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ABSTRACT OF DISSERTATION 

 

 

RNA NANOTECHNOLOGY FOR NEXT GENERATION TARGETED 

DRUG DELIVERY 

 

 

The emerging field of RNA nanotechnology is developing into a promising 

platform for therapeutically application. Utilizing the state-of-art RNA nanotechnology, 

RNA nanoparticles can be designed and constructed with controllable shape, size for both 

RNA therapeutics and chemical drug delivery. The high homogeneity in particle size and 

ease for RNA therapeutic module conjugation, made it feasible to explore versatile RNA 

nanoparticle designs for preclinical studies. 

One vital module for therapeutic RNA nanoparticle design is RNA aptamer, 

which can enable the RNA nanoparticles find its specific target for targeted drug delivery. 

A system of screening divalent RNA aptamers for cancer cell targeting was developed. 

The system utilized a highly stable three way junction (3WJ) derived from phi29 

bacteriophage packing RNA (pRNA). Instead of using one random loop for aptamer 

SELEX as traditionally, the divalent RNA nanoparticle library contains two variable 

loops for substrate binding, similar to protein antibodies. The presence of two binding 

sites on one aptamer greatly enhanced its affinity, and the thermodynamically stability of 

pRNA-3WJ motif enables controllable RNA folding of each loop. The selected RNA 



antibody against epithelial adhesion molecule (EpCAM) A9-8 can deliver therapeutic 

anti-miR21 to EpCAM positive cancer cells in vitro. The feasibility of using RNA 

aptamer for targeted chemical drug delivery is explored. A phosphorothioate bond 

modified DNA (thio-DNA) aptamer targeting annexin A2 was utilized as ligand to build 

nucleic acid nanoparticles for ovarian cancer targeted drug delivery. A DNA/RNA hybrid 

nanoparticle was generated by conjugating the thio-DNA aptamer to pRNA-3WJ motif. 

The DNA/RNA hybrid nanoparticles showed favorable property for delivering 

doxorubicin to ovarian cancer cells in vitro, also targeted to ovarian cancer xenograft in 

bio-distribution study in vivo. Utilizing the spatial orientation of pRNA-3WJ, cholesterol 

modification on the arrow tail of pRNA-3WJ can display RNA nanoparticle on the 

surface of exosomes/extracellular vesicles (EV) for active targeting. Taking the advantage 

of RNA ligand for specific targeting; and exosome for efficient membrane fusion, cytosol 

homing and functional siRNA delivery; the RNA ligand decorated exosomes were 

constructed for specific delivery of siRNA to cancer cells. PSMA aptamer-displaying 

exosomes and encapsulated survivin siRNA (PSMAapt/EV/siSurvivin) showed efficient 

gene silencing both in cell culture and animal trials. After systemically injection of 

PSMAapt/EV/siSurvivin to prostate cancer xenograft mice, cancer growth was almost 

completely blocked. These results suggest the advance of RNA nanotechnology can 

further drive its way towards clinical application as a novel next generation drug delivery 

system. 

 

KEYWORDS: RNA Nanotechnology, Phi29 packaging motor, aptamer, SELEX, 

exosomes, prostate cancer, ovarian cancer 
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Chapter 1: Introduction and Literature Review 

BRIEF SUMMARY: 

 Chapter 1 begins this thesis with an overview on the RNA nanotechnology and its 

application for targeted drug delivery. First the current status and promise of 

nanotechnology and RNA nanoparticles for drug delivery system are examined. Next the 

status of RNA aptamers development, the advancement of aptamer selection method, its 

application and advantages for clinical application are discussed. Finally, Extracellular 

vesicles (EVs) as an emerging field in therapeutics and diagnosis is introduced, including 

its biogenesis, native functions in biological organism, regulation of its secretion. The 

application extracellular vesicles as new generation therapeutics as well as drug delivery 

vehicles are discussed. 

 Chapter 2 looks at the development of bivalent RNA aptamers targeting to cancer 

stem cell marker epithelial cell adhesion molecule (EpCAM). The highly stable three way 

junction (3WJ) derived from phi29 DNA packaging motor pRNA was utilized as a core 

motif to construct an antibody shaped RNA library with two random regions for binding 

region selection. The extracellular domain of EpCAM protein was used as target for RNA 

aptamer selection. The selected divalent 2’F-pyrimidine modified RNA aptamers can 

bind specifically to its target with KD value around 100nM. The selected EpCAM 

aptamer can bind to EpCAM positive cancer cells and specifically delivery locked 

nucleic acid (LNA) based anti-miR21 into cancer cells and induce cancer cell apoptosis. 

 Chapter 3 studies how to utilize the orientation of pRNA-3WJ to control RNA 

loading or surface display on extracellular vesicles for efficient cancer cell targeting, 
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siRNA delivery and cancer regression. Placing a membrane anchoring cholesterol 

molecule at the arrow tail of pRNA-3WJ resulted displaying of RNA aptamer or folate 

ligand on to the surface of extracellular vesicles. Taking advantage of the RNA aptamer 

ligand for specific targeting and EVs for efficient membrane fusion, the resulting RNA 

aptamer-displaying EVs were used for specific delivery of siRNA with efficient gene 

silencing resulting in complete blockage of cancer growth. Animal studies showed that 

the nanometer scale ligand-displaying EVs specifically localized in tumor xenografts 

without accumulating in healthy organs. Efficient gene silencing was observed both in 

cell culture and animal trials from systemic administration of Prostate Membrane 

Specific Antigen (PSMA) aptamer-displaying EVs loaded with survivin siRNA.  

 Chapter 4 studies the application of RNA aptamer harboring nanoparticles for 

ovarian cancer targeted delivery of chemotherapeutics doxorubicin. A multifunctional 

RNA nanoparticle harboring phosphorothioate bond modified DNA aptamer targeting 

annexin A2 protein, and GC rich sequence for intercalating doxorubicin was designed 

and constructed. The highly stable pRNA-3WJ structural motif provides a rigid core to 

the RNA architecture and disfavors misfolding of aptamers when conjugated to other 

oligonucleotides, while keep their affinity and functions intact. Thus, this nanoparticle 

design is of significance utility for aptamer mediated targeted delivery. The nanoscale 

RNase-resistant RNA nanoparticles remained intact after systemic injection in mice and 

accumulated specifically to tumors with little or no accumulation in healthy organs 6 h 

post-injection. The RNA nanoparticle/doxorubicin intercalates showed enhanced toxicity 

to ovarian cancer cells with annexin A2 overexpressing, but reduced toxicity to annexin 

A2 negative cells in cell toxicity assay. These results suggest that the constructed 
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nanoparticle can potentially enhance ovarian cancer targeted doxorubicin delivery for 

cancer treatment at lower doses with enhanced efficacy.  

Chapter 5 studies the discovery of a new method for potent drug development 

using power function of stoichiometry of homomeric biocomplexes or biological 

nanomotors. Targeting multisubunit homomeric biological motors with a sequential 

action mechanism, highly potent drugs can be developed. Inhibiting multisubunit tragets 

with sequential actions resembles breaking one bulb in a series of Christmas lights, which 

turns off the entire string. Besides the drug binding affinity, the potency of drug 

inhibition depends on the stoichiometry of targeted biological complexes. As biomotors 

with multi-subunits are widespread in viruses, bacterial and cells, this approach should 

have general application in the development of inhibition drugs with high efficiency. 

Most viral DNA packaging motors contain a high-stoichiometry machine composed of 

multiple components that work cooperatively and sequentially. Thus, it is an ideal target 

for potent antiviral drug development.  

Chapter 6 briefly summarizes the major findings in the way of RNA 

nanotechnology for pharmaceutical application discussed in this thesis dissertation. 

Furthermore, the future direction of this work is described providing a prospective on 

research that is still needed to move forwards the application of RNA nanotechnology. 

Finally, the current state of RNA nanotechnology is discussed looking at the major 

hurdles that have been solved and look at how the recent advancements can drive RNA 

nanotechnology into the cancer therapy. 
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HYPOTHESIS: 

 The 3WJ motif from Phi29 bacteriophage packaging RNA (pRNA) provides a 

stable RNA scaffold for the construction of nanoparticles for the treatment of cancers. 

LITERATURE REVIEW: 

1.1 Nanotechnology and drug delivery 

Nanotechnology is a young scientific field that represents a vast variety of 

disciplines ranging from fundamental material science to many applied sciences 

including pharmaceutics. The application of nanotechnology in medicine is referred to as 

nanomedicine, which has profound impact to improve the efficacy of chemotherapeutics 

and gene therapeutics, also improve diagnostic sensitivity for early disease diagnosis(1) 

by enhancing tumor targeting and reduce its systemic toxicity, given the premise of 

developing intelligent drug delivery systems.  

Nanomedicine field is undergoing a revolution in the recent years. A wide variety 

of nanoparticle materials are studied and used in nanomedicine. The varieties of material 

include liposomes, polymeric micelles, dendrimers, quantum dots, iron oxide particles, 

carbon nanotubes, and nucleic acid based nanoparticles (2-4). The most exciting concept 

of nanomedicine research is the emerging of multifunctional nanoparticles. They 

normally include multiple mix and matched functionalities, include components of ligand 

for targeting nanoparticles to a specific location; linkers and core structures that give the 

nanoparticle defined shape and size; therapeutic or diagnostic cargoes that either 

encapsulated or conjugated to the nanoparticles; and sometimes with a proper coating 

material to improve its bioavailability and  biocompatibility(3). For example, chemical 

drugs can be loaded into traditional nano-delivery systems such as micelle (5), polymer 
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nanoparticles (6), liposome (7), carbon nanomaterials (8), quantum dots (9,10), and gold 

nanoparticles (11) for in vivo tumor targeted imaging and therapy. Nanomedicine is also 

harnessed for the delivery of gene therapeutics including RNAi drugs. 

RNA interference is an innate cell machinery to regulate gene expression by 

noncoding RNA, which mainly includes small interfering RNA (siRNA) and micro RNA 

(miRNA). The short single stranded miRNAs can form duplexes with its complementary 

mRNA sequences in the 3’untranslated region. RNAi inhibits specific target gene 

expression either by mRNA degradation or translation inhibition. MiRNA mediated 

mRNA degradation normally occurs only when the miRNA perfectly matches its target 

mRNA; partially complementary to target mRNA sequence inhibits the mRNA 

translation with even a single nucleotide base change (12). The challenges to apply RNAi 

based therapies include their cellular uptake, bio-distribution, stability, off-target effect 

and toxicity in vitro and in vivo. The negative charge of RNAi molecules makes them 

difficult to cross cell plasma membrane (13). To enhance cellular uptake of RNAi, 

traditional transfection techniques, such as electroporation, gene gun, microinjection, and 

viral transfection can be employed in vitro; but not for in vivo systemically administration. 

To facilitate clinical application of RNAi treatment, passive tissue targeting and active 

cellular targeted delivery strategies are explored. Passive targeting strategies mainly 

utilize positively charged natural or artificial polymer materials forming complex with 

negatively charged RNAi for delivery. Stable nucleic acid-lipid particles (SNALP) are 

lipid based nanoparticles which encapsulate RNAi payloads by forming complex between 

the cationic lipid with negative charged RNA(14). The concern for SNALPs is its 

accumulation in liver and toxicity for liver, kidney and immune system(15), thus it is not 
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used for human testing. 1.2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) (16), 

histidine-lysine peptides (17), atelocollagen rich in positively charged amino acids (17) 

have been used for siRNA delivery through passive targeting by EPR effect. Active 

cellular targeting is a very promising direction for systemic delivery. Different 

approaches have been studied for loading siRNA to achieve target cell specific delivery. 

Cholesterol siRNA conjugates mainly targets liver(18); N-acetylgalactosamine modified 

dynamic polyconjugates mainly targets the asialoglycoprotein receptor on 

hepatocytes(18); RGD (Arg-Gly-Asp) peptide modified PEI (polyehtyleneimine) 

complex mainly targets integrins which is a receptor highly expressed on cancer cells and 

extracellular matrix around tumor(18); transferrin conjugated PEG-cylodextrin 

containing poly-cationic (CDP) particles targets transferrin receptors expressed on many 

tumors(19); the specific ligand expressed as fusion proteins composed of mAb fragments 

with positively charged human truncated protamine targets specific receptor expression 

cells(20); aptamer siRNA chimeras also provided a new platform for specific cell 

targeted siRNA delivery(21). The siRNA delivery systems under clinical trials now are 

mainly CDP nanoparticles, SNALP liposomes for systemic administration, and local 

administration by intravitreal injection or inhalation (13).            

The well-known EPR (enhanced permeability and retention) effect is a major 

mechanism for nanomedicines getting accumulated in tumors and thus distinguishes the 

nanomedicine from traditional small chemical drugs. In fact, whether EPR effect is 

sufficient to achieve the desired enhanced therapeutic effect in human is questioned. EPR 

effect only offers around 2-fold increase tumor environment than normal organs in fact 

(22), as the tumor microenvironment is quite complex. The tumor vasculature usually has 
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incomplete endothelial lining thus having larger pores leading to higher vascular 

permeability and hydraulic conductivity (23). However, there are multiple barriers to the 

nanodelivery systems to reach tumor cells, except for the clearance by mononuclear 

phagocyte systems (MPS) for larger nanoparticles or by kidney glomerular filtration for 

smaller nanoparticles, the abnormal tumor vasculature, the high interstitial fluid pressure 

in tumor tissue, the solid mechanical stress produced by tumor growth and abnormal 

extracellular matrix in tumor tissue all created barriers for extravasation of nanoparticles 

to penetrate into tumors(22). Methods to improve the EPR effect of nanodelivery systems 

including modulating the tumor blood flow, modulating the tumor vasculature and stroma 

and killing the cancer cells to reduce barrier functions are under intensive study(24). A 

very promising way to improve the therapeutic effect of nanomedicine stratagem call 

Near infrared photo immunotherapy involves using a targeted monoclonal antibody 

conjugated to a photon absorber IR Dye 700, where the EGFR targeting antibody directed 

nanoparticles to bind tumor cell membrane, 24 h post administration, the tumor was 

exposed to NIR light at 690 nm thus induces nearly immediate necrotic tumor cell 

death(25).    

Birth of RNA nanotechnology 

Advancement in nanotechnology paved the way for developing more 

sophisticated drug delivery systems for transporting varieties of bio-functional molecule 

to the desired site for diagnosis and treatment. The field of DNA nanotechnology had 

significant progress recent years, DNA nanostructures have been employed as smart 

imaging agents or delivery platforms on living organisms. Nucleic acid based 

nanoparticles have advantage over inorganic nanoparticles for in vivo application 
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including their high purity, easy production and reproducibility, biocompatibility and 

biodegradability (26).    

DNA nanotechnology was initialized by Nadrian C. Seeman in early 1980s, after 

the discovery of double-helical, G quadruplexes, X or Y-shaped DNA (27). Three 

dimensional nanostructures can be designed and constructed with single strand and 

double stranded DNA sequences, with confined shape and structure, exploiting the 

Watson-Crick base paring principle. Sticky ends of DNA were used as toeholds for self- 

assembly process, thus the building blocks of DNA nanoparticles can be precisely 

controlled(28). Novel DNA origamis was constructed with a 7249nt long circular plasmid 

DNA from virus M13mp18 with more than 200 short DNA oligoes as staple strands(29), 

which can fold the long single strand DNA at specific sites to a designed shape. To apply 

for clinical use, DNA nanostructures must meet several essential requirements, such as 

they should remain intact after exposing to blood plasma, no immunogenicity. A major 

challenge the DNA nanotechnology field facing now is the serum stability of DNA 

nanoparticles,  Although it was found that the rigid tetrahedron DNA structures(30), 

compact DNA nanotubes(31) and DNA origami nano arrays(32) have improved nuclease 

resistance, most DNA nanoparticles have a half- life. Although most DNA structures are 

more stable at high Mg
2+

 concentration condition, such condition is not available in 

vivo(33). 

RNA nanotechnology is also a newly emerging field, with an evidence showing 

that RNA nanoparticles can be assembled from bottom up assembly in 1998 (34), led by 

Peixuan Guo. Dimer, trimer and hexamer pRNA nanoparticles were constructed using the 

reengineered RNA fragment from phi29 DNA packaging motor packaging RNA, using 
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the intermolecular interaction between two loops of each reengineered pRNA 

molecule(34,35). This was an early proof of concept study for RNA nanotechnology.  

The RNA nanotechnology field went into a rapid development phase after overcoming 

the barricade of enzymatically and thermodynamically instability of RNAs by chemical 

modifications. These include modification on bases such as 5-BrU and 5-IU (36), 

modification on the phosphate linkage such as phosphothioate  and boranophosphate (37), 

modifications on the 2’-OH group with 2’-fluoro, 2’-o-methyl, 2’-amine (38-41), and 

locked nucleic acid (42) which is modified by forming an extra bridge between 2’-O and 

4’-C. 2’F pyrimidine modified RNA nanoparticles showed enhanced serum stability, the 

2’F-pRNA 3WJ nanoparticles are stable in 50 % serum after 8 hours incubation at 37 °C 

(43), in contrast, unmodified pRNA-3WJ are degraded in 50 % less than 1 h. LNA or 

other chemical modification also greatly enhanced RNA particles enzymatically stability 

substantially(4).RNA nanoparticles constructed with the modified RNA strands have 

enhanced serum stability and also thermodynamical stability (44). The same pRNA-3WJ 

structure formed by 2’F-pyrimidine modified RNA strands showed higher 

thermodynamic stability than unmodified RNA, following by DNA, which was verified 

by as the dissociation constant (apparent KD) value for 2’F-RNA, RNA and DNA pRNA-

3WJ nanoparticles to be 4.5 nM, 11.4 nM and 47.7 nM respectively; as well as the 

entropy value (ΔG°37) to be -36, -28 and -15 kcal/mol for 2’F-RNA, RNA and DNA 

based pRNA-3WJ structure (44). 

Several toolkits have been developed as principles for RNA nanoparticle 

construction. The toolkit 1 utilized a biomimetic strategy learned from phi29 pRNA 

hexamer structure, the hand in hand interaction between adjacent pRNA molecules. The 
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pRNA folds into a complex structure including a helical ds-RNA domain with open 5’/3’ 

end and interlocking regions with two loops which was described as left hand and right 

hand of pRNA. Interaction between the right hand and left hand loop from two pRNA 

molecules promote a dimer formation(34,45,46). This mechanism has been utilized to 

construct pRNA trimer, tetramer, pentamer and hexamer(47,48).  

The toolkit2 utilizes palindrome sequence forming foot-to-foot interaction based higher 

ordered RNA nanoparticles. A palindrome sequence reads the same from either 5’ end to 

3’end direction or from 3’end to 5’end direction. Palindrome sequences can be added to 

the end of helix domain of pRNA nanoparticles to form foot-to-foot dimer, foot-to-foot 

trimer, foot-to-foot tetramer   and so on(4).  

The toolkit3 utilizes the highly thermodynamically stable pRNA-3WJ domain as a 

core structure, and forming multivalent RNA nanoparticles by extension its arms. This 

branched pRNA 3WJ nanoparticle have been shown to be able to carry three different 

functional modules including fluorescent dye for in vivo tracking of nanoparticles, an 

RNA aptamer for active targeting, and a siRNA or miRNA sequence for functional gene 

expression modulation(43,49,49-52) . The similar principle was also extended to forming 

a X-shaped motif which can carry four pieces of siRNA sequences and achieve 

synergetic effect for gene knockdown(53).  

Toolkit4 utilize more native tertiary RNA motifs to build varieties of three dimensional 

RNA structures. The flexible pRNA-3WJ motif was utilized to construct two dimensional 

RNA triangles, square, pentagon and hexagon structures (54,55), and even the three 

dimensional RNA tetrahedron (56), prism (57) structure. Geary et al. design and 

constructed an RNA sheet using 180° and 120° kissing-loop (KL) motifs from HIV-1 
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DIS and RNAi/ii inverse loop (58), and dovetail motifs (59). A 2D hexagonal lattice 

structure was created by connecting multiple tiles with kissing loop interactions. The 

formed RNA structure called RNA origami can be folded during cotranscription without 

request for annealing process. Nasalean et al. built an RNA filament structure by 

assemble H-shaped RNA nanoparticle based on four way junction motif with loop-loop 

interaction (60). Otherwise, similar strategy for DNA nanoparticle design such as using 

Watson-Crick base paring and cross over can also be used for RNA nanostructures.   

 Toolkit 5 utilizes DNA/RNA hybrids to construct nanoparticles with functional 

controlled release of fragment RNA (61). As the DNA and RNA have different 

thermodynamic properties, which can be used to tune triggered dissociation of the 

DNA/RNA hybrids (62-64). 

RNA nanotechnology is getting more and more attention recently as they seem to 

be the most appropriate carrier for functional RNA molecules, such as RNA aptamers 

which can specifically bind to cancer cell marker for disease diagnosis and drug delivery 

(43,65), siRNA and miRNA for RNAi therapy (66), or immune modulator CpG oligos for 

immunotherapy (54). Intense studies on RNA nanotechnology for pharmaceutical 

application are ongoing, including large scale production, and its immune modulation 

properties, as well as its pharmacodynamics properties. MiRNA therapy includes miRNA 

mimics and miRNA inhibitors. The miRNA inhibitors bind to a single stranded mature 

miRNA to block its function, thus chemical modification on the anti-microRNA sequence 

the hurdle of chemical and enzymatically stability can be solved.  Substitution of the 2’-

OH group in the ribose ring with 2’-O-methyl, 2’-O-methoxyethyl, or 2’- fluoro groups 

have shown increased the stability of anti-miRs (67). Successful delivery of LNA 
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modified anti-miR21 seed sequence by RNA nanoparticles harboring EGFR targeting 

aptamer showed promising result in regression of breast cancer in mice study(66). For the 

miRNA mimics delivery, it is more challenging. The synthetic miRNA mimics must be 

double stranded and processed into RNA induced silencing complex (RISC) to be 

functional. Nanodelivery systems which can enhance its cancer cell targeted delivery, and 

augment successful endosomal escape are important factors for miRNA therapeutics. 

1.2 Aptamers and Nanotechnology  

Aptamers are single stranded DNA or RNA oligonucleotides which can fold into 

variety of complex secondary structures and thus bind to diverse targets including small 

molecules, peptides, proteins and even whole cells with high affinity and specificity. 

Aptamers are generated from an in vitro selection process called SELEX (Systematic 

Evolution of Ligands by EXponential enrichment) (68). Aptamers mimics antibody in the 

property of binding to target molecule with high affinity and specificity, while it exhibits 

significant advantages in terms of its stability, ease of synthesis and its small size.  

1.2.1 SELEX method 

In vitro selection process, like finding a needle from a large haystack, starts with 

construction of a large pool containing 10
13

 to 10
16

 random nucleic acid sequences 

followed by iterative selection and amplification processes to get rid of the non-binding 

sequences, while amplify and enrich the target binding sequences (Figure 1.1). The 

selection process is usually monitored by the affinity of library to its target after each 

round of selection. The end point of selection is usually marked with non-increasing 

affinity of the library comparing to the previous round. The final round library is then 

sequenced for aptamer identification.  
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Figure 1.1. Schematic drawing shows the basic steps of SELEX. 1). A library contains 

multiple sequences is constructed by in vitro transcription or chemical synthesis 2). The 

library RNAs are subjected to binding reaction with the target molecule; 3). The mixture 

of library and target complexes is then subjected to partition by method of selection; 4). 

Remove the nonbinding sequences, the target binding sequences are then recovered and 

amplified 5). Prepare library for next round of selection.  
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The target for aptamer selection varies from small chemical entities such as 

malachite green (69,70), 3, 5-difluoro-4-hydroxybenzylidene imidazolinone (DHFBI) 

(71,72), to peptide, protein and cells. Through the invention of SELEX method in 1990s 

by Tuerk and Gold (73), great efforts have been made to the methodology to improve its 

success rate. One key step in SELEX process is the partition of the targeting binding 

sequence from the non-binding sequences. To this end, nitrocellulose filter was used as 

partition media to keep the protein bound nucleic acid sequences on the filer while 

remove the non-binding sequences (74); later, functionalized magnetic beads were 

developed as media to immobilize the target molecule thus recover the target binding 

sequences on the beads(75). Considering the in silico folding of proteins might be 

different from their folding when expressed on cell membrane, cell SELEX(76) and 

tissue SELEX(77) were later adopted by scientists to find aptamers that can be directly 

used clinically. 

Another important step in SELEX process is sequencing. In traditional method the 

last round library is usually cloned into vectors and single clones were randomly picked 

up for Sanger sequencing (78). This step seems like trying one’s luck to get high affinity 

aptamer. Recently, with the development of next generation sequencing technology, next 

generation sequencing method has been utilized to aid SELEX (79,80). Millions of 

sequences from amplified library can be analyzed at the mean time with deep sequencing 

technique. The chance of finding an aptamer is increased by this method, which also can 

be used to monitor the process of SELEX rather than a blinded operation.   

To select an aptamer with high binding affinity to its target in vitro is usually not 

the final goal for a SELEX project. A useful aptamer should be resistant to nuclease 



15 
 

digestion, also can bind its target in vivo for application. To this end, large efforts have 

been made, such as chemically modify the library during selection or the final aptamer 

post selection to improve stability of the aptamer. Modification on both the sugar 

phosphate backbone and the nucleobases of a RNA molecule can increase its stability, 

and also expand its chemical functionality, increase the library diversity. Replacing the 

phosphate-sugar backbone with phosphorothioate(81) or bridging the 2’-O and 4’-C of 

the ribose forming locked nucleic acid (LNA) (82) can greatly increase the aptamer 

stability against nuclease digestion(83). Examples of backbone modification on aptamers 

include using 2’-amino-pyrimidines(84,85), 2’-Fluoro-pyrimidine(86,87), 2’-O-methyl 

purine(88), Locked nucleic acids(89), 4’-thio-pyrimidine(90) or mixed modified 

nucleotides(91) during in vitro transcription for library preparation. Y639F T7 RNA 

polymerase can be used for most pyrimidine modified library preparation (83); KOD 

Dash DNA polymerase can be used for LNA modified library preparation (89). 2’-Fluoro 

pyrimidine modification is widely used for aptamer selection, the final VEGF aptamer on 

market was selected using this protocol. But several 2’-amino pyrimidine modified RNA 

aptamers are difficult to be synthesized in large scale thus they were abandoned from 

therapeutic candidates (92). 2’-O-methyl is a common post transcriptional modification 

on mRNA in nature, thus aptamer with 2’-O-methyl modification is easier to get 

approved by FDA.       

Modification on bases of RNA oligonucleotides can increase their enzymatically 

stability, and also possibly enhance their catalytic functionality. It was reported that 

incorporating an imidazole ring with nearly neutral pKa to library pool could enhance 

their catalytic function (93). An RNA amide synthase was selected from RNA library 
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including 5-imidizol uridine (94). Including 5’-bromo and 5’-iodo modified pyrimidine 

into aptamer sequence can aid the UV crosslinking of aptamer to its target(83). 6-

aminohexyl adenosine was incorporated into RNA library during SELEX for ribozyme 

selection (95).    

Modification on the termini of an aptamer was also explored to increase its 

stability and in vivo half life time (96).  It was reported that capping the 3’end of 

thrombin binding aptamer with locked nucleotides increased its stability against nuclease 

in human serum (97). The incorporation of 2’4’-LNA to the 3’end of DNA aptamer was 

achieved by terminal deoxynucleotidyl transferase (TdT)(98).     

1.2.2 Aptamers for therapeutics 

The first aptamer drug was approved by FDA in 2004, which is an RNA aptamer 

against vascular endothelial growth factor (VEGF) -165 for wet age related macular 

degeneration (AMD) treatment (99). This aptamer drug was developed targeting 

VEGF165. By targeting VEGF165, the aptamer can block its interaction with VFGF 

receptor presenting in eye blood vessels, and inhibit angiogenesis. Three separate SELEX 

experiments were carried out in NeXstar Pharmaceuticals for its development (84,100). 

The first unmodified RNA aptamer was isolated from a library with 30 random 

nucleotides in 1994 (84). Subsequently, a 2’-NH2 pyrimidine modified RNA aptamer was 

isolated and modified with 2’-O methyl on purine bases poste selection to increase its 

nuclease resistance (100). Later, the 2’-F pyrimidine modified RNA aptamer was selected 

with further improved affinity, the aptamer was modified with 2’-O methyl on purine 

bases poste selection to enhance its nuclease resistance in vivo. The 2’-F pyrimidine, 2’-O 

methyl RNA aptamer was selected for final drug development as Pegaptanib (100,101). 
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Another aptamer targeting α-thrombin protein is being developed to an anti-coagulation 

drug by blocking the interaction between fibrinogen and thrombin (102), which is under 

phase II clinical trial by ARCA Biopharma Company (103).    

The potential of using aptamer for immunotherapy has also been explored. DNA 

aptamer-lipid probe was used to modify cell surface through noncovalent link for specific 

cell targeting (104). This method can be used to engineer immune effector cells for 

cancer therapy. DNA nanoscaffolds with double star shape or linear brunch shape 

templated multivalent bispecific aptamer showed the ability to bridge two kinds of cell 

specifically together (105). Oligonucleotide aptamers against immune modulation 

proteins such as 4-1BB, CTLA-4 can also be developed as immune modulation drugs 

(106).     

1.2.3. Aptamers for targeted drug delivery 

Besides being directly used as drugs, aptamers are also used as bullet for targeted 

drug delivery. Targeted therapy can improve cancer treatment by increasing efficacy, 

reducing toxicity and side effects. Aptamers have been widely used in targeted delivery 

for chemotherapy and gene therapy. Two main types of aptamer modified drug delivery 

systems are the aptamer nanomaterial conjugates and aptamers functionalized nucleic 

acid nanoparticles (107).  

Aptamers conjugated to varieties of nanoparticles can be used for targeted drug 

delivery. Gold nanoparticles, silica nanoparticles, graphene or fullerene carbon based 

nanoparticles have all been functionalized with aptamers for active targeting (104,107). 

Multivalent aptamer decorated gold-silver nanorods can increase its target cell binding 

affinity; can be potentially used for cellular imaging (108). Gold nanorods decorated with 
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multiple prostate cancer targeting aptamers showed potential for targeted photo thermal 

therapy targeting prostate cancer (109). Porous hollow magnetite nanoparticles decorated 

with PEG functionalized with aptamer can load doxorubicin into the nanoparticles, and 

direct nanoparticles to cancer cells through receptor mediated endocytosis, release drug in 

the acidic lysosomal(110).  

Aptamers fused to DNA or RNA nanoparticle can act as drug carriers by loading 

chemotherapeutic agents through intercalation reaction (111), and nucleic acid based 

therapeutics such as miRNA or siRNA through strand extension (52,66). But this should 

be done without sacrificing the overall folding and affinity of both aptamer and the drug 

conjugate (43,48,53).  

1.2.4 Advantages and challenges for developing aptamer to drugs 

There is significant advantage for using aptamers in diagnosis and disease 

treatment. Aptamers are selected from an in vitro process without the request for animals, 

and can be chemically synthesized which will ensure controllable quality assurance 

comparing to the batch variations normally noticed in antibody production. One concern 

of nucleic acid based aptamers for in vivo application is the stability. Its stability against 

nuclease was greatly improved by using chemical modified RNA oligonucleotides to 

instead of native nucleic acid. Modified RNA library can be prepared by substituting the 

2’-OH group in pyrimidines with 2’-Fluoro, 2’-OH groups in purines with 2’-O methyl 

groups (84,100). But there are still other challenges towards its clinical application. One 

is the quick kidney elimination of aptamer after systemic administration, as the size of 

aptamers usually falls in the range of less than 10nm and can be cleared by renal 

glomerular filtration. Methods to increase the aptamer size are explored, including adding 
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poly ethylene glycol (PEG) or cholesterol onto the RNA aptamers (112) to increase its 

size thus the half life time in vivo. The toxicity of aptamer in vivo is not well studied yet, 

although it is believed that protein free aptamers are less immunogenic than antibodies, 

but Macugen has shown some side effects in AMD patient (112). 

1.3 Extracellular Vesicles and drug delivery 

Extracellular vesicles (EVs) are membrane surrounded particles secreted by 

almost all cell types. EVs are also known as intercellular messenger organelles by 

mediating intercellular communication and exchanging biological signals between cells. 

EVs play important role in regulating both physiological and pathological process. The 

following part will discuss about the biogenesis, the mechanism regulating EV releasing, 

function of exosomes as well as their application for therapeutics delivery system.  

1.3.1 Exosome biogenesis 

EVs can be classified into three classes according to their biogenesis: 

microvesicles, exosomes, and apoptotic bodies. Microvesicles are small membrane bound 

fragments generated by outward budding from the plasma membrane. They have a very 

heterogeneous population with size ranging from 100 to 1000 nm; while exosomes are 

vesicles from the endosome membrane when multivesicle bodies fuse with the plasma 

membrane at the end of endocytosis-recycling process (113), with size ranging from 50 to 

140 nm. Exosomes are normally characterized by highly enriched tetraspanin proteins 

including CD9, CD63, CD81 or CD82. They are proposed as exosome markers from 

proteomic analyses (114). During the exosome biogenesis, the first step is formulation of 

intraluminal vesicles following the inward budding of late endosome membranes. The 

endosomal sorting complex required for transport (ESCRT) assembled into 4 complexes 
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named ESCRT-0, 1, 2, 3 to capture and transport the sorted protein and other contents in 

late endosome into ILVs. Both ESCRT dependent and independent mechanisms are 

involved in the biogenesis of exosome (115). Protein TSG101 and Alix are certainly 

involved in the ESCRT complex formation and exosome biogenesis; they are also 

recognized as protein markers for exosomes (116). 

1.3.2 Mechanisms regulating exosome release 

Releasing of exosomes from donor cells is regulated by various conditions. 

Savina et al. found that increasing intracellular Ca
2+

 concentration could stimulate 

exosome secretion from a hematopoietic cell line K562, which was experimentally 

proved that treating cells with monensin stimulated exosome release (117). Activating 

cellular signals also can stimulate exosome secretion. Triggering CD40 /IL4 receptor in 

murine B cells caused releasing high level of exosomes, although releasing exosome is 

not a constitutive activity of B cells (118). Hypoxic condition also promotes exosome 

release from cells. It was observed that culturing different breast cancer cell lines under 

hypoxia condition or experimentally activation hypoxia signaling increased exosome 

release (119). Riches et al. reported that exosome release is also affected by the presence 

of exosomes in a feedback regulatory mechanism. Presence of exosomes in mammary 

epithelial cells microenvironment could inhibit secretion of exosome from breast cancer 

cells (120). Stimulating dendritic cells with HIV-1 virus also trigger release of exosomes, 

which was found to be activated by stimulating the dendritic cell immune receptors(121). 

1.3.3 Function of exosomes 

Living cells communicate through multiple pathways. Direct cell interactions and 

secreting soluble factors are two well-known methods for communication between cells. 
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Releasing of membrane derived vesicles also named extracellular vesicles is a newly 

discovered way for cellular communication. Extracellular vesicles were discovered in the 

1980s by two independent labs during studying the fate of transferrin receptor in sheep 

reticulocyte maturation (122) and pathway for transferrin receptor shedding (123). EVs 

were later found play important roles in regulating normal physiological process(124), 

such as stimulation of adaptive immune response(125), stem cell maintenance(126), 

tissue repairing(127) and blood coagulation(128) in physiological conditions; and 

promoting tumorigenesis (129), virus infection(130) and spread of amyloid-β-peptides 

for Alzheimer’s disease development (131) in the pathological conditions.  

EVs are natural vehicles for mRNA, miRNA, various noncoding RNA, genomic 

DNA, and proteins delivering between cells (132). Various molecules including siRNA, 

miRNA, mRNA and proteins are loaded into the lumen of EVs before its secretion (133).  

Breast cancer cells derived exosomes are found contain miRNA and RNA-induced 

silencing complex (RISC) for miRNA processing, thus promote tumorigenesis (134). As 

intercellular communication organelles, exosomes may act as novel tools for disease 

treatment by various approaches, including (1) immune modulators with 

immunosuppressive or immune-activating effect or vaccination for multiple disease 

treatment; (2) drug delivery vehicles for delivering proteins or nucleic acids to recipient 

cells(135). These clues indicate the future of exosomes for therapeutic applications. 

1.3.4 Application of Exosomes  

Exosomes as gene delivery tools 

Exosomes are natural carrier for various RNA molecules and proteins for cellular 

communication. Delivery of exosomal RNA has significant effects in modulating the 
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recipient cell phenotypes. Valadi et al. first reported that exosomes can transfer mRNA 

and miRNA to recipient cells and the delivered RNA molecules are functional, can be 

translated into proteins (136). The transfer of miRNA to recipient antigen presenting cells 

can be directed by T cell derived CD63 positive exosomes, and its unidirectional (137). 

EVs have been explored as delivery tools for various therapeutic agents, including 

small RNA drugs, and chemotherapeutics (137). The most obvious advantage of using 

exosomes as delivery vehicles for small RNA relies that they have natural homing ability 

for small RNAs. The proteins and nucleoproteins including STAU1(double-stranded 

RNA binding protein staufen homolog 1), STAU2, AGO2 (argonaute 2) and 

TNRC6A(trinucleotide repeat containing gene 6A) associated with exosomes are 

involved in RNA transport, processing(124). It was reported that exosomes isolated from 

dendritic cells can deliver siRNA to mouse brain after systemic injection. The exosome 

donor dendritic cells were reengineered to overexpress rabies virus glycoprotein (RVG) 

peptide fusion to lysosome associated membrane glycoproteins (Lamp2b), thus the 

isolated exosomes with neuron specific RVG peptide overexpression on its surface can 

target brain cells. The re-engineered exosomes loaded with BACE1 siRNA targeting β-

secretase (138) can deliver siRNA to wild type mice brain after systemic injection. It had 

significant therapeutic effect on mice model shown as efficient mRNA and protein 

knockdown(139). siRNA was loaded into exosomes by electroporation.  Exosomes can 

also transfer viral miRNA from the EBV-infected cells to the uninfected cells when they 

are co-cultured, and the transferred miRNA was found to be functional (140). The GE 

peptide positive exosomes from HEK293T cells can deliver let-7a miRNA to recipient 
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EGFR positive breast cancer cells in vivo, and inhibited breast cancer development in 

vivo(141). 

Exosomes also fit for chemotherapeutics delivery. Comparing to artificial 

nanovesicles such as liposomes and nanoparticles for chemotherapeutic delivery, EVs are 

advantageous in their increased stability in vivo as for circulation, and decreased 

immunogenicity and toxicity (142). The chemo resistance development in most tumor 

disease is associated with the secretion of exosomes at low pH microenvironment in 

tumor cells, and drugs such as cisplatin can be eliminated through exosome 

releasing(143). But if using exosome as vehicles for drugs, it could protect drugs from 

degradation, and enhance its cellular uptake can as increased uptake of exosomes was 

also observed at low pH conditions (144). Exosomes are considered as promising 

antitumor drug carriers (142). Chemical drug paclitaxel can be packaged into exosomes 

and released into cell culture medium by treating mesenchymal stromal cells with 

paclitaxel. The isolated paclitaxel loaded exosomes showed strong anti-proliferative 

efficiency on pancreatic tumor cells in vitro (145). A recent study showed that 

encapsulating paclitaxel into exosomes increased its cytotoxicity towards multi-drug 

resistant cells around 50 times in vitro, high paclitaxel loading efficiency to exosomes 

was achieved using a sonication method (146). Encapsulating doxorubicin into exosomes 

did not increase its in vitro cytotoxicity on cancer cells, but it did reduce its cardiac 

toxicity in xenograft mice model in vivo (147). All these studies showed that exosomes 

are promising delivery systems for chemotherapeutics. 

Exosomes as immune therapeutics 
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Besides as gene therapy delivery vehicles, Exosomes are also developed as 

immune modulatory therapeutics. Exosomes can generate CD8+ anti-tumor T cells 

responses to maximize activation of specific T cells and enhance their anti-tumor 

immunity. Tumor associated ascites-derived exosomes in combination with TLR3 

agonists has been used as immunotherapy for ovarian cancer treatment in a clinical trial 

(148). As tumor derived exosomes contain large amount of tumor associated antigens 

(149), and MHC class I molecules for antigen presentation. Tumor derived exosomes also 

showed vaccination effect for eradicating tumors in mice model (149).  

Current questions to be solved for developing exosomes into immune therapeutic 

includes: the method for preparation of GMP grade exosomes and to identify which 

immune adjuvant to be used (148). One study showed that CpG adjuvants are proper 

candidate for dendritic cells derived exosomes in vaccine therapy (150). Ascites-derived 

exosomes in combination with the granulocyte macrophage colony stimulating factor 

(GM-CSF) has been evaluated in phase 1 and phase 2 clinical trials for treating colorectal 

cancer. Phase 1 clinical trial in 2008 with 40 patients concluded the ascites-derived 

exosomes in combination with GM-CSF is feasible and safe (151).  More exosome 

related clinical trials on going are summarized in table 1(142). 
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Table 1. Current exosomes based drugs under clinical trial 

Disease Exosome source Isolation  modification Ref 

Melanoma,  

CT1, n=15 

Autologous monocyte derived 

dendritic cell EVs, SC. 

UC with 

sucrose 

cushion 

MAGE3 loaded  (152) 

Non-small 

cell lung 

cancer,  

CT1, n=13 

Autologous monocyte derived 

dendritic cell EVs, SC. 

Filtration/UC 

sucrose 

cushion 

Peptide loaded (153) 

Colon cancer,  

CT1, n=40 

Autologous ascites derived EVs, 

SC. 

UC sucrose 

cushion 

Unmodified 

with  or w/o 

GM-CSF 

(154) 

Colon cancer,  

CT1, n=35 

Plant nanovesicles  Filtration/UC Curcumin, 

exogenous 

loading 

NCT01294072 

Type I 

diabetes, 

CT1, n=20 

Umbilical cord blood MSC-EVs   NCT02138331 

Non-small 

cell lung 

cancer, 

CT2, n=2 

Autologous IFN-γ matured 

monocyte derived dendritic cell 

EVs, intradermal 

Ultrafiltration/

UC sucrose 

cushion 

Peptide loaded (155) 

Malignant 

pleural 

effusion,  

CT2, n=30 

Tumor cell derived microparticles 

as vector for chemotherapeutics 

drug delivery  

 Chemotherapeu

tic drugs, 

exogenous 

loading 

NCT01854866 
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1.3.5 Prospective 

 Although the study on exosomes is still in its young stage, exosomes already 

showed great advantage in solving some difficult questions in drug delivery field. 

Exosomes can cross the blood brain barrier, can be engineered to achieve specific 

targeting effect, can bypath the endosome trapping for RNAi drug delivery as naturally 

evolved functional machinery in cells. Although there is challenge towards the clinical 

application, such as the above motioned yield and GMP production difficulty, and also 

unknown immunogenicity towards the recipient in long term. Hopefully great promise 

will be made in the future. 
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Chapter 2: Development of High-Affinity Thermo-Stable Divalent RNA 

Antibody for Cancer Cell Targeting and Delivery 

This chapter (with some modification) is under preparation. Special thanks to Dr. 

Ashwani Sharma for help and assistance in preparation of data for Figure 2.S1.  

ABSTRACT: 

Widely used protein antibody contains two binding sites providing immense biomedical 

applications with high affinity and specificity. RNA aptamers expanded the field of 

antibodies, but have low specificity which is partly attributed to their monovalent nature 

thus limiting their biomedical application. Divalent aptamers fusing two aptamers into a 

single unit have been reported but such fusion causes refolding and structure alteration 

affecting their affinity and specificity. Inspired by nature and using state-of-art RNA 

nanotechnology platform, we report here a novel divalent RNA antibody (RNA-Ab) 

design utilizing unusual thermodynamic stability of the pRNA three-way junction (3WJ) 

of phi29 DNA packaging motor. The highly stable 3WJ provides a rigid core to the RNA 

architecture similar to antibodies keeping both the loops separated for independent target 

binding, and further disfavor misfolding of RNA-Ab when conjugated to oligonucleotide 

therapeutics, keeping affinity and functions of attached functionalities intact. Using this 

3WJ based nanotechnology design; we describe the selection and characterization of 

serum and thermodynamically stable divalent RNA-Ab against a prominent cancer 

marker EpCAM with high affinity and specificity  
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INTRODUCTION: 

RNA nanotechnology is a rapidly growing field, which involves the programmable and 

addressable designs of RNA 3D architectures. A large number of highly ordered RNA 

structures including triangles (54), square (55), pentamers (54), hexamers (47,48) and 

boiling resistant hexacubic arrays (156) have been constructed and shown to perform 

diverse biological functions. Recently, our lab has discovered unusually stable three-way 

junction (3WJ) motif of pRNA that assembles with high affinity from three different 

RNA strands and is resistant to denaturation by 8 M urea (43). Utilizing this highly stable 

3WJ motif as core, several nanostructures harboring different functional modules such as 

RNA aptamers, ribozymes, siRNA etc. have been constructed which are shown to retain 

their folding and functionality for specific cell binding (43,53), catalytic activity (43), 

gene silencing (53,157), and fluorogenic properties (72,158)both in vitro or in animal 

models.  

MATERIALS AND METHODS: 

Cell lines 

HT29, HCT116, KB cells, CD4+ Jurkat cells, and MDA-MB-231 cells were 

purchased from American Type Culture Collection (ATCC). KM-20 cells were 

generously provided by Dr. Piotr Rychohou (University of Kentucky, USA). All cell 

lines were maintained in water jacketed CO2 incubator at 37 °C with 5 % CO2. KB cell 

and CD4
+
 Jurkat cells were cultured in RPMI1640 medium supplemented with 10% fetal 

bovine serum (FBS, Hyclone). HT-29 and HCT-116 cells were cultured in McCoy’s 5A 

medium supplemented with 10 % FBS. KM-20 cells were cultured in MEM medium 

supplemented with 10 % FBS, 10 ml/L of sodium pyruvate, 10 ml/L non-essential amino 
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acid, 20 mL/L of MEM essential vitamin mixture. MDA-MB-231 cells were cultured in 

DMEM medium supplemented with 10 % FBS, MCF-7 cells were cultured in EMEM 

medium supplemented with 10 % FBS and 1 % of bovine insulin.  

Library builds up 

The 116 nt DNA library with 60 random bases was chemically synthesized in one 

micromole scale from (W. M. Keck Oligonucleotide synthesis Facility, Yale University). 

The sequence of ssDNA library (Figure 2.S1) consist two random regions that are 

flanked by known primer-binding regions and a conserved middle region which can fold 

with the primer binding region to form the complete 3WJ assembly. The ssDNA library 

was PCR amplified with primers L6F1 and L6R1 to generate the double-stranded DNA 

template. The dsDNA was then in vitro transcribed to 2’Fluoro pyrimidine modified 

RNA library using Y639F T7 polymerase for selection process. To maintain the diversity 

of the library, 30 pmol of DNA (2×10
13

 sequences) was amplified in a 10ml PCR 

reaction.  The PCR products were purified by MinElute PCR purification kit (Qiagen) to 

remove the primers and free nucleotides. The purified dsDNA library (5 µg) was in vitro 

transcribed into initial 2’-fluoro-pyrimidine modified RNA library in a 100 µL reaction, 

treated with DNaseI and used directly for in vitro selection. 

ssDNA libraryDNA: 5’- GGA GGC ACC ACG GCT GGA TCC  GGA TCA ATC ATG 

GCA A-N30- T TGC CAT GTG TAT GTG GG-N30- CCC ACA TAC TTT GTT GAT 

CCT TGG TCA TTA GGA TCG-3’ 

L6F1DNA: 5’-GTA TAA TAC GAC TCA CTA TAG GG C CGG ATC AAT CAT GGC 

AA3’  

L6R1DNA: 5’-GGA TCA ACA AAG TAT GTG G3’ 
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Sph1-L6R1DNA: 5’- CTC CCG GCC GCC ATG GCC GCG GGA TTG GAT CAA 

CAA AGT ATG TGG-3’ 

Cy5-Sph1 DNA: 5’-Cy5/CTC CCG GCC GCC ATG GCC GCG GGA TT-3’ 

LNA21-Sph1: 5’ +G+A+T+A+A+G+C+TCTCCCGGCCGCCATGGCCGCGGGAT-3’ 

3WJa-Sph12’F RNA: 5’-uuG ccA uGu GuA uGu GGG AAu ccc GcG Gcc AuG Gcc 

GGG AG-3’ 

3WJa 2’F RNA: 5’- uuG ccA uGu GuA uGu GGG-3’ 

3WJb 2’F RNA: 5’-ccc AcA uAc uuu Guu GAu cc-3’ 

3WJc 2’F RNA: 5’-GGA ucA Auc AuG GcA A-3’ 
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Figure 2.S1. Primary sequence of bivalent RNA nanoparticle library. The library 

contains two random regions for target binding selection and a pRNA-3WJ scaffold 

providing a rigid Y shaped structure mimicking antibody.   
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Protein immobilization 

The extracellular fragment of EpCAM protein (Met1-Lys265) with poly histidine 

at its C terminal was purchased from Sino Biological Inc. 5µg of His-tagged EpCAM 

protein was immobilized to 3 µL of dynabeads® his-tag isolation (Invitrogen) in 100 µL 

of binding buffer at 4 °C overnight following the manufacturers protocol. A poly-

Histidine peptide was immobilized to magnetic beads following the same procedure for 

negative selection. 

In vitro selection 

20 µg of 2’F-RNA library was first incubated with 3 µL of His-peptide 

immobilized dynabeads as negative selection to remove non-specific binding sequences. 

20 µg of yeast tRNA was added in the binding buffer to reduce non-specific reaction. 

This RNA library taken from supernatant of negative selection tube was then incubated 

with 5 µg of EpCAM protein immobilized magnetic beads with yeast tRNA in SHMCK 

buffer (110 mM NaCl, 20 mM HEPES, 1 mM MgCl2, 1 mM CaCl2, 5 mM KCl, pH 7.4) 

at room temperature for 3 h as positive selection. The beads were washed 3 times with 

SHMCK buffer after incubation. The target-bound RNA sequences on magnetic beads 

were directly reverse transcribed into DNA by Thermoscript
TM

 Reverse transcriptase 

(Invitrogen), followed by PCR amplification. Then 2’-F RNA was generated by in vitro 

transcription for next round of SELEX. During the SELEX process, the protein 

concentration, incubation times were decreased gradually or the washing time was 

increased gradually to increase the stringency of selection to acquire aptamer with high 

affinity.   
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The enriched library after 7 to 9 rounds of SELEX process was reverse 

transcribed, PCR amplified for 7 cycles with Taq polymerase (Promega) and agarose gel 

purified, cloned into the pGEMT vector plasmid (Promega). Plasmid DNAs from the 

selected individual clones were extracted from E Coli cells with Genejet plasmid 

purification kit (Fermentas), and sequenced by Advanced Gene Technology Center 

(University of Kentucky). The aptamer sequences were analyzed with Cluster W2(159), 

random regions were aligned using MultAlin (160) and secondary structures were 

predicted using M-Fold software (161). 

Flow cytometry analysis 

Plasmid DNA from clones were PCR amplified with primer L6F1 and sph1-L6R1 

to extend its 3’end with extra 26 nucleotides for fluorescent labeling. 2’F RNA was in 

vitro transcribed and purified from 8 M urea, 8% polyacrylamide gel by crush and soak 

method, followed by ethanol precipitation. To label the 2’F RNA with Cy5 fluorescent 

dye, a 5’-Cy5 modified DNA oligo Cy5-Sph1 (IDT) complimentary to the extended 

3`end region of corresponding 2’F RNA sequence was hybridized by heating at 80°C for 

5 min and step cool down to 4 °C.  

Cells cultured in T-75 flask were harvested with 0.25 % trypsin. Around 2 × 10
5 

cells were incubated with different concentration of Cy5 labeled 2’F RNA nanoparticles 

in OptiMEM medium for 1 h at 37 °C, protect from light. Cells were then washed three 

times and suspended in PBS for analysis by flow cytometry. 

Confocal microscopy method 
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Cells were grown in cover glass (Fisher Scientific) in 24 well bottom culture 

dishes in its complete medium overnight. On the day of testing, cells were washed with 

OptiMEM medium twice, incubated with Cy5 labeled 2’F RNA nanoparticles at 37 °C 

for 1 hr. After that cells were washed with PBS twice, fixed with 4% paraformaldehyde 

(Microscopy Sciences) in PBS at room temperature for 20min; then washed with PBS 

and permeabilized with 0.05 % Triton X100 in PBS at room temperature for 3 min; the 

cells were stained with Alexa488 Phallodin (Invitrogen) at room temperature for 20 min 

and washed with PBS, air dried. Cell nucleus was stained with DAPI gold anti fade 

(Invitrogen) for confocal microscopy imaging with FluoView FV 1000-Filter Confocal 

Microscopy System (Olympus) (Available from University of Kentucky, Markey cancer 

center)  . 

Inhibition of endocytosis  

The inhibition of endocytosis assay was carried out as described before (87)，

briefly pretreat cells in a potassium depletion buffer (50 mM HEPES, 140 mM NaCl, 2.5 

mM MgCl2, and 1 mM CaCl2) or in a hypertonic buffer (potassium depleted buffer plus 3 

mM KCl and 450 mM sucrose) at 37 °C for 1 hr, then incubate cells with the RNA 

nanoparticles for test. The cells were treated the same way as for confocal microscopy 

assay. Potassium depletion buffer or hypertonic buffer was used for the following wash 

steps. 

Design and construction of EpCAM RNA Ab harboring anti-miR21  

The locked nucleic acid (LNA) modified oligonucleotides targeting the seed 

sequence of microRNA 21 (miR21)(66,162) was tested as model nucleic acid 
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therapeutics for A9-8 RNA-Ab mediated delivery effect.  A 26 nucleotide (nt) sequence 

named sph1 was added to the 3’end of 7 nt LNAs for nanoparticle assembly, named 

LNA21-Sph1. The LNA21-Sph1 was synthesized by EXION Company. The A9-8 

harboring LNA oligo nanoparticle was prepared by hybridizing LNA21-sph1 to A9-8-

Sph1 2’F-RNA by heating to 80 °C for 5 min and step cool down to 4 °C. Control 

nanoparticle harboring anti-miR21 was prepared by hybridizing 3WJa-sph1 2’F-RNA 

with LNA21-sph1 at 80 °C for 5 min and step cool down to 4 °C, then mix with 3WJb 

2’F-RNA and 3WJc 2’F-RNA at equal molar ratio at room temperature.  

Dual luciferase assay to analyze delivery of anti-miR21 by A9-8 

Cells were seeded in 24 well plates in its complete medium at density of 2 × 10
5
 

cells/mL. PsiCheckTM-2 plasmid which contains miR21 seed sequence at 3’-UTR region 

of Renilla Luciferase reporter gene was constructed (Promega) (66,162). The plasmid 

was transfected to cells with Lipofectamine 2000 (Life technologies).  Four hours post 

transfection the cell medium was changed to complete growth medium and incubated for 

another 2 h. Then the nanoparticles diluted in 200 µL of serum free medium were added, 

4 h later complete medium was added. The cells were lysed after 24 h and test for 

Luciferase and Renilla expression by dual luciferase assay system (Promega). At least 

three biological repeats were performed. 

RESULTS AND DISCUSSION: 

RNA aptamers have been extensively investigated since 1990 (163). They are of 

significant utility for targeted delivery of oligonucleotide therapeutics because of their 

ability to bind specifically to different protein targets. However, there are still challenges 

towards its medical application. One challenge especially for targeted therapeutics 
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delivery is their low affinity for substrate interaction (164), which might be caused by its 

monovalent nature, or misfolding of aptamer-conjugates which sacrifice function of both 

aptamer and attached oligonucleotide therapeutics conjugate such as siRNA or miRNA. 

Another challenge is rapid clearance of RNA aptamer from circulation which is attributed 

to their relatively small size (165). Significant efforts have been done in recent past to 

overcome these limitations. To enhance the affinity of aptamer, Muller et al.(166) were 

the first to demonstrate a multivalent approach by linking together two aptamers that bind 

to distinct epitopes on thrombin protein through a poly (A) linker and showed 

improvement on affinity over the monovalent aptamer. To reduce renal clearance of 

aptamers, adding significant mass by linking aptamer end to polyethylene glycol 

(PEG)(101), to streptavidin via 3`biotin and by attaching Fc tail of IgG has been shown 

promising results (167).  To overcome the folding problem Berezhnoy et al.(168)  has 

recently reported that fusing siRNA with lower melting temperature to 3`end of aptamer 

has minimal effect on overall folding of the aptamer conjugate.  

These literature findings emphasize the need of a novel scaffold which can 

increase aptamer target binding affinity by its multivalence, increases its size to enhance 

its bioavailability in vivo, and can be directly conjugated with oligonucleotide therapeutic 

without interrupting the folding of both parties. To meet these requires, we propose here a 

novel divalent RNA-Ab design based on thermodynamically stable antibody shaped 

pRNA-3WJ motif (26,43) for RNA based andibody development (Figure 2.1). The 

design utilizes the highly stable three way junction (3WJ) motif of phi29 DNA packaging 

motor pRNA which provides a rigid core structure similar to constant region of 

antibodies, allowing both loops to fold independently. Moreover, the 3WJ core adds 
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significant size to RNA antibody nanoparticle to disfavor renal clearance (169) and 

provides a handle to attach variety of drugs or therapeutic oligonucleotides like miRNA 

and siRNA without attenuating RNA-Ab`s activity or specificity. The design is generally 

applicable for in vitro selection of RNA-Ab virtually against any target, and can be 

advantageous in the development of RNAi based therapeutics or sensing platforms. 

Using this design, we generated a nuclease resistant RNA-Ab against the cancer 

stem cell marker epithelial cell adhesion molecule (EpCAM), a transmembrane protein 

overexpressed in many cancer cells including stem cells. The selected RNA-Ab 

specifically binds to cancer cells overexpressing EpCAM with low KD in nM range for 

different cell lines. Both RNA-Ab loops participate in binding and RNA-Ab was further 

shown to deliver anti-miR21 to breast and colon cancer cells.   
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Figure 2.1. Physiochemical and biological properties of the bivalent RNA antibody. a. 

RNA-Ab design based on 3WJ crystal structure with two random loop sequences 

conjugate to 3WJ core motif of phi29 pRNA(43) b. A crystal structure of an intact 

monoclonal antibody for phenobarbital (PDB ID: 1IGY), c. DLS measurement of size 

distribution and d. zeta potential of selected RNA-Ab. e. Representation of a typical  flow 

cytometry binding analysis comparison of Cy5 Labeled sequences to EpCAM positive 

MCF-7 cells. Gray represnts cell only, blue control aptamer sequence (50 nM) and red 

RNA-Ab A9-8 (50 nM).  
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To select a protein antibody shaped RNA aptamer (Figure 2.1), the 

thermodynamically stable pRNA-3WJ core was used as the constant region. Two random 

sequences were placed to the two arms of the 3WJ, mimicking two heavy chains of 

protein antibody serving as the two variable regions. The two random loops on either side 

of the 3WJ will provide bivalency and thus strong specificity to the target. Moreover, the 

thermodynamically stable 3WJ core will help maintain independent folding of each loop, 

providing overall stability. This design is advantageous since the third arm mimics the Fc 

complement binding domain on protein antibodies, thus can be attached with various 

therapeutic functionalities such as siRNA or miRNA without any detrimental effect on 

the folding of either RNA-Ab or the attached functionality. 2’-fluoro pyrimidines 

modified RNA library was used to enhance the serum stability of the RNA-Ab.  

Epithelial cell adhesion molecule (EpCAM) was chosen as the target that is highly 

expressed on the most malignant epithelial cancers. In normal epithelia, EpCAM is only 

expressed on basolateral gap junctions, thus not accessible to various antibodies or drugs 

while in epithelial cancers, it is distributed homogenously on cell surface (170). Studies 

have revealed the importance of EpCAM in cancer biology, including processing of cell 

migration, cell proliferation (171), cancer cell invasion and metastasis (172). EpCAM 

protein is rapidly internalized when it is bound to antibodies, thus the RNA antibody 

against EpCAM will suit for payloads delivery by receptor-mediated endocytosis (173). 

To select an RNA-Ab against EpCAM protein, we used magnetic beads based 

SELEX protocol as discussed above. An initial 2’-F RNA library containing 2×10
13

 

species was incubated with the EpCAM attached magnetic beads for first round SELEX. 

A total of nine rounds of selection against EpCAM recombinant protein were carried out. 
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The negative selections were introduced in the first and seventh rounds. For negative 

selection, RNA library was passed through only His 6- peptide attached to magnetic 

beads. A total of 9 rounds of selection were performed and the selective pressure was 

stepwise modified by decreasing target concentration and incubation time. The progress 

of the selection was determined by filer binding assay(174). The selection rounds showed 

enrichment in filter binding assay till 8
th

 rounds and thus selection process was stopped 

after performing an extra round at 37 °C to get the highest binding sequence at biological 

temperature. The last round library was cloned into pGEM-T vector and 20 clones were 

sequenced and analysed for their secondary structure predictions. The data showed some 

repeating sequences (Figure. 2.S2a). Three different sequences were chosen based on 

their secondary structures (using M-fold (161)) or number of repeats and were tested for 

their cell binding ability using flow cytometry (Figure. 2.S2b). The clone A9-8 now on 

referred as RNA-Ab showed the best results for cell binding in flow cytometry (Figure 

2.S3) and was chosen for further studies.   
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Figure 2.S2. Sequence alignment and secondary structure analysis to identify final 

RNA-Ab.  a. Sequence alignment of picked clones after 7
th

 and 9
th

 round of SELEX 

using MultiAlin. A9-8 in 9
th

 round library reserved all 3WJ sequences, and A7-2, A7-10 

showed multiple repeats were chosen for further analysis. B. Secondary structure A9-8, 

A7-2, A7-10 calculated by M-fold. 
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Figure 2.S3.  Comparing the binding affinity of selected 3 sequences with MCF7 

cells in vitro. a. Sequence A9-8 showed an apparent KD of 9.90 nM to MCF7 cells, b. 

Sequence A7-2 showed an apparent KD of 25.58 nM to MCF7 cells, c. Sequence A7-10 

showed an apparent KD of 32.37 nM to MCF7 cells in flow cytometry analysis. d. 

Comparing the binding of 3 sequences to MCF7 cells at the concentration of 50 nM by 

flow cytometry. The result is consistent with apparent KD test, A9-8 showed the strongest 

binding affinity among the three sequences. 
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Generally, nanoparticles with a size of 10-100 nm are optimal for drug delivery 

due to slow renal clearance and improved in vivo circulation time avoiding liver and 

spleen cleaning up (175). We determined the nanoparticle size distribution of selected 

RNA-Ab against EpCAM protein using dynamic light scattering with Malvern Nanosizer. 

RNA-Ab showed a mean size of 14.25 ±0.05 nm as shown in Figure 2.1. The 3WJ 

structural core motif adds significant size and mass to bring it to optimal nm size range 

for slow renal clearance, and thus consequently high tumour localization is anticipated as 

previously shown by 3WJ constructs(169). 
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The binding affinities of selected RNA-Ab A9-8 with different EpCAM positive 

cell lines were determined by flow cytometry with cy5-labeling. Breast cancer cell lines 

MCF-7(87,176), MDA-MB-231(87) and colon cancer cell lines HT-29 (87,177), HCT-

116 (178) and KM-20 were tested as EpCAM positive cell lines; Jurkat cell line(179), 

which does not express EpCAM was tested as negative cell line. The cells were incubated 

with varying concentration of RNA-Ab or the control scramble sequence, and the binding 

of RNA-Ab to EpCAM positive cells was observed as shown in a typical histogram in 

Figure 2.1d. RNA-Ab A9-8 binds significantly higher to EpCAM positive cell MCF7 

than control 3WJ 2’F RNA nanoparticle, which was assembled by mixing equal molar 

ratio of 3WJa, 3WJb, and 3WJc 2’F RNA. The normalized bound cell ratio against 

aptamer concentration was plotted in a graph and fitted to one site specific binding curve 

to determine the apparent dissociation constants (KD) of RNA-Ab with different cell lines 

as shown in Figure 2.2. The nonspecific binding from control sequence to cells was 

subtracted for KD analysis. The data shows that RNA-Ab binds specifically to different 

EpCAM positive cell lines with apparent KD values in nM range and showed non-specific 

binding to EpCAM negative Jurkat cells as represented by a linear binding curve (Figure 

2.2f). RNA-Ab showed the highest binding affinity at KD of 9.90 ± 2.15 nM (Figure. 

2.2d) to human breast cancer cells line MCF7.  
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Figure 2.2. Determination of apparent dissociation constants (KD) of RNA-Ab with 

cells. The binding curves for RNA-Ab with EpCAM positive cell lines (a-e) and negative 

cell line (f). The straight line in ‘F’ represents non-specific binding and thus very high KD 

values ( > 200 nM).  

  

a. b.

c. d.

e. f.
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The specific cell binding and entry of RNA-Ab A9-8 to EpCAM positive cells 

was further confirmed by confocal microscopy showing cellular distribution. The RNA-

Ab A9-8 gets internalized into the cells through receptor-mediated endocytosis and thus 

does not require any transfection reagent. Moreover RNA-Ab A9-8 specifically bind to 

EpCAM positive breast cancer cell lines MCF-7 as well as colon cancer cell lines HT-29 

and HCT-116, whereas no binding was observed for EpCAM negative Jurkat cells 

(Figure 2.3). The magnified view of cells shows that the Cy5-labeled RNA-Ab was 

localized in the cell cytoplasm, whereas under similar conditions the control sequence 

showed very low binding. To test whether RNA-Ab A9-8 can be internalized to cell 

cytoplasm following binding, the receptor mediated endocytosis pathway was blocked by 

treating MCF-7 cells under potassium depletion condition (87). Incubating Cy5-labeled 

RNA-Ab with the MCF-7 cells that pre-treated with potassium depletion buffer, the 

RNA-Ab did not enter into the cell cytoplasm but rather bound only to the cell membrane 

forming a circle around the cell membrane (Figure 2.3a). In contrast, incubating RNA-

Ab under normal condition with MCF-7 cells, it gets internalized and distributed as 

shown by dispersed dots near cell nucleus. Thus, it can be concluded that the RNA-Ab 

gets internalized into the cells after binding to receptors on the cell surface membrane.  
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Figure 2.3. The cell entry of RNA-Ab tested by confocal microscopy. a. The binding 

and subcellular distribution of RNA-Ab to EpCAM-positive cancer cell lines (MCF-7, 

HT-29, and HCT-116) and to EpCAM negative cell line (Jurkat) b. Binding and 

subcellular distribution of RNA-Ab and control sequence to EpCAM positive cell line 

MCF-7 in potassium depletion buffer when receptor mediated endocytosis pathway is 

blocked and in normal conditions. 
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To investigate whether both loops of the RNA-Ab participate in binding to the 

target mimicking a protein antibody, we truncated RNA-Ab by deleting one loop at a 

time, keeping the other loop intact. This provided two new aptamer structures as shown 

in Figure 2.4. Next, the binding affinity of these one-loop structures towards MCF-7 

cells were tested by flow cytometry, the original RNA-Ab was tested as positive control. 

The structure with only loop 1 showed an apparent KD around 25 nM (Figure 2.4a) while 

the structure with only loop 2 showed a KD around 15 nM (Figure 2.4b), whereas the 

original RNA-Ab with both the loops present have a KD value of around 9.9 nM (Figure 

2.4c). This shows that both the loops in RNA-Ab bind to its target with high affinity 

proving bivalent nature of selected RNA antibody. We also tested the binding affinity of 

recently reported 2’F-RNA aptamer EpDT3 to MCF-7 cells (87), which is the only 2`F-

RNA aptamer selected so far against EpCAM. All the loop deleted structures and the full 

length RNA-Ab showed lower apparent KD than EpDT3 which showed apparent KD 

value around 83 nM to MCF7 cells in our experiment (Figure.2.4d).  
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Figure 2.4. Determination of apparent dissociation constants (KD) for loop deleted 

RNA-Ab with EpCAM positive MCF7 Cells. a. Loop1 deleted RNA-Ab, b. loop 2 

deleted RNA-Ab, c. the full length RNA–Ab, and d. the reported 2’F-RNA aptamer for 

EpCAM binding affinity comparison  
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Micro-RNA 21 (miR21) was discovered as an oncogenic miR which targets a 

number of tumour suppressor genes (180,181). High level expression of miR21 is 

associated with various types of cancers. A 8-mer tiny locked nucleic acid (LNA), which 

is complementary to the seed sequence of miR21, has been reported to be able to knock 

down the miR21 expression, and inhibit the microRNA 21 function in vitro and in vivo 

(162). EpCAM protein has been previously shown to act as a cargo to internalize the 

attached payloads (173). To investigate if the newly developed RNA-Ab A9-8 can 

specifically deliver anti-miRNA oligonucleotide into EpCAM positive cells, a dual 

luciferase reporter assay system was used to detect the miR21 level in cells. The perfect-

match anti-miR21 sequences were cloned to 3’UTR region of the primary reporter gene 

Renilla luciferase. The second reporter gene Firefly luciferase was used as internal 

controls, which allows normalization of the Renilla luciferase expression for endpoint 

lytic assays. RNA-Ab constructs harbouring anti-miR21-LNA were prepared by 

hybridizing the LNA oligonucleotide (LNA21-Sph1, Figure 2.5a) to the 3’-end extended 

RNA-Ab. RNA 3WJ nanoparticles harbouring anti-miR21-LNA were constructed as 

negative control. EpCAM positive breast cancer cell line MCF-7 and colon cancer cell 

line HCT-116 have high level of miR21 expression (data not shown here). After 

incubating RNA-Ab miRNA construct with cells, A9-8-LNA significantly reduced 

miR21 level in cancer cells with a dose depending response. In contrast the 3WJ-LNA, 

LNA itself, or RNA-Ab did not knockdown the miR21 levels (Figure 2.5b, c). Results 

showed that RNA-Ab A9-8-LNA can deliver its cargo anti-miRNA into cell cytoplasm 

and significantly knockdown miRNA expression level.  
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Figure 2.5. RNA-Ab mediated delivery of anti-miRNA21 to EpCAM positive cancer 

cells.  a. The secondary structure of A9-8-LNA nanoparticle, which is assembled from 

two pieces of oligonucleotides. b. Delivery of anti-miR21 to MCF-7 cells by incubating 

cells with different concentration of nanoparticles. c. Delivery of anti-miR21 to HCT-116 

cells by incubating nanoparticles with cells. RLU is relative Renilla to firefly luciferase 

unit, which is reversely related to miR21 levels in cells.  
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CONCLUSION: 

In conclusion, the divalent RNA antibody presented here binds its target with high 

affinity and specificity. The key design feature of the RNA-Ab is highly stable 3WJ core 

derived from phi29 packaging motor, which provides significant mass  and helps to 

maintain folding of attached oligonucleotide therapeutics for efficient delivery. The 

design can be used for selection of RNA antibody virtually against any small molecule or 

protein. Further experiments are underway to show its therapeutic utility in animal 

models. Although several antibody based immunotherapeutic targeting to various cancer 

biomarkers have been developed, they suffer from instability, lack of proficient clinical 

response and discrepancy in quality of antibodies from batch to batch (170). Moreover, 

the effect of antibody dependent cell mediated cytotoxicity (ADCC), antibody-mediated 

complement dependent cytotoxicity (CDC) and induction of anti-idiotypic response 

critically rely on the carbohydrate composition in the CH2 domain of the antibodies, 

which can vary largely in batches (170). The RNA-Ab design presented here can be 

chemically synthesized. It is anticipated to provide improved oligonucleotide therapeutic 

delivery for various diseases to provide better healthcare. 
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Chapter 3: Nanoparticle Orientation to Control RNA Loading or 

Surface Display of Extracellular Vesicles for Efficient Cell Targeting, 

siRNA Delivery and Cancer Regression 

This chapter (with some modification) is under revision at Nature Nanotechnology. 

Special thanks to Dr. Daniel Binzel and for help and assistance in assays with prostate 

cancer cells in vitro and Hui Li, Dr. Bin Guo for help and assistance with in vivo assays. 

INTRODUCTION: 

It has been popularly believed that the advantage of nanotechnologies is the top-down 

and bottom-up construction approaches to make particles in nanometer-scale holding 

unique and special function. Here we report one more advantage of nanotechnology by 

controlling the structural orientation to regulate the anchoring of nanoparticles on 

extracellular vesicles (EVs) membrane for specific cancer targeting and intracellular 

trafficking. The orientation of arrow shaped RNA nanoparticles on EVs was possible to 

be controlled. Placing a membrane anchoring cholesterol at the arrow tail resulted in 

displaying of RNA aptamer or folate ligand onto the surface of EVs. In contrast, placing 

the chemical at the arrow head resulted in partial loading of RNA nanoparticles into the 

EVs. Taking advantage of the RNA aptamer ligand for specific targeting and EVs for 

efficient membrane fusion, the resulting RNA aptamer-displaying EVs were used for 

specific delivery of siRNA with efficient gene silencing resulting in complete blockage of 

cancer growth. Animal studies showed that the nanometer scale ligand-displaying EVs 

specifically localized in tumor xenografts without accumulating in healthy organs. 

Efficient gene silencing was observed both in cell culture and animal trials from systemic 
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administration of PSMA (Prostate Membrane Specific Antigen) aptamer-displaying EVs 

loaded with survivin siRNA.  

MATERIALS AND METHODS: 

The construction, synthesis and purification of RNA nanoparticles with or without 

the 2'F modification or Alex647 labeling has be reported (43). 

 The PSMAapt/3WJ/Cholesterol RNA nanoparticle was assembled by mixing equal 

molar ratio of three RNA oligo strands including a3WJ-Cholesterol, b3WJ-Alexa647 and 

c3WJ-PSMAapt  2’-F RNA in TES buffer (50 mM Tris, pH8, 5 mM EDTA, 0.05 M NaCl), 

heating to 85 °C for 5 min, then slowly cooling down to 4 °C. The assembly of RNA 

nanoparticles was detected in 8 % TBM-Polyacrylamide gel. The sequences of all the 

RNA strands (lower case letters indicate 2'-F nucleotides) are:  

(1) a3WJ: 5’-uuG ccA uGu GuA uGu GGG-3’ 

(2) a3WJ-sph1: 5’-uuG ccA uGu GuA uGu GGG AAu ccc GcG Gcc AuG Gcc GGG 

AG-3’ 

(3) a3WJ-survivin sense: 5’-uuG ccA uGu GuA uGu GGG GcA GGu uCC uuA ucu 

Guc Auu-3’ 

(4) a3WJ-survivin sense(scramble): 5’-uuG ccA uGu GuA uGu GGG AAu ccc GcG 

Gcc AuG Gcc GGG AG-3’ 

(5) a3WJ-Folate: 5’-(Folate)uuG ccA uGu GuA uGu GGG -3’ (custom ordered from 

Trilink) 
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(6) a3WJ-Cholesterol: 5’- uuG ccA uGu GuA uGu GGG(Cholesterol TEG)-3’ (custom 

ordered from Trilink) 

(7) b3WJ: 5’-ccc AcA uAc uuu Guu GAu ccc-3’ 

(8) b3WJ-Folate: 5’-(Folate)ccc AcA uAc uuu Guu GAu ccc-3’ 

(9) b3WJ-Cholesterol: 5’-ccc AcA uAc uuu Guu GAu ccc(Cholesterol TEG)-3’ 

(custom ordered from Trilink) 

(10) b3WJ-Alexa647: 5’-(Alexa647)(AmC6)- ccc AcA uAc uuu Guu GAu ccc-3’ 

(custom ordered from Trilink) 

(11) c3WJ: 5’-GGA ucA Auc AuG GcA A-3’ 

(12) c3WJ-PSMAapt: 5’-GGA ucA Auc AuG GcA AuG GGA ccG AAA AAG Acc uGA 

cuu cuA uAc uAA Guc uAc Guu ccc-3’ 

(13) c3WJ-Alexa647: 5’- GGA ucA Auc AuG GcA A(C6-NH)(Alexa647)-3’ (custom 

ordered from Trilink) 

(14) Survivin anti-sense:5’-UGA CAG AUA AGG AAC CUG C-3’ 

(15) Survivin anti-sense(scramble): 5’-CUC CCG GCC AUG GCC GCG GGA UU-3’ 

EVs purification:  

EVs were purified using a modified differential ultra-centrifugation method(182). 

Briefly, the fetal bovine serum (FBS) used for cell culture was spun at 100,000 × g for 70 

min to remove the existing serum exosome.  The supernatant of HEK293T cell culture 

(EVs enriched medium) was harvested 48 h after cell plating, and was spun at 300×g for 

10 min to remove dead cells, followed by spinning at 10,000 × g for 30 min at 4 °C 
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degree to remove cell debris and/or microvesicles.  EVs were concentrated from the 

culture medium by using an Opti-prep Cushion procedure (183). The Opti-prep cushion 

offers an iso-osmotic pressure and prevents physical disruption of the exosome. A 200 μL 

of 60 % iodixanol (Sigma) was added to the bottom of each tube to form a cushion layer.  

After spinning at 100,000 × g for 70 min at 4 ºC using Beckman SW28 rotor, the EVs 

migrated and concentrated to the interface layer between the 60 % iodixanol and the EVs 

enriched medium. 1mL of the fraction close to the interface and cushion was collected. A 

6 mL EV solution was further washed with a 30mL PBS in a SW28 tube that contained 

50 µL of 60 % iodixanol cushion, and spin at 100,000 × g for 70 min at 4 ºC. The pellets 

in the cushion were all together collected and were suspended in 1 mL of sterile PBS for 

further use.  

Cell culture, EM imaging, confocal microscopy, DLS measurement, and flow 

cytometry:  

Methods for cell culture, EM imaging, confocal microscopy, DLS and 

flowcytometry have been reported (43,66,139). HEK293T, KB, LNCaP-FGC, PC-3 cells 

were obtained from ATCC, LNCaP-LN3 were obtained from MD Anderson Cancer 

Center. Cell cultures purchased from ATCC were authenticated by Short Tandem Repeat 

(STR) prior to purchase and LNCaP-LN3 cells were authenticated prior to receiving the 

cells as a gift. Each cell line was not tested for mycoplasma. While the KB cell line has 

been listed as a misidentified cell line that has been derived by contamination of HeLa 

cells, it serves as an ideal model in these studies. KB cells are known to overexpress 

folate receptor that allows for proper specific targeting through the use of Folate on RNA 
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nanoparticles. The derivation of the KB cell line will not affect using it as model to test 

folate receptor targeting property of the RNA displaying EVs.  

Nanoparticle Tracking Analysis:  

Nanoparticle Tracking Analysis (NTA) was carried out using the Malvern 

Nanosight NS300 system on EVs re-suspended in PBS at a concentration of 10µg of 

proteins/ml for analysis. The system focuses a laser beam through the sample suspension. 

These are visualized by light scattering, using a conventional optical microscope aligned 

to the beam axis which collects light scattered from every particle in the field of view. 

Three 10 sec video records all events for further analysis by NTA software. The 

Brownian motion of each particle is tracked between frames, ultimately allowing 

calculation of the size through application of the Stokes Einstein equation. 

Size exclusion chromatography:  

Sephadex G200 gel column was equilibrated with PBS and loaded with 

fluorescently labeled EV samples. After washing with PBS, fractions were collected with 

5 drops per well. The fluorescence intensity Cy5 or Alexa647 in the collected fractions 

was measured using a microplate reader (Synergy 4, Bio Tek Instruments, Inc).  

siRNA loading into EVs:  

EVs (100 μg of total protein) and RNA (10 μg) were mixed in 100 μL of PBS 

with 10 μL of ExoFect Exosome transfection (System Biosciences) followed by a heat-

shock protocol. Cholesterol modified RNA nanoparticles were incubated with siRNA 

loaded EVs at 37 ºC for 45 min, then stay on ice for 1 h to prepare the RNA decorated 

EVs. The decorative RNA nanoparticles were kept at ratio of 10 µg RNA nanoparticles 
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per 100 µg of EV in protein amount. To purify RNA decorated EVs, 400 µL of RNA 

decorated EVs was washed with a 5 mL PBS in a SW-55 tube that contained 20 µL of 60 

% iodixanol cushion, and spin at 100,000 × g for 70 min at 4 ºC. The pellets in the 

cushion were all together collected and were suspended in 400 µL of sterile PBS for 

further use.   

FBS digestion experiment:  

15µl of the purified Alexa647-RNA decorated EVs were mixed with 30 µL of FBS 

(Sigma), and incubate at 37 °C for 2 h. The samples were loaded into 1 % syner gel for 

electrophoresis in TAE (40 mM Tris-acetate, 1 mM EDTA) buffer to test the degradation 

of decorative RNAs. Gel was imaged with Typhoon (GE healthcare) at Alexa647 channel. 

Assay the effects of PSMAapt/EV/siSurvivin on prostate cancer using qRT-PCR:  

LNCaP-FGC cells were incubated with 100 nM of the PSMAapt/EV/siSurvivin 

and controls including 3WJ/EV/siSurvivin and PSMAapt/EV/siScramble nanoparticles 

respectively. After 48 h treatment, cells were collected and target gene down-regulation 

effects were assessed by qRT-PCR. PC-3 cells were used as negative control cell line. 

Cells were processed for total RNA using Trizol RNA extraction reagent 

following manufacture’s instruction (Life Technologies). The first cDNA strand was 

synthesized on total RNA (1 μg) from cells with the various RNAs treatment using 

SuperScript
TM

 III First-Strand Synthesis System (Invitrogen). Real-time PCR was 

performed using Taqman Assay. All reactions were carried out in a final volume of 20 μL 

using Taqman Fast Universal PCR Master Mix and assayed in triplicate. Primers/probe 

set for human BIRC5 and 18S were purchased from Life Technologies. PCR was 
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performed on Step-One Plus real time PCR system (Applied Biosystem). The relative 

survivin mRNA expression level was normalized with 18S RNA as internal control.  The 

data was analyzed by the comparative CT Method (ΔΔCT Method).  

Due to the high reproducibility and consistency between cell cultures, in in vitro 

studies it was predetermined that a sample size of at least n = 3 would allow for adequate 

analysis to reach meaningful conclusions of the data. However, in in vivo studies, higher 

variance are seen in tissue samples; therefore, a higher set of samples is required to 

compensate for this natural variance. In these studies,  n = 4 and the experiment repeated 

in triplicates was completed. Samples and animals were randomized into groups 

throughout the whole experiment. 

Western blot and antibodies:  

LNCaP-FGC cells were incubated with 100 nM of the PSMAapt/EV/siSurvivin 

and controls including 3WJ/EV/siSurvivin and PSMAapt/EV/siScramble nanoparticles 

respectively. After 48 h treatment, cells were collected and lysed with RIPA buffer 

(Sigma) with a protease inhibitor cocktail (Roche). Primary antibodies used for western 

blot analysis were rat anti-human surviving antibody (R&D system, AF886), rat anti-

human β-actin (Abcam, ab198991), rat anti-human TSG101 (Thermo Scientific, PA5-

31260). 

Cytotoxicity assay:  

The cytotoxicity of PSMAapt/EV/siSurvivin was evaluated with a MTT assay kit 

(Promega) according to the manufacture’s protocol. LNCaP-FGC and PC-3 cells were 
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treated with EVs in triplicate in 96-well plate. After 48hr cell survival rate was analyzed 

by the MTT assay on microplate reader (Synergy 4, Bio Tek Instruments, Inc).    

In vivo targeting assay of tumor xenograft after systemic injection of EVs:  

To generate prostate cancer xenograft mice model, male athymic nude Nu/Nu (6-

8 weeks old) mice (Taconic) were used.  2 ×10
6
 LNCaP-LN3 cells in 100 μL of PBS 

mixed with equal volume of Matrigel matrix (Corning life science) was injected to each 

mouse subcutaneously. When the tumor reached a volume of ~500mm
3
, the mice were 

anesthetized using isoflurane gas (2 % in oxygen at 0.6 L/min flow rate) and injected 

intravenously through the tail vein with a single dose 2 mg/kg of EVs/mice weight. 

Whole body imaging (Excitation 650 nm/ Emission 668 nm) was carried out at 1 h, 4 h, 

and 8 h post EVs administration using IVIS Spectrum Station (Caliper Life Sciences). 

The mice were euthanized after 8 h, and organs and tumors were taken out for 

fluorescence imaging to compare the biodistribution profiles of EVs. This animal 

experiment was done with a protocol approved by the Institutional Animal Care and Use 

Committee (IACUC) of The Ohio State Univeristy. 

In vivo therapeutic effect of EVs in prostate cancer mouse models:  

6-8 weeks old male nude mice (Nu/Nu) were purchased from Charles River 

(Wilmington, MA). The mice were maintained in sterile conditions using IVC System 

(Innovive). Tumor xenografts were established by subcutaneous injection of 2 × 10
6
 

cancer cells mixed with equal volume of Matrigel matrix (Corning life science) in the 

flank area of the mice. PSMAapt/EV/siSurvivin, PSMAapt/EV/siScramble and PBS were 

administered by tail vein injection, at dosage of 0.5 mg siRNA/5 mg EVs per Kg of mice 

body weight, twice per week for three weeks. Two axes of the tumor (L, longest axis; W, 
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shortest axis) were measured with a caliper. Tumor volume was calculated as: V = 

(L×W
2
)/2. This animal experiment was done with a protocol approved by the Institutional 

Animal Care and Use Committee (IACUC) of North Dakota State University. For tumor 

inhibition assay, n = 10, the mice that did not develop tumor from the beginning were 

excluded for analysis. 

Statistics:  

Each experiment was repeated at least 3 times with triplication for each sample 

tested. The results were presented as mean ± standard deviation, unless otherwise 

indicated. Statistical differences were evaluated using unpaired t test with GraphPad 

software, and p < 0.05 was considered significant. 

RESULTS AND DISCUSSION: 

Design and construction of arrow shaped RNA nanostructures for display on EVs 

surface. 

The three-way junction (3WJ) (43,184) of the bacteriophage phi29 motor pRNA 

folds by its intrinsic nature into a flat sheet with three angles of 60°, 120° and 180° 

between helical regions (Figure 3.1a.) (184). The pRNA-3WJ was extended into an 

arrow shaped structure by incorporating an RNA aptamer serving as a targeting ligand, 

binding PSMA, a prostate cancer cell-surface receptor. The engineered pRNA-3WJ was 

used to decorate EVs purified from HEK293T cell culture medium to create ligand 

decorated EVs. HEK293T EVs were used as they are non-immunogenic and contain 

minimal intrinsic biological cargoes (185). An Opti-Prep ultracentrifugation method was 

used to purify EVs (see Methods(182)). Adding the iso-osmotic Opti-Prep cushion layer 

for ultracentrifugation greatly enhanced reproducibility of exosome purification in yield 
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(data not shown), as well as lessen physical disruption of exosomes by ultracentrifugation 

pelleting. A single lipid molecule, cholesterol, was conjugated into the arrow tail of the 

pRNA-3WJ to promote the anchoring of the 3WJ onto the EV membrane (Figure 3.1b.). 

Cholesterol-tetraethylene glycol (TEG) spontaneously inserts into the membrane of EVs 

that contain hydrophobic lipid core (186,187). The displaying of the RNA nanoparticles 

to the surface of the purified EVs was achieved by a simple incubation of the cholesterol-

modified RNA nanoparticle with the EVs at 37 °C for one hour. Electron Microscopy 

(EM) imaging (Figure 3.1c.), Nanoparticle Tracking Analysis (NTA) and Dynamic Light 

Scattering (DLS) revealed that the isolated native EVs were physically homogeneous, 

with size centering at 110 nm(Figure 3.1d, Figure. 3.S1a-b), with a negative zeta 

potential (Figure 3.1e). The purified EVs were further identified by the presence of 

exosome marker TSG101 (188) by western blot (Figure  3.S1c). The yield of purifying 

EVs from HEK293T cell culture medium was about 10-15 µg of EVs (measured as 

protein concentration), or 0.1 - 1.9 × 10
9
 EV particles (measured by NTA) per 10

6
 cells.  

EVs hold great promise as emerging therapeutic carriers given its intercellular 

communication nature. They can enter cells through multiple routes including membrane 

fusion, tetraspanin and integrin receptor mediated endocytosis, lipid raft mediated 

endocytosis, or micropinocytosis; but there is no specificity regarding the recipient cells 

(132,189). In order to confer specific targeting of the EVs to cancer cells, two classes of 

targeting ligands including folate and PSMA RNA aptamer were conjugated to the 3WJ 

for display on EVs.  Folate is an attractive targeting ligand, since many cancers of 

epithelial origin, such as head and neck cancers, overexpress folate receptors.(190) 

PSMA is expressed at an abnormally high level in prostate cancer cells and its expression 
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is also associated with more aggressive disease (191). A PSMA binding 2’-F modified 

RNA aptamer (192) was displayed on EVs for enhancing targeting efficiency to prostate 

cancer cells. For imaging, one of the pRNA-3WJ strands was end-labeled with the near 

infrared fluorescent dye Alexa647 (Figure 3.1i). The size distribution and zeta potential of 

RNA nanoparticle decorated EVs did not change significantly as measured by NTA and 

DLS (Figure 3.1f-g, Figure 3.S1d). 

 Survivin, an inhibitor of cell apoptosis, is an attractive target for prostate cancer 

therapy, since its knockdown can decrease tumorigenicity and inhibits metastases.(193) 

In combination with the survivin siRNA loaded in the EVs(Figure 3.1i), the 

PSMAapt/EV/siSurvivin were prepared for evaluating in vivo prostate cancer inhibition 

efficacy (see section 5). To improve the enzymatically stability of siRNA, the passenger 

strand was 2’-fluorine (2’-F) modified on pyrimidines, while keeping the guide strand 

unmodified (50,51). For tracking the siRNA loading efficiency in EVs, the survivin 

siRNA was fused to an Alexa647 labeled 3WJ core, and assembled into RNA 

nanoparticles (Figure. 3.S1e). After loading siRNA into EVs, the size of EVs did not 

change significantly as measured by NTA with a peak around 110 nm (Figure. 3.1f). The 

loading efficiency for siRNA-3WJ RNA nanoparticles was around 80 % (Figure. 3.s1f), 

controls without EVs or with only the ExoFect reagent showed as low as 15 % loading 

efficiency using the same method.   
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Figure 3.1.: RNA nanotechnology for decorating native EVs. (a) AFM image of 

extended 3WJ of the motor pRNA of bacteriophage phi29. (b) Illustration of constructing 

cholesterol labeled 3WJ on either the arrowhead arm or the arrow tail arm of the 3WJ. 

(c). Electron microscopy image of EVs from HEK293T cells. (d). NTA profile and (e). 

Zeta potential of EVs from HEK293T cells. (f).NTA profile and (g). Zeta potential of 

PSMA aptamer displaying survivin siRNA loaded EVs. (h). 2D structure (left panel) and 

8 % native PAGE for testing the assembly of Alexa647 labeled 

PSMAapt/3WJ/Cholesterol.'+' indicates the presence of the 3WJ component strands. (i). 

Assembly method for ligand displaying EVs. The native EV purified from HEK293T 
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cells were loaded with therapeutic siRNA cargoes, and then displaying with RNA 

nanoparticles harboring cholesterol for membrane anchorage and chemical ligand or 

RNA aptamer for specific cell binding.  
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Figure 3.S1. Physopchemical characterization for EVs and RNA nanoparticles. a. A 

representative NTA image of EVs purified from HEK293T cell medium. b. Particle size 

distribution EVs from HEK293T cells measured by DLS. c. Western blot showed the 

presence of TSG101 on EVs from HEK293T cells. d. Particle size distribution of 

PSMAapt/EV/siSurvivin measured by DLS. e. Sequence and structure of pRNA-3WJ 

fused with survivin siRNA. f. siRNA loading efficiency to EVs using ExoFect, the 

controls without EVs or without ExoFect were tested. 
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3.2. Arrow head or arrow tail cholesterol labeling of the RNA nanoparticles resulted 

in EV loading or membrane display, respectively. 

a. Differentiation between entry or surface display on EVs using serum digestion.  

The orientation and angle of the arrow shaped pRNA-3WJ nanostructure was 

used to control the RNA loading or surface display to EVs. We performed serum 

digestion experiment to confirm the localization of 2’F-RNA nanoparticles with EVs. 

Although the 3WJ 2’F-RNA nanoparticles are relatively resistant to RNaseA, it can be 

digested in 67 % fetal bovine serum (FBS) after incubation at 37 °C for 2 h (Figure. 

3S2c). Alexa647-2’F-RNA nanoparticle-displaying EVs were purified from free RNA 

nanoparticles by ultracentrifugation, then subjected to serum digestion experiment. It 

turned out the Alex647-2’F-RNA with cholesterol on arrow tail decorated EVs were 

degraded more than arrow head cholesterol decorated counterparts after 37 °C FBS 

incubation (Figure 3.2a-d). The result can be explained by the protection of RNA 

nanoparticles by EVs against serum digestion. Cholesterol to the arrow tail promoted 

displaying onto exosomes surface thus being degraded; while cholesterol to the arrow 

head promoted RNA nanoparticles entering EVs, thus the EVs provided protection 

against serum digestion on the Alexa647-2’F- RNA nanoparticles.  

The displaying of ligand on the outer surface of EVs might be caused by pRNA-

3WJ nanoparticles anchoring on the membrane without trafficking into the exosomes. 

The arm which forms a 60° angle with its adjacent arm of the RNA nanoparticles can act 

as a hook to lock the RNA nanoparticle in place, thereby preventing it from passing 

through the membrane (Figure 3.2a). This locking on the membrane displayed the ligand 

of either folate or PSMA RNA aptamer onto the EV surface.  
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The concentration of FBS used in the serum digestion experiment was chosen 

extremely high to purposely degrade the externally displayed RNA on EVs.  The 

decorative PSMAapt-3WJ 2’F RNA nanoparticles have been shown to remain stable and 

intact under physiological conditions.   

b. Differentiation between entry into or surface display on EV by competition assay using 

ligands to cancer cells.  

As described above, when cholesterol was attached to arrow tail of pRNA-3WJ , 

the RNA nanoparticles were anchored on EVs membrane and the incorporated ligands 

were displaced at the outer surface of the EVs (Figure 3.2a). An increase in uptake of 

EVs to folate receptor overexpressing KB cell was detected through displaying folate on 

EV surface by arrow tail cholesterol RNA nanoparticles (Figure 3.2 e, f). When 

incubating with folate receptor low expressing MDA-MB-231 cells, arrow tail shaped 

FA-3WJ/EV did not enhance its cellular uptake comparing to arrow tail 3WJ/EV (Figure 

3.2g). The surface display of folate was further confirmed by free folate competition 

binding assay, in which a base line of uptake by the FA-3WJ/EVs to KB cells was 

established. A decrease in cellular uptake to KB cells was detected after adding 10uM of 

free folate to compete with the cholesterol-arrow tail RNA nanoparticles decorated FA-

3WJ/ EV for folate receptor binding (Figure 3.2f). However, competition in uptaking of 

arrow head FA-3WJ/EV (Figure 3.2h) to KB cells by free folate was much lower (24.8 ± 

0.6 %) (Figure 3.2i), possibly due to partial internalization of the arrow head shaped 

nanoparticle into the EVs, caused a lower displaying intensity of folate on the EVs 

surface.  
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EVs can mediate intercellular communications through transporting mRNA, 

siRNA, microRNA or proteins between cells. They internalize into recipient cells through 

multiple different pathways, including micropinocytosis, receptor-mediated endocytosis, 

or lipid raft mediated endocytosis as reported (132). Although the natural process for EVs 

uptake is not ligand dependent, the arrow tail cholesterol RNA 3WJ conferred successful 

ligand dependent uptake by cancer cells, thus displaying cancer targeting property.    
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Figure 3.2: Comparison of the role between arrow head and arrow tail 3WJ. (a-b) 

Illustration showing the difference between arrow-head and arrow-tail display. (c) Syner 

gel to test arrow head and arrow tail Alexa647-3WJ/EV degradation by RNase in FBS. 

The gel was imaged at Alexa647 channel (d) and the bands were quantified by Image J. (e-

i) Assay to compare cell uptake of folate-3WJ arrow tail (e-g) and arrow head (h-i) on 

folate receptor positive and negative cells. 
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Figure 3.S2: RNA nanoparticles can be displayed on EVs outer surface by 

cholesterol anchoring. a. 2’F RNA nanoparticles cannot be digested by RNaseA, but can 

be digested in 67 % FBS after incubation for 2 h. To compare whether decorating EVs 

with RNA nanoparticles can reduce its nonspecific cell entry, b. shows the schematic 

drawing of EVs with or without RNA decoration, the EVs were labeled by loaded 

Alexa647-3WJ nanoparticles. c. Flow cytometry tests the uptake of EVs by KB cells, 3WJ 

2’F-RNA decorated EVs showed less cell entry comparing to undecorated EVs. 
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3.3. Specific cancer targeting and gene silencing of the RNA-displaying EV 

demonstrated in vitro. 

Specific cancer cell targeting is one important prerequisite for applying nano-

vesicles to cancer therapy. To generate cancer cell targeting EVs, approaches to express 

cancer cell specific ligand on EVs has been explored. One way to increase the specificity 

of EV to target cell is to overexpress peptide ligands on the EV membrane proteins (139). 

Neuron specific peptide RVG has been fused to EV membrane protein Lamp2b and 

overexpressed on dendritic cells(139). GE11 peptide, which is a ligand to EGFR was 

fused to the transmembrane domain of platelet-derived growth factor receptor (141). 

RGD peptide was fused to EV protein Lamp2b, thus generated EVs can delivery 

chemical drug doxorubicin specifically to tumor cells(194). One problem for using fusion 

peptide for targeted exosomal delivery is that the displayed peptide can be degraded 

during EV biogenesis. We explored here the method of displaying ligands onto EVs 

surface post biogenesis to enhance its specificity. The specific targeting, delivery and 

gene silence efficiency of the ligand displaying EVs were examined in cell culture. To 

ensure RNase resistance, 2'-F modifications were made to the RNA nanoparticles placed 

on the surface of EVs(43), while the thermodynamic stability of pRNA 3WJ provided a 

rigid structure to ensure the correct folding of RNA aptamers.(43,44) PSMA aptamer 

displaying EVs showed significantly enhanced binding and uptake to LNCaP cells 

compared to EVs without PSMA aptamer, but not to the PC3 cells, which is a PSMA 

receptor low expression cell line (Figure 3.3a).  PSMA positive LNCaP prostate cancer 

cells were used as a model to evaluate whether the siRNA were delivered to cancer cells 

through ligand displaying EVs. Upon incubation with LNCaP cells, 
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PSMAapt/EV/siSurvivin (PSMA aptamer/EV/Survivin siRNA) were able to knockdown 

survivin expression at the mRNA level as demonstrated by real-time PCR (Figure 3.3b), 

and protein level shown by western blot (Figure 3.S3). Cell viability and apoptosis was 

detected by MTT assays (Figure 3.3c), indicating that LNCaP cells were undergoing 

apoptosis as a result of survivin siRNA delivery.   
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Figure 3.3: Specific binding and siRNA delivery to cells in vitro with PSMA aptamer 

displaying EVs. (a) Flow cytometry (left) and confocal images (right) showing the entry 

of PSMAapt/EV to PSMA(+) prostate cancer LNCaP cells. The confocal images are 

overlap of Nucleus (Blue); Cytoskelton (Green); and EVs displaying with RNA (Red). 

(b) PSMA aptamer mediated delivery of survivin siRNA by EV to PSMA(+) prostate 

cancer cells assayed by RT-PCR. N = 3, experiment was run in three biological replicates 

and three technical repeats, statistics were calculated using a two sided t-test with center 

values presented as averages and errors as s.d. p = 0.016 for PSMAapt/EV/siSurvivin vs. 

3WJ/EV/siSurvivin, p=0.013 for PSMAapt/EV/siSurivivn vs. PSMAapt/EV/siScramble. (c) 

MTT assay showing reduced cellular proliferation. N = 3, experiment was run in three 

biological replicates, and statistics were calculated using a two sided t-test with center 

values presented as averages and errors as s.d. p = 6.8e-3. *p < 0.05, **p < 0.01.  
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Figure 3.S3. Western blot detect the knockdown of survivin protein by EVs. Survivin 

protein knocked down was detected in PSMAapt/EV/siSurvuvin PSMA positive LNCaP 

cells, but not PSMA negative PC3 cells. The same construct loaded with scramble siRNA 

or decorated without pRNA-3WJ were tested as negative controls.  
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3.4. The ligand displaying EVs target tumors 

The tumor targeting and biodistribution properties of ligand-displaying EVs were 

evaluated. FA-3WJ/EVs were systemically administered via the tail vein into KB 

subcutaneous xenograft mice model. Ex vivo images of mice healthy organ and tumors 

taken after 8 hr showed that the FA-3WJ/EVs mainly accumulated in tumors, with low 

accumulation in vital organs in comparison with PBS control mice (Figure 3.4a). The 

results supports the assumption that displaying targeting RNAs on the EVs surface 

reduces their accumulation in normal organs (141), and the ideal nano-scale size of RNA 

displaying EVs facilitates tumor targeting via Enhance Permeability and Retention (EPR) 

effects, thereby avoiding toxicity and side effects.  

3.5. Complete inhibition of tumor growth by ligand-3WJ-displaying EV as 

demonstrated in animal trials.  

The therapeutic value of PSMA aptamer displaying EVs delivering survivin 

siRNA for prostate cancer was further evaluated in vivo using LNCaP-LN3 tumor 

xenografts generated in nude mice(195,196). Treatment with PSMAapt/EV/siSurvivin (1 

does every 3 days, totally 6 doses were given) completely suppressed in vivo tumor 

growth, compared to control groups (Figure 3.4b). EVs are biocompatible and well 

tolerated in vivo as we did not observe any toxicity as indicated by body weights of the 

mice, assessed 40 days after treatment (Figure 3.4c). The specific knockdown of survivin 

was validated by real time PCR (24.3 ± 8.1 %, P < 0.05) (Figure 3.4d), Taken together, 

the data showed that PSMAapt/EV/siSurvivin could deliver survivin siRNA specifically 

into cancer cells upon systemic injection and achieve high therapeutic efficacy without 

significant toxicity to the mice. 
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The in vivo cancer growth inhibition effect was more significant than in vitro 

MTT assays. The favorable effect and parameters of biodistribution, EPR effect of the 

decoration by the negatively charged RNA motif explaining the difference in vitro and in 

vivo, as found in the course of the study of RNA nanoparticles decorated EVs. 
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Figure 3.4: Animal trials using ligands displaying EV for tumor inhibition. (a) Organ 

images showing specific tumor targeting 8 hr after systemic injection of folate displaying 

EVs to mice with subcutaneous KB cell xenografts. n = 2, two independent experiments. 

(b) Intravenous treatment of nude mice bearing LNCaP-LN3 subcutaneous xenografts 

with PSMAapt/EV/siSurvivin (0.6 mg/kg, siRNA/mice body weight), 

PSMAapt/EV/siScramble (0.6 mg/kg, siRNA/mice body weight), and PBS, injected twice 

per week for three weeks. n = 10 biological replicates, 2 independent experiments, and 

statistics were calculated using a two sided t-test with center values presented as averages 

and errors as s.d. p = 0.347, 0.6e-2, 1.5e-6, 8.2e-8, 2.1e-7, 1.0e-7, 1.9e-7, 1.8e-6 for days 

15, 18, 22, 25, 29, 32, 36, 39, respectively for PSMAapt/EV/siSurvivin compared to 
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control. (c) Body weight of mice during the time course of exosome treatment. (d) RT-

PCR showing specific knockdown of survivin mRNA expression in prostate tumors after 

EV treatment. n = 4 biological replicates, experiment was run three times, and statistics 

were calculated using a two sided t-test with center values presented as averages and 

errors as standard deviation. 
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CONCLUSION 

The use of RNA interference technology, such as siRNA, to knockdown gene 

expression has been of great interest (197). The discovery of EVs, which are cell-derived 

membranous vesicles that are universally released by many cell types (124) and play 

important roles in intercellular signaling (136) advanced the field of siRNA delivery 

study. EVs (124,136,198,199) are naturally capable of intracellular delivery of 

biomolecules; and have nanoscale size and deformable shape with intrinsic ability to 

cross biological barriers. EVs can directly fuse with the cell membrane through 

tetraspanin domains or back-fuse with endosomal compartment membranes following 

receptor-mediated endocytosis to release encapsulated cargo to cytosol. Therapeutic 

payloads, such as siRNA can be fully functional after delivery to cells (124,136,198,199). 

However, EVs lack selectivity and randomly fuse to healthy cells as well. To generate 

specific cell targeting EVs, approaches to express cell specific peptide ligands on EVs 

surface have been explored.(139,141) However, in vivo expression of protein ligands is 

limited to the availability of ligands and depends on EV and ligand producing cell 

types.(124,199) In addition, the use of protein ligands will result in larger sized particles 

that can get trapped in liver, lung and other organs, and can stimulate the production of 

host antibodies.(200) To date, there are no studies reporting the display of nucleic acid 

based or chemical targeting ligands on EVs.  

Herein, we applied RNA nanotechnology (26) to reprogram natural EVs for 

specific delivery of siRNA to cancer models in vitro and in vivo (Figure 3.1a-c). Taking 

advantage of the thermodynamically stable properties of pRNA-3WJ(43,44,72), we 

generated multifunctional RNA nanoparticles harboring membrane anchoring lipid 
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domain, imaging, and targeting modules. The natural arrow shape of the pRNA-3WJ 

allowed for controlled entry or decoration on the surface of the EVs. With cholesterol 

placed on the arrow tail of the 3WJ, the RNA-ligand was prevented from trafficking into 

EVs, ensuring oriented surface display for cancer receptor binding. This was explicitly 

shown in the cell decoration and folate competition assays (Figure 3.2b) and further 

shown through the enhanced binding to LNCaP cells with the display of the PSMA 

aptamer (Figure 3.3a). Additionally, the placement of cholesterol on the arrowhead 

allowed for partial internalization of the RNA nanoparticle within the EVs (Figure 3.2a, 

c). The addition of RNA nanoparticles to the surface of the EVs not only provided a 

targeting ligand to the EV, they further added to the negative charge of the EV, thus 

reducing the non-specific binding of RNA displaying EVs to untargeted tissues. The 

cholesterol-TEG modified RNA nanoparticles should preferably anchor into the raft 

forming domains of lipid bilayer of EVs (186), further studies will be necessary to 

illustrate this process. Our in vitro decoration approach retained the favorable 

endogenous composition of EVs as delivery vectors, thus eliminated the need of building 

artificial endosome-escape strategies into the EV vectors comparing to using other 

synthetic nanovectors for siRNA delivery.  

Building on the confirmed RNA decorated EVs, we were able to specifically 

target PSMA expressing prostate cancer cells and tumors in vitro and in vivo, 

respectively. Furthermore, the EVs can deliver survivin siRNA to targeted prostate 

cancer cells with a level that was able to completely inhibit the growth of LNCaP prostate 

cancer xenograft. The PSMAapt nanoparticles provided a specific delivery of the EVs to 
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the tumor while reducing accumulation in healthy organs which is normally seen in EV 

delivery (141).  

EVs are heterogeneous; their compositions differ depending on their parental cells 

types. The interactions between EVs and immune system are also complex (201). 

Leukocytes and dendritic cells derived exosomes are proposed to be potential candidates 

for clinical therapeutics delivery vectors (202). But the exosome production scalability 

and reproducibility still need further studies.   

In summary, we demonstrated that we can effectively reprogram native EVs using 

RNA nanotechnology. Nanoparticles orientation controls RNA loading or surface display 

on EV for efficient cell targeting, siRNA delivery and cancer regression. The 

reprogrammed EVs displayed robust physiochemical properties, adequate tumor site 

localization, minimal healthy organ accumulation, high cancer cell specific uptake, and 

efficient intracellular release of siRNA to suppress tumor growth in animal models with 

unusually high efficiency. 
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Chapter 4: RNA Nanoparticles Harboring Annexin A2 Aptamer Can 

Target Ovarian Cancer for Tumor Specific Doxorubicin Delivery 

This chapter (with some modification) is in submission at Molecular Therapy. Special 

thanks to Dr. Thiviyanathan Varatharasa for help in preparation of 3WJc-endo28-3WJa 

DNA strand for the experiments.  

ABSTRACT: 

Utilizing the state-of-art RNA nanotechnology platform, we report here the design 

and construction of RNA nanoparticles harboring annexin A2 aptamer for ovarian cancer 

cell targeting, and a GC rich sequence for doxorubicin loading that can deliver drugs to 

ovarian cancer cells in a targeted manner. The system utilizes a highly stable three way 

junction (3WJ) derived from packaging RNA of the phi29 bacteriophage as a core of the 

nanoparticle. Annexin A2 aptamer was conjugated to one arm of the 3WJ. The highly 

stable pRNA-3WJ structural motif provides a rigid core to the RNA architecture and 

disfavors misfolding of aptamers when conjugated to other oligonucleotides, keeping 

affinity and functions of all functionalities intact, and thus is of significance utility for 

aptamer mediated targeted delivery. Nanoscale RNase-resistant RNA nanoparticles 

remained intact after systemic injection in mice and strongly bound to tumors with little 

or no accumulation in healthy organs 6 h post-injection, and the RNA 

nanoparticle/doxorubicin conjugates showed enhanced toxicity to ovarian cancer cells, 

but reduced toxicity to annexin A2 negative cells in cell toxicity assay. These results 

suggest that the constructed nanoparticle doxorubicin can potentially enhance ovarian 
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cancer targeted doxorubicin delivery for cancer treatment at lower doses with enhanced 

efficiency.  

INTRODUCTION: 

Ovarian cancer is a highly metastatic and lethal disease with the highest mortality 

rate of all cancers of the female reproductive system, although it is treatable when 

detected early. Most patients have high-grade disease with metastasis at the time of 

diagnosis due to vague clinical symptoms at early stages. The 5-year survival rate for 

patients with advanced disease is very low despite cytoreductive surgery and 

chemotherapy combination regimens. Furthermore, successful treatment is limited by the 

high rate of chemo-resistance and emergence of undesirable toxicities. Therefore, 

vehicles capable of targeted delivery of therapeutics to cancer cells with little collateral 

damage to healthy cells and tissues are needed. Annexin A2 is a calcium-binding 

cytoskeletal protein which is localized at the extracellular surface of endothelial cells and 

multiple types of tumor cells (203). Annexin A2 plays an important role in the 

angiogenesis and tumor progressing(204), targeting annexin A2 might be a strategy to 

develop effective therapeutics for cancer treatment. Using Cell-SELEX (Systematic 

Evolution of Ligands by Exponential Enrichment), a phosphorothiate modified DNA 

(thio-DNA) aptamers Endo28 against annexin A2 expressed in the vasculature and 

ovarian tumors obtained from human patients has been selected (205,206).  

Doxorubicin is an anthracycline chemotherapy drug. It can slow or stop the 

growth of multiple cancer cells and is an important component of ovarian cancer 

treatment (207). Long circulating PEGylated liposomal doxorubicin is a FDA approved 

drug for the treatment of recurrent ovarian cancer(208). Given that the promise of the 
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delivery system could benefit the therapeutic effect of doxorubicin on ovarian cancers; 

we explored the possibility of using RNA nanoparticles with targeting ligand for ovarian 

cancer targeted drug delivery. 

We recently discovered a phi29 pRNA three-way junction (3WJ) motif with 

unusually robust thermostable properties that can be used as an RNA nanotechnology 

platform to construct a new generation of therapeutic nanoparticles (43,53). The core 

structure of pRNA-3WJ can be assembled from three pieces of short RNA 

oligonucleotides, named 3WJa, 3WJb and 3WJc, with high efficiency forming a rigid 

scaffold. The rigid pRNA-3WJ scaffold can ensure the correct folding of its connected 

nucleic acid aptamers and other functionalities. We have demonstrated that RNA 

nanoparticles built with the 3WJ scaffold while harboring different functional modules 

retained their folding and independent functionalities for specific cell binding, cell entry, 

gene silencing, catalytic function and cancer targeting, both in vitro and in animal trials. 

The pRNA-3WJ nanoparticles are non-toxic and non-immunogenic (169). They are also 

capable of penetrating across heterogeneous biological barriers to selectively target 

cancer cells in mice and delivering therapeutics after systemic injection with little 

accumulation in healthy organs and tissues.  

The sequences for the thio-DNA aptamer will be incorporated into the pRNA-

3WJ 2’F-RNA scaffold to retain its authentic folding and functionality and in addition 

will harbor the fluorescent imaging probe Alexa647. We hypothesize that this DNA/RNA 

hybrid nanoparticle will retain the anenxin A2 targeting property in vitro and in vivo. 

With addition of a fluorescent imaging probe Alexa647 and the chemotherapeutic drug 

doxorubicin to the pRNA-3WJ scaffold, the nanoparticle can function as a drug carrier to 
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enhance the accumulation of doxorubicin in ovarian cancer cells, thus reducing the 

distribution of cargoes to other health organs. Load doxorubicin into the DNA/RNA 

hybrid nanoparticles also changed the pathway of doxorubicin entering cells. Without 

nanoparticles, doxorubicin enters cells mainly through passive diffusion; when 

doxorubicin is intercalated into nanoparticles, it selectively enters annexin A2 positive 

cells through receptor mediated endocytosis. Thus, the therapeutic effect can be enhanced 

by changing the drug internalization pathway on cancer cells. An ovarian cancer 

xenografts mouse model was utilized to evaluate the biodistribution of nanoparticles in 

vivo.  

MATERIALS AND METHODS 

Construction of pRNA-3WJnanoparticles harboring Annexin A2 binding aptamer.  

DNA/RNA hybrid nanoparticles were constructed using a bottom-up approach, as 

previously described. Briefly, DNA oligo 3WJc-endo28-3WJa was synthesized by DNA 

synthesizer, and Alexa647-3WJb 2’F-RNA, 3WJb-sph1 2’F RNA, Sph1-2’F-RNA were 

prepared by RNA synthesizer using solid phase synthesis.  The sequences are described 

as below ( _* represents a phosphorothioated bond, lower case letter represents a 2’-

fluorine modified base ): 

3WJc-endo28-3WJa DNA: 5’-GGA TCA ATC ATG GCA ACG CTC GGA TCG ATA 

AGC TTC GCT CGT CCC CC*A GGC* AT*A G*AT* ACT CCG CCC CGT C*AC 

GG*A TCC TCT* AG*A GC*A CTG TTG CCA TGT GTA TGT GGG-3’ 

Alexa647-3WJb 2’F-RNA: 5'-(Alexa 647) (C6-NH) ccc AcA uAc uuu Guu GAu cc-3'    
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3WJb-Sph1 2’F-RNA: 5’- ccc AcA uAc uuu Guu GAu ccA Auc ccG cGG ccA uGG 

cGG ccG GGA G-3’ 

Sph1-2’F- RNA: 5’-cuc ccG Gcc Gcc AuG Gcc GcG GGA uu-3’  

3WJa 2’F- RNA: 5’-uuG ccA uGu GuA uGu GGG-3’ 

3WJc-2’F RNA: 5’-GGA ucA Auc AuG GcA A-3’ 

The RNA nanoparticle carrying a scramble aptamer sequnce was prepared by in 

vitro transcription with Y639F T7 polymerase. The DNA template was prepared by two 

step PCR using primer1 and 2 for first step, and primer 3 and 4 for second step PCR. 

2’fluorine (2’-F) modified cytosine and uracil were used in the transcription reaction. The 

transcribed RNA strand was purified by 8 M Urea, 8 % polyacrylamide gel ran in TBE 

buffer (89 mmol/L tris-borate, 2 mmol/L EDTA). RNA bands of interest was excised 

from the gel visualized by UV shadow on thin layer chromatography plates, and eluted 

from gel with elution buffer (0.5 M Ammonium Acetate, 0.1 mol/L EDTA, 0.1 % SDS), 

followed by ethanol precipitation. 

Primer1: 5’-TAA TAC GAC TCA CTA TAC CGG ATC AAT CAT GGC AAG TTC 

GGT TGT GTC GGC GAG TAT AG-3’ 

Primer 2: 5’- GGA TCA ACA AAG TAT GTG GGA TCG GCA TTA TAC GTA TAG 

CA-3’ 

Primer3: 5’-GTA TAA TAC GAC TCA CTA TAG GGC CGG ATC AAT CAT GGC 

AA-3 
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Primer4: 5’-CTC CCG GCC ATG GCC GCG GGA TTG GAT CAA CAA AGT ATG 

TGG-3’ 

Scramble template: 5’-GTC GGC GAG TAT AGG TGA AGT TGC CAT GTG TAT 

GTG GGG TGA TGG ATT GCT ATA CGT AT-3’ 

Nanoparticles were assembled by mixing strands at equal molar concentrations in 

PBS(w/Ca
2+

 Mg
2+

) buffer(0.1 g/L CaCl2, 0.2 g/L KCl, 0.2 g/L KH2PO4, 0.1 g/L MgCl2-

6H2O, 8.0 g/L NaCl, 1.15 g/L Na2HPO4), the mixture was heated to 90 °C for 5 minutes 

and snap cooled down on ice.  

Load doxorubicin to Endo28-3WJ-Sph1 nanoparticles. 

Doxorubicin (Sigma) solution (20 µM) was incubated with extended Endo28-

3WJ-Sph1 or Scr-3WJ-Sph1 RNA nanoparticles (2 µM) in intercalation buffer (0.1 M 

CH3COONa, 0.05 M NaCl, 0.01 M MgCl2) for 1h at room temperature. Then the free 

doxorubicin was removed by passing through Sephadex G50 spin column (NucAway
TM

, 

Ambion).  The loading efficiency of doxorubicin was monitored through measuring the 

fluorescence intensity of doxorubicin with fluorometer (Horiba Jobin Rivin) at excitation 

wavelength 480nm, emission 500-720 nm. 

To measure the intercalation constant of Endo28-3WJ nanoparticle with 

doxorubicin, increasing concentration of nanoparticles were incubated with 1.4µM of 

doxorubicin, the fluorescence intensity of doxorubicin was measured. The fluorescence 

quenching as a function of increasing aptamer concentration was plot and fitted into a 

Hill equation with Origin to calculate the KD.  

Release of doxorubicin from the nanoparticle –doxorubicin conjugates 
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Drug release from the nanoparticle /doxorubicin conjugates was monitored using 

dialysis bag with 3.5 kDa cutoff under sink condition(209).  About 400 µL of Endo28-

3WJ-Sph1/doxorubicin conjugate which contains 1 µM doxorubicin was dialyzed in 

intercalation buffer at 37°C. 100 µL of releasing medium was collected at time point of 0, 

0.7, 2.5, 4, 6, 8, 20, 24 h. Free doxorubicin was also dialyzed to test its release profile as a 

control. The concentration of doxorubicin in release buffer was tested with fluorometer 

(Horiba Jobin Rivin) at excitation wavelength 480nm, emission 500 to720 nm. 

Serum stability assay  

400 ng of Alexa647 labeled Endo28-3WJ nanoparticle were incubated in PBS 

buffer containing fetal bovine serum (FBS) at final concentration of 10%. Samples were 

taken at multiple time points, including 0, 0.5, 1, 2, 4, 8, 9, and 24 h after incubation at 37 

°C. 8 % Native TBM polyacrylamide gel electrophoresis was applied to visualize RNA. 

The gel was imaged at Alexa647 channel with Typhoon FLA 7000 (GE Healthcare; 

Pittsburgh, Pennsylvania). 

Nanoparticle size and zeta potential measurement by DLS 

Apparent hydrodynamic sizes and zeta potential of assembled Endo28-3WJ 

nanoparticles were measured by a Zetasizer Nano-ZS (Malvern Instruments; Malvern, 

United Kingdom). RNA nanoparticles were measured at 1 μM in Diethylpyrocarbonate 

(DEPC) treated water at 25 °C. 

Cell culture 

Human ovarian cancer cell line SKOV3 (American Type Culture Collection; 

Manassas, Massachusetts) was cultured in McCoy’s 5A medium (Life technologies) 
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containing 10% FBS, IGROV-1 cells were culture in RPMI 1640 medium (Invitrogen; 

Grand Island, New York) containing 10 % FBS and 1 % gentamicin sulfate (Gibco), 

HEK293T cells were cultured in DMEM medium (Life technologies) containing 10% 

FBS, HMVECad cells were cultured in flask where its surface coated with attachment 

factor (Gibco) with Medium 131(Gibco). All cells were cultured in a 37 °C incubator 

with a 5 % CO2 and a humidified atmosphere. 

Flow cytometry assay 

 Cells were trypsinized and rinsed with cell culture medium. Alexa647-labeled 

Endo28-3WJ and the control 3WJ nanoparticles were each incubated with 2 × 10
5
 

SKOV3, IGROV-1 or HEK293T cells at 37 °C for 1 h, at the final RNA concentration of 

100 nM.  After washing with PBS (137 mmol/L NaCl, 2.7 mmol/L KCl, 100 

mmol/LNa2HPO4, 2 mmol/L KH2PO4, pH 7.4), the cells were re-suspended in PBS buffer 

and subjected to flow cytometry assay. Flow cytometry assay was performed by the UK 

Flow Cytometry & Cell Sorting Core Facility.  

Confocal microscopy imaging  

SKOV3, IGROV-1 and HEK293T cells were grown on glass cover slides in their 

complete medium overnight. Alexa647-labeled Endo28-3WJ and the control 3WJ 

nanoparticles were each incubated with the cells at 37 °C for 2 h at final concentration of 

100 nM. After washing with PBS, the cells were fixed by 4% paraformaldehyde and 

stained by Alexa Fluor® 488 phalloidin (Invitrogen; Grand Island, New York) for actin 

and Prolong® Gold Antifade Reagent with DAPI (Life Technologies) for nucleus. For 

visualize intracellular doxorubicin delivery, the nanoparticles were incubated with cells at 
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final doxorubicin concentration of 1µM in PBS (with Mg
2+

, Ca
2+

) buffer for 6 h, then 

stained with DAPI for image. Doxorubicin was visualized through a channel with 

excitation at 480 nm, emission ranged from 530-650 nm. An Olympus FV1000 confocal 

microscope (Olympus Corporation) was used for these assays.  

Cytotoxicity assay 

The cytotoxicity of RNA nanoparticles were evaluated with an MTT assay 

(Promega, Madison, WI) following manufacture’s instruction. Briefly, SKOV-3 and 

HEK293T cells were plated in a 96-well plate and cultured at 37 °C in humidified air 

containing 5% CO2 overnight. The Endo28-3WJ-Sph1/Dox 2’F-RNA nanoparticle 

conjugates and control nanoparticles, free doxorubicin were incubated with cells at 37 °C, 

while keeping the final doxorubicin concentration to be 3 µM.  After 48 h, 15 µL of dye 

solution was added to each well and incubated at 37 °C for 4 h; 100 µL of solubilization 

/stop solution was added to each well and incubated at room temperature for 2 h to 

develop color. The absorbance at 570 nm was recorded using a microplate reader 

(Synergy 4, Bio Tek Instruments, Inc, USA). The cell viability was calculated relative to 

the absorbance of cells only control. 

In vivo biodistribution and tumor targeting of RNA nanoparticles  

SKOV-3 cells were cultured in vitro and subcutaneously injected under the skin 

of 8-week-old female nude mice. A total of 2 × 10
6 

cells were injected in solution. 

Tumors were grown for 4 weeks until tumors reached a volume of 200 mm
3
. Mice were 

then administered PBS, Endo28-3WJ, or 3WJ each with Alexa647 labels at a dose of 80 

µg /mice through the tail vein. Mice were imaged for whole body fluorescence at time 
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points of 0, 1, 2, 4, and 6 h with an In Vivo Imaging System (IVIS) imager (Caliper Life 

Sciences; Waltham, Massachusetts). Upon the completion of the study, mice were 

sacrificed, and tumors, hearts, kidneys, livers, and brains were collected and imaged by 

the whole body imager for Alexa647 signal. Furthermore, tumors were fixed in 4% 

paraformaldehyde with 10 % sucrose in PBS buffer at 4 °C overnight. Tumor samples 

were then placed in Tissue-Tek Optimum Cutting Temperature compound (Sakura 

Finetek USA; Torrance, California) for frozen sectioning (10 μm thick). Sectioned tissue 

were then stained with DAPI and mounted with ProLong Gold Anti-fade Reagent (Life 

Technologies; Carlsbad, California) overnight. Slides were then fluorescently imaged by 

Olympus FV1000 Confocal Microscope System (Olympus; Pittsburgh, Pennsylvania). 

RESULTS AND DISCUSSION 

Construction of pRNA-3WJ nanoparticles harboring Annexin A2 binding aptamer  

The phosphorothioate modified DNA (thio-DNA) aptamer targeting Annexin A2, 

Endo28, was placed onto one end of the pRNA-3WJ 2’F-RNA, creating DNA/RNA 

hybrid nanoparticles suitable for ovarian cancer targeted dug delivery. The DNA/RNA 

hybrid nanoparticle with a two-piece design was found to have the highest assembly 

efficiency, in which the sequence of thio-DNA aptamer Endo28 was connected to the 

3’end of 3WJc and 5’end of 3WJa DNA, forming one DNA strand. The DNA oligo was 

then assembled with 2’F modified Alexa647-3WJb 2’F-RNA to form a 2’F-RNA/thio-

DNA hybrid nanoparticle with 3WJ core structure, named Endo28-3WJ (Figure 4.1a). 

The formation of hybrid nanoparticle was confirmed by native PAGE analysis (Figure 

4.1b). The hybrid nucleic acid nanoparticles have a mean particle size around 8 nm 

(Figure 4.1c), and negative charge with zeta potential around -20 mV (Figure 4.1d) as 
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measured by Dynamic Light Scattering (DLS). They are stable in serum with a half-life 

time of 4 h in 10 % FBS (Figure 4.1e).   



95 
 

  

Figure 4.1. Characterization of endo28-3WJ DNA/RNA hybrid nanoparticles. (a). 

Primary sequence and secondary structure of Endo28-3WJ nanoparticle predicted by M 

Fold. (b). Native PAGE test the assembly of Endo28-3WJ nanoparticles. (c). Particle size 

of Endo28-3WJ as determined by DLS. (d). Zeta potential of Endo28-3WJ nanoparticles 

measured by DLS.  (e). Serum stability assay showed the half-life of Endo28-3WJ in 10 % 

FBS is around 4 h, which was calculated by quantify the bands at Ethidium bromide 

channel. The gel image scanned at ethidium bromide channel is shown as insert. 
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Loading Doxorubicin into Endo28-3WJ Nanoparticles and in vitro release 

Doxorubicin can physically intercalate to nucleic acid nanoparticles by 

preferentially binding to double stranded 5’-GC-3’ or 5’-CG-3’ sequences(210-212). To 

increase loading ratio of doxorubicin per nanoparticle, we extended the arm of Endo28-

3WJ at the 3’end of 3WJb with adding a 26 bp GC rich sequence named Sph1. The 

extended Endo28-3WJ-Sph1 nanoparticle named Endo28-3WJ-Sph1 was assembled 

through three single strands of nucleic acid (Figure.4.2a) with high efficiency as detected 

by native PAGE (Figure.4.2b).  

Doxorubicin (Dox), an anthracycline class drug, has fluorescence property that 

can be quenched after being interacted with nucleic acid (213).The incorportation of 

doxorubicin with extended nanoparticle, Endo28-3WJ-Sph1, was tested by fluorometer. 

A decrease in fluorescence intensity was detected when incubate a fixed amount of 

doxorubicin with an increasing concentration of Endo28-3WJ-Sph1 RNA nanoparticles 

(Figure 4.2c). Evaluation of the predicted secondary structure of Endo28-3WJ-Sph1 

nanoparticle reveals eleven possible sites for doxorubicin intercalation, as marked by red 

asterisk in Figure 4.2a. The dissociation constant (KD = 140 nM) of the Endo28-3WJ-

Sph1/Dox physical conjugates was derived from the Hill plot in Figure 4.2c insert; while 

the doxorubicin concentration was kept 1.4 µM. It suggests that Doxorubicin and RNA 

nanoparticles spontaneously formed stable physical conjugates, and the molar binding 

ratio of equilibrium doxorubicin per RNA nanoparticle is around 10 : 1. The number is 

consistent with the predicted number of doxorubicin to be intercalated in each Endo28-

3WJ-Sph1 RNA nanoparticles (Figure 4.2a).   
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A study of Doxorubicin release from the nanoparticle–Doxorubicin physical 

conjugates over time was conducted using dialysis tube with membrane cutoff of 3 kDa. 

Upon dialysis, more than 80 % doxorubicin release was observed in 6 h with first order 

kinetics (Figure 4.2d). A significant slower drug release rate at the initial stage suggests 

this system is advantageous for in vivo systemically targeted delivery of doxorubicin.  

Free doxorubicin showed a much faster release profile with more than 80 % release in 

first hour (Figure 4.2d). 
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Figure 4.2. Loading doxorubicin into Endo28-3WJ nanoparticles and its in vitro 

release. (a). Secondary structure of Endo28-3WJ-Sph1 nanoparticles forming complex 

with doxorubicin. Doxorubicin which is shown as red star intercalates into the 

nanoparticles. (b). Native PAGE test the assembly of Endo28-3WJ-Sph1 nanoparticles, 

the gel image at EtBr channel is shown as green, at Cy5 channel is shown as red. (c). 

Fluorescence spectrum showing the intercalation of doxorubicin with Endo28-3WJ-Sph1 

nanoparticles, the dissociation constant is calculated from the hill plot as insert. (d). In 

vitro release profile of doxorubicin from the nanoparticle doxorubicin intercalates.     
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Targeting of Endo28-3WJ nanoparticles to cancer cells in vitro 

To test the targeting property of annexin A2 aptamer harboring pRNA-3WJ 

nanoparticles in cell culture, the fluorescent Alexa647 labeled 3WJb 2’F-RNA strand was 

assembled to Endo28-3WJ nanoparticles allow for tracking of the RNA nanoparticles. 

The Endo28-3WJ nanoparticles were incubated with several cell lines, which have 

different level of annexin A2 expression. IGROV-1(214), SKOV-3(215), human 

microvascular endothelial cells (HMVECad) are tested as annexin A2 positive cells lines, 

while HEK293T cells are annexin A2 negative and used as a negative control. Following 

the RNA incubation and washing steps cells were analyzed by flow cytometry to confirm 

the binding of the Endo28-3WJ nanoparticles. Flow cytometry analysis data showed that 

Endo28-3WJ has stronger binding to IGROV-1 (71.2 %) than SKOV-3 (51.7 %), while 

HEK293T showed a very low binding (17.3 %) similar to the non-binding 3WJ RNA 

controls (Figure 4.3a). The result agrees with the annexin A2 expression level in cells as 

reported (215). The flow cytometry data indicated that after fusing Endo28 aptamer to the 

3WJ core structure, the annexin A2 aptamer retained its binding property to annexin A2 

on cells after being incorporated into the pRNA-3WJ, which provides a scaffold for 

building multifunctional nanoparticles, such as include additional sequences for loading 

drugs. 

RNA nanoparticles suitable for targeted therapeutics delivery need to be 

internalized into their target cells for proper release of therapeutic agents. The entry of 

the Endo28-3WJ nanoparticles into annexin A2 positive cells including IGROV-1 and 

SKOV-3 was examined by confocal microscopy, and the annexin A2 low expression 

HEK293T cells were used as negative controls. After incubating Alexa647 labeled 
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Endo28-3WJ nanoparticles with cells, Endo28-3WJ showed clear internalization to 

IGROV-1 and SKOV-3 cells; but very little signal was seen on HEK293T cells (Figure 

4.3b). Additionally, low Alexa647 signal was seen around cells for the 3WJ nanoparticles 

without annexin A2 aptamers (Figure 4.3b).  These results suggest that Endo28-3WJ 

nanoparticles enter the cells in an annexin A2 dependent fashion. 

  



101 
 

 

Figure 4.3 The binding and internalization of Endo28-3WJ to annexin A2 positive 

cells. (a) Flow cytometry test the binding of Alexa647 labeled Endo28-3WJ nanoparticles 

with annexin A2 positive cells (IGROV-1 and SKOV-3), and annexin A2 negative cells 

(HEK293T). (b) Confocal microscopy test the internalization of Alexa647 labeled 

Endo28-3WJ to annexin A2 positive cells (IGROV-1 and SKOV-3) and annexin A2 

negative cells (HEK293T). 
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Intracellular delivery of doxorubicin to ovarian cancer cells in vitro 

To determine if the extended DNA/RNA hybrid nanoparticles Endo28-3WJ-sph1 

could deliver doxorubicin to annexin A2 overexpression ovarian cancer cell, confocal 

microscopy imaging was performed. Both SKOV3 (annexin A2 positive) and HEK293T 

(annexin A2 negative) cells were incubated with free doxorubicin, Endo28-3WJ-

Sph1/Dox or Scr-3WJ-Sph1/Dox RNA nanoparticle conjugates for 8hrs and then 

analyzed by confocal microscopy. Scr-3WJ-sph1RNA nanoparticle with the similar 

doxorubicin loading efficiency and also with a pRNA-3WJ core structure was used as 

negative control. The SKOV-3 cells treated with Endo28-3WJ-Sph1/Dox exhibited 

strong doxorubicin fluorescence signal similar to free doxorubicin in the confocal 

microscopy assay. However, when treated with the scramble-3WJ-sph1/Dox intercalates, 

the cells showed much weaker cellular uptake of doxorubicin (Figure 4.4d). The 

doxorubicin after being released from Endo28-3WJ-sph1/Dox complex was found mostly 

located in cytoplasm; in contrast, free doxorubicin was located in cell nuclei after the 

same treatment (Figure 4.4b). When incubated with annexin A2 negative HEK293T 

cells(Figure 4.4c), both Endo28-3WJ-sph1/Dox and Scramble-3WJ-sph1/Dox 

intercalates showed weak uptake (Figure 4.4g,h). These results suggest that Endo28-

3WJ-sph1/Dox physical conjugates can specifically deliver doxorubicin into annexinA2 

positive cell lines. 
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Figure 4.4 In vitro delivery of doxorubicin by Endo28-3WJ-Sph1 nanoparticles to 

cells. Both annexin A2 psotivie SKOV-3 (a-d) and annexin A2 negative HEK293T cells 

(e-h) were tested.  Nanoparticles harboring doxorubicin conjugated with scramble 

aptamer was tested as negative control (d, h). The cells were treated with nanoparticles 

for 6hrs and imaged. The doxorubicin channel is shown as red, cell nuclei stained with 

DAPI is shown as blue. Endo28-3WJ-Sph1 nanoparticles are shown as green. 
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Effects of Endo28-3WJ-Sph1/Dox conjugate on cell cytotoxicity 

Cell cytotoxicity was evaluated with an MTT assay, which monitors cell 

metabolic activity. The cytotoxicity effect of Endo28-3WJ-Sph1/Dox conjugates was 

tested with both annexin A2 positive SKOV3 cells and annexin A2 negative HEK293T 

cells. An equal concentration (3 µM) of doxorubicin from Endo28-3WJ-Sph1/Dox, and 

controls including Scr-3WJ-Sph1/Dox and free doxorubicin were incubated with cells. 

Endo28-3WJ-Sph1/Dox showed significantly higher toxicity on SKOV-3 cells than the 

controls including free doxorubicin and Scr-3WJ-Sph1/Dox conjugates (Figure 4.5a). 

Such a difference in cytotoxicity was not detected with HEK293T cells (Figure 4.5b). 

The results suggest that the Endo28-3WJ-Sph1 nanoparticles are able to deliver 

doxorubicin selectively to annexin A2 positive cells, and exert its cytotoxicity effect on 

the targeted cells.     
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Figure 4.5. Cell cytotoxicity assay for Endo28-3WJ-Sph1/Dox intercalates in vitro.  

(a). Endo28-3WJ-Sph1/Dox showed significantly higher toxicity than the control groups 

including free doxorubicin and  Scr-3WJ-Sph1/Dox on anenxin A2 positive SKOV3 cells. 

n=3 biological replicates, statistics were calculated using a two sided t-test with center 

values presented as averages and errors as s.d. p = 1e-4 and 1.5e-3comparing Endo28-

3WJ-Sph1/Dox to free doxorubicin and Scr-3WJ-Sph1/Dox respectively. (b) Endo28-

3WJ-Sph1/Dox did not show significant difference on toxicity with the control groups 

including free doxorubicin and Scr-3WJ-Sph1/Dox on anenxin A2 negative HEK293T 

cells. n = 3 biological replicates, statistics were calculated using a two sided t-test with 

center values presented as averages and errors as s.d. p = 7.8e-2 and 2.6e-1comparing 

Endo28-3WJ-Sph1/Dox to free doxorubicin and Scr-3WJ-Sph1/Dox respectively.   
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Targeting of Endo28-3WJ nanoparticles to cancer cells in vivo 

Ovarian cancer xenograft mice model were developed through subcutaneous 

injection of SKOV-3 cells to female nude mice. Tumors were fully developed after 4 

weeks. 100 μL of 10 μmol/L solution of Alexa647 labeled Endo28-3WJ nanoparticles 

were administered to the mice through tail-vein injection. Mice were whole body imaged 

to monitor the biodistribution of nanoparticles in vivo at designed time points. The mice 

were sacrificed after 6 hours and nanoparticle accumulation in the organs was tested by 

imaging. Alexa647 was detected throughout the whole body of the mice after 30 min of 

injection indicating nanoparticles successfully circulated through the mice. At early time 

points, Alexa647 signal was detected in the tumor, liver, and bladder of the mice. After 6 

hours, fluorescence signal was remained in xenograft tumor, while undetectable in all 

healthy organs (Figure 4.6a). Confocal microscopy imaging of the tumor sections shows 

specific targeting and accumulation of the Endo28-3WJ nanoparticles to the SKOV3 

xenograft tumor, while the control group including 3WJ nanoparticles and PBS showed 

much lower fluorescent intensity in tumor cells (Figure4.6b). The results demonstrated 

that the 3WJ RNA nanoparticles harboring Annexin A2 aptamer are suitable for targeted 

in vivo drug delivery to cancer cell. 
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Figure 4.6. In vivo targeting of Endo28-3WJ to ovarian cancer xenograft in mice 

model. (a). Organ image of mice to test the accumulation of Alexa647 labeled 

nanoparticles in vivo 6 hr post systemic injection. (b) Confocal microscopy to test the 

cellular distribution of Alexa647-Endo28-3WJ inside the tumor tissue. 
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CONCLUSION:   

Annexin A2, a calcium phospholipid binding protein, has been characterized in 

many cancer cell activity including cell invasion and metastasis. It is well known that 

annexin A2 is overexpressed in ovarian cancer cells (203). A DNA aptamer using 

phosphorothioate-modified DNA nucleotides was generated through SELEX for specific 

targeting of annexin A2 by Mangana et al. (206). The selected thio-DNA aptamer was 

placed onto the ultrastable pRNA-3WJ motif, creating a DNA/RNA hybrid nanoparticle 

that can specifically target and enter ovarian cancer cells. The polyvalence of the pRNA-

3WJ scaffold also allowed for harboring of imaging probes for tracking and therapeutics 

for treatment. By incorporating a GC rich sequence specifically designed for the binding 

of a chemotherapy drug, doxorubicin, efficient loading of the drug was achieved at 

around 10 molecules per nanoparticle. 

The nanoparticles showed a sustained release profile of doxorubicin, with the 

drug release reaching 80 % in 6 hours, as compared to naked doxorubicin that reached 

more than 80 % releasing within only 1 hour. Such sustained release will ensure that 

majority of the loaded drug will be released after the carrier nanoparticle reaches the 

targeted tumor site, thus reducing the distribution of toxic chemical drugs to the healthy 

organs and minimizing the side effect.  

Upon confirmation of annexin A2 targeting nanoparticles entering into ovarian 

cancer cells, and proper loading/releasing profiling of doxorubicin, experiments were 

expanded to test the delivery of doxorubicin to cancer cells in vitro. SKOV-3 cells are 

known to overexpress annexin A2, and it is also resistant to multiple drugs including 

doxorubicin. The Endo28-3WJ-Sph1/Dox complex showed significantly higher toxicity 
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towards SKOV-3 cells than the scramble control and the free doxorubicin. This is 

possibly caused by changing the drug intracellular trafficking pathway, as confocal image 

showed that doxorubicin released from Endo28-3WJ-sph1/Dox nanoparticles mainly 

accumulated in cell cytoplasm, different from the free doxorubicin which was located in 

cell nuclei. 

The in vivo biodistribution study showed a promising profiling with accumulation 

of nanoparticles in tumors, but not healthy organs. Thus using the Endo28-3WJ 

nanoparticle for cancer cell targeted drug delivery will benefit ovarian cancer patients 

with reducing the side effect of cancer chemotherapeutics, and increasing its local 

concentration in tumor microenvironment after systemic administration. Overall, the 

results demonstrated that stable RNA nanoparticles can be constructed for the specific 

targeting and treatment of ovarian cancers, expanding the application of RNA 

nanoparticles for including chemotherapeutic delivery.  

RNA nanoparticles were constructed using the pRNA-3WJ core from the phi29 

packaging motor to harbor annexin A2 aptamer for delivery of doxorubicin to ovarian 

cancer cells. The DNA/RNA hybrid nanoparticles were proven to remain chemically and 

thermodynamically stable for in vivo application. The annexin A2-specific nanoparticles 

produces good binding profiles with ovarian cancer cells at 50 nmol/L RNA and provided 

specific delivery of doxorubicin to SKOV-3 ovarian cacner cells, with significant higher 

toxicity than scramble nanoparticle controls.  The annexin A2 aptamer harboring 

nanoparticles also showed specific targeting to ovarian cancer after systemic 

administration in mouse xenograft, therefor demonstrated great potential as vehicle for 

targeted drug delivery to treat ovarian cancer. 
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Chapter 5: Discovery of a New Method for Potent Drugs Development 

Using Power Function of Stoichiometry of Homomeric Biocomplexes or 

Biological Nanomotors  

This chapter was reproduced (with some modification) with permission from Pi F, 

Vieweger M, Zhao Z, Wang S, and Guo P. “Discovery of a new method for potent drug 

development using power function of stoichiometry of homomeric biocomplexes or 

biological nanomotors.” Expert Opinion on Drug Delivery, 2016. 13 (1), 23-36. DOI: 

10.1517/17425247.2015.1082544. Copyright 2016 Taylor and Francis. Special thanks to 

Zhengyi Zhao for help in preparation of data for Figures 5.1 and  5.4. 

ABSTRACT: 

Multi-drug resistance and the appearance of incurable diseases inspire the quest 

for potent therapeutics. We reviewed a new methodology in designing potent drugs by 

targeting multi-subunit homomeric biological motors, machines, or complexes with Z > 1 

and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged 

subunits required to block the function of the complex. The discussed rational behaves 

similarly to Christmas decorations, where a number of light bulbs are connected in series 

in an electrical circuit; failure of one bulb results in turn off of the entire lighting system. 

In most multisubunit homomeric biological systems, a sequential coordination or 

cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the 

ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect 

follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis 

that the potency of drug inhibition depends on the stoichiometry of the targeted biological 
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complexes has been proved recently using a highly sensitive in vitro phi29 viral DNA 

packaging system. Examples of targeting homomeric bio-complexes with high 

stoichiometry for drug discovery are discussed. Biomotors with multiple subunits are 

widespread in viruses, bacteria, and cells, making this approach generally applicable in 

drug development.  

INTRODUCTION : 

The continuous escalation of drug resistance has been threatening human health 

and life, i.e., many microorganisms including bacteria, viruses, and even cancer cells are 

developing resistance to current chemotherapies. Drug resistance in cancer has partially 

contributed to ~600,000 deaths in the USA in 2012(216). To combat the on-rising drug 

resistance, different approaches for developing new drugs have been explored. One 

method is to develop drugs that target novel mechanisms. Components highly important 

for cancer cell growth have been explored as drug targets for the treatment of multidrug 

resistant cancer(217,218). The first FDA-approved drug to treat multidrug-resistant 

tuberculosis, bedaquiline, follows a novel mechanism of inhibiting the bacterial ATP 

synthase of M. tuberculosis and other mycobacterial species(219). Another approach is to 

use nano-drug carriers to enhance the binding efficiency of drugs to cancer cells(220-

223). A third approach is to develop new combinational drugs acting on multiple targets 

to enhance its efficacy (224,225), including cocktail therapy(226). This involves 

identifying multiple targets that when treated simultaneously lead to a synergetic 

therapeutic effect and optimizing the design of multi-target ligands(227). Still, there is 

unmet need for treating multi-drug resistant disease. Thus, new approaches for drug 

development are needed to combat drug resistance. 
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A new hypothesis that potent drugs can be developed by targeting proteins or 

RNA complexes with high subunit stoichiometry was reported recently(228). The major 

challenge for testing this hypothesis is to evaluate the significance of the target 

stoichiometry and the binding affinity of the drug molecule with respect to its efficacy. In 

order to quantitatively correlate the drug inhibitory efficacy to the stoichiometry of the 

target biocomplexes, a well-studied multicomponent system is required, which allows an 

empirical comparison of functional inhibition efficiency of individual components with 

different numbers of subunits.  

The DNA packaging motor of bacteriophage phi29 was an ideal model for testing 

this theory. The morphology and stoichiometry of the individual components in the phi29 

DNA packaging motor have been well studied. The Phi29 biomotor (Figure 5.1a) is 

composed of three essential, co-axially stacked rings(34,229-231): a dodecameric 

connector ring located at the vertex of the viral procapsid; a hexameric packaging RNA 

(pRNA) ring bound to the N-terminus of the connector(34,232), and a hexameric ring of 

ATPase gp16 attached to the helical region of pRNA(233-235). The stoichiometry of 

pRNA was first determined using Yang Hui's Triangle (or binomial distribution) in 

1997(236), and similar mathematical methods were applied to determine the 

stoichiometries of the protein subunits (229). Furthermore, dsDNA packaging utilizes a 

revolution mechanism without rotation to translocate its genomic DNA powered through 

the hydrolysis of ATP(234,235,237-242). The copy number of ATP molecules required 

to package one full Phi29 genomic dsDNA has been predicted to be 10,000(234,235,237-

241,243). Phi29 DNA packaging, thus, offers an ideal platform to test the novel concept 
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described above: the dependence of the inhibitory drug efficiency on the stoichiometry of 

its targeted biocomplex.  

Although the theory of targeting multisubunit complexes for developing potent 

drugs was reported and validated recently(228), real cases of targeting multisubunit 

complex for new drug development have been practiced(244-246). Since multicomponent 

biomotors are widely spread in nature(240,241,247,248), the approach of targeting 

multisubunit complexes for potent drug development discussed here is generally 

applicable, especially in developing new generations of drugs for combating the rising 

acquired drug resistance in viruses, bacteria, and cancers (249-251).  

5.1 Rationale for selection of multi-subunit biocomplexes as efficient drug targets  

Inhibitory drugs are typically designed to bind selectively to a target site, thereby 

blocking the site from interaction with other biomolecules leads to the loss of essential 

activity of the biological target. This target can be a single element, composed of only 

one subunit, or a complex consisted of multiple subunits, such as the biomotors of the 

hexameric ASCE (Additional Strand Catalytic E) superfamily(234,252). Conventional 

drugs are designed to inhibit pathogenesis through targeting of a single subunit molecule, 

such as an enzyme or a structural protein of a virus. As discussed below, the key in 

designing potent drugs lies in targeting multisubunit biological motors, machines, or 

complexes as drug targets that follow a sequential coordination or cooperative 

mechanism. The stoichiometry of the complex, Z, is larger than 1 and the number of 

drugged subunits that are required to block the activity of the target complex, K, equals 1 

(Z > 1 and K = 1). Similar to in-series connected decorative Christmas lights, where one 

broken light bulb will turn off the entire chain, one drugged subunit will inhibit the entire 
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complex and therefore biological activity. Sequential action or cooperativity in 

multisubunit complexes has been widely reported in biological systems(253-257); 

inhibiting any subunit leads to inhibition of the entire complex, or in other words K 

equals 1.  

For a conventional drug that inhibits its single subunit target (Z = 1) with 

efficiency p, the fraction of undrugged target molecules q will be 1-p; and those 

undrugged target molecules will remain active to maintain their biological function. In 

this situation, the inhibition efficiency is proportional to the substrate targeting efficiency 

p(253-255). When targeting a dimeric complex (Z = 2), for example, inactivating any 

subunit results in inhibition of the whole complex. For a drug targeting a dimeric 

complex with substrate targeting efficiency p = 0.9 (90 %), only 10 % of the first subunit 

and 10 % of the second subunit remain active after drug targeting. Thus, the fraction of 

undrugged complexes will be effectively reduced to 0.01, leaving 1 % of complexes 

active. Since drug inhibition depends on the ratio of drugged to undrugged complexes, 

the efficiency of the inhibition is proportional to the product of the inhibition of the 

individual subunits, in other words, it follows a power law with respect to Z.  

Consequently, a complex composed of Z subunits with the smallest number of 

blocked subunits (K) to inhibit activity of the complex is 1, when p percent of subunits 

are interacting with the drugs, the fraction of uninhibited biocomplexes will be q
z
 and the 

proportion of inhibition equals 1 − 𝑞𝑍. 

5.1.1 Drug inhibition efficiency predicted by binomial distribution model 

The scenario outlined above follows a binomial distribution which can hence be 

used to outline the relation between drug inhibition efficiency and target stoichiometry in 
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general. When the target element is a monomer, the inhibition efficiency can be 

calculated using Equation 1, where p and q are the fractions of drugged (substrate 

targeting efficiency) and undrugged (normal active elements) subunits, respectively (p + 

q = 1). 

 X = (p + q)
 1
     (1) 

However, when the target element contains multiple subunits, a higher order binomial 

distribution (Equation 2) is required to calculate the ratio of active complexes, where Z 

represents the total number of subunits (the stoichiometry) and M the number of drugged 

subunits in one biocomplex.  
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The probability of drugged subunits (M) and undrugged subunits (N; M + N = Z) in any 

given biocomplex can be determined by the expansion of Equation 2. When Z = 3, The 

expanded form of Equation 2 ， 123)( 32233  qpqqppqp , displays the 

probabilities of all possible combinations of drugged and undrugged subunits of a 

homoternary complex composed of three (p
3
), two (p

2
q), one (pq

2
), or no (q

3
) drugged 

subunits; the sum equals 1. Assuming that 70 % (p = 0.7) of subunits are inactivated by 

bound drugs leaving 30 % (q = 0.3) unaffected, then the percentage of complexes 

possessing at least two copies of normal subunits would be the sum of those possessing 

one copy of drugged and two copies of undrugged wild-type subunits, 3pq
2
, and those 

possessing three copies of native subunits is q
3
, i.e., 3pq

2
 + q

3
 = 3(0.7)(0.3)

2
 + (0.3)

3
 = 

0.216. In another example, if a complex contains 6 subunits, and biological activity 

requires 5 out of the 6 subunits to remain uninhibited, the fraction of active complexes in 
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the total population equals the sum of probabilities of obtaining: 1) 5 and 2) 6 undrugged 

subunits.  

Using the binomial distribution, the probabilities that a population contains any 

combination of undrugged versus drugged subunits can be predicted. The effect of the 

targeting efficiency p on the probability of obtaining a given complex with M drugged 

and N undrugged subunits is displayed in Table 1. The probabilities are calculated using 

equation 2, NM qp
NM

Z

!!

! , with the coefficients 
!!

!

NM

Z  obtained from Yang Hui’s Triangle, 

which is also called Pascal's Triangle, or binomial distribution (Figure 5.1b)(258). The 

use of Yang Hui’s Triangle and binomial distribution to determine the stoichiometry of 

biological motor was published in Guo Lab in 1997(236,259) for RNA component and 

restated in 2014 for protein component(229) in phi29 DNA packaging motor. 

5.1.2 Cooperativity in multisubunit biocomplexes leads to high inhibition efficiency 

The cooperativity of multisubunit biocomplexes is the key to high drug inhibition 

efficiency. Cooperativity means that multiple subunits work sequentially or processively 

to accomplish one essential biological reaction (237,254-256,260-264). Blocking any 

subunit of the complex inhibits the activity of the whole complex. Many reactions 

involving multiple subunits work cooperatively, e.g. assembly pathways in viral 

assembly systems (253,265). An analogy to such a biological reaction mechanism is 

given by the difference between parallel and series circuits. When a chain of light bulbs is 

arranged in a parallel circuit, burning out one light bulb will not affect others, while in a 

series circuit, breaking any one light bulb turns off the entire lighting system. The K 

value, the smallest number of subunits that needs to be inhibited in order to inhibit 

function of the light chain is therefore, K = 1. Thus, the K value is a key factor in 
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estimating the probability of obtaining inactive nanomachines or biocomplexes by 

combination and permutation of all subunits.  

K = 1 is critical for obtaining ultrahigh inhibition. The foundation of the approach 

in this report is the difference in inhibition probability for biocomplexes with the same 

ratio of drugged target subunits but different K values. Biological systems display 

complicated reactions that involve several steps and multiple components interacting in 

series or parallel. Based on the binomial math model and cooperative nature of biological 

reactions, we suggest that targeting of multi-subunit biocomplexes can serve as a tool to 

develop highly potent drugs. In a conventional six-component system, when one drug is 

designed to target only the component #3 to stop the entire system, such a condition 

resembles the model in equation 2 with Z = 1 and K = 1. Thus, the inhibition efficiency is 

linear to the substrate targeting efficiency (p) of the drug. However, in a homohexameric 

component system, the entire complex is blocked when a drug targets any subunit of the 

hexamer, which resembles Z = 6 and K = 1. Thus, the probability of active target 

complexes equals q
6  

(q = 1 - p). In other words, the drug inhibition efficiency is equal to 

1-q
6
, which scales with the 6

th
 power of q compared to linearly with q as for conventional 

mono-subunit approaches (see Table 2). 

Targeting a biological complex that exhibits a higher stoichiometry substantially 

reduces the fraction of non-inhibited complexes. K=1 implies that drug binding to one 

subunit inactivates the subunit, in which one drugged subunit is sufficient to inhibit the 

function of the entire complex. As an example, a probability calculation for Z = 6 and K = 

1 is given below. As all 6 (Z = 6) copies of the subunits are required for function, while 

one drugged subunit (K = 1) is sufficient to block the activity, all elements possessing 1 
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through 5 copies of drugged subunits are non-functional (Figure 5.1c). Only those 

complexes possessing 6 copies of undrugged subunits are functional. The probability that 

a complex contains 6 copies of unaffected subunits is q
6
 and therefore the inhibition 

efficiency is 1-q
6
 (227,237,253,260,265,266).  
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Figure 5.1. The morphology and stoichiometry of Phi29 DNA packaging motor. (a) 

Illustration of Phi29 DNA packaging motor composed of 1 copy of genomic DNA 

through a channel composed of three coaxil rings, a 12 subunit connector, 6 subunit 

pRNA, 6 subunit ATPase gp16. (b) Bionomial distribution equation with its coefficient 

displayed by Yang Hui Triangle. (c) Illustration of Z = 6 and K = 1, drug targeting any 

subunit of a hexameric complex would block its function. Adapted from ref.(228) with 

permission. 
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Table 2. Probability of obtaining complexes containing M copies of drugged and N 

copies of undrugged subunits 

Inhibited 

Subunits (p) 

Z=1 Z=6 

M=0, 

N=1 

M=1, 

N=0 

M=0, 

N=6 

M=1, 

N=5 

M=2, 

N=4 

M=3, 

N=3 

M=4, 

N=2 

M=5, 

N=1 

M=6,

N=0 

0% 100% 0% 100% 0% 0% 0% 0% 0% 0% 

10% 90% 9% 53% 35% 10% 1% 0% 0% 0% 

20% 80% 16% 26% 39% 25% 8% 2% 0% 0% 

30% 70% 21% 12% 30% 32% 19% 6% 1% 0% 

40% 60% 24% 5% 19% 31% 28% 14% 4% 0% 

50% 50% 25% 2% 9% 23% 31% 23% 9% 2% 

60% 40% 24% 0% 4% 14% 28% 31% 19% 5% 

70% 30% 21% 0% 1% 6% 19% 32% 30% 12% 

80% 20% 16% 0% 0% 2% 8% 25% 39% 26% 

90% 10% 9% 0% 0% 0% 1% 10% 35% 53% 

100% 0% 0% 0% 0% 0% 0% 0% 0% 100% 
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Consequently, for a drug with binding efficiency p, a larger stoichiometry of the 

target complex substantially increases the inhibition efficiency. To illustrate, we compare 

the fraction of non-inhibited complexes for Z = 6 and Z = 1, while keeping q = 0.4 and 

K=1 fixed for both target systems. The fraction of non-inhibited complexes for Z = 1 

amounts to q
Z 

= 0.4
1 
= 0.4, resulting in 1-0.4 = 60 % of inhibited complexes. In contrast, 

for Z=6, the fraction of non-inhibited complexes is q
Z 

= 0.4
6 

= 0.0041 and therefore 1-

0.0041 = 99.59 % of complexes are inhibited. The ratio of the remaining non-inhibited 

complexes (0.4/0.0041 = 98) shows a 98-fold decrease in non-inhibited complexes for Z 

= 6 compared to Z=1. At a targeting efficiency of p=0.9, the inhibition efficiency for Z = 

6 is 1-q
Z 

= 1-0.1
6 

= 0.999999 resulting in a 10,000-fold increased inhibition efficiency 

compared to Z = 1 (0.1/0.1
6
 = 10

5
, see Table 1). The binomial distribution indicates that 

the inhibitory effect follows a power law with respect to the stoichiometry of the target. 

Thus, for K = 1, the fraction of uninhibited biocomplexes equals q
z
; the larger Z, the 

smaller q
z
, (as 0 < q < 1). That is to say when developing drugs with the same binding 

affinity to their targets, the higher the stoichiometry of its multimeric target, the fewer 

uninhibited targets will remain and the more efficient the drug will be. 
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5.1.3 IC50 decreases as the stoichiometry of target complexes increases 

The half maximal inhibitory concentration (IC50) is one parameter used to 

evaluate drug efficacy. It quantitatively indicates how much of a particular drug is 

required to reduce the activity of a given biological process by half. It is universally used 

as a measurement of drug potency in pharmacological research. The median lethal dose 

LD50, also known as 50 % of lethal concentration, is an important parameter to evaluate 

the safety profile, i.e., acute toxicity of a drug. Most importantly, a larger ratio of LD50 to 

IC50, results in a safer drug. By increasing the inhibition efficiency through targeting 

components with high stoichiometry, the effective drug dosage is greatly decreased, thus 

decreasing the IC50. As a result, the ratio of LD50 to IC50 increases, resulting in an 

enlarged therapeutic window of the drug.  

If we denote PIC50 as the percentage of drugged subunits needed to reach 50% 

inhibition, then %50)1(1 50  Z

ICp  Solving this equation, 
Z

ICp /1

50 5.01 . 

Figure 5.2 shows the relationship between stoichiometry (Z) and drug targeting level p to 

reach the inhibition effect (IC), where p is a combined result of drug binding efficacy and 

drug concentration (dosage). When the stoichiometry Z of the multimeric drug target 

increases, the dosage of drug to reach IC50, IC20, or IC80 decreases, presented by the 

percentage of drugged subunits. This clearly shows that as Z increases, IC50p   decreases, 

and hence the drug is more potent. 

Focusing on the stoichiometry of the target complex for drug development differs 

from conventional approaches. Conventional drug molecules are sought to have a high 

binding affinity to the target, which means we expect more drug molecules to bind to one 
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target molecule. Here stoichiometry refers to the copy number of subunits within a 

biocomplex or nanomachine that serves as the drug target. This idea agrees with a newer 

model for predicting clinical drug efficacy, the receptor occupancy. Receptor occupancy 

acts as a predictor for human pharmacodynamics and antihistamine potency and takes 

into account both the affinity of the drug for its receptor and its free plasma concentration 

(267). 
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Figure 5.2. The relationship between the stoichiometry of homomeric target 

complex (Z) and target complex inhibition effect (IC). Adapted from ref.(228) with 

permission . 
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5.2 Inhibition efficiency as a power function of target stoichiometry proved by Phi29 

viral assembly system  

The hypothesis that drug inhibition efficiency follows a power function with 

respect to the target stoichiometry has been proved using the Phi29 viral assembly system 

(268). This well-defined in vitro assembly system is composed of four components, each 

of which is comprised of different subunits that can act as the nano-machine target. 

Inhibition of viral assembly is achieved using mutant components that represent drugged 

target components. The inhibition efficiencies were analyzed with Yang Hui’s triangle 

for targeting each of the Phi29 DNA packaging motor components. Binomial distribution 

analysis of these viral assembly competition assays confirmed the concept that drug 

targeting biological complexes with higher stoichiometry results in a higher efficiency 

than drugs acting on a single subunit target. 

The highly sensitive in vitro Phi29 assembly system was used to determine the 

inhibition efficiency of drugs targeting multi-subunit complexes (236,253,259,269), thus 

validating a new method for developing potent drugs. The bacteriophage Phi29 DNA 

packaging motor contains one copy of genomic dsDNA, 6 copies of packaging RNA, 6 

copies of ATPase protein gp16, and consumes more than 10,000 copies of ATP during 

genome packaging. The hexameric stoichiometry of Phi29 pRNA has been extensively 

shown using single-molecule techniques(268), AFM imaging(47,48), pRNA crystal 

structure determination(184), and statistical evaluations(236). The hexameric 

stoichiometry of Phi29 gp16 has been proved by native gel binding, capillary 

electrophoresis assays, Hill constant determination, and by titration of mutant subunits 

using binomial distribution(234,237). The copy number of ATP molecules was calculated 
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based on the fact that 6 ATP molecules are required to package one pitch of dsDNA 

containing 10.5 base pairs (270), thus one ATP is used to package 1.7 base pairs of 

dsDNA. The entire Phi29 genome is composed of 19,400 base pairs, thus, it is expected 

that more than 10,000 ATP molecules are required to package an entire Phi29 genome. 

The availability of a motor system with multiple well-defined and characterized 

components makes an ideal disease model for the analysis of drug inhibition efficiency 

versus the subunit stoichiometry of individual subcomponents within the same assay. 

Inhibition efficiencies were determined for ATP, pRNA, ATPase gp16, and DNA 

as drug targets with stoichiometries of 10,000, 6, 6, and 1, respectively. Among these 

components, targeting of ATP showed the strongest inhibition, while drugged mutant 

pRNA and mutant gp16 still showed stronger inhibitory effects than mutant DNA 

(Figure 5.3). For example, adding 20 % mutant DNA caused 20 % inhibition of viral 

assembly, while 20 % of drugged mutant pRNA exerted 74 % of inhibition on viral 

assembly and 20 % of γ-S-ATP almost completely inhibited the viral assembly, 

indicating that higher stoichiometry results in stronger inhibition efficacy.  

The target with ten-thousand-subunits showed higher inhibition than those with 

six subunits, which in turn showed higher inhibition than the single subunit target. In 

conclusion, these results show that inhibition efficiency displays a power function with 

respect to the stoichiometry of the target biocomplexes. Drug inhibition potency depends 

on the stoichiometry of the targeted components of the biocomplex or nano-machine. 

Since bio-motors share certain common structural and operational mechanisms across 

viruses, bacteria, and other cells, this approach has general application in drug 

development.  
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Figure 5.3. Comparing Phi29 viral assembly inhibition efficiency by targeting 

components with different stoichiometry. Components in the system with different 

stoichiometries were tested as drug targets (left pannel): DNA with stoichiometry of 1, 

ATPase gp16 with stoichiometry of 6 (right upper pannel), pRNA with stoichiometry of 6 

(right lower pannel), and ATP with stoichiometry of 10,000. Adapted from ref.(228) with 

permission. 
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5.3 Wide-spread distribution of biomotors with multiple subunits or high order 

stoichiometry 

Biological systems contain a wide variety of nanomachines with highly ordered 

stoichiometry that are essential for DNA replication, DNA repair(271), homologous 

recombination, cell mitosis, bacterial binary fission, Holliday junction resolution(272), 

viral genome packaging(273), RNA transcription, nuclear pore transport, as well as 

motion, trafficking, and exportation of cellular components. Here we use biological 

motors as an example to elucidate the rationale of Z > 1 and K = 1. These biological 

motors can generally be classified into three categories according to their DNA 

transportation mechanism: linear motors, rotation motors and the newly discovered 

revolution motors(237,241,248). High order stoichiometries are wildly observed among 

biomotors, especially in rotation and revolution motors. Thus, biomotors are feasible 

targets for the development of potent inhibitory drugs that exploit the power law behavior 

of the subunit stoichiometry.  

5.3.1 Rotation nanomachines 

FoF1 ATP synthase and helicases are representatives of rotary motors (274,275). 

FoF1 ATP synthase is a ubiquitous membrane enzyme that plays a key role in biological 

energy metabolism (276,277). It consists of two linked rotary motors, F1 and Fo, which 

are distinct in structure and function. F1 ATPase, forming the catalytic core, shows strong 

ATP hydrolysis activity. It is composed of 5 subunits (33111), with three  and three 

 subunits forming a hexameric ring with part of a long coiled coil  subunit. Fo is the 

proton pore that is embedded in the membrane, it consists of at least 3 subunits (a1b1c8-15) 

whereby subunit c differs among species. 



130 
 

Helicase DnaB is a hexameric nanomachine (Figure 5.4a) that unwinds dsDNA 

in front of the replication fork during DNA replication(278,279). Recently, a hand-over-

hand translocation mechanism was proposed for DnaB based on the crystal structure of 

the DnaB hexamer complexed with ssDNA and GDP-AIF4 (280). In this mechanism, the 

5’-3’ translocation of the subunits at a stepsize of two nucleotides is coupled with the 

sequential hydrolysis of NTP (281). The sequential hand-by-hand migration of the 

individual subunits results in DNA translocation. 

RecA, a family of ATP-dependent recombinases, plays an important role in 

dsDNA repair and genetic recombination in Archaea, Bacteria, and Eukaryota. It can 

interact with ssDNA forming right-handed helical filaments as a complex with 

approximately six monomers of RecA per turn (Figure 5.4b)(282,283). Electron 

microscopy studies have demonstrated that ATP binding induces a re-orientation between 

the RecA ATPase domains, resulting in the relative rotation of the protein on DNA 

substrate during DNA translocation powered by ATP hydrolysis. 

5.3.2 Revolution nanomachines 

All the dsDNA viruses known to date utilize similar mechanisms to transport their 

genome into preformed protein shells during replication. For example, Bacteriophage 

phi29, HK97, SPP1, P22, and T7 all share a common revolution mechanism for dsDNA 

packaging that employ a hexameric ATPase and predominantly dodecameric connector 

channels for packaging dsDNA. The phi29 DNA packaging motor is composed of three 

coaxial rings: a dodecameric channel ring and  an ASCE hexameric ATPase linked by a 

hexameric ring of pRNA (Figure 5.4c)(184,234,268). During genome packaging, more 
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than 10,000 ATP molecules are consumed by the hexameric ATPase as energy source to 

drive the translocation of one copy of the dsDNA genome(270). 

The ASCE superfamily, including FtsK-HerA superfamilies and the AAA+ 

(ATPases associated with diverse cellular Activities), is a clade of nanomachines that 

display a hexameric arrangement(284-287) of subunits. Their biological function is to 

convert chemical energy from ATP into mechanical motion(234,243,288,289), typically 

associated with conformational changes of the ATPase enzyme (234,290,291).  

FtsK belongs to the ASCE superfamily. It is a multi-domain protein composed of 

a C-terminal ATPase domain FtsK(C) containing α, β and γ sub-domains, an N-terminal 

membrane-spanning domain FtsK(N) and a 600-amino acid linker(292-294). It is 

responsible for conjugation between bacterial cells and dsDNA bidirectional 

translocation(295,296). It has been proposed that FtsK subunits acts in a sequential 

manner employing a revolution mechanism to translocate dsDNA(297,298). The crystal 

structure and electron microscopy of FtsK(C) demonstrates formation of a ring-like 

hexamer with DNA passing through the hexameric ring (Figure 5.4d)(298,299).  
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Figure 5.4. Widespread biomotors or nanomachines are composed of multisubunit 

complex. (A) Rotation nanomachine DnaB helicase is a hexamer (280) (PDB ID: 4ESV), 

(B) rotation nanomachine RecA motor protein is a hexamer (283) (PDB ID: 1N03), (C) 

revolution Phi29 DNA packaging motor contains a hexameric pRNA (184), (D) 

revolution DNA motor protein FtsK is a hexamer (298) (PDB ID: 2IUU). 
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5.4 Targeting biocomplexes for developing potent drugs 

As illustrated above, drug efficiency follows a power function of the 

stoichiometry of the subunits of the multimeric target biocomplex. Targeting 

biocomplexes with higher stoichiometry therefore can lead to the development of more 

potent drugs. Experimentally, approaches targeting receptor dimers, hetero- and homo-

oligomers for drug screening open exciting possibilities for drug discovery and 

development(300). 

5.4.1 Targeting homomeric channel proteins for drug development 

In the history of drug development, one important property of most channel 

protein receptors has been overlooked, their stoichiometry. As a matter of fact, many 

channel proteins are expressed as dimers or oligomers on cell membrane, including most 

G-Protein-Coupled Receptors (GPCR) proteins (300). Targeting of GPCR hetero- and 

homo- oligomers is generally starting to be considered for drug development. Therefore, 

new models for multisubunit protein binding are being developed(300). Cooperative 

binding affinity between ligand and multisubunit targets has been reported and 

cooperativity factors were calculated by fitting to the Hill equation(237,300). 

The ATP-sensitive homotrimeric P2X7 receptor (P2X7R) acts as a ligand-gated ion 

channel. It forms a chalice-like channel with three ATP binding sites localized at the 

interface of the three subunits. Occupancy of at least two of the three sites is necessary 

for activation of the receptors which results in opening of the channel pore allowing 

passage of small cations (Na
+
, Ca

2+
, and K

+
). P2X7R has received particular attention as 

a potential drug target for its widespread involvement in inflammatory diseases and 

pivotal roles in central nervous system (CNS) pathology (244). These concepts will 
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broaden the therapeutic potential of drugs that target multi-subunit channel proteins, 

including receptor heteromer-selective drugs with a lower incidence of side effects. They 

will also help to identify novel pharmacological profiles using cell models that express 

heteromeric receptors. 

5.4.2 Targeting homomeric enzyme for antibiotics development 

Targeting of key enzymes in essential biosynthesis pathways is an important 

approach for antibiotics development. Many key proteins in the fatty acid synthesis 

pathway and nucleotide synthesis pathway are found to be multivalent. The highly 

ordered oligomeric enzymes in biosynthesis pathways could be promising targets for 

developing more potent antibacterial drugs. Some examples of developing potent drugs 

by targeting multisubunit biocompelxes are discussed below.  

Fatty acid synthesis is an essential lipogenesis process in both Gram-positive and 

Gram-negative bacteria. A key enzyme in the fatty acid biosynthesis pathway is fatty acid 

biosynthesis 1 (FabI), which is a homotetramer complex acting as the major enoyl-ACP 

reductase present in burkholderia pseudomallei (Bpm). A recent X-ray structure study 

revealed the binding mode of the inhibitor PT155 with the homo-tetrameric BpmFabI 

(245) (Figure 5.5a). The substrate BpmFabI is a homo-tetramer, one PT155 molecule 

bound to each monomeric subunit has shown significant promise for antibacterial drug 

development(245). Another example of targeting multisubunit biocomplex as drug target 

is found in the guanine nucleotide biosynthesis pathway to control parasitic infection. 

Inosine 5’-monophosphate dehydrogenase (IMPDH) is a homo-tetramer 

enzyme(246)(Figure 5.5b), which plays an important role by catalyzing the oxidation of 

IMP to XMP in guanosine monophosphate(GMP) biosynthesis(246).Structural 
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characterization of IMPDH with chemical inhibitor drugs indicates that binding to the 

repeating units shows a more potent inhibition effect(301).  

These examples of successfully targeted homotetramer enzymes for potent drug 

development further proved the importance of the stoichiometry of target homo-meric 

complexes. When applying this method to search enzymes as drug targets, it is critical to 

test whether the stoichiometry of the complexes (Z) is > 1, and the number of subunits 

needed to inhibit to block biological function (K) equals 1.  

5.4.3 Targeting homomeric drug transporters for drug development 

The mechanism of drug transporter, very similar to that of the revolution motor, 

involves entropy induced transitions by ATP.  High stoichiometry of the target complex 

is a key consideration in drug efficiency. Targeting multidrug efflux transporters with 

high stoichiometry has a better chance to develop drugs for treating multi-drug resistant 

disease. The structure of bacterial multidrug efflux transporter AcrB is composed of three 

alpha-helix subunits, that connect to form a funnel around a central cavity (Figure 

5.5c)(302). The multidrug exporter MexB from Pseudomonas aeruginosa also forms a 

homotrimer (Figure 5.5d)(303). Pyridopyrimidine derivatives have been reported to be 

promising drugs to treat multidrug resistant pathogens by specific inhibition of the 

homotrimeric AcrB and MexB transporters[117]. The structural architecture of ABC 

transporters consists minimally of two TMDs and two NBDs. These four individual 

polypeptide chains combine to form a full transporter such as in the E. coli 

BtuCD(304). Although the stoichiometry of the heterodimer is not very high, the 

stoichiometry of ATP per transporter is high.  It is involved in the uptake of vitamin B12. 
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The TMDs of ModBC-A and MalFGK2-E have six helices per subunit. These unique 

structural features can be used in target considerations.  
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Figure 5.5. Examples of homomeric multisubunit complex as drug target for 

developing potent drugs. (A) Tetrameric bpFabI is a key enzyme in fatty acid synthesis 

in bacterial, inhibitor PT155 forms a tetrameric complex with BpmFabI (245) (PDB ID: 

4BKU). (B) Inosine monophosphate dehydrogenase (IMPDH) (246) (PDB ID: 1AK5) is 

a key enzyme in guanine nucleotide biosynthesis pathway, inhibitors have been 

developed targeting the tetrameric IMPDH. (C) Bacterial multidrug efflux transporter 

AcrB forms a homotrimer(302)(PDB ID: 1IWG). (D) Multidrug exporter MexB from 

Pseudomonas aeruginosa forms a homotrimer(303)(PDB ID: 2V50).  
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CONCLUSION AND FUTURE PERSPECTIVE 

Targeting functional biological units with higher stoichiometries allows for higher 

inhibition efficiencies. The inhibition efficacy follows a power law with respect to the 

subunit copy number when targeting multimeric biocomplex, compared to a linear effect 

of the drug-target binding affinity when targeting a single-subunit substrate. This new 

concept outlined herein suggests that potent drugs can be developed by targeting 

biocomplexes with high stoichiometries with the potential of complete inhibition of the 

targets activity. Possibly, this method can further be applied to guide development of 

dominant negative proteins for potent gene therapy, which can be incorporated into a 

multimeric protein nanomachine and results in a change of its activity (305). Since bio-

motors share certain common structural and operational mechanisms across viruses, 

bacteria, and cells, this approach has general applicability in drug development.  

Living systems contain many elegant arrays, motors and nanomachines that are 

composed of multiple identical subunits. As reported here, these homomeric 

biocomplexes can serve as potent drug targets. For example, most members of the ASCE 

family are hexamers(234,306-310). As these machines are common among living 

systems, specificity and toxicity need to be considered. In the development of anti-

bacterial and anti-viral drugs, specificity and toxicity is not problematic since the target 

biocomplexes differ from those found in human cells and thus all targets are intended to 

be killed nonexclusively. In the development of anti-cancer drugs, mutations in multiple-

subunit biocomplexes of cancer cell will present ideal targets for potent drug 

development.  
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Drug discovery is a multidisciplinary science including the fields of medicine, 

biotechnology and pharmacology. Aiming to find a method for developing drugs with 

ultra-high potency, much effort has been placed in the screening of new drug compounds, 

uncovering of new drug targets, and illumination of functional pathways, but little 

attention has been paid to the exploration of new methods for the design and development 

of more efficient drugs. Here we propose that the inhibition efficiency of a given drug 

depends on the stoichiometry of the biocomplex or bio-machine that serves as drug 

target. Here the notion of “stoichiometry” differs from the conventional concept in drug 

development. Conventionally, stoichiometry refers to the number of drug molecules 

bound to each substrate or cell membrane. In the current study stoichiometry refers to the 

number of identical subunits that the target biocomplex is composed of.  Phi29 viral 

components with a series of variable but known stoichiometries were evaluated as mock 

drug targets to test the hypothesis. Both in vitro and in vivo virion assembly assays were 

employed to compare inhibition efficiencies for targets with differing subunit 

stoichiometries. Viral inhibition efficiency was analyzed with Yang Hui's (Pascal’s) 

Triangle (also known as binomial distribution) (Figure 5.1), as shown in equation 2.  

It was observed that inhibition efficiency of virus replication correlates with the 

stoichiometry of the drug target. The inhibition efficacy follows a power law behavior 

where the percentage of uninhibited biocomplexes equals 𝑞𝑍 (see equation 2). For a 

system with fixed q and K values, the inhibition efficiency thus depends on Z, the number 

of subunits within the target biocomplex or bio-machine. This hypothesis is supported by 

empirical data that a target with ten-thousand-subunits shows higher inhibition effect than 

a target with six subunits, which in turn shows higher inhibition than a single-subunit 
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target (Figure 5.3). The unconventional hypothesis described in this article for the 

development of potent drugs with power function behavior with respect to the target 

stoichiometry can be foreign or even outlandish to the main force of the pharmaceutical 

field. The approach of developing highly potent drugs through targeting of protein, RNA 

or other macromolecule complexes with high stoichiometry has never been reported due 

to challenges to prove the concept.  

Traditionally, it is almost impossible to prove this concept by comparing 

efficacies of two drugs where one of them targets a biocomplex with multiple subunits. 

When reporting the efficiency of this new approach, it is very difficult to distinguish 

essentiality of the two targets in biological function; it is also very challenging to 

compare the binding affinity of two different drugs to two different targets. For instance, 

if two drugs target two stoichiometrically different complexes, it becomes extremely 

difficult to prove whether the difference in drug efficiency is due to differences in their 

target binding affinity or essential level of the target in the biological organism.  

The mechanism of drug inhibition mainly relies on blocking an essential 

biological target element from functioning. The target elements can be monomers or a 

complex of multiple homosubunits; such as the biomotors of the hexameric ASCE 

superfamily(234,252). Conventional drugs are designed to target a single subunit 

molecule to inhibit pathogenesis, such as an enzyme or a structural protein of a virus. The 

key in designing potent drugs is to target multi-subunit biological motors, machines, or 

complexes with Z  > 1 and K = 1, where Z is the stoichiometry of the complex and K is 

the number of drugged subunit that are required in order to block the function of the 
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entire complex. Similarly, in a series circuit Christmas decorative light chain, one broken 

light bulb will turn off the entire lighting system.  

In most, if not all, multi-subunit biological systems, sequential coordination or 

cooperative action mechanisms are utilized, thus, K equals 1. Drug inhibition depends on 

the ratio of drugged to the non-drugged complex. For K = 1, and Z > 1, inhibition 

efficacy follows a power function with respect to Z, leading to an increased potency of 

the drug since inhibition of any subunit results in complete inhibition of activity. For a 

drug designed to target a single-subunit molecule at targeting efficiency p, the fraction of 

undrugged target molecules q that will remain active is 1- p. In this situation, the 

inhibition efficiency is proportional to the substrate targeting efficiency p and the 

inhibition efficacy is of the first order of p. Sequential action or cooperativity in multi-

subunit complexes has widely been reported in biological systems(253-255). Drugs 

targeting a complex with multiple subunits can inhibit the complex activity if any 

homosubunit of the target is inactivated. Thus, if the copy number of this cooperative 

complex is Z > 1, and the least number of blocked subunit to inhibit complex activity (K) 

is 1, the fraction of uninhibited biocomplexes is 𝑞𝑍, and the inhibition efficiency is 1 −

𝑞𝑍 , where 1- q is the portion of drugged subunits. 

The binomial distribution analysis allows prediction of the inhibition efficiencies. 

For example, in targeting a six-subunit biocomplex with K = 1, the inhibition efficiency 

is determined by drug binding to any one of the six homosubunits. Therefore, the 

probability of inhibiting any subunit at random position is 
1−𝑞6

1−𝑞
 times higher than 

inhibiting a monomer substrate. With this new elucidation and understanding of the 
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concepts behind targeting of cooperative multi-homosubunit complexes, a new 

generation of potent drugs may emerge in the near future.  

Our discovery is an approach, not a drug. This approach will have general impact 

in the development of drugs for many diseases such as cancer, viral or bacterial 

infections. In living systems, biological machines or complexes with high stoichiometry 

and operated by sequential cooperative action or coordination with Z > 1 and K = 1 are 

ubiquitous. This class of biological machines is involved in many aspects of crucial 

cellular processes to the survival of viruses, bacteria, and eukaryotic cells. For example, 

multi-subunit biomotors are involved in chaperon, ATPase, ATP synthase, cell mitosis, 

bacterial binary fission, DNA replication, DNA repair, homologous recombination, 

Holliday junction resolution, nuclear pore transportation, RNA transcription, drug 

transporters, muscle contraction, viral genome packaging, as well as motion, trafficking, 

and exportation of cellular components. These systems use a sequential mechanism 

similar to the serial circuit of the Christmas decoration lighting chain. Thus, our approach 

will have broad application in drug development in many biological systems. Drugs 

targeting to these motors will be highly efficient. 

Biomotors belonging to the multi-subunit ATPase are widely spread in organisms, 

including bacteria, viruses and cancer cells. Successful implementation of this new 

methodology will lead to the development of the next generation of potent drugs. In fact 

the first drug approved to treat multidrug-resistant tuberculosis, bedaquiline (219), is 

acting on the ATP synthase which is a multisubunit biomotor (311-322). Treating 

multidrug-resistant tuberculosis had been very challenging previously. Although this 

drug’s inventors were not aware of the concept of targeting multisubunit complexes for 
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potent drug development, the success in this drug conquering the tough Mycobacterium 

tuberculosis organism supports the concept of using the multisubunit complex as a potent 

drug target. Cancer or bacterial mutant multi-subunit ATPase can be used as target. The 

drug developers can simply check the published literature and identify a multi-subunit 

machine as the drug target. For cancer treatment, it is to find a multi-subunit machine 

with mutation. 

The concept of K = 1 for high efficiency inhibition may be impactful in gene or 

protein therapy.  By introducing the dominant negative protein(305) or inactive mutant 

protein into the cell, either by intracellular expression or direct introduction of proteins, 

which resembles the above illustrated approach and mechanism used for phi29 DNA 

packaging motor systems (228,229,259,323)(Figure 5.3). This involves the incorporation 

of mutant proteins, either intracellularly expressed or directly introduced, into a highly 

multimeric complex that is identified as the target unit. For purposes of serving as a small 

molecule drug target, a multimeric complex might be identified, such that binding of one 

drug molecule to any one binding site on the complex will inactivate the whole complex. 

The fact that the complex composed of Z subunits holding one drugged subunit will only 

come into play as the drug concentration is at the high end. However, if the strategy was 

to express a dominant negative protein, as has been done in recent cardiac gene therapy 

with dominant negative phospholamban(305), a high inhibition efficacy will achieve. The 

greater the value of Z the more the effect of the dominant negative protein subunit or 

mutant subunit will be achieved.  

Another possibility is the use of homomeric drug transporters (324,325) as drug 

targets (see section 5.3). The mechanism of drug transporters is very similar to that of the 
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revolution motor featuring an entropy transition induced by ATP.  High stoichiometry of 

target complex is a key consideration for achieving high drug efficiency. Targeting 

multidrug efflux transporters with high stoichiometry has a better chance to develop 

drugs for treating multi-drug resistant disease.   

While the hypothesis behind this method might theoretically seem challenging, 

elucidation of the mechanism should greatly facilitate application of this approach. Two 

factors are essential for drugs development: efficiency and specificity. The strategy 

described herein focuses on drug efficiency, while specificity is similar to the general 

consideration in the development of chemicals and drugs. Nevertheless, design of potent 

drugs to common machines or general targets is still possible. For example, if an 

oncogenic mutant hexameric ATPase is found in one specific type of cancer cells, drugs 

targeting to this mutation of the altered  ATPase will not only be highly efficient but also 

specific.  
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Chapter 6: Future Direction and Current State of the Field 

CONCLUSIONS AND FUTURE DIRECTION: 

 In this thesis work is described for the advancement of the RNA nanotechnology 

towards therapeutically application. The main advantage of using RNA nanoparticles for 

drug delivery remains in: 1. RNA nanoparticles functioned with nucleic acid based 

aptamers can exert active targeting effect; 2. nucleic acid based therapeutics can be easily 

conjugated to RNA nanoparticles and processed by dicer in vivo for siRNA and miRNA 

release. Here in Chapter 2 of this dissertation, the development of bivalent 2’F-RNA 

aptamer against cancer stem cell marker EpCAM was explored. By using previously 

developed stable pRNA-3WJ motif as the core structure for constructing the divalent 

RNA antibody library, and 2’-fluoro modifications on RNAs, a highly stable 2’F-RNA 

aptamer against EpCAM was selected. The selected aptamer mimics antibody can 

specifically deliver LNA based anti-miR21 to EpCAM positive cancer cells and knock 

down miR21 levels in cancer cells. In Chapter 3 I explored utilizing the special 

orientation of pRNA-3WJ to display RNA aptamers on the membrane surface of 

extracellular vesicles. Taking the advantage that EVs are natural carrier for small RNAs, 

and that RNA aptamers can recognize cancer cell marker and specifically target cancers, 

the PSMA aptamer displaying EVs were tested as carrier for delivery therapeutic siRNA 

to treat cancer. Results showed that the PSMA aptamer displaying EVs can deliver 

survivin siRNA into prostate cancer cells in vitro and in vivo, and achieve very 

significant effect in inhibiting xenograft prostate cancer growth in mice after multi-dose 

treatment.  In chapter 4 I explored the possibility of utilizing nanoparticle functionalized 
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with aptamer against Annexin A2 to deliver doxorubicin to ovarian cancer cells. The 

nanoparticles are optimized by elongating with GC rich dsRNA sequences to enhance the 

doxorubicin loading efficiency. The nanoparticle doxorubicin intercalates have uniform 

particle size around 8nm, and showed sustained release profile for doxorubicin in vitro. 

They can deliver doxorubicin specifically to annexin A2 positive ovarian cancer cells 

cytoplasm in vitro, and also showed targeting effect to subcutaneous xenograft ovarian 

tumor in mice after systemic injection in vivo. All these results suggest the nanoparticles 

harboring an aptamer are promising candidates for targeted delivery of chemical drugs to 

treat cancer disease.         

 However, in order to fully prove the potential of the selected bivalent EpCAM 

RNA aptamer for cancer treatment, future work is need. While it is proven that the 

bivalent EpCAM aptamer A9-8 can bind to cancer cells and deliver anti-miR21 to cancer 

cells in vitro, in vivo experiments should also be conducted to better evaluate the 

functionality of this aptamer.  Bio-distribution of fluorescent labeled EpCAM aptamer, as 

well as the treatment effect of EpCAM aptamer harboring anti-miR21 on proper mice 

model with subcutaneous tumor xenografts should be tested. For the newly developed 

platform of utilizing orientation of pRNA-3WJ to control the display of RNA aptamers 

on exosome surface, further experiments including exploring more advanced RNA 

nanoparticle structures with lipid chemical modification to display ligands on exosomes 

should be performed, the possibility of using aptamer displaying EVs for chemical drug, 

miRNA, and mRNA delivery should also be explored. In order to fully prove the 

potential of annexin A2 aptamer harboring nanoparticles for cancer specific doxorubicin 
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delivery, in vivo treatment experiment should also be conducted with proper mice model.  

Further development of RNA nanoparticles into clinical trials should be considered. 

CURRENT STATE OF THE FIELD: 

 Since the development of RNA nanotechnology in 1998 (34), the field has been 

making great progress towards clinical application. The discovery of pRNA-3WJ 

provided a platform to build thermodynamically stable multifunctional RNA 

nanoparticles for therapeutics delivery. 2’F pyrimidine modification on RNA 

nanoparticles make them resistant to nuclease. RNA nanoparticles functionalized with 

aptamers or chemical ligand(49,66) can recognize their specific target; and the nanometer 

scaled size of RNA nanoparticles further enhanced their tumor targeting efficiency 

through EPR effect. Recently, RNA nanoparticles have been developed into vehicles for 

delivering anti-microRNA(52,66), siRNAs(50,51) to cancer cells. Doxorubicin, the 

anthracycline chemical drug can be easily loaded into the RNA nanoparticle through 

intercalating into GC pairs. In the future, more sophisticated RNA nanoparticles will be 

designed for controlled gene therapy and chemotherapy delivery. Multifunctional RNA 

nanoparticles may also help to avoid the on rising multidrug resistance problem as they 

can change the drug cell entry pathways (173).  

The design of antibody shaped RNA library opened a new field for RNA antibody 

development. Previously libraries for aptamer selection are designed to have a single 

random region with 20 to 50 nucleotides; while this Y shaped RNA library containing 

two random regions to enhance its binding affinity and specificity. The selected aptamers 

can be directly fused with siRNA or miRNA sequences on the third arm for various in 

vitro and in vivo applications. Except for drug delivery, RNA antibodies can be 
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developed as new drugs for therapeutically application. The advantage of developing 

RNA nanoparticle based therapeutics include: they can be developed in vitro, can be 

designed to control its immunogenicity (54), can be batch produced as chemical drugs 

and quality controlled.  

 Current popular EV engineering method is to co-express peptide or protein ligand 

onto EV membranes during its biogenesis. This method faces the challenge of the 

integrity of expressed ligand after EV secretion(326). Decorating EVs with cholesterol 

modified RNA nanoparticles provides a new method to engineer EVs for targeted drug 

delivery. This system takes the advantages of both extracellular vesicles for RNAi 

delivery and also RNA nanoparticles for specific cancer cell targeting. More research on 

this topic includes how to stabilize the association of RNA-cholesterol with EVs 

membranes, how to use EVs for other gene therapeutics delivery such as miRNA, mRNA 

and protein, as well as large scale production of high quality EVs.      

After around two decades of growth, the field of RNA nanotechnology has 

conquered lots of hurdles. With the continuous researching on this area, we wish this 

field can grow forward towards industrial and clinical application. 
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