areas of 
edema/fibrosis demonstrating signal enhancement and areas of healthy tissue 
appearing dark. 



 

43 
 

 

 

Figure 2.2. Identification of edema and necrosis in a patient with acute 
myocardial infarction.  (A) End-diastolic reference image of a midventricular 
slice in which 2-point bSSFP, native T1-mapping, and LGE data were acquired. 
(B) LGE imaging reveals an area of hyper-enhancement along the septum 
indicative of edema and/or necrosis (red arrow). The corresponding maps of (C) 
ΔS/So, and (D) native-T1 both demonstrate similar spatial patterns of elevated 
values to LGE (red arrow). The corresponding T2-map and windowed bSSFP 
image can be found in Figure 2.3. 
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Figure 2.3. T2-Mapping and Weighting in Acute MI. (A) Anatomical reference 
image from same patient as shown in Figure 2.2, with (B) corresponding LGE 
image demonstrating area of edema following acute MI (red arrow). (C) T2-
mapping revealed focally and significantly elevated T2 in the area of acute MI, 
corresponding to edema. (D). Significant contrast manipulation through window 
and leveling of (A) reveals similar enhancement in the area of edema (red arrow), 
however scattered noise is seen in areas outside of the enhanced area.  
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Figure 2.4. Identification of scar tissue in chronic myocardial infarction. (A) 
Magnitude reconstructed bSSFP image reveals a thinned wall along the inferior 
right ventricular insertion point (red arrow). (B) LGE imaging confirms the 
presence of primarily sub-endocardial scar tissue as an area of signal 
enhancement (red arrow). Mapping of (C) ΔS/So and (D) native-T1 both reveal 
increased values within the scar tissue (red arrows), and normal values 
throughout the remaining myocardium. 
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Figure 2.5. Two patients with non-ischemic dilated cardiomyopathy.  (A, E) 
Dilation of the left ventricle is present in both patients on end-diastolic images. In 
the first patient, (B) no LGE-enhancement is present, (C) ΔS/So is normal 
throughout the heart as is (D) native-T1. In the second patient, (F) mid-wall 
septal LGE-enhancement is present (red arrows). (G) Heightened ΔS/So is 
observed in close agreement with the LGE image (red arrows), however (H) 
native-T1 values are elevated primarily at the right ventricular insertion-point.  
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Figure 2.6. Tissue characterization parameters. (A) ΔS/So was significantly 
elevated in tissue regions that enhanced on LGE images (Group IV) compared to 
non-enhanced regions from the same patients (Group III), patients without any 
LGE enhancement (Group II), and healthy controls (Group I). Similarly, (B) 
native-T1 and (C) native-T2 were significantly elevated in tissue that enhanced 
on LGE images compared to all other groups. (D) GPC was significantly higher in 
tissue that enhanced on LGE images compared to non-enhanced tissue regions 
in patients. (Lines represent p<0.05). 
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Figure 2.7. Association of tissue characterization parameters with GPC. (A) 
ΔS/So (R = 0.82), (B) native-T1 (R = 0.55), and (C) T2 (R = 0.75) all associated 
strongly with GPC. Data points are shown for all measurements as either 
enhanced on LGE images (white boxes) or non-enhanced on LGE images (black 
diamonds).  
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Figure 2.8. Association of enhanced area and transmurality between 2-
point bSSFP and LGE.  (A) Comparison of the enhanced myocardial area 
(represented as percent of total myocardial area) using 2-pt bSSFP and LGE 
revealed a strong association between the two methods (R2 = 0.84) with a slight 
bias towards larger areas of enhancement with 2-point bSSFP. (B) Bland-Altman 
plot comparing the difference between enhanced areas by both methods to the 
mean between both methods revealed a coefficient of covariance of 0.204. (C) 
Similarly, the comparison of the transmurality of enhancement by each method 
revealed a strong association between 2-point bSSFP and LGE (R2 = 0.73) with 
(D) Bland-Altman analysis demonstrating a coefficient of covariance of 0.0875. 
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Figure 2.9. False positive identification of enhancement at ΔS/So.  (A-C) 
Scattered noise on ΔS/So maps led to the false identification of diffuse 
enhancement in 3 of the 4 false positive cases. A representative example of a 
patient without enhancement at LGE (A) that was classified by blinded readers 
as demonstrating diffuse enhancement at ΔS/So (B) in the septum with 
corresponding anatomical reference image (C).  (D-F) In one patient without 
enhancement at LGE (D), focal enhancement (arrow) was identified on the 
corresponding map of ΔS/So, with corresponding anatomical image shown in F. 
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Figure 2.10. False negative identification at ΔS/So.  All cases in which blinded 
readers identified individuals with enhancement at LGE as normal at ΔS/So 
occurred in cases of sub-endocardial enhancement. (A) Representative LGE 
image from a patient with 50-75% sub-endocardial intermediate signal 
enhancement (red arrows) in the inferior wall. (B) The corresponding map of 
ΔS/So demonstrates elevated values in the same region (red arrows). (C) The 
corresponding anatomical reference image confirms that the elevated ΔS/So 
values in B occur in myocardial tissue.  
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Figure 2.11. Simulations of changes in steady state signal intensity as a 
function of T1, T2, and flip angle. (A) Using a T2 relaxation time of 48ms (the 
mean amongst our healthy control cohort), and the TR and TE values from our 
scanning protocol, simulations confirm that lengthening of T1 relaxation times 
leads to a reduction in the steady state signal over a physiologically relevant 
range of T1 relaxation times. (B) However, changes in T1 relaxation times in 
fibrotic tissue are often accompanied by changes in T2 relaxation times that can 
have the opposite effect on the steady state signal. For further simulation of the 
steady state signal across a range of flip angles we examined healthy values 
(blue) using the mean T1 (1022.2 ± 48.2 (ms)) and T2 (48.2 ± 2.3 (ms)) 
relaxation times from our healthy cohort and previously mentioned TR/TE and 
proton density values. Separately, we simulated fibrotic tissue (red) using the 
mean T1 and T2 relaxation times from tissues that enhanced at LGE in patients 
that did not have acute-MI. This population included those with chronic MI and 
patients with enhancement determined by our cardiologist to be non-ischemic in 
origin. In this subset of patients (n = 12), the mean native-T1 relaxation time was 
1125.6 ± 136.5 (ms), and the mean T2-relaxation time was 52.2 ± 7.7 (ms). 
Examination of panel B demonstrates that decreases in steady state 
magnetization due to increased T1 are partially mitigated by increased T2 in 
fibrotic tissues. (C) The difference in steady state signal between the two 
populations suggests that the contrast observed in maps of ΔS/So is likely heavily 
influenced by changes in MT. 
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CHAPTER 3: MAGNETIZATION TRANSFER MAGNETIC RESONANCE 

IMAGING IDENTIFIES CARDIAC FIBROSIS IN END STAGE RENAL DISEASE 

WITHOUT GADOLINIUM AND CORRELATES WITH BIOMARKERS OF 

COLLAGEN TURNOVER 

 

Synopsis 

Background: Patients with end stage renal disease (ESRD) suffer high rates of 

cardiac mortality, likely from pervasive development of fibrosis. The 

contraindication to gadolinium contrast agents prevents the use of late 

gadolinium enhancement cardiac MRI (CMR) for fibrosis detection in ESRD, 

although it is the clinical standard for cardiac tissue characterization. Measures of 

hypertrophy or reduced strain are widely used as surrogates for fibrotic burden, 

but are not specific to the development of fibrosis. We utilized our established 

magnetization transfer-weighted technique, 2-point balanced steady state free 

precession (2-pt bSSFP) for fibrosis identification and comparison with structure, 

function, and biomarkers in patients with ESRD. 

 

Methods: Patients on routine hemodialysis for ESRD (n=29) and healthy 

controls (n=33) were imaged on a 1.5 T MRI using the 2-pt bSSFP CMR 

technique. Myocardial ΔS/So was calculated as ΔS/So=(S5 – S45)/S5 *100 (%) 

where Si is the signal intensity per flip angle i. Strain and strain rates were 

measured in circumferential and longitudinal directions with a custom feature 

tacking algorithm. A standard healthy distribution of ΔS/So signal was generated 
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as a cumulative distribution function. The cumulative distribution of ΔS/So for 

each participant was compared to the healthy standard. The difference between 

cumulative distributions was integrated across the range of ΔS/So and the 

resulting divergence value was used as a quantitative marker of fibrosis. Pearson 

correlations were used to compare divergence to other widely used correlates of 

fibrosis and blood biomarkers. 

 

Results: Patients with ESRD were hypertrophic but with only slightly reduced 

longitudinal strain compared to healthy controls. Mean ΔS/So and divergence 

were elevated in patients with ESRD (144.7 ± 17.1% and 16.3 ± 14.3 AU 

respectively) compared to controls (129.9 ± 12.0% and 6.5 ± 5.7 AU, p<0.01 for 

both comparisons). Divergence was only moderately correlated with left 

ventricular mass index (LVMI; rho=0.31, p<0.05) but did not correlate with strain 

measures. Troponin T (TnT), fibroblast growth factor 23 (FGF23), and tissue 

inhibitor of metalloproteinase (TIMP) 1 and 2 were elevated in the ESRD group 

compared to controls. All of these biomarkers correlated with divergence, but 

FGF23 and TnT also correlated with LVMI indicating that these biomarkers are 

not specific enough to measure fibrosis alone. TIMP1 and 2 did not correlate with 

hypertrophy or strain, suggesting that these matrix remodeling proteins may be 

suitable for specific identification of fibrosis and may possibly serve as molecular 

targets for future anti-fibrotic therapies. 
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Conclusions: 2-pt bSSFP CMR in patients with ESRD revealed that solely using 

hypertrophy or reduced mechanics as surrogate markers of fibrosis is 

inappropriate. While biomarkers of ischemia (TnT) and remodeling (FGF23) 

associated strongly with hypertrophy, they may lack specificity to cardiac fibrosis. 

TIMPs may emerge as both a biomarker of extracellular remodeling and potential 

therapeutic target specific to fibrosis in patients with ESRD.  
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Background 

 Sudden cardiac death is a leading cause of death for patients who are on 

routine hemodialysis for treatment of end stage renal disease (ESRD) [42]. 

Cardiac remodeling, which often manifests as hypertrophy in ESRD patients 

[47,51], and/or the development of replacement or reactive fibrosis [58,59] can 

lead to adverse cardiac events such as arrhythmia, heart failure, and eventually 

death. ESRD hemodialysis patients are contraindicated to gadolinium contrast 

agents [83], which are typically used for tissue characterization and fibrosis 

imaging with cardiac magnetic resonance imaging (CMR). Subsequently, since 

fibrosis and hypertrophy often occur in parallel, measurement of hypertrophy is 

widely used as a surrogate for fibrosis. In other studies, specific blood 

biomarkers including troponin T (TnT), fibroblast growth factor 23 (FGF23), and 

parathyroid hormone (PTH), whose levels correlate well with the degree of 

hypertrophy [141,142] are used as plasma biomarkers of fibrosis. Matrix 

metalloproteinases (MMP) and tissue inhibitor of MMP (TIMP) are under 

investigation as fibrosis specific markers in cardiomyopathy [143], heart failure 

[36,144] and cardiorenal syndrome [145-148]. Measures of reduced diastolic 

strain rate and global longitudinal strain (GLS) indicate stiffening of the left 

ventricle (LV) in kidney disease patients [60], but may only be sensitive after 

advanced fibrotic development. The currently employed surrogates of fibrosis—

hypertrophy, contractile function, and plasma biomarkers—are all indirect 

measures and may not be directly correlated with the development of fibrosis as 

a specific disease process in all patients with ESRD. Thus detecting cardiac 
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fibrosis and linking it with measureable biomarkers in the ESRD population 

remains both a challenge and a significant obstacle to the design and evaluation 

of potential lifesaving therapies. Since fibrosis occurs simultaneously with the 

expansion of interstitial space, two point balanced steady state free precession 

(2-pt bSSFP) CMR, which is described in Chapter 2, is uniquely suited to 

overcome the existing obstacles of studying cardiac fibrosis in patients with 

ESRD. 

 In this study, we used 2-point bSSFP CMR in healthy controls and 

patients with ESRD on routine hemodialysis for myocardial tissue 

characterization. We then correlated measures of fibrosis with cardiac mechanics 

and blood plasma biomarkers of remodeling that are purported to reflect 

underlying fibrotic burden. We hypothesized that the magnitude of fibrosis will 

correlate more strongly with the levels of markers of matrix turnover (MMPs and 

TIMPs) than with the magnitude of hypertrophy, reduced strain, or levels of non-

specific biomarkers TnT and FGF23. 

 

Materials and Methods 

Participants and Recruitment 

Patients on routine hemodialysis for ESRD were referred from the 

University of Kentucky Nephrology Department and healthy volunteers were 

recruited with assistance from the University of Kentucky Center for Clinical and 

Translational Science and academic departments. All participants were 

prospectively enrolled. Exclusion criteria included arrhythmia, inability to hold 
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one’s breath, and standard MRI safety and compatibility concerns. Additional 

exclusions for healthy volunteers were known cardiovascular disease, 

hypertension, diabetes, obesity, and tobacco use. A total of 31 patients with 

ESRD and 44 healthy controls were enrolled. Participants were excluded from 

data analysis due to the inability to adequately hold their breath or complete the 

MRI protocol (1 ESRD each) or for image quality concerns due to hardware 

issues (5 healthy controls). BMI > 26 (n=4), abnormal ECG (n=1) or discovery of 

aging related (n=1) or congenital abnormalities (n=1) in healthy controls were 

additional grounds for exclusion in data analysis. The research protocol was 

approved by the University of Kentucky Institutional Review Board and all 

participants gave voluntary informed consent prior to participation.  

 

Cardiac MRI Protocol 

A 12 lead electrocardiogram (ECG) was conducted prior to the MRI to 

detect arrhythmia or other electrical abnormalities. Participants were imaged on a 

1.5T Siemens Aera scanner (Siemens Healthcare, Erlangen, Germany) using an 

18 channel body coil and 12 channel chest coil and prospective ECG triggering. 

A 4-chamber long axis cine image was acquired during localizers for assessment 

of longitudinal strain. The 2-pt bSSFP method was completed as previously 

described (Chapter 2). During end expiratory breath holds, cine bSSFP image 

pairs were obtained at flip angles of 5° and 45° in a short axis stack, spanning 

the LV from mitral valve to apex. Additional scanning parameters include TE: 1.2 
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ms, TR: 3.2 ms, bandwith: 930 Hz, in plane spatial resolution: 1.02 x 1.02 mm, 

slice thickness: 8 mm, GRAPPA 2.  

 

Structure and Function Analysis 

Left ventricular volumes and mass were analyzed using short axis images 

in Argus Viewer (Siemens Healthcare, Erlangen, Germany). Left ventricular mass 

index (LVMI) was calculated as mass at end diastole (g) indexed to body surface 

area (m2). To characterize hypertrophy, H/R ratio was calculated at end diastole 

in a mid-ventricular slice as H/R= septal thickness / ventricular radius (cm) similar 

to Grossman, et al. [149]. Blood pressure data were collected post hoc from 

electronic medical records, when available. 

 

Strain Analysis 

Circumferential and longitudinal strain and strain rates were assessed 

using a custom feature tracking algorithm [150]. Endocardial borders were 

manually defined and automatically segmented into 6 sectors (Figure 3.1). 

Sectors were followed through the cardiac cycle using feature tracking and 

manually corrected for errors in border definition. Peak strain was defined as the 

maximum circumferential or longitudinal shortening from end diastole (%). 

Circumferential strain was averaged across all short axis slices. Global 

longitudinal strain was averaged across all endocardial sectors in 1 long axis 

view. In each slice, average shortening across all sectors was plotted as a 

function of the cardiac cycle. Systolic and diastolic strain rates were then defined 
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as the minimum and maximum slopes during contraction and relaxation, 

respectively (Figure 3.1).  

 

Image Analysis 

Offline image processing was conducted offline using MATLAB version 

2014a (The MathWorks Inc., Natick, MA). Cine image pairs acquired at 5° (not 

shown) and 45° (Figure 3.2 A and D) were assessed for misalignment and 

manually adjusted to realign the left ventricular myocardium when necessary. 2-

pt bSSFP data was analyzed as previously described (Chapter 2). Maps of ΔS/So 

(Figure 3.2 B and E) were generated for each slice location and each cardiac 

phase using the formula ΔS/So=(S45-S5)/S5 x 100 (%), where Si is the signal 

intensity per voxel at each flip angle i. To reduce random noise, 1 to 3 diastolic 

ΔS/So maps without cardiac motion were averaged together when calculating 

ΔS/So. The myocardium was manually defined on ΔS/So maps. Care was taken 

to exclude voxels with partial volume averaging from blood pool and pericardial 

fat. ΔS/So maps were automatically segmented into 6 sectors to calculate mean 

values per sector. Bullseye plots are used to demonstrate mean ΔS/So per sector 

across slices (Figure 3.2 C and F). Sectors are presented circumferentially, with 

slices extending radially from apex (center) to base (exterior). Quantitative 

analysis was completed using unfiltered ΔS/So maps. Figures are presented 

using a 2x3 median filter. 
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Quantification of Fibrosis 

A standard distribution was defined by combining all myocardial ΔS/So 

voxel values for all healthy participants in our study. To account for variations in 

heart size, the standard distribution was dynamically resized to match the 

number of voxels in each individual heart. For each participant, a cumulative 

distribution function of ΔS/So values was compared against the appropriately-

sized simulated distribution. A rightward shift in the distribution function occurs 

when a greater proportion of voxels demonstrate increased ΔS/So values 

consistent with tissue fibrosis. The difference between cumulative distributions 

was integrated across the range of ΔS/So and the resulting value was used as a 

quantitative marker of fibrosis termed divergence. An example of this analysis is 

presented in Figure 3.2 G. Cumulative distribution analysis was limited to voxels 

with 0-400% ΔS/So values to reduce the influence of potential region of interest 

errors or additional random noise. These ranges span the expected values for 

healthy, edematous, and fibrotic myocardium. 

 

Blood Biomarker Analysis 

In a subset of participants, blood samples were collected by standard 

venipuncture and allowed to clot at least 30 minutes. Samples were centrifuged 

at 1300g for 10 minutes at 4°C and stored at -80°C until analyzed with 

commercially available assay kits. Serum concentrations of TnT were analyzed 

by quantitative electrochemiluminescent immunoassay by ARUP Laboratories 

(0098803, Salt Lake City, UT, USA). MMP2 and MMP9 were measured by 
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enzyme-linked immunosorbent assay (ELH-MMP2, ELH-MMP9 ELISA; Ray 

Biotech, Norcross, GA, USA). FGF23, PTH, TIMP1 and TIMP2 were analyzed by 

Milliplex® magnetic bead panels (HBNMAG-51K, HTMP2MAG-54K; EMD 

Millipore, Billerica, MA). Assays were run in duplicate and averages were used 

for all analyses.  

 

Statistical Analysis 

Statistical results were computed using IBM SPSS Statistics Version 22 

(IBM Corp, Armonk, NY). Shapiro-Wilk and Levene’s tests were used to assess 

the normality and homogeneity of variance for all variables. Student’s t test or 

Mann Whitney U tests were used where appropriate. Spearman correlations 

were used to compare blood biomarkers against imaging results. Continuous 

variables are presented as mean ± standard deviation or median [interquartile 

range], where appropriate. Categorical variables are presented as count (%). 

P<0.05 was considered significant for all tests.  

 

Results 

Twenty nine patients with ESRD and 33 healthy controls were included in 

the study. Demographic characteristics are detailed in Table 3.1. Groups were 

well matched in age and gender. Patients with ESRD had larger body mass 

index compared to controls (<0.001). Hemodialysis vintage in patients with ESRD 

was 4.8 ± 3.2 years. Six patients had prior kidney transplants that subsequently 
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failed, requiring continuation of hemodialysis. Additional clinical features of the 

ESRD group are described in Table 3.2.  

 

Clinical Measures of Structure, Function, and Strain 

Clinical measures from ECG and CMR are listed in Table 3.1. QRS 

complex duration was similar between patients with ESRD and controls 

(p=0.694), although 3 patients with ESRD had QRS duration longer than 120ms. 

Corrected QT interval (QTc, normalized to 60 beats per minute) was longer in 

patients with ESRD than controls (p<0.001). QTc was greater than 440ms in 18 

patients with ESRD but only 6 healthy controls. The majority of patients with 

ESRD had preserved ejection fraction with no differences between groups, 

although 6 patients had EF below 55%. Mean LV mass was 112.5 ± 31.8g in 

controls and 189.0 ± 65.1g in patients with ESRD (p<0.001). LVMI, septal 

thickness, and H/R ratio were elevated in patients with ESRD compared to 

controls (p<0.01 for all, see Table 3.1). There were no differences in strain 

measurements between the ESRD and healthy control groups for circumferential 

peak strain, systolic, or diastolic strain rates (Figure 3.3 A-C). Longitudinal peak 

strain was slightly reduced in patients with ESRD (Figure 3.3 D) but did not reach 

statistical significance. Longitudinal systolic and diastolic strain rates were similar 

between groups (Figure 3.3 E-F). 
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Tissue Characterization by 2-pt bSSFP 

Representative ΔS/So maps from a healthy control (Figure 3.4) depict the 

uniformly low ΔS/So values typical of healthy myocardium. An example patient 

with ESRD is presented in Figure 3.5. This patient demonstrates diffuse 

enhancements in ΔS/So, particularly towards the base of the LV. Importantly, if 

this patient were to undergo myocardial tissue biopsy, the historical gold 

standard for fibrosis detection where a small tissue sample is extracted from the 

epicardial surface of the left ventricular septum at the mid-ventricle, the chance of 

a false negative result would be high. The longitudinal position of the tissue 

samples would impact the extrapolated whole-ventricle estimation of fibrotic 

burden, which is actually highly varied across slices. Similar to Schietinger et al. 

[59], we also found examples of 3 distinct patterns of fibrosis in patients with 

ESRD (Figure 3.6), associated with both ischemic and non-ischemic origins. 

From the ΔS/So maps generated at each short axis slice position, mean global 

ΔS/So was calculated across the LV myocardium. Patients with ESRD had 

significant elevation in global ΔS/So (144.7 ± 17.1%) compared to controls (129.9 

± 12.0%, p<0.001, Figure 3.7 A). Divergence was also significantly increased in 

the ESRD group (9.8 AU [6.0, 23.6]) compared to controls (4.7 A.U. [1.2, 11.5], 

p=0.003, Figure 3.7 B), indicating a greater fibrotic burden in these patients. 

 

Structure and Function Alterations are not Synonymous with Fibrosis 

Representative examples of LV hypertrophy in the ESRD group are shown 

in the anatomical cine images (α=45°) in Figure 3.8 A-D. While each of these 
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example participants is considered hypertrophic, there is a wide range of fibrosis 

patterns, indicated by elevated signal on corresponding ΔS/So maps (Figure 3.8 

E-H). Spearman correlations were used to investigate the association of fibrosis 

with hypertrophy, circumferential diastolic strain rate, and global longitudinal 

strain (Figure 3.9). Moderate correlations were evident when comparing 

divergence with LVMI (rho=0.31, p=0.014) and septal thickness (rho=0.27, 

p=0.035), which are commonly utilized surrogate measures of fibrosis. No 

correlation was found comparing divergence with diastolic strain rate (rho=0.06, 

p=0.646) or global longitudinal strain (rho=0.02, p=0.910). LVMI correlated with 

diastolic strain rate (rho=-0.26, p=0.043) and global longitudinal strain 

(rho=0.383, p=0.002), indicating that increased hypertrophy was associated with 

worsening relaxation and contraction. In patients with ESRD, hemodialysis 

vintage was not correlated with divergence (rho=-0.164, p=0.395), indicating that 

length of time on hemodialysis is also not a good indicator of fibrotic burden. 

 

Blood Biomarkers and Correlations with LV Remodeling 

 We collected blood samples from a subset of healthy controls (n=25) and 

patients with ESRD (n=16). Serum concentrations of blood biomarkers are 

detailed in Table 3.3. The typical biomarkers of ischemia and cardiac remodeling, 

TnT and FGF23, were elevated in patients with ESRD (Figure 3.10 A-B), as was 

PTH. Markers of extracellular matrix turnover, TIMP1 and TIMP2 were also 

elevated in the ESRD group (Figure 3.10 C-D). Correlation analysis with 

divergence revealed moderate associations between fibrosis and TnT (rho=0.32, 
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p=0.043), PTH (rho=0.33, p=0.035), TIMP1 (rho=0.39, p=0.013), and TIMP2 

(rho=0.40, p=0.011) but not FGF23 (Figure 3.10 E-H). Interestingly, TnT 

(rho=0.59, p<0.001), FGF23 (rho=0.343, p=0.030), and PTH (rho=0.37, p=0.019) 

also correlated with LVMI while TIMP1 and 2 did not. These overlapping 

correlations reveal the complex interaction between hypertrophy and fibrosis, 

while indicating that TnT, FGF23, and PTH may not be suitable for fibrosis 

detection in patients with ESRD. 

 

Discussion 

Reactive and replacement patterns of fibrosis have been previously 

identified in patients with ESRD using gadolinium [58,59]. Due to the risk of 

nephrogenic systemic fibrosis [151], patients with ESRD are now excluded from 

MRI examinations with gadolinium. Without the availability of safe and 

noninvasive fibrosis measurement techniques, surrogate measures such as 

hypertrophy or reduced contractility are widely used to estimate fibrotic burden 

for diagnostic, prognostic, and treatment efficacy purposes. In this study, we 

utilized 2-pt bSSFP, a magnetization transfer contrast CMR technique, to 

characterize myocardial fibrosis without the need for gadolinium in patients on 

routine hemodialysis for ESRD. We used quantitative evidence of fibrosis to 

challenge the current prevailing view that using hypertrophy or reduced 

contractility are accurate surrogates for fibrosis measurements. 

ΔS/So values in healthy, age-equivalent controls agreed with our prior data 

using 2-pt bSSFP (Chapter 2, Figure 2.6). We demonstrated elevated myocardial 
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ΔS/So in patients with ESRD, corresponding to increased interstitial fibrosis and 

decreased magnetization transfer. Signal elevation is evident upon subjective 

inspection of ΔS/So maps (Figure 3.5, Figure 3.8) and with quantitative analysis 

of the distributions of ΔS/So (Figure 3.7). While greater than healthy tissue, mean 

ΔS/So values over the LV in patients with ESRD fell below focal values for tissue 

that enhanced at LGE from our previous study (Chapter 2). This is expected due 

to the propensity for a diffuse pathology in patients with ESRD.  

Our patients with ESRD demonstrated prolonged QTc with 18 patients exceeding 

the standard normal cutoff of 440ms. Lengthened QT times may be 

demonstrative of increased ventricular fibrosis which can slow conduction times 

[38]. Prolonged QT is associated with the development of ventricular arrhythmia, 

specifically torsades de pointes [152], and is associated with mortality and 

sudden cardiac death in patients hemodialysis [153,154]. In addition to fibrosis, 

severe alterations in electrolytes may predispose patients on hemodialysis to 

development of arrhythmia [49,154] and time since last treatment may impact 

ECG recordings [154]. These confound make the detection of fibrosis a complex 

task by ECG alone. 

Since fibrosis can lead to ventricular stiffening [35,36], strain 

measurements by echocardiography [165] and CMR [60] have been used to 

estimate fibrosis in patients with ESRD. However, the drastically fluctuating 

hemodynamics in patients receiving hemodialysis modify echocardiographic 

measures [52,68], which may not actually associate with histological measures of 

fibrosis in this population [51]. Strain measurements correlated with hypertrophy 
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but not fibrosis in this study, indicating that measures of ventricular stiffness may 

be a consequence of thickened LV walls and not specifically the development of 

fibrosis. 

Previous reports indicate a varied but large proportion—up to 91%[55]—of 

hemodialysis patients with hypertrophy [56-58]. Hypertrophy is associated with 

emergence of cardiovascular disease and death in the general population [17,18] 

and with poorer prognosis in patients with hypertension[155], aortic 

stenosis[156], heart failure with preserved ejection fraction [157], and ESRD [58]. 

Indeed, our findings confirmed that hypertrophy was prevalent among individuals 

with ESRD. However, using MRI strain imaging, which is more accurate and 

reproducible than comparable ultrasound based methods, we observed only 

slightly reduced longitudinal contraction compared to healthy, age-equivalent 

controls (Table 3.1,Figure 3.3). Though hypertrophy is prognostic, it does not 

differentiate the etiology of adverse cardiac outcomes such as development of 

interstitial fibrosis leading to fatal arrhythmias. As described in our study, 

hypertrophy only moderately associated with divergence (Figure 3.9) and may 

not be an appropriate surrogate to detect fibrosis or probe for biomarkers specific 

to fibrosis. In fact, others have shown a lack of correlation between hypertrophy 

and fibrosis in patients with kidney disease [60] and demonstrated that fibrosis is 

an independent risk factor for cardiovascular mortality in ESRD above and 

beyond hypertrophy or contractile dysfunction [51]. 

Investigations of molecular mechanisms of remodeling have identified 

FGF23 [141,158,159], PTH [142,159,160] and serum phosphates [158,159] as 
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potential factors driving ventricular hypertrophy. Specifically, FGF23 is correlated 

with LV hypertrophy [53,141] and linked to increased risk of cardiac mortality in 

patients with ESRD [141,142,158]. Emerging therapies seeking to abrogate 

effects of elevated serum FGF23 levels through dietary intervention [53,158,161], 

oral phosphorous binder therapy [53,158] or use of lanthanum carbonate [162], 

are promising for the reduction of serum FGF23 levels over time. However, prior 

studies have demonstrated that phosphate binder and vitamin D therapies 

[141,163], and even renal transplantation [164] fail to reverse left ventricular 

hypertrophy, despite improving outcomes [161]. FGF receptors that are normally 

only activated after myocardial infarction to promote formation of fibrotic scar 

tissue may be activated by excess FGF23 [53], suggesting that fibrotic 

remodeling may play a greater role in promoting adverse cardiac events in ESRD 

patients. This view is substantiated by extensive interstitial fibrosis measured by 

biopsy [51] and LGE CMR [58,59], prior to its contraindication in ESRD patients, 

along with the link for cardiac fibrosis to promote arrhythmia [62], heart failure, 

and sudden death. In fact, increased fibrotic burden is associated with worse 

prognosis and predicts sudden cardiac death independent of hypertension, 

diabetes, ejection fraction, LV dilation, and cardiomyocyte hypertrophy in patients 

with ESRD [51].  

Translational and early clinical trials show promise for the cardiac benefits 

of emerging therapies such as spironolactone [166,167], galectin 3 blockade 

[168], and FGF23 blockade [141,169] but with outcome measures of reduced 

hypertrophy, improved contraction, or decreased cardiac death. Cardiac fibrosis 
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has been attenuated in animal models of pressure overload hypertrophy treated 

with spironolactone [170] and dilated cardiomyopathy [171] and renal failure 

[172] treated with rapamycin. In patients with ESRD, the progress of these and 

other potentially lifesaving treatments is limited by the reliance on hypertrophy or 

reduced contraction for disease monitoring. While hypertrophy and fibrosis are 

interrelated, if patients are diagnosed and selected based only on hypertrophy or 

contractile status for clinical trials whose outcomes only measure improvements 

in structure or strain, the entire fibrotic disease process is overlooked. It is 

imperative for the design and development of targeted anti-fibrotic therapies to 

rely on the accurate detection of fibrosis and specific molecular mechanisms in 

the context of ESRD and hemodialysis, otherwise new therapeutics may 

effectively treat hypertrophy or contraction without affecting the independent 

development of fibrosis. 

The patients examined in this study demonstrated significantly elevated 

TnT, FGF23, PTH, TIMP1, and TIMP2, reduced MMP9 and a trend toward 

elevated MMP2 compared to healthy controls (Table 3.3). While each of these 

biomarkers may indicate generic risk of arrhythmia or cardiac death, there is a 

complex interaction between hypertrophy and fibrosis that is not distinguished by 

these biomarkers. In fact, we found correlations with both hypertrophy and 

fibrosis for TnT, FGF23 (Figure 3.10 E-F) and PTH, indicating that none of these 

are specific enough to detect fibrosis alone. 

MMPs play a crucial role in degrading the existing extracellular matrix, for 

example, in acute myocardial infarction to allow infiltration of inflammatory cells 
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to clear necrotic myocytes and initiate the healing process [173]. MMP2 and 9, 

which comprise the gelatinases, primarily degrade denatured collagen, but may 

also have a pro-fibrotic role in the heart [174]. TIMPs 1 and 2 are the most widely 

investigated inhibitors of MMPs. TIMPs bind the catalytic domain of MMPs in a 

1:1 fashion, thereby preventing degradation of MMP substrates [175]. 

Independent of MMP interactions, TIMPs have alternative signaling roles, which 

can result in increased cardiac fibroblast proliferation and activation, and 

therefore collagen synthesis [176]. The balance between MMP and TIMP ratio is 

crucial for maintaining proper extracellular matrix form and function. For these 

reasons, MMPs and TIMPs have been investigated as molecular mechanisms of 

cardiac remodeling and fibrosis, and the subsequent link with contractile 

dysfunction in non-diseased aging populations [22] as well as hypertrophic 

cardiomyopathy [143], overload induced hypertrophy [177], myocardial infarction 

[173,178], hypertension [179], and heart failure [144]. MMPs and/or TIMPs may 

not only serve as prognostic or diagnostic markers, but pharmaceutical targets 

for adverse structural or fibrotic remodeling. A promising study in a murine model 

of experimental myocardial infarction demonstrated the beneficial effects of 

inhibiting MMP2 and MMP9 by doxycycline, an FDA approved antibiotic [180]. 

MMPs and TIMPs have been investigated as cardiac biomarkers in 

hemodialysis patients, with conflicting results [146,148,181,182] but with the goal 

of being easily measured parameters for non-invasive myocardial tissue 

characterization [183]. We have shown that patients with ESRD not only 

demonstrate elevated circulating TIMP1 and TIMP2, but that both of these 
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biomarkers correlate with measures of fibrosis, independent of hypertrophy 

(Figure 3.10 G-H). Importantly, it has been shown that MMPs and TIMPs are 

elevated in patients with deteriorating heart failure, but not end stage heart failure 

or normal function [144]. Thus, MMPs and TIMPs may be important indicators of 

cardiac disease progression, possibly through development of fibrosis. Future 

investigations are warranted to understand cardiac remodeling processes, tissue 

characterization, and MMP/TIMP involvement in hemodialysis patients, while 

taking into account the effects of hemodialysis treatment on the circulating 

concentrations of biomarkers [147,148]. 

Efforts to image myocardial fibrosis without gadolinium are currently under 

investigation, with the goal of applying non-contrast CMR to patients with kidney 

failure or other contraindications to gadolinium. Mapping of native T1 relaxation 

times [88,89] has shown promise for tissue characterization in cardiomyopathy 

[95,97], aortic stenosis [94], and Anderson-Fabry disease [104]. Recently, native 

T1 mapping has been applied to patients with ESRD [90,99,184]. Graham-Brown 

et al. demonstrated globally elevated T1 times as well as diffuse and non-

ischemic, focal fibrosis patterns [184], similar to a previous report using LGE 

CMR [59] and to our results shown in Figure 3.6. The patients included in that 

study demonstrated reduced contractility, indicating that this sample may have 

had established heart failure and more advanced fibrosis compared to our 

patients, although the differences in T1 maps are visually subtle. Importantly, 

unless corrected for hematocrit, T1 times may be erroneously elevated due to 

anemia caused by hemodialysis and may vary depending on time since last 
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treatment. T1 mapping sequences are also commonly sensitive to elevated and 

variable heart rates, particularly for longer T1 times [91], which all routinely occur 

in individuals with ESRD.  

A few important limitations are relevant to this study. Since 2-pt bSSFP 

imaging requires 2 consecutive end-expiratory breath holds, patient motion and 

breath hold variation between acquisitions may limit this technique. We manually 

registered any misaligned image pairs to adjust for inaccurate position. While this 

could introduce additional human error and noise in the ΔS/So maps, many slices 

were salvaged for data analysis that would otherwise be excluded from this 

study. While we are currently unable to collect low and high MT-weighted images 

simultaneously in a single breath hold, future investigations will aim to reduce 

table time and patient fatigue, while optimizing MT-weighting sequences to 

reduce analytical limitations. 

Regions of interest were carefully defined to include only myocardial 

voxels, however it is possible that some voxels with partial volume effects from 

the blood pool or pericardial fat were included in our analyses. These erroneous 

voxels are more likely to be included for healthy controls since the myocardium is 

often thinner than in patients with ESRD. Thus, our calculation of ΔS/So may be 

slightly elevated in controls and true group differences may be greater than what 

we described. To eliminate the impact of this noise, in quantitative analysis we 

restricted the range of voxel values to 0-400% for ΔS/So which incorporates the 

expected physiologic ranges for normal and fibrotic myocardium. 
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In conclusion, we have shown that endogenous contrast mechanisms can 

be measured in the myocardium of patients with ESRD using 2-pt bSSFP CMR. 

MT-weighted CMR identifies increased fibrosis in patients with ESRD, which only 

moderately associated with hypertrophy but not systolic or diastolic dysfunction. 

The accuracy of imaging-guided biomarkers such as TIMP1 or 2 will benefit from 

the capacity to delineate between hypertrophy and fibrosis and may serve as 

potential therapeutic targets for future therapies to attenuate fibrosis in patients 

on hemodialysis for ESRD. Accurate and safe measurement of fibrotic burden 

and distribution could inform appropriate pharmaceutical interventions or serve 

as selection criteria for alternative treatments such as radiofrequency ablation 

and implantable cardioverter-defibrillator to prevent arrhythmias and ultimately 

reduce the risk of sudden cardiac death in patients with ESRD. We have 

challenged the dogmatic view that degree of hypertrophy or contractility directly 

represents fibrotic burden and have offered a non-contrast imaging solution to 

specifically measure LV fibrosis in patients with ESRD. 
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Table 3.1. Participant Characteristics.

 Variable Healthy Controls  
(n=33) 

Patients with ESRD  
(n=29) 

Demographics   
  Age (yrs.) 54.0 ± 10.9 53.7 ± 12.8 
  Male 15 (45) 14 (48) 
  White/Caucasian 29 (88) 16 (55) 
  Black/African American 1 (3) 12 (41) 
  Asian 0 1 (3) 
  American Indian 1 (3) 0 
  Hispanic 2 (6) 0 
  Body Mass Index (kg/m2) 24.2 ± 2.3 31.6 ± 6.8† 
Cardiac Structure and Function   
  Left Ventricular Mass Index (g/m2) 60.4 ± 13.3 94.3 ± 27.8† 
  Septal Thickness (cm) 0.9 ± 0.2 1.3 ± .03† 
  H/R Ratio 0.3 ± 0.1 0.5 ± 0.2† 
  End Systolic Volume (mL) 34.5 [25.3, 46.0] 36.5 [31.5,54.4] 
  End Diastolic Volume (mL) 92.3 ± 25.3 116.5 ± 41.0* 
  Ejection Fraction (%) 60.5 [56.0, 64.4] 63.8 [58.4, 68.1]  
  Heart Rate (bpm) 60.8 ± 8.8 72.3 ± 10.8† 
  QRS Duration (ms) 90.0 [84.0, 98.0]                                                                                                                                                                                                                                       94.0 [77.0, 104.0] 
  QTc interval (ms) 422.7 ± 18.4 463.0 ± 37.7† 
Cardiac Mechanics   
  Global Diastolic Strain Rate (%/s) 174.1 ± 33.9 162.8 ± 41.7 
  Global Longitudinal Strain (%) -21.8 [-26.0, -20.1] -20.9 [-23.3, -18.7]* 
Continuous variables are presented as mean ± standard deviation or median 
[interquartile range]. Categorical variables presented as count (%).*p<0.01, †p<0.001 
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Table 3.2. Clinical Features of Patients with ESRD.

Clinical Features Results 
Dialysis Duration (years) 4.8 ± 3.2 
Primary Etiology of End Stage Renal Disease  
  Diabetes 12 (41) 
  Hypertension 7 (24) 
  Glomerulonephritis 2 (7) 
  Reflux Nephropathy 2 (7) 
  Obstructive Nephropathy 1 (3) 
  Interstitial Nephritis 1 (3) 
  Focal Segmental Glomerulosclerosis 1 (3) 
  Unknown 3 (10) 
Comorbidities  
  Hypertension 27 (93) 
  Diabetes 17 (59) 
  Prior Myocardial Infarction 4 (14) 
Continuous variable is presented as mean ± standard deviation. 
Categorical variables are presented as count (%). 
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Table 3.3. Blood Biomarker Results

 Variable Healthy Controls  
(n=25) 

Patients with ESRD 
(n=16) 

p 

TnT (ng) undetected 0.05 [0.0, 0.18]  <0.001 
FGF23 (pg) 0.00 [0.00, 0.00] 521.22 [29.47, 1210.85] 0.001 
PTH (pg) 139.66 [78.45, 167.61] 544.20 [340.78, 901.96] <0.001 
MMP2 (ng) 11.21 [6.89, 20.08] 23.02 [11.88, 33.35] 0.051 
MMP9 (ng) 931.90 [643.31, 1201.70] 552.53 [347.87, 718.14] 0.026 
TIMP1 (pg)  4336.00 [4090.50, 5757.50] 6371.00 [4323.00, 7567.00] 0.005 
TIMP2 (pg) 3255.00 [2555.50, 4408.50] 4676.00 [2953.00, 5302.00] 0.035 
TnT: troponin T, FGF: fibroblast growth factor, PTH: parathyroid hormone, MMP: 
matrix metalloproteinase, TIMP: tissue inhibitor of MMP. Values are presented as 
median [interquartile range]. p< 0.05 was considered significant by analysis with 
Mann-Whitney U test. 
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Figure 3.1. Cardiac mechanics analysis in a healthy control.  (A) In each 
transverse slice, endocardial borders were manually defined at end diastole and 
automatically followed through the cardiac cycle using a feature tracking 
algorithm. (B) Average circumferential shortening across all sectors was plotted 
as a function of the cardiac cycle (grey lines), and diastolic strain rate was 
calculated as the maximum slope during relaxation (red line), which was 
120.32%/sec for this participant. (C) Similarly, longitudinal strain as a function of 
cardiac phase was calculated from a 4 chamber longitudinal cine image. (D) The 
peak global longitudinal strain was defined by the maximum shortening value 
(arrow), which in this participant was 17.4%. 
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Figure 3.2. Two-pt bSSFP technique and quantitative analysis.  (A) A cine 
bSSFP image at α=45° in a representative healthy control was paired with an 
image with α=5° (not shown). Maps of ΔS/So were generated as ΔS/So=(S45-
S5)/S5 x 100 (%), where Si is the signal intensity per voxel at each flip angle i. (B) 
A ΔS/So map from this healthy control demonstrates low and uniform ΔS/So 
values in a mid-ventricular slice. (C) Low ΔS/So is evident across all slices and 
sectors of the heart in a whole-heart bullseye plot representing mean ΔS/So per 
sector in this control. (D) A mid-ventricular image taken at α=45° from a 
representative patient with ESRD and (E) the corresponding ΔS/So map, with 
noticeable elevated signal intensity. (F) Elevated values are present throughout 
the ventricle, as seen in the bullseye plot. (G) Using all LV myocardial ΔS/So 
values from the control group, a simulated cumulative distribution function was 
generated (black). The simulation was dynamically resized to match the number 
of voxels per heart and compared to the cumulative distribution function of 
observed ΔS/So values for each individual ventricle. Cumulative distributions from 
the healthy control in b (orange) and patient with ESRD in e (red) are shown. We 
integrated the area between the simulation and each participant’s distribution 
(here, the patient from E) to define the divergence (gray) in ΔS/So. Divergence is 
a metric of fibrotic burden. 
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Figure 3.3. Relaxation was preserved and contractility was slightly reduced 
in patients with ESRD. (A) Circumferential peak strain, (B) systolic strain rate, 
and (C) diastolic strain rate were similar between groups (all p>0.05). (D) Global 
longitudinal strain was slightly reduced in patients with ESRD (-20.5 ± 4.1%) 
compared to controls (-22.9 ± 3.5%, p=0.035), while (E) longitudinal systolic and 
(D) diastolic strain rates were not different (p>0.05 for both). A large overlap in 
values indicates that global longitudinal strain is not a robust, independent 
predictor of increased fibrotic burden. Gray bars indicate group means. *p<0.05. 
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Figure 3.4. Representative images from a healthy control.  In a 
representative healthy control, ΔS/So maps from base (top left) to apex (bottom 
right) reveal uniformly low myocardial signal throughout the LV. Low ΔS/So is 
consistent with healthy myocardial tissue.  
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Figure 3.5. Representative images from a patient with ESRD and moderate 
fibrosis. ΔS/So maps from base (top left) to apex (bottom right) in an example 
patient with ESRD with moderate diffuse fibrosis. The LV was noticeably 
hypertrophied with scattered ΔS/So enhancement, indicating diffuse fibrosis, 
particularly in basal slices. This example demonstrates the need for accurate 
fibrosis mapping across the entire LV, since fibrosis burden and pattern changes 
drastically from base to apex of the LV.  
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Figure 3.6. Recapitulation of three prevailing patterns of fibrotic tissue in 
renal failure patients. Prior to the FDA warning and contraindication of 
gadolinium, Schietinger et al.[59] observed 3 dominant patterns of late 
gadolinium enhancement in renal failure patients: (A) thin scar like enhancement, 
(B) diffuse subendocardial fibrosis, and (C) focal fibrosis at the ventricular 
insertion points unrelated to ischemia. (A-C adapted from [59].) MT-weighted 
fibrosis in renal failure patients imaging reveals similar patterns to those seen 
previously using late gadolinium enhancement MRI. (D-F) End diastolic bSSFP 
images in 3 renal failure patients and corresponding maps of ΔS/So reveal (G) 
thin enhanced tissue , (H) diffuse enhancement, and (I) focal enhancement at the 
ventricular insertion point.  



 

85 
 

 

Figure 3.7. Patients with ESRD had increased signal intensity and fibrotic 
burden. (A) Whole-ventricle ΔS/So values were significantly elevated in patients 
with ESRD (144.7 ± 17.1%) compared to controls (129.9 ± 12.0%, p<0.001). (B) 
Divergence was increased in patients with ESRD (16.3 ± 14.3) compared to 
controls (6.5 ± 5.7 AU, p=0.003), indicating a greater fibrotic burden. Gray bars 
denote group means. *p<0.01, †p<0.001. 
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Figure 3.8. Patients with ESRD were hypertrophic but displayed a variety of 
fibrosis patterns. (A-D) Representative mid-ventricular images (α=45°) from 4 
individual patients with ESRD who displayed hypertrophy, particularly in the 
interventricular septum. (E-H) Corresponding ΔS/So maps from the patients in a-
d demonstrated a wide range of signal elevation in these patients, indicating that 
hypertrophy alone is not a good predictor of fibrotic burden in patients with 
ESRD. 
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Figure 3.9. Fibrosis moderately associated with hypertrophy but did not 
correlate with strain. (A) Left ventricular mass index (LVMI) demonstrated a 
moderate correlation with divergence (rho=0.31, p=0.01). Notably, the correlation 
between LVMI and divergence was not linear. Patients with the highest values of 
either variable did not regularly demonstrate the highest values in the other. (B) 
Neither diastolic strain rate nor (C) global longitudinal strain correlated with 
divergence (p>0.05 for both).  
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Figure 3.10. Patients with ESRD had elevated blood biomarkers with 
moderate correlations to fibrosis.  Patients with ESRD demonstrated elevated 
concentrations of (A) troponin T (TnT), (B) fibroblast growth factor (FGF) 23, (C) 
tissue inhibitor of metalloproteinase (TIMP) 1 and (D) TIMP2. See Table 3.3 for 
complete biomarker results. (E) Spearman correlation analysis revealed a 
moderate association between divergence and TnT (rho=0.32, p=0.04). (F) 
FGF23 did not correlate with divergence (p=0.12). (G) TIMP1 and (H) TIMP2 
demonstrated a moderate correlation with divergence (rho=0.39, p=0.01 for 
each). *p<0.05, †p<0.01, ‡p<0.001. 
 

 

 

 

 

 

 

 

Copyright © Tori Ann Stromp 2016  



 

89 
 

CHAPTER 4: LONGITUDINAL MONITORING OF CARDIAC FIBROSIS 

PROGRESSION USING MAGNETIZATION TRANSFER CARDIAC MRI IN 

PATIENTS ON HEMODIALYSIS FOR END STAGE RENAL DISEASE 

 

Synopsis 

Background: Chronic hemodialysis treatment is associated with a time-

dependent increased risk of cardiac mortality, up to 20 times greater than the 

general population. Ventricular fibrosis may be a leading cause of higher death 

rates, yet the exclusion from gadolinium enhancement cardiac MRI (CMR) 

excludes patients with end stage renal disease (ESRD) from noninvasive fibrosis 

identification. Progressive hypertrophy and ventricular stiffness are currently 

utilized as alternate measures of fibrotic burden but are more likely measures of 

structural and functional alterations irrespective of the development of fibrosis. 

We employed our non-contrast, 2 point balanced steady state free precession (2-

pt bSSFP) CMR technique to test the hypothesis that fibrosis progresses over 1 

year in patients with ESRD independent of any changes in hypertrophy or 

contractility. 

 

Methods: Patients on routine hemodialysis for treatment of ESRD who 

completed our previous study were invited to participate in a follow up 1 year 

later. ΔS/So and strain were calculated using our standard techniques. Using the 

healthy standard distribution of ΔS/So established in our prior study, we 

compared cumulative distributions of ΔS/So acquired in follow up scans to 
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calculate divergence, a metric of fibrotic burden. Measures of structure, function, 

and fibrosis were compared between the 2 time points with paired t tests. 

 

Results: Six patients completed follow up 2-pt bSSFP imaging. All patients were 

hypertrophic at baseline but demonstrated minimal alterations in hypertrophy 

over time. Changes in circumferential and longitudinal strain were varied, but not 

significantly altered from baseline. ΔS/So and divergence were considerably 

increased at follow up by an average of 10.3 ± 16.0% and 7.1 ± 13.7% AU, 

respectively.  

 

Conclusions: Patients with ESRD did not demonstrate significant changes in 

hypertrophy nor contractility over a 1 year follow up period. The phenotypes of 

fibrosis progression were varied, which demonstrates the heterogeneous 

development of fibrosis in this population and the need for fibrosis specific 

monitoring independent of structural and functional alterations. Non contrast 

fibrosis imaging may serve as a better prognostic tool than the current 

alternatives of hypertrophy and stiffness, aiding in more appropriate monitoring 

and treatment selection for patients with ESRD.  
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Background 

 One in 4 patients on hemodialysis for treatment of end stage renal disease 

(ESRD) will die from sudden cardiac death [44]. For long term hemodialysis 

patients (up to at least 6 years), risk of cardiovascular mortality is 10-20 times 

greater than the general population [47]. Over the last 30 years, post-mortem 

histological studies have repeatedly established high prevalence of cardiac 

fibrosis in deceased ESRD patients [55,58,59]. It is now appreciated that the 

progressive development of cardiac fibrosis is associated with increased risk of 

arrhythmia [69], heart failure [64], and sudden cardiac death in ESRD [51]. 

Cardiac fibrotic burden may be correlated with time on dialysis [55] while cardiac 

death rates increase steadily over multiple years of treatment [185]. 

Patients with ESRD are excluded from late gadolinium enhancement 

(LGE) cardiac magnetic resonance imaging (CMR) due to the risk of developing 

nephrogenic systemic fibrosis [186]. The inability to noninvasively visualize and 

monitor fibrosis progression impedes the ability to develop and test targeted 

treatments for the attenuation of cardiac fibrosis in this high risk population. 

Visually and quantitatively monitoring cardiac fibrosis over time has applications 

for clinical trials of anti-fibrotic therapies such as spironolactone [170,187] or 

fibroblast growth factor receptor blockade [141,188] as well as patient selection 

for pharmaceutical intervention, radiofrequency ablation, or implantable 

cardioverter-defibrillator placement. Collagen volume fraction from myocardial 

tissue biopsy has been the historical gold standard for detecting and quantifying 
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fibrosis but is prone to false negatives [65] and is undesirable for serial 

measurements. 

Over years of hemodialysis treatment, patients with ESRD have an 

increasing risk of cardiac mortality [185], which may be due to advancing fibrosis. 

We hypothesized that over 1 year, cardiac fibrosis progresses in patients on 

routine hemodialysis for treatment of ESRD, irrespective of structure or function 

alterations. Chapter 3 described a baseline study of fibrosis identification using 

our 2-pt bSSFP method (described in Chapter 2) in patients with ESRD. Here we 

report a 1-year follow up study conducted in a subset of these patients with 

ESRD. We measured the progression of left ventricular (LV) fibrosis using 2-pt 

bSSFP along with structural and functional correlates of heart failure. 

 

Materials and Methods 

Participants 

 All patients with ESRD from our previous study (Chapter 3) were invited to 

return for a second study visit 1 year after their initial scan. Participants were 

considered eligible for this follow up study if they were presently on hemodialysis 

treatment, had no MRI-unsafe implants or devices and had not developed 

arrhythmia (for proper ECG gating of sequences). This study was approved by 

the local Institutional Review Board and all participants were consented for the 

initial study and re-consented for the follow-up, if necessary. Since this was a 

repeated measures design, each patient served as his/her own internal control, 

thus reducing variability and increasing statistical power. 
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Cardiac Imaging Protocol and Image Analysis 

 All baseline characteristics were collected during the initial visit for 

completion of this prior study and reported in this chapter only for patients who 

participated in the follow up study visit. All cardiac imaging and offline image 

analysis including structure, function, and strain was completed exactly as 

described in Chapter 3: Materials and Methods. All quantitative analysis was 

completed on raw data from ΔS/So maps. Figures are displayed using a 2x3 

median filter to reduce noise. We used the healthy standard cumulative 

distribution function generated from healthy controls in the initial study (Chapter 

3) as the reference standard for analysis of ΔS/So signal enhancement in follow 

up images. Thus, both baseline and follow up scans were compared against the 

same healthy standard distribution for the calculation of divergence, as a metric 

of fibrotic burden. 

 

Statistical Analysis 

 IBM SPSS Statistics Version 22 (IBM Corp, Armonk, NY) or MATLAB 

(MathWorks Inc., Natick, MA) were used to complete all statistical analyses. 

Paired t-tests were used to compare baseline and follow up measures. Data are 

presented as mean (range) or count (%) where appropriate. All comparisons 

were considered significant at the p<0.05 level.  
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Results 

Patient Characteristics 

From the initial study, 11 patients were eligible to complete a 1-year follow 

up scan. Of these, 1 patient had received a kidney transplant and discontinued 

dialysis and 4 others declined to participate for medical or other reasons. Six 

patients completed follow up CMR visits for this study. Demographic information 

is detailed in Table 4.1. Primary cause for kidney failure was hypertension (50%), 

diabetes (33%) or unknown (17%). All 6 patients were concurrently hypertensive 

and 4 patients (67%) had Type 2 diabetes. One patient had a failed kidney 

transplant and subsequently started hemodialysis, prior to the baseline scan. 

Average time on hemodialysis was 4.5 years at baseline. All participants 

completed the follow up CMR visit approximately 1 year after the initial visit 

(average=12.3 months since baseline, range: 11.1-14.4 months).  

 

Clinical Cardiac Measures of Structure, Function, and Strain 

 Clinical features at baseline and follow up are detailed in Table 4.2. 

Neither body mass index (BMI) nor body surface area (BSA) was significantly 

changed. On ECG, corrected QT (QTc) interval shortened from 487.5 ± 36.4 ms 

to 439.2 ± 11.3 ms (p<0.05). End diastolic volume (EDV) did not change, but 

there was a trend toward reduced end systolic volumes (from 56.7 ± 26.6 mL to 

47.747 ± 25.0 mL, p=0.053) which contributed to increased ejection fraction (EF) 

from 61.2 ± 8.8% to 65.9 ± 10.4% (p=0.044) over the follow up period. Average 

LV mass, LVMI, septal thickness, and H/R ratio were not significantly changed 
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over the follow up year (Figure 4.1), although 5 of the 6 patients demonstrated 

slightly reduced EDV, reduced ESV, and increased EF (Table 4.2). While this 

cohort was hypertrophic at baseline, as a group, LV mass did not significantly 

increase over the follow up period and H/R ratio decreased slightly. Between 

baseline and follow up, changes in circumferential diastolic strain rate (from 174. 

3 ± 45.9%/s to 177.2 ± 52.9%/s, p> 0.05) and longitudinal strain (from -20.6%/s 

to -21.5%, p>0.05) were varied, but not significantly different (Figure 4.2).  

 

Examples of Fibrosis Development 

Among the six individuals recruited to date for a 1-year follow up scan, 

diverse phenotypes were observed with respect to progressive changes in the 

magnitude of cardiac fibrosis. Some patients demonstrated low levels of ΔS/So at 

baseline with progressively increased ΔS/So over time, which is seen in Figure 

4.3. This example patient had received hemodialysis treatment for approximately 

2 years at baseline. Low and uniform ΔS/So values are seen across the LV in 

baseline images (Figure 4.3 A-C). Globally, this patient demonstrates normal 

baseline ΔS/So values throughout the entire myocardium in line with those 

established for healthy controls in Chapter 3 (Figure 4.3 D). At the time of the 

follow up visit, diffusely elevated ΔS/So values were evident across the 3 example 

slices (Figure 4.3 E-G) primarily in basal and septal regions of the heart (Figure 

4.3 H). Divergence increased from 9.8 AU (within the bounds of healthy controls) 

to 27.6 AU (well outside the range of normal values), indicating advanced fibrosis 

progression in this patient. 
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 In contrast to the prior individual, some patients who were imaged 

demonstrated negligible alterations in ΔS/So during the follow up period. Baseline 

scans from another representative patient on hemodialysis (4.3 years) reveal low 

and uniform ΔS/So in example slices (Figure 4.4 A-C) and across the entire LV 

(Figure 4.4 D). In follow up images (Figure 4.4 E-G), minimal ΔS/So elevations 

are detected, mainly in the mid ventricle but not elsewhere throughout the LV 

(Figure 4.4 H). A small increase of 3.9 AU in total LV divergence demonstrates 

the minor progression of fibrosis in this patient. 

 

Longitudinal Monitoring of Fibrosis Progression  

Five patients demonstrated increased ΔS/So (Figure 4.5 A) and 

divergence values (Figure 4.5 B) with an average group increase of 7.1 ± 13.7 

AU in divergence from baseline to follow up. Cumulative distribution functions for 

all patients are shown in Figure 4.5 C. The baseline rightward shifts in ΔS/So 

(quantified by divergence) are visually evident compared to the healthy standard. 

Over the follow up period a further shift in ΔS/So distribution is noticeable for most 

patients, indicating increased fibrosis over time.  

 

Discussion 

 Here we described a small follow up study using non-contrast 2-pt bSSFP 

CMR to monitor fibrosis progression in patients on hemodialysis for treatment of 

ESRD. The rate of sudden cardiac death increases over time with chronic 

hemodialysis [185], indicating that fibrosis may be progressing unchecked, 
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without proper measurement or treatment options for these patients. LGE CMR 

has become the clinical standard to identify for focal fibrosis and with the addition 

of T1 mapping can detect diffuse fibrosis through calculation of the extracellular 

volume content [77]. The exclusion from gadolinium enhanced CMR, however, 

has severely limited the ability to detect, monitor, and treat fibrosis progression in 

patients with ESRD.  

While risk of cardiac mortality increases with time on chronic 

hemodialysis, we have previously shown that fibrotic burden does not directly 

correlate with hemodialysis vintage (Chapter 3). This is evident in the example 

participants in this study. At follow up, the patient in Figure 4.3 had received 

hemodialysis treatment for 3 years and demonstrated a large fibrotic burden, 

compared to over 5 years of treatment for the patient in Figure 4.4, who had a 

lower fibrotic burden. This lack of association is consistent with a previous 

gadolinium based CMR study, which found no correlation between fibrotic burden 

and hemodialysis vintage [58]. So while chronic hemodialysis increases mortality 

risk over time, it is necessary to delineate the etiology by determining whether 

fibrosis is progressing in the individual patient. 

Since cardiac structural [51,56-58] and functional [60,90] alterations are 

highly prevalent in the ESRD population, increased hypertrophy and reduced LV 

function have been used as surrogate indicators of cardiac fibrosis. While 

prognostic in the cardiac and ESRD populations, it is unclear whether these 

associate specifically with fibrosis. In fact, fibrosis may precede hypertrophy in 

some patients [34]. In this study we showed pervasive progression of fibrosis in 
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our patients with ESRD over 1 year (Figure 4.5) without concurrent alterations in 

hypertrophy (Figure 4.1), strain (Figure 4.2), or ejection fraction (Table 4.2). It is 

surprising that while fibrosis increased, the typical indicators of heart failure 

progression—reduced contractility and EF—did not change over this follow up 

period. Thus we may be able to distinguish small variations in fibrosis before a 

patient has advanced to LV stiffness severe enough to be detected by other 

clinical measures. 

It is clear that the development of hypertrophy should be considered a 

separate disease process from fibrosis progression. Moreover, deterioration of 

LV function may only arise after advanced cardiac disease progression, well after 

high levels of fibrosis have developed. Thus identification of fibrosis, independent 

of structural or functional deficits, could improve prognosis for patients with 

ESRD [51].  

Patterns of fibrosis have been previously described in hemodialysis 

patients [58,59], prior to the ban on gadolinium use. Gadolinium free replication 

of these results is now possible and could aid in the understanding of both global 

and focal patterns of disease, while monitoring changes over time. Global fibrotic 

burden determination may assist in overall cardiac risk stratification [51], however 

the visualization of potentially arrhythomogenic fibrotic foci could improve 

selection for alternative therapies such as radiofrequency ablation and 

implantable cardioverter defibrillators. While nearly 40% of all ESRD deaths are 

attributable to arrhythmia and sudden cardiac death, less than 1% of the 

hemodialysis population receives implantable defibrillators or resynchronization 
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therapies [185]. Noninvasive and safe detection of fibrotic patterns in patients 

with ESRD may assist in tapping these underutilized and potentially lifesaving 

treatment options to improve the high rates of sudden cardiac death. 

 While overwhelming increases in ΔS/So and divergence were evident in 

this study, a small sample size has limited the ability for us to detect statistically 

significant elevations in fibrosis. Measurement of fibrosis progression in patients 

on hemodialysis warrants further investigation with a larger sample and multiple 

time points. Future analyses should examine the magnitude of change in fibrosis 

and correlations to advancing hypertrophy, dilation, or ventricular stiffness in 

patients with ESRD. We were also limited by the need for 2 consecutive breath 

holds to acquire pairs of images for the 2-pt bSSFP method. Alterations in breath 

hold position can introduce misalignment of the myocardium. While we manually 

corrected for these shifts, it is possible that erroneous voxels from the blood pool 

or pericardium were included in these analyses. 

 In conclusion, we have shown that patients on hemodialysis for ESRD 

nearly ubiquitously developed increased fibrotic burden, even in a short 1 year 

period. Fibrosis development is independent of alterations in hypertrophy or 

deteriorating contraction or relaxation. The ability to safely monitor patients with 

ESRD without the use of gadolinium may assist in more comprehensive risk 

stratification, improved treatment selection, and eventually a reduction in cardiac 

mortality rates.  
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Table 4.1. Baseline Participant Demographics. 

Variable Result 
Age (yrs) 54.2 (31.2-79.7) 
Male 3 (50) 
White 2 (33) 
Black/African American 4 (67) 
Hemodialysis vintage (yrs) 4.5 (2.0-7.5) 
Systolic Blood Pressure (mmHg) 160 (144-182) 
Diastolic Blood Pressure (mmHg) 85 (65-98) 
Primary Cause of ESRD  
   Hypertension 3 (50) 
   Diabetes 2 (33) 
   Unknown/Unsure 1 (17) 
Comorbidities  
   Hypertension 6 (100) 
   Diabetes 4 (66) 
Numerical variables are presented as mean (range). 
Categorical variables are presented as count (%). 
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Table 4.2. Clinical Cardiac Measurements. 

Variable Baseline Follow Up p 
Heart Rate (bpm) 71.8 (59-91) 67.8 (54-86) 0.303 
BMI (kg/m2) 31.6 (27.3-39.1) 31.6 (27.3-38.1) 0.934 
BSA (m2) 2.1 (1.8-2.2) 2.1 (1.8-2.3) 0.896 
QRS Duration (ms) 90 (76-98) 90 (78-100) 0.681 
QTc Interval (ms) 487.5 (444-518) 439.2 (427-456) 0.050* 
EDV (mL) 140.6 (95.0-214.0) 131.8 (88.1-185.5) 0.114 
ESV (mL) 56.2 (24.9-96.4) 47.7 (18.0-76.2) 0.053 
EF (mL) 61.2 (48.6-73.8) 65.9 (52.0-79.6) 0.044* 
Cardiac Output (L/min) 6.1 (4.4-8.1) 5.7 (4.5-7.3) 0.419 
LV Mass (g) 222.4 (160.9-287.6) 208.4 (163.0-260.1) 0.135 
LVMI (g/m2) 110.3 (86.2-130.5) 102.6 (93.2-118.1) 0.157 
Septal Thickness (cm) 1.3 (1.1-1.6) 1.2 (1.0-1.5) 0.565 
H/R Ratio 0.5 (0.3-0.6) 0.4 (0.3-0.5) 0.138 
Data are presented as mean (range). BMI: body mass index, BSA: body surface 
area, QTc: corrected QT (standardized to 60 beats per min), EDV: end diastolic 
volume, ESV: end systolic volume, EF: ejection fraction, LV: left ventricle, LVMI: 
left ventricular mass index (indexed to BSA), H/R ratio: septal thickness/chamber 
radius. *p<0.05 was considered significant using a paired t test. 
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Figure 4.1. Hypertrophy did not progress over time in patients with ESRD. 
Patients with ESRD had elevated (A) LVMI, (B) interventricular septal thickness, 
and (C) H/R ratio at baseline but no significant alterations in these measures of 
hypertrophy at follow up (all p>0.05). LVMI: left ventricular mass index. 
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Figure 4.2. Measures of contraction and relaxation. (A) Circumferential peak 
strain and (B) diastolic strain rate show varied, but not significant changes from 
baseline to follow up in patients with ESRD. (C) Peak strain and (D) diastolic 
strain rate in the longitudinal direction showed no significant changes over time. 
These results indicate that LV function did not deteriorate in the follow up period. 
All p>0.05. 
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Figure 4.3. Representative patient with large increases in fibrosis. 
Representative ΔS/So maps at the (A) base, (B) mid ventricle, and (C) apex of a 
patient on hemodialysis for ESRD. (D) The bullseye plot revealed low ΔS/So 
values across the entire ventricle in this patient at baseline. At the follow up visit, 
ΔS/So maps demonstrated elevations in the (E) base and septal regions of the 
(F) mid ventricle and (G) apex of the LV. (H) Diffuse elevation was evident across 
many slices of the LV, indicating that this patient had developed significant 
amounts of fibrosis over the follow up period. Divergence increased by 22.0 AU 
in this patient.  
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Figure 4.4. Minimal increases in fibrosis over time. At baseline, ΔS/So maps 
from this representative patient revealed minor scattered enhancement patterns 
in (A) basal, (B) mid ventricular, and (C) apical slices. (D) Average ΔS/So values 
remained low across the entire ventricle in this patient. At follow up, myocardial 
ΔS/So remained low in the (E) base and (G) apex, with some increased values 
developing in the (F) mid ventricle. (H) The corresponding bullseye plot 
demonstrated patterns of minor elevations in this patient. Across the 2 study 
visits, divergence increased by 3.9 AU, which was the minimal increase in this 
group. 
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Figure 4.5. Measurements of increased fibrosis in patients with ESRD.  (A) 
Whole ventricle ΔS/So values increased in all but 1 patient from baseline to follow 
up. (B) Divergence values increased in all but 1 patient, indicating a greater 
rightward shift in the distribution of ΔS/So values and increased fibrotic burden 
over time. (C) Cumulative distribution functions of the healthy simulated standard 
(gray), baseline (black), and follow up scans (red). All patients were shifted from 
the healthy standard at baseline, corresponding to an increased fibrotic burden 
compared to healthy individuals. All but 1 patient demonstrated a greater shift at 
follow up, corresponding to further progression of fibrosis. 
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CHAPTER 5: CONCLUSIONS AND PERSPECTIVES 

 

Summary of Key Findings 

Contrast-enhanced CMR has become an invaluable tool for myocardial 

tissue characterization, advancing our ability to detect and monitor various forms 

of fibrosis [64,69-71,74,88]. Unfortunately, the risk of developing nephrogenic 

systemic fibrosis has limited the use of gadolinium in individuals with reduced 

kidney function [84-86]. This exclusion has thwarted the ability to use our most 

powerful CMR techniques in patients with ESRD, who are at high risk of 

developing myocardial fibrosis [51,58], arrhythmias, heart failure, and sudden 

cardiac death [185]. Without a suitable diagnostic technique, the ability to 

understand underlying mechanisms of heart failure in ESRD is hindered, further 

limiting the development and testing of appropriate therapeutics. A gadolinium 

free and quantitative method for fibrosis detection could overcome these 

obstacles and offer a suitable diagnostic and monitoring option with applications 

in trials of new therapeutics. The projects in this dissertation have described the 

development of a quantitative gadolinium-free CMR technique, subsequent 

measurement of cardiac fibrosis in patients with ESRD, and a preliminary study 

in longitudinal monitoring of changes in cardiac fibrosis in ESRD patients.  

 Following previous development in a mouse model of experimentally 

induced myocardial infarction [111], we translated 2-pt bSSFP CMR to a cohort 

of 47 cardiac patients referred for standard of care LGE CMR plus 10 healthy 

age-equivalent controls (Chapter 2). Using high and low MT-weighted cine 
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bSSFP image pairs, we were able to extract endogenous contrast from the 

alterations in magnetization transfer (MT) arising from extracellular matrix 

remodeling. 2-pt bSSFP identified areas of necrosis and edema in acute 

myocardial infarction (Figure 2.2), replacement fibrosis in chronic myocardial 

infarction (Figure 2.4), and reactive fibrosis in non-ischemic dilated 

cardiomyopathy (Figure 2.5). Along with T1 and T2 times, ΔS/So was elevated in 

regions of enhancement at LGE compared to myocardium without enhancement 

(Figure 2.7). Using gadolinium partition coefficient (GPC) as a contrast based 

standard for fibrosis quantification, there was a stronger correlation with ΔS/So 

(R=0.82) than with other non-contrast techniques (Figure 2.8). There was strong 

agreement in percent of enhanced myocardium (R2 = 0.84) and transmurality of 

enhancement (R2 = 0.73) between 2-pt bSSFP and LGE techniques (Figure 2.9). 

Agreement was also achieved during subjective assessment by blinded 

reviewers of ΔS/So maps compared to LGE images (Figure 2.8), with a few cases 

of false positive (Figure 2.10) and false negative (Figure 2.11) identification of 

enhancement. Representing a known limitation of LGE CMR, small patterns of 

subendocardial signal enhancement were missed in 4 patients using ΔS/So 

maps. Time limitations restricted us to the acquisition of only 1 mid ventricular 

slice in this cohort, which may have also missed areas of enhancement in some 

patients’ hearts. 

 Extending 2-pt bSSFP to patients on hemodialysis for ESRD, Chapter 3 

detailed visual and quantitative fibrosis detection without gadolinium along with 

correlations to blood biomarkers that are commonly used to assess ischemia, 
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cardiac remodeling, and extracellular matrix turnover. We imaged the entire LV of 

29 patients with ESRD and 33 healthy controls of similar age using 2-pt bSSFP 

CMR. While we found no differences in ejection fraction nor diastolic strain rate 

and only small decreases in global longitudinal strain (Table 3.1, Figure 3.3), 

there was widespread LV hypertrophy in the ESRD group (Figure 3.8). Using 

cumulative distribution function analysis, we quantified the extent of ΔS/So signal 

elevation, to represent a metric of fibrotic burden. Patients with ESRD 

demonstrated increased fibrotic burden (divergence=9.8 AU [6.0, 23.6]) 

compared to controls (4.7 A.U. [1.2, 11.5], p = 0.003). We identified 3 patterns of 

fibrosis without gadolinium (Figure 3.6) that were previously described using LGE 

[59] in patients with ESRD. Hypertrophy demonstrated only a modest correlation 

with fibrosis, while strain did not correlate with fibrosis at all (Figure 3.9). The 

existing dogma in the field of heart failure in ESRD patients dictates that 

hypertrophy and strain are robust surrogate markers of fibrosis because of the 

increased tensile characteristics of fibrotic tissue. Our findings offer compelling 

evidence that structural and functional measures are not sensitive to diffuse 

extracellular matrix remodeling and interstitial fibrosis. We utilized our capacity to 

identify fibrosis to compare fibrotic burden with blood biomarkers of cardiac 

stress, ischemia, and extracellular matrix turnover. TnT, FGF23, PTH, and TIMPs 

were elevated in patients with ESRD (Table 3.3). The interplay between 

hypertrophy and fibrosis was evident in biomarker analysis, as the commonly 

employed TnT and FGF23 displayed stronger correlations to hypertrophy than 

fibrosis in our cohort. TIMPs, however, were moderately correlated with fibrosis 
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but showed no association with hypertrophy. With the ability to distinguish 

between hypertrophy and fibrosis, imaging guided biomarkers such as TIMPs 

may emerge as fibrosis-specific diagnostic measures and therapeutic targets for 

patients with ESRD. 

 Extension of our findings for the purpose of longitudinal monitoring is 

described in Chapter 4 where a preliminary study to detect progression of fibrosis 

over time was performed in patients on hemodialysis for ESRD. Patients from the 

study in Chapter 3 were asked to return for a follow up exam using 2-pt bSSFP 

CMR. Six patients completed the follow-up exam. These patients were 

overwhelmingly hypertensive and hypertrophic at baseline (Table 4.1). Over the 

follow up period, they demonstrated increased EF (61.2 ± 8.8% to 65.9 ± 10.4%, 

p=0.044) but with no corresponding increases in hypertrophy (Table 4.2, Figure 

4.1) nor decreases in strain measurements (Figure 4.2). Although no clinically 

relevant alterations in structure or function were identified, all but 1 patient 

demonstrated an increase in fibrosis over the 1 year follow up period (Figure 

4.5). Fibrotic burden and progression may add prognostic value above and 

beyond the minimal alterations seen in structure and function to aid in risk 

stratification and therapeutic selection for patients on hemodialysis. 

Non-contrast CMR techniques for measurement of fibrosis will empower 

the investigation of noninvasive biomarkers, molecular targets, and treatment 

efficacy in patients with ESRD. Unlike LGE, 2-pt bSSFP can detect both focal 

and diffuse disease patterns using a single technique while simultaneously 

providing images for clinically important structural and functional measures. We 
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are more directly measuring fibrosis in cardiac and kidney patients than the 

options currently available to patients with ESRD. We have also challenged the 

current dogma and provided evidence that structural and functional alterations 

may not be sensitive to the development of interstitial fibrosis which is a critical 

substrate for arrhythmias and sudden cardiac death. 

 

Clinical Perspective 

Myocardial tissue biopsy has served as the standard for fibrosis detection 

via calculation of the collagen volume fraction, primarily in epicardial tissue 

samples. Without the use of contrast enhanced CMR, biopsy is the only reliable 

alternative for fibrosis measurement in patients with ESRD. Unfortunately, biopsy 

is prone to underreporting true fibrotic burden [65], obligates clinicians to 

extrapolate the fibrotic content of non-sampled regions, and is invasive and 

undesirable for repeated measurements. With 2-pt bSSFP CMR, we have the 

ability to observe spatiotemporal changes in the magnitude and pattern of fibrosis 

across the entire LV in a way that is not possible with biopsy nor safe with 

gadolinium enhanced CMR.  

Fibrosis development is a dynamic process that requires complex 

molecular cues with unique patterns of activation in order to reorganize existing 

extracellular matrix and increase collagen production by fibroblasts [26]. Specific 

molecular players in these processes could serve as biomarkers of fibrosis 

development and potential treatment targets for attenuation or prevention of 

fibrosis. Since hypertrophic and fibrotic remodeling often occur in tandem for 
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patients with ESRD, the etiology of cardiac disease development is complex. 

Using 2-pt bSSFP we are now able to begin untangling the fibrotic disease 

process from structural alterations and investigate the specific underlying 

mechanisms and appropriate biomarkers of fibrotic remodeling. For instance, 

TnT is widely used to indicate recent myocardial infarction and cardiomyocyte 

death, but is often detected in patients with ESRD [189], indicating myocardial 

damage from non-ischemic causes. Some have suggested a correlation between 

elevated TnT and fibrosis in non-ischemic cardiomyopathy [190] and prognostic 

value in ESRD [189,191]. Our results indicate that while TnT correlates with 

fibrosis it also correlates with hypertrophy. While it may be prognostic, TnT is 

unsuitable as a fibrosis-specific biomarker and may instead reflect a combination 

of structural hypertrophy and fibrosis development. Similarly, FGF23 has been 

explored as molecular mechanism [53,141,192,193], biomarker [159,194], and 

therapeutic target [141,169] of remodeling in patients with ESRD. It has been 

extensively correlated with hypertrophy, as we have also shown, yet is also 

associated with fibrosis detected by 2-pt bSSFP, rendering FGF 23 unable to 

distinguish fibrosis from the associated—but independent—hypertrophic 

remodeling process. 

The extracellular matrix remodeling process offers alternate molecular 

targets that may be more specific to fibrosis development. 2-pt bSSFP allows us 

to probe the relationship between MMPs, TIMPs, fibrosis, and heart failure in 

ESRD in a safe, noninvasive way. In fact, we have found that TIMPs correlated 

with fibrosis but not hypertrophy, which offers promising evidence that these 
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peptides may be more specific to fibrosis. Investigations are emerging for the use 

of MMP inhibition to attenuate cardiac fibrosis development in animal models of 

ESRD [180,195]. 2-pt bSSFP could serve as a method to both interrogate 

biomarkers of extracellular matrix turnover and eventually determine the efficacy 

of emerging treatments, such as exogenous MMP inhibitors, that are currently 

under consideration. 

 

Limitations and Future Opportunities 

A few pertinent limitations are present across these studies, which 

represent important opportunities for future investigations. As with most CMR 

acquisitions, 2-pt bSSFP requires patients to sustain multiple end-expiratory 

breath holds. In addition, to achieve maximal resolution we attempt to minimize 

voxel size, which can require lengthy breath hold time. Due to need for 2 

separate images to complete the 2-pt bSSFP method, the total number of breath 

holds and length of time can be limiting for some patients. To begin addressing 

breath hold limitations, our lab has investigated the use of 3 dimensional (3D) 

cine bSSFP. 3D bSSFP allows for the acquisition of a slab of multiple short axis 

slices, spanning a larger portion of the left ventricle during a single breath hold. 

This technique has the potential to reduce the total number of breath holds while 

maintaining myocardial steady state signal and collecting data across the whole 

LV (Figure 5.1). Future investigations could adapt 3D bSSFP to acquire slabs at 

flip angles of 5° and 45° for use in 2-pt bSSFP fibrosis imaging with the benefit of 

reduced number and total time of breath holds. 
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Between the 2 image acquisitions for 2-pt bSSFP, there is a possibility for 

patient motion or inconsistent breath holds leading to misalignment of the 

myocardium in the image pair. If the myocardium is not aligned, voxels outside of 

the myocardium could be included in the analysis of MT and erroneously alter the 

measured fibrotic burden. As described in chapters 3 and 4, we manually 

registered any image pairs that were not aligned. While this allowed us to 

salvage many slices for image analysis, it is possible we introduced other noise 

into our analysis. Ideally, a non-contrast imaging technique would achieve 

magnetization transfer weighting in a single image, requiring only 1 breath hold 

per slice position. Stemming from the need to create better contrast between 

endocardial scar and blood pool in LGE images (discussed in Chapter 2), new 

techniques are emerging for dark-blood imaging during LGE, using Flow-

Independent Dark-blood DeLayed Enhancement (FIDDLE) [196] and T1(Rho) 

And Magnetization transfer and INvErsion Recovery (TRAMINER) sequences 

[197,198]. In their current uses, these sequences null the blood pool to turn it 

black, which allows for enhancement at LGE—especially near the blood pool—to 

become more easily visualized after injection of gadolinium. As evident within the 

name TRAMINER, these imaging sequences incorporate an MT preparation 

scheme that encodes MT within the image. When modified and used without 

gadolinium, TRAMINER can extract endogenous contrast via MT weighting 

within a single image and therefore single breath hold (Figure 5.2). Studies within 

our lab are comparing TRAMINER to LGE in cardiac patients, including patients 

with myocardial infarction (Figure 5.2), who are referred for gadolinium based 
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CMR. If successful, these preliminary TRAMINER studies could be extended to 

non-contrast fibrosis imaging in ESRD patients while lowering the breath hold 

burden and eliminating image registration issues that currently exist in our 

current techniques. This technique has the added benefit of reducing manual 

image correction and post processing time, which are important when evaluating 

clinical patients in near real time and for future ambitions to automate image 

analysis. 

Sub-endocardial scar identification has been a challenge in LGE CMR due 

to the low contrast to noise present when a scar is near the bright signal from 

blood. This has been the motivation for development of FIDDLE [196] and 

TRAMINER [198] described above. Similar limitations exist in 2-pt bSSFP CMR 

and were discussed in Chapter 2 and presented in Figure 2.11. Another example 

arose in the study from Chapter 3 and is presented in Figure 5.3. This patient 

had a history of known myocardial infarction with comorbid hypertension, type 2 

diabetes mellitus, and ESRD which requires hemodialysis. Thus, this patient 

could not complete gadolinium based CMR to monitor stability of the established 

replacement fibrosis nor the presence or progression of additional reactive 

fibrosis. Wall thinning is ready apparent in this patient, but it is difficult to define a 

fibrotic scar, due to its location near the blood pool. Future development of 

magnetization transfer imaging will need to address this issue. One possible 

option is to mask the myocardium (as shown in Figure 5.2 B and D) to only 

present voxels of interest within the LV. This is limited by the contrast achieved in 

anatomical images (e.g. Figure 5.3 A) and accuracy of manual region of interest 
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definition, and removes other anatomical features for reference. While the CMR 

field is moving to improve the contrast between myocardium and blood pool in 

LGE, MT CMR must go in parallel to limit the uncertainty in sub-endocardial scar 

identification. Importantly, similar to extracellular volume (ECV) calculation, MT 

CMR has the advantageous ability to image multiple types of fibrosis within 1 

imaging technique, as seen in Figure 5.3 B, but without the need for gadolinium. 

This is crucial for monitoring patients with prior myocardial infarction who may 

develop diffuse reactive fibrosis in remote regions [31,32] and for patients with 

multiple risk factors, like those with ESRD, who are at high risk for both ischemic 

and non-ischemic fibrosis development [58,59] but who cannot receive 

gadolinium. 

 

Additional Future Directions 

  As 2-pt bSSFP continues to develop, it will be important to assess the 

practical clinical utility of this technique and its ability to recapitulate findings from 

gadolinium based CMR techniques. In our initial clinical study (Chapter 2) ΔS/So 

was highly correlated with gadolinium partition coefficient (R=0.82) and blinded 

reviewers with only minimal training were correctly able to identify elevations in 

ΔS/So with about 73% agreement to LGE. This was in a sample of patients with 

known cardiac disease, demonstrating a variety of fibrosis patterns. It will be 

important to determine whether 2-pt bSSFP can be used diagnostically to identify 

previously unknown cardiac disease in patients at risk for developing fibrosis. In 

the ESRD population, there is a high prevalence of diffuse interstitial fibrosis [51]. 



 

118 
 

This pattern is difficult to identify with LGE [63], but can be identified with T1 

mapping techniques through ECV calculation [74-76] for patients in which it is 

safe to deliver gadolinium. We are currently investigating the ability for 2-pt 

bSSFP to identify diffuse fibrosis comparable to ECV in patients with type 2 

diabetes with no history of myocardial infarction nor reduced kidney function. 

These patients often develop expanded ECM [199] and diffuse myocardial 

fibrosis but are still able to receive gadolinium contrast. Importantly, type 2 

diabetes is a leading risk factor of ESRD [185] so these patients have similar 

medical conditions and comorbidities to many patients with ESRD and may in 

fact experience renal complications in the future. While this group is more 

homogenous than patients included in Chapter 2, they likely have a less 

established cardiac history with less predictable fibrotic burden. We have 

scanned 30 patients with type 2 diabetes mellitus and 10 age equivalent healthy 

volunteers using 2-pt bSSFP and pre and post-contrast T1 mapping (Figure 5.4). 

There are no differences in standard clinical measures of structure and function 

between groups but preliminary analysis shows promise for elevated ΔS/So, 

native T1, and ECV in the diabetes group. With blinded review, we will now be 

able to compare 2-pt bSSFP, native T1 mapping, and ECV quantification across 

the entire LV for the de novo identification of diffuse fibrosis. It is important that 2-

pt bSSFP perform well against current standard contrast techniques both 

quantitatively and subjectively if it is to progress toward clinical utility, especially 

for the identification of diffuse fibrosis, which is difficult to detect with other CMR 

techniques.  
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We are also interested in utilizing 2-pt bSSFP to begin understanding the 

exceedingly high death rates experienced at the initiation of hemodialysis in 

patients with ESRD. There is a severe peak in all cause and cardiac mortality at 

month 2 of hemodialysis [185], with a currently unknown cause. Due to the 

drastic, hyperphysiologic alterations in hemodynamics [90] we speculate that 

early cardiac remodeling and acute fibrosis development might be a risk factor in 

this early timeframe. Future studies could utilize 2-pt bSSFP in a large cohort of 

ESRD patients who plan to initiate hemodialysis. Imaging before and at multiple 

time points within the first year of treatment initiation would offer evidence of 

early cardiac fibrosis development—with or without concomitant structure or 

function alterations—that could be compared to clinical measures of structure 

and function. Cardiac outcomes such as development of arrhythmia, heart 

failure, and sudden cardiac death within the first year could be correlated to 

fibrosis development to begin to understand the potentially modifiable risk factors 

in this critical period for patients beginning hemodialysis. 

Blood biomarkers are a promising but complex opportunity for diagnostic 

and therapeutic targets in the ESRD population. With limited sample sizes in our 

current study (Chapter 3), analyses of blood biomarkers and their correlations 

with fibrosis and hypertrophy are modest but promising. Markers of extracellular 

matrix remodeling such as MMPs and TIMPs may prove to be more specific to 

cardiac fibrosis than the currently employed TnT, FGF23, and PTH which are 

confounded by hypertrophy. Larger cohorts of ESRD patients are necessary for 

more complex multiple correlation analysis to parcel out the interaction between 
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hypertrophy, fibrosis, and individual biomarkers. While MMPs and TIMPs are 

imbalanced in patients with ESRD compared to healthy individuals and CKD 

patients prior to hemodialysis [148], studies have reported both increases 

[146,181,182,200] and decreases [148] in these peptides compared to healthy 

controls. This may be a manifestation of the heterogeneous pathophysiology of 

cardiac fibrosis in this population. Additional studies are warranted to begin 

understanding whether MMP or TIMP concentrations are indicative of either 

replacement or reactive fibrosis separately. There is evidence that MMPs and 

TIMPs are associated with worsening, but not end stage, heart failure [144]. 

Serial measurements of these peptides in ESRD patients along with longitudinal 

monitoring of cardiac structure, function, and fibrosis by CMR would provide 

evidence for the utility of these biomarkers as predictors of heart failure risk and 

potential molecular treatment targets for the attenuation of cardiac fibrosis. 

 

Final Remarks 

The development of 2-pt bSSFP as a non-contrast CMR technique has 

the potential to improve the understanding of heart failure in the context of 

ESRD. This safe and noninvasive technique could empower future investigations 

for advanced diagnostics and molecular treatment targets for cardiac fibrosis. We 

have successfully begun to recapitulate findings from gadolinium based CMR for 

quantitative and subjective identification of cardiac fibrosis in patients on 

hemodialysis for ESRD. The current challenges in patient burden and post 
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processing methods represent vital opportunities for improvements in non-

contrast MT techniques that may lead to more clinically applicable CMR tools.   
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Figure 5.1. 3D bSSFP image acquisition and signal evolution. (A) Long axis, 
4-chamber end diastolic image of the heart with a superimposed schematic of the 
slab (solid box) and slice (dashed line) architecture for one representative slab. 
(B) Normalized signal intensity waveforms for all six slices in one 3D slab are 
shown throughout the entire cardiac cycle. Solid lines represent the middle two 
slices (slice 3 and 4) which maintained the best steady state throughout the 
entire cardiac cycle.   
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Figure 5.2. Fibrosis imaging using a single breath hold magnetization 
transfer weighted sequence.  (A) A long axis (4-chamber) image acquired with 
the clinical standard LGE-CMR in a patient who suffered a myocardial infarction. 
Significant enhancement was evident in the apex of the LV. (B) Using a threshold 
technique (similar to Chapter 2), myocardial voxels 2 standard deviations above 
the average, remote (non-enhanced) myocardial signal were presented in white, 
overlayed on all myocardial voxels in gray. (C) A similar long aixs view was 
acquired in this patient using a non-contrast, magnetization-transfer weighted 
sequence (TRAMINER) in a single breathhold, which revealed significant 
elevations in the LV apex. (D) Similar to B, voxels with signal values 2 standard 
deviations above the mean were displayed as white with other myocardial voxels 
in gray. The image aqcuired without contrast using the TRAMINER technique 
showed extremely good spatial agreement with LGE, identifying areas of 
edematous and necrotic tissue folowing myocardial infarction. TRAMINER may 
emerge as a robust, non-contrast option for tissue characterization without 
gadolinium. 
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Figure 5.3. Mixed subendocardial scar and diffuse fibrosis in chronic 
myocardial infarction.  (A) Example bSSFP image from a patient who suffered 
a previous myocardial infarction, which was apparent in a large area of severe 
myocardial thining (arrow). This patient was also hypertensive, diabetic, and was 
on hemodialysis for ESRD and therefore would be excluded from LGE CMR. (B) 
It was diffucult to detect a subendocardial pattern of focal scar in the 
corresponding ΔS/So map. Contrast between the blood pool and adjacent 
elevations in myocardial signal are a limitation of 2-pt bSSFP, as well as other 
CMR techniques. The ΔS/So map revealed areas of diffuse enhancement in this 
patient that would not be detectable by LGE, however. (C) The T1 map reveals 
widespread enhancement, however the myocardium, especially in areas of 
thinning, is difficult to resolve. While many CMR techniques share similar 
limitations, 2-pt bSSFP may be able to detect both focal and diffuse fibrosis in the 
same scanning procedure without the risks associated with gadolinium contrast 
agents. 
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 Figure 5.4. Image acquisitions in a patient with diabetes. (A) ΔS/So map 
generated at a mid ventricular slice using 2-pt bSSFP in a patients with type 2 
diabetes. This patient demonstrated diffuse enhancement in this and other slices 
across the LV. (B) Elevations in T1 are apparent in the native T1 map acquired at 
the same slice position. (C) Fifteen minutes post-injection of gadolinium, a post-
contrast T1 map was aquired. Maps of pre and post-contrast T1 (B and C) are 
compared to calculate GPC and ECV, the predominant method under 
investigation for diffuse fibrosis identification.  
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APPENDIX: LIST OF ABBREVIATIONS 

 

2-pt bSSFP two point balanced steady state free precession 

BMI  body mass index 

bSSFP balanced steady state free precession  

CKD  chronic kidney disease 

CMR  cardiac magnetic resonance imaging 

CVD  cardiovascular disease 

ECG  electrocardiogram 

Echo  echocardiography 

ECV  extracellular volume (fraction) 

EDV  end diastolic volume 

EF   ejection fraction 

ESRD  end stage renal disease 

ESV  end systolic volume 

FGF  fibroblast growth factor 

FIDDLE Flow-Independent Dark-blood DeLayed Enhancement  

GPC   gadolinium partition coefficient 

LGE   late gadolinium enhancement 

LVMI  left ventricular mass index 

MMP  matrix metalloproteinase 

MOLLI modified Look Locker imaging 

MRI  magnetic resonance imaging 
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MT   magnetization transfer 

PTH  parathyroid hormone 

RF  radio frequency 

ROI  region of interest 

SD  standard deviation 

TE  echo time 

TIMP  tissue inhibitor of metalloproteinase 

TnT  troponin T 

TR  repetition time 

TRAMINER T1(Rho) And Magnetization transfer and Inversion Recovery 
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