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ABSTRACT OF DISSERTATION 

 

 

TOWARDS ELUCIDATION OF THE MECHANISM OF  

BIOLOGICAL NANOMOTORS 

 

Biological functions such as cell mitosis, bacterial binary fission, DNA replication 

or repair, homologous recombination, Holliday junction resolution, viral genome 

packaging, and cell entry all involve biomotor-driven DNA translocation. In the past, the 

ubiquitous biological nanomotors were classified into two categories: linear and rotation 

motors. In 2013, we discovered a third type of biomotor, revolving motor without rotation. 

The revolving motion is further found to be widespread among many biological systems. 

In addition, the detailed sequential action mechanism of the ATPase ring in the phi29 

dsDNA packaging motor has been elucidated: ATP binding induces a conformational 

entropy alternation of ATPase to a high affinity toward dsDNA; ATP hydrolysis triggers 

another conformational entropy change in ATPase to a low DNA affinity, by which the 

dsDNA substrate is pushed toward an adjacent ATPase subunit. The subunit 

communication is regulated by an arginine finger that extends from one ATPase subunit to 

the adjacent unit, resulting in an asymmetrical hexameric organization. Continuation of 

this process promotes the movement and revolving of the dsDNA within the hexameric 

ATPase ring. Coordination of all the motor components facilitate the motion direction 

control of the viral DNA packaging motors, and make it unusually powerful and effective. 

 

 

KEYWORDS: Phi29 dsDNA Packaging Motor, Bio-nanomotor, RNA Nanotechnology, 

DNA Translocase, One-Way Revolving, ASCE Superfamily, AAA+ 

Superfamily 
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Chapter 1: Introduction and Literature Review 

BRIEF SUMMARY: 

 Chapter 1 will give an overview about the phi29 dsDNA packaging motor and the current 

knowledge of various biomotors. The structure, function and application of the three main 

components in the phi29 motor in nanotechnology for diagnosis and therapeutics will be discussed 

in this chapter. The packaging models proposed in the past and the recent progress regarding the 

motor structures and motion principles will be included. 

 Chapter 2 focuses on the discovery of the third type of revolving motor without rotation, 

and the finding that these revolving motors are widespread among biological systems. The 

commonalities of these motors, together with the factors to distinguish revolving motors from 

rotation motors will be presented. Discussion of a variety of biomotors will be included in this 

paragraph for comparison through detailed biophysical, biochemical, and structural studies. 

Finding of the revolving motion is a breakthrough towards the understanding of motion 

mechanisms of various biomotors, and can be employed for the engineering of new synthetic 

structures for further applications.  

 Chapter 3 discusses about the factors that contribute to the one-way traffic property of viral 

DNA packaging motor. The one-way traffic of dsDNA translocation is facilitated by the 

involvement of several factors, including ATPase, channel chirality, channel inner loops, and four 

electropositive layers within the channel. The elucidation of one-way traffic mechanism of the 

biomotor shed lights on the approach for the construction of macromolecular species in a 

controlled fashion.  

 Chapter 4 will explain the sequential action of phi29 dsDNA packaging motor. The push-

through one-way valve model has been further verified and moved forward with more details 
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regarding the biomotor subunit coordination. Arginine finger plays a role during the coordination 

of motor subunits, resulting in a dimer between two adjacent subunits bridged by arginine finger. 

This lead to formation of asymmetrical hexameric ATPase, which have been further supported by 

structural evidences in different ATPases.  

 Chapter 5 takes the findings from the previous chapters to construct an active biomotor 

with continuous single-direction motion. The understanding of the mechanism and function of 

biomotor components, including phi29 connector, pRNA, and ATPase, has been translated toward 

the manipulation of biomolecular building blocks to generate the active and controllable motor. 

 Chapter 6 will briefly talks about the current state and the future direction of the biomotors. 

Potential applications utilizing the motor packaging system will be discussed.  

 

HYPOTHESIS: 

Phi29 dsDNA packaging motor coordinates its components in a sequential action manner during 

its single-directional genome packaging process.  

 

INTRODUCTION: 

The unusual powerful phi29 dsDNA packaging motor. 

 The importance of bio-nanomotors (1) for nanotechnology is akin to that of mechanical 

motors to daily life. Mechanical motors power cars to drive us to destinations, and nanobiomotors 

translocate DNA and RNA to facilitate biological functions. These biomotors are extensively 

involved in dsDNA trafficking, which is critical to DNA repair, replication, recombination, 

chromosome segregation, DNA/RNA transportation, membrane sorting, cellular reorganization, 

cell division, bacterial binary fission and many other processes (2,3).  
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 DsDNA viruses package their genome into a preformed procapsid against the internal 

pressure with a nanomotor powered by ATP. As one of the strongest molecular motor known so 

far, the phi29 motor can package DNA with a force up to 57pN-110pN at an initial rate of 100-

150bp/sec (4). Phi29 packaging system was first constructed in vitro in 1986 (5) and showed to be 

composed of three main coaxial rings: a connector dodecamer, an ATPase hexamer, and a pRNA 

hexamer to gear the motor (6-9), which is unique in phi29 and makes the motor unusual powerful.  

Biomotors are previously classified as linear and rotation motors, while the newly 

discovered revolving motion lead to a new category of biomotors isolated from the rotation motors 

--- revolving motors upon the elucidation of the packaging mechanism of phi29 motor. Different 

models have been proposed for the motor of dsDNA viruses in the past (10-15). One shared feature 

among these models is that the packaging process involves ATP-driven conformational entropy 

changes of the biomotor powering DNA motion. The most popular models in the past include: 1) 

Nut and bolt model as five-fold/six-fold mismatch connector rotating thread (16); 2) Compression-

relax model (17-19); 3) Ratchet model (20); 4) Molecular lever model (21); and 5) Push through 

one-way valve model. Models 1) - 4) all assume that relative DNA rotation with the motor is 

necessarily involved during DNA movement. However, the discovery of the third type of biomotor 

with revolving motion without rotation has provided more clues towards the “push through one-

way valve model”, where the ATPase gp16 pushes dsDNA substrate into the procapsid through 

the static connector channel that functions as a valve. The ATPase gp16 and the motor connector 

channel work independently, though bridged by pRNA as an integrated motor. 

Motor connector channel. 

 In many dsDNA viruses, their connector channels, also called portal proteins, dock onto 

the motor and serve as pathways for genome during its packaging process (22-25). After packaging, 
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the portal then functions as a docking site for tail components to complete virion assembly. 

Structural studies revealed that the portal proteins from all these virus and tailed bacteriophages, 

such as phi29, SPP1, T4, and T3, share a similar cone-shaped dodecameric structure (26). Taken 

phi29 dsDNA packaging motor as an example, its portal protein is composed of 12 protein subunits 

assembled into a cone structure with a diameter of 3.6 nm at the narrowest constriction (27). The 

portal is stable under even extreme pH conditions from pH 2 to pH 12 (28), and the packaged DNA 

was able to remain inside the procapsid under high centrifugal force (29). Phi29 connector has 

been successfully embedded into lipid bilayer and applied for single-molecule detection through 

conductance assays. With the voltage applied across the membrane, charged molecules passing 

through the channel will generate transient current blockade signals due to volumetric exclusion 

of ions from the pore. The results revealed the “one-way traffic” of phi29 motor from the external 

narrow end to the internal wide end (29-31).  

 It has been reported that all portal channels of dsDNA bacteriophages display a 30° tilted 

left-handed channel wall configuration to facilitate the one-way traffic of dsDNA into procapsid 

by a revolving manner without rotation (26,29,32,33). The one-way revolving mechanism is 

further supported by portal conformational changes observed during DNA packaging and ejection 

processes. For phi29 motor, conformational changes of the portal protein can be induced by DNA, 

pRNA, divalent metal ions through biochemical approaches, or by voltages as demonstrated in 

nanopore-based single-molecule detection (34-37). Such three-steps conformational changes are 

reported to be common in various bacteriophage including T3, T4, and SPP1 (37), and is agrees 

with the Cryo-EM imaging by comparing the conformation of free portals in vitro with those in 

the infectious virion (38). The left-handed portal channel assisting dsDNA advancement during 
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packaging will be prepared to transit towards a right-handed configuration in three steps for DNA 

ejection after DNA packaging is complete (26,30). 

Mutations of the phi29 connector revealed that the internal loops and the inner lysine rings 

play an important role in DNA translocation through the channel. The channel loops serve as a 

ratchet to facilitate the advancement of the genome and prevent it from sliding out during the 

packaging process (27,31). Four positive lysine layers present at the internal channel wall interact 

with the negatively charged phosphate backbone of dsDNA (27,31,32). This electrostatic 

interactions will facilitate the DNA movement and slightly alter the speed of genome translocation. 

While lysine residues were not essential in viral DNA packaging as indicated by different 

mutations of the connector, with one exception when residue 234 on the internal loop was mutated 

and less virion production was observed, supporting the ratchet function of the connector internal 

loops for motor packaging (31). 

Motor packaging RNA. 

 Packaging RNA is unique in phi29 dsDNA packaging motor, it has been extensively 

investigated (39-47) since its discovery in 1987 (7). pRNA is 117 nucleotides (nt) in length with 

independent folding of the ATPase gp16 interaction domain (8) and the motor binding domain 

(39-41,46-48). In 1988, the pRNA ring was determined to exist as a hexamer (49,50) (featured by 

Cell (51)) and further verified by Cryo-EM in 2000 (52). There were discrepancies concerning the 

structure, stoichiometry, and functioning of DNA translocation motors since then. Extensive 

studies through biochemical analysis (49-51), single molecule photobleaching study (53), gold 

labeling imaging by electron microscopy (EM) (54,55), and RNA crystal structure studies (56) 

have all revealed the hexameric assembly of pRNA, excluding the pentameric theory (13,57,58) 

and the five-fold/six-fold mismatch model (16). One key evidence came from the single molecule 
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photobleaching analysis of DNA-packaging intermediates, which showed the presence of all six 

copies of pRNA on the active motor during DNA translocation (53) (Fig. 3) with pRNA dimers as 

building blocks for the pRNA hexameric ring. 

 As one of the key components for resisting the large internal force during phi29 genome 

packaging, it is not surprised that an ultra-stable three way junction (3WJ) motif has recently been 

found within this pRNA molecule, which is unique for the unusual powerful motor (59,60). This 

3WJ motif is resistant to 8 Molar urea, and does not dissociate even at extremely low 

concentrations both in vitro and in vivo. Detailed crystal structure analysis and single-molecule 

assays revealed that the 3WJ motif was coordinated by two divalent metal ions that contribute to 

the conformational changes and stabilization of the RNA tertiary structure (56). 

 This structural module of pRNA has been widely used as a building block for fabricating 

ultra-stable nanoparticles with controllable size and shape (61-63), and also as a carrier for 

targeting and delivery of therapeutic moieties including siRNA, miRNA, ribozyme, drug, and 

cancer targeting RNA aptamers (64-70). 3WJ derived RNA nanoparticles display little toxicity, 

favorable biodistribution and pharmacokinetic profiles (71), evidenced by the results that after 

systemically administered into mice, RNA nanoparticles showed strongly associated with 

intracranial xenograft tumor without accumulation in normal organs or tissues, and retain the 

activity of the harbored functionalities. The achievements of phi29 pRNA nanoparticles have led 

to the development of this RNA as a novel vehicle for applications in nanotechnology and 

nanomedicine (59,71-82). 

Motor gp16 ATPase. 

  Phi29 motor functions with its ATPase gp16 as an engine utilizing the energy derived from 

ATP. In 1998, it was proposed by Guo that the mechanism of ATPase in viral DNA packaging 
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motors is similar to that of the hexameric ASCE including AAA+ superfamily, which is ubiquitous 

in DNA translocation process in biological systems (49). As a common feature of the ATPase in 

this superfamily, the critical Walker A (G/A-XXXXGK(T/S)) and Walker B motifs 

((R/K)XXXXGXXXXLhhhhD) are assigned in phi29 gp16 ATPase, where G, A, K, T, S, R, L, 

D, X, and h represent glycine, alanine, lysine, threonine, serine, arginine, leucine, aspartic acid, 

standard amino acids, and a hydrophobic amino acid, respectively. In the case of phi29 ATPase, 

Walker A domain is shown to be responsible for ATP binding, and Walker B domain for ATP 

hydrolysis (6,33,83). With its ability to convert chemical energy from ATP into a conformational 

change inside the protein, a gain or loss of conformational entropy and the affinity for its substrate 

will be generated, resulting in a mechanical movement to either make or break contacts between 

macromolecules. These motion are widely involved in local or global protein unfolding, complex 

assembly/disassembly, or macromolecule transportation processes. 

 It has been reported that phi29 DNA packaging motor components work sequentially and 

cooperatively, including pRNA (84) and ATPase subunits (14,26,33), which allows the motor to 

continue to move without interruption. Hill constant and binomial distribution assay have revealed 

that one single inactive subunit was able to inactivate the whole oligomer (85,86). In the presence 

of dsDNA, a rearrangement occurs within the subunits of gp16 ATPase that enables them to 

communicate with each other and to “sense” the nucleotide state of the reciprocal subunit through 

an extremely high level of coordination in the function of the ATPase with the DNA substrate. 

Such inter-subunit communication was shown to be regulated by an arginine finger (87) by 

extending from one subunit to the adjacent one and bridge the dimer formation. Ultracentrifugation 

assays indicated the existence of both monomers and dimers in the ATPase. Further in vitro virion 

assembly assays of the isolated fractions showed that dimer alone did not show any assembly 
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activity, which can be restored upon the addition of monomers, agreeing with the previous finding 

that addition of fresh ATPase is required to re-initiate the activity of phi29 packaging intermediate 

(88). The transient formation of dimer inside the ATPase hexamer resulted in an asymmetrical 

structure of the ATPase, which is supported by many other biological motors (87,89,90). Binding 

of ATP to the ATPase subunit stimulates a conformational entropy alternation (26) that enables 

the ATPase subunit to bind dsDNA and prime ATP hydrolysis. A second entropic and 

conformational change triggered by ATP hydrolysis will then render the ATPase into a low affinity 

for dsDNA thus pushing the DNA to the next subunit. Continuation of this process promotes the 

movement and revolving of the dsDNA within the hexameric ATPase ring.  

 The final oligomeric state of gp16 ATPase in phi29 motor is a hexamer as proved by 

qualitative DNA binding assays, capillary electrophoresis assays (CE), and in vitro assembly 

inhibition assays combined with binomial distribution model (83), disagreeing with the pentameric 

model derived from the EM reconstruction (14,58), which is recently reported to be resulted from 

the asymmetrical structure of the ATPase intermediate during the sequential coordination as stated 

above. 

Revolving motors: Distinct from Linear or Rotation Motors 

 Extensive studies based on phi29 dsDNA packaging motor has led to the discovery of a 

third type of revolving motor that is distinct from linear or rotation motors. The detailed 

introduction and comparison of these three types of biomotors was published in Guo P. et al. 

Microbiology and Molecular Biology Reviews, 2016. 80(1):161-86. 
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Chapter 2: The Third Type of Biomotor using Revolving Motion without 

Rotation 

This chapter was reproduced (with some modifications) with permission from G. De-Donatis†, Z. 

Zhao† (co-first author), S. Wang, L. P. Huang, C. Schwartz, O. V. Tsodikov, H. Zhang, F. Haque 

and P. Guo. “Finding of widespread viral and bacterial revolving dsDNA translocation motors 

distinct from rotation motors by channel chirality and size”. Cell & Bioscience 4:30 (Jun. 2014).  
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ABSTRACT 

Background: Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, 

bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction 

resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA 

translocation. Previously, biomotors have been primarily classified into linear and rotational 

motors. We recently discovered a third class of DNA translocation motors in Phi29 utilizing 

revolving mechanism without rotation. Analogically, the Earth rotates around its own axis every 

24 hours, but revolves around the Sun every 365 days.  

Results: Single-channel DNA translocation conductance assay combined with structure 

inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other 

dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses 

showed that the revolving motor is widespread. The force generation mechanism for revolving 

motors is elucidated. Revolving motor can be differentiated from rotation motors by their channel 

size and chirality. Crystal structure inspection revealed that revolving motors commonly exhibit 

channel diameters larger than 3 nm, while rotation motors that rotate around one of the two 

separated DNA strands within the channel feature a diameter smaller than 2 nm. Phi29 revolving 

motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest 

channel cross-section, respectively, evidencing that revolving motors exhibit channel diameters 

significantly wider than the dsDNA. Left-handed oriented channels found in revolving motors 

drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels have been 

observed in rotation motors to drive the right-handed dsDNA via parallel threads. Tethering both 

the motor and the distal end of the dsDNA does not block DNA packaging, indicating that no 

rotation is required for motors of dsDNA pages, while a small-angle left-handed twist of dsDNA 
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that is aligned with the channel could occur due to the conformational change of the motor channel 

from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection 

for host cell infection.  

Conclusions: The revolving motor is widespread among biological systems, and can be 

distinguished from rotation motors by channel size and chirality. The revolving mechanism renders 

dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus 

resulting in more efficient motor energy conversion. 
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INTRODUCTION 

Transportation of dsDNA from one cellular compartment to another is a prevalent process in all 

living systems. Many members of the ASCE (Additional Strand Catalytic E) superfamily are 

nanomotors with a hexameric arrangement of subunits that facilitate a wide range of functions, 

including dsDNA riding, tracking, packaging, and translocation, which are critical to many 

processes such as DNA repair, replication, recombination, chromosome segregation, transcription, 

and cellular reorganization (3,91). Despite their functional diversity, a common feature of the 

biomotors of this family is their ability to convert energy obtained from the binding or hydrolysis 

of ATP into mechanical energy which results in local/global protein unfolding, complex 

assembly/disassembly, or grabbing/pushing dsDNA for translocation (3,91-104). The hexagonal 

shape of the motor facilitates bottom-up assembly in nanomachine manufacturing (55,56,105-

107).  

Nanobiomotors have previously been classified into two main categories: linear and rotational 

motors, which have been clearly documented using single-molecule imaging and X-ray 

crystallography (108-113). During replication, dsDNA viruses translocate their genomic DNA into 

preformed protein shells (procapsids) (10-12,51,98,114-116). This entropically unfavorable 

process is accomplished by a nanomotor that uses ATP as an energy source (6,17,117-123). This 

dsDNA packaging motor consists of a connector channel and packaging molecules to carry out its 

activities. For 35 years, it has been popularly believed that DNA packaging in dsDNA viruses 

involves rotation motors (16), which is seemingly supported by the swivel structure in the crystal 

structures of all connector channels of bacteriophages (27,124,125). However, extensive 

investigations revealed that the dsDNA packaging motor channels do not rotate during motor 

actions (33,53,126-128). For example, the T4 DNA-packaging motor remains active when the 
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motor channel protein is crosslinked to the protein shell (126). Single-molecule imaging further 

verified that there is no rotation of the channel during packaging (127). These evidences have 

brought up a puzzle concerning how packaging can involve a rotation motor without the 

identification of any rotating components. In 2010, another question was raised regarding the 

inverse orientations of the Phi29 motor channel and dsDNA helices (29), which further questioned 

the involvement of rotational motion, since the rotation mechanism of dsDNA as a bolt threading 

onto a motor channel as a nut requires that the threads of the bolt and nut have the same 

directionality. Recently, we have discovered that bacteriophage Phi29 dsDNA packaging motor 

uses a revolving mechanism without rotation, coiling, or torque forces (Fig. 2.1) (32,33,83,102). 

The ATPase hexameric ring exercises a force to push the dsDNA through the dodecamer channel 

which acts as a one-way valve (29,102,103). Observation of this revolving mechanism establishes 

a third class of biomotors. This finding resolves many puzzles throughout the history of long-

lasting studies on the motor (102,103). 

As the translocation of dsDNA is a ubiquitous process in living systems and motors of all 

dsDNA bacteriophages share some common structural and functional features, we aimed at 

determining whether the revolving model discovered for Phi29 can generally be applied to other 

DNA packaging motors. Cellular counterparts that show a strong similarity to the Phi29 viral DNA 

packaging motor are the FtsK and SpoIIIE family, featuring a hexameric motor that transports 

DNA and separates the intertwined lengthy genomic dsDNA during cell division or binary fission 

(129-137). Unwinding of the supercoiled dsDNA resulting from rotation would lead to expensive 

energy consumption (138). The revolving mechanism adopted by biological systems during 

evolution, resembles an optimized mechanism for translocation of lengthy dsDNA genome 

without coiling. In this report, we analyze the motor mechanism regarding force generation of  
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Figure 2.1. Illustration of rotation motions and revolving motions using Phi29 revolving 

motor as an example. (A) 3D structure of Phi29 dsDNA packaging motor in a side view and top 

view with a pRNA hexamer derived from the crystal structure (56), and the AFM (Atomic Force 

Microscopy) images of the pRNA hexamer with extended loops. (B) Illustration of rotation motors 

like the Earth rotates around its own axis. (C) Illustration of revolving motors like the Earth 

revolves around the Sun without rotation. (D) Illustration of the dsDNA revolving inside the 

hexameric ATPase channel. Only three of the six steps are shown. (E) Illustration of the dsDNA 

revolving inside the dodecameric connector channel, only four of the twelve steps are shown. 

Neither the channel nor the dsDNA needs to rotate during the revolving through channels.  
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Phi29 and compare its structure and mechanism to that of DNA packaging motors of SPP1, P22, 

T7, HK97, mimivirus, and vaccinia virus, as well as some cellular proteins such as FtsK and 

SpoIIIE. We also provide a simple way to distinguish between revolving and rotation motors by 

channel size and chirality.  

MATERIALS AND METHODS 

Incorporation of the connector channel into a planar bilayer lipid membrane 

The method of inserting the connector with reconstituted liposomes into a lipid bilayer has 

been reported previously (139). Briefly, a Teflon film partition (aperture 200 µm in diameter) was 

used to separate a bilayer lipid membrane chamber (BLM) into cis- and trans- compartments. The 

aperture was painted two times with 0.5 uL of 3% (w/v) DPhPC n-decane solution, and the two 

compartments were filled with conducting buffer (1 M NaCl or 1 M KCl, 5 mM HEPES, pH 7.4). 

After formation of the lipid bilayer on the aperture, the lipid/connector complexes were added to 

the chamber and allowed to fuse with the planar lipid bilayer. 

Construction of tetra-stranded DNA 

Five strands were custom ordered from IDT, with the following sequences: Strand-1: 5'-

CGC AGA CAT CCT GCC GTA GCC TGA GGC ACA CG-3'; Strand-2: 5'-CGT GTG CCT 

CAC CGA CCA ATG C-3'; Strand-3: 5'-GCA TTG GTC GGA CTG AAC AGG ACT ACG CTG 

GC-3'; Strand-4: 5'-GCC AGC GTA GTG GAT GTC TGC G-3'; Strand-5: 5'-TC AGT GGC TAC 

GGC ACC GT-3'. The five strands were annealed in stoichiometric ratio in TMS (Tris-magnesium 

saline) buffer (50 mM Tris-HCl, pH8.0, 100 mM NaCl and 10 mM MgCl2) and purified in 12% 

(w/v) native PAGE, following reported procedures (140). 

Single channel conduction assays for each membrane inserted connector channels 
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A pair of Ag/AgCl electrodes was connected directly into the cis- and trans- compartments 

to measure the current traces across the lipid bilayer membrane. The current trace was recorded 

using an Axopatch 200B patch clamp amplifier coupled with the Axon DigiData 1322A analog-

digital converter (Axon Instruments) or the BLM workstation (Warner Instruments). All voltages 

reported were those of the trans- compartment. Data was low band-pass filtered at a frequency of 

1 kHz, and acquired at a sampling frequency of 10-100 kHz. The Patch clamp 9.1 software (Axon 

Instruments) was used to collect the data, and the software Origin Pro 8.0 was used to analyze all 

the data.  

Direct observation of DNA translocation 

The stalled packaging intermediates containing biotinylated DNA were prepared by using 

non-hydrolyzable γ-S-ATP (88). The intermediates were then immobilized to perfusion chambers 

built from glass slides and coverslips. The 0.53 mm fluorescent streptavidin microspheres (Bangs 

Laboratories Inc.) were bound to the protruding, biotinylated DNA end of the intermediates. After 

restarting the packaging reaction by adding gp16 and ATP (88), an individual DNA-packaging 

event was observed. Epi-illumination was used. Sequential images with 8-bit digital resolution 

were recorded at 1 frame per second for 600 s. The pixel resolution of the images was 0.26 

mm/pixel. 

RESULTS AND DISCUSSION 

Revolving and rotation motors can be distinguished by motor channel size 

Previous observations that only one subunit of the hexamer binds to dsDNA at a time (33,100), 

as well as the cooperativity and sequential action among hexameric ATPase subunits (100), 

confirmed the revolving of dsDNA along the channel (33). In this revolving process, dsDNA 
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advances by sliding along the channel wall instead of proceeding through the center of the channel. 

Thus, the channel would be expected to be wider than the diameter of the dsDNA to ensure 

sufficient space for revolving. Inspection of the motor channel size in available crystal structures 

and cryo-EM data confirmed this expectation; while the width of dsDNA is 2 nm, the diameters 

of the narrowest region of the connector channels of Phi29 (6), SPP1 (21), HK97, the ATPase ring 

of T4 (141), as well as the dsDNA translocase FtsK (134) of bacteria, are all larger than 3 nm (Fig. 

2.2).  

On the other hand, the channels of rotation motors, such as replicative DNA helicases TrwB, 

E1, and DnaB (142-144), are smaller than 2 nm in diameter (Fig. 2.2). For rotation motors, the 

channel would thus be expected to have a similar width as the ssDNA to allow for the bolt and nut 

threading mechanism. Nonetheless, during some processes for certain rotation motors, only one 

strand enters the channel while the other remains outside (97,138,142-146). In these situations, 

local unwinding fluctuations of the dsDNA might cause separation of the two strands and facilitate 

the threading of the ssDNA strand into the center of the hexameric ring, as suggested by smFRET 

experiments (147-149). It has been reported that the ssDNA within the channel displays an A form 

helical structure (144), thus the channel diameter should be no larger than 2 nm to allow for contact 

between the DNA and the channel. The situation for branch migration is more complicated and 

beyond the scope of this manuscript. Overall, the above data indicates that the revolving motor can 

be distinguished from the rotation motor by the size of the motor channel.  
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Figure 2.2. Comparison of the channel sizes between rotation (left panel) and revolving (right 

panel) biomotors. The motor channel of dsDNA phages shown in the right panel all have a 

channel size twice the width of dsDNA, make it impossible for a bolt and nut treading mechanism 

to work, thus supporting revolving rather than rotation mechanism. (PDB: RepA, 1G8Y; TrwB: 

1E9R; ssoMCM, 2VL6; Rho, 3ICE; E1, 2GXA; T7-gp4D, 1E0J; FtsK, 2IUU; Phi29-gp10, 1H5W; 

HK97 family-portal protein, 3KDR; SPP1-gp6, 2JES; P22-gp1, 3LJ5; T4-gp17, 3EZK). The 

pentamer and hexamer models of T4 ATPase gp17 display a channel of 3.6 and 4.0 nm, 

respectively (141).  
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Figure 2.3. Nanopore conductance assay demonstrating large channel size. Current blockage 

of the channel by double-stranded was 32% (A) and by tetra-stranded DNA was 64% (B), 

indicating that the size of the channel pore is large enough for the translocation of tetra-strand 

DNA. Switch of voltage polarity revealed that the channel allowed only unidirectional 

translocation of both dsDNA (A) and tetra-stranded DNA (B).  
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Conductance assay of single connector channels for translocation of tetra-stranded DNA 

reveals a three-fold width of Phi29 channels compared to dsDNA.  

The channel size was further assessed by single-channel conductance assays using Phi29 

connector channels as a model system. A current blockage of 32% was observed for translocation 

of dsDNA through the connector channel (Fig. 2.3A), consistent with the ratio of the cross-

sectional areas of dsDNA ((2/2)2×3.14=3.14 nm2) and channel ((3.6/2)2 ×3.14=10.2 nm2, 10.2 nm2 

÷ 3.14 nm2 = 32%). For tetra-stranded DNA, which was constructed by DNA nanotechnology 

(150), when passing through the connector channel, a blockage of ~64% was observed (Fig. 2.3B). 

Thus, the cross-sectional area at the narrowest region of the Phi29 connector funnel is three-fold 

the area of the dsDNA. Such a big channel size makes it impossible for a bolt and nut tracing 

mechanism, and makes it likely that only one ATPase subunit at a time can bind to dsDNA 

(33,100).  

Both dsDNA and tetra-stranded DNA show one-way translocation through the Phi29 motor 

channel, since the switch of the electrical polarity changed the dsDNA from passable to impassable 

or vice versa through the channel (Fig. 2.3). One-way traffic of tetra-stranded DNA reveals that 

the channel does not merely serve as a pathway, it plays an active role by forming contacts with 

translocating double- and tetra-stranded DNA. 

The left-handed chirality of revolving motors is distinct from the right-handed chirality of 

rotation motors 

From mechanistic and physical standpoints, revolving motors depend upon a left-handed 

channel while rotation motors require a right-handed channel, to match the right-handed 

orientation seen in both B-type DNA and A-type DNA helices. Recently, it has been reported that 
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the anti-chiral arrangement between the Phi29 channel and the dsDNA helices facilitates the 

revolving of the dsDNA for uni-directional translocation during packaging (32,33). Analysis of 

the crystal structures of the motor channel of SPP1 (21), T7 (151), HK97, P22 (125), and Phi29 

(27) revealed that all of these motor channels display the anti-chiral arrangement between the 

channel and the DNA helices. The helical domains of the 12 protein subunits aligned to form the 

connector channels in all of these phages are tilted at 30º left-handed relative to the vertical axis 

of the channel, resulting in a configuration that runs anti-chiral to the right-handed dsDNA helices 

during packaging (Fig. 4, 5A). This structural arrangement greatly facilitates the controlled 

motion, supporting the conclusion that dsDNA revolves, instead of rotating, through the connector 

channel without producing coiling or torsional forces while touching each of the 12 connector 

subunits in 12 discrete steps of 30º transitions for each contact (33).  

Sequence alignments do not show apparent homology among the portal proteins of SPP1, T7, 

and HK97 family phages. Protein sizes also vary among different bacteriophages, ranging from 36 

kDa (Phi29 gp10), 57 kDa (SPP1 gp6), 59 kDa (T7 gp8), to 94 kDa (P22 gp1) (124,151). However, 

these portal proteins assemble into a propeller-like structure composed of 12 subunits with a 

central channel that acts as a valve for DNA translocation, and they all share very similar three-

dimensional structures with several conserved regions that serve a common function in DNA 

packaging. Secondary structure prediction was carried out in search of structural similarities. The 

predicted secondary structures matched almost perfectly with the known 3D arrangements, 

confirming the validity of the results. Among almost all of the portal proteins, a very similar pattern 

of strands and helices with comparable spacing and length (Fig. 4A) was found, particularly a 

sequence of α-β-α-β-β-α stretch. Detailed analysis of quaternary structures has revealed that the 

30º tilted helix exists in all portal proteins of P22, SPP1, Phi29, T7, and HK97 family phages (Fig. 



23 

 

4B). Further mapping studies have revealed that the position of the 30º tilt in the quaternary 

structure is located at the same conserved sequence at the last alpha helix of the α-β-α-β-β-α stretch 

(Fig. 4A), indicating that this 30º anti-chiral arrangement plays a critical role in dsDNA packaging 

as it has been conserved by evolution. 

As aforementioned, the rotation motors should have a right-handed channel to ensure parallel 

threading to the right-handed DNA. Indeed, crystal structure studies of helicase-DNA complexes 

have verified the right-handed spiral configuration of the hexameric protein-DNA complex (Fig. 

5) (144,152,153). In some cases, the motor channel adopts right-handed chirality only when the 

ring is distorted while in complex with DNA, such as RecA filament (152) and DnaB, which 

functions in a nonplanar hexameric conformation during their movement relative to DNA 

(144,153), otherwise, it remains as a closed symmetrical ring as observed in the absence of DNA 

(154). E1 helicase also adopts a right handed staircase pattern in the conformation of side chains 

when bound with DNA (155). All of these crystallographic studies suggest that these right-handed 

complexes use the rotation mechanism (or a mechanism similar to a rotation mechanism for RecA, 

where its monomers assemble on one end of the filament and disassemble on the other). It is also 

possible that the gp16 ATPase in the Phi29 dsDNA packaging motor also adopts a nonplanar 

filament assembled from continuously spiral hexamers (or assembled from dimers) rather than a 

planar closed ring during the DNA packaging. 
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Figure 2.4. Different bacteriophages showed a left-handed channel wall with a 30º tilt. (A) 

The 3D structure of Phi29 (P04332), HK97 (Q6NFR1), SPP1 (P54309), P22 (P26744) were 

predicted using the program PredictProtein with default parameter (www.predictprotein.org), 

revealing the 30º left-handed regions correlated well with their respected crystal structures 

(PDB:Phi29-gp10, 1H5W; HK97 family-portal protein, 3KDR; SPP1-gp6, 2JES; P22-gp1, 3LJ5). 

The location of the 30º left-handed tilted helix in each bacteriophage connector protein subunit is 

framed, which all lay at the end of the α β motif. (B) The 30º tilt helix (red) is also shown in an 

external view in connector 3D structures of different bacteriophages, supporting the common 

mechanism that DNA revolves through the 30º tilted channel by an anti-chiral arrangement in 

dsDNA translocation. 

 

  

http://www.predictprotein.org/
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Figure 2.5. Chirality comparison of revolving and rotation motors. (A) In revolving motors, 

the right-handed DNA revolves within a left-handed channel, such as in the connector channels of 

bacteriophage Phi29 (27), P22 (125), and SPP1 (21). (B) In rotation motors, the right-handed DNA 

rotates through a right-handed channel via the parallel thread, with RecA (152), DnaB (144) and 

E1 helicase (155) shown as examples. For E1 helicase, only the inside right-handed hairpin 

staircases that traces along the ssDNA are shown.   
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Common force generation mechanism of dsDNA translocation motors in bacteria, eukaryotic 

and prokaryotic viruses 

The recently discovered revolving motors use a hexameric ATPase to drive the advance of 

dsDNA in a sequential manner. Cellular dsDNA translocases also assemble into hexameric 

structures (96,97,156). The cellular components that show the strongest similarity to phage 

revolving motors are found in the bacteria FtsK and SpoIIIE family of the ASCE DNA motor 

group (129-131,137). Available evidences (131,134) lead to our hypothesis that these motors also 

use a revolving mechanism to translocate dsDNA without rotation. Indeed, translocation of 

dsDNA by FtsK at a rate of 1.6-1.75 base per ATP (131,134) quantitatively agrees with the Phi29 

DNA packaging motor in which each ATPase subunit uses one ATP to package 1.75 nucleotide 

(6,32,33,83,102). Sequence studies of motor components of large eukaryotic dsDNA viruses, such 

as Acanthamoeba poylphaga mimivirus (APMV), and vaccinia viruses revealed that these viruses 

contain a dsDNA translocation motor that is similar to that of the FtsK-HerA superfamily 

(95,137,157,158), suggesting that these virus also use the revolving mechanism for dsDNA 

packaging. Computation studies provide strong evidence that Phi29 DNA packaging motor 

ATPase gp16, FtsK, and the mimivirus motor ATPase all fall into the FtsK-HerA superfamily with 

a configuration of a hexameric motor ring (95,137,157). 

As shown in this report, quaternary structure analysis revealed that a left-handed, 30º tilted 

helix arrangement exists in the channel wall of dsDNA bacteriophages P22, SPP1, Phi29, T7, and 

HK97. During revolving of dsDNA through the channel, it advances by touching the side of the 

channel wall instead of proceeding through the center of the channel (33,159). As a result, the 30º 

left-handed direction for each transition between two connector subunits and the 30º alteration for 

dsDNA to advance 1/12 of helical pitch neutrally resulting in a zero gain, that is, no rotation occurs 
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for the dsDNA during the translocation. The proposed model of 60º per step of the FtsK hexamer 

(360º ÷ 6 = 60º) (131) agrees with the finding of 30º per step within the dodecamer connector 

channel (360º ÷ 12 = 30º) of all dsDNA bacteriophages and 60º per steps within the Phi29 

hexameric ATPase gp16 (32,33,83,102). 

Channel size and chirality are key factors in the identification of translocation motor types 

which can reveal the motor mechanism. The channel size is a physical confinement that can be 

used to distinguish revolving motors from rotation motors. As shown in this report, examination 

of the motor structures from X-ray crystallography reveals that revolving motor channels are larger 

than rotation motor channels. The finding that heteroduplex loop structures up to 19 bases can 

translocate through the phage lambda portal with the same efficiency as genome packaging (160) 

is another indication that the channel of lambda is wider than the dsDNA as well. 

Revolving motors make contact with only one strand of the dsDNA in the 5' to 3' direction in 

order to revolve along the connector channel, which has been evidenced in various motors such as 

Phi29 (15,161) and T4 (19). The model that dsDNA interacts with the internal surface of the 

hexameric ring (131) is in agreement with the observation in FtsK that only one strand of the 

dsDNA touches the internal wall of the motor channel (32,33).  

Besides, further analysis of the crystal structures of phage connectors among SPP1, P22, and 

Phi29 (27,162) revealed four potential-relaying electropositive lysine residues lying on the 

predominantly negatively charged connector channel surface. Although these four positively 

charged layers are nonessential for motor DNA packaging activity (11,31), they are reported to 

influence DNA translocation (31,163). Investigations into the detailed interaction of lysine 

residues with the bacteriophage genome during translocation revealed that the force generation 

mechanism of the relaying layers inside the channel wall altered the speed of DNA translocation 
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resulting in four pauses (32,102). The interaction between these positively charge lysine rings and 

the negatively charged phosphate backbone of the DNA suggests that the viral DNA packaging 

motor involves an electrostatic force in DNA translocation.  

Furthermore, it has been reported that the dsDNA spooling in the filled capsid is a common 

phenomenon in all the T7, Phi29, ε15, P22, and λ phages (164-167). The revolving mechanism 

explains this spooling phenomenon. During packaging of DNA (32,33), dsDNA will spool within 

the procapsid naturally as a result of the revolving process. Since rotation is not involved, no 

coiling is generated and no free DNA terminus is required during spooling. Initially, extra room 

results in a random arrangement of the entering DNA, however, towards completion of packaging 

it spools tighter and tighter due to revolving, which results in a more ordered orientation of the 

dsDNA (164-167). In addition, the reported revolving mechanism of phage DNA packaging 

motors is also consistent with recent Cryo-EM imaging studies showing that the T7 dsDNA core 

tilts from its central axis (159).  

DNA twists rather than rotates due to motor channel conformational changes during DNA 

translocation  

Many connector channels of dsDNA bacteriophages (Fig. 2.4) adopt a left-handed channel 

wall to facilitate one-way traffic during dsDNA packaging into pre-assembled protein shells 

(29,32). The conformational changes of the channel have been reported associated with this 

packaging process (30,38). Such conformational changes allow conversion of the left-handed 

connector after completion of DNA packaging towards the opposite configuration, thus facilitating 

DNA one-way ejection into host cells for infection. Indeed, three steps of conformational changes 

of the Phi29 connector (Fig. 2.6A) (30), as well as discovered in the DNA packaging motor of 

SPP1 (Wang and Guo, unpublished data). Noticeable conformational differences between isolated 
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Phi29 connectors and connectors in virions confirm such a structural transition after DNA 

packaging (38). In the Phi29 crystal structure, the connector subunit displays a left-handed 30º tilt 

(Fig. 2.4). However, when treated as a rigid body, the crystal structure clearly does not fit into the 

Cryo-EM density maps, indicated by a correlation coefficient as low as 0.55. After manual 

adjustments, the correlation coefficient was improved to 0.70, resulting in a 10° twist of the 

connector towards the connector axis (38). On the other hand, the N-terminal external region is 

difficult to adjust to fit as a rigid body into other parts of the connector density. It was found that 

the N-terminal external region underwent significant conformational shift in the DNA-filled capsid 

(38). It was concluded that angular twisting and restructuring of the connector core subunit are 

promoted by the interactions among Phi29 DNA and its structural proteins (38). Due to the dsDNA 

alignment with the channel wall (32,33,83,102,103) and the relatively static C-terminal internal 

region, a significant conformational shift in the N-terminal external region then results in a 

clockwise twist of the dsDNA when viewed from the C-terminus (Fig. 2.6).  

Recently, it has been reported that a small angular twist of 1.5 degree per nucleotide was 

observed during dsDNA packaging in Phi29 (168). Observation of such a small angular deviation 

per nucleotide can be explained by these conformational changes of the connector (Fig. 2.6). As 

evidenced above (38), if the N-terminal external region is shifted more significantly than the 

internal C-terminal region, a leftward twist of the DNA will occur during revolving along the 

connector channel (Fig. 2.6B). This is in agreement with the observed clockwise twist of 1.5 

degree per nucleotide relative to the C-terminus of the connector (168).  
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Figure 2.6. Illustration of dsDNA twisting during translocation due to channel 

conformational changes. (A) Discrete three step-wise conformational changes of Phi29 

connector channel were detected by single channel conductance assay with the connector 

embedded in lipid bilayer. The external view of the crystal structure of the connector channel is 

shown on the right.  (B) The C-terminal of the connector inside the procapsid is more static than 

the external N-terminal. As a result, the N-terminal of the connector may shift leftwards during 

the DNA packaging, leading to the clockwise twist of the DNA that aligns within the connector 

channel wall. 
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The reported twist of 1.5 degree per nucleotide or 15.75º per helical pitch of 10.5 bp during dsDNA 

packaging cannot be taken as the rotation mechanism in which 360º per pitch or ~34º per base pair 

are required. Furthermore, the reported increase in the frequency of DNA twisting per nucleotide 

with increase in capsid filling, is in agreement with the observation that the conformational change 

of the channel accelerates towards the end of the packaging process (30). This is logical since the 

dsDNA is aligned with the wall of the connector channel, and when DNA packaging is close to 

completion, a final conformation will be adopted and a more obvious twisting will be observed to 

prepare the channel for DNA ejection toward host infection.   

Single-molecule real-time imaging and force spectroscopy revealed that no rotation occurs 

during DNA translocation 

In order to validate the model of revolving without the need for rotation, several single-

molecule imaging experiments were carried out (Fig. 2.7, 2.8). A micrometer-sized fluorescence 

bead was attached to the distal end of the Phi29 genomic dsDNA. DNA translocation was directly 

observed in real-time by single-molecule imaging microscopy to detect fluorescence images 

revealing the displacement of the bead (53,128). No rotation was found in these traces (Fig. 2.7). 

To exclude the possibility that the lack of rotation is a result of bond freedom between the beads 

and DNA or due to the difficulty in optical discrimination due to the spherical nature of the beads, 

a cluster of magnetic beads was attached to the end of the Phi29 DNA to generate a label with an 

asymmetric shape (Fig. 2.7B) (128). Experiments using different setups for DNA packaging in a 

vertical (Fig. 2.7A) and horizontal orientation (Fig. 2.7B) (128) have been repeated many times 

and no rotation of DNA was observed. Polarization studies have been used to study biomotors 

such as T4 helicase (147). The polarization analysis of Phi29 DNA packaging motor did not find 

a rotation phenomenon either (Fig. 2.8).  
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Figure 2.7.  Demonstration of no DNA rotation by real-time direct observation of single 

motor DNA packaging.  Procapsid was immobilized in glass and the distal end of dsDNA was 

tethered to a bead. DNA is packaged vertically (A) or horizontally (B) towards the slide surface 

(graphic is not drawn to scale). (C) The motion of the bead is tracked during DNA packaging 

without (a and b) and with (c and d) the addition of ATP to the sample. The motion of the bead 

ceased at later times only when ATP was added (c) and (d) due to the physical restriction of DNA 

being completely packaged. (a) and (c) show the trajectories of the bead. Different colors represent 

different time ranges during the translocation. (b) and (d) show the changes in beads travel distance 

versus time.  
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Figure 2.8. Single molecule polarization detection to investigate motor rotation. (A) 

Experiment design of single molecule polarization detection on motor pRNA rotation during DNA 

packaging. The motor was stalled by γ-S-ATP and the rotation of pRNA ring can be excluded 

since no anti-correlated signals of a single Cy3 fluorophore in horizontal (H) or vertical (V) 

channels were observed. (B and C) Typical time trajectories of Cy3 fluorescence intensity in 

horizontal (black) and vertical (red) channels (B) without and (C) with the addition of ATP to 

restart the packaging.  
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The mechanism where no DNA rotation is required during packaging is further supported by 

the observation that in bacteriophage T4, both DNA ends are tethered to the portal throughout 

DNA packaging once the packaged DNA persistence length of about 500 bp is reached, suggesting 

that no rotation is needed and DNA does not get tangled up (19,169). All these observations 

support a revolving mechanism for phage DNA packaging without the need for rotation.  

CONCLUSIONS 

The revolving mechanism is a common feature shared by many DNA translocation motors. 

Inspections of structural data from eukaryotic and prokaryotic dsDNA translocases suggest that 

revolving and rotation motors can be distinguished by measuring the size and chirality of the DNA 

translocation channel. The channel of revolving motors are larger than 3 nm, while the channels 

of rotation motors are smaller than 2 nm in diameter. Revolving motors use a left-handed channel 

to drive the right-handed dsDNA in an anti-chiral arrangement, while some rotation motors use 

parallel threads with a right-handed channel. Revolving motors hold both strands of the dsDNA 

within the channel, while some rotation motor hold only one strand of the DNA inside the channel 

(97,138,142,144-146). Such revolving motors are void of dsDNA coiling (33,102,138). A small-

angle left-handed twist of dsDNA, which is aligned with the channel, takes place due to the 

conformational shifts of the motor channel from a left-handed configuration for DNA entry to a 

right-handed configuration for DNA ejection for host cell infection, however, no dsDNA rotation 

is required for DNA packaging. 
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Chapter 3: One-Way Traffic of Viral DNA Packaging Motor 

This chapter was reproduced (with some modifications) with permission from Z. Zhao, E. F. 

Khisamutdinov, C. Schwartz and P. Guo. “Mechanism of one-way traffic of hexameric phi29 DNA 

packaging motor with four electropositive relaying layers facilitating antiparallel revolving”. ACS 

Nano. 7:4082-4092 (May 2013).  
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ABSTRACT  

The importance of nanomotors in nanotechnology is akin to that of mechanical engines to 

daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their 

hexagonal arrangement facilitates bottom-up assembly for stable structures. Bacteriophage phi29 

DNA-translocation motor contains three co-axial rings: a dodecamer channel, a hexameric ATPase 

ring, and a hexameric pRNA ring. Viral DNA-packaging motor has been believed to be a rotational 

machine.  However, we discovered a revolving mechanism without rotation. By analogy, the earth 

revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is 

facilitated by five factors: 1) ATPase changes its conformation to revolve dsDNA within 

hexameric channel in one direction; 2) the 30° tilt of the channel subunits causes an anti-parallel 

arrangement between two helices of dsDNA and channel wall to advance one-way translocation; 

3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent 

reversal; 4) 5'-3' single-direction movement of one DNA strand along the channel wall ensures 

single direction; and 5) four electropositive layers interact with one strand of the electronegative 

dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. 

The discovery of a riding system along one strand provides a motion nano-system for cargo 

transportation and a tool for studying force generation without coiling, friction, and torque. The 

revolving of dsDNA among 12 subunits offers a series of recognition sites on DNA backbone to 

provide additional spatial variables for nucleotides discrimination for sensing applications.  
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INTRODUCTION 

Biological nanomotors are ubiquitous. The AAA+ (ATPases Associated with diverse 

cellular Activities) superfamily of proteins is a class of biological nanomotors with a wide range 

of functions, including DNA translocation, tracking, and riding.(95,170-176) These motors show 

great potential for use in nanotechnological applications and have proven to be as important to 

nanotechnology as mechanical motors are to daily life. Most members of this family fold into 

hexameric arrangements;(170,171,173,174,176-179) since all angles are factors of 360o, this 

hexagonal structure with an interior angle of 120o and external angle of 60o could facilitate bottom-

up assembly or simple fabrication to produce a stable structure or arrays. Despite their functional 

diversity, the common characteristic of these motors is their ability to convert chemical energy 

obtained from the hydrolysis of the γ-phosphate bond of ATP into a mechanical force and physical 

motion; a process usually involving a shift in entropy and a change in conformation of the motor 

building block. This change of conformation generates a gain or loss of affinity for its substrate, 

leading to mechanical movement by breaking contacts between macromolecules; assembly or 

disassembly of the complex; induction of substrate unfolding; and promotion of translocation of 

DNA, RNA, proteins, or other macromolecules. In a cellular environment, these activities underlie 

processes critical to DNA repair, replication, recombination, chromosome segregation, DNA/RNA 

transportation, and many others.(2,3)  

In both prokaryotic and eukaryotic cells, DNA needs to be transported from one cellular 

compartment to another. During replication, dsDNA viruses translocate their genomic DNA into 

preformed protein shells, termed procapsids (for review, see (10-12,180)). This entropically 

unfavourable process is accomplished by a nanomotor that uses ATP as an energy 

source.(6,17,120,181) The dsDNA translocation motor consists of a protein channel and two 
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molecules that carry out its activities:(7,49,53) an ATPase (6,8,9,22,182-185) and, in the phi29 

bacteriophage, a hexameric RNA ring. Our discovery 25 years ago proved that the larger molecule 

serves as part of the ATPase complex used in energy production, and the smaller one is responsible 

for binding to the dsDNA substrate.(6,49) This notion has now become well-established.(10-

12,180) The connector contains a central channel encircled by 12 copies of the protein gp10 that 

serve as a pathway for dsDNA translocation.(27,186) This dodecameric connector protein has 

shown great potential in nanotechnology and nanomedicine applications because of its ability to 

form peptide-mediated,(187,188) as well as nucleotide-mediated,(107) self-assembled 

nanoparticles. Also advantageous is the realization that it can be constructed into multilayers 

(189,190) and single layer patterned arrays,(106) and it has a high sensitivity for real time sensing 

of nucleotides and single chemicals.(139,191) 

In 1978, an attractive model with five-fold/six-fold rotation mechanism for bacteriophage 

dsDNA packaging was proposed.(16) Since then, it has been popularly believed that viral DNA 

translocation motors are rotating machines.(16,27,112) Many other intriguing translocation 

models have subsequently been proposed for the motor of dsDNA viruses.(12-15,192) The most 

well-studied system is the bacteriophage phi29 DNA translocation motor, constructed in 1986.(5) 

In 1987, an RNA component was discovered on the translocation motor,(7) and subsequently, in 

1998, this RNA particle was determined to exist as a hexameric ring (49,50) (featured by Cell 

(51)). Based on this structure, it was proposed that the mechanism of phi29 viral DNA 

translocation is similar to that used by other hexameric DNA tracking motors of the AAA+ 

family.(49)  This notion has induced fervent debates concerning whether the motor is a hexamer 

or a pentamer.  
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In a rotational model, at least one of the three coaxial rings in the translocation motor, or 

the dsDNA itself, should rotate during dsDNA translocation. Several published data has confirmed 

that none of the motor components, including the connector, the dsDNA, and the ATPase gp16, 

rotate during DNA translocation.(53,126-128) For example, studies combining the methods of 

single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence 

optical trapping(127) proved that the connector does not rotate. This was further supported by an 

experiment in which the connector was covalently linked to the capsid protein of a procapsid, 

making rotation of the connector within the procapsid impossible.(126,127,193) When the 

connector and the procapsid were fused to each other, rotation of the connector within the 

procapsid was not possible. However, the motors were still active in translocating dsDNA and 

producing active viruses, implying that connector rotation is not necessary for DNA translocation. 

Our single molecule studies using beads tethered to the end of dsDNA has revealed that dsDNA 

was still packaged into the procapsid even with such tethering.(53,128) The results raised a 

question regarding the operation of the phi29 DNA translocation motor, since it does not follow 

the rotational mechanism. Thus, this seemingly simple rotary machine was still a mystery. 

Although the application of this motor in nanotechnology has been attempted,(106,107,139,187-

191) demonstration of its potential has been diminished by opposing literature regarding the motor 

mechanism. Elucidation of its operating mechanism is essential for the field of nanobiotechnology. 

 Recently, we discovered a novel mechanism for the viral DNA translocation motor: the 

motor uses a revolving mechanism without involving the rotation of any of the motor components 

or coiling of dsDNA.(194) The motor contains six copies of ATPase gp16.(195) During DNA 

translocation, dsDNA revolves unidirectionally along the dodecameric channel wall. ATP binding 

to one ATPase subunit stimulates the ATPase to adapt a conformation with a high affinity to bind 
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dsDNA. ATP hydrolysis induces a new conformation with a lower affinity for dsDNA, thus 

pushing dsDNA away and transferring it to an adjacent subunit by a power stroke. One ATP is 

hydrolyzed in each one of the six transitional steps, and six ATPs are consumed in one helical turn 

of 360°. As demonstrated with Hill constant determination, binomial assay, cooperativity and 

sequential analysis, transition of the same dsDNA chain along the channel wall, but at a location 

60° different from the last contact, urges dsDNA to move forward 1.75 base pairs with each step 

(10.5 bp/turn ÷ 6ATP = 1.75 bp/ATP). Through evolution, nature has conceived a clever revolving 

machine to translocate the DNA double helix while avoiding the difficulties associated with DNA 

supercoiling, friction, and torque force during rotation. The revolving without rotation model could 

resolve a big conundrum troubling the past 35 years of painstaking investigation of the mechanism 

of these DNA packaging motors. With the revolving mechanism, dsDNA continues to advance 

without the need for rotation! The one-way traffic property of the motor has previously been 

reported,(29) but the mechanism has remained enigmatic. In this paper, we elucidate how the 

motor components coordinate to revolve the dsDNA, ensure a one-way traffic mechanism, and 

continuously advance dsDNA without reversing.  

MATERIALS AND METHODS: 

In Vitro Virion Assembly Assay 

Purified in vitro components were mixed and subjected to the virion assembly assay, as 

previously described.(196) Briefly, newly assembled infectious virions were inoculated with 

Bacillus bacteria and plated. Activity was expressed as the number of plaques formed per volume 

of sample (pfu/ml). 

Electrophoretic Mobility Shift Assay (EMSA).  
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The fluorescently tagged protein was shown to possess similar assembly and packaging 

activity as compared to wild-type.(100,197) Cy3-dsDNA (40 bp) was prepared by annealing two 

complementary DNA oligos containing Cy3 labels (IDT) at their 5' ends and purifying them with 

a 10% polyacrylamide gel. Samples were prepared in 20 μl buffer A (20 mM Tris-HCl, 50 mM 

NaCl, 1.5% glycerol, 0.1 mM Mg2+). Samples were incubated at ambient temperature for 20 min 

and then loaded onto a 1% agarose gel (44.5 mM Tris, 44.5 mM boric acid) and electrophoresed 

at 4°C for 1 hr at 8 V/cm. The eGFP-gp16 and Cy3-DNA samples were analyzed by a fluorescent 

LightTools Whole Body Imager using 488 nm and 540 nm excitation wavelengths for GFP and 

Cy3, respectively. 

Single-pore Conductance Assay for DNA Translocation.  

The preparation of connector-containing liposomes, the insertion of the connector into the 

planar bilayer lipid membrane (BLM), and the electrophysiological measurements of DNA 

thought the channel have been described previously.(28,29,139) Briefly, the phi29 connector was 

inserted into a BLM by vesicle fusion after obtaining connector reconstituted liposomes. A BLM 

chamber (BCH-1A from Eastern Sci LLC), was used to form horizontal membrane, and a thin 

Teflon film with an aperture of 70-120 m (TP-01 from Easter Sci LLC) or 180-250 m (TP-02) 

in diameter was used as a partition to separate the chamber into cis- and trans- compartments. For 

connector insertions, 1-2 μL of liposome stock solution was diluted by 10-20 fold and was directly 

added to the cis compartment. A pair of Ag/AgCl electrodes connected directly to the head-stage 

of a current amplifier were used to measure the current across the BLM. The current was recorded 

by an Axopatch 200B patch clamp amplifier coupled with the Axon DigiData 1322A or Axon 

DigiData 1440 analog-digital converter (Axon Instruments). All the electrical signals were 

obtained from the trans-compartment. Data was low band-pass filtered at a frequency of 1 kHz 
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and acquired at 500 µs intervals per signal. The PClamp 9.1 software (Axon Instruments) was used 

to collect the data, and the software Clampfit was used for data analysis. Conductance 

measurements were determined using the slope of the current trace induced by a ramp voltage after 

a definite insertion of a gp10 connector was observed. Solution conductivity was measured using 

a Pinnacle 542 conductivity/pH meter (Corning Inc.).  

RESULTS AND DISCUSSION: 

The Unique Structure of The Three Coaxial Hexameric Rings of Phi29 Motor Ensure One-Way 

Traffic.  

The phi29 DNA-translocation motor is composed of three coaxial rings (Fig. 3.1): a 

hexameric ATPase ring that serves as the force generating machine; a dodecameric channel that 

serves as a path for dsDNA;(27,29,186) and a hexameric RNA ring that connects and gears the 

connector and the ATPase.(56,66,197) The one-way traffic phenomenon has been verified by 

voltage ramping, electrode polarity switching,(29) and sedimentation force assessment.(29) 

However, the mechanism for controlling the one-way translocation had not been elucidated.  

 Most recently, we discovered that the motor uses a revolving instead of a rotation 

mechanism,(194) which greatly promotes our understanding of this one-way property. We found 

that the motor uses five different modules to control the direction of translocation: (1) the motor 

ATPase plays a major role in producing energy to push the dsDNA to advance toward the 

connector via dsDNA revolving within the channel;(194,195) (2) the 30° tilt and the anti-parallel 

arrangement between the two helixes of dsDNA and the connector channel subunit enhance the 

translocation of dsDNA in a single direction; (3) the unidirectional flow property of the internal 

channel loops serves as a ratchet valve to prevent reversal of dsDNA; (4) the 5'-3' single-direction 



45 

 

movement of one strand of dsDNA along the phi29 motor connector channel wall ensures a 

unidirectional motion; and (5) four relaying lysine layers interact with a single strand of the dsDNA 

phosphate backbone, resulting in four steps of transition and pausing during dsDNA translocation.  

ATPase Pushes the DsDNA to Revolve in One Direction along Its Hexameric Channel.  

 The ATPase gp16 controls the one-way traffic by two mechanisms. The first mechanism 

is the “Push through a One Way Valve” mechanism,(11,29,31,100) and the second one is the 

revolving of dsDNA along the dodecameric channel wall.(195) The following is the force 

generation mechanism from the ATPase gp16. ATPase exists in a hexameric form (Fig. 3.1B).(195) 

The binding of ATP to one gp16 subunit stimulates it to adapt to a conformation with a higher 

affinity for dsDNA, while ATP hydrolysis forces gp16 to assume a new conformation with a lower 

affinity for dsDNA, thus pushing dsDNA away from one subunit and transferring it to an adjacent 

subunit (Fig. 3.2).(100,194) Such physical transition pushes the DNA through the one-way valve 

channel, urging the dsDNA to advance inwards to enter the procapsid, but not in reverse. This 

conclusion was supported by gel shift assays. In the absence of γ-S-ATP, a non-hydrolysable 

derivative of ATP, the binding of gp16 to DNA is weak (Fig. 3.3, lane 3). However, after the 

addition of γ-S-ATP the binding efficiency of gp16 to DNA increased significantly (Fig. 3.3, lane 

4) since the complex is frozen by the non-hydrolysable ATP. This evidence supports the above 

conclusion that ATP induces a conformational change in gp16 that causes it to assume a high 

affinity conformation for dsDNA binding. More significantly, when ATP was added to the gp16-

γ-S-ATP-dsDNA complex, rapid ATP hydrolysis was observed (100) and gp16 dissociated from 

the dsDNA. This indicates that after hydrolysis, gp16 undergoes a further conformational change 

that produces an external force against the dsDNA and pushes the substrate away from the motor 

complex by a power stroke. This also agrees with the result shown in Fig. 3.3, lane 5; providing  
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Figure 3.1. Illustration of phi29 DNA-packaging motor structure. Side view (A) and bottom 

view (B). The 30° tilt of the helix of the connector subunit and its anti-parallel with dsDNA helix 

is depicted (A). The three coaxial rings: pRNA hexamer, ATPase hexamer and connector 

dodecamer in the phi29 DNA packaging motor are depicted (B). 
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Figure 3.2. Schematic of the revolving mechanism in translocating genomic DNA. The binding 

of ATP to one subunit stimulates gp16 to adapt to a conformation with a higher affinity for dsDNA. 

ATP hydrolysis forces gp16 to assume a new conformation with a lower affinity for dsDNA, thus 

pushing dsDNA away from the subunit and transferring it to an adjacent subunit. Rotation of the 

hexameric ring or the dsDNA is not required since the dsDNA chain is transferred from one point 

on the phosphate backbone to another. 
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evidence for the existence of two ATPase conformations under different conditions with various 

ATP concentrations.  

 The second mechanism of one-way traffic control is directed via dsDNA revolving through the 

gp16 hexameric ring in one direction (Fig. 3.2). During DNA translocation, only one strand of the dsDNA 

interacts with the dodecameric channel wall, and neither the dsDNA nor the hexameric ATPase rotates 

(Fig. 3.2). One ATP is hydrolyzed in each transitional step, and six ATPs are consumed for one helical turn 

of 360°, or 10.5bp (base pairs). As demonstrated with Hill constant determination, binomial assay, 

cooperativity and sequential analysis, transition of the same dsDNA chain along the channel wall, 

but at a location 60° different from the last contact, urges dsDNA to revolve forward with a single 

orientation at 1.75 bp (10.5 bp per turn ÷ 6 ATP = 1.75 bp/ATP).(122,126)  

The 30° Tilting of Channel Subunits Causes An Anti-Parallel Arrangement between Two 

Helices Resulting in Revolving in A Single Direction.  

 A cone-shaped central channel is encircled by 12 copies of the protein connector subunit 

gp10 and serves as a pathway for dsDNA translocation.(27,186) The wider C-terminal end, 13.6 

nm in diameter, is buried inside the procapsid. The narrower N-terminal end is 3.6 nm in diameter 

and allows dsDNA to enter. The connector is a one-way valve that only allows dsDNA to move 

into the procapsid unidirectionally,(139) as verified by voltage ramping, electrode polarity 

switching, and sedimentation force assessment.(29) All 12 gp10 subunits are tilted at a 30° angle 

and encircle the channel in a configuration that runs anti-parallel to the dsDNA helix residing in 

the channel. The anti-parallel arrangement between the two helices of the connector subunit, and 

the helix of the dsDNA, can be visualized in an external view (Fig. 3.4A), with dsDNA potentially 

making contact at each connector subunit (Fig. 3.4). 
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Figure 3.3. EMSA of eGFP-gp16 configurations with short Cy3-dsDNA and ATP or γ-S-

ATP. The GFP channel shows migration of the ATPase and the Cy3 channel shows the migration 

of the dsDNA. The eGFP channel lane 5 clearly shows 2 distinct bands of gp16 after addition of 

ATP indicating the presence of two conformations of gp16. 
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Figure 3.4. Illustration showing the anti-parallel configuration between connector subunit 

and DNA helix. External view (A) and internal view (B) of the anti-parallel configuration of 

connector and DNA as dsDNA revolves through the connector. One twelfth of a dsDNA helix is 

30°(C), which is the angle dsDNA revolves to advance between two adjacent connector subunits 

(D). The contact at every 30° for twelve 30° transitions resulted in translocation of one helical turn 

of the dsDNA through the connector (B). 
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  The anti-parallelism exhibited by the helices argues against a bolt and screw rotation 

model, since a screw thread and the corresponding whorl should match. The 30° tilt of the subunits 

matches perfectly with the 30° transitions that the dsDNA helix exhibits during revolving (360° ÷ 

12 = 30°). In each step of revolving that moves the dsDNA to the next subunit, the dsDNA 

physically moves to a second point on the channel-wall, keeping a 30° angle in between the two 

segments of the DNA strand (Fig. 3.4). This structural arrangement enables the dsDNA to touch 

each of the 12 connector subunits in 12 discrete steps of 30° transitions for each helical pitch (Fig. 

3.4). Nature has created and evolved a clever machine that advances dsDNA in a single direction 

while avoiding the difficulties associated with rotation, such as DNA supercoiling, as seen in many 

other processes. For reference, the Earth rotates around its own axis every day, but revolves around 

the sun every 365 days.  

Unidirectional Flow of the Internal Channel Loops Provides A Vector Force as A Ratchet 

Preventing DNA Reversal.  

The phi29 connector allows dsDNA to translocate from its N-terminal (narrower end) to 

its C-terminal (wider end).(139) In our most recent findings, like other ion channels that play a 

critical role in regulating ions in and out of membranes, the phi29 motor channel gates in three 

discrete steps in response to high voltage or ligand binding.(29,30) We have constructed a mutant 

connector in which the internal loops, which have been believed to play a role in DNA packaging, 

with residues 229-246 (27,31) were deleted. The viral assembling activities of procapsids bearing 

this mutant connector were assessed by in vitro virion assembly. It was found that procapsids with 

the loop-deleted connector failed to produce any virions, as compared to wild-type procapsids in 

which the assembly activity was about 1×108 pfu/ml (plaque forming units per millilitre) (Fig. 

3.5B). Other findings from our lab and other groups have revealed that the channel loops play a 
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critical role in the one-way traffic mechanism of dsDNA; and that the packaged dsDNA reverses 

and slides out after being packaged into the mutant procapsid.(12,30,31,163,198) The channel 

loops may act as a clamp during DNA translocation and prevent the DNA from sliding out, 

supporting the “push through one-way valve” model in which the direction of DNA migration is 

regulated by the loops inside the channel (31) (Fig. 3.5A). The application of single-pore 

conductance assay revealed a one way-traffic of normal connector channel and two-way traffic of 

internal channel loop-deleted connector (Fig. 3.6). DNA traffic was probed by applying a ramping 

potential (Fig. 3.6 left panel) and by switching the voltage polarity (Fig. 3.6 right panel) that 

crossed the membrane. Due to the negative charge of the phosphate backbone, DNA migrates from 

the negative toward the positive electrode. In the presence of DNA in both cis- and trans-chambers 

under a ramping potential, DNA translocated via the single-channel BLM only at the negative 

potential when channel entrance (the narrow-end which locates outside the procapsid) faced the 

negative electrode (Fig. 3.6A). On the contrary, DNA translocation was observed only at the 

positive potential when the channel turned upside down (Fig. 3.6B). Furthermore, in the presence 

of DNA in both cis- and trans-chambers under a constant voltage, DNA translocation via the 

single-channel could be turned on and off depending on the polarity of the voltage(29) (Fig. 3.6E). 

This correspondence to polarity switching was dependent upon the orientation of the connector in 

the BLM, which was determined by nanogold blocking assay.(29) When no DNA translocation 

was observed under negative potential, switching the voltage to positive potential resulted in DNA 

translocation (Fig. 3.6E), and vice versa. The results strongly support that dsDNA can only pass 

through the wild type connector channel in one direction. When the internal loops of the connector 

were deleted, the two-way traffic of DNA was observed using both scanning potential (Fig. 3.6C) 

and polarity switching (Fig. 3.6F). So far, the two-way traffic of DNA has not been detectable for  
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Figure 3.5. Influence of the flexible inner channel loops on DNA movement and virion 

assembly assay. (A) The flexible loop within the connector channel functions to interact with the 

DNA, facilitating the DNA to move forward, but blocking the reversal of DNA during DNA 

packaging. (B) Two dilution factors of wild-type procapsid show high virion assembly activity 

(~107 pfu/ml), while procapsids harboring the connectors with internal loops deleted are of a very 

low virion assembly activity. The loops are assumed to facilitate the forward movement of DNA 

and enhance the DNA one-way traffic mechanism, but not the reverse. 
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Figure 3.6. Single-pore conductance assay for DNA translocation through phi29 connector. 

Unidirectional translocation of dsDNA through wide type phi29 connector was shown under a 

ramping potential from -100mV to +100mV (A,B) and by switching polarity (E). ssDNA exhibits 

a two-way traffic property through internal loop-deleted connector, as shown by ramping potential 

(C) and by switching polarity (F). (D) The negative control without DNA.  
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wild type connector under the current experimental conditions.(34) In summary, the conductance 

assay with specific mutant connectors demonstrated that the internal flexible loops are essential 

for the one-way traffic of the motor. Together with the finding that procapsids harbouring modified 

connectors with internal channel loop mutation or deletion lose the capability to retain DNA after 

packaging,(163) as well as our finding that the procapsids harbouring modified connectors with 

internal channel loop deletion decrease the virion assembly efficiency (Fig. 3.5B), we concluded 

that the internal flexible loops play a key role in the one-way traffic property of viral DNA 

packaging motors during DNA translocation.   

The 5'-3' Single-Direction Movement of One DNA Strand Along Channel Wall Ensures 

Unidirectional Motion.  

Our extensive investigations into data modeling and literature have led to the following 

conclusions: the motor only contacts one strand, not both, of the dsDNA in the 5' to 3' direction in 

order to revolve along the connector channel.(15) While single-stranded DNA cannot be packaged, 

dsDNA with the 3'-end extended can revolve along the channel one helical turn of 10.5 bp. This 

notion has been based upon the revolving (but not the rotation) model and agrees with our studies 

on phi29 DNA packaging of phi29 genomic DNA containing single-stranded gaps.(161) The gap-

containing dsDNA were produced in vitro, and the DNA packaging function was assayed in 

agarose gel electrophoresis using the defined in vitro phi29 assembly system.(196,199) We found 

that phi29 DNA with single-strand gaps was not packaged at full genome length. Because of such, 

we created two gaps: one at the left end (5883 bp) and one at the right end (14421 bp) of the phi29 

DNA genome. Only the 5.9 kb DNA fragment between the left end of the genome and the first 

gap were packaged.(161) The right end fragment was not packaged. The result suggests that a 

single-strand gap in the DNA is a structural alteration that can cause the packaging motor to stop; 
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and that the packaging direction is from 5' to 3', since the phi29 packaged the left end of the genome 

first. Our model is supported by the finding by Black and co-workers who reported that a 3' single-

strand overhang was packaged under conditions extending from the 100 bp duplex.(19) A 3'-

extension up to 12 bases did not inhibit translocation, whereas 20 or more bases significantly 

blocked the T4 motor in DNA packaging. The 20-base gap was consistently found to be vulnerable, 

whether it was at the 3' end or in the middle of the DNA strand.(19) These results support the 

notion that the motor can revolve one complete turn of 360° with a single-stranded structure and 

that dsDNA revolves along the motor using a single strand in the 5' to 3' direction. The data is also 

supported by experimental data involving optical tweezers showing that dsDNA is processed by 

having contact with an unknown component on one strand of DNA in the 5' to 3' direction; the 

modification of phi29 DNA in the 5' to 3' direction stopped dsDNA packaging;(15) as well, that 

modification with 10 bases is tolerable, but 11 bases is not.(15) 

Four Electropositive Relaying Layers Interact with the Electronegative DNA Backbone, 

Resulting in Four Steps of Transitional Pauses.  

Connector crystal analysis (27) has revealed that the dominantly negatively charged phi29 

connector interior channel surface is decorated with 48 positively charged lysine residues, existing 

as four relaying 12-lysine rings derived from the 12 protein subunits that enclose the channel (Fig. 

3.7). The four lysine rings (K200, K209, K234, and K235) are scattered inside the channel and 

have been proposed to play a role in DNA translocation.(27) However, we have found that 

mutation of one layer of the four lysine rings does not significantly affect motor action.(31)  

Here we further investigate the detailed interaction of lysine residues with the 

bacteriophage genome during translocation. When DNA revolves through the connector, it goes 

through 12 subunits of the connector per cycle, and we hypothesized that only one strand touches 
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the channel wall. Thus, during the entire 360° revolving, the negatively charged phosphate 

backbone will be in contact with the same positively charged layer of the lysine ring. One 360° 

revolving corresponds to 10.5 bp for each helical turn of the B-type dsDNA. This results in an 

imperfect match (10.5 ÷ 12 = 0.875) of sequential contact between the base, which has the 

negatively charged DNA phosphate group, and the channel subunits, which contains the positive-

charged lysine ring (Fig. 3.7).  

On average, each of the four lysine layers will be responsible for contact with three subunits 

(12 subunits ÷ 4 layers = 3 subunits). This value indicates that for every three subunits, 2.6 bp 

(0.875 × 3 = 2.6 bp) will be translocated through the connector. At each step, a 12.5% mis-

match occurs (1 − (10.5 ÷ 12)) x 100% = 12.5%. After three transactions with three subunits, 

a 37.5% variation will occur (12.5% x 3 = 37.5%), and the charge/charge interaction will be 

weakened due to distance. The phosphate interacts with the optimally charged lysine in the next 

subunit, and the distance variation due to this mismatch will be compensated for by introducing 

next lysine layer (Fig. 3.7). The contact point between the phosphate and the lysine then shifts to 

the next lysine ring. The transition results in a slight pause during DNA advancement. When 

dsDNA translocates through three subunits, the heading phosphate of the DNA will have to 

transition into the next lysine layer in order to compensate for the imperfect match between the 

phosphate and each lysine residue during DNA advancement through the connector. Thus, the four 

layers of the lysine ring will result in four pauses of DNA translocation. We found that the mutation 

of only one layer of the four lysine rings does not significantly affect motor function,(31) indicating 

that the interaction of the lysine with the phosphate is only the auxiliary force and not the main 

force necessary for motor action. This also indicates that the uneven speed of the four-step pauses 

caused by the four lysine layers is not the essential function of the motor. This would explain why  
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Figure 3.7. Structure of the phi29 channel showing the four lysine rings scattered inside the 

inner wall of the connector. Side view (A) and top view (B) of the connector, showing K200 

(magenta) and K209 (yellow). The 229 (cyan) with 246 (red) show the boundary of the connector 

inner flexible loops that harbor the other two lysines. Due to the flexibility of the loop, the crystal 

structure of this loop is not available, and the known boundary of the loop was used to show the 

location. Side (C) and Top view (D) of the detailed scheme of DNA revolving through connector 

are shown. In this figure, the related position of the dsDNA and the connector subunit are displayed 

as three dimensional and viewed at different angles; the position of the dsDNA is different between 

two channel subunits, even though the DNA itself does not rotate. 
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the lysine layer and the 10.5 base per patch are not a perfect match, and why the distance of the 

layers are not constant.  

Based on the crystal structure, the length of the connector channel is ~7 nm. Vertically, 

these four lysine layers fall within a 3.7 nm (27) range and are spaced approximately ~0.9 nm 

apart. The lysine residues K234 and K235 lie in the inner loop of the connector between residues 

229 to 246, which were missing in the crystal structure; so the two residues close to the boundary 

of the inner loops were represented and were used to estimate the location (Fig. 3.7). Since B-type 

dsDNAs have a pitch of 0.34 nm/bp, ~2.6 bp per rise along its axis between two lysine layers can 

be used in translocation (0.9 nm 0.34 nm. bp−1⁄ = ~2.6 bp). This value agrees with the recently 

data demonstrating the presence of four-step of pauses during dsDNA translocation process, as 

measured by optical tweezers using single molecule analysis.(13,14) It was demonstrated that each 

step translocated 2.5 base pairs and each circle translocated 10 base pairs of dsDNA.(13,14) The 

step size is in a good agreement with our finding described above. However, the authors interpreted 

the four pauses caused by four lysine rings into the rotation model driven by four motor ATPase. 

Thus, they found that their model is in disagreement with both the hexamer (11,49,50,52,53,55,56) 

and pentamer (58,200,201) models. Subsequently, the authors proposed a model in which phi29 

DNA packaging motor is a pentamer, but one subunit of the pentamer was inactive, resulting in 

four motor subunits that generate four power strokes or bursts in rotation. Their rotation model is 

contradictory to our revolving mechanism described above showing that the four pauses are due 

to the presence of four lysine layers in the connector (Fig. 3.7).(194,195)  
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Chapter 4: Sequential Action Motion in phi29 dsDNA Packaging Motor 

This chapter was reproduced (with some modifications) with permission from Z. Zhao, G. De-

Donatis, C. Schwartz, H. Fang, J. Li and P. Guo. “Arginine fingers regulates sequential action of 

asymmetrical hexameric ATPase in dsDNA translocation motor”. Molecular and Cellular Biology. 

In press (Jul. 2016).  
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ABSTRACT 

Biological motors are ubiquitous in living systems. Currently, how the motor components 

coordinate the unidirectional motion is elusive in most cases. Here we report that the sequential 

action of the ATPase ring in the DNA packaging motor of bacteriophage phi29 is regulated by an 

arginine finger that extends from one ATPase subunit to the adjacent unit to promote noncovalent 

dimer formation. Mutation of the arginine finger resulted in the interruption of ATPase 

oligomerization, ATP binding/hydrolysis, and DNA translocation. Dimer formation re-appeared 

when arginine mutants were mixed with other ATPase subunits that can offer the arginine to 

promote their interaction. Ultracentrifugation and virion assembly assays indicated that ATPase 

was presenting as monomers and dimer mixtures. The isolated dimer alone was inactive in DNA 

translocation, but the addition of monomer could resume the activity, suggesting that the 

hexameric ATPase ring contained both dimer and monomers. Moreover, ATP binding or 

hydrolysis resulted in conformation and entropy changes of the ATPase with high or low DNA 

affinity. Taken together, it is concluded that arginine finger regulates sequential action of the motor 

ATPase subunit by promoting the formation of the dimer inside the hexamer. The finding of 

asymmetrical hexameric organization is supported by structural evidences of many other ATPase 

systems, showing the presence of one noncovalent dimer and four monomer subunits. All these 

provide clues for why the asymmetrical hexameric ATPase gp16 of phi29 was previously reported 

as pentameric configuration by cryo-EM. Since contact by the arginine finger renders two adjacent 

ATPase subunits closer than other subunits, the asymmetrical hexamer would appear as a pentamer 

by cryo-EM, a technology that acquires the average of many images.  
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INTRODUCTION 

The ASCE (Additional Strand Catalytic E) superfamily including AAA+ (ATPases associated 

with various cellular activities) superfamily is a broad class of proteins among which several nano-

biological molecular motors or nanomotors are listed. Nanomotors facilitate a wide range of 

functions (3,84,91,101,202,203), many of which are involved in DNA replication, repair, 

recombination, chromosome segregation, protein degradation, membrane fusion, microtubule 

severing, peroxisome biogenesis, gene regulation, DNA/RNA transportation, bacterial division, 

and many other processes (2,3,131,204-206). 

Despite their functional diversity, ring-shaped P-loop NTPases share two conserved 

modules with Walker A and a Walker B motifs (6) exerting their activity through the ATP-

dependent remodeling for translocation of macromolecules. The Walker A motif is responsible for 

ATP binding, while the Walker B is for ATP hydrolysis (207,208). This energy transition can 

result in either a gain or loss of substrate affinity, therefore generating a mechanical force exerted 

on the substrate to produce a mechanical motion. This motion will lead to a contact with or a 

separation from the substrate molecule, resulting in molecule folding/unfolding, complex 

assembly/disassembly, or translocation of DNA, RNA, protein or other substrates (209). 

Both the revolving mechanism and the sequential reaction mechanism adapted by 

biological systems through evolution are efficient methods of unidirectional translocation of 

lengthy dsDNA genome, with minimum consumption of energy and without tangling or coiling 

(26,32,33,83,103,203). However, both the revolving mechanism and/or the sequential reaction 

mechanism for DNA translocation requires a signal communication from one component to 

another in the motor complex. It has been reported that ASCE ATPases contain one arginine finger 

motif along with the Walker A and Walker B motifs (137,142,210,211). In the active ATPase ring, 

https://en.wikipedia.org/wiki/Nucleoside_triphosphate
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the arginine residue is located in proximity to the γ-phosphate of the bound ATP in the adjacent 

ATPase subunit (95,211-213). Arginine finger has been confirmed to associate with the formation 

of the ATP binding pocket (95,137,214-216). To understand how the motor component 

coordinates its motion necessary for unidirectional DNA translocation activity and sequential 

action of the ATPase ring, we analyzed the role of Arginine finger motif in the ATPase core of the 

dsDNA translocation motor. It was found that this motif controls the formation of the coordinating 

dimer inside the hexamer of the motor ATPase. The dimer however is not static but shifts and 

alters with time, following a sequential manner, and this sequential reaction mechanism is 

regulated by arginine finger.  

MATERIALS AND METHODS 

Cloning, mutagenesis and protein purification.  

The engineering of eGFP-gp16 and the purification of the gp16 fusion protein have been 

reported previously (197). eGFP-gp16 mutants including arginine finger mutant R146A, Walker 

A mutant G27D, and Walker B mutant E119A as well as mCherry-gp16 mutant R146A were 

constructed by introducing mutations in the gp16 gene by Keyclone Technologies.  

Glycerol gradient ultracentrifugation.  

50 μl of eGFP-gp16 (500 μg/ml) were dropped on the top of 5 ml linear 15-35% glycerol 

gradients in a TMS buffer. After centrifuging at 35000 rpm in a SW55 rotor at 4 °C for 22 hr, the 

gradients were collected into 31 fractions from bottom to top and measured using a plate reader 

under 488 excitation before being applied to in vitro assembly assay.  

Electrophoretic mobility shift assay (EMSA).  
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Fluorescently-tagged protein that facilitates detection and purification was shown to 

possess similar assembly and packaging activity as compared to wild-type (100,197). The EMSA 

method has been described previously (33,83). The gp16 mutants or wild-type were mixed with 

33 bp Cy5-dsDNA in the presence or absence of ATP and γ-S-ATP. Samples were incubated at 

ambient temperature for 20 min and then loaded onto a 1% agarose gel (44.5 mM Tris, 44.5 mM 

boric acid) and electrophoresed at 4 °C for around 1 hr at 8 V/cm. The eGFP-gp16, mCherry-gp16, 

and Cy5-DNA samples were analyzed by a fluorescent LightTools Whole Body Imager using 488 

nm, 540 nm, or 635 nm excitation wavelengths for GFP, mCherry, and Cy5, respectively.  

Protein structure prediction and analysis.  

I-TASSER (217) was used to predict the structure of the subunit of gp16 through a 

threading algorithm. The structure prediction processed without restraint, allowing the server to 

select the template. The N-domain (1-180 aa) of the predicted structure adopts a RecA-like fold, 

which is the conserved structure for many oligomeric ATPases, including T7 gp4 and FtsK. The 

RMSD between the predicted structure (N-domain of gp16) and FtsK (beta-domain) after the 

structure alignment is around 3 Å. The predicted structure (monomer) was then used to construct 

a hexameric structure of gp16 with P. aeruginosa FtsK (pdb ID: 2IUU) as the template (134). 

VMD was used to render the image of the structure (218). 

Proteinase probing assay.  

3 μl of his-gp16 (2 mg/ml) was mixed with trypsin (0.5 μg) and different amounts of ATP 

(0 nmol, 16 nmol, 32 nmol, 64 nmol, 128 nmol, 256 nmol, 512 nmol, 1 μmol) in the enzyme 

reaction buffer: 50 mM NaCl, 25 mM Tris pH8, 0.01% Tween 20, 0.1 mM MgCl2, 2% glycerol, 

1.5% PEG 8000, 0.5% Acetone, and 5 mM DTT. Fresh DTT was added into the buffer right before 
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the reaction. The final volume for this reaction system was 30 μl. The samples were incubated in 

room temperature for 30 min and applied on 12% SDS-PAGE.  

Tryptophan intrinsic fluorescent assay.  

8 μl SUMO-gp16 (1 μg/μl) was incubated with different amount of ATP in the reaction 

buffer (0.005% Tween 20, 1.5% PEG 8000, 0.5% Acetone, and 2 mM Tris pH 8.0). The fluorescent 

intensity of the samples was immediately measured through a spectra-fluorimeter under 

wavelength excitation at 280 nm. 

ATPase activity assay.  

Enzymatic activity via fluorescent labeling was described previously (184). Briefly, a 

phosphate binding protein conjugated to a fluorescent probe that senses the binding of phosphate 

was used to assay ATP hydrolysis.  

In vitro assembly inhibition assay.  

Purified in vitro components were mixed and were subjected to virion assembly assay as 

previously described (196). Briefly, newly assembled infectious virions were inoculated to 

Bacillus bacteria and plated. Activity was expressed as the number of plaques formed per volume 

of sample (pfu/mL). 

RESULTS 

Hypothesis of motor motion mechanism to be tested.  

Most biological motor ATPases assemble into hexameric rings with a motion process stimulated 

by ATP (6). For the phi29 dsDNA translocation motor, our hypothesis is that: (1) An arginine 

finger is present in the phi29 motor ATPase gp16. (2) The arginine finger outstretches to the 
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upstream adjacent ATPase subunit to serve as a bridge for the formation of a dimeric sub-complex 

and regulates the sequential action of the subunits in the hexameric ATPase ring. (3) One ATPase 

dimer and four monomers are present in the hexameric ring. (4) ATP binding results in the 

reshaping of the conformation and change of the entropic landscape of gp16. (5) Due to the DNA-

dependent ATPase activity (6), binding of DNA to ATP/gp16 complex resulted in ATP hydrolysis, 

leading to a second conformational and further entropy change of the ATPase to a low DNA-

affinity configuration that allows the release of dsDNA for its concomitant transfer to the adjacent 

subunit. 

 The model speculates that ATPase undergoes a series of conformational changes during 

DNA binding and ATP hydrolysis that are organized in a sequential manner, and that this 

sequential mechanism is coordinated by arginine finger (Fig. 4.1), with the supporting data 

described below.  

Identification of arginine finger motifs in phi29 gp16 ATPase.  

Gp16 shares the common ATP binding domain typical of all ASCE, including AAA+ 

proteins (91,99). This domain contains very well conserved motifs responsible for ATP binding 

and ATP hydrolysis (207) which have been previously identified as Walker A (6) and Walker B 

motifs (83), respectively. However, the detailed information about its arginine finger motif 

remained elusive. Sequence alignment was subsequently performed with similar ASCE proteins 

to identify this motif (Fig. 4.2A). From the alignment, we identified the position of the arginine 

fingers (residue 146) localized after beta-4 as seen in other ATPases, which correlates well with 

the known structural information and consensus sequences for this motif found in other proteins 

(95,134,219-221) (Fig. 4.2A). Single mutant R146A gp16 was produced and examined for its 

ATPase activity. As expected, the arginine finger mutant was severely impaired in the activity for 
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both ATP hydrolysis activity (Fig. 4.2B) and DNA binding in the presence of γ-s-ATP (Fig. 4.2C), 

possibly due to the impaired affinity for γ-s-ATP similar to the Walker A mutant (83). On the 

contrary, the Walker B mutants retained their binding affinity for DNA in the presence of γ-s-ATP 

and were also sufficient in binding DNA in the presence of ATP, although they could not hydrolyze 

ATP (33,83). 

The arginine finger outstretches to the upstream adjacent ATPase subunit to serve as a bridge 

for the formation of a dimeric sub-complex. 

Arginine finger has been reported to have various functions, including the major role in 

subunit communications by pivoting upon ATP hydrolysis to trigger the conformational changes 

of the subunits of the ATPase (91,142,222-226). The formation of the dimeric complex of gp16 in 

the absence of ATP was demonstrated by different approaches: glycerol gradient 

ultracentrifugation (Fig. 4.3), electrophoresis mobility shift assay (EMSA) (Fig. 4.4A-C), size 

exclusion chromatography, and native gel electrophoresis (83). These assays were based on the 

previous finding that fusion of the GFP protein to the N terminal of the gp16 did not interfere with 

activity of the ATPase gp16 in DNA packaging (182,183,197). It was found that mutation of the 

Arginine finger abolished dimer formation within the ATPase (Fig. 4.3). Although the Arginine 

mutants alone could not form dimers, interactions were observed when they were mixed with either 

the wild-type or other mutants that contained an intact arginine finger, which can provide an 

arginine residue for dimer formation (Fig. 4.3). The disruptive effect of Arginine finger mutation 

on assembly ability was also reflected in the protein activity, since it was   
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Figure 4.1. Proposed mechanism of ATPase coordination regulated by arginine finger. 
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Figure 4.2. Identification and characterization of arginine finger in phi29 gp16 ATPase. (A) 

Sequence alignment among gp16 ATPase with other ATPase in the same family, indicating the 

location of the Walker A, Walker B, and arginine finger (R) motifs of gp16 ATPase which are well 

aligned with previously established domains (6,95,134,219-221). "h" represents hydrophobic 

residue. (B-C) ATP binding and hydrolysis activity assay of gp16 Arginine mutant. After the R146 

residue is mutated, gp16 ATPase loses its ATP hydrolysis activity in B and DNA binding activity 

shown by EMSA in C.  
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observed that one single inactive subunit of an arginine finger mutant was able to inactivate the 

whole ATPase ring in an assembly inhibition assay (Fig. 4.4D-E).This supports the idea that in 

the ATPase ring, one adjacent wild-type ATPase provided an arginine finger to interact with the 

arginine mutant, and the lack of one arginine in the entire ring completely abolished the activity 

of the whole ring.  

To get a better understanding of the structural role of Arginine finger, we modeled a gp16 

hexameric ring using I-TASSER (217) and Phyre2 softwares (227). The gp16 sequence aligned 

well with the crystal structure of the hexameric FtsK DNA translocase of E. coli (Fig. 4.5). Using 

this model, we observed that the position of the Arginine finger of one subunit of gp16 outstretches 

to the active site of a neighboring subunit. The predicted structure showed that the Arginine finger 

was part of the ATP binding pocket (Fig. 4.5). The structural model provides an explanation for 

the observed cooperativity behavior in the hexameric ring of gp16. Not surprisingly given the 

importance in the formation of the active site, mutations in Arginine fingers greatly impaired the 

ability of gp16 to bind to ATP, to hydrolyze ATP (Fig. 4.2B), to bind to DNA (Fig. 4.2C), and 

consequently to package DNA (Fig. 4.4E).  

Both dimer and monomer forms were present in gp16 hexamer.  

As demonstrated in the above sections, arginine finger serves as a bridge between two 

independent subunits, thus forming a transient dimeric subunit. In wild-type g16 it was observed 

that both dimer and monomer forms were present in solution, as revealed by glycerol gradient 

centrifugation experiments. The molecular weight relative to such fractions was confirmed by 

protein markers calibrating through the same assay (BSA (66 kDa) localized around fraction 23, 

Alcohol dehydrogenase (140 kDa) around fraction 18, and beta-Amylase (200 kDa) around 

fraction 15.  
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Figure 4.3. Ultracentrifugation assay showing the presence of both dimers and monomers in 

gp16 ATPase rings. One peak of eGFP-gp16 R146A (A) and two peaks of eGFP-gp16 wild-type 

(B) were shown after parallel ultracentrifugation in 15-35% glycerol gradient, indicating that both 

monomers and dimers were formed in gp16 wild-type, while dimer formation is interrupted by the 

mutation of arginine finger. (C) The isolated gp16 dimers did not show any viral assembly activity, 

supporting the previous finding that the addition of fresh gp16 monomers is required for re-

initiating DNA packaging intermediates. (D-F) Ultracentrifugation fractions of protein markers 

including BSA (66 kDa), Alcohol dehydrogenase (140 kDa), and beta-amylase (200 kDa) are 

shown, with their peak locations around fractions 23, 18 and 15, respectively, to mark the 

separation of the monomer and dimer of gp16 ATPase. 
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Figure 4.4. Inter-subunit interaction of gp16 arginine mutant with other gp16s. (A-C) EMSA 

showing the interaction of gp16 arginine finger mutant with (A) gp16 wild-type, (B) gp16 Walker 

A mutants, and (C) arginine finger mutants. Interactions between gp16 arginine finger mutants 

with gp16 wild-type or gp16 Walker A mutants are demonstrated by the band shift of both ATPase 

and DNA in the gel, while no obvious band shifts were observed when arginine finger mutant 

ATPases were mixed together. (D-E) Binomial distribution assay to show the blockage ot ATPase 

arginine finger mutant on motor packaging activity. Different ratios of buffer (D) or eGFP-gp16 

arginine finger mutants (E) were mixed with wild-type gp16 ATPase for the in vitro virion 

assembly activity assay.  
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Figure 4.5. Prediction and comparison of gp16 structure. (A) Structural comparison 

between the crystal structure of FtsK monomer (pdb ID: 2IUU, cyan), and gp16 ATPase model 

(pink). The arginine finger is highlighted as a sphere. (B) Comparison of the predicted gp16 

hexamer and FtsK hexamer. The ATPase gp16 hexamer structure was constructed using the 

predicted monomer structure in (A) and the P. aeruginosa FtsK (pdb ID: 2IUU) as templates (134). 

VMD was used to render the image of the structure (218). The ATP 

domains are highlighted as spheres: residue 27 (green, the conserved Walker ATP domain) and 

residue 146 (red, the arginine finger). The interaction of arginine finger with the upstream adjacent 

subunit is evidenced by the proximity of the Red and Green spheres in both the constructed 

structure of gp16 hexamer and FtsK hexamer crystal structure.  
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We thus proceeded to test the packaging activity of the different fractions of gp16 ATPase 

recovered from the gradient. Interestingly it has been observed that DNA packaging activity was 

retained with the fractions containing monomers, while fractions containing only dimers displayed 

no DNA packaging activity (Fig. 4.3C). These results agree with the finding that the addition of 

fresh gp16 monomer to the DNA-packaging intermediates is required for re-initiating motor DNA 

packaging activity and the conversion of the intermediates into infectious viruses (88). 

ATP binding resulted in the change of conformation and entropic landscape of gp16.  

ASCE proteins undergo a cycle of conformational changes during ATP binding and 

hydrolysis with basically 2 major states: high or low affinity for the DNA substrate. In recent 

publications (11,33,83,100) we proposed a similar model for gp16, in which binding to ATP 

exerted an effect on the conformational state of the protein that predisposes binding to DNA (high 

affinity). Conversely, ADP would promote another conformational state, in which DNA binding 

is not favorable. This notion together with the observation that arginine finger has a role in 

regulating both the conformational state of gp16 and its interaction with the adjacent subunit 

prompted us to question whether the effect of ATP binding on gp16 was able to modify not only 

the conformation of the DNA binding portion of the protein, but also the structural characteristics 

of gp16 altogether. We thus tested if ATP binding was able to alter the shape of gp16 by partial 

proteolysis treatment and tryptophan intrinsic fluorescence assay (Fig. 4.6A-B). Interestingly, both 

assays indicated a conformational change in the gp16-ATP complex. Moreover, as visible from 

the partial proteolysis test, the protection from proteolysis is indicative of a larger population of 

gp16 with constrained conformation before ATP binding. 

An electrophoretic mobility shift assay was also employed to study the interaction between 

ATPase and dsDNA in the presence of γ-S-ATP, a non-hydrolyzable ATP analog. Stronger 
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binding of gp16 to dsDNA was observed when gp16 was incubated with γ-S-ATP (Fig. 4.6C), 

suggesting that the gp16/dsDNA complex is stabilized through addition of the non-hydrolyzable 

ATP substrate.  

Hydrolysis of ATP transformed the ATPase into a second conformation with low affinity for 

dsDNA, thus pushing the dsDNA toward an adjacent ATPase subunit.  

 Consequent to the first structural change, it was also observed that the binding of ATP/gp16 

complex to DNA resulted in ATP hydrolysis and also the passage to a second conformational 

change with a low DNA-affinity configuration (6,9,184). This explains the finding in 1987 that 

the phi29 DNA packaging protein gp16 is a DNA dependent ATPase (6). Such a state resulted in 

the release of dsDNA for its concomitant transfer to the adjacent subunit. The conclusion was also 

supported by the finding that the addition of normal ATP promoted the release of dsDNA from the 

gp16-γ-s-ATP-dsDNA complex (Fig. 4.6D).  

DISCUSSION 

Phi29 genomic DNA packaging involves multi-components including a 12-subunit 

connector, a hexameric pRNA ring(7,49), and an ASCE ATPase gp16 hexamer. Great interest has 

arisen about this packaging system for its intriguing mechanism of action and for its useful 

applications in nanotechnology (6,59,70,191,228-231). It has been demonstrated that pRNA works 

as a point of connection between the ATPase and the connector (8), and that the hexameric ATPase 

(33,83) provides the pushing force for the packaging of genomic DNA, acting in coordination with 

the connector that acts as a one-way valve (11,29,232). Nanobiomotors have been previously 

classified into two main categories: linear and rotational motors. These two categories have been 

clearly documented in single molecule imaging and X-ray crystallography (108-113). 
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Figure 4.6. Demonstration of gp16 conformational changes and entropic landscape alteration 

upon ATP binding and hydrolysis. (A) Trypsin probing showed that the ATPase digested band 

is decreased with a reduced amount of ATP added into gp16 ATPase samples. (B) Intrinsic 

tryptophan fluorescent assay showing the signal changes of ATPase upon adding different 

concentrations of ATP. (C) EMSA showing that gp16 ATPase binds to ATP and undergoes a 

conformational change that has a high affinity for DNA, and ATP hydrolysis triggers a second 

conformational change of gp16 ATPase with a low affinity for DNA. (D) Increasing DNA is 

released from gp16 ATPase/DNA/ATP complex upon the addition of increased amount of ATP 

that can be hydrolyzed by the gp16 ATPase.  
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Figure 4.7. Asymmetrical structure of various ATPase hexamers. Structure illustrations of V1-

ATPase  (adapted from (89) with permission from Nature Publishing Group), TRIP13 (adapted 

and modified from (233) with permission from eLife Sciences Publications, licensed under CC 

BY-NC-SA), ClpX (adapted and modified from (234) with permission from Nature Publishing 

Group), MCM helicase (adapted from (90) with permission from National Academy of Sciences), 

and F1-ATPase (235) are shown as representatives of asymmetrical hexamers. PDB ID: V1-

ATPase, 3VR5; TRIP13, 4XGU; F1-ATPase; ClpX, 4I81. EM ID: ssoMCM, EMD-5429.  

  

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
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Recently, it has been discovered that the phi29 dsDNA packaging motor uses a revolving 

mechanism that does not require rotation or coiling of the dsDNA (32,33,83,102). The finding of 

the revolving mechanism establishes a third class of biomotors, resolving many puzzles and 

debates throughout the history of painstaking studies on the motor (102,103). 

The ATPase hexameric ring exerts a force, pushing the dsDNA in a sequential manner to 

advance through the dodecamer channel which acts as a one-way valve (29,57,84,102,103). The 

interest in the sequential revolving mechanism lies in the fact that it elegantly integrates all the 

known functional and structural information about the packaging core (the ATPase, pRNA and 

connector). Moreover, it offers solutions for many questions that arise when investigating the DNA 

packaging phenomenon (i.e. coordination between energy consumption and DNA packaging, 

ability to translocate a long strain of dsDNA without coiling or tangling). However, in order to 

have a sequential mechanism (which has been proposed for many proteins belonging to the family 

of AAA+/ASCE) (216,236,237), several conditions need to be fulfilled. The most important are: 

A) Only 1 or 2 subunits of the oligomer are able to bind the substrate with the same affinity 

exhibited in the entire hexamer. B) Both ATPase activity and translocation activity need to 

demonstrate negative cooperativity when one subunit is able to bind ATP; it is not able to 

hydrolyze the nucleotide (as in the case of the Walker B mutation). C) Only the ATP bound state 

of the protein is the unique state that efficiently binds to DNA.  

We demonstrated that this is indeed the case for the phi29 motor ATPase (33,100). One 

important question that then arises with the demonstration of the sequential mechanism is, how 

can the different subunits of the ATPase sense the ATP binding/DNA binding state of others? In 

the present work, we addressed this question by identifying the arginine finger motifs of the 

ATPase gp16 by sequence alignment and proved that arginine finger is an essential motif that 
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participates in the formation of the ATP binding pocket by examining the behavior of gp16 mutants 

with the Arginine finger removed. The gp16 mutated in Arginine finger was unable to package 

DNA, to hydrolyze ATP, or to bind to DNA. The profile of gp16 in ultracentrifugation indicated 

the presence of a mixture of monomeric and dimeric forms. Mutation of the Arginine finger 

eliminated the capacity of gp16 to assemble into dimeric forms. Arginine finger motifs were thus 

shown to link two subunits to each other since the arginine motif of one subunit participates in the 

formation of the ATP binding site of the next subunit (Fig. 4.7). The importance of the dimer is 

moreover evidenced as shown by DNA packaging assay, in which the reconstituted hexamer of 

gp16 can efficiently pack DNA inside the procapsid only when ultracentrifuge fractions containing 

both dimeric and monomeric gp16 are mixed together (data not shown) (88).  

In the sequential action of gp16, we proposed that one subunit of the hexamer binds to the 

DNA, subsequently hydrolyzing ATP to perform a translocation of a certain number of base pairs 

of DNA (6,122). The DNA is then passed to the subsequent subunit, and the process is repeated. 

It is intriguing to notice that the position and function of ATPase offers the possibility of carrying 

the information of ATP/DNA binding from one ATPase subunit to another, with a cooperative 

behavior of gp16 seen in the case of other mutants (Walker B mutations) (33). 

The sequential action mechanism of phi29 ATPase is essential for optimal translocation 

efficiency. This mechanism integrates well with our overall model of the revolving motor and the 

“push through one way valve” model (11,33). Without the coordination during the energy 

production of gp16, the cycles of binding and release of DNA would create futile cycles of ATP 

hydrolysis, inhibiting the unidirectional translocation process (32,33,100). Arginine fingers thus 

act as an integrator of information for the entire process of DNA packaging. Years of evolution 
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have created an efficient biomotor, one that can be used in the future for applications in 

nanotechnology (203,228). 

 Furthermore, the conclusion of asymmetrical hexameric coordination was supported by 

structural computation, X-ray diffraction and Cryo-EM imaging of other hexameric ATPase 

systems (Fig. 4.7) (89,233-235). These results could provide some clues for why the asymmetrical 

hexameric ATPase of gp16 of phi29 and gp17 of T4 was previously interpreted as having a 

pentameric configuration by cryo-EM. Since the two adjacent subunits of the ATPase could 

interact with each other and form a closer dimer configuration, this dimer will appear as a 

monomeric subunit different from the others, and the hexameric ring is asymmetrical (Fig. 4.7).  
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Chapter 5: Construction and Motion Direction Control of Bio-Nanomotor 

This chapter was reproduced (with some modifications) with permission from Z. Zhao, H. Zhang, 

D. Shu, C. Montemagno, J. Li and P. Guo. “Construction of Asymmetrical Hexameric Biomimetic 

Motors with Continuous Single-Directional Motion by Sequential Coordination”. Small. In press 

(2016).  
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ABSTRACT 

 The significance of bionanomotors in nanotechnology is analogous to mechanical motors 

in daily life. Here we report the principle and approach for designing and constructing biomimetic 

nanomotors with continuous single-directional motion. These bionanomotors are composed of a 

dodecameric protein channel, a six-pRNA ring, and an ATPase hexamer. Based on recent 

elucidations of the one-way revolving mechanisms of phi29 DNA packaging motor, various RNA 

and protein sequences were designed and tested by single-molecule imaging and biochemical 

assays, resulting in the production of active motors. Single-directional motion was attributed to 

three operation elements: 1) An ATPase hexamer containing ATP-interacting domains for 

alternative DNA binding and pushing regulated by the sequential acting arginine finger that 

bridges two adjacent ATPase subunits into a non-covalent dimer, resulting in an asymmetrical 

hexameric complex with one dimer and four monomers; 2) a dsDNA translocation channel as a 

one-way valve; 3) a hexameric pRNA ring geared with left-/right-handed junctions. Motion 

assessments revealed that only one inactive subunit of pRNA or ATPase was sufficient to 

completely block the motion thus defined as K=1, confirming sequential action for single direction 

motion based on the principle of binomial distribution and Yang Hui’s Triangle. 
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INTRODUCTION 

The ubiquitous intriguing nanomachines in living organisms have inspired numerous biomimetic 

strategies and human achievements. Biological macromolecules of DNA, RNA and proteins are 

essential and powerful chemical building blocks of all organisms based on their intrinsically 

defined features at the nanometer scale. (66,238) Construction of self-propelling nanomotors have 

been a popular subject in the field of nanotechnology. (239-260) The emerging field of 

nanotechnology has led to the advancement of biomaterials engineering and synthetic biology. 

(261-263) Although the construction of biological nanomotors has been extensively studied, 

(5,128,196,199) the key step to make these bionanomotors applicable in nanodevices and 

nanomachines is to functionalize these motors and control their continuous single-directional 

motion. Here we report one such principle and approach by designing and constructing an artificial 

biomimetic phi29 dsDNA packaging motor that can move continuously in one direction. This 

nanomachine is composed of a 3.6 nm dodecameric protein channel and six protein ATPase that 

are geared by six pRNA (packaging RNA) and driven by ATP (Fig. 5.1). (5)  

The motion direction of the dsDNA was controlled by ATPase, connector and pRNA 

systems. In the ASCE (Additional Strand Catalytic E) ATPases superfamily, one well-conserved 

ATP domain contains one arginine finger motif along with the Walker A and Walker B 

motifs.(137,210,211,264) Located in proximity to the γ-phosphate of the bound ATP in the 

adjacent ATPase subunit,(95,211-213) arginine finger has been reported to be involved in the 

formation of the ATP activity pocket.(87,95,137,214-216) Elucidation of the principle of how 

arginine finger mediates the sequential action of ATPase has shed light on the realization of 

controlling motor motion direction. 
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Figure 5.1. Illustration of the components of phi29 motor. (A) Side view and (B) Top view of 

the phi29 dsDNA packaging motor composed of the three co-axial rings of the dodecameric 

connector, hexameric pRNA ring, and hexameric ATPase ring.  
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Furthermore, the connector channel as a one-way valve for DNA advancement is another key 

factor for the control of the uni-directional movement of the biomotor. With the contribution of all 

three coaxial rings in the motor, the constructed motor, though tiny, is considered as one of the 

most powerful biological motor ever constructed to date. 

MATERIALS AND METHODS 

Cloning, mutagenesis and protein purification 

The engineering of eGFP-gp16 and the purification of the gp16 fusion protein have been 

reported previously. (197) The eGFP-gp16 mutant R146A and mCherry-gp16 mutant R146A were 

constructed by introducing mutations in the gp16 gene (Keyclone Technologies).  

Glycerol gradient ultracentrifugation 

50 μl of eGFP-gp16 (500 μg/ml) were dropped onto 5 ml linear 15-35% glycerol gradients 

in TMS buffer. After centrifuging at 35000 rpm in a SW55 rotor at 4 °C for 22 hr, the gradients 

were collected into 31 fractions from bottom to top and measured using plate reader under 488 

excitation before being applied to in vitro assembly assay.  

Electrophoretic Mobility Shift Assay (EMSA) 

Fluorescently tagged protein that facilitates detection and purification was shown to 

possess similar assembly and packaging activity as compared to wildtype.(100,197) The EMSA 

method has been described previously.(33,83) The gp16 mutants or wild-type were mixed with 

33bp Cy5-dsDNA in the presence or absence of ATP and γ-S-ATP. Samples were incubated at 

ambient temperature for 20 min and then loaded onto a 1% agarose gel (44.5 mM Tris, 44.5 mM 

boric acid) and electrophoresed at 4°C for around 1 hr at 8 V/cm. The eGFP-gp16, mCherry-gp16, 
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and Cy5-DNA samples were analyzed by a fluorescent LightTools Whole Body Imager using 488 

nm, 540 nm, and 635 nm excitation wavelengths for GFP, mCherry, and Cy5, respectively.  

CE experiments to determine ratio of gp16 to bound dsDNA 

CE (capillary electrophoresis) experiments were performed on a Beckman MDQ system 

equipped with double fluorescence detectors (at 488 nm and 635 nm excitation wavelengths). A 

bare borosilicate capillary with a total length of 60 cm and a 50 μm inner diameter were used. 

Assay conditions contained separation buffer of 50 mM Tris–HCl, 100 mM sodium borate at pH 

8.00, 5 mM MgCl2, 10% PEG 8000 (w/v), 0.5% acetone (v/v), 3 μM eGFP-gp16 monomer, and 

variable amounts of ATP and DNA. 

In vitro assembly assay 

Purified in vitro components, including prohead-connector, pRNA, genome DNA, 

ATPase, and tail proteins were mixed and subjected to virion assembly assay as previously 

described.(196) Briefly, newly assembled infectious virions were inoculated to Bacillus bacteria 

and plated. Activity was expressed as the number of plaques formed per volume of sample 

(pfu/mL). Different fractions of samples were isolated from the glycerol gradient and added into 

the system for their activity test.  

Observation of gp16 motion 

Double-stranded lambda DNA (48 kbp) was tethered between two polylysine coated 4 μm 

silica beads. (265) The dsDNA was bound between beads by back-and-forth infusion of DNA over 

the beads for 10 min; binding occurred as a result of charge-charge interactions. The back and 

forth motion of DNA over the polylysine beads stretched the DNA taut and lifted the chain above 

the surface by the 4 μm silica beads as visualized under the microscope. The incident angle of the 
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excitation beam in objective-type TIRF (total internal reflection fluorescence) was adjusted to a 

sub-critical angle in order to image the samples a few microns above the surface, yielding a low 

fluorescence background. (265) To-Pro-3 was used to confirm the formation of the DNA 

tightropes. After the DNA tightrope was formed, a 30 μL mixture with a final concentration of 1 

nM Cy3-gp16 with 100 nM unlabeled gp16 in buffer B (25 mM Tris, pH 6.1, 25 mM NaCl, 0.25 

mM MgCl2) was infused into the sample chamber for binding to the stretched DNA. After 30 min 

incubation, 30 μL of a solution containing anti-photobleaching reagents (53) was infused into the 

chamber in order to prevent photobleaching of less photostable fluorophores and to detect 

binding. Movies were taken after the chamber was washed with buffer C (25 mM Tris, pH 8, 25 

mM NaCl, 0.25 mM MgCl2). A comparison was made of washings with buffer C, with and without 

20 mM ATP. Since the DNA has been fixed by charge interactions and the protein fixed by binding 

affinity to the tethered DNA, washing does not remove pertinent material. Sequential images were 

acquired with a 0.2 s exposure time at an interval of 0.22 s, with a laser of 532 nm for excitation. 

The movies were taken for about 8 min, or until the Cy3 fluorophores lost their fluorescence due 

to photobleaching. Image J software was utilized to generate kymographs to show the 

displacement of the Cy3-gp16 spots along the DNA chains. 

Direct observation of DNA translocation  

The stalled packaging intermediates containing biotinylated DNA were prepared by using 

non-hydrolyzable γ-S-ATP. (88) The intermediates were then immobilized through IgG prohead 

antibody to perfusion chambers built from glass slides and coverslips. The fluorescent streptavidin 

microspheres (0.56 μm) were bound to the protruding, biotinylated DNA end of the intermediates. 

After restarting the packaging reaction by adding gp16 and ATP, (88) an individual DNA-

packaging event was observed. Epi-illumination was used, and sequential images were recorded. 
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RESULTS AND DISCUSSION 

Screening of pRNA sequences to control motor motion  

pRNA is an essential component of the motor.(7) Six pRNA monomers form a hexameric ring 

through interactions between four bases in every two adjacent pRNA loops.(49) A minimum 

length of 117-nucleotide in each pRNA is required. Each pRNA contains five single-base bulges, 

one three-base bulge, one bifurcation bulge, one bulge loop and two stem loops (Fig. 5.2). To 

select the RNA sequences with activity to gear the motor, 18 different hexamer pRNAs were 

constructed following the method reported previously.(45,49) All these mutant pRNAs were 

competent in binding to the procapsid with an efficiency equal to that of the wild type pRNA. 

However, incorporation of only one mutant, either pRNAdCCA (with CCA bulge deletion, Fig. 

5.2, red box) or pRNAtrun (truncated at the 5'- and 3- ends, Fig. 5.2, blue box), into the hexameric 

loop completely obliterated the motor function in DNA packaging activity. The fact that one 

inactive pRNA is sufficient to block the function of the entire motor has been defined as K = 1. 

(230,231,266) In binomial distribution, K =1 for the hexametric RNA ring implies that six RNA 

molecules worked sequentially. (84,100,266) 

Screening of connector sequences to control motor motion 

The channel of the phi29 motor functions as a dodecameric ring and serves as a pathway 

for the dsDNA to enter the procapsid during the packaging process. The protein subunit of the 

connector was modified to screen for active mutants for motor construction. This was achieved by 

adjusting the inner loop of the connector protein, or by applying terminus extensions or truncations 

to the connector protein. The inner loops of the connector are also involved in the one-way traffic 

of DNA translocation during motor packaging (Fig. 5.3A, left). (31,32) A similar internal loop is  
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Figure 5.2. Impact of different pRNA mutations on motor activity. (A) Sequence of pRNA 

monomer with CCA bulge (upper panel) or 5’/3’ end (lower panel) highlighted in the box. The 

illustrations of the corresponding 3D structures are shown. The bars symbolize the end-truncation, 

and the empty squares symbolize the CCA-deletion. (B) Viral assembly activity of pRNA 

hexamers with different designs. Each color symbolizes one purified dimer or trimer. The 

uppercase D and T symbolize the normal dimer and trimer, respectively. The lower case d and t 

symbolize the mutant dimer and trimer, respectively. 
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also found in the portal protein of SPP1 (Fig. 5.3A, right). Single-pore conductance assay has 

been utilized to test the performance of the phi29 connector channels. With the channel embedded 

and voltage applied across the membrane, the translocation of the negatively charged DNA 

through the channel can be detected. With the wild-type connector, DNA translocation events 

occurred only at negative potential when the channel entrance faced the negative electrode, and 

vice versa. (29,32) In contrast, DNA translocated through the channel from both directions when 

using the loop-deleted connector. (32,34) The results strongly support that the internal loops of the 

connector are one of the key factor for the one-way traffic of dsDNA, (32,34) and that the direction 

of DNA translocation through the motor can be controlled by tuning the internal loop of the 

channel protein. Fusion of a small peptide to the N-terminus or C-terminus of gp10 generated 

different gp10 extensions named gp10-Nhis, gp10-Nstrephis, and gp10-Cstrep, with the tobacco 

etch virus (TEV) cleavage site incorporated. (267) The mutant procapsid with N-terminal 

extensions (gp10-Nex) demonstrated a 100 fold reduction in virion assembly compared to the wild-

type procapsid (Fig. 5.3B, C). Removal of the extended sequence by TEV cleavage restored the 

phi29 virion assembly activity. On the other hand, the procapsids with C-terminal extensions 

(gp10-Cex) was slightly impaired in assembly activity (10-fold drop) (Fig. 5.3B, C). gp10-Ntrun 

with N-terminal residues 1-14 truncation and C-terminal strep tag extension was generated. To 

further define the sequence requirement for building the dodecameric architecture, residues 1-37 

or 1-48 of gp10 were removed and tested. Residues 11-37 constitute one entire α-helix running 

from the narrow end to the wide end of the connector, followed by residues 38-48 which form a 

β-sheet at the relaxed wider end of the connector. It was obvious that this α-helix was intimately 

related to connector assembly. Its removal disrupted the balance and self-interaction of gp10 

subunits in a connector, or worse, impaired gp10 protein folding which led to insoluble aggregates. 
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Figure 5.3. Impact of different connector mutations on motor activity. (A) Illustration of the 

internal loop in the phi29 portal protein (left) and SPP1 portal protein (right), showing their 

function as a ratchet for the one-way translocation of the DNA during genome packaging. (B) 

Illustration of procapsids with side view of the mutant connectors based on PDB: 1h5w. (C) 

Comparison of procapsid activity with equal amount of procapsid protein. 
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In addition, truncation of the flexible region of C-terminal 25 residues generated procapsid-Ctrun 

with normal morphology but with its virion assembly completely blocked. We speculate that the 

C-terminal region plays an important role inside the procapsid to facilitate DNA packaging.  

Screening of the motor ATPase with different sequences of ATPase pockets to control motor 

motion 

Previously, it has been reported that the phi29 DNA packaging motor adapts sequential 

action for its coordination among subunits. (33,84) More recently, this coordination has been 

shown to be mediated by the arginine finger motif in the gp16 ATPase of phi29. (87) Phi29 motor 

ATPase gp16 shares the common ATP activity domain typical of all members of the ASCE 

superfamily, (91,99) including the very well conserved motifs responsible for ATP binding and 

ATP hydrolysis,(207) which have been previously identified as Walker A (6) and Walker B 

motifs,(83) respectively. Sequence alignment studies have further revealed a common arginine 

residue.(95,134,219-221) The alteration in arginine 146 severely impaired ATP hydrolysis activity 

and motor DNA binding activity, as confirmed by EMSA (Electrophoresis Mobility Shift Assay) 

and capillary electrophoresis assay, showing the approximately 4-fold reduction of the binding 

affinity of gp16 arginine finger mutant with dsDNA compared to that of wild-type gp16 (Fig. 5.4). 

The presence of a non-covalent dimer of the ATPase gp16 has been shown by different 

approaches including electrophoresis mobility shift assay (EMSA), glycerol gradient 

ultracentrifugation, and native gel electrophoresis (Fig. 5.4).(83) Dimer formation requires that at 

least one of the adjacent subunits can provide an intact arginine for the inter-subunit interaction, 

since dimers were produced when the arginine-free ATPase was mixed with the wild type with an 

intact arginine, but not with the arginine-free ATPase (Fig. 5.4). Furthermore, it was shown that 

one single inactive subunit of arginine 146-free ATPase was able to completely, other than 
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partially, block the function of the entire motor, (87) that is, K = 1 in binomial distribution as 

described above, which implies that six ATPase molecules worked sequentially. (230,231,266) 

The hexameric structure of gp16 ATPase has been constructed with P. aeruginosa FtsK 

(PDB ID: 2IUU) as a template(134) based on its predicted monomer structure using I-TASSER 

(268) software. The core structure of both N-domain of gp16 and beta-domain of FtsK with the 

length of 127 residues were aligned. And the RMSD of backbone carbon atoms in these core 

structure were calculated. Considering of the size of these two proteins and the protein structure 

after alignment, an RMSD of 3Å can effectively reflect that gp16’s N-domain adopts same fold as 

FtsK’s beta-domain. (269,270) The model showed that the position of arginine 146 in one ATPase 

subunit outstretches to the ATPase domain in a neighboring subunit (Fig. 5.5), which agrees with 

our data showing the cooperative behavior in the hexameric ATPase ring. As demonstrated above, 

it is concluded that arginine finger serves as a bridge between single subunits to form non-covalent 

dimers.  

ATP binding and hydrolysis triggers conformational entropy changes of ATPase with high or 

low DNA binding affinity 

ASCE proteins undergo a cycle of conformational changes upon ATP binding and 

hydrolysis with two major states: high or low affinity for the substrate.(271) In recent 

publications,(11,33,83,100) a similar model of sequential action for gp16 has been reported. Partial 

proteolysis treatment and tryptophan intrinsic fluorescence assays indicated a conformational 

change in the gp16-ATP complex, more specifically, a more constrained and less conformational 

entropy for gp16 before ATP binding. EMSA, capillary electrophoresis assays, and FRET assays 

showed stronger binding of gp16 to dsDNA when incubated with γ-S-ATP (Fig. 5.4), suggesting  
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Figure 5.4. ATP binding and hydrolysis activity assay of gp16 arginine finger mutant and 

inter-subunit interactions of ATPase. (A) Capillary Electrophoresis assay for the binding 

affinity test of different gp16 with dsDNA. (B) Interactions between gp16 arginine finger mutants 

with gp16 wild-type are shown by the band shift of both ATPase and DNA in the gel. (C) Both 

dimers and monomers exist in gp16 ATPase rings. In 15%-35% glycerol gradient, one peak for 

eGFP-gp16 R146A (a) and two peaks for eGFP-gp16 wild-type (b) were observed after parallel 

ultracentrifugation, indicating that dimer formation is interrupted by the mutation of arginine 

finger. The fractions derived from the gradient have been applied to EMSA (c) and in vitro 

assembly activity assay, confirming the formation of dimers mediated by the arginine finger. The 

isolated gp16 dimer fraction (Fr. 18) showed significantly reduced activity compared to the 

monomers (Fr. 22) (d). 
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that the gp16/dsDNA complex is stabilized upon addition of the non-hydrolysable ATP substrate. 

The isolated gp16 dimer fraction (Fr. 18) showed significantly reduced activity compared to the 

monomers (Fr. 22) (d), supporting the previous finding that the addition of fresh gp16 monomer 

is required for re-initiating DNA packaging intermediates. (88) 

 As a dsDNA-dependent ATPase, (6,9,184) binding of the gp16/ATP complex to dsDNA 

resulted in ATP hydrolysis, leading to its second round of conformational entropy change to a low 

DNA-affinity configuration, and subsequently to the release of dsDNA for its concomitant transfer 

to the adjacent downstream subunit. An increased ATP hydrolysis rate has been observed when 

the ATPase is bound to DNA, indicating a global structural alternation in the protein upon DNA 

binding/release.(100) Taken together, a mechanism of ATPase for dsDNA translocation is 

proposed (Fig. 5.6) for constructions of active motors, showing that the energy consumption status 

corresponds to the inter-subunit communication primed by the arginine finger. The resulting 

asymmetrical hexameric intermediate was supported by many other hexameric ATPase systems 

based on structural computation, X-ray diffraction and Cryo-EM imaging (Fig. 5.6).(89,233-235) 

The results provide clues as to why the hexameric ATPase gp16 of phi29 and gp17 of T4 were 

previously interpreted as having a pentameric configuration by cryo-EM.(58,141)  

Single-molecule real-time imaging of the biological active motor with continuous motion 

 The motion of the constructed artificial ATPase motor without the dodecameric channel and 

the RNA ring was confirmed by single-molecule fluorescence imaging (Fig. 5.7). Purified ATPase 

was labeled with Cy3 fluorescent dye and incubated with DNA, which is tethered between two 

polylysine beads. The motion of fluorescent spots representing the ATPase complexes was 

observed along the DNA chains through real-time recording, which confirmed the translocating 

activity of ATPase along dsDNA. Next, the successful construction of the artificial motor  
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Figure 5.5. Illustration of inter-subunit interaction inside gp16 ATPase. Gp16 ATPase 

hexameric ring was constructed (left panel), and the interaction between two adjacent subunits 

(right panel) has been shown with the arginine finger highlighted in the red sphere and Walker 

domain (represented by E119 residue in Walker B domain) highlighted in the blue sphere. The 

interaction of arginine finger with the upstream adjacent subunit is supported by the relative 

location of the related domains. 
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Figure 5.6. Asymmetrical ATPase structure caused by sequential action. (A) ATPase 

coordination with a series of conformational changes during DNA binding and ATP hydrolysis as 

regulated by the arginine finger, resulting in the asymmetrical configuration of ATPase. (B) The 

asymmetrical structures have also been found in many other biomotors, including V1-ATPase (89) 

(B) and MCM2-7 protein (EM accession:EMD-5429) (90) (C).  
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Figure 5.7. Single-molecule detection of the continuous ATPase translocation on dsDNA. (A) 

The gp16 complex labeled with Cy3 (33) moved along the dsDNA chain tethered between two 

polylysine coated beads. (B) The motion of the Cy3-gp16 complex was analyzed by Image J and 

(C) a kymograph was generated to demonstrate the motion of the ATPase. 
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Figure 5.8. Single-molecule detection of continuous DNA translocation in the phi29 

biomotor. Comparison of the trajectories and travel distance of microspheres attached to the end 

of DNA in two different packaging intermediates Beads I (A) and Beads II (B). Beads I showed 

random Brownian motion. Bead II also showed Brownian motion at the beginning, however, such 

motion ceased after around 150 seconds, indicating the end of the translocation event. The stalling 

of the dsDNA serves as evidence of uni-directional translocation. (C) Sequential images of a 

fluorescent microsphere attached to DNA, corresponding to when Beads II tends to stop as 

indicated in the figure.  

  



102 

 

containing both dodecameric ring and RNA hexamer to drive dsDNA was tested by fluorescence 

imaging in real time. DNA translocation was recorded through the biomotor constructed with all 

active motor components. The functional motor was stalled using non-hydrolysable γ-S-ATP, 

isolated (53,88) and then attached to a slide. The distal end of the dsDNA was labeled with a biotin 

moiety and attached to a fluorescent streptavidin-coated microsphere. After addition of ATP, the 

continuous motion of the motor was resumed and observed by real-time fluorescence microscopy 

through epi-illumination (Fig. 5.8).  

 Analysis of the motion in x, y, and z dimensions showed that the swing distance of the 

microsphere was reduced as the motion process was close to the end of packaging. As a control, 

the microsphere exhibited a mainly linear and static Brownian motion when the stalled motor was 

not restarted, indicating that the constructed motor was functional in continuous DNA 

translocation with a one-way direction (Fig. 5.8). Single directional motion of the motor was also 

detected in real time using a horizontal setup with biomotors assembled in the procapsids, (128) 

which confirmed the successful construction of the artificial motor with the control of motion 

direction. 

CONCLUSIONS 

Based on the one-way revolving mechanism of the phi29 dsDNA packaging motor, we have 

successfully constructed phi29 biomimetic nanomotors with altered and modified pRNA, ATPase 

and protein channel with single-directional motion. Arginine finger bridges two adjacent ATPase 

subunits to form a non-covalent dimer, resulting in an asymmetrical hexameric complex. Single 

direction motion of the dsDNA was controlled by three sets of operation elements: 1) the 

asymmetrical hexameric ATPase containing one dimeric and four monomeric subunits that hold 
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an ATP-interacting domain to regulate alternative DNA binding and also push an arginine finger 

to control the sequential action; 2) the dsDNA translocation channel that serves as a one-way valve 

to ensure single direction advancement and to prevent the reversal of the dsDNA; 3) the hexameric 

pRNA ring geared with their left and right-hand loops. Assessment of the resulting constructs 

revealed that one inactive subunit of pRNA or ATPase is sufficient to completely, other than 

partially, block the function of the entire motor. The finding of K = 1 implies sequential action 

with single directional motion, based on the criterion of binomial distribution and Yang Hui’s 

Triangle. 
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Chapter 6: Future Direction of DNA Packaging Motors 

The phi29 DNA-packaging nanomotor (7) is a biomolecular motor, which can package its 

genome into the procapsid through revolving with the energy from the binding and hydrolysis of 

ATP. It is one of the strongest biological motors known by far, capable of generating force up to 

57-110 pN (4). In addition, it is the most efficient in vitro DNA packaging system, with up to 90% 

of the genomic DNA being packaged into its procapsid. All motor components have been 

constructed to be viable, visible outside native environment for stability and detection. Viral 

components are a new generation of nano-scale building blocks that are robust, have the ability to 

self-assemble and operate outside their natural environment. The host of Phi29 bacteriophage, 

Bacillus Subtilis, is not considered pathogenic or toxic, and is not a disease causing agent. Being 

a nonpathogenic virus, Phi29 bacteriophage has a great potential to serve as a gene delivery vector. 

The re-engineering of the bio-nanomotors for therapeutics loading and delivery, and the 

development of the controls will be highly useful towards the applications and operations of the 

motors.  

As stated in the previous chapters, the motor is composed of a dodecameric connector at 

the vertex of the procapsid, geared by a hexameric pRNA ring (7) which encircles the N-terminus 

of the connector (55,272,273) , and a hexameric ring of gp16 which functions as an ATPase to 

drive the motor (6,9). To fully realize the potential of the bio-nanomotors, the motor components 

should be entirely understood. We have exploited nature’s ingenious design of the Phi29 DNA 

packaging motor (59,139). For example, the connector has been successfully inserted into a lipid 

bilayer for single-molecule sensing of chemical and biopolymer, and potential DNA 

sequencing(28,29,139,228,229). Furthermore, the pRNA three-way junction motif has been used 

as a basis for design of ultrastable RNA nanoparticles as a therapeutic delivery device (59,70). We 
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may now move our steps further to use our extensive understanding of the phage and it’s 

mechanism of packaging (100) to design an artificial motor with packaged therapeutics. The non-

specificity of the ATPase of Phi29 allows the packaging of foreign substrates to high doses. The 

Phi29 bacteriophage has large packaging capacity with the phage coat serving as a protection from 

degradation. The phage particle can be incorporated with different functionalities and target the 

antigen presenting cells. The engineered motor may be used for loading and pumping therapeutic 

molecules into specifically targeted cells. Controlled packaging, external targeting moieties, and a 

multivalent nature are desired for targeted drug delivery, such a functional motor creates great 

opportunities to advance the field of nanotechnology and biomedicine. 
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