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Impacts of T-Phylloplanin Gene Knockdown and of
Helianthus and Datura Phylloplanins on Peronospora
tabacina Spore Germination and Disease Potential1[OA]

Antoaneta B. Kroumova, Ryan W. Shepherd, and George J. Wagner*

Plant Biology Program, Plant and Soil Sciences Department, University of Kentucky, Lexington, Kentucky
40546 (A.B.K., G.J.W.); and Plant and Microbial Biology Department, University of California, Berkeley,
California 94720 (R.W.S.)

T-phylloplanin proteins secreted to aerial surfaces of tobacco (Nicotiana tabacum) by short procumbent trichomes inhibit spore
germination and blue mold disease caused by the oomycete pathogen Peronospora tabacina. Many other plants were found to
contain water-washed leaf surface proteins (phylloplanins), but the functions and properties of these are not known. Here we
extend earlier evidence for the antifungal activity of T-phylloplanins using a reverse genetics approach. RNA interference of
the T-phylloplanin gene in tobacco ‘T.I. 1068’ resulted in loss of T-phylloplanin mRNA and protein, loss of in vitro spore
germination inhibition activity, and leaf infection inhibition activity of leaf water washes from RNA interference plants,
and young knockdown plants were susceptible to disease. The glycoprotein character, adaxial-leaf-surface enrichment of, and
renewability of T-phylloplanins are also described. We also report that leaf water washes of sunflower (Helianthus annuus) and
jimson weed (Datura metel), but not soybean (Glycine max), like that of tobacco, possess ProteinaseK- and boiling-sensitive
P. tabacina spore germination and tobacco leaf infection inhibition activities. Results establish that T-phylloplaninins of tobacco
are active in P. tabacina inhibition, and indicate that leaf surface proteins of certain non-Nicotiana species that are not susceptible
to P. tabacina disease can inhibit germination of spores of this oomycete pathogen and inhibit tobacco leaf infection by this
pathogen.

Aerial surface trichomes, glandular secreting, and
nonglandular, nonsecreting types, as well as surface-
accumulated biochemicals provide a first point of con-
tact, microbial, and insect defense capability for many
plants (Wagner et al., 2004). Trichomes and surface-
accumulated biochemicals, along with the cuticle, are
thought to serve as defense components at the phyllo-
plane that together with symbiotic, pathogenic, and
commensalistic surface microorganisms constitute a
complex and diverse phyllosphere (Andrews and Harris,
2000; Hirano and Upper, 2000; Lindow and Brandl,
2003; Lambais et al., 2006; Leveau, 2006). Secondary
compounds accumulated outside the cuticle on plant
surfaces (terpenoids, phenylpropanoids, etc.) are gen-
erally thought to be exclusively produced by glandular
secreting trichomes, but this is established in only a few

cases (Wagner et al., 2004). However, characterization
of trichome exudates obtained by microsampling has
shown that many surface-accumulated secondary prod-
ucts are glandular trichome derived. The chemical
nature and insect/microbe interactive properties of
surface-secreted secondary metabolites have been ex-
tensively studied in a number of systems including
tomato (Solanum lycopersicum), mint (Mentha piperita),
and tobacco (Nicotiana tabacum; Kelsey et al., 1984;
Bennett and Wallsgrove, 1994; Jackson and Danehower,
1996; Phillips and Croteau, 1999; Kessler and Baldwin,
2002). In contrast, the occurrence and roles of surface-
secreted proteins in plants are less recognized and
studied, despite the fact that antimicrobial surface pro-
teins of animals are well characterized (Zasloff, 1987;
Shepherd and Wagner, 2007). More than 500 antimi-
crobial peptides are formed in animals and many are
associated with epithelial surfaces (Zasloff, 2002).

We recently showed that tobaccos synthesize unique
proteins, called T-phylloplanins, only in glands of a
particular procumbent trichome type (short glandu-
lar trichome [SGT]) that apparently do not secrete
the well known diterpenes and sugar esters produced
and secreted by tall glandular trichomes of tobacco
(Shepherd et al., 2005; Shepherd and Wagner, 2007).
Evidence that T-phylloplanins are broadly dispersed
on the leaf surface comes from experiments that show
that water washing of leaves from which trichomes
were completely removed (without other apparent
damage to the leaf surface) yielded a quantity of
T-phylloplanins about equivalent to that washed
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from unaltered leaves (Shepherd et al., 2005). The
mechanism of dispersal is unknown, but perhaps SGT-
secreted T-phylloplanins are dissolved in copious tall
trichome, amphiphilic exudate containing diterpenes
and sugar esters that flows from their glands and
distributes on the leaf via fissures between adjacent
epidermal cell, anticlinal walls (Wagner et al., 2004;
Shepherd et al., 2005). T-phylloplanins are composed
mainly of hydrophobic and polar amino acids (49%
and 46% of residues, respectively, as deduced from gene
sequence and partial amino acid sequence analysis).
They are readily washed from the leaf surface by brief
water washing under conditions that remove ,3% of
diterpenes and sugar esters (Shepherd et al., 2005). The
T-phylloplanin gene is unique in the gene database, but
a number of EST sequences from several widely dif-
ferent plant species share sequence homology and
distinct motifs with T-phylloplanin (Shepherd et al.,
2005).

T-phylloplanins of tobacco ‘T.I. 1068’ leaf water wash
(LWW) and a truncated recombinant T-phylloplanin
protein produced in Escherichia coli inhibit germination
of spores of Peronospora tabacina, an oomycete patho-
gen that causes the potentially devastating blue mold
disease in tobaccos (Svircev et al., 1989). Tobacco LWW
containing T-phylloplanin was also shown to inhibit
disease caused by this obligate biotroph when mixed
with spores and applied to leaves of a susceptible
tobacco (the assay referred to here as the leaf infection
inhibition assay; Shepherd et al., 2005). We also showed

earlier that proteolysis of tobacco LWW results in loss
of T-phylloplanin protein and P. tabacina spore germi-
nation inhibition activity (Shepherd et al., 2005). These
results indicate that T-phylloplanin of tobacco ‘T.I. 1068’
LWW is the active agent of LWW. But, we have been
unable to demonstrate that physical removal of only
T-phylloplanin from the relatively resistant variety ‘T.I.
1068’ renders these plants susceptible to P. tabacina.

RNA interference (RNAi) using short-interfering
RNAs has emerged as a major tool in reverse genetics
to demonstrate the functionality of genes (Watson et al.,
2005). It appears to be very efficient when applied to
trichome expressed genes of tobacco. Earlier we ob-
served high RNAi knockdown efficiency in T0 plants
for two genes restricted to tall glandular trichomes of
tobacco ‘T.I. 1068’ (approximately 45% for a P450 oxido-
reductase and 64% for a diterpene cyclase gene; Wang
and Wagner, 2003). Here we applied reverse genet-
ics to show that knockdown of the T-phylloplanin gene
in tobacco ‘T.I. 1068’ results in loss of T-phylloplanin
mRNA and protein, LWWs of RNAi plants do not
inhibit P. tabacina spore germination or leaf infection,
and young RNAi knockdown plants are susceptible to
disease. We also demonstrate here the glycoprotein na-
ture and other properties of T-phylloplanins. And, we
show that LWWs from sunflower (Helianthus annuus)
and jimson weed (Datura metel), but not from soybean
(Glycine max) contain protease- and boiling-sensitive
P. tabacina spore germination inhibition, and leaf in-
fection inhibition activities.

Figure 1. Knockdown of T-phylloplanins in T0 RNAi
plants. A, Silver-stained SDS-PAGE showing the pres-
ence of T-phylloplanin in LWWs of nontransformed
control (20 cm2asae, adaxial surface area equiva-
lents), and their absence in LWWs of T0 RNAi lines
3, 4, 5, 7, 18, 21, 24, 25, and 26 (60 cm2asae, each).
The left-most lane contains molecular weight stan-
dards, and the four T-phylloplanin bands are marked I
to IV in the control lane. B, Quantitative PCR analysis
(triplicate analysis) showing the comparative expres-
sion levels of the control (nontransformed) and the
RNAi lines shown in Figure 1A. Arrows indicate un-
known proteins of approximately 26 kD.
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RESULTS AND DISCUSSION

RNAi Knockdown of T-Phylloplanin

RNAi is a powerful tool for demonstrating the
causal nature of a specific factor suspected of being
central to a response (Watson et al., 2005). RNAi
knockdown of tobacco ‘T.I. 1068’ resulted in loss of
T-phylloplanin proteins from all 29 primary (T0) trans-
genic lines tested. Figure 1A shows SDS-PAGE pat-
terns of LWWs prepared from control and nine
representative T0 lines. LWWs used represent washes
of similar leaves from similar size and age plants.
Throughout this work LWWs of different plants were
compared on the basis of a standardized leaf adaxial
surface area equivalents (cm2asae, for the amount of
LWW dry weight recovered from a given area of
adaxial surface) because measurable protein (using
common protein monitoring methods including the
bicinchoninic acid assay) was very low. We consider
only the adaxial surface in this standardization be-
cause the abaxial surface is shown to contain only
approximately one-fifth as much T-phylloplanin as the
adaxial surface, see below. As shown in Figure 1A,
control LWW gave the typical four band T-phylloplanin
pattern, while RNAi lines 3, 4, 5, 7, 18, 21, 24, 25, and 26
lacked T-phylloplanin bands, despite our having used
60 cm2asae of LWWs versus 20 cm2asae for control.
The nature of the approximately 26 kD band(s) in
RNAi lines 4 and 7 (arrows) is unknown. In any case,

the banding patterns of these two lines were not
typical of control LWW. Further study is needed to
clarify this observation. Figure 1B shows the expres-
sion of the T-phylloplanin gene (as determined using
quantitative PCR) in control and the RNAi lines shown
in Figure 1A. The degree of knockdown varied among
T0 lines, but all were greatly reduced. The apparent
knockdown of all 29 RNAi plants tested may be due to
the stability of RNAi in T0 populations, the nonessential
nature of the T-phylloplanin gene, and/or the unique-
ness of this gene.

LWWs from knockdown plants were assessed for
their ability to inhibit P. tabacina spore germination
using an in vitro microscope slide germination assay
(Shepherd et al., 2005). As shown in Figure 2, control
(nontransformed) tobacco and vector control (pBIMC,
lacking the RNAi construct) caused 100% inhibition at
1.0 and 2.0 cm2asae of LWW, while lower levels (0.48
and 0.24 cm2asae [later not shown]) caused only low
inhibition in all cases. In contrast, LWWs from all
RNAi lines showed low water control-like activity. All
samples used for in vitro spore germination tests were
used for leaf infection inhibition assays employing essen-
tially the method described earlier (Shepherd et al.,
2005). Correlation between spore germination inhibition
and leaf infection inhibition (2 notation signifying no
disease, and 1 signifying disease development, see
below the x axis) was observed for most samples. We
observed some variability in results of leaf infection

Figure 2. Inhibition of P. tabacina spore germination and leaf infection by LWWs of water and empty vector controls versus
RNAi T0 plants. Samples of LWWs from the surface equivalents denoted were mixed with spores and applied to glass slides (in
triplicate) to monitor germination (e.g. 0.48 cm2asae/400 spores is the lowest concentration tested). Means are the average of
three independent experiments. Water (no LWW), nontransformed control, and empty vector control (pBIMC) LWWs (bar graph
sets from the left; first, second, third, respectively) and T0 RNAi lines 5, 10, 12, 16, and 25 through 29 are shown. Results of
P. tabacina leaf infection inhibition assays on susceptible tobacco ‘Y14’ are shown below the x axis as 1, designating disease
occurrence, and 2, designating lack of disease. Inset: Titration of spore germination inhibition activity versus surface equivalents
of LWW from nontransformed tobacco.
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assays with some RNAi lines when 2.0 cm2asae was
tested. This may be due to higher diterpene contam-
ination of LWW due to LWW dose. But, we repeat,
LWWs of all RNAi lines lacked phylloplanin proteins
upon SDS-PAGE analysis (Fig. 1; data not shown).
Figure 3A illustrates the typical result of a leaf infec-
tion inhibition assay. In this example LWW from RNAi
line 5 was mixed with spores and applied as five spots
onto the adaxial surface of the upper half of the leaf
shown. Control plant LWW was applied with spores
as five spots onto the lower half. Infection occurred at
all spots with LWWs from the RNAi plant lacking
T-phylloplanins, and no infection occurred where con-
trol LWW was applied. Thus, reverse genetics exper-
iments leading to data of Figures 1, 2, and 3A are
consistent with the conclusion that T-phylloplanins
of tobacco are responsible for the ability of control
tobacco LWW to inhibit P. tabacina disease. These
results support earlier data that showed that a trun-
cated recombinant T-phylloplanin inhibits P. tabacina
spore germination, that ProteinaseK treatment of
LWW results in loss of this activity and T-phylloplanin
proteins, and that spore germination inhibition and
leaf infection inhibition show similar LWW protein
concentration dependence (Shepherd et al., 2005).
Mature and midage RNAi plants were resistant to
P. tabacina though LWWs from these plants did not
inhibit spore germination in vitro or prevent leaf
infection. We suggest that this is due to the continued
presence of high levels of tall-trichome-produced di-
terpenes that are shown to inhibit P. tabacina disease
when present in high levels, as found on midmaturity
and mature tobacco ‘T.I. 1068’ leaves (Jackson and
Danehower, 1996). When seedlings (five leaf stage) of
RNAi plants were tested we found these to be sus-
ceptible, presumably because diterpene levels were
approximately 20% of that of mature leaves. As illus-
trated in Figure 3, B and C, disease occurred on young
RNAi plants of this normally resistant tobacco variety.
Thus, we suggest that tobacco has two surface-
disposed mechanisms for inhibiting P. tabacina disease,
SGT-produced T-phylloplanins, and, on older leaves,
tall-trichome-produced, abundant diterpenes (known
to provide resistance to P. tabacina, when abundant, see
Shepherd et al., 2005) plus T-phylloplanins.

The apparent nonlinearity in spore germination inhi-
bition activity of control and vector control (pBIMC)
shown in Figure 2 suggested that a threshold level of
T-phylloplanin was required for activity. To elaborate
on this observation we examined concentration de-
pendence more thoroughly. As shown in the inset of
Figure 2, nonlinear concentration dependence was
found, with an apparent threshold of approximately
1.0 cm2asae. We speculate that this may suggest a
mechanism in which a certain level of T-phylloplanin/
spore wall or plasma membrane aggregate is required
to affect the spore so as to inhibit germination. Since
spores used in our studies were thoroughly washed to
remove an intrinsic inhibitor (Svircev et al., 1989), it is
unlikely that T-phylloplanin interacts with this un-

characterized, but recognized entity. The spore wall
structure and details of the germination process in
P. tabacina and the mechanism of spore germination
inhibition by T-phylloplanin are not understood.

We have found that most broadleaf plants examined
possess phylloplanins (LWW proteins, as demonstrated
by SDS-PAGE), but their abundances and polypep-
tide profiles vary greatly (Shepherd et al., 2005; R.W.
Shepherd and G.J. Wagner, unpublished data). Earlier
we showed that tobacco, sunflower, and soybean have
very high, moderate, and low levels of phylloplanins,
respectively, based on SDS-PAGE of similar surface area
equivalents of LWWs (Shepherd et al., 2005). Here we
compared the ability of LWWs from these plants and
from jimson weed (moderate-to-high phylloplanin level)
to inhibit P. tabacina spore germination and leaf infection.

Figure 3. P. tabacina leaf infection inhibition assays. A, Standard assay
of LWWs on attached leaves of the five leaf stage, susceptible tobacco
‘KY14’. Spores were mixed with a LWW and applied to a leaf in five
separate 4 mL drops. Each spot represents 1 cm2asae of LWW and 400
spores giving a spot area of approximately 1 to 1.5 cm2. In the example
shown, LWW of RNAi line 5 was applied to the adaxial surface, at the
regions indicated with arrows, to the upper leaf half, and control LWW
was applied similarly to the lower leaf half. After 5 d lesions were
evident on the top half of leaves. B, Leaf infection inhibition assay on
attached leaves of young (five leaf stage) tobacco ‘T.I. 1068’, RNAi line
25, versus control. The figure shows the adaxial surfaces of two RNAi
plant and two control plant leaves inoculated with P. tabacina spores,
detached and photographed 7 d later. Chlorosis and early necrosis (nec)
is evident on leaves from this (RNAi line 25) and other RNAi lines (data
not shown), particularly near the tip. These same leaves were placed in
plastic bags and in the dark to induce sporulation. After 12 h gray,
sporulating spots (sp) were visible on the abaxial epidermis, as is typical
of this disease, and necrotic areas (nec) became more prominent
(Fig. 3C).
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Figure 4 shows the relative spore germination inhibi-
tion activities of water control, tobacco, jimson weed
(both of the family Solanaceae), sunflower (Astera-
ceae), and soybean (Fabaceae). As shown, the relative
activities, based on surface area, are: sunflower .
tobacco . jimson weed. Soybean LWW showed no
activity at the surface area equivalent used. Soybean,
Zea mays, and Vitis vinifera, like soybean, appear to
have low levels of, or no phylloplanins, while most
broadleaf plants tested do (R.W. Shepherd and G.J.
Wagner, unpublished data). There appeared to be a
threshold concentration effect with tobacco, sunflower,
and jimson weed LWWs. The same preparations used
to assess spore germination activity in Figure 4 were
used for leaf infection inhibition assays. Results were
consistent with those of spore germination assays, as
shown at the bottom of the figure. The observation that
sunflower LWW inhibited P. tabacina spore germina-
tion, indeed with higher activity per cm2asae than
tobacco or jimson weed LWWs, was particularly
interesting because this plant is of a different plant
family than tobacco and jimson weed, and P. tabacina
is reported to be host specific to Nicotiana species
(Svircev et al., 1989). We speculate that presence of
phylloplanins that inhibit P. tabacina on sunflower and
jimson weed may be components of innate resistance
to P. tabacina (and perhaps related pathogens) in these
plants, or, phylloplanins on these plants affect other
pathogens, perhaps using a similar mechanism. We
note that attempts to infect sunflower and jimson
weed leaves by applying P. tabacina spores (100–300
spores/mL) resulted in no disease (data not shown).

We determined if LWW proteins of sunflower and
jimson weed, like T-phylloplanins of tobacco, were
sensitive to proteolysis. As shown in Figure 5, treat-
ment with insoluble ProteinaseK resulted in the loss of
major LWW polypeptides in each case. As in inhibition
activity experiments shown in Figure 2, all samples
represent the same LWW surface area equivalent (15

cm2asae). Note that polypeptide profiles of tobacco,
sunflower, jimson weed, and soybean phylloplanins
(Fig. 5, lanes 3, 5, 7, and 9, respectively) are different.
Double bands at approximately 67 kD in lanes 3 to 9
are electrophoresis artifacts common to all samples.
Boiling of samples to precipitate proteins also resulted
in loss of soluble phylloplanins (data not shown). We
tested the effects of ProteinaseK treatment and boiling
of sunflower and jimson weed LWWs in P. tabacina
spore germination and leaf infection assays (Fig. 6).
Surface area equivalents were adjusted to provide for
the minimum concentration needed to cause 100%
inhibition with untreated LWW. As shown, proteolysis
and boiling destroyed inhibitions, suggesting that phyllo-
planins are responsible for the activities. In our previous
work (Shepherd et al., 2005), we showed that proteolysis
of tobacco LWW resulted in loss of spore germination
inhibition activity. Here we extend that observation to
include loss of leaf infection inhibition activity with
tobacco, sunflower, and jimson weed LWWs. Trichome
exudate of sunflower contains sesquiterpenes and
diterpenes (Spring et al., 1992) that might be respon-
sible for P. tabacina inhibition activities shown. How-
ever, these are not thought to be localized on the leaf
surface and therefore it is unlikely they would be
extracted by brief water washing. And, it is highly
unlikely that they would be impacted by ProteinaseK
treatment. Similarly, trichome exudate acyl sugars of
Datura species, which are shown to have insect inter-
active properties (Hare, 2005), are not likely impacted
by ProteinaseK. To verify the correlations found here
between protease- and boiling-sensitive phylloplanins
and P. tabacina inhibition activities, the genes for
sunflower and jimson weed must be isolated, recom-
binant protein prepared, and tested, and RNAi used to
demonstrate a causal role of these phylloplanins, as
has been done with T-phylloplanin (Shepherd et al.,
2005, and here). We note that an unannotated EST from
sunflower (HaCD847345) having significant homology
to the T-phylloplanin gene has been reported (Shepherd
et al., 2005).

Figure 4. Relative inhibition of P. tabacina spore germination and leaf
infection by tobacco, jimson weed, sunflower, and soybean phyllopla-
nins at different LWW concentrations. Results of leaf infection inhibi-
tion assays on susceptible tobacco ‘KY14’ are shown below the x axis
as 1 designating disease occurrence and 2 designating lack of disease.

Figure 5. Protease sensitivity of tobacco, jimson weed, sunflower, and
soybean phylloplanins. Lane 1 contains Mr markers. Lanes 2 and 3,
tobacco LWW, 1 and 2 ProteinaseK, respectively; lanes 4 and 5,
sunflower LWW, 1 and 2 ProteinaseK, respectively; lanes 6 and 7,
jimson weed LWW, 1 and 2 ProteinaseK, respectively; lanes 8 and 9,
soybean LWW, 1 and 2 ProteinaseK, respectively. Protein bands at
approximately 32 kD in lanes 2, 4, 6, and 8 are soluble ProteinaseK
released during digestions. All samples contained 15 cm2asae of LWW.
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Characteristics of T-Phylloplanin

Genetic evidence indicates that the T-phylloplanin
gene produces one protein, but four bands are found
after SDS-PAGE of tobacco LWW. All amino acid se-
quences recovered from T-phylloplanin bands I to IV
are present in the protein sequence of the T-phylloplanin
gene, representing 54% of the open reading frame
(Shepherd et al., 2005). The predicted molecular mass
of a protein encoded by the T-phylloplanin gene is
13 kD, and the smallest band (band I, Fig. 1A) found
by SDS-PAGE is approximately 16 kD. Bands II, III,
and IV (19, 21, and 25 kD, respectively) do not appear
to be multiples of 13 kD. A truncated, recombinant
T-phylloplanin that inhibits P. tabacina spore germina-
tion is approximately 11 kD (Shepherd et al., 2005). These
results suggest the possibility of posttranslational mod-
ification to yield all four bands. Ser and Asn each
account for 14% of T-phylloplanin amino acid residues,
and thus there is much potential for glycosylation. And,
most secreted proteins of eucaryotes are glycoproteins.
We applied sensitive Schiff staining to tobacco LWW
after SDS-PAGE. As shown, T-phylloplanin bands were
highly stained (Fig. 7A) and the control staining pro-
cedure used to distinguish nonspecific background
staining (periodic oxidation is omitted) clearly reduced
staining of T-phylloplanin bands and glycosylated
protein standards, but not nonglycosylated standards
(Fig. 7B). Protein profiles before and after glycoprotein
staining were identical (data not shown). We attempted
to use bacteria-derived O-glycosidase, EC 3.2.1.97, and
N-glycosidase A, EC 3.5.1.52, to cleave carbohydrate,
but these enzymes, which have specific carbohydrate/
protein linkage requirements, had no impact. Attempts
to chemically deglycosylate using trifluromethanesul-
phonic acid resulted in loss of Schiff stain, but proteins
were apparently degraded. Results of Schiff staining
suggest that the multiplicity of T-phylloplanins may
be due to differential glycosylation and are consistent

with earlier data indicating the occurrence of one
T-phylloplanin gene and one protein product (Shepherd
et al., 2005). However, other possibilities may explain
the band multiplicity (e.g. posttranslational modifi-
cation of the C terminus). We note that differences
between the total composition of amino acids (those
stable to acid hydrolysis) of bands II and III were found
to be small (approximately 10%, data not shown). Un-
derstanding the nature of and role of sugar substitu-
tion in T-phylloplanins requires further study. But, we
speculate that the highly glycosylated, highly hydro-
phobic protein nature of T-phylloplanin may assist its
solution in amphoteric, copious, tall-trichome-secreted
diterpenes and sugar esters, and facilitate its wide
dispersal on the leaf surface. We note that sunflower
and jimson weed phylloplanins also appear to be
glycosylated (data not shown). And, both species pos-
sess small trichomes (data not shown), somewhat sim-
ilar in morphology (short, procumbent) to SGTs that
produce T-phylloplanins. Soybean and Z. mays appear
to lack this type of trichome.

Since airborne P. tabacina spores are the source of
blue mold disease and disease is known to generally
initiate on the adaxial (upper) surface (Svircev et al.,
1989), one expects that adaxial leaf surfaces might be
enriched in T-phylloplanins, above that found on the
abaxial surface. We determined the relative distribu-
tion of T-phylloplanins on the upper (adaxial) and
lower (abaxial) surfaces of single leaves and found that
the former had substantially more proteins than the
latter (Fig. 8, A and B, respectively). It is difficult to

Figure 6. Influence of ProteinaseK digestion and boiling on P. tabacina
spore germination inhibition and leaf infection inhibition by tobacco,
sunflower, and jimson weed LWWs. Concentrations of tobacco (1 cm2

asae), sunflower (0.2 cm2asae), and jimson seed (6 cm2asae) were
adjusted to provide maximum inhibition of spore germination in the
absence of ProteinaseK. Results of leaf inhibition assays are shown
below the x axis as 1 designating disease occurrence and 2 designat-
ing lack of disease.

Figure 7. The glycoprotein nature of T-phylloplanins. A, Glycoprotein
staining after reaction in the presence of periodate: lane 1, standard
proteins (ovalbumin and RNAseB, glycosylated [asterisks], and BSA
and b-casein, not glycosylated); lanes 2 and 3, T-phylloplanin (15
and 7.5 cm2asae, respectively). B, Glycoprotein staining after reac-
tion without periodate: lane 1, standard proteins; lanes 2 and 3,
T-phylloplanin (15 and 7.5 cm2asae, respectively); lane 4, Mr markers.
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quantitatively determine the distribution of short pro-
cumbent trichomes on entire leaf surfaces. However,
light microscope observations of leaf cross sections
clearly indicate an enrichment of at least 4- to 5-fold of
these trichomes on the upper surface (Fig. 8C). Thus,
there is a correlation between T-phylloplanin enrich-
ment on the upper leaf surface, enrichment on this
surface in the numbers of the trichome type shown to
produce them, and the airborne nature/directionality
of P. tabacina spore deposition onto the leaf.

To assess if T-phylloplanins were renewed after
water washing to remove all protein (to perhaps mimic
removal by rain), we thoroughly washed a group of
size/age/leaf number matched, mature leaves (at-
tached to the plants), then rewashed individual leaf-
position-matched mature leaves on days 7, 11, 16, and
21. As shown in Figure 9, protein was renewed, but
total leaf protein appeared to decline after 11 d, per-
haps suggesting reduced synthesis as leaves age. A
water wash made approximately 3 h after the initial
one on day 0 showed only traces of bands II and III
(data not shown). We also found that young leaves and
auxiliary-bud leaves produce more T-phylloplanins
than old leaves (data not shown), and we note that
not all T-phylloplanin is washed from field plants
after a strong rain (data not shown). Results of the
above experiments are consistent with the positioning
and renewability of T-phylloplanins to serve as a first-
point-of-contact defense against P. tabacina disease
in plants growing in a natural environment. Further
study is needed to define, in detail, phylloplanin syn-
thesis and renew ability at different stages of leaf
development.

Summary

The reverse genetics approach confirming a corre-
lation between an effecter gene product and a disease

is a powerful tool in understanding the role of plant
defenses against pathogens. Here we show that RNAi
knockdown of the T-phylloplanin gene results in loss
of T-phylloplanin mRNA, proteins, P. tabacina spore
germination inhibition, and leaf infection inhibition
activities of LWW, and renders young RNAi plants
susceptible to disease. These findings confirm earlier
results of studies using T-phylloplanin-containing LWWs

Figure 8. Distribution of T-phyllo-
planins and SGTs on adaxial (upper)
and abaxial (lower) leaf surfaces of
tobacco. A, Sequential series of
three 20 s LWWs (U1, U2, U3,
respectively) of the adaxial surface
of a mature leaf. B, Three similar
washes of the abaxial surface of the
same leaf (L1, L2, L3, respectively).
C, Two cross-sectional views of a
mature leaf showing the relative
enrichment of SGTs (arrows) on
the adaxial versus abaxial surfaces.

Figure 9. Renewability of leaf T-phylloplanins after water washing.
Plants were water washed and then matched leaves were rewashed
after 7, 11, 16, and 21 d. LWWs were lyophilized and examined by
SDS-PAGE, along with an initial (day 0) LWW.
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of wild-type plants that showed a correlation between
the presence of T-phylloplanin and P. tabacina spore
germination. We also addressed here the enigma pre-
sented by the evidence for one apparent T-phylloplanin
gene, but four T-phylloplanin polypeptides (apparently
having the same amino acid sequence) on SDS-PAGE by
discovering the glycoprotein nature of the polypeptides.
Several aspects of T-phylloplanins that relate to the
biology of their surface disposed nature and the airborne
path to spore deposition in P. tabacina infection were
studied. We found enrichment of T-phylloplanins on the
adaxial leaf surface, which correlates with adaxial en-
richment in SGTs producing them, and with the airborne
route of spore contact with the leaf. We also show that
T-phylloplanins are renewable after water washing, a
correlation that supports adaptability of a T-phylloplanin-
based defense component to growth in a natural envi-
ronment that includes occasional washing of leaves by
rain or dew. Finally, a most interesting finding is that
LWW of sunflower bears a protease-sensitive surface
component (phylloplanin) that inhibits P. tabacina
spore germination and leaf infection. This was un-
expected because sunflower (order Asterales) is not
closely related to plants of the order Solanales (tobacco,
jimson weed), and is not known (or found here) to be
susceptible to the highly selective pathogen, P. tabacina
(Svircev et al., 1989). The characteristics of sunflower
(and jimson weed) phylloplanins and their genes, and
their possible impacts on pathogens of these plants
remain to be researched. Understanding whether the
activity of sunflower phylloplanins against P. tabacina
reflects a common mechanistic property of certain
phylloplanins of unrelated species, a coevolutionary
remnant, or another property remains to be deter-
mined.

MATERIALS AND METHODS

Plant Materials and LWW Collections and
Protein Characterization

Experimental tobacco (Nicotiana tabacum) ‘T.I. 1068’, sunflower (Heilanthus

annuus) ‘Dove Hybrid’, jimson weed (Datura metel), and soybean (Glycine max)

var. Hardsoy were grown in the greenhouse under natural light at 22�C to

24�C with weekly fertilization with 20:20:20 NPK, primarily between Septem-

ber and July. To determine leaf area, leaves were traced onto uniform-weight

paper and areas were determined by weighing tracings. LWWs, obtained by

washing leaves in distilled water for 20 s with gentle agitation, were lyo-

philized, resuspended in distilled water, and centrifuged at 12,000g for 5 min

before supernatants were used. Quantification of LWWs was made on the

basis of leaf surface area from which they were obtained (assuming most

phylloplanin to be in the adaxial surface) because standard protein assays

using the Bio-Rad (Bio-Rad Laboratories) and bicinchoninic acid (Pierce

Chemical Company) did not provide reliable results, or protein levels were

too low (for RNAi plants). LWW quantity is described as cm2asae. SDS-12%

Glycine-PAGE and silver staining was as previously described (Shepherd

et al., 2005). The glycoprotein nature of phylloplanins was assessed using the

Glyco-Profile III, fluorescent glycoprotein detection kit (Sigma-Aldrich).

Glycosylation indicator controls included the use of the relatively highly

glycosylated proteins ovalbumin and RNAseB and bovine serum albumin and

b-casein, proteins lacking glycosylation. And parallel experiments were

made with and without periodic acid reagent. To assess distribution of

T-phylloplanins on the adaxial versus abaxial surfaces, leaves were gently

sprayed with distilled water using a fine airbrush sprayer, first the adaxial

surface then the abaxial surface. Three consecutive sprayings were made of

each surface were collected separately, lypholyzed, and analyzed.

RNAi Constructs and Plant Transformation

The RNAi construct consisted of S-PhyllP (sense oriented) and AS-PhyllP

(antisense oriented) T-phylloplanin sequences, minus the stop codon (bases 46–

495 of T-phylloplanin mRNA), joined by a linker so that dsRNA molecules with

hairpin single-stranded loops would be formed after transcription. The linker

region was generated by treating the GUS gene in pBI121 with EcoRV and

religating the blunt ends to make dGUS containing a 230 bp deletion. S-PhyllP

and AS-PhyllP were PCR amplified from ‘T.I. 1068’ total cDNA using primers

that incorporated different restriction sites (S-PhyllP sense, XbaI, 5#-AGCTTCT-

AGAATGGCTTCAGCAAAAATTTTC-3#; S-PhyllP antisense, PstI, 5#-AGC-

TCTGCAGATTGATGTTAAGATTAAGTA-3#; AS-PhyllP sense, SstI, 5#-AGC-

TGAGCTCATGGCTTCAGCAAAAATTTTC-3#; AS-PhyllP antisense, XhoI,

5#-AGCTCTCGAGATTGATGTTAAGATTAAGTA-3#). The dGUS gene was

PCR amplified using primers that incorporated PstI and XhoI sites (dGUS

sense, 5#-AGCTCTGCAGATGTTACGTCCTGTAGATACCCCA-3#; dGUS an-

tisense, 5#-AGCTCTCGAGTCATTGTTTGCCTCCCTGCT-3#). All PCR products

were cloned into the vector pGem-T (Promega) for genetic manipulations

using conventional molecular cloning techniques. The final construct, PhyllP-

RNAi (consisting of XbaI-S-PhyllP-PstI/PstI-dGUS-XhoI/XhoI-AS-PhyllP-SstI),

was cloned into the plant transformation vector pBI121 that had been treated

with XbaI and SstI. The transformation of this construct into Agrobacterium

tumefaciens GV3101 and subsequent introduction into tobacco ‘T.I. 1068’ were

as described earlier (Shepherd et al., 2005).

Quantitative PCR

Total RNA was isolated from the leaves of control and RNAi plants using

RNeasy Plant mini kit (Qiagen). RNA purity was evaluated by monitoring

OD260/OD280 nm ratio ($1.9). Reverse transcription reactions were per-

formed with 2 mg RNA and oligo dT primers, using the Omniscript reverse

transcription kit (Qiagen). Phylloplanin primers for the real-time PCR were

selected within the T-phylloplanin cDNA (GenBank accession Nt AY705384).

The forward and reverse primers were 5#-GCTGCATTTGCCATACTTGTT-3#
and 5#-GCTCCCGATCCATTTGTTATT-3#, respectively. Primers for the tubu-

lin gene (normalization standard) were: forward, 5#-ATGAGAGAGTGCA-

TATGCAT-3#; reverse, 5#-TTCACTGAAGAAGGTGTTGAA. The reactions

contained: 10 mL iTaq SYBR Green supermix with ROX (Bio-Rad Labs),

500 nm of each primer, 1 mL cDNA template from the reverse transcription

reaction, and water, to make a final volume to 20 mL. Reactions containing

T-Phylloplanin primers and tubulin primers were otherwise identical. The

reaction mixtures were assembled in low profile tubes (MJ Research). The run

protocol was: denaturing 294�C for 5 min; amplification, repeated 36 times

(94�C for 45 s, 53�C for 45 s, 72�C for 2 min), final extension at 72�C for 7 min,

and cooling to 10�C. Real-time PCR and fluorescence detection were executed

with the DNA Engine Opticon2 system (MJ Research).

To quantify the relative amounts of T-phylloplanin message we applied

the DD method (ratio 5 22DDCP) developed by PE Applied Biosystems

(Perkin Elmer; Pfaffl, 2001). All real-time PCR experiments were repeated

three times.

Spore Germination and Leaf Infection Inhibition Assays

Assays were essentially as described earlier (Shepherd et al., 2005), but

using 400 spores/4 mL in both assays.

P. tabacina susceptible tobacco ‘KY14’ was used for leaf infection inhibition

assays testing RNAi and control plant LWWs. Where RNAi plants were tested

for disease susceptibility, 400 spores/4 mL were spotted on leaves, and these

analyzed as described in the legend of Figure 3.

ProteinaseK Digestions

Protease digestion of LWWs was made essentially as previously described

(Shepherd et al., 2005), but with several modifications. Insoluble ProteinaseK

affixed to acrylic beads (no. P0803, 50 mg, Sigma-Aldrich) was placed in a 1.5

mL Eppendorf tube with sterile deionized water, and washed three times,

with centrifugation at 2,600g. Samples in 80 mL water were gently mixed with
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beads and incubated for 2 h at 37�C. Tubes were centrifuged at 2,600g and

supernatants used for assays. To inactivate by boiling, samples were boiled for

10 min and centrifuged at 10,000g for 10 min.

Accession Number

The GenBank accession number of the T-phylloplanin gene is AY705384.
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