

University of Kentucky UKnowledge

Ophthalmology and Visual Science Faculty Patents

Ophthalmology and Visual Science

10-11-2016

Methods of Inhibiting Alu RNA and Therapeutic Uses Thereof

Jayakrishna Ambati University of Kentucky, jayakrishna.ambati@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/ophthalmology_patents

Part of the Ophthalmology Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Ambati, Jayakrishna, "Methods of Inhibiting Alu RNA and Therapeutic Uses Thereof" (2016). *Ophthalmology and Visual Science Faculty Patents*. 22. https://uknowledge.uky.edu/ophthalmology_patents/22

This Patent is brought to you for free and open access by the Ophthalmology and Visual Science at UKnowledge. It has been accepted for inclusion in Ophthalmology and Visual Science Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US009464289B2

(12) United States Patent

Ambati

(54) METHODS OF INHIBITING ALU RNA AND THERAPEUTIC USES THEREOF

- (71) Applicant: University of Kentucky Research Foundation, Lexington, KY (US)
- (72) Inventor: Jayakrishna Ambati, Lexington, KY (US)
- (73) Assignee: University of Kentucky Research Foundation, Lexington, KY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 14/323,457
- (22) Filed: Jul. 3, 2014

(65) **Prior Publication Data**

US 2014/0342357 A1 Nov. 20, 2014

Related U.S. Application Data

- (62) Division of application No. 13/701,450, filed as application No. PCT/US2011/038753 on Jun. 1, 2011, now Pat. No. 8,809,517.
- (60) Provisional application No. 61/396,747, filed on Jun. 1, 2010, provisional application No. 61/432,110, filed on Jan. 12, 2011, provisional application No. 61/432,948, filed on Jan. 14, 2011.
- (51) Int. Cl.

C12N 15/11	(2006.01)
C12N 15/113	(2010.01)
C12Q 1/68	(2006.01)
C12N 9/22	(2006.01)
G01N 33/53	(2006.01)

- (58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

FOREIGN PATENT DOCUMENTS

WO WO 0029622 A2 * 5/2000

OTHER PUBLICATIONS

Shaikh, T. H., Roy, A. M., Kim, J., Batzer, M. A. & Deininger, P. L. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J Mol Biol 271, 222-234 (1997).

Sinnett, D., Richer, C., Deragon, J. M. & Labuda, D. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-

(10) Patent No.: US 9,464,289 B2 (45) Date of Patent: *Oct. 11, 2016

transcriptional selection of master sequences. J Mol Biol 226, 689-706 (1992).

Rattner, A., Toulabi, L., Williams, J., Yu, H. & Nathans, J. The genomic response of the retinal pigment epithelium to light damage and retinal detachment. J Neurosci 28, 9880-9889 (2008).

Huang, H. et al. Identification of mouse retinal genes differentially regulated by dim and bright cyclic light rearing. Exp Eye Res 80, 727-739 (2005).

Natoli, R., Provis, J., Valter, K. & Stone, J. Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study. Mol Vis 14, 1983-1994 (2008).

Farjo, R., Peterson, W. M. & Naash, M. I. Expression profiling after retinal detachment and reattachment: a possible role for aquaporin-0. Invest Ophthalmol Vis Sci 49, 511-521 (2008).

Livesey, F. J., Furukawa, T., Steffen, M. A., Church, G. M. & Cepko, C. L. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr Biol 10, 301-310 (2000).

Gehrig, A. et al. Genome-wide expression profiling of the retinoschisin-deficient retina in early postnatal mouse development. Invest Ophthalmol Vis Sci 48, 891-900 (2007).

Hackam, A. S. et al. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 45, 2929-2942 (2004).

Punzo, C. & Cepko, C. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 48, 849-857 (2007).

Schaeferhoff, K. et al. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. Cell Mol Life Sci 67, 3173-3186 (2010).

Gelineau-van Waes, J. et al. Altered expression of the iron transporter Nramp1 (Slc11a1) during fetal development of the retinal pigment epithelium in microphthalmia-associated transcription factor Mitf(mi) and Mitf(vitiligo) mouse mutants. Exp Eye Res 86, 419-433 (2008).

Tian, J. et al. Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. Proc Nati Acad Sci U S A 102, 11846-11851 (2005). Zacks, D. N., Han, Y., Zeng, Y. & Swaroop, A. Activation of signaling pathways and stress-response genes in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 47, 1691-1695 (2006).

Chong, M. M., Rasmussen, J. P., Rudensky, A. Y. & Littman, D. R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205, 2005-2017 (2008). Iacovelli, J. et al. Generation of cre transgenic mice with postnatal RPE-specific ocular expression. Invest Ophthalmol Vis Sci, In press (2010).

(Continued)

Primary Examiner — Kate Poliakova-Georgantas (74) Attorney, Agent, or Firm — Stites & Harbison PLLC; Mandy Wilson Decker

(57) **ABSTRACT**

The presently-disclosed subject matter includes methods of identifying an Alu RNA inhibitor, and methods and compositions for inhibiting Alu RNA. Methods and compositions can be used for the treatment of geographic atrophy and other conditions of interest.

2 Claims, 25 Drawing Sheets

(56) **References Cited**

OTHER PUBLICATIONS

Yi, R. et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci U S A 106, 498-502 (2009).

Zhong, J., Peters, A. H., Lee, K. & Braun, R. E. A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet 22, 171-174 (1999).

Ambati, J. et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9, 1390-1397 (2003).

Takeda, A. et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460, 225-230 (2009).

Hahn, P. et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A 101, 13850-13855 (2004).

O'Carroll, D. et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 21, 1999-2004 (2007).

Schaefer, A. et al. Argonaute 2 in dopamine 2 receptor-expressing neurons regulates cocaine addiction. J Exp Med 207, 1843-1851 (2010).

Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21, 5864-5874 (2002).

Bennett, E. A. et al. Active Alu retrotransposons in the human genome. Genome Res 18, 1875-1883 (2008).

Hagan, C. R., Sheffield, R. F. & Rudin, C. M. Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 35, 219-220 (2003).

Misra, S., Tripathi, M. K. & Chaudhuri, G. Down-regulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages. J Biol Chem 280, 29364-29373 (2005).

Alexander, J. J. & Hauswirth, W. W. Adeno-associated viral vectors and the retina. Adv Exp Med Biol 613, 121-128 (2008).

Maan, S. et al. Rapid cDNA synthesis and sequencing techniques for the genetic study of bluetongue and other dsRNA viruses. J Virol Methods 143, 132-139 (2007). Potgieter, A. C. et al. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol 90, 1423-1432 (2009).

Kohany, O., Gentles, A. J., Hankus, L. & Jurka, J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7, 474 (2006). Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J Mol Biol 215, 403-410 (1990). Allen, T. A., Von Kaenel, S., Goodrich, J. A. & Kugel, J. F. The

SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11, 816-821 (2004). Tripathi, M. K. & Chaudhuri, G. Down-regulation of UCRP and

UBE2L6 in BRCA2 knocked-down human breast cells. Biochem Biophys Res Commun 328, 43-48 (2005).

Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19, 489-501 (2005).

Yang, P., Tyrrell, J., Han, I. & Jaffe, G. J. Expression and modulation of RPE cell membrane complement regulatory proteins. Invest Ophthalmol Vis Sci 50, 3473-3481 (2009).

Yang, Z. et al. Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359, 1456-1463 (2008).

Gu, et al., "Alu-directed transcriptional regulation of some novel miRNAs" BMC Genomics, Nov. 30, 2009, vol. 10, No. 563, Abstract and Figure 3.

NCBI GenBank Accession No. HSU67825, Aug. 1, 1997.

Moolhuijzen, et al., "The transcript repeat element: the human Alu sequence as a component of gene networks influencing cancer" Funct. Integr. Genomics, Apr. 15, 2010, vol. 10, pp. 307-319.

Hulme, et al., "Selective inhibition of Alu retrotransposition by APOBEC3G." Gene, Sep. 27, 2006, vol. 390, pp. 199-205.

Bogerd, et al., "Cellular inhibitors of long interspersed element 1 and Alu retrotransposition." Proc. Natl. Acad. Sci US, Jun. 6, 2006, vol. 103, No. 23, pp. 8780-8785.

Haneko, et al., "DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration." Nature, Mar. 17, 2011, vol. 471, No. 7338, pp. 325-330.

* cited by examiner

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

AAV1-BEST1-Cre

wild-type

FIG. 10

FIG. 11

FIG. 12

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

а

b

FIG. 21

FIG. 22

FIG. 25

FIG. 26

FIG. 28

FIG. 29

METHODS OF INHIBITING ALU RNA AND THERAPEUTIC USES THEREOF

RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/701,450, now allowed, which is a 371 application of International Patent Application No. PCT/US2011/ 038753, filed Jun. 1, 2011, which claims priority from U.S. Provisional Application Ser. No. 61/396,747, filed on Jun. 1, 2010; U.S. Provisional Application Ser. No. 61/432,110, filed Jan. 12, 2011; and U.S. Provisional Application Ser. No. 61/432,948, filed Jan. 14, 2011. The entire disclosures of these applications are incorporated herein by this reference.

TECHNICAL FIELD

The presently-disclosed subject matter relates to uses of DICER overexpression and the inhibition of Alu RNA.

INTRODUCTION

Geographic atrophy, an advanced form of age-related macular degeneration that causes blindness in millions of 25 people worldwide and for which there is no approved treatment, results from death of retinal pigmented epithe-lium (RPE) cells. As described herein the present inventors show that expression of DICER, an enzyme involved in microRNA (miRNA) biogenesis, is reduced in the RPE of ³⁰ human eyes with geographic atrophy, and that conditional ablation of Dicer1 induces RPE degeneration in mice. Surprisingly, ablation of seven other enzymes responsible for miRNA biogenesis or function does not induce such pathology. Instead, knockdown of DICER1 leads to accumulation ³⁵ of Alu repeat RNA in human RPE cells and of B1 and B2 (Alu-like elements) repeat RNAs in the RPE of mice.

Alu RNA is dramatically increased in the RPE of human eyes with geographic atrophy, and introduction of this pathological RNA induces death of human RPE cells and RPE degeneration in mice.

Antisense oligonucleotides targeting Alu/B1/B2 RNAs inhibit DICER1 depletion-induced RPE degeneration despite persistence of global miRNA downregulation. 45 DICER1 degrades Alu RNA, and Alu RNA loses the ability to induce RPE degeneration in mice when digested by DICER1. These findings reveal a novel miRNA-independent cell survival function for DICER1 via degradation of retrotransposon transcripts, introduce the concept that Alu 50 RNA can directly cause human pathology, and identify new molecular targets for treating a major cause of blindness.

Age-related macular degeneration (AMD), which is as prevalent as cancer in industrialized countries, is a leading cause of blindness worldwide. In contrast to the neovascular 55 form of AMD, for which many approved treatments exist¹, the far more common atrophic form of AMD remains poorly understood and without effective clinical intervention². Extensive atrophy of the retinal pigment epithelium (RPE) leads to severe vision loss and is termed geographic atrophy, 60 the pathogenesis of which is unclear. As described herein, the present inventors identify dysregulation of the RNase DICER1³ and the resulting accumulation of transcripts of Alu elements, the most common small interspersed repetitive elements in the human genome⁴, as a cause of geo-65 graphic atrophy, and describe treatment strategies to inhibit this pathology in vivo.

SUMMARY

The presently-disclosed subject matter meets some or all of the needs identified herein, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

This Summary describes several embodiments of the presently-disclosed subject matter, and in many cases lists variations and permutations of these embodiments. This Summary is merely exemplary of the numerous and varied embodiments. Mention of one or more representative features of a given embodiment is likewise exemplary. Such an embodiment can typically exist with or without the feature(s) mentioned; likewise, those features can be applied to other embodiments of the presently-disclosed subject matter, whether listed in this Summary or not. To avoid excessive repetition, this Summary does not list or suggest all possible combinations of such features.

In some embodiments, the presently-disclosed subject matter includes a method of identifying an Alu RNA inhibitor. The method can include providing a cell in culture wherein Alu RNA is upregulated; contacting the cell with a candidate compound; and determining whether the candidate compound results in a change in the Alu RNA. In some embodiments, the cell is an RPE cell. In some embodiments, the Alu RNA can be upregulated by decreasing native levels of DICER polypeptides in the cell. In some embodiments, the Alu RNA can be upregulated using heat shock stress. In some embodiments, the change in the Alu RNA is a measurable decrease in Alu RNA, said change being an indication that the candidate compound is an Alu RNA inhibitor.

In some embodiments, the presently-disclosed subject matter includes a method of treating geographic atrophy, including inhibiting Alu RNA associated with an RPE cell. In some embodiments, the presently-disclosed subject matter includes a method of protecting an RPE cell, including inhibiting Alu RNA associated with the RPE cell. In some embodiments, the RPE cell is of a subject having age-related macular degeneration.

In some embodiments, the presently-disclosed subject matter includes a method of treating a condition of interest, including inhibiting Alu RNA associated with a cell of a subject. In some embodiments, the condition of interest is selected from: geographic atrophy, dry age-related macular degeneration, thallasemia, familial hypercholesterolemia, Dent's disease, acute intermittent porphyria, anterior pituitary aplasia, Apert syndrome, Hemophilia A, Hemophilia B, glycerol kinase deficiency, autoimmune lymphoproliferative syndrome, X-linked agammaglobulinemia, X-linked severe combined immunodeficiency, adrenoleukodystrophy, Menkes disease, hyper-immunoglobulin M syndrome, retinal blinding, Type 1 anti-thrombin deficiency, Muckle-Wells syndrome, hypocalciuric hypercalcemia and hyperparathyroidism, cholinesterase deficiency, hereditary desmoid disease, chronic hemolytic anemia, cystic fibrosis, branchiooto-renal syndrome, lipoprotein lipase deficiency, CHARGE syndrome, Walker Warburg syndrome, Complement deficiency, Mucolipidosis type II, Breast cancer, ovarian cancer, prostate cancer, von Hippel Lindau disease, Hereditary non-polyposis colorectal cancer, multiple endocrine neoplasia type 1, hereditary diffuse gastric cancer, hepatoma, neurofibromatosis type 1, acute myeloid leukemia, T-acute lymphoblastic leukemia, and Ewing sarcoma.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises increasing levels of a DICER polypeptide in the cell. In some embodiments, increasing levels of a DICER polypeptide comprises overexpressing the DICER polypeptide in the cells. In some embodiments, increasing levels of a DICER polypeptide comprises using a vector comprising a nucleotide encoding the DICER polypeptide. In some embodi- 5 ments, the vector is a viral vector. In some embodiments, the virus is selected from an adeno-associated virus, a lentivirus, and an adenovirus. In some embodiments, the vector is a plasmid vector. In some embodiments, the nucleotide encoding the DICER polypeptide is selected from SEQ ID NO: 7 10 and SEQ ID NO: 8. In some embodiments, the DICER polypeptide is selected from SEQ ID NO: 9, 10, 11, 12, 13, 14, 15, 16, 18, and 20. In some embodiments, the DICER polypeptide comprises a functional fragment of the sequence of SEQ ID NO: 9, 18, or 20. In some embodiments, the 15 DICER polypeptide comprises the following amino acid residues of the polypeptide of SEQ ID NO: 9: 605-1922, 605-1912, 1666-1922, 1666-1912, 605-1786 and 1800-1922, 605-1786 and 1800-1912, 1666-1786 and 1800-1922, 1666-1786 and 1800-1912, 1276-1922, 1276-1912, 1276-20 1786 and 1800-1922, 1276-1786, 800-1912, 1275-1824, or 1276-1824.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises increas- ²⁵ ing levels of a DICER polypeptide comprises using DICER mRNA or a functional fragment thereof. In some embodiments, the DICER mRNA has the sequence of SEQ ID NO: 17, 19, or 21. In some embodiments, the DICER mRNA encodes a DICER polypeptide, for example, the DICER ³⁰ polypeptide of SEQ ID NO: 9, 18, or 20, or a functional fragment thereof.

In some embodiments of the methods of the presently disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises admin-³⁵ istering an oligonucleotide targeting Alu RNA. In some embodiments, the oligonucleotide has a sequence including a sequence selected from SEQ ID NO: 22, 23, 24, 25, and 26. In some embodiments, at least two oligonucleotides are administered. The presently-disclosed subject matter further ⁴⁰ includes an isolated oligonucleotide that inhibits the expression of Alu RNA, including a sequence selected from SEQ ID NO: 22, 23, 24, 25, and 26 and including about 29 to 100 nucleotides.

In some embodiments of the methods of the presently ⁴⁵ disclosed subject matter including inhibiting Alu RNA associated with a cell, the inhibiting Alu RNA comprises administering an siRNA targeting Alu RNA. In some embodiments, the siRNA includes a first strand having a sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, and 6. The ⁵⁰ presently-disclosed subject matter further includes an isolated double-stranded RNA molecule that inhibits expression of Alu RNA, wherein a first strand of the double-stranded RNA comprises a sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, and 6 and including about 19 to 25 ⁵⁵ nucleotides.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 DICER1 deficit in geographic atrophy induces 60 RPE degeneration. a, DICER1 mRNA abundance, relative to 18S rRNA, monitored by real-time RT-PCR, was lower in the retinal pigmented epithelium (RPE) of human eyes with geographic atrophy (GA; n=10) compared to the RPE of normal human eyes without GA (n=11). P=0.004 by Mann 65 Whitney U test. The abundance of DROSHA, DGCR8, and EIF2C2 (encoding AGO2) mRNA transcripts in the RPE

4

was not significantly different (P>0.11 by Mann Whitney U test) in human eyes with geographic atrophy and control eyes. Transcript abundance quantified by real-time RT-PCR and normalized to 18S rRNA and to control eve levels. n=10-11. b. Relative quantification of DICER1 protein abundance, relative to Vinculin, assessed by Western blotting (Supplementary FIG. 1), was lower in the RPE of human eyes with geographic atrophy (GA; n=4) compared to the RPE of normal human eyes without GA (n=4). P=0.003 by Student t test. c, Immunohistochemistry for DICER1 (blue) showed reduced protein abundance in the RPE of human eyes with GA compared to normal eyes without GA. d, Fundus photographs show extensive RPE degeneration in BEST1 Cre; Dicer1^{ff} mice but not in littermate control mice. e, Toluidine blue-stained sections show marked RPE degeneration in BEST1 Cre; Dicer1^{ff} mice compared to normal RPE architecture in control mice. Arrowheads point to basal surface of RPE. f, Flat mounts of the RPE and choroid stained with antibodies against zonula occludens-1 (ZO-1; red) show marked disruption of the RPE monolayer architecture in BEST1 Cre; Dicer^{f/f} mice compared to the uniformly tesselated RPE layer in littermate control mice. g, Fundus photographs show RPE degeneration in Dicerl ff mice following subretinal injection of AAV1-BEST1-Cre but not AAV1-BEST1-GFP. h, Toluidine blue-stained sections show marked degeneration of RPE and photoreceptor outer segments in Dicer1^{ff} mice following subretinal injection of AAV1-BEST1-Cre but not AAV1-BEST1-GFP. i, Flat mounts show marked increase in RPE cell size and distortion of RPE cell shape in Dicer1^{f/f} mice following subretinal injection of AAV1-BEST1-Cre but not AAV1-BEST1-GFP. RPE cell borders outlined by ZO-1 staining (red). Nuclei stained blue with Hoechst 33342. Representative images shown. n=16-32 (d-f); 10-12 (g-i). Scale bars, (c,e,h), 10 µm; (f,i) 20 µm. j, Transfection of adenoviral vector coding for Cre recombinase (Ad-Cre) in RPE cells isolated from Dicer1^{ff} mice resulted in loss of cell viability, as monitored by MTS assay at 7 days, compared to transfection with Ad-Null or untreated (no Tx) cells. k, Transfection of antisense oligonucleotide (as) targeting DICER1 into human RPE cells resulted in increasing loss of cell viability over time compared to scrambled sequence antisense (Ctrl as)-treated cells. n=6-8.

FIG. 2 Alu RNA accumulation in geographic atrophy triggered by DICER reduction. a, Immunohistochemistry with anti-double stranded RNA (dsRNA) antibody (J2) shows abundant accumulation of dsRNA (blue staining) in the retinal pigmented epithelium (RPE) of a human eye with geographic atrophy. b, Lack of immunolabeling with an isotype antibody in the same eye with geographic atrophy confirms specificity of dsRNA staining c,d, dsRNA is immunolocalized (blue staining) in the RPE and sub-RPE deposits (drusen) of a human eye with geographic atrophy (c) but not in the RPE of a normal (control) eye (d). Scale bars, (a-d), 10 µm. n=10 (a-d) e, PCR amplification of dsRNA immunoprecipitated by J2 antibody from RPE isolates from human eyes with geographic atrophy and normal eyes yielded amplicons with sequence homology to Alu sequences (Supplementary FIG. S7) in eyes with geographic atrophy but not in normal eyes. Water negative control (-) showed no amplification and positive control (+) recombinant dsRNA showed predicted amplicon. f, Alu RNA abundance, relative to 18S rRNA, monitored by real-time RT-PCR, was higher in the RPE of human eyes with geographic atrophy compared to the RPE of normal human eyes without GA (n=7). P<0.05 by Student t test. There was no significant difference in Alu RNA abundance in the neural retina of these two patient groups. Values normalized to relative abundance in normal eyes.

FIG. 3 DICER1 degrades Alu RNA. a, Transfection of antisense oligonucleotide (as) targeting DICER1 into human 5 RPE cells induced a time-dependent increase in the abundance of Alu RNA transcripts. b, c, Transfection of adenoviral vector coding for Cre recombinase (Ad-Cre) into mouse RPE cells isolated from Dicer1^{ff} mice increased, in the nucleus (b) and the cytoplasm (c), the abundance of B1 10 and B2 RNAs, the Alu-like repetitive elements in the mouse, compared to cells transfected with adenoviral vector coding for green fluorescent protein (Ad-GFP). d, DICER1 as treatment of human RPE cells upregulated Alu RNA levels in both the nucleus (Nuc) and cytoplasm (Cyt). e, Alu RNA 15 isolated and cloned from the RPE of human eye with geographic atrophy was degraded by recombinant DICER1 digestion (+) as visualized by agarose gel electrophoresis. Digestion with heat denatured DICER1 did not degrade Alu RNA. Image representative of 6 experiments. f. The 20 increased abundance of Alu RNA in human RPE cells transfected with plasmid coding for Alu (pAlu) compared to pNull or no treatment (no Tx) at 24 h was reduced by co-transfection with pDICER1. *P<0.05. n=4-8 (a-d, f). RNA abundance was quantified by real-time RT-PCR, nor- 25 malized to 18S rRNA levels, and normalized to levels in control as-treated (for Alu) or Ad-GFP-infected cells (for B elements).

FIG. 4 DICER1 protects RPE cells from Alu RNA cytotoxicity. a, Transfection of mouse or human retinal pigmented epithelium cells (mRPE or hRPE) with plasmid coding for Alu RNA (pAlu) compromised cell viability. b, Subretinal administration of pAlu induced RPE degeneration in wild-type mice whereas pNull did not do so. Fundus photograph (top row) shows area of degeneration in pAlu 35 injected eye compared to the normal appearance in pNull. Flat mount preparations stained with anti-zonula occludens-1 antibody (ZO-1, red, bottom row) show marked distortion of RPE cell shape and size compared to pNullinjected eye. c, Alu RNA induced dose-dependent increase 40 in cell death of human RPE cells. d, Cell death of human RPE cells induced by transfection of pAlu was inhibited by co-transfection with pDICER1 but not pNull. (a,c,d) Cell viability monitored by MTS assay at 2 days. Values normalized to null plasmid (pNull) transfected or vehicle 45 treated cells. *P<0.05 by Student t test. n=4-6. e, Subretinal co-administration of pDICER1, but not of pNull, inhibited pAlu induced RPE degeneration in wild-type mice. f, Subretinal administration of Alu RNA isolated and cloned from the RPE of a human eye with geographic atrophy (GA) 50 induced RPE degeneration in wild-type mice whereas subretinal injection of vehicle did not. g, Subretinal injection of this Alu RNA, when subjected to cleavage by DICER1, did not induce RPE degeneration in wild-type mice whereas Alu RNA subjected to mock cleavage by DICER1 did do so, as 55 evident on fundus photography (top row) or flat mount preparation (bottom row). Area of degeneration outlined by blue arrowheads in fundus photographs (b, e-g). Scale bars (20 μm). n=10-15 (b, e-g).

FIG. **5** DICER1 dyregulation induces RPE cell death via ⁶⁰ Alu RNA accumulation. a, Loss of human RPE cell viability, as monitored by MTS assay, induced by transfection of antisense oligonucleotide (as) targeting DICER1 was rescued by co-transfection of Alu RNA as. Levels normalized or compared to transfection with control (Ctrl) antisense ⁶⁵ oligonucleotide. b, Alu RNA as inhibited accumulation of Alu RNA induced by DICER1 as. c, Ad-Cre but not Ad-Null

6

induced loss of cell viability of Dicer1^{ff} mouse RPE cells. This was rescued by transfection of antisense oligonucleotide targeting B1 and B2 RNAs but not by control (Ctrl) antisense oligonucleotide. Levels normalized to untreated cells (no Tx). d, B1/B2 RNA as inhibited accumulation of B1 and B2 RNAs induced by Ad-Cre-induced Dicer1 depletion. *P<0.05 by Student t test. n=4-6 (a-d). d, Subretinal AAV-BEST1-Cre administration induced RPE degeneration (blue arrowheads in fundus photograph on top row and marked increase in RPE cell size and distortion of RPE cell shape in ZO-1 stained (red) RPE flat mounts (bottom row) in Dicer1^{ff} mice 20 days after injection. Subretinal administration of cholesterol-conjugated B1/B2 as, but not Ctrl as, 10 days after AAV-BEST1-Cre injection inhibited RPE degeneration (e) and abundance of B1/B2 RNAs in the RPE of these mice, as monitored by real-time RT-PCR at 10 days after as injection, normalized to 18S rRNA levels, and normalized to levels in eyes treated with cholesterol-conjugated Ctrl as (f). n=8 (e,f). Scale bar, 20 µm. (e). g, DICER1 as treatment of human RPE cells led to global reduction of miRNA expression at 2 days compared to Ctrl as. There was no significant difference in miRNA abundance between Alu as and Ctrl as-treated DICER1 depleted cells. n=3.

FIG. 6 DICER1 levels in RPE are reduced in geographic atrophy. Western blots of macular RPE lysates from individual human donor eyes show that DICER1 protein abundance, normalized to the levels of the housekeeping protein Vinculin, are reduced in geographic atrophy (GA) compared to age-similar control human eyes without age-related macular degeneration.

FIG. 7 DICER1 levels in neural retina are unchanged in geographic atrophy. a, DICER1 mRNA abundance in the neural retina, as monitored by real-time RT-PCR, was not significantly different (P>0.05 by Mann Whitney U test) between normal human retinas and those with geographic atrophy. Levels normalized to 18S rRNA abundance and to normal retinas. n=7. b-e, DICER1 protein immunolocalization in the neural retina was not different between human eyes with geographic atrophy (b) and normal (d) eyes. Specificity of DICER1 staining was confirmed by absence of reaction production with isotype control antibody (c,e). Representative images shown. n=8. Scale bars (20 μm, b-e).

FIG. **8** DICER1 is not generically downregulated in retinal diseases. Immunolocalization studies revealed abundant DICER1 protein expression (blue, left column) in the RPE in the eye of an 85-year-old man with Best disease (vitelliform macular dystrophy), a 68-year-old man with retinal detachment secondary to choroidal melanoma, and a 72-year-old woman with retinitis pigmentosa. Specificity of DICER1 staining was confirmed by absence of reaction production with isotype control antibody (right column). Representative images shown. n=13. Scale bars (10 μ m). Dicer1 mRNA expression in the RPE was not significantly (NS) different in Ccl2^{-/-} Ccr2^{-/-} mice or Cp^{-/-} Heph^{-/-} mice compared to their background strains. Transcript abundance quantified by real-time RT-PCR and normalized to 18S rRNA and to control eye levels. n=6. NS, not significant.

FIG. **9** Cre recombinase expression does not induce retinal pigmented epithelium (RPE) degeneration. Subretinal administration of adeno-associated viral vector coding for Cre recombinase directed by the BEST1 promoter (AAV1-BEST1-Cre) in wild-type mice did not induce retinal toxicity that was evident on fundus photography (top left) and did not disrupt the tiling pattern of the RPE monolayer (top right). Circular flash artifact is seen in the centre of the fundus photograph. RPE cell borders delineated by staining with anti-ZO-1 antibody (red) and nuclei stained by Hoechst

33342 (blue). RPE flat mounts show successful Cre recombinase expression (red) following subretinal injection of AAV1-BEST1-Cre in wild-type (bottom left) and Dicer1^{ff} (bottom right) mouse eyes. Representative images shown. n=8-10. Scale bar (20 µm).

FIG. 10 Retinal pigmented epithelium (RPE) cell dysmorphology in human age-related macular degeneration eye with atrophy. In contrast to the well tessellated RPE cell monolayer observed in a normal human eye (right), marked changes in RPE cell size and shape are observed in the 10 human eye with geographic atrophy (left). These changes resemble those observed in eyes of mice wherein Dicer1 has been depleted in the RPE. RPE cell borders delineated by staining with anti-ZO-1 antibody (green) and nuclei stained by propidium iodide (red). Representative image shown. 15 n=8. Scale bar, 50 µm.

FIG. 11 Conditional ablation of Drosha, Dgcr8, or Ago2 in the retinal pigmented epithelium (RPE) does not induce degeneration as seen in Dicer1-ablated mice. Fundus photographs (left column) show no significant degeneration 20 following subretinal injection of AAV-BEST1-Cre in mice "foxed" for Drosha, DGCR8, or Ago2. Circular flash artifacts are seen near the centre of the fundus photographs. Injection site wound appears white in the fundus photograph of the Ago2^{*ff*} eye. RPE flat mounts (middle column) stained 25 with anti-ZO-1 antibody (red) and Hoechst 33342 (blue) show normal tiling pattern of RPE with no gross disturbance of cell size or shape. RPE flat mounts (right column) stained with anti-Cre recombinase antibody (red) and Hoechst 33342 (blue) shows successful Cre expression in these mice 30 eyes. Representative images shown. n=8-12. Scale bar (20 μm).

FIG. 12 Deficiency of Ago1, Ago3, Ago4, or Tarbp2 does not induce RPE degeneration. Mice deficient in Ago1 Ago3 Ago4, or Tarbp2 have normal retinal appearance on fundus 35 photography (top row) and normal RPE monolayer architecture on ZO-1 stained (red) flat mounts (bottom row). Circular flash artifact is seen in the centre of the fundus photographs. Scale bar, 20 µm.

FIG. 13 DICER1 mutant cells impaired in miRNA bio- 40 genesis do not have compromised cell viability. There was no difference in baseline cell viability between HCT-DICER1^{ex5} cells, which are impaired in miRNA biogenesis¹ and parent HCT116 cells over 3 days of analysis of cell proliferation. n=3. NS, not significant.

FIG. 14 Human geographic atrophy eye retinal pigmented epithelia contain Alu RNA sequences. a, Top: Typical Alu element with conserved structural regions (adapted from ref. 2). The left arm consists of RNA polymerase III binding sites (Box A and Box B). The right arm occasionally contains a 50 terminal poly A tail that may be interspersed with non-A bases. The 5' and 3' regions of the Alu element are linked by a mid-stretch A-rich sequence. Bottom: Representative Alu cDNA (Sequence 1). The conserved regions mentioned above are highlighted and correspond to the coloured boxes 55 in the top figure. b, Alignment of Alu cDNA Sequences 1 and 2 isolated from human eyes with geographic atrophy to Alu Sq consensus sequence. These sequences contain the highly conserved 5' Alu consensus elements (5' characteristic Alu region-blue; RNA polymerase III promoter B 60 box-red), with extensive heterogeneity located 3' to the mid-sequence poly-A stretch that have been reported to exist in Alu sequences^{3,4}

FIG. 15 J2 anti-dsRNA antibody recognizes Alu RNA. a, Alu RNA duplex isolated and cloned from the retinal 65 pigmented epithelium (RPE) of a human eye with geographic atrophy was recognized by J2 anti-dsRNA antibody

in an immuno-dot blot format. J2 antibody did not recognize rRNA or tRNA (negative controls), but did recognize RNA duplexes of 325-bp or 1-kbp in length (positive controls). b, Immunofluorescent imaging of human RPE cells transfected with pAlu shows that J2 recognizes Alu expressed in these cells (left panel). Specificity of staining confirmed by absence of staining with isotype control antibody (middle panel) and by the absence of immunodetection following transfection with pNull (right panel). Representative images shown. n=3. Scale bar (20 µm).

FIG. 16 Confirmation of lack of DNA contamination in Alu RNA PCR. The relative abundance of Alu RNA in the RPE of human eyes with human geographic eyes was presented in FIG. 2f. Shown above is the detection of the PCR product band for a sample of human geographic atrophy RPE that underwent reverse transcription (RT+). No amplification was detected in the negative controls where reverse transcriptase (RT-) was omitted or where water alone was analyzed. These data demonstrate the absence of DNA contamination in the sample.

FIG. 17 Validation of DICER1 knockdown. Transfection of DICER1 antisense oligonucleotides (as) into human RPE cells knocks down DICER1 protein abundance, as monitored by Western blot analysis, over 2 days. Efficiency of protein loading is monitored by blotting for the housekeeping Vinculin protein. Representative of 3 experiments.

FIG. 18 DICER1 is expressed in nucleus and cytoplasm. a, Western blot shows expression of DICER1 in both the nuclear and cytoplasmic fractions of human RPE cells. Blotting of the same protein sample reveals the presence of Tubulin in the cytoplasmic fraction and not in the nuclear fraction. b, Merged images (bottom row) of DICER1 immunofluorescence (red, top row) and nuclear DAPI fluorescence (middle row) confirm expression of DICER1 in both the nucleus and the cytoplasm of human RPE cells. Representative images shown. Scale bar, 10 µm.

FIG. 19 Retrotransposons and repetitive RNAs are not generically activated in geographic atrophy or by DICER1 depletion. In the RPE of human eyes with geographic atrophy (GA, n=7), there was no significant increase in the abundance of RNAs coded by LINE L1.3, a long interspersed repetitive element, human endogenous retrovirus-W envelope (HERV-WE1), a long terminal repeat retrotransposon, or hY3, a repetitive small cytoplasmic Ro RNA 45 compared to normal human eyes (top, n=8). These RNAs also were not upregulated by DICER1 antisense (as) knockdown, compared to control (Ctrl) as treatment, in human RPE cells (bottom). n=3. Transcript abundance monitored by real-time RT-PCR and normalized to 18S rRNA levels.

FIG. 20 Alu RNA induced by DICER1 depletion is RNA Pol III derived. a, The upregulation of Alu RNA in RPE cells treated with antisense (as) oligonucleotides targeting DICER1, compared to control (Ctrl), is inhibited by treatment with the Pol III inhibitor tagetitoxin (tagetin), but not by the Pol II inhibitor α -amanitin. *, P<0.05, NS, not significant, compared to treatment with DICER1 as treatment alone. b, Northern blot (NB) shows that the abundance of Alu RNA species in the RPE of a human eye with geographic atrophy (GA) is greater than in normal human eye RPE, and is principally approximately 300 nucleotides long, consistent with the length of a non-embedded Pol III derived transcript. Reprobing these samples with a probe corresponding to the "S region" of the 7SL RNA gene that is not present in Alu elements shows that 7SL RNA abundance is not different between the RPE of normal and GA human eyes. Abundance of U6 RNA in GA and normal eyes shows loading efficiency. c, Northern blot shows that Alu

probe detects in vitro transcribed Alu RNA but not 7SL RNA in mouse liver (which lacks primate-specific Alu), and reprobing these samples confirms specificity of the 7SL probe. d, DICER1 knockdown by antisense (as) oligonucleotides in human RPE cells does not, compared to control ⁵ (Ctrl) as treatment, induce upregulation of several Pol IItranscribed genes (ADAR2, NICN, NLRP, SLFN 11) that contain embedded Alu sequences in their exons. n=3.

FIG. **21** 7SL RNA is not regulated in geographic atrophy or by inhibition of DICER1 or Alu. a, 7SL RNA abundance was not different in the RPE of human eyes with geographic atrophy (GA) compared to the RPE of normal human eyes without GA (n=8). b, 7SL RNA abundance was not different in human RPE cells transfected with antisense oligonucleotide (as) targeting DICER1 from those transfected with control (Ctrl) as. n=3. c, 7SL RNA abundance was not different in human RPE cells transfected with antisense oligonucleotide (as) targeting Alu from those transfected with control (Ctrl) as. n=3. 7SL RNA abundance, relative to 18S rRNA, was monitored by real-time RT-PCR. NS, not significant by Student t test.

FIG. **22** Overexpression of B1 or B2 RNA induces RPE degeneration. Subretinal transfection of pB1 or pB2 RNAs, but not of pNull, induces RPE degeneration in wild-type 25 mice. Top row shows fundus photographs demonstrating areas of degeneration outlined by blue arrowheads. Bottom row shows ZO-1 stained (red) RPE flat mounts demonstrated marked degeneration and disarray of the RPE cells in mice overexpressing B1 or B2 RNAs. Circular flash artifact 30 is seen in the centre of the fundus photographs. n=4. Representative images shown. Scale bar, 20 µm.

FIG. 23 Alu RNA enters retinal pigmented epithelium (RPE) cells in vivo. Subretinal administration of Alu RNA in wild-type mice achieved RPE cell delivery at 8 h after 35 injection as monitored by real-time RT-PCR in isolated cell lysates (n=3).

FIG. 24 Human GA Alu dsRNA does not induce RPE degeneration when cleaved by DICER1. a, Subretinal administration of a fully complementary synthetic Alu RNA $_{\rm 40}~\mu m.$ (dsRNA) corresponding to the sequence of an Alu RNA isolated from a human eye with geographic atrophy (GA) induces RPE degeneration in wild-type mice. Vehicle administration does not damage the retina. Top panels show fundus photographs with the area of RPE degeneration 45 outlined by blue arrowheads. Circular flash artifact is seen in the centre of the fundus photographs. Bottom panels show ZO-1 stained (red) RPE flat mounts that are well arrayed in vehicle (bottom) but disorganized in Alu dsRNA (top). b, This Alu dsRNA did not induce RPE degeneration when it 50 was first subjected to cleavage by recombinant DICER1. However, when subjected to mock cleavage by DICER1, this Alu dsRNA did induce RPE degeneration. n=4. Representative images shown. Scale bar, 20 µm.

FIG. **25** RPE degeneration does not occur in response to 55 a variety of structured RNAs. Subretinal transfection of transfer RNA (tRNA) or of plasmids coding for 7SL RNA, pri-miRNA-29b1 or pri-miRNA26a2 in wild-type mice did not induce retinal toxicity that was evident on fundus photography. Circular flash artifact is seen in the centre of 60 the fundus photographs. N=4. Representative images shown.

FIG. **26** Alu RNA does not cause RPE degeneration via TLR3. a, Western blot shows that transfection of pAlu or pNull does not induce TLR3 phosphorylation, relative to the 65 levels of the housekeeping protein Vinculin, in human RPE cells. b, Subretinal transfection of pAlu induced RPE degen-

eration in Tlr3–/– mice where pNull transfection did not do so. Representative images shown. n=4. Scale bar, 20 μ m.

FIG. 27 DICER1 reduction or Alu RNA augmentation induces caspase-3 activation. a. Immunolocalization of activated caspase-3 (red) in the RPE of human eyes with geographic atrophy (left panel). Specificity of immunolabeling revealed by absence of staining with isotype control antibody (middle panel) and in control eyes stained with antibody against cleaved caspase-3 (right panel). Autofluorescence of RPE and choroid seen in green channel. Nuclei stained by DAPI (blue). b, Flat mounts of BEST1 Cre; Dicer1^{ff} mice show evidence of caspase-3 activation (red staining, top left panel). Specificity of immunolabeling revealed by absence of staining with isotype control antibody (top right panel). No caspase-3 activation was detectable in the RPE of littermate control BEST1 Cre or Dicer1^{ff} mice (bottom panels). c, Human RPE cells transfected with pAlu showed evidence of caspase-3 activation (red staining, top left panel). DAPI (blue staining) and merged images are also shown. Scale bars (20 µm, a,b; 10 µm, c). Representative images shown. n=4-6. d, Exposure of human RPE cells to Alu RNA induced dose-dependent increase in caspase-3 activation, as monitored by fluorometric plate assay. n=3, *P<0.05 compared to vehicle by Student t test. e, Transfection of human RPE cells with pAlu induced increase in caspase-3 activation. n=3, *P=0.47 by Student t test.

FIG. **28** Alu RNA cleavage fragments do not modulate RPE degeneration. a, Transfection of pAlu induced cell death in human RPE cells. Cotransfection of DICER1cleaved Alu RNA fragments did not change the degree of cell death. n=3. b, Subretinal transfection of DICER1cleaved Alu RNA fragments (Frag) in wild-type mice did not cause RPE degeneration as seen by fundus photography (top left) or ZO-1-stained (red) RPE flat mounts (bottom left). Cotransfections of these fragments did not prevent the RPE degeneration induced by pAlu in wild-type mice (right panels). n=4. Representative images shown. Scale bar, 20 um.

FIG. **29** Impaired DICER1 processing of microRNAs does not increase Alu RNA abundance or modulate Alu RNA cytotoxicity. a, There was no significant difference (P>0.05) in Alu RNA transcript abundance between HCT116 parent cells and HCT mutant cells carrying a mutation in exon 5 (ex5) of DICER1 which renders it incapable of processing microRNAs. b, Transfection of anti-sense oligonucleotide (as) targeting DICER1 into HCT116 cells increased the abundance of Alu RNA transcripts compared to control anti-sense oligonucleotide (Ctrl as) at 48 h. Transcript abundance monitored by real-time RT-PCR and normalized to 18S rRNA levels. c, Alu RNA induced similar levels of cell death in HCT116 parent and HCT-DICER1^{ex5} cells. *P<0.05 by Student t test. n=4-6.

FIG. **30** Oxidative stress downregulates DICER1 in human RPE cells. Human retinal pigmented epithelium (RPE) cells exposed to varying concentrations of hydrogen peroxide (H_2O_2) display a dose- and time-dependent reduction in DICER1 mRNA abundance, as monitored by real-time RT-PCR and normalized to 18S rRNA levels. n=3.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

SEQ ID NO: 1 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 2 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 3 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed ⁵ subject matter.

SEQ ID NO: 4 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 5 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 6 is an embodiment of a first strand of an siRNA provided in accordance with the presently-disclosed $_{15}$ subject matter.

SEQ ID NO: 7 is nucleotide sequence encoding a human DICER polypeptide, including all untranslated regions (GenBank Accession Number NM_177438).

SEQ ID NO: 8 is a cDNA sequence encoding a human $_{20}$ DICER polypeptide.

SEQ ID NO: 9 is a polypeptide sequence for a human DICER polypeptide.

SEQ ID NO: 10 is a polypeptide sequence for a human DICER polypeptide, including residues 1276-1922 of SEQ ²⁵ ID NO: 9.

SEQ ID NO: 11 is a polypeptide sequence for a human DICER polypeptide, including residues 605-1922 of SEQ ID NO: 9.

SEQ ID NO: 12 is a polypeptide sequence for a human DICER polypeptide, including residues 1666-1922 of SEQ ID NO: 9.

SEQ ID NO: 13 is a polypeptide sequence for a human DICER polypeptide, including residues 1666-1912 of SEQ $_{35}$ ID NO: 9.

SEQ ID NO: 14 is a polypeptide sequence for a human DICER polypeptide, including residues 1666-1786 and 1800-1912 of SEQ ID NO: 9.

SEQ ID NO: 15 is a polypeptide sequence for a human $_{40}$ DICER polypeptide, including residues 1275-1824 of SEQ ID NO: 9.

SEQ ID NO: 16 is a polypeptide sequence for a human DICER polypeptide, including residues 1276-1824 of SEQ ID NO: 9.

SEQ ID NO: 17 is an mRNA sequence encoding a human DICER polypeptide.

SEQ ID NO: 18 is a polypeptide sequence for a *Schizosaccharomyces pombe* DICER polypeptide.

SEQ ID NO: 19 is an mRNA sequence encoding a 50 *Schizosaccharomyces pombe* DICER polypeptide.

SEQ ID NO: 20 is a polypeptide sequence for a *Giardia lamblia* DICER polypeptide.

SEQ ID NO: 21 is an mRNA sequence encoding a *Giardia lamblia* DICER polypeptide.

SEQ ID NO: 22 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 23 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the 60 presently-disclosed subject matter.

SEQ ID NO: 24 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 25 is an embodiment of an antisense 65 oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.

SEQ ID NO: 26 is an embodiment of an antisense oligonucleotide sequence provided in accordance with the presently-disclosed subject matter.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

The presently-disclosed subject matter includes methods for identifying Alu RNA inhibitors, and methods and compositions for inhibiting Alu RNA and therapeutic uses thereof.

As disclosed herein, Alu RNA (including Alu repeat RNA in human cells and B1 and B2, Alu-like element repeat RNAs) increases are associated with cells that are associated with certain conditions of interest. For example, Alu RNA increase is associated with the retinal pigment epithelium (RPE) cells of eyes with geographic atrophy. This increase of Alu RNA induces the death of RPE cells. Methods and compositions disclosed herein can protect a cell from Alu RNA-triggered cell death, thereby treating conditions associated with such cell death.

The presently-disclosed subject matter further includes methods useful for identifying an Alu RNA inhibitor and uses of such inhibitors, including therapeutic and protective uses. In some embodiments, the method makes use of a cultured cell wherein Alu RNA is upregulated. Candidate compounds can be screened using the cultured cell to determine efficacy as antagonists of Alu RNA. Candidate compounds include, for example, small molecules, biologics, and combinations thereof, such as compositions including multiple compounds. The term small molecules is inclusive of traditional pharmaceutical compounds. The term biologics is inclusive of polypeptides and nucleotides.

In some embodiments, the screening method includes providing a cell in culture wherein Alu RNA is upregulated; and contacting a candidate compound with the cell. The method can further include identifying a change in Alu RNA. For example, a measurable change in Alu RNA levels can be indicative of efficacy associated with the candidate compound. In some embodiments, wherein the change in the Alu RNA is a measurable decrease in Alu RNA, the change is an indication that the candidate compound is an Alu RNA inhibitor. Such Alu RNA inhibitors can have utility for therapeutic applications as disclosed herein.

In some embodiments, the Alu RNA can be upregulated by decreasing native levels of DICER polypeptides in the cell using methods known to those skilled in the art. In some embodiments, the Alu RNA associated with cultured cell can be upregulated by using heat shock stress using methods known to those skilled in the art. In some embodiments, the cultured cell is an RPE cell.

Methods and compositions of the presently-disclosed subject matter for treating a condition of interest include inhibiting Alu RNA associated with a cell, such as a cell of 55 a subject in need of treatment. Examples of conditions of interest include, but are not limited to: geographic atrophy, dry age-related macular degeneration, thallasemia, familial hypercholesterolemia, Dent's disease, acute intermittent porphyria, anterior pituitary aplasia, Apert syndrome, Hemophilia A, Hemophilia B, glycerol kinase deficiency, autoimmune lymphoproliferative syndrome, X-linked agammaglobulinemia, X-linked severe combined immunodeficiency, adrenoleukodystrophy, Menkes disease, hyperimmunoglobulin M syndrome, retinal blinding, Type 1 antideficiency, thrombin Muckle-Wells syndrome. hypocalciuric hypercalcemia and hyperparathyroidism, cholinesterase deficiency, hereditary desmoid disease, chronic

hemolytic anemia, cystic fibrosis, branchio-oto-renal syndrome, lipoprotein lipase deficiency, CHARGE syndrome, Walker Warburg syndrome, Complement deficiency, Mucolipidosis type II, Breast cancer, ovarian cancer, prostate cancer, von Hippel Lindau disease, Hereditary non-polyposis colorectal cancer, multiple endocrine neoplasia type 1, hereditary diffuse gastric cancer, hepatoma, neurofibromatosis type 1, acute myeloid leukemia, T-acute lymphoblastic leukemia, and Ewing sarcoma.

As used herein, the terms treatment or treating relate to 10 any treatment of a condition of interest, including but not limited to prophylactic treatment and therapeutic treatment. As such, the terms treatment or treating include, but are not limited to: preventing a condition of interest or the development of a condition of interest; inhibiting the progression 15 of a condition of interest; arresting or preventing the development of a condition of interest; reducing the severity of a condition of interest; ameliorating or relieving symptoms associated with a condition of interest; and causing a regression of the condition of interest or one or more of the 20 symptoms associated with the condition of interest.

As used herein, the term "subject" refers to a target of treatment. The subject of the herein disclosed methods can be a vertebrate, such as a mammal, a fish, a bird, a reptile, or an amphibian. Thus, the subject of the herein disclosed 25 methods can be a human or non human. Thus, veterinary therapeutic uses are provided in accordance with the presently disclosed subject matter.

In some embodiments, the condition of interest is geographic atrophy and the cell is an RPE cell. In this regard, 30 a subject having age-related macular degeneration can be treated using methods and compositions as disclosed herein.

As will be understood by those skilled in the art upon studying this application, inhibition of Alu RNA associated a cell can be achieved in a number of manners. For example, 35 in some embodiments, inhibiting Alu RNA associated with a cell comprises increasing levels of a DICER polypeptide in the cell, for example, by overexpressing the DICER polypeptide in the cell. For another example, a DICER mRNA could be used. For another example, in some 40 embodiments, inhibiting Alu RNA associated with a cell comprises administering an oligonucleotide or a small RNA molecule targeting the Alu RNA. As used herein, inhibiting Alu RNA associated with a cell refers to a reduction in the levels of Alu RNA inside and/or outside the cell in the 45 extracellular space.

The term DICER Polypeptide refers to polypeptides known to those of ordinary skill in the art as DICER, including, but not limited to polypeptides comprising the sequences of SEQ ID NO: 9, 18, and 20, and functional 50 fragments or functional variants thereof.

It is noted that one of ordinary skill in the art will be able to readily obtain publicly-available information related to DICER, including relevant nucleotide and polypeptide sequences included in publicly-accessible databases, such as 55 GENBANK®. Some of the sequences disclosed herein are cross-referenced to GENBANK® accession numbers, e.g., GenBank Accession Number NM 177438. The sequences cross-referenced in the GENBANK® database are expressly incorporated by reference as are equivalent and related 60 sequences present in GENBANK® or other public databases. Also expressly incorporated herein by reference are all annotations present in the GENBANK® database associated with the sequences disclosed herein. Unless otherwise indicated or apparent, the references to the GENBANK® 65 database are references to the most recent version of the database as of the filing date of this application.

The terms "polypeptide", "protein", and "peptide", which are used interchangeably herein, refer to a polymer of the 20 protein amino acids, or amino acid analogs, regardless of its size. The terms "polypeptide fragment" or "fragment", when used in reference to a reference polypeptide, refers to a polypeptide in which amino acid residues are deleted as compared to the reference polypeptide itself, but where the remaining amino acid sequence is usually identical to the corresponding positions in the reference polypeptide. Such deletions can occur at the amino-terminus (e.g., removing residues 1-604, 1-1274, 1-1275, or 1-1665 of SEQ ID NO: 9) or carboxy-terminus of the reference polypeptide (e.g., removing residues 1825-1922, or 1913-1922 of SEQ ID NO: 9), from interal portions of the reference polypeptide (e.g., removing residues 1787-1799 of SEQ ID NO: 9), or a combination thereof.

A fragment can also be a "functional fragment," in which case the fragment retains some or all of the activity of the reference polypeptide as described herein. For example, in some embodiments, a functional fragment of the polypeptide of SEQ ID NO: 9 can retain some or all of the ability of the polypeptide of SEQ ID NO: 9 to degrade Alu RNA. Examples of functional fragments of the polypeptide of SEQ ID NO: 9 include the polypeptides of SEQ ID NOS: 10-16. Additional examples include, but are not limited to, the polypeptide of SEQ ID NO: 9, including the following residues: 605-1922, 605-1912, 1666-1922, 1666-1912, 605-1786 and 1800-1912, 1276-1922, 1276-1912, 1276-1786 and 1800-1912, 1276-1786 and 1800-1912, 1276-1786 and 1800-1912, 1275-1824, or 1276-1824.

The terms "modified amino acid", "modified polypeptide", and "variant" refer to an amino acid sequence that is different from the reference polypeptide by one or more amino acids, e.g., one or more amino acid substitutions. A variant of a reference polypeptide also refers to a variant of a fragment of the reference polypeptide, for example, a fragment wherein one or more amino acid substitutions have been made relative to the reference polypeptide. A variant can also be a "functional variant," in which the variant retains some or all of the activity of the reference protein as described herein. The term functional variant includes a functional variant of a functional fragment of a reference polypeptide.

In some embodiments, the DICER Polypeptide can be overexpressed in the cell using a vector comprising a nucleotide encoding the DICER polypeptide, for example, the nucleotide of SEQ ID NOS: 7 or 8, or appropriate fragment thereof, or a nucleotide encoding a DICER Polypeptide, for example, a nucleotide encoding SEQ ID NOS: 9, 10, 11, 12, 13, 14, 15, 16, 18, or 20. As will be recognized by those skilled in the art, the vector can be a plasmid vector or a viral vector (e.g., adeno-associated virus, lentivirus, adenovirus.

As noted above, in some embodiments, inhibiting Alu RNA comprises use of a DICER mRNA. In some embodiments, a functional fragment of a DICER mRNA could be used. In some embodiments, a DICER mRNA having the sequence of SEQ ID NOS: 17, 19, or 21, or a functional fragment thereof could be used. In some embodiments an mRNA encoding a DICER Polypeptide could be used, for example, an mRNA encoding SEQ ID NOS: 9, 10, 11, 12, 13, 14, 15, 16, 18, or 20.

As noted above, in some embodiments, inhibiting Alu RNA comprises administering an oligonucleotide or a small RNA molecule targeting the Alu RNA. Such nucleotides can target and degrade Alu RNA. 10

25

65

As such, in some embodiments, a method is provided including administering an oligonucleotide targeting Alu RNA. Examples of oligonucleotides targeting Alu RNA include those set forth in SEQ ID NOS: 22-26. In some embodiments, more than one oligonucleotide is adminis- 5 tered.

In some embodiments, a method is provided including administering an siRNA targeting Alu RNA. Examples of siRNAs for targeting Alu RNA include those set forth in SEQ ID NOS: 1-6.

The details of one or more embodiments of the presentlydisclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in 15 this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of 20 this document, including definitions, will control.

While the terms used herein are believed to be well understood by one of ordinary skill in the art, definitions are set forth to facilitate explanation of the presently-disclosed subject matter.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to 30 those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.

Following long-standing patent law convention, the terms "a", "an", and "the" refer to "one or more" when used in this 35 application, including the claims. Thus, for example, reference to "a cell" includes a plurality of such cells, and so forth

Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, 40 and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the 45 desired properties sought to be obtained by the presentlydisclosed subject matter.

As used herein, the term "about," when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass varia- 50 tions of in some embodiments $\pm 20\%$, in some embodiments $\pm 10\%$, in some embodiments $\pm 5\%$, in some embodiments $\pm 1\%$, in some embodiments $\pm 0.5\%$, and in some embodiments $\pm 0.1\%$ from the specified amount, as such variations are appropriate to perform the disclosed method.

As used herein, ranges can be expressed as from "about" one particular value, and/or to "about" another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about" that particular value in addition to the value itself. 60 For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. The following examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention.

EXAMPLES

DICER1 Reduction in Geographic Atrophy

In human donor eyes with geographic atrophy (n=10), the present inventors found using real-time RT-PCR that DICER1 mRNA abundance was reduced in the macular RPE by 65±3% (mean±SEM; P=0.0036; Mann-Whitney U test) compared to age-similar human eyes without geographic atrophy (n=11) (FIG. 1a). Because the best understood function of DICER1 is miRNA generation³, the present inventors measured the expression of other enzymes involved in miRNA biogenesis. The abundance of the genes encoding DROSHA or the double stranded RNA (dsRNA) binding protein DGCR8, which form a complex that processes pri-miRNAs into pre-miRNAs⁵, was not reduced in the RPE of human eyes with geographic atrophy. There was also no reduction in the expression of the gene encoding Argonaute 2 (AGO2, encoded by EIF2C2), the core component of the miRNA effector complex^{6,7}, in the RPE of human eyes with geographic atrophy. Corroborating the mRNA data, the present inventors observed a marked reduction of DICER1 protein expression in the RPE layer of human eyes with geographic atrophy compared to controls in Western blot (FIG. 1b and FIG. 6) and immunohistochemistry analyses (FIG. 1c). Interestingly, DICER1 mRNA and protein abundance in the adjacent neural retina was similar between the two groups (FIG. 7).

Because DICER1 downregulation is observed in some cell types in culture conditions in response to various chemical stresses⁸, the present inventors wondered whether DICER1 reduction in geographic atrophy might be a common downstream pathway in dying retina. DICER1 protein levels were not reduced in the RPE of human eyes with several other retinal disorders such as vitelliform macular dystrophy, retinitis pigmentosa, or retinal detachment (FIG. 8). Also, Dicer1 mRNA abundance in the RPE in two animal models of retinal degeneration—Ccl2^{-/-} Ccr2^{-/-} (refs. 9,10) and Cp^{-/-} Heph^{-/-} mice¹¹—was unchanged compared to their background strains (FIG. 8). Gene expression studies in numerous other mouse models of retinal degeneration also have not reported modulation of Dicer1 (Supplemental Notes). These data argue that DICER1 depletion in the RPE of eyes with geographic atrophy is not a generic response of damaged or dying retinal cells in vivo.

DICER1 Depletion Induces RPE Degeneration

To determine the functional consequence of reduced DICER1 levels, the present inventors conditionally ablated Dicer1 in mouse RPE cells by interbreeding "foxed" Dicer1 55 mice¹² (Dicer1^{*f*/f}) with BEST1 Cre mice¹³, which express Cre recombinase under the control of the RPE cell-specific BEST1 promoter. BEST1 Cre; Dicer1^{ff} mice uniformly exhibited dramatic RPE cell degeneration (FIG. 1d-f) that was evident by the time of weaning. None of the littermate controls exhibited similar pathology. The present inventors also deleted Dicer1 in adult mouse RPE by subretinal injection of an adeno-associated viral vector coding for Cre recombinase under the control of the BEST1 promoter¹⁴ (AAV1-BEST1-Cre) in Dicer1^{ff} mice (FIG. 9). These eyes uniformly displayed RPE cell degeneration at 28 days after injection similar to that observed in mice depleted of Dicer1 expression during development (FIG. 1g-i; FIG. 9). In
contrast, neither the contralateral eyes of Dicer1^{ff} mice that underwent subretinal injection of AAV1-BEST1-GFP nor the eyes of wild-type mice injected with subretinal AAV1-BEST1-Cre developed RPE cell degeneration (FIG. 1g-i and FIG. 9). The RPE cell dysmorphology in mice depleted of 5 Dicer1 expression resembled that observed in the eyes of humans with RPE atrophy due to AMD (FIG. 10). When cultured RPE cells isolated from Dicer1^{ff} mice were infected with an adenoviral vector coding for Cre recombinase (Ad-Cre), the present inventors observed a reduction of 10 cell viability compared to infection with Ad-Null (FIG. 1*j*). Similarly, antisense oligonucleotide mediated knockdown of DICER1 in human RPE cells resulted in increasing cell death over time (FIG. 1k). Collectively, these data support the hypothesis that DICER1 dysregulation is involved in the 15 pathogenesis of geographic atrophy.

DICER1 Depletion Phenotype not Due to miRNA Dysregulation

The present inventors tested whether depletion of other enzymes involved in miRNA biogenesis also would induce 20 RPE degeneration. Subretinal injection of AAV1-BEST1-Cre in Drosha^{f/f} (ref. 13), Dgcr8^{f/f} (refs. 15,16), or ¹⁰Ago2^{f/f} mice¹⁷ did not result in the dramatic RPE cell damage that was evident in similarly treated Dicer^{ff} mice (FIG. 11). These data suggest that miRNA imbalances are not respon- 25 sible for RPE degeneration induced by DICER1 depletion. However, the present inventors and others have reported^{18,19} that a small subset (approximately 7%) of mammalian miRNAs is generated by Dicer1 independent of Drosha and Dgcr8. There is also debate as to whether Ago2 is essential 30 for miRNA function: Ago2 deficiency leads to global reduction of miRNA expression uncompensated by other three Ago proteins in mice^{17,20} and in mouse embryonic fibroblasts and oocytes^{21,22}, yet functional redundancy among Argonaute proteins has been reported in mouse embryonic 35 stem cells²³. The present inventors found no RPE degeneration in mice deficient in Ago1, Ago3, or Ago4 (FIG. 12). TRBP (the human immunodeficiency virus transactivating response RNA-binding protein encoded by Tarbp2) recruits DICER1 to the four Argonaute proteins to enable miRNA 40 processing and RNA silencing (ref 24 and R. Shiekhattar, personal communication); Tarbp2^{-/-} mice too had no RPE degeneration (FIG. 12). These data suggest that RPE degeneration induced by Dicer1 ablation involves a mechanism specific to Dicer1 and not to miRNA machinery in general. 45

To further investigate whether miRNA imbalances might contribute to the phenotype observed in the setting of DICER1 depletion, the present inventors studied human HCT116 colon cancer cells in which the helicase domain in exon 5 of DICER1 was disrupted. Despite the impairment of 50 miRNA biogenesis in these HCT-DICER1^{ex5} cells²⁵, there was no difference between HCT-DICER1^{ex5} and parent HCT116 cells in baseline cell viability (FIG. **13**). Collectively, these findings suggest that the principal biological effect of DICER1 deficit contributing to the development of 55 geographic atrophy is not miRNA dysregulation. The findings do not, however, exclude the possibility that miRNA dysregulation could promote geographic atrophy through other pathways.

Alu RNA Accumulation in Geographic Atrophy

Because miRNA perturbations could not be implicated, the present inventors speculated that impaired processing of other dsRNAs might be involved. Using an antibody^{26,27} that recognizes long dsRNA (J2), the present inventors detected abundant dsRNA immunoreactivity in the macular 65 RPE of human eyes with geographic atrophy (n=10; FIG. 2*a*-*c*). In contrast, no J2 immunoreactivity was observed in

eyes without geographic atrophy (n=10; FIG. 2*d*). To identify this dsRNA species, the present inventors immunoprecipitated RPE lysates with J2 antibody and then sequenced the dsRNA using a T4 RNA ligase-aided, adaptor-based PCR amplification strategy. Interestingly, approximately 300-nt long dsRNA species were found in the macular RPE of human eyes with geographic atrophy (12/12) but not in eyes without geographic atrophy (0/18) (P=1.2×10⁻⁸ by Fisher's exact test) (FIG. 2*e*).

The present inventors recovered clones from 8 of the 12 geographic atrophy eyes and identified two distinct sequences with high homology (E= 3.3×10^{-103} ; 1.1×10^{-76}) to Alu repeat RNAs (FIG. 14). These sequences showed homology to the Alu Sq subfamily consensus sequence. Apart from mitochondrial RNAs that were occasionally found in the RPE of both geographic atrophy and normal eyes, Alu RNAs were the only dsRNA transcripts identified specifically in the geographic atrophy samples. The present inventors confirmed that the J2 monoclonal antibody recognized Alu RNA both in immunoblotting and in immunofluorescence assays (FIG. 15). The present inventors also detected a greater than 40-fold increase in the abundance of Alu RNAs in the RPE of human eyes with geographic atrophy compared to control eyes (n=7), but no significant difference in Alu RNA abundance was detected in the adjacent neural retina between the two groups (FIG. 2f, FIG. 16). The present inventors did not identify exact matches to these Alu sequences in the reference human genome. This could be attributed to genetic variations or regions not represented in the reference genome or to chimeric Alu formation. Further studies are needed to elucidate the genomic origin of and regulatory factors involved in transcription of these Alu RNAs.

DICER1 Depletion Induces Alu RNA Accumulation

The present inventors tested whether Alu RNA accumulation in the RPE of geographic atrophy was the result of deficient DICER1 processing activity. DICER1 knockdown in human RPE cells using antisense oligonucleotides resulted in increasing Alu RNA accumulation over time (FIG. 3a, FIG. 17). Similarly, Ad-Cre infection of RPE cells isolated from Dicer1^{f/f} mice resulted in accumulation of B1 and B2 repeat RNAs (FIG. 3b, c), which are Alu-like short interspersed repetitive elements in the mouse. Interestingly, DICER1 was expressed in both the nucleus and cytoplasm of RPE cells and its depletion led to accumulation of Alu/B1/B2 RNA in both cellular compartments (FIG. 3b-d, FIG. 18). In addition, recombinant DICER1 degraded Alu RNA, and the biological specificity of this cleavage was confirmed by the inability of heat-denatured DICER1 to degrade Alu RNA (FIG. 3e). Enforced expression of DICER1 in human RPE cells reduced Alu RNA abundance following enforced expression of Alu RNA (FIG. 3/), consistent with degradation of these repetitive transcripts by DICER1 in vivo. Collectively these data confirm that DICER1 dysregulation can trigger Alu/B1/B2 RNA accumulation.

Because cell stresses such as heat shock or viral infection can induce generalized retrotransposon activation, the present inventors wondered whether Alu RNA accumulation in geographic atrophy might be a generic response in dying retina. However, in the RPE of human eyes with geographic atrophy and in DICER1-depleted human RPE cells, there was no increase in the abundance of RNAs coded by L1.3
(a long interspersed repetitive element), human endogenous retrovirus-W envelope (a long terminal repeat retrotransposon), or hY3 (a repetitive small cytoplasmic Ro RNA) (FIG.

19). These data demonstrate that Alu RNA accumulation is a biologically specific response to DICER1 depletion.

To determine whether Alu RNA accumulation was derived from RNA polymerase II (Pol II) or Pol III transcription, the present inventors performed experiments using 5 α -amanitin (a Pol II inhibitor) and tagetitoxin (a Pol III inhibitor). Alu RNA upregulation induced by DICER1 knockdown was inhibited by tagetitoxin but not α -amanitin (FIG. 20). The present inventors also found using Northern blotting that Alu RNA from the RPE of human eyes with 10 geographic atrophy was approximately 300 nucleotides in length, consistent with the length of non-embedded Pol III Alu transcripts. Because homology between Alu RNA and 7SL RNA, the evolutionary precursor of Alu, can complicate interpretation of northern blot analysis, the present inventors reprobed these samples using a probe that specifically detects the non-Alu "S domain" of 7SL RNA. In contrast to the increased amounts of RNA species detected by the Alu-targeting probe in geographic atrophy RPE, there was no difference in 7SL RNA abundance. The present inventors 20 also confirmed that the Alu probe did not detect endogenous 7SL RNA under the stringent conditions the present inventors employed. Corroborating these data, real-time RT-PCR analysis showed that 7SL RNA was not dysregulated in the RPE of human eyes with geographic atrophy or in DICER1- 25 depleted human RPE cells (FIG. 21).

DICER1 knockdown also did not induce upregulation of several Pol II-transcribed genes (ADAR2, NICN, NLRP, SLFN 11) that contain embedded Alu sequences in their exons. Collectively, these data suggest that Alu RNA 30 detected in the RPE of human eyes with geographic atrophy are primary Alu transcripts and not passenger or bystander sequences embedded in other RNAs. Conclusive assignment of these Alu sequences as Pol III transcripts must await precise determination of their transcription start site.

Alu RNA Induces RPE Degeneration

Next the present inventors tested whether accumulation of Alu RNA might promote the development of geographic atrophy. Transfecting human or wild-type mouse RPE cells with a plasmid coding for Alu (pAlu) reduced cell viability 40 (FIG. 4a). Subretinal transfection of plasmids coding for two different Alu RNAs or for B1 or B2 RNAs induced RPE degeneration in wild-type mice (FIG. 4b, FIG. 22, and data not shown). Treatment of human RPE cells with a recombinant 281 nucleotide (nt)-long Alu RNA that is identical to 45 a Pol III derived Alu RNA isolated from a human embryonal carcinoma cell line, i.e., a single RNA strand that folds into a defined secondary structure, resulted in a dose-dependent increase in cell death (FIG. 4c). These findings suggest that endogenous DICER1 can degrade small amounts of Alu 50 RNA but are overwhelmed by high levels. Consistent with this concept, overexpression of DICER1 blocked pAluinduced cell death in human RPE cells (FIG. 4d) and RPE degeneration in wild-type mice (FIG. 4e).

The present inventors verified that subretinal injection of 55 Alu RNA resulted in its delivery to RPE cells in wild-type mice (FIG. 23), consistent with the ability of long RNAs with duplex motifs to enter cells²⁸. The present inventors then cloned a 302-nt long Alu RNA isolated from the RPE of a human eye with geographic atrophy and transcribed it 60 in vitro to generate partially and completely annealed structures that mimic Alu RNAs transcribed by Pol III and Pol II, respectively. Subretinal injection of either of these Alu RNAs resulted in RPE degeneration in wild-type mice (FIG. 4f, FIG. 24), supporting the assignment of disease causality 65 in accord with the molecular Koch's postulates. In contrast, subretinal injection of these Alu RNAs digested with

DICER1 did not induce RPE degeneration in wild-type mice (FIG. 4g, FIG. 24). When these Alu RNAs were subjected to mock DICER1 digestion, they retained their ability to induce RPE degeneration, suggesting a role for DICER1 in protecting against Alu RNA-induced degeneration.

The present inventors tested whether other structured RNAs of similar length as Alu would damage the retina. Subretinal transfection of transfer RNA or plasmids coding for 7SL RNA or two different primary miRNAs did not induce RPE degeneration in wild-type mice (FIG. 25). The present inventors reported that chemically synthesized dsR-NAs that mimic viral dsRNA can induce RPE degeneration by activating toll like receptor-3 (TLR3)²⁹, a pattern receptor that generically recognizes dsRNA. However, transfection of a plasmid coding for Alu RNA did not induce TLR3 phosphorylation in human RPE cells and did induce RPE degeneration in Tlr3^{-/-} mice (FIG. 26). These results indicate that the ability of Alu RNA to induce RPE degeneration cannot be attributed solely to its repetitive or double stranded nature, as it exerted effects distinct from other structured dsRNAs of similar length.

The mechanism of RPE cell death in geographic atrophy has not been previously defined. DNA fragmentation has been identified in RPE cells in human eyes with geographic atrophy30, and Dicer1 knockdown has been associated with induction of apoptosis in diverse tissues^{12,31}. The present inventors now provide evidence of caspase-3 cleavage in regions of RPE degeneration in human eyes with geographic atrophy (FIG. 27). Caspase-3 cleavage was also observed in the RPE cells of BEST1Cre; Dicer1^{ff} mice and in Alu RNA-stimulated or -overexpressing human RPE cells. These data suggest a role for Alu RNA-induced RPE cell apoptosis triggered by DICER1 dysregulation in geographic atrophy.

Although the present inventors show that Alu RNA induces RPE degeneration, the presented observations could be consistent with the idea that an imbalance in small RNA species produced from long Alu RNAs could contribute to the RPE degeneration phenotype. To study this question, the present inventors exposed human RPE cells or wild-type mice to DICER1 cleavage fragments of Alu RNA. Subretinal transfection of these fragments alone in wild-type mice had no detectable effect on RPE cell morphology, and co-administering these fragments did not prevent RPE cell degeneration induced by subretinal transfection of a plasmid coding for Alu RNA (FIG. 28). Similarly, these fragments did not prevent human RPE cell death induced by overexpression of Alu RNA. These data suggest that upregulation of long Alu RNA rather than imbalance in Alu RNA-derived small RNA fragments is responsible for RPE degeneration induced by DICER1 reduction.

As these experiments were performed with in vitro cleavage fragments the present inventors cannot be certain whether in vivo cleavage fragments would function similarly. However, Alu RNAs with varying sequences induced RPE degeneration in vivo. Because the cleavage fragments of these different Alu RNAs would not be identical it is unlikely that they all execute identical biological functions, particularly if they functioned as miRNAs. Another line of evidence that Alu RNA, and not its cleavage fragments, is responsible for RPE degeneration comes from functional rescue experiments (see below) wherein antisense-mediated inhibition of Alu RNA blocks human RPE cell death induced by DICER1 knockdown and inhibition of B1/B2 RNA blocks RPE degeneration in Dicer1-depleted mice and mouse RPE cells. Because these antisense treatments would not be expected to alter the reduced levels of DICER1-

cleaved Alu/B1/B2 RNA fragments, the imbalance in these fragments is unlikely to have induced RPE degeneration. Nevertheless, subtle functions of these small RNAs in modulating Alu RNA induced pathology cannot be excluded.

To dissect the contribution of Alu RNA accumulation versus that of miRNA dysregulation to RPE degeneration in the context of reduced DICER1 expression, the present inventors re-examined HCT-DICER1ex5 cells in which miRNA biogenesis is impaired but long dsRNA cleavage is 10 preserved due to the intact RNase III domains. The present inventors found no significant difference in Alu RNA levels between HCT-DICER1ex5 and parent HCT116 cells (FIG. 29). In contrast, when DICER1 was knocked down by antisense oligonucleotides in HCT116 cells, increased Alu 15 RNA accumulation was observed. Also, Alu RNA induces similar levels of cytotoxicity in HCT-DICER1ex5 and parent HCT116 cells, suggesting that coexisting miRNA expression deficits do not augment Alu RNA induced RPE degeneration. In conjunction with the discordance in the RPE 20 degeneration phenotype between ablation of Dicer1 and that of various other small RNA biogenesis pathway genes in mice, the findings suggest that Alu RNA accumulation is critical to cytotoxicity induced by DICER1 reduction.

RPE Degeneration Blocked by Alu RNA Inhibition 25 The present inventors then tested whether the cytotoxic effects of DICER1 reduction could be attributed to Alu RNA accumulation. DICER1 knockdown in human RPE cells by antisense oligonucleotides reduced cell viability (FIG. 5a). This cytotoxic effect of DICER1 reduction was inhibited by 30 antisense oligonucleotides targeting Alu RNA sequences but not by a scrambled antisense control (FIG. 5a, b and FIG. 21). Ad-Cre infection of RPE cells isolated from Dicer1^{fl} mice resulted in reduced cell viability, and this was blocked by antisense oligonucleotides targeting both B1 and B2 35 repeat RNAs but not by a scrambled antisense control (FIG. 5c, d). Subretinal administration of antisense oligonucleotides that reduced accumulation of B1 and B2 RNAs also inhibited RPE degeneration in Dicer1^{ff} mice treated with AAV1-BEST1-Cre (FIG. 5e, f), providing evidence of in 40 vivo functional rescue.

The present inventors tested whether Alu inhibition also rescued miRNA expression deficits as a potential explanation for the functional rescue of RPE degeneration induced by DICER1 depletion. As expected, DICER1 knockdown in 45 human RPE cells reduced the abundance of numerous miRNAs including let-7a, which is ubiquitously expressed, miR-184, miR-204/211, and miR-221/222, which are enriched in the RPE, and miR-320a, and miR-484 and miR-877, which are DROSHA/DGCR8-independent and 50 DICER1-dependent (FIG. 5g). However, inhibition of Alu RNA did not lead to recovery of miRNA expression in these DICER1-depleted cells. Thus the rescue of RPE cell viability by Alu RNA inhibition despite the persistence of global miRNA expression deficits argues that RPE degeneration 55 induced by DICER1 deficit is due to Alu RNA accumulation and not miRNA dysregulation.

These data, taken together, support a model in which primary Alu transcripts are responsible for the observed RPE degeneration. Whether similar pathology can also result 60 from upregulation of as yet undefined Pol II transcripts with embedded Alu sequences is an intriguing possibility that may be addressed in future studies. Importantly, the present inventors show here that primary Alu transcripts are elevated in human disease, that Alu transcripts recapitulate disease in 65 relevant experimental models, and that targeted suppression of Alu transcripts successfully inhibits this pathology. These

observations have direct relevance for clinical strategies to prevent and treat geographic atrophy.

Discussion

The findings elucidate a critical cell survival function for DICER1 by functional silencing of toxic Alu transcripts. This unexpected function suggests that RNAi-independent mechanisms should be considered in interpreting the phenotypes of systems in which Dicer1 is dysregulated. For example, it would be interesting to test the speculation that Dicer1 ablation induced cell death in mouse neural retina³² and heart³³ might also involve B1/B2 RNA accumulation. More broadly, recognition of DICER1 's hitherto unidentified function as an important controller of transcripts derived from the most abundant repetitive elements in the human and mouse genomes can illuminate new functions for RNases in cytoprotective surveillance. DICER1 expression is reduced in geographic atrophy and partial loss of DICER promotes RPE degeneration; thus the present inventors could speculate that loss of heterozygosity in DICER1 may underlie the development of geographic atrophy, similar to its function as a haploinsufficient tumor suppressor³⁴⁻³⁶

This also is, to our knowledge, the first example of how Alu could cause a human disease via direct RNA cytotoxicity rather than by inducing chromosomal DNA rearrangements or insertional mutagenesis through retrotransposition, which have been implicated in diseases such as α -thalassemia³⁷, colon cancer³⁸, hypercholesterolemia^{39,40}, and neurofibromatosis⁴¹. Future studies can be employed to determine the precise chromosomal locus of the Alu RNA elements that accumulate in geographic atrophy and the nature of transcriptional and post-transcriptional machinery that enable their biogenesis.

In addition to processing miRNAs³, DICER1 has been implicated in heterochromatin assembly^{42,43.} Since Alu repeat elements are abundant within heterochromatin⁴⁴, it would be interesting to investigate whether perturbations in centromeric silencing also underlie the pathogenesis of geographic atrophy. Indeed, the finding that chromatin remodelling at Alu repeats can regulate miRNA expression⁴⁵ raises the intriguing possibility of other types of regulatory intersections between DICER1 and Alu. It also remains to be investigated whether centromeric satellite repeats that have been described to accumulate in Dicer1-null mouse embryonic stem cells^{46,47} might be involved in the pathogenesis of geographic atrophy.

In the mouse germline, Dicer1 has been implicated in the generation of endogenous small interfering RNAs (endosiRNAs) from repeat elements^{48,49}. If this process is conserved in mammalian somatic tissues, it would be interesting to learn whether endo-siRNAs serve a homeostatic function in preventing the development of geographic atrophy. A recent study in nematodes demonstrated that caspases can cleave Dicer1 and convert it into a DNase that promotes apoptosis⁵⁰. The finding that Alu RNA can induce caspase activation therefore introduces the possibility of bidirectional regulation between DICER1 and Alu that could trigger feed-forward loops that further amplify the disease state.

The inciting events that trigger an RPE-specific reduction of DICER1 in patients with geographic atrophy remain to be determined. Potential culprit could include oxidative stress, which is postulated to underlie AMD pathogenesis², as the present inventors found that exposure to hydrogen peroxide downregulates DICER1 in human RPE cells (FIG. **30**). While the upstream triggers of DICER1 dysregulation and the possible role of other DICER-dependent, DROSHA/ DGCR8-independent small RNAs in geographic atrophy await clarification, the ability of Alu RNA antisense oligonucleotides to inhibit RPE cell death induced by DICER1 depletion provides a rationale to investigate Alu RNA inhibition or DICER1 augmentation as potential therapies for geographic atrophy.

Additional Notes

Dicer1 mRNA levels are not modulated in multiple mouse models of retinal degeneration including light damage^{53,54} hyperoxia, ⁵⁵retinal detachment^{53,56}, Crx^{-/-} mice⁵⁷, Rslh^{-/-} mice⁵⁸, rd1 mice^{59,60}, cpfl1 mice⁶¹, or Mitf mice⁶². Dicer1 abundance also is not reduced in mouse models of cellular 10 stress in the retina including exposure to advanced glycation endproducts⁶³ or retinal detachment⁶⁴. Therefore, Dicer1 downregulation is not a generic late-stage stress response in the retina.

Materials and Methods

Animals

All animal experiments were approved by institutional review committees and the Association for Research in Vision and Ophthalmology. C57Bl/6J and Dicer1^{ff} mice were purchased from The Jackson Laboratory. Transgenic 20 mice that express Cre recombinase in the retinal pigmented epithelium under the control of the human bestrophin-1 promoter (BEST1 Cre mice), DGCR8^{*f*/*f*}, Drosha^{*f*/*f*}, Tarbp2^{-/-}, Ccl2^{-/-} Ccr2^{-/-}, and Cp^{-/-} Heph^{-/-} mice have been previously described⁶⁵⁻⁷¹. Ago2^{*f*/*f*} mice⁷² and mice 25 deficient in Ago1, Ago3, or Ago4 (ref. 73) were generously provided by A. Tarakhovsky. For all procedures, anaesthesia was achieved by intraperitoneal injection of 50 mg/kg ketamine hydrochloride (Ft. Dodge Animal Health) and 10 mg/kg xylazine (Phoenix Scientific), and pupils were dilated 30 with topical 1% tropicamide (Alcon Laboratories).

Fundus Photography.

Retinal photographs of dilated mouse eyes were taken with a TRC-50 IX camera (Topcon) linked to a digital imaging system (Sony).

Human Tissue.

Donor eyes or ocular tissues from patients with geographic atrophy due to AMD or patients without AMD were obtained from various eye banks in Australia and the United States of America. These diagnoses were confirmed by 40 dilated ophthalmic examination prior to acquisition of the tissues or eyes or upon examination of the eye globes post mortem. The study followed the guidelines of the Declaration of Helsinki Institutional review boards granted approval for allocation and histological analysis of specimens. 45

Immunolabeling.

Human eves fixed in 2-4% paraformaldehyde were prepared as eyecups, cryoprotected in 30% sucrose, embedded in optimal cutting temperature compound (Tissue-Tek OCT; Sakura Finetek), and cryosectioned into 10 µm sections. 50 Depigmentation was achieved using 0.25% potassium permanganate and 0.5% oxalic acid. Immunohistochemical staining was performed with the mouse antibody against dsRNA (1:1,000, clone J2, English & Scientific Consulting) or rabbit antibody against human DICER1 (1:100, Santa 55 Cruz Biotechnology). Isotype IgG was substituted for the primary antibody to assess the specificity of the staining Bound antibody was detected with biotin-conjugated secondary antibodies (Vector Laboratories). Slides were further incubated in alkaline phosphatase-streptavidin solution (In- 60 vitrogen) and the enzyme complex was visualized by Vector Blue (Vector Laboratories). Levamisole (Vector Laboratories) was used to block endogenous alkaline phosphatase activity. Slides were washed in PBS, rinsed with deionized water, air-dried, and then mounted in Clear Mount (EMS). 65 Mouse RPE/choroid flat mounts were fixed with 4% paraformaldehyde or 100% methanol and stained with rabbit

24

antibodies against human zonula occludens-1 (1:100, Invitrogen), Cre recombinase (1:1000, EMD4Biosciences), or human cleaved caspase-3 (1:200, Cell Signaling) and visualized with Alexa594- or Cy5-conjugated secondary antibodies. Both antibodies are cross-reactive against the mouse homologues. Primary human RPE cells were grown to 70-80% confluency in chamber slides (Lab-Tek). After 24 h of transfection with pAlu or pUC19, cells were fixed in acetone for 10 min at -20° C. Cells were blocked with PBS-3% BSA and incubated with mouse antibody against dsRNA (1:500, clone J2) overnight at 4° C. and visualized with Alexa Fluor 488-conjugated secondary antibodies. For DICER1 staining, cells were fixed in methanol/acetone (7:3) for 30 min on ice, blocked with PBS-3% BSA-5% FBS, incubated with rabbit antibody against human DICER1 (1:100, Santa Cruz Biotechnology) overnight at 4° C., and visualized with goat-anti-rabbit Alexa Fluor 594-conjugated secondary antibodies. After DAPI counterstaining, slides were cover slipped in Vectashield (Vector Laboratories). Images were obtained using the Leica SP-5 or Zeiss Axio Observer Z1 microscopes.

Histology.

Mouse eyes were fixed with 4% paraformaldehyde and 3.5% glutaraldehyde, postfixed in 2% osmium tetroxide, and dehydrated in ethanol and embedded. Semi-thin (1 µm) sections were cut and stained with toluidine blue. Bright field images were obtained using the Zeiss Axio Observer Z1 microscope.

Subretinal Injection.

35

Subretinal injections $(1 \,\mu L)$ in mice were performed using a Pico-Injector (PLI-100, Harvard Apparatus). In vivo transfection of plasmids coding for DICER1 (ref. 74), Alu Ya5 (ref. 75), Alu Yb9 (ref. 76), 7SL RNA (ref. 77), pri-miR29b1 (Addgene), or pri-miR26a2 (Addgene) and bovine tRNA (Sigma-Aldrich) (0.5 mg/mL) was achieved using 10% Neuroporter (Genlantis). AAV1-BEST1-Cre⁷⁸ or AAV1-BEST1-GFP were injected at 1.0×10¹¹ pfu/mL and recombinant Alu RNAs (1: a single RNA strand of 281 nucleotides whose sequence is that of the cDNA clone TS 103 (ref 51) and folds into a defined secondary structure identical to a Pol III derived transcript; 2: a single RNA strand of 302 nucleotides whose sequence is identical to that of a clone isolated from the RPE of a human eye with geographic atrophy that folds into a defined secondary structure identical to a Pol III derived transcript; or 3: a fully complementary dsRNA version of this 302 nucleotide long sequence that mimics a Pol II derived transcript) was injected at 0.3 mg/mL. Cellpermeating cholesterol conjugated-B1/B2 antisense oligonucleotides (as) (5'-TCAGATCTCGTTACGGATGGTT-GTGA-3') or cholesterol conjugated-control as (5'-TTGGTACGCATACGTGTTGACTGTGA-3') (both from Integrated DNA Technologies) were injected (2 μ g in 1 μ L) 10 days after AAV1-BEST1-Cre was injected in Dicer1^{ff} mice.

Isolation of dsRNA.

Human eyes were stored in RNAlater (Ambion). Tissue extracts were prepared by lysis in buffer containing 50 mM Tris-HCl, pH 8, 150 mM NaCl, 1% Nonidet P-40, protease and phosphatase inhibitors (complete mini EDTA-free, protease inhibitor and phosphatase inhibitor cocktail tablets, Roche), and RNase inhibitor (SUPERase-In, Ambion). After homogenization using bullet blender (Nextadvance) and centrifugation, immunoprecipitations were performed by adding 40 µg of mouse antibody against dsRNA (clone J2) for 16 h at 4° C. Immunocomplexes were collected on protein A/G agarose (Thermoscientific) and dsRNA species

were separated and isolated using Trizol (Invitrogen) according to the manufacturer's instructions.

Ligation of dsRNA and Anchor Primer.

An anchor primer (PC3-T7 loop, 5'-p-GGATC-CCGGGAATTCGGTAATACGACTCACTATATTTT-5 TATAGTGAGTCGTATTA-OH-3', 200-400 ng, IDT)^{79,80} was ligated to dsRNA (200-400 ng) in 50 mM HEPES/NaOH, pH 8 (vWR), 18 mM MgCl₂ (Invitrogen), 0.01% BSA (Fisher Scientific), 1 mM ATP (Roche), 3 mM DTT (Fluka), 10% DMSO (Finnzymes), 20% PEG 6000 (Alfa 10 Aesar), and 30U T4 RNA ligase (Ambion). Ligation was performed at 37° C. for 16 h, and ligated dsRNA was purified by MinElute Gel extraction columns (Qiagen).

Sequence-Independent cDNA Synthesis.

After denaturation, ligated dsRNA was reverse tran- 15 scribed in a RT reaction containing 50 mM Tris-HCl, pH 8.3, 10 mM MgCl₂, 70 mM KCl, 30 mM β -mercaptoethanol, 1 mM dNTPs and 15U cloned AMV reverse transcriptase (Invitrogen). The mixture was incubated in a thermal cycler (Eppendorf) at 42° C. for 45 min followed by 55° C. for 15 20 min.

Polymerase Chain Reaction (PCR) Amplification.

Amplification of cDNA was performed using primer PC2 (5'-p-CCGAATTCCCGGGATCC-3', IDT) in a reaction buffer containing 5 μ L cDNA and 40 μ L Platinum PCR Super- 25 Mix (Invitrogen). The PCR cycling parameters consisted of one step of 72° C. for 1 min to fill incomplete cDNA ends and produce intact DNA, followed by one step of initial denaturation (94° C., 2 min), 39 cycles of 94° C. for 30 s, 53° C. for 30 s, and 72° C. for 1 min, and a final extension step 30 of 72° C. for 10 min. In vitro transcribed dsRNAs of varying lengths (325 bp, 1 and 2 kb) were used as positive controls.

Cloning and Sequencing.

The amplified cDNA products were incubated with 1U calf intestinal alkaline phosphatase (Invitrogen) at 37° C. for 35 5 min to remove the 5'-phosphate group, separated on a low-melting point agarose gel (1%) and purified using Qiaquick gel extraction kit (Qiagen). The purified dephosphorylated cDNA fragments were cloned in PCRII TOPO vector (Invitrogen) and sequenced using M13 forward (-20) 40 and M13 reverse primers at the University of Kentucky Advanced Genetic Technologies Center using multi-colour fluorescence based DNA sequencer (ABI 3730x1). Sequences were assembled using ContigExpress from vector NTI Advance. The homology of the isolated cDNA 45 sequences to known Alu consensus sequences was determined using the CENSOR server⁸¹ (a WU-BLAST-powered database of repetitive elements (http://www.girinst.org/censor). For each cDNA sequence, the homologous region of the query was aligned to the consensus Alu sequence using 50 BLASTn⁸² (http://www.ncbi.nlm.nih.gov/BLAST). Multiple sequence alignment was performed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2). The consensus sequences have been deposited in GenBank under the accession numbers HN176584 and HN176585.

Alu RNA Synthesis.

The present inventors synthesized two Alu RNAs: a 281 nt Alu sequence originating from the cDNA clone TS 103 which is known to be expressed in human cells⁵¹ and a 302 nt Alu sequence isolated from the RPE of a human eye with 60 geographic atrophy. Both of these Alu RNAs were synthesized using a RNA polymerase T7 promoter and runoff transcription followed by gel purification as previously described⁸³. This yields single stranded RNAs that fold into a defined secondary structure identical to Pol III derived 65 transcripts. The present inventors also synthesized a fully complementary dsRNA form (resembling a Pol II derived

transcript) of the 302 nt human geographic atrophy Alu using linearized PCRII TOPO plasmid templates using T7 or SP6 RNA polymerases (MegaScript, Ambion) according to the manufacturer's recommendations. After purification, equal molar amount of each transcript were combined and heated at 95° C. for 1 min, cooled and then annealed at room temperature for 24 h. The Alu dsRNA was precipitated, suspended in water and analyzed on 1.4% non-denaturing agarose gel using the single-stranded complementary strands as controls.

Real-Time PCR.

Total RNA was extracted from tissues or cells using Trizol reagent (Invitrogen) according to manufacturer's recommendations and were treated with RNase free DNase (Ambion). Total RNA (1 µg) was reverse transcribed as previously described⁷⁰ using qScript cDNA SuperMix (Quanta Biosciences). The RT products (cDNA) were amplified by real-time quantitative PCR (Applied Biosystems 7900 HT Fast Real-Time PCR system) with Power SYBR green Master Mix. Oligonucleotide primers specific for DICER1 (forward 5'-CCCGGCTGAGAGAACTTACG-3' reverse 5'-CTGTAACTTCGACCAACACCTTTAAA-3'), DROSHA (forward 5'-GAACAGTTCAACCCCGATGTG-3' and reverse 5'-CTCAACTGTGCAGGGCGTATC-3'), DGCR8 (forward 5'-TCTGCTCCTTAGCCCTGTCAGT-3' and reverse 5'-CCAACACTCCCGCCAAAG-3'), EIF2C2 (forward 5'-GCACGGAAGTCCATCTGAAGTC-3' and reverse 5'-CCGGCGTCTCTCGAGATCT-3'), human 18S rRNA (forward 5'-CGCAGCTAGGAATAATGGAATAGG-3' and reverse 5'-GCCTCAGTTCCGAAAACCAA-3'), Alu (forward 5'-CAACATAGTGAAACCCCGTCTCT-3' and reverse 5'-GCCTCAGCCTCCCGAGTAG-3'), LINE L1.3 (ORF2) (forward 5'-CGGTGATTTCTGCATTTCCA-3' and reverse 5'-TGTCTGGCACTCCCTAGTGAGA-3'), HERV-WE1 (forward 5'-GCCGCTGTATGACCAGTAGCT-3' and reverse 5'-GGGACGCTGCATTCTCCAT-3'), human Roassociated Y3 (hY3) (forward 5'-CCGAGTGCAGTGGT-GTTTACA-3' and reverse 5'-GGAGTGGA-GAAGGAACAAAGAAATC-3'), 7SL (forward 5'-CGGCATCAATATGGTGACCT-3' and reverse 5'-CT-GATCAGCACGGGAGTTTT-3'), B1 (forward 5'-TGC-CTTTAATCCCAGCACTT-3' and reverse 5'-GCTGCTCA-CACAAGGTTGAA-3'), B2 (forward 5'-GAGTTCAAATCCCAGCAACCA-3' reverse and 5'-AAGAGGGTCTCAGATCTTGTTACAGA-3'), cytoplasmic B2 (forward 5'-GCCCTGTTACAATTGGCTTT-3' and reverse 5'-GTGGTTGCTGGGATTTGAAC-3').

Dicer1 (forward 5'-CCCACCGAGGTGCATGTT-3' and reverse 5'-TAGTGGTAGGAGGCGTGTGTAAAA-3'), mouse 18S rRNA (forward 5'-TTCGTATTGCGC-CGCTAGA-3' and reverse 5'-CTTTCGCTCTGGTC-CGTCTT-3') were used. The QPCR cycling conditions were 50° C. for 2 min, 95° C. for 10 min followed by 40 cycles of a two-step amplification program (95° C. for 15 s and 58° 55 C. for 1 min). At the end of the amplification, melting curve analysis was applied using the dissociation protocol from the Sequence Detection system to exclude contamination with unspecific PCR products. The PCR products were also confirmed by agarose gel and showed only one specific band of the predicted size. For negative controls, no RT products were used as templates in the QPCR and verified by the absence of gel-detected bands. Relative expressions of target genes were determined by the $2^{-\Delta\Delta Ct}$ method.

miRNA PCR.

miRNA abundance was quantified using the All-in-One[™] miRNA qRT-PCR Detection Kit (GeneCopoeia). Briefly, total RNA was polyadenylated and reverse transcribed using

Western Blot.

a poly dT-adaptor primer. Quantitative RT-PCR was carried out using a miRNA-specific forward primer and universal reverse primer. PCR products were subjected to dissociation curve and gel electrophoresis analyses to ensure that single. mature miRNA products were amplified. Data were normalized to ACTB levels. The forward primers for the miRNAs were as follows: miR-184 (5'-TGGACGGAGAACTGA-TAAGGGT-3'); miR-221/222 (5'-AGCTACATCTGGC-TACTGGGT-3'); miR-204/211 (5'-TTCCCTTTGTCATC-10(5'-CTTCGCCT-3'); miR-877 (5'-GTAGAGGAGATGGCGCAGGG-3'); miR-320a AAAAGCTGGGTTGAGAGGGGCGA-3'); miR-484 (5'-TCAGGCTCAGTCCCCTCCCGAT-3'); let-7a (5'-TGAGGTAGTAGGTTGTATAGTT-3'). The reverse primers were proprietary (Genecopoeia). The primers for ACTB were forward (5'-TGGATCAGCAAGCAGGAG-TATG-3') and reverse (5'-GCATTTGCGGTGGACGAT-3'). Dot Blot (Immuno-Dot Binding).

Increasing amounts of Alu RNA were spotted onto 20 hybond-N⁺ positively charged nylon membrane (Amersham) and UV cross-linked. After blocking, the membranes were incubated with mouse antibody against dsRNA (1:1, 000, clone J2) for 1 h at RT. The peroxidase-conjugated goat anti-mouse secondary antibody (1:5,000, Sigma) was used ²⁵ for 1 h at RT. After several washes, the signals were visualized by enhanced chemiluminescence (ECL plus, Amersham). In vitro transcribed dsRNAs of different length were used as positive controls. Transfer and ribosomal RNAs were used as negative controls.

Northern Blot.

Total RNA from normal and diseased macular RPE was extracted as described above using Trizol. RNA integrity and quality was assessed using 1% agarose gel electropho-35 resis and RNA concentrations and purity were determined for each sample by NanoDrop 1000 spectrophotometer V3.7 (Thermo Fisher Scientific). dsRNA (2 µg) was separated on denaturing 15% PAGE-urea ready gel (Bio-Rad), and total RNA (10 µg) was separated by size on 1% agarose, 0.7M 40 DICER1 antisense oligonucleotide (as) (5'-GCUGACformaldehyde gels and visualized on an ultraviolet transilluminator to ensure consistent loading between different groups and to record the distance of migration of the 18S and 28S rRNA bands. dsRNA ladder (21-500 bp, New England BioLabs) and RNA ladder (0.1-2 kb, Invitrogen) were used 45 as markers. Gels were then transferred to a positively charged Nvlon membrane (Hvbond-N+, GE Healthcare Bio-Sciences) by vacuum blotting apparatus (VacuGene XL Vacuum Blotting System, GE Healthcare Bio-Sciences). The RNAs were crosslinked to the membranes by ultraviolet 50 irradiation and baked at 80° C. for 20-30 min. Membranes were hybridized with $(\alpha$ -³²P)-dCTP-labeled DNA Alu probe at 42° C. overnight. On the following day, the membranes were rinsed twice with 1×SSC, 0.1% SDS at 55° C. Each wash was for 20 min, and then membranes were subjected 55 to storage in a phosphor autoradiography cassette. Hybridization signals were determined by using Typhoon phosphorimager (GE Healthcare Bio-Sciences). The 7SL probe was synthesized by PCR amplification of a 7SL RNA plasmid^{77,} 84 with the following primers (forward 5'-ATCGGGTGTC- 60 CGCACTAAG-3' and reverse 5'-ATCAG-CACGGGAGTTTTGAC-3') designed to amplify a 128-bp fragment within the S-region that is not contained in Alu. For visualization of U6, membranes were stripped and blotted again using the High Sensitive MiRNA Northern 65 Blot Assay Kit (Signosis) according to the manufacturer's instructions.

28

Tissues were homogenized in lysis buffer (10 mM Tris base, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.5% NP-40, protease and phosphatase inhibitor cocktail (Roche)). Protein concentrations were determined using a Bradford assay kit (Bio-Rad) with bovine serum albumin as a standard. Proteins (40-100 µg) were run on 4-12% Novex Bis-Tris gels (Invitrogen). The transferred membranes were blocked for 1 h at RT and incubated with antibodies against DICER1 (1:1,000, ref. 85; or 1:200, Santa Cruz Biotechnology) at 4° C. overnight. Protein loading was assessed by immunoblotting using an anti-Tubulin antibody (1:1,000; Sigma-Aldrich). The secondary antibodies were used (1:5,000) for 1 h at RT. The signal was visualized by enhanced chemiluminescence (ECL Plus) and captured by VisionWorksLS Image Acquisition and Analysis software (Version 6.7.2, UVP, LLC). Densitometry analysis was performed using ImageJ (NIH). The value of 1 was arbitrarily assigned for normal eye samples.

DICER1 Cleavage.

The ability of DICER1 to cleave Alu RNA was tested using Recombinant Human Dicer Enzyme Kit (Genlantis) according the manufacturer's instructions. The products of the digestion were purified for the in vivo injection using RNA Purification Column (Genlantis).

Cell Culture.

All cell lines were cultured at 37° C. and 5% CO₂. Primary mouse RPE cells were isolated as previously 30 described⁸⁶ and grown in Dulbecco Modified Eagle Medium (DMEM) supplemented with 10% FBS and standard antibiotics concentrations. Primary human RPE cells were isolated as previously described⁸⁷ and maintained in DMEM supplemented with 20% FBS and antibiotics. Parental HCT116 and isogenic Dicer^{ex5} cells²⁵ were cultured in McCoy's 5A medium supplemented with 10% FBS.

Transient Transfection.

Human and mouse RPE cells were transfected with pUC19, pA1u, pCDNA3.1/Dicer1-FLAG, pCDNA3.1, CTTTTTGCTUCUCA-3'), B1/B2 as (5'-TCAGATCTCGT-TACGGATGGTTGTGA-3'), control (for DICER1 and B1/B2) as (5'-TTGGTACGCATACGTGTTGACTGTGA-3'), Alu as (5'-CCCGGGTTCACGCCATTCTCCTGC-CTCAGCCTCACGAGTAGCTGGGACTACAGGCGC

CCGACACCACTCCCGGCTAATTTTTGTATTTT-3'), control (for Alu) as (5'-GCATGGCCAGTCCATTGATCT-TGCACGCTTGCCTAGTACGCTCCTCAACCTATC-

CTCC TAGCCCGTTACTTGGTGCCACCGGCG-3') using Lipofectamine 2000 (Invitrogen) or Oligofectamine (Invitrogen) according to the manufacturer's instructions.

Adenoviral Infection.

Cells were plated at density of 15×10^3 /cm² and after 16 h, at approximately 50% confluence, were infected with AdCre or AdNull (Vector Laboratories) with a multiplicity of infection of 1,000.

RNA Polymerase Inhibition.

Human RPE cells were transfected with DICER1 or control antisense oligonucleotides using Lipofectamine 2000. After a change of medium at 6 h, the cells were incubated with 45 µM tagetitoxin (Epicentre Technologies, Tagetin) or 10 µg/ml a-amanitin (Sigma-Aldrich) and the total RNA was collected after 24 h.

Cell Viability.

MTS assays were performed using the CellTiter 96 A Queous One Solution Cell Proliferation Assay (Promega) in according to the manufacturer's instructions.

Caspase-3 Activity.

Sub-confluent human RPE cells were treated with PBS or Alu RNA at different concentrations in 2% FBS medium for 8 h. The caspase-3 activity was measured using Caspase-3 Fluorimetric Assay (R&D Systems) according to the manu- 5 facturer's instructions.

29

Oxidative Stress.

Confluent human RPE cells were exposed to hydrogen peroxide (0-2 mM, Fisher Scientific).

Statistics.

Results are expressed as mean±SEM, with P<0.05 considered statistically significant. Differences between groups were compared by using Mann-Whitney U test or Student t test, as appropriate, and 2-tailed P values are reported.

Throughout this document, various references are men- 15 tioned. All such references are incorporated herein by reference, including the references set forth in the following list:

REFERENCES

- 1. Ferrara, N. Vascular endothelial growth factor and agerelated macular degeneration: from basic science to therapy. Nat Med 16, 1107-1111 (2010).
- 2. Ambati, J., Ambati, B. K., Yoo, S. H., Ianchulev, S. & 25 Adamis, A. P. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48, 257-293 (2003).
- 3. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation 30 24. Chendrimada, T. P. et al. TRBP recruits the Dicer step of RNA interference. Nature 409, 363-366 (2001).
- 4. Batzer, M. A. & Deininger, P. L. Alu repeats and human genomic diversity. Nat Rev Genet 3, 370-379 (2002).
- 5. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240 35 26. Schonborn, J. et al. Monoclonal antibodies to double-(2004).
- 6. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441 (2004).
- 7. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 40 185-197 (2004).
- 8. Wiesen, J. L. & Tomasi, T. B. Dicer is regulated by cellular stresses and interferons. Mol Immunol 46, 1222-1228 (2009).
- 9. Ambati, J. et al. An animal model of age-related macular 45 degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9, 1390-1397 (2003).
- 10. Takeda, A. et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460, 225-230 (2009).50
- 11. Hahn, P. et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci USA 101, 13850-13855 (2004).
- 12. Harfe, B. D., McManus, M. T., Mansfield, J. H., Horn- 55 32. Damiani, D. et al. Dicer inactivation leads to progressive stein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102, 10898-10903 (2005).
- 13. Iacovelli, J. et al. Generation of cre transgenic mice with 60 postnatal RPE-specific ocular expression. Invest Ophthalmol Vis Sci, In press (2010).
- 14. Alexander, J. J. & Hauswirth, W. W. Adeno-associated viral vectors and the retina. Adv Exp Med Biol 613, 121-128 (2008).
- 15. Chong, M. M., Rasmussen, J. P., Rudensky, A. Y. & Littman, D. R. The RNAseIII enzyme Drosha is critical in

T cells for preventing lethal inflammatory disease. J Exp Med 205, 2005-2017 (2008).

- 16. Yi, R. et al. DGCR8-dependent microRNA biogenesis is essential for skin development. Proc Natl Acad Sci USA 106, 498-502 (2009).
- 17. O'Carroll, D. et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 21, 1999-2004 (2007).
- 18. Chong, M. M. et al. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24, 1951-1960 (2010).
- 19. Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shR-NAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22, 2773-2785 (2008).
- 20. Schaefer, A. et al. Argonaute 2 in dopamine 2 receptorexpressing neurons regulates cocaine addiction. J Exp Med 207, 1843-1851 (2010).
- 20 21. Diederichs, S. & Haber, D. A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097-1108 (2007).
 - 22. Kaneda, M., Tang, F., O'Carroll, D., Lao, K. & Surani, M. A. Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2, 9 (2009)
 - 23. Su, H., Trombly, M. I., Chen, J. & Wang, X. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23, 304-317 (2009).
 - complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744 (2005).
 - 25. Cummins, J. M. et al. The colorectal microRNAome. Proc Natl Acad Sci USA 103, 3687-3692 (2006).
 - stranded RNA as probes of RNA structure in crude nucleic acid extracts. Nucleic Acids Res 19, 2993-3000 (1991).
 - 27. Kato, H. et al. Length-dependent recognition of doublestranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205, 1601-1610 (2008).
 - 28. Saleh, M. C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8, 793-802 (2006).
 - 29. Yang, Z. et al. Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359, 1456-1463 (2008).
 - 30. Dunaief, J. L., Dentchev, T., Ying, G. S. & Milam, A. H. The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120, 1435-1442 (2002).
 - 31. Davis, T. H. et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28, 4322-4330 (2008).
 - functional and structural degeneration of the mouse retina. J Neurosci 28, 4878-4887 (2008).
 - 33. Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105, 2111-2116 (2008).
 - 34. Merritt, W. M. et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359, 2641-2650 (2008)
 - 35. Kumar, M. S. et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23, 2700-2704 (2009).
 - 36. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

20

25

- 37. Nicholls, R. D., Fischel-Ghodsian, N. & Higgs, D. R. Recombination at the human alpha-globin gene cluster: sequence features and topological constraints. *Cell* 49, 369-378 (1987).
- Nystrom-Lahti, M. et al. Founding mutations and Alumediated recombination in hereditary colon cancer. *Nat Med* 1, 1203-1206 (1995).
- Lehrman, M. A. et al. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. *Science* 227, 140-10 146 (1985).
- 40. Lehrman, M. A., Goldstein, J. L., Russell, D. W. & Brown, M. S. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. *Cell* 48, 827-835 (1987).
- 41. Wallace, M. R. et al. A de novo Alu insertion results in neurofibromatosis type 1. *Nature* 353, 864-866 (1991).
- 42. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. *Science* 297, 1833-1837 (2002).
- 43. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. *Science* 297, 2232-2237 (2002).
- 44. Prades, C., Laurent, A. M., Puechberty, J., Yurov, Y. & Roizes, G. SINE and LINE within human centromeres. J Mol Evol 42, 37-43 (1996).
- 45. Saito, Y. et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mc1-1 in human gastric cancer cells. *Oncogene* 28, 2738-2744 (2009).
- 46. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, 30 S. & Hannon, G. J. Characterization of Dicer-deficient murine embryonic stem cells. *Proc Natl Acad Sci USA* 102, 12135-12140 (2005).
- 47. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. *Genes Dev* 19, 489-501 (2005).
- 48. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. *Nature* 453, 534-538 (2008).
- 49. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. *Nature* 453, 539-543 (2008).
- 50. Nakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S. & Xue, D. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. *Science* 328, 327-334 (2010).
- 51. Shaikh, T. H., Roy, A. M., Kim, J., Batzer, M. A. & Deininger, P. L. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. *J Mol Biol* 271, 222-234 (1997).
- 52. Sinnett, D., Richer, C., Deragon, J. M. & Labuda, D. Alu 50 RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. *J Mol Biol* 226, 689-706 (1992).
- 53. Rattner, A., Toulabi, L., Williams, J., Yu, H. & Nathans, J. The genomic response of the retinal pigment epithelium to light damage and retinal detachment. *J Neurosci* 28, 9880-9889 (2008).
- 54. Huang, H. et al. Identification of mouse retinal genes differentially regulated by dim and bright cyclic light rearing. *Exp Eve Res* 80, 727-739 (2005).
- rearing. *Exp Eye Res* 80, 727-739 (2005).
 55. Natoli, R., Provis, J., Valter, K. & Stone, J. Gene regulation induced in the C57BL/6J mouse retina by hyperoxia: a temporal microarray study. *Mol Vis* 14, 1983-1994 (2008).
- 56. Farjo, R., Peterson, W. M. & Naash, M. I. Expression profiling after retinal detachment and reattachment: a ⁶⁵ possible role for aquaporin-0. *Invest Ophthalmol Vis Sci* 49, 511-521 (2008).

- 57. Livesey, F. J., Furukawa, T., Steffen, M. A., Church, G. M. & Cepko, C. L. Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. *Curr Biol* 10, 301-310 (2000).
- Gehrig, A. et al. Genome-wide expression profiling of the retinoschisin-deficient retina in early postnatal mouse development. *Invest Ophthalmol Vis Sci* 48, 891-900 (2007).
- 59. Hackam, A. S. et al. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. *Invest Ophthalmol Vis Sci* 45, 2929-2942 (2004).
- Punzo, C. & Cepko, C. Cellular responses to photoreceptor death in the rd1 mouse model of retinal degeneration. *Invest Ophthalmol Vis Sci* 48, 849-857 (2007).
- 61. Schaeferhoff, K. et al. Induction of STAT3-related genes in fast degenerating cone photoreceptors of cpfl1 mice. *Cell Mol Life Sci* 67, 3173-3186 (2010).
- 62. Gelineau-van Waes, J. et al. Altered expression of the iron transporter Nramp1 (Slc11a1) during fetal development of the retinal pigment epithelium in microphthalmiaassociated transcription factor Mitf (mi) and Mitf (vitiligo) mouse mutants. *Exp Eye Res* 86, 419-433 (2008).
- 63. Tian, J. et al. Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. *Proc Natl Acad Sci USA* 102, 11846-11851 (2005).
- 64. Zacks, D. N., Han, Y., Zeng, Y. & Swaroop, A. Activation of signaling pathways and stress-response genes in an experimental model of retinal detachment. *Invest Ophthalmol Vis Sci* 47, 1691-1695 (2006).
- 65. Chong, M. M., Rasmussen, J. P., Rudensky, A. Y. & Littman, D. R. The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. *J Exp Med* 205, 2005-2017 (2008).
- 66. Iacovelli, J. et al. Generation of cre transgenic mice with postnatal RPE-specific ocular expression. *Invest Ophthalmol Vis Sci*, In press (2010).
- 67. Yi, R. et al. DGCR8-dependent microRNA biogenesis is essential for skin development. *Proc Natl Acad Sci USA* 106, 498-502 (2009).
- Zhong, J., Peters, A. H., Lee, K. & Braun, R. E. A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. *Nat Genet* 22, 171-174 (1999).
- ⁴⁵ 69. Ambati, J. et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. *Nat Med* 9, 1390-1397 (2003).
 - Takeda, A. et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. *Nature* 460, 225-230 (2009).
 - 71. Hahn, P. et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. *Proc Natl Acad Sci USA* 101, 13850-13855 (2004).
 - 72. O'Carroll, D. et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. *Genes Dev* 21, 1999-2004 (2007).
 - Schaefer, A. et al. Argonaute 2 in dopamine 2 receptorexpressing neurons regulates cocaine addiction. *J Exp Med* 207, 1843-1851 (2010).
 - 74. Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. *EMBO J* 21, 5864-5874 (2002).
 - 75. Bennett, E. A. et al. Active Alu retrotransposons in the human genome. *Genome Res* 18, 1875-1883 (2008).
 - 76. Hagan, C. R., Sheffield, R. F. & Rudin, C. M. Human Alu element retrotransposition induced by genotoxic stress. *Nat Genet* 35, 219-220 (2003).

10

- 77. Misra, S., Tripathi, M. K. & Chaudhuri, G. Downregulation of 7SL RNA expression and impairment of vesicular protein transport pathways by Leishmania infection of macrophages. *J Biol Chem* 280, 29364-29373 (2005).
- Alexander, J. J. & Hauswirth, W. W. Adeno-associated viral vectors and the retina. *Adv Exp Med Biol* 613, 121-128 (2008).
- 79. Maan, S. et al. Rapid cDNA synthesis and sequencing techniques for the genetic study of bluetongue and other dsRNA viruses. *J Virol Methods* 143, 132-139 (2007).
- Potgieter, A. C. et al. Improved strategies for sequenceindependent amplification and sequencing of viral double-stranded RNA genomes. *J Gen Virol* 90, 1423-1432 (2009).
- Kohany, O., Gentles, A. J., Hankus, L. & Jurka, J ¹⁵ Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. *BMC Bioinformatics* 7, 474 (2006).
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. *J Mol* 20 *Biol* 215, 403-410 (1990).
- 83. Allen, T. A., Von Kaenel, S., Goodrich, J. A. & Kugel, J. F. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. *Nat Struct Mol Biol* 11, 816-821 (2004).

34

- Tripathi, M. K. & Chaudhuri, G. Down-regulation of UCRP and UBE2L6 in BRCA2 knocked-down human breast cells. *Biochem Biophys Res Commun* 328, 43-48 (2005).
- Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. *Genes Dev* 19, 489-501 (2005).
- 86. Yang, P., Tyrrell, J., Han, I. & Jaffe, G. J. Expression and modulation of RPE cell membrane complement regulatory proteins. *Invest Ophthalmol Vis Sci* 50, 3473-3481 (2009).
- Yang, Z. et al. Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. *N Engl J Med* 359, 1456-1463 (2008).
- U.S. Patent Application Publication No. 2007/0031417 for Dicer Interaction Proteins and Uses Therefor.
- 89. U.S. Patent Application Publication No. 2006/0228361 for Dicer Interacting Proteins and Uses Therefor.
- International Patent Application Publication No. WO 2005/047477 for Interspersed Repetitive Element RNAs as Substrates, Inhibitors, and Delivery Vehicles for RNAi.

It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the subject matter disclosed herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 29

<210> SEQ ID NO 1 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA

<400> SEQUENCE: 1

ctcagcctca cgagtagct

<210> SEQ ID NO 2 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA

<400> SEQUENCE: 2

tgggactaca ggcgcccga

<210> SEQ ID NO 3 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA <400> SEQUENCE: 3

gcctcagcct cacgagtagc t

<210> SEQ ID NO 4
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: siRNA

19

19

-continued	

<400> SEQUENCE: 4			
getgggaeta caggegeeeg a			21
<210> SEQ ID NO 5 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA			
<400> SEQUENCE: 5			
gggactacag gcgcccgaca c			21
<210> SEQ ID NO 6 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: siRNA			
<400> SEQUENCE: 6			
acaggegeee gacaceate e			21
<210> SEQ ID NO 7 <211> LENGTH: 10323 <212> TYPE: DNA <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 7			
cggaggcgcg gcgcaggctg ctgcaggccc aggtgaatgg	agtaacctga c	agcgggggac	60
gaggcgacgg cgagcgcgag gaaatggcgg cggggggggg	ggcgccgggc g	gctccggga	120
ggcctgggct gtgacgcgcg cgccggagcg gggtccgatg	gttctcgaag g	leeegeggeg	180
ccccgtgctg cagtaagctg tgctagaaca aaaatgcaat	gaaagaaaca c	tggatgaat	240
gaaaageeet getttgeaae eeeteageat ggeaggeetg	cagctcatga c	ccctgcttc	300
ctcaccaatg ggtcctttct ttggactgcc atggcaacaa	gaagcaattc a	tgataacat	360
ttatacgcca agaaaatatc aggttgaact gcttgaagca	gctctggatc a	taataccat	420
cgtctgttta aacactggct cagggaagac atttattgca	gtactactca c	taaagagct	480
gtcctatcag atcaggggag acttcagcag aaatggaaaa	aggacggtgt t	cttggtcaa	540
ctctgcaaac caggttgctc aacaagtgtc agctgtcaga	actcattcag a	tctcaaggt	600
tggggaatac tcaaacctag aagtaaatgc atcttggaca	aaagagagat g	gaaccaaga	660
gtttactaag caccaggttc tcattatgac ttgctatgtc	gccttgaatg t	tttgaaaaa	720
tggttactta tcactgtcag acattaacct tttggtgttt	gatgagtgtc a	tcttgcaat	780
cctagaccac ccctatcgag aaattatgaa gctctgtgaa	aattgtccat c	atgtcctcg	840
cattttggga ctaactgctt ccattttaaa tgggaaatgt	gatccagagg a	attggaaga	900
aaagattcag aaactagaga aaattcttaa gagtaatgct	gaaactgcaa c	tgacctggt	960
ggtcttagac aggtatactt ctcagccatg tgagattgtg	gtggattgtg g	accatttac	1020
tgacagaagt gggctttatg aaagactgct gatggaatta	gaagaagcac t	taattttat	1080
caatgattgt aatatatctg tacattcaaa agaaagagat	tctactttaa t	ttcgaaaca	1140
gatactatca gactgtcgtg ccgtattggt agttctggga	ccctggtgtg c	agataaagt	1200
agctggaatg atggtaagag aactacagaa atacatcaaa	catgagcaag a	.ggagctgca	1260
caggaaattt ttattgttta cagacacttt cctaaggaaa	atacatgcac t	atgtgaaga	1320

gcacttctca	cctgcctcac	ttgacctgaa	atttgtaact	cctaaagtaa	tcaaactgct	1380
cgaaatctta	cgcaaatata	aaccatatga	gcgacagcag	tttgaaagcg	ttgagtggta	1440
taataataga	aatcaggata	attatgtgtc	atggagtgat	tctgaggatg	atgatgagga	1500
tgaagaaatt	gaagaaaaag	agaagccaga	gacaaatttt	ccttctcctt	ttaccaacat	1560
tttgtgcgga	attattttg	tggaaagaag	atacacagca	gttgtcttaa	acagattgat	1620
aaaggaagct	ggcaaacaag	atccagagct	ggcttatatc	agtagcaatt	tcataactgg	1680
acatggcatt	gggaagaatc	agcctcgcaa	caaacagatg	gaagcagaat	tcagaaaaca	1740
ggaagaggta	cttaggaaat	ttcgagcaca	tgagaccaac	ctgcttattg	caacaagtat	1800
tgtagaagag	ggtgttgata	taccaaaatg	caacttggtg	gttcgttttg	atttgcccac	1860
agaatatcga	tcctatgttc	aatctaaagg	aagagcaagg	gcacccatct	ctaattatat	1920
aatgttagcg	gatacagaca	aaataaaaag	ttttgaagaa	gaccttaaaa	cctacaaagc	1980
tattgaaaag	atcttgagaa	acaagtgttc	caagtcggtt	gatactggtg	agactgacat	2040
tgatcctgtc	atggatgatg	atgacgtttt	cccaccatat	gtgttgaggc	ctgacgatgg	2100
tggtccacga	gtcacaatca	acacggccat	tggacacatc	aatagatact	gtgctagatt	2160
accaagtgat	ccgtttactc	atctagctcc	taaatgcaga	acccgagagt	tgcctgatgg	2220
tacattttat	tcaactcttt	atctgccaat	taactcacct	cttcgagcct	ccattgttgg	2280
tccaccaatg	agctgtgtac	gattggctga	aagagttgta	gctctcattt	gctgtgagaa	2340
actgcacaaa	attggcgaac	tggatgacca	tttgatgcca	gttgggaaag	agactgttaa	2400
atatgaagag	gagettgatt	tgcatgatga	agaagagacc	agtgttccag	gaagaccagg	2460
ttccacgaaa	cgaaggcagt	gctacccaaa	agcaattcca	gagtgtttga	gggatagtta	2520
tcccagacct	gatcagccct	gttacctgta	tgtgatagga	atggttttaa	ctacaccttt	2580
acctgatgaa	ctcaacttta	gaaggcggaa	gctctatcct	cctgaagata	ccacaagatg	2640
ctttggaata	ctgacggcca	aacccatacc	tcagattcca	cactttcctg	tgtacacacg	2700
ctctggagag	gttaccatat	ccattgagtt	gaagaagtct	ggtttcatgt	tgtctctaca	2760
aatgcttgag	ttgattacaa	gacttcacca	gtatatattc	tcacatattc	ttcggcttga	2820
aaaacctgca	ctagaattta	aacctacaga	cgctgattca	gcatactgtg	ttctacctct	2880
taatgttgtt	aatgactcca	gcactttgga	tattgacttt	aaattcatgg	aagatattga	2940
gaagtctgaa	gctcgcatag	gcattcccag	tacaaagtat	acaaaagaaa	caccctttgt	3000
ttttaaatta	gaagattacc	aagatgccgt	tatcattcca	agatatcgca	attttgatca	3060
gcctcatcga	ttttatgtag	ctgatgtgta	cactgatctt	accccactca	gtaaatttcc	3120
ttcccctgag	tatgaaactt	ttgcagaata	ttataaaaca	aagtacaacc	ttgacctaac	3180
caatctcaac	cagccactgc	tggatgtgga	ccacacatct	tcaagactta	atcttttgac	3240
acctcgacat	ttgaatcaga	aggggaaagc	gcttccttta	agcagtgctg	agaagaggaa	3300
agccaaatgg	gaaagtctgc	agaataaaca	gatactggtt	ccagaactct	gtgctataca	3360
tccaattcca	gcatcactgt	ggagaaaagc	tgtttgtctc	cccagcatac	tttatcgcct	3420
tcactgcctt	ttgactgcag	aggagctaag	agcccagact	gccagcgatg	ctggcgtggg	3480
agtcagatca	cttcctgcgg	attttagata	ccctaactta	gacttcgggt	ggaaaaaatc	3540
tattgacagc	aaatctttca	tctcaatttc	taactcctct	tcagctgaaa	atgataatta	3600
ctgtaagcac	agcacaattg	tccctgaaaa	tgctgcacat	caaggtgcta	atagaacctc	3660

US 9,464,289 B2

39

-continued

ctctctagaa	aatcatgacc	aaatgtctgt	gaactgcaga	acgttgctca	gcgagtcccc	3720
tggtaagctc	cacgttgaag	tttcagcaga	tcttacagca	attaatggtc	tttcttacaa	3780
tcaaaatctc	gccaatggca	gttatgattt	agctaacaga	gacttttgcc	aaggaaatca	3840
gctaaattac	tacaagcagg	aaatacccgt	gcaaccaact	acctcatatt	ccattcagaa	3900
tttatacagt	tacgagaacc	agccccagcc	cagcgatgaa	tgtactctcc	tgagtaataa	3960
ataccttgat	ggaaatgcta	acaaatctac	ctcagatgga	agtcctgtga	tggccgtaat	4020
gcctggtacg	acagacacta	ttcaagtgct	caagggcagg	atggattctg	agcagagccc	4080
ttctattggg	tactcctcaa	ggactcttgg	ccccaatcct	ggacttattc	ttcaggcttt	4140
gactctgtca	aacgctagtg	atggatttaa	cctggagcgg	cttgaaatgc	ttggcgactc	4200
ctttttaaag	catgccatca	ccacatatct	attttgcact	taccctgatg	cgcatgaggg	4260
ccgcctttca	tatatgagaa	gcaaaaaggt	cagcaactgt	aatctgtatc	gccttggaaa	4320
aaagaaggga	ctacccagcc	gcatggtggt	gtcaatattt	gatccccctg	tgaattggct	4380
tcctcctggt	tatgtagtaa	atcaagacaa	aagcaacaca	gataaatggg	aaaaagatga	4440
aatgacaaaa	gactgcatgc	tggcgaatgg	caaactggat	gaggattacg	aggaggagga	4500
tgaggaggag	gagagcctga	tgtggagggc	tccgaaggaa	gaggctgact	atgaagatga	4560
tttcctggag	tatgatcagg	aacatatcag	atttatagat	aatatgttaa	tggggtcagg	4620
agcttttgta	aagaaaatct	ctctttctcc	tttttcaacc	actgattctg	catatgaatg	4680
gaaaatgccc	aaaaaatcct	ccttaggtag	tatgccattt	tcatcagatt	ttgaggattt	4740
tgactacagc	tcttgggatg	caatgtgcta	tctggatcct	agcaaagctg	ttgaagaaga	4800
tgactttgtg	gtggggttct	ggaatccatc	agaagaaaac	tgtggtgttg	acacgggaaa	4860
gcagtccatt	tcttacgact	tgcacactga	gcagtgtatt	gctgacaaaa	gcatagcgga	4920
ctgtgtggaa	gccctgctgg	gctgctattt	aaccagctgt	ggggagaggg	ctgctcagct	4980
tttcctctgt	tcactggggc	tgaaggtgct	cccggtaatt	aaaaggactg	atcgggaaaa	5040
ggccctgtgc	cctactcggg	agaatttcaa	cagccaacaa	aagaaccttt	cagtgagctg	5100
tgctgctgct	tctgtggcca	gttcacgctc	ttctgtattg	aaagactcgg	aatatggttg	5160
tttgaagatt	ccaccaagat	gtatgtttga	tcatccagat	gcagataaaa	cactgaatca	5220
ccttatatcg	gggtttgaaa	attttgaaaa	gaaaatcaac	tacagattca	agaataaggc	5280
ttaccttctc	caggctttta	cacatgcctc	ctaccactac	aatactatca	ctgattgtta	5340
ccagcgctta	gaattcctgg	gagatgcgat	tttggactac	ctcataacca	agcaccttta	5400
tgaagacccg	cggcagcact	ccccgggggt	cctgacagac	ctgcggtctg	ccctggtcaa	5460
caacaccatc	tttgcatcgc	tggctgtaaa	gtacgactac	cacaagtact	tcaaagctgt	5520
ctctcctgag	ctcttccatg	tcattgatga	ctttgtgcag	tttcagcttg	agaagaatga	5580
aatgcaagga	atggattctg	agcttaggag	atctgaggag	gatgaagaga	aagaagagga	5640
tattgaagtt	ccaaaggcca	tgggggatat	ttttgagtcg	cttgctggtg	ccatttacat	5700
ggatagtggg	atgtcactgg	agacagtctg	gcaggtgtac	tatcccatga	tgcggccact	5760
aatagaaaag	ttttctgcaa	atgtaccccg	ttcccctgtg	cgagaattgc	ttgaaatgga	5820
accagaaact	gccaaattta	gcccggctga	gagaacttac	gacgggaagg	tcagagtcac	5880
tgtggaagta	gtaggaaagg	ggaaatttaa	aggtgttggt	cgaagttaca	ggattgccaa	5940
atctgcagca	gcaagaagag	ccctccgaag	cctcaaagct	aatcaacctc	aggttcccaa	6000
tagetgaaac	cgctttttaa	aattcaaaac	aagaaacaaa	acaaaaaaaa	ttaaggggaa	6060
	-		-			

aattatttaa	atcggaaagg	aagacttaaa	gttgttagtg	agtggaatga	attgaaggca	6120
gaatttaaag	tttggttgat	aacaggatag	ataacagaat	aaaacattta	acatatgtat	6180
aaaattttgg	aactaattgt	agttttagtt	ttttgcgcaa	acacaatctt	atcttctttc	6240
ctcacttctg	ctttgtttaa	atcacaagag	tgctttaatg	atgacattta	gcaagtgctc	6300
aaaataattg	acaggttttg	tttttttt	tttgagttta	tgtcagcttt	gcttagtgtt	6360
agaaggccat	ggagcttaaa	cctccagcag	tccctaggat	gatgtagatt	cttctccatc	6420
tctccgtgtg	tgcagtagtg	ccagtcctgc	agtagttgat	aagctgaata	gaaagataag	6480
gttttcgaga	ggagaagtgc	gccaatgttg	tctttcttt	ccacgttata	ctgtgtaagg	6540
tgatgttccc	ggtcgctgtt	gcacctgata	gtaagggaca	gatttttaat	gaacattggc	6600
tggcatgttg	gtgaatcaca	ttttagtttt	ctgatgccac	atagtettge	ataaaaaagg	6660
gttettgeet	taaaagtgaa	accttcatgg	atagtcttta	atctctgatc	tttttggaac	6720
aaactgtttt	acattccttt	cattttatta	tgcattagac	gttgagacag	cgtgatactt	6780
acaactcact	agtatagttg	taacttatta	caggatcata	ctaaaatttc	tgtcatatgt	6840
atactgaaga	cattttaaaa	accagaatat	gtagtctacg	gatattttt	atcataaaaa	6900
tgatctttgg	ctaaacaccc	cattttacta	aagtcctcct	gccaggtagt	tcccactgat	6960
ggaaatgttt	atggcaaata	attttgcctt	ctaggctgtt	gctctaacaa	aataaacctt	7020
agacatatca	cacctaaaat	atgctgcaga	ttttataatt	gattggttac	ttatttaaga	7080
agcaaaacac	agcaccttta	cccttagtct	cctcacataa	atttcttact	atacttttca	7140
taatgttgca	tgcatatttc	acctaccaaa	gctgtgctgt	taatgccgtg	aaagtttaac	7200
gtttgcgata	aactgccgta	attttgatac	atctgtgatt	taggtcatta	atttagataa	7260
actagctcat	tatttccatc	tttggaaaag	gaaaaaaaaa	aaaacttctt	taggcatttg	7320
cctaagtttc	tttaattaga	cttgtaggca	ctcttcactt	aaatacctca	gttcttcttt	7380
tcttttgcat	gcatttttcc	cctgtttggt	gctatgttta	tgtattatgc	ttgaaatttt	7440
aattttttt	tttttgcact	gtaactataa	tacctcttaa	tttacctttt	taaaagctgt	7500
gggtcagtct	tgcactccca	tcaacatacc	agtagaggtt	tgctgcaatt	tgccccgtta	7560
attatgcttg	aagtttaaga	aagctgagca	gaggtgtctc	atatttccca	gcacatgatt	7620
ctgaacttga	tgcttcgtgg	aatgctgcat	ttatatgtaa	gtgacatttg	aatactgtcc	7680
ttcctgcttt	atctgcatca	tccacccaca	gagaaatgcc	tctgtgcgag	tgcaccgaca	7740
gaaaactgtc	agctctgctt	tctaaggaac	cctgagtgag	gggggtatta	agcttctcca	7800
gtgtttttg	ttgtctccaa	tcttaaactt	aaattgagat	ctaaattatt	aaacgagttt	7860
ttgagcaaat	taggtgactt	gttttaaaaa	tatttaattc	cgatttggaa	ccttagatgt	7920
ctatttgatt	ttttaaaaaa	ccttaatgta	agatatgacc	agttaaaaca	aagcaattct	7980
tgaattatat	aactgtaaaa	gtgtgcagtt	aacaaggctg	gatgtgaatt	ttattctgag	8040
ggtgatttgt	gatcaagttt	aatcacaaat	ctcttaatat	ttataaacta	cctgatgcca	8100
ggagcttagg	gctttgcatt	gtgtctaata	cattgatccc	agtgttacgg	gattetettg	8160
attcctggca	ccaaaatcag	attgttttca	cagttatgat	tcccagtggg	agaaaaatgc	8220
ctcaatatat	ttgtaacctt	aagaagagta	ttttttgtt	aatactaaga	tgttcaaact	8280
tagacatgat	taggtcatac	attctcaggg	gttcaaattt	ccttctacca	ttcaaatgtt	8340
ttatcaacag	caaacttcag	ccgtttcact	ttttgttgga	gaaaaatagt	agattttaat	8400

US 9,464,289 B2

44

43

ttgactcaca gtttgaagca ttctgtgatc ccctgg	tac tgagttaaaa aataaaaaag	8460
tacgagttag acatatgaaa tggttatgaa cgcttt	igtg ctgctgattt ttaatgctgt	8520
aaagttttcc tgtgtttagc ttgttgaaat gttttg	catc tgtcaattaa ggaaaaaaaa	8580
aatcactcta tgttgcccca ctttagagcc ctgtgt	geca ceetgtgtte etgtgattge	8640
aatgtgagac cgaatgtaat atggaaaacc taccag	aggg gtgtggttgt gccctgagca	8700
cgtgtgtaaa ggactgggga ggcgtgtctt gaaaaa	gcaa ctgcagaaat tccttatgat	8760
gattgtgtgc aagttagtta acatgaacct tcattt	gtaa attttttaaa atttctttta	8820
taatatgett teegeagtee taactatget gegttt	ata atagettttt ceettetgtt	8880
ctgttcatgt agcacagata agcattgcac ttggta	ccat gctttacctc atttcaagaa	8940
aatatgctta acagagagga aaaaaatgtg gtttgg	eett getgetgttt tgatttatgg	9000
aatttgaaaa agataattat aatgcctgca atgtgt	cata tactcgcaca acttaaatag	9060
gtcatttttg tctgtggcat ttttactgtt tgtgaa	agta tgaaacagat ttgttaactg	9120
aactcttaat tatgttttta aaatgtttgt tatatt	cett ttettttte ttttatatta	9180
cgtgaagtga tgaaatttag aatgacctct aacact	cctg taattgtctt ttaaaatact	9240
gatattttta tttgttaata atactttgcc ctcaga	aaga ttetgataee etgeettgae	9300
aacatgaaac ttgaggetge tttggtteat gaatee	aggt gttcccccgg cagtcggctt	9360
cttcagtcgc tccctggagg caggtgggca ctgcag	agga tcactggaat ccagatcgag	9420
cgcagttcat gcacaaggcc ccgttgattt aaaata	tgg atcttgctct gttagggtgt	9480
ctaatccctt tacacaagat tgaagccacc aaactg	agac cttgatacct ttttttaact	9540
gcatctgaaa ttatgttaag agtctttaac ccattt	gcat tatctgcaga agagaaactc	9600
atgtcatgtt tattacctat atggttgttt taatta	catt tgaataatta tatttttcca	9660
accactgatt acttttcagg aatttaatta tttcca	gata aatttettta ttttatattg	9720
tacatgaaaa gttttaaaga tatgtttaag accaag	acta ttaaaatgat ttttaaagtt	9780
gttggagacg ccaatagcaa tatctaggaa atttgc	attg agaccattgt attttccact	9840
agcagtgaaa atgatttttc acaactaact tgtaaa	ata ttttaatcat tacttcttt	9900
tttctagtcc atttttattt ggacatcaac cacaga	caat ttaaatttta tagatgcact	9960
aagaattcac tgcagcagca ggttacatag caaaaa	igca aaggtgaaca ggaagtaaat	10020
ttetggettt tetgetgtaa atagtgaagg aaaatt	acta aaatcaagta aaactaatgc	10080
atattatttg attgacaata aaatatttac catcac	atgc tgcagctgtt ttttaaggaa	10140
catgatgtca ttcattcata cagtaatcat gctgca	gaaa tttgcagtct gcaccttatg	10200
gatcacaatt acctttagtt gttttttttg taataa	tgt agccaagtaa atctccaata	10260
aagttatcgt ctgttcaaaa aaaaaaaaaa aaaaaa	aaaa aaaaaaaaaa aaaaaaaaaa	10320
aaa		10323
<210> SEQ ID NO 8 <211> LENGTH: 10220 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 8		
ggaaactctg aaagaactta gaatcagcat tttgag	agca gaagcttggg catgctgtga	60
ttttccaata aactgctatc acaatgtcaa aatgca	yttc agacaagagc aacacagaga	120
tctcaaacat taaaacgtaa gctgtgctag aacaaa	aatg caatgaaaga aacactggat	180

gaatgaaaag	ccctgctttg	caacccctca	gcatggcagg	cctgcagctc	atgacccctg	240
cttcctcacc	aatgggtcct	ttctttggac	tgccatggca	acaagaagca	attcatgata	300
acatttatac	gccaagaaaa	tatcaggttg	aactgcttga	agcagctctg	gatcataata	360
ccatcgtctg	tttaaacact	ggctcaggga	agacatttat	tgcagtacta	ctcactaaag	420
agctgtccta	tcagatcagg	ggagacttca	gcagaaatgg	aaaaaggacg	gtgttcttgg	480
tcaactctgc	aaaccaggtt	gctcaacaag	tgtcagctgt	cagaactcat	tcagatctca	540
aggttgggga	atactcaaac	ctagaagtaa	atgcatcttg	gacaaaagag	agatggaacc	600
aagagtttac	taagcaccag	gttctcatta	tgacttgcta	tgtcgccttg	aatgttttga	660
aaaatggtta	cttatcactg	tcagacatta	accttttggt	gtttgatgag	tgtcatcttg	720
caatcctaga	ccacccctat	cgagaaatta	tgaagctctg	tgaaaattgt	ccatcatgtc	780
ctcgcatttt	gggactaact	gcttccattt	taaatgggaa	atgtgatcca	gaggaattgg	840
aagaaaagat	tcagaaacta	gagaaaattc	ttaagagtaa	tgctgaaact	gcaactgacc	900
tggtggtctt	agacaggtat	acttctcagc	catgtgagat	tgtggtggat	tgtggaccat	960
ttactgacag	aagtgggctt	tatgaaagac	tgctgatgga	attagaagaa	gcacttaatt	1020
ttatcaatga	ttgtaatata	tctgtacatt	caaaagaaag	agattctact	ttaatttcga	1080
aacagatact	atcagactgt	cgtgccgtat	tggtagttct	gggaccctgg	tgtgcagata	1140
aagtagctgg	aatgatggta	agagaactac	agaaatacat	caaacatgag	caagaggagc	1200
tgcacaggaa	atttttattg	tttacagaca	ctttcctaag	gaaaatacat	gcactatgtg	1260
aagagcactt	ctcacctgcc	tcacttgacc	tgaaatttgt	aactcctaaa	gtaatcaaac	1320
tgctcgaaat	cttacgcaaa	tataaaccat	atgagcgaca	gcagtttgaa	agcgttgagt	1380
ggtataataa	tagaaatcag	gataattatg	tgtcatggag	tgattctgag	gatgatgatg	1440
aggatgaaga	aattgaagaa	aaagagaagc	cagagacaaa	ttttccttct	ccttttacca	1500
acattttgtg	cggaattatt	tttgtggaaa	gaagatacac	agcagttgtc	ttaaacagat	1560
tgataaagga	agctggcaaa	caagatccag	agctggctta	tatcagtagc	aatttcataa	1620
ctggacatgg	cattgggaag	aatcagcctc	gcaacaaaca	gatggaagca	gaattcagaa	1680
aacaggaaga	ggtacttagg	aaatttcgag	cacatgagac	caacctgctt	attgcaacaa	1740
gtattgtaga	agagggtgtt	gatataccaa	aatgcaactt	ggtggttcgt	tttgatttgc	1800
ccacagaata	tcgatcctat	gttcaatcta	aaggaagagc	aagggcaccc	atctctaatt	1860
atataatgtt	agcggataca	gacaaaataa	aaagttttga	agaagacctt	aaaacctaca	1920
aagctattga	aaagatcttg	agaaacaagt	gttccaagtc	ggttgatact	ggtgagactg	1980
acattgatcc	tgtcatggat	gatgatgacg	ttttcccacc	atatgtgttg	aggcctgacg	2040
atggtggtcc	acgagtcaca	atcaacacgg	ccattggaca	catcaataga	tactgtgcta	2100
gattaccaag	tgatccgttt	actcatctag	ctcctaaatg	cagaacccga	gagttgcctg	2160
atggtacatt	ttattcaact	ctttatctgc	caattaactc	acctcttcga	gcctccattg	2220
ttggtccacc	aatgagctgt	gtacgattgg	ctgaaagagt	tgtagctctc	atttgctgtg	2280
agaaactgca	caaaattggc	gaactggatg	accatttgat	gccagttggg	aaagagactg	2340
ttaaatatga	agaggagctt	gatttgcatg	atgaagaaga	gaccagtgtt	ccaggaagac	2400
caggttccac	gaaacgaagg	cagtgctacc	caaaagcaat	tccagagtgt	ttgagggata	2460
gttatcccag	acctgatcag	ccctgttacc	tgtatgtgat	aggaatggtt	ttaactacac	2520

47

ctttacctga	tgaactcaac	tttagaaggc	ggaagctcta	tcctcctgaa	gataccacaa	2580
gatgctttgg	aatactgacg	gccaaaccca	tacctcagat	tccacacttt	cctgtgtaca	2640
cacgctctgg	agaggttacc	atatccattg	agttgaagaa	gtctggtttc	atgttgtctc	2700
tacaaatgct	tgagttgatt	acaagacttc	accagtatat	attctcacat	attcttcggc	2760
ttgaaaaacc	tgcactagaa	tttaaaccta	cagacgctga	ttcagcatac	tgtgttctac	2820
ctcttaatgt	tgttaatgac	tccagcactt	tggatattga	ctttaaattc	atggaagata	2880
ttgagaagtc	tgaagctcgc	ataggcattc	ccagtacaaa	gtatacaaaa	gaaacaccct	2940
ttgttttaa	attagaagat	taccaagatg	ccgttatcat	tccaagatat	cgcaattttg	3000
atcagcctca	tcgattttat	gtagctgatg	tgtacactga	tcttacccca	ctcagtaaat	3060
ttccttcccc	tgagtatgaa	acttttgcag	aatattataa	aacaaagtac	aaccttgacc	3120
taaccaatct	caaccagcca	ctgctggatg	tggaccacac	atcttcaaga	cttaatcttt	3180
tgacacctcg	acatttgaat	cagaagggga	aagcgcttcc	tttaagcagt	gctgagaaga	3240
ggaaagccaa	atgggaaagt	ctgcagaata	aacagatact	ggttccagaa	ctctgtgcta	3300
tacatccaat	tccagcatca	ctgtggagaa	aagctgtttg	tctccccagc	atactttatc	3360
gccttcactg	ccttttgact	gcagaggagc	taagagccca	gactgccagc	gatgctggcg	3420
tgggagtcag	atcacttcct	gcggatttta	gataccctaa	cttagacttc	gggtggaaaa	3480
aatctattga	cagcaaatct	ttcatctcaa	tttctaactc	ctcttcagct	gaaaatgata	3540
attactgtaa	gcacagcaca	attgtccctg	aaaatgctgc	acatcaaggt	gctaatagaa	3600
cctcctctct	agaaaatcat	gaccaaatgt	ctgtgaactg	cagaacgttg	ctcagcgagt	3660
cccctggtaa	gctccacgtt	gaagtttcag	cagatcttac	agcaattaat	ggtctttctt	3720
acaatcaaaa	tctcgccaat	ggcagttatg	atttagctaa	cagagacttt	tgccaaggaa	3780
atcagctaaa	ttactacaag	caggaaatac	ccgtgcaacc	aactacctca	tattccattc	3840
agaatttata	cagttacgag	aaccagcccc	agcccagcga	tgaatgtact	ctcctgagta	3900
ataaatacct	tgatggaaat	gctaacaaat	ctacctcaga	tggaagtcct	gtgatggccg	3960
taatgcctgg	tacgacagac	actattcaag	tgctcaaggg	caggatggat	tctgagcaga	4020
gcccttctat	tgggtactcc	tcaaggactc	ttggccccaa	tcctggactt	attcttcagg	4080
ctttgactct	gtcaaacgct	agtgatggat	ttaacctgga	gcggcttgaa	atgcttggcg	4140
actccttttt	aaagcatgcc	atcaccacat	atctattttg	cacttaccct	gatgcgcatg	4200
agggccgcct	ttcatatatg	agaagcaaaa	aggtcagcaa	ctgtaatctg	tatcgccttg	4260
gaaaaaagaa	gggactaccc	agccgcatgg	tggtgtcaat	atttgatccc	cctgtgaatt	4320
ggetteetee	tggttatgta	gtaaatcaag	acaaaagcaa	cacagataaa	tgggaaaaag	4380
atgaaatgac	aaaagactgc	atgctggcga	atggcaaact	ggatgaggat	tacgaggagg	4440
aggatgagga	ggaggagagc	ctgatgtgga	gggctccgaa	ggaagaggct	gactatgaag	4500
atgatttcct	ggagtatgat	caggaacata	tcagatttat	agataatatg	ttaatggggt	4560
caggagcttt	tgtaaagaaa	atctctcttt	ctcctttttc	aaccactgat	tctgcatatg	4620
aatggaaaat	gcccaaaaaa	tcctccttag	gtagtatgcc	attttcatca	gattttgagg	4680
attttgacta	cagctcttgg	gatgcaatgt	gctatctgga	tcctagcaaa	gctgttgaag	4740
aagatgactt	tgtggtgggg	ttctggaatc	catcagaaga	aaactgtggt	gttgacacgg	4800
gaaagcagtc	catttcttac	gacttgcaca	ctgagcagtg	tattgctgac	aaaagcatag	4860
cggactgtgt	ggaagccctg	ctgggctgct	atttaaccag	ctgtggggag	agggctgctc	4920
	-	-	-		-	

agcttttcct	ctgttcactg	gggctgaagg	tgctcccggt	aattaaaagg	actgatcggg	4980
aaaaggccct	gtgccctact	cgggagaatt	tcaacagcca	acaaaagaac	ctttcagtga	5040
gctgtgctgc	tgcttctgtg	gccagttcac	gctcttctgt	attgaaagac	tcggaatatg	5100
gttgtttgaa	gattccacca	agatgtatgt	ttgatcatcc	agatgcagat	aaaacactga	5160
atcaccttat	atcggggttt	gaaaattttg	aaaagaaaat	caactacaga	ttcaagaata	5220
aggettaeet	tctccaggct	tttacacatg	cctcctacca	ctacaatact	atcactgatt	5280
gttaccagcg	cttagaattc	ctgggagatg	cgattttgga	ctacctcata	accaagcacc	5340
tttatgaaga	cccgcggcag	cactccccgg	gggtcctgac	agacctgcgg	tctgccctgg	5400
tcaacaacac	catctttgca	tcgctggctg	taaagtacga	ctaccacaag	tacttcaaag	5460
ctgtctctcc	tgagctcttc	catgtcattg	atgactttgt	gcagtttcag	cttgagaaga	5520
atgaaatgca	aggaatggat	tctgagctta	ggagatctga	ggaggatgaa	gagaaagaag	5580
aggatattga	agttccaaag	gccatggggg	atatttttga	gtcgcttgct	ggtgccattt	5640
acatggatag	tgggatgtca	ctggagacag	tctggcaggt	gtactatccc	atgatgcggc	5700
cactaataga	aaagttttct	gcaaatgtac	cccgttcccc	tgtgcgagaa	ttgcttgaaa	5760
tggaaccaga	aactgccaaa	tttagcccgg	ctgagagaac	ttacgacggg	aaggtcagag	5820
tcactgtgga	agtagtagga	aaggggaaat	ttaaaggtgt	tggtcgaagt	tacaggattg	5880
ccaaatctgc	agcagcaaga	agagccctcc	gaagcctcaa	agctaatcaa	cctcaggttc	5940
ccaatagctg	aaaccgcttt	ttaaaattca	aaacaagaaa	caaaacaaaa	aaaattaagg	6000
ggaaaattat	ttaaatcgga	aaggaagact	taaagttgtt	agtgagtgga	atgaattgaa	6060
ggcagaattt	aaagtttggt	tgataacagg	atagataaca	gaataaaaca	tttaacatat	6120
gtataaaatt	ttggaactaa	ttgtagtttt	agttttttgc	gcaaacacaa	tcttatcttc	6180
tttcctcact	tctgctttgt	ttaaatcaca	agagtgcttt	aatgatgaca	tttagcaagt	6240
gctcaaaata	attgacaggt	tttgttttt	ttttttgag	tttatgtcag	ctttgcttag	6300
tgttagaagg	ccatggagct	taaacctcca	gcagtcccta	ggatgatgta	gattettete	6360
catctctccg	tgtgtgcagt	agtgccagtc	ctgcagtagt	tgataagctg	aatagaaaga	6420
taaggttttc	gagaggagaa	gtgcgccaat	gttgtctttt	ctttccacgt	tatactgtgt	6480
aaggtgatgt	tcccggtcgc	tgttgcacct	gatagtaagg	gacagatttt	taatgaacat	6540
tggctggcat	gttggtgaat	cacattttag	ttttctgatg	ccacatagtc	ttgcataaaa	6600
aagggttett	gccttaaaag	tgaaaccttc	atggatagtc	tttaatctct	gatctttttg	6660
gaacaaactg	ttttacattc	ctttcatttt	attatgcatt	agacgttgag	acagcgtgat	6720
acttacaact	cactagtata	gttgtaactt	attacaggat	catactaaaa	tttctgtcat	6780
atgtatactg	aagacatttt	aaaaaccaga	atatgtagtc	tacggatatt	ttttatcata	6840
aaaatgatct	ttggctaaac	accccatttt	actaaagtcc	tcctgccagg	tagttcccac	6900
tgatggaaat	gtttatggca	aataattttg	ccttctaggc	tgttgctcta	acaaaataaa	6960
ccttagacat	atcacaccta	aaatatgctg	cagattttat	aattgattgg	ttacttattt	7020
aagaagcaaa	acacagcacc	tttaccctta	gtctcctcac	ataaatttct	tactatactt	7080
ttcataatgt	tgcatgcata	tttcacctac	caaagctgtg	ctgttaatgc	cgtgaaagtt	7140
taacgtttgc	gataaactgc	cgtaattttg	atacatctgt	gatttaggtc	attaatttag	7200
ataaactagc	tcattatttc	catctttgga	aaaggaaaaa	aaaaaaaact	tctttaggca	7260

US 9,464,289 B2

51

-continued

tttgcctaag tttctttaat	tagacttgta	ggcactcttc	acttaaatac	ctcagttctt	7320
cttttctttt gcatgcattt	ttcccctgtt	tggtgctatg	tttatgtatt	atgcttgaaa	7380
ttttaatttt ttttttttg	cactgtaact	ataatacctc	ttaatttacc	ttttaaaag	7440
ctgtgggtca gtcttgcact	cccatcaaca	taccagtaga	ggtttgctgc	aatttgcccc	7500
gttaattatg cttgaagttt	aagaaagctg	agcagaggtg	tctcatattt	cccagcacat	7560
gattctgaac ttgatgcttc	gtggaatgct	gcatttatat	gtaagtgaca	tttgaatact	7620
gtccttcctg ctttatctgc	atcatccacc	cacagagaaa	tgcctctgtg	cgagtgcacc	7680
gacagaaaac tgtcagctct	gctttctaag	gaaccctgag	tgaggggggt	attaagcttc	7740
tccagtgttt tttgttgtct	ccaatcttaa	acttaaattg	agatctaaat	tattaaacga	7800
gtttttgagc aaattaggtg	acttgtttta	aaaatattta	attccgattt	ggaaccttag	7860
atgtctattt gattttttaa	aaaaccttaa	tgtaagatat	gaccagttaa	aacaaagcaa	7920
ttcttgaatt atataactgt	aaaagtgtgc	agttaacaag	gctggatgtg	aattttattc	7980
tgagggtgat ttgtgatcaa	gtttaatcac	aaatctctta	atatttataa	actacctgat	8040
gccaggagct tagggctttg	cattgtgtct	aatacattga	tcccagtgtt	acgggattct	8100
cttgatteet ggeaceaaaa	tcagattgtt	ttcacagtta	tgattcccag	tgggagaaaa	8160
atgcctcaat atatttgtaa	ccttaagaag	agtattttt	tgttaatact	aagatgttca	8220
aacttagaca tgattaggtc	atacattctc	aggggttcaa	atttccttct	accattcaaa	8280
tgttttatca acagcaaact	tcagccgttt	cactttttgt	tggagaaaaa	tagtagattt	8340
taatttgact cacagtttga	agcattctgt	gatcccctgg	ttactgagtt	aaaaaataaa	8400
aaagtacgag ttagacatat	gaaatggtta	tgaacgcttt	tgtgctgctg	atttttaatg	8460
ctgtaaagtt ttcctgtgtt	tagcttgttg	aaatgttttg	catctgtcaa	ttaaggaaaa	8520
aaaaaatcac tctatgttgc	cccactttag	agccctgtgt	gccaccctgt	gttcctgtga	8580
ttgcaatgtg agaccgaatg	taatatggaa	aacctaccag	tggggtgtgg	ttgtgccctg	8640
agcacgtgtg taaaggactg	gggaggcgtg	tcttgaaaaa	gcaactgcag	aaattcctta	8700
tgatgattgt gtgcaagtta	gttaacatga	accttcattt	gtaaattttt	taaaatttct	8760
tttataatat gctttccgca	gtcctaacta	tgctgcgttt	tataatagct	ttttcccttc	8820
tgttctgttc atgtagcaca	gataagcatt	gcacttggta	ccatgcttta	cctcatttca	8880
agaaaatatg cttaacagag	aggaaaaaaa	tgtggtttgg	ccttgctgct	gttttgattt	8940
atggaatttg aaaaagataa	ttataatgcc	tgcaatgtgt	catatactcg	cacaacttaa	9000
ataggtcatt tttgtctgtg	gcatttttac	tgtttgtgaa	agtatgaaac	agatttgtta	9060
actgaactct taattatgtt	tttaaaatgt	ttgttatatt	tcttttcttt	tttcttttat	9120
attacgtgaa gtgatgaaat	ttagaatgac	ctctaacact	cctgtaattg	tcttttaaaa	9180
tactgatatt tttatttgtt	aataatactt	tgccctcaga	aagattetga	taccctgcct	9240
tgacaacatg aaacttgagg	ctgctttggt	tcatgaatcc	aggtgttccc	ccggcagtcg	9300
gettetteag tegeteeetg	gaggcaggtg	ggcactgcag	aggatcactg	gaatccagat	9360
cgagcgcagt tcatgcacaa	ggccccgttg	atttaaaata	ttggatcttg	ctctgttagg	9420
gtgtctaatc cctttacaca	agattgaagc	caccaaactg	agaccttgat	acctttttt	9480
aactgcatct gaaattatgt	taagagtett	taacccattt	gcattatctg	cagaagagaa	9540
actcatgtca tgtttattac	ctatatggtt	gttttaatta	catttgaata	attatattt	9600
tccaaccact gattactttt	caggaattta	attatttcca	gataaatttc	tttattttat	9660

US 9,464,289 B2

-continued

attgtacatg	aaaagtttta	aagatatgtt	taagaccaag	actattaaaa	tgatttttaa	9720				
agttgttgga	gacgccaata	gcaatatcta	ggaaatttgc	attgagacca	ttgtattttc	9780				
cactagcagt	gaaaatgatt	tttcacaact	aacttgtaaa	tatattttaa	tcattacttc	9840				
tttttttcta	gtccattttt	atttggacat	caaccacaga	caatttaaat	tttatagatg	9900				
cactaagaat	tcactgcagc	agcaggttac	atagcaaaaa	tgcaaaggtg	aacaggaagt	9960				
aaatttctgg	cttttctgct	gtaaatagtg	aaggaaaatt	actaaaatca	agtaaaacta	10020				
atgcatatta	tttgattgac	aataaaatat	ttaccatcac	atgctgcagc	tgttttttaa	10080				
ggaacatgat	gtcattcatt	catacagtaa	tcatgctgca	gaaatttgca	gtctgcacct	10140				
tatggatcac	aattaccttt	agttgttttt	tttgtaataa	ttgtagccaa	gtaaatctcc	10200				
aataaagtta	tcgtctgttc					10220				
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <400> SEQUE	<210> SEQ ID NO 9 <211> LENGTH: 1922 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 9									
Met Lvs Ser	° Pro Ala Le	eu Gin Pro I	Jeu Ser Met	AIA GIV Lei	ı Gin Leu					

Μ Met Ala Giy Leu Gi. 15 Met Thr Pro Ala Ser Ser Pro Met Gly Pro Phe Phe Gly Leu Pro Trp Gln Gln Glu Ala Ile His Asp Asn Ile Tyr Thr Pro Arg Lys Tyr Gln Val Glu Leu Leu Glu Ala Ala Leu Asp His Asn Thr Ile Val Cys Leu Asn Thr Gly Ser Gly Lys Thr Phe Ile Ala Val Leu Leu Thr Lys Glu Leu Ser Tyr Gln Ile Arg Gly Asp Phe Ser Arg Asn Gly Lys Arg Thr Val Phe Leu Val Asn Ser Ala Asn Gln Val Ala Gln Gln Val Ser Ala Val Arg Thr His Ser Asp Leu Lys Val Gly Glu Tyr Ser Asn Leu Glu Val Asn Ala Ser Trp Thr Lys Glu Arg Trp Asn Gln Glu Phe Thr Lys His Gln Val Leu Ile Met Thr Cys Tyr Val Ala Leu Asn Val Leu Lys Asn Gly Tyr Leu Ser Leu Ser Asp Ile Asn Leu Leu Val Phe Asp Glu Cys His Leu Ala Ile Leu Asp His Pro Tyr Arg Glu Ile Met Lys Leu Cys Glu Asn Cys Pro Ser Cys Pro Arg Ile Leu Gly Leu Thr Ala Ser Ile Leu Asn Gly Lys Cys Asp Pro Glu Glu Leu Glu Glu Lys Ile Gln Lys Leu Glu Lys Ile Leu Lys Ser Asn Ala Glu Thr Ala Thr Asp Leu Val Val Leu Asp Arg Tyr Thr Ser Gln Pro Cys Glu Ile Val Val Asp Cys Gly Pro Phe Thr Asp Arg Ser Gly Leu Tyr Glu Arg Leu Leu Met

Glu	Leu	Glu 275	Glu	Ala	Leu	Asn	Phe 280	Ile	Asn	Asp	Сүз	Asn 285	Ile	Ser	Val
His	Ser 290	Lys	Glu	Arg	Asp	Ser 295	Thr	Leu	Ile	Ser	Lys 300	Gln	Ile	Leu	Ser
Asp 305	Суз	Arg	Ala	Val	Leu 310	Val	Val	Leu	Gly	Pro 315	Trp	Сүз	Ala	Asp	Lys 320
Val	Ala	Gly	Met	Met 325	Val	Arg	Glu	Leu	Gln 330	ГÀа	Tyr	Ile	Lys	His 335	Glu
Gln	Glu	Glu	Leu 340	His	Arg	Lys	Phe	Leu 345	Leu	Phe	Thr	Asp	Thr 350	Phe	Leu
Arg	Lys	Ile 355	His	Ala	Leu	Суз	Glu 360	Glu	His	Phe	Ser	Pro 365	Ala	Ser	Leu
Asp	Leu 370	Lys	Phe	Val	Thr	Pro 375	Гла	Val	Ile	Гла	Leu 380	Leu	Glu	Ile	Leu
Arg 385	Lys	Tyr	Lys	Pro	Tyr 390	Glu	Arg	Gln	Gln	Phe 395	Glu	Ser	Val	Glu	Trp 400
Tyr	Asn	Asn	Arg	Asn 405	Gln	Asp	Asn	Tyr	Val 410	Ser	Trp	Ser	Asp	Ser 415	Glu
Asp	Aab	Asb	Glu 420	Asp	Glu	Glu	Ile	Glu 425	Glu	Lys	Glu	Lys	Pro 430	Glu	Thr
Asn	Phe	Pro 435	Ser	Pro	Phe	Thr	Asn 440	Ile	Leu	Cys	Gly	Ile 445	Ile	Phe	Val
Glu	Arg 450	Arg	Tyr	Thr	Ala	Val 455	Val	Leu	Asn	Arg	Leu 460	Ile	Lys	Glu	Ala
Gly 465	Lys	Gln	Asp	Pro	Glu 470	Leu	Ala	Tyr	Ile	Ser 475	Ser	Asn	Phe	Ile	Thr 480
Gly	His	Gly	Ile	Gly 485	Lys	Asn	Gln	Pro	Arg 490	Asn	Lys	Gln	Met	Glu 495	Ala
Glu	Phe	Arg	Lys 500	Gln	Glu	Glu	Val	Leu 505	Arg	Lys	Phe	Arg	Ala 510	His	Glu
Thr	Asn	Leu 515	Leu	Ile	Ala	Thr	Ser 520	Ile	Val	Glu	Glu	Gly 525	Val	Asp	Ile
Pro	Lys 530	Суз	Asn	Leu	Val	Val 535	Arg	Phe	Asp	Leu	Pro 540	Thr	Glu	Tyr	Arg
Ser 545	Tyr	Val	Gln	Ser	Lys 550	Gly	Arg	Ala	Arg	Ala 555	Pro	Ile	Ser	Asn	Tyr 560
Ile	Met	Leu	Ala	Asp 565	Thr	Asp	ГÀа	Ile	Lys 570	Ser	Phe	Glu	Glu	Asp 575	Leu
Lya	Thr	Tyr	Lys 580	Ala	Ile	Glu	Lys	Ile 585	Leu	Arg	Asn	LYa	Cys 590	Ser	ГЛЗ
Ser	Val	Asp 595	Thr	Gly	Glu	Thr	Asp 600	Ile	Asp	Pro	Val	Met 605	Asp	Asp	Asp
Asp	Val 610	Phe	Pro	Pro	Tyr	Val 615	Leu	Arg	Pro	Asp	Asp 620	Gly	Gly	Pro	Arg
Val 625	Thr	Ile	Asn	Thr	Ala 630	Ile	Gly	His	Ile	Asn 635	Arg	Tyr	Сув	Ala	Arg 640
Leu	Pro	Ser	Asp	Pro 645	Phe	Thr	His	Leu	Ala 650	Pro	Lys	Суз	Arg	Thr 655	Arg
Glu	Leu	Pro	Asp 660	Gly	Thr	Phe	Tyr	Ser 665	Thr	Leu	Tyr	Leu	Pro 670	Ile	Asn
Ser	Pro	Leu 675	Arg	Ala	Ser	Ile	Val 680	Gly	Pro	Pro	Met	Ser 685	Сүз	Val	Arg

Leu	Ala 690	Glu	Arg	Val	Val	Ala 695	Leu	Ile	Сүв	Сүв	Glu 700	Гла	Leu	His	Lys
Ile 705	Gly	Glu	Leu	Asp	Asp 710	His	Leu	Met	Pro	Val 715	Gly	Гла	Glu	Thr	Val 720
Lys	Tyr	Glu	Glu	Glu 725	Leu	Asp	Leu	His	Asp 730	Glu	Glu	Glu	Thr	Ser 735	Val
Pro	Gly	Arg	Pro 740	Gly	Ser	Thr	Lys	Arg 745	Arg	Gln	Cys	Tyr	Pro 750	Lys	Ala
Ile	Pro	Glu 755	Суз	Leu	Arg	Asp	Ser 760	Tyr	Pro	Arg	Pro	Asp 765	Gln	Pro	Сүз
Tyr	Leu 770	Tyr	Val	Ile	Gly	Met 775	Val	Leu	Thr	Thr	Pro 780	Leu	Pro	Asp	Glu
Leu 785	Asn	Phe	Arg	Arg	Arg 790	Lys	Leu	Tyr	Pro	Pro 795	Glu	Asp	Thr	Thr	Arg 800
СЛа	Phe	Gly	Ile	Leu 805	Thr	Ala	ГÀа	Pro	Ile 810	Pro	Gln	Ile	Pro	His 815	Phe
Pro	Val	Tyr	Thr 820	Arg	Ser	Gly	Glu	Val 825	Thr	Ile	Ser	Ile	Glu 830	Leu	Lys
ГЛа	Ser	Gly 835	Phe	Met	Leu	Ser	Leu 840	Gln	Met	Leu	Glu	Leu 845	Ile	Thr	Arg
Leu	His 850	Gln	Tyr	Ile	Phe	Ser 855	His	Ile	Leu	Arg	Leu 860	Glu	Lys	Pro	Ala
Leu 865	Glu	Phe	Lys	Pro	Thr 870	Asp	Ala	Asp	Ser	Ala 875	Tyr	Сүз	Val	Leu	Pro 880
Leu	Asn	Val	Val	Asn 885	Asp	Ser	Ser	Thr	Leu 890	Asp	Ile	Asp	Phe	Lys 895	Phe
Met	Glu	Aap	Ile 900	Glu	Гла	Ser	Glu	Ala 905	Arg	Ile	Gly	Ile	Pro 910	Ser	Thr
Lys	Tyr	Thr 915	Lys	Glu	Thr	Pro	Phe 920	Val	Phe	Гла	Leu	Glu 925	Asp	Tyr	Gln
Asp	Ala 930	Val	Ile	Ile	Pro	Arg 935	Tyr	Arg	Asn	Phe	Asp 940	Gln	Pro	His	Arg
Phe 945	Tyr	Val	Ala	Asp	Val 950	Tyr	Thr	Asp	Leu	Thr 955	Pro	Leu	Ser	Lys	Phe 960
Pro	Ser	Pro	Glu	Tyr 965	Glu	Thr	Phe	Ala	Glu 970	Tyr	Tyr	Гла	Thr	Lys 975	Tyr
Asn	Leu	Asp	Leu 980	Thr	Asn	Leu	Asn	Gln 985	Pro	Leu	Leu	Asp	Val 990	Asp	His
Thr	Ser	Ser 995	Arg	Leu	Asn	Leu	Leu 1000	Th:	r Pro	o Arg	g Hi	s Le: 100	1 A: 05	sn G	ln Lys
Gly	Lys 1010	Ala)	a Leu	ı Pro) Leu	1 Sei 101	с Se 15	∍r Al	la Gi	lu Ly	ys A: 1	rg 1 020	Lys i	Ala 1	Lys
Trp	Glu 1029	Sei 5	: Leu	ı Glr	n Asr	103 Lys	a G: 80	ln I	le Le	∋u Va	al P: 1	ro (035	Glu 1	Leu (Суа
Ala	Ile 1040	Hi:	9 Pro	o Ile	e Pro) Ala 104	a Se 15	er Le	eu T:	rp A:	rg Ly 1	ys 1 050	Ala M	Val (Сув
Leu	Pro 1055	Sei 5	: Ile	e Leu	ı Tyr	Arg 106	g Le 50	∋u H:	is Cy	γs L€	∋u L 1	eu ' 065	Thr À	Ala (Glu
Glu	Leu 1070	Arç	g Ala	a Glr	n Thr	Ala 107	a Se 75	er Af	ap Ai	la Gi	ly V 1	al (080	Gly V	Val i	Arg
Ser	Leu 1085	Pro 5	> Ala	a Asr) Phe	e Arg 109	9 T <u>3</u> 90	yr Pi	ro A	sn Le	eu A 1	ap 1 095	Phe (Gly '	Trp
Lys	Lys	Sei	: Ile	e Asp) Ser	: Lys	s Se	er Pl	ne I	le Se	∋r I	le :	Ser A	Asn :	Ser

	1100					1105					1110			
Ser	Ser 1115	Ala	Glu	Asn	Asp	Asn 1120	Tyr	Сув	Lys	His	Ser 1125	Thr	Ile	Val
Pro	Glu 1130	Asn	Ala	Ala	His	Gln 1135	Gly	Ala	Asn	Arg	Thr 1140	Ser	Ser	Leu
Glu	Asn 1145	His	Asp	Gln	Met	Ser 1150	Val	Asn	Cys	Arg	Thr 1155	Leu	Leu	Ser
Glu	Ser 1160	Pro	Gly	Гла	Leu	His 1165	Val	Glu	Val	Ser	Ala 1170	Asp	Leu	Thr
Ala	Ile 1175	Asn	Gly	Leu	Ser	Tyr 1180	Asn	Gln	Asn	Leu	Ala 1185	Asn	Gly	Ser
Tyr	Asp 1190	Leu	Ala	Asn	Arg	Asp 1195	Phe	Cys	Gln	Gly	Asn 1200	Gln	Leu	Asn
Tyr	Tyr 1205	Lys	Gln	Glu	Ile	Pro 1210	Val	Gln	Pro	Thr	Thr 1215	Ser	Tyr	Ser
Ile	Gln 1220	Asn	Leu	Tyr	Ser	Tyr 1225	Glu	Asn	Gln	Pro	Gln 1230	Pro	Ser	Asp
Glu	Cys 1235	Thr	Leu	Leu	Ser	Asn 1240	Lys	Tyr	Leu	Asp	Gly 1245	Asn	Ala	Asn
Lys	Ser 1250	Thr	Ser	Asp	Gly	Ser 1255	Pro	Val	Met	Ala	Val 1260	Met	Pro	Gly
Thr	Thr 1265	Asp	Thr	Ile	Gln	Val 1270	Leu	Lys	Gly	Arg	Met 1275	Asp	Ser	Glu
Gln	Ser 1280	Pro	Ser	Ile	Gly	Tyr 1285	Ser	Ser	Arg	Thr	Leu 1290	Gly	Pro	Asn
Pro	Gly 1295	Leu	Ile	Leu	Gln	Ala 1300	Leu	Thr	Leu	Ser	Asn 1305	Ala	Ser	Asp
Gly	Phe 1310	Asn	Leu	Glu	Arg	Leu 1315	Glu	Met	Leu	Gly	Asp 1320	Ser	Phe	Leu
Lys	His 1325	Ala	Ile	Thr	Thr	Tyr 1330	Leu	Phe	Суз	Thr	Tyr 1335	Pro	Asp	Ala
His	Glu 1340	Gly	Arg	Leu	Ser	Tyr 1345	Met	Arg	Ser	Lys	Lys 1350	Val	Ser	Asn
Cys	Asn 1355	Leu	Tyr	Arg	Leu	Gly 1360	Lys	Lys	Lys	Gly	Leu 1365	Pro	Ser	Arg
Met	Val 1370	Val	Ser	Ile	Phe	Asp 1375	Pro	Pro	Val	Asn	Trp 1380	Leu	Pro	Pro
Gly	Tyr 1385	Val	Val	Asn	Gln	Asp 1390	Lys	Ser	Asn	Thr	Asp 1395	Lys	Trp	Glu
Lys	Asp 1400	Glu	Met	Thr	Lys	Asp 1405	Суз	Met	Leu	Ala	Asn 1410	Gly	Lya	Leu
Asp	Glu 1415	Asp	Tyr	Glu	Glu	Glu 1420	Asp	Glu	Glu	Glu	Glu 1425	Ser	Leu	Met
Trp	Arg 1430	Ala	Pro	Lys	Glu	Glu 1435	Ala	Asp	Tyr	Glu	Asp 1440	Asp	Phe	Leu
Glu	Tyr 1445	Asp	Gln	Glu	His	Ile 1450	Arg	Phe	Ile	Asp	Asn 1455	Met	Leu	Met
Gly	Ser 1460	Gly	Ala	Phe	Val	Lys 1465	Lys	Ile	Ser	Leu	Ser 1470	Pro	Phe	Ser
Thr	Thr 1475	Asp	Ser	Ala	Tyr	Glu 1480	Trp	Гла	Met	Pro	Lys 1485	Гла	Ser	Ser
Leu	Gly 1490	Ser	Met	Pro	Phe	Ser 1495	Ser	Asp	Phe	Glu	Asp 1500	Phe	Asp	Tyr

Ser	Ser 1505	Trp	Asp	Ala	Met	Cys 1510	Tyr	Leu	Aap	Pro	Ser 1515	Lys	Ala	Val
Glu	Glu 1520	Asp	Asp	Phe	Val	Val 1525	Gly	Phe	Trp	Asn	Pro 1530	Ser	Glu	Glu
Asn	Cys 1535	Gly	Val	Asp	Thr	Gly 1540	Lys	Gln	Ser	Ile	Ser 1545	Tyr	Asp	Leu
His	Thr 1550	Glu	Gln	Cys	Ile	Ala 1555	Asp	Lys	Ser	Ile	Ala 1560	Asp	Суз	Val
Glu	Ala 1565	Leu	Leu	Gly	Сүз	Tyr 1570	Leu	Thr	Ser	Cys	Gly 1575	Glu	Arg	Ala
Ala	Gln 1580	Leu	Phe	Leu	Cys	Ser 1585	Leu	Gly	Leu	Lys	Val 1590	Leu	Pro	Val
Ile	Lys 1595	Arg	Thr	Asp	Arg	Glu 1600	Lys	Ala	Leu	Суз	Pro 1605	Thr	Arg	Glu
Asn	Phe 1610	Asn	Ser	Gln	Gln	Lys 1615	Asn	Leu	Ser	Val	Ser 1620	Суа	Ala	Ala
Ala	Ser 1625	Val	Ala	Ser	Ser	Arg 1630	Ser	Ser	Val	Leu	Lys 1635	Asp	Ser	Glu
Tyr	Gly 1640	Суз	Leu	Lys	Ile	Pro 1645	Pro	Arg	Суз	Met	Phe 1650	Asp	His	Pro
Asp	Ala 1655	Asp	ГЛа	Thr	Leu	Asn 1660	His	Leu	Ile	Ser	Gly 1665	Phe	Glu	Asn
Phe	Glu 1670	L'Aa	Lys	Ile	Asn	Tyr 1675	Arg	Phe	Lys	Asn	Lys 1680	Ala	Tyr	Leu
Leu	Gln 1685	Ala	Phe	Thr	His	Ala 1690	Ser	Tyr	His	Tyr	Asn 1695	Thr	Ile	Thr
Asp	Cys 1700	Tyr	Gln	Arg	Leu	Glu 1705	Phe	Leu	Gly	Asp	Ala 1710	Ile	Leu	Asp
Tyr	Leu 1715	Ile	Thr	Lys	His	Leu 1720	Tyr	Glu	Asp	Pro	Arg 1725	Gln	His	Ser
Pro	Gly 1730	Val	Leu	Thr	Asp	Leu 1735	Arg	Ser	Ala	Leu	Val 1740	Asn	Asn	Thr
Ile	Phe 1745	Ala	Ser	Leu	Ala	Val 1750	Lys	Tyr	Asp	Tyr	His 1755	Lys	Tyr	Phe
ГÀа	Ala 1760	Val	Ser	Pro	Glu	Leu 1765	Phe	His	Val	Ile	Asp 1770	Asp	Phe	Val
Gln	Phe 1775	Gln	Leu	Glu	ГЛа	Asn 1780	Glu	Met	Gln	Gly	Met 1785	Aab	Ser	Glu
Leu	Arg 1790	Arg	Ser	Glu	Glu	Asp 1795	Glu	Glu	ГÀа	Glu	Glu 1800	Aab	Ile	Glu
Val	Pro 1805	Lys	Ala	Met	Gly	Asp 1810	Ile	Phe	Glu	Ser	Leu 1815	Ala	Gly	Ala
Ile	Tyr 1820	Met	Asp	Ser	Gly	Met 1825	Ser	Leu	Glu	Thr	Val 1830	Trp	Gln	Val
Tyr	Tyr 1835	Pro	Met	Met	Arg	Pro 1840	Leu	Ile	Glu	Lys	Phe 1845	Ser	Ala	Asn
Val	Pro 1850	Arg	Ser	Pro	Val	Arg 1855	Glu	Leu	Leu	Glu	Met 1860	Glu	Pro	Glu
Thr	Ala 1865	Lys	Phe	Ser	Pro	Ala 1870	Glu	Arg	Thr	Tyr	Asp 1875	Gly	Lys	Val
Arg	Val 1880	Thr	Val	Glu	Val	Val 1885	Gly	Lys	Gly	Lys	Phe 1890	Lys	Gly	Val

-continued

Gly	Arg 1895	Sei 5	г Туз	r Arç	g Ile	e Ala 190	a L <u>i</u> 00	γs S	er A	la A	la A 1	la 905	Arg	Arg 2	Ala
Leu	Arg 1910	Sei	: Lei	ı Ly:	s Ala	a Asr 191	n G. 15	ln P	ro G	ln V	al P: 1	ro 920	Asn	Ser	
<210 <211 <212 <213)> SH L> LH 2> TY 3> OH	EQ II ENGTH (PE : RGANI) NO 1: 64 PRT [SM:	10 47 Homo	o sa <u>r</u>	piens	5								
<400)> SI	EQUEI	ICE :	10											
Asp 1	Ser	Glu	Gln	Ser 5	Pro	Ser	Ile	Gly	Tyr 10	Ser	Ser	Arg	Thr	Leu 15	Gly
Pro	Asn	Pro	Gly 20	Leu	Ile	Leu	Gln	Ala 25	Leu	Thr	Leu	Ser	Asn 30	Ala	Ser
Asp	Gly	Phe 35	Asn	Leu	Glu	Arg	Leu 40	Glu	Met	Leu	Gly	Asp 45	Ser	Phe	Leu
Lys	His 50	Ala	Ile	Thr	Thr	Tyr 55	Leu	Phe	Cys	Thr	Tyr 60	Pro	Asp	Ala	His
Glu 65	Gly	Arg	Leu	Ser	Tyr 70	Met	Arg	Ser	Lys	Lys 75	Val	Ser	Asn	Суз	Asn 80
Leu	Tyr	Arg	Leu	Gly 85	Lys	Lys	Lys	Gly	Leu 90	Pro	Ser	Arg	Met	Val 95	Val
Ser	Ile	Phe	Asp 100	Pro	Pro	Val	Asn	Trp 105	Leu	Pro	Pro	Gly	Tyr 110	Val	Val
Asn	Gln	Asp 115	Lys	Ser	Asn	Thr	Asp 120	Lys	Trp	Glu	ГÀа	Asp 125	Glu	Met	Thr
Lys	Asp 130	Cys	Met	Leu	Ala	Asn 135	Gly	Lys	Leu	Asp	Glu 140	Asp	Tyr	Glu	Glu
Glu 145	Asp	Glu	Glu	Glu	Glu 150	Ser	Leu	Met	Trp	Arg 155	Ala	Pro	Гла	Glu	Glu 160
Ala	Asp	Tyr	Glu	Asp 165	Asp	Phe	Leu	Glu	Tyr 170	Asp	Gln	Glu	His	Ile 175	Arg
Phe	Ile	Asp	Asn 180	Met	Leu	Met	Gly	Ser 185	Gly	Ala	Phe	Val	Lys 190	Lys	Ile
Ser	Leu	Ser 195	Pro	Phe	Ser	Thr	Thr 200	Asp	Ser	Ala	Tyr	Glu 205	Trp	Lys	Met
Pro	Lys 210	Lys	Ser	Ser	Leu	Gly 215	Ser	Met	Pro	Phe	Ser 220	Ser	Asp	Phe	Glu
Asp 225	Phe	Asp	Tyr	Ser	Ser 230	Trp	Asp	Ala	Met	Суя 235	Tyr	Leu	Asp	Pro	Ser 240
Lys	Ala	Val	Glu	Glu 245	Asp	Asp	Phe	Val	Val 250	Gly	Phe	Trp	Asn	Pro 255	Ser
Glu	Glu	Asn	Cys 260	Gly	Val	Asp	Thr	Gly 265	Гла	Gln	Ser	Ile	Ser 270	Tyr	Asp
Leu	His	Thr 275	Glu	Gln	Суз	Ile	Ala 280	Asp	Lys	Ser	Ile	Ala 285	Asp	Сув	Val
Glu	Ala 290	Leu	Leu	Gly	Суз	Tyr 295	Leu	Thr	Ser	Суа	Gly 300	Glu	Arg	Ala	Ala
Gln 305	Leu	Phe	Leu	Cys	Ser 310	Leu	Gly	Leu	Lys	Val 315	Leu	Pro	Val	Ile	Lys 320
Arg	Thr	Asp	Arg	Glu 325	Lys	Ala	Leu	Суз	Pro 330	Thr	Arg	Glu	Asn	Phe 335	Asn
Ser	Gln	Gln	Lys 340	Asn	Leu	Ser	Val	Ser 345	Суз	Ala	Ala	Ala	Ser 350	Val	Ala

Ser	Ser	Arg 355	Ser	Ser	Val	Leu	Lys 360	Aab	Ser	Glu	Tyr	Gly 365	Суз	Leu	Lys
Ile	Pro 370	Pro	Arg	Сув	Met	Phe 375	Asp	His	Pro	Asp	Ala 380	Asp	Lys	Thr	Leu
Asn 385	His	Leu	Ile	Ser	Gly 390	Phe	Glu	Asn	Phe	Glu 395	Lys	Lys	Ile	Asn	Tyr 400
Arg	Phe	Lys	Asn	Lys 405	Ala	Tyr	Leu	Leu	Gln 410	Ala	Phe	Thr	His	Ala 415	Ser
Tyr	His	Tyr	Asn 420	Thr	Ile	Thr	Asp	Cys 425	Tyr	Gln	Arg	Leu	Glu 430	Phe	Leu
Gly	Asp	Ala 435	Ile	Leu	Asp	Tyr	Leu 440	Ile	Thr	ГÀа	His	Leu 445	Tyr	Glu	Asp
Pro	Arg 450	Gln	His	Ser	Pro	Gly 455	Val	Leu	Thr	Asp	Leu 460	Arg	Ser	Ala	Leu
Val 465	Asn	Asn	Thr	Ile	Phe 470	Ala	Ser	Leu	Ala	Val 475	Lys	Tyr	Asp	Tyr	His 480
Lys	Tyr	Phe	Lys	Ala 485	Val	Ser	Pro	Glu	Leu 490	Phe	His	Val	Ile	Asp 495	Asp
Phe	Val	Gln	Phe 500	Gln	Leu	Glu	Lys	Asn 505	Glu	Met	Gln	Gly	Met 510	Aab	Ser
Glu	Leu	Arg 515	Arg	Ser	Glu	Glu	Asp 520	Glu	Glu	Lys	Glu	Glu 525	Asp	Ile	Glu
Val	Pro 530	Lys	Ala	Met	Gly	Asp 535	Ile	Phe	Glu	Ser	Leu 540	Ala	Gly	Ala	Ile
Tyr 545	Met	Asp	Ser	Gly	Met 550	Ser	Leu	Glu	Thr	Val 555	Trp	Gln	Val	Tyr	Tyr 560
Pro	Met	Met	Arg	Pro 565	Leu	Ile	Glu	Lys	Phe 570	Ser	Ala	Asn	Val	Pro 575	Arg
Ser	Pro	Val	Arg 580	Glu	Leu	Leu	Glu	Met 585	Glu	Pro	Glu	Thr	Ala 590	Lys	Phe
Ser	Pro	Ala 595	Glu	Arg	Thr	Tyr	Asp 600	Gly	Lys	Val	Arg	Val 605	Thr	Val	Glu
Val	Val 610	Gly	Lys	Gly	Lys	Phe 615	ГЛЗ	Gly	Val	Gly	Arg 620	Ser	Tyr	Arg	Ile
Ala 625	Lys	Ser	Ala	Ala	Ala 630	Arg	Arg	Ala	Leu	Arg 635	Ser	Leu	Lys	Ala	Asn 640
Gln	Pro	Gln	Val	Pro 645	Asn	Ser									
<210)> SH	EQ II) NO	11											
<21. <212 <213	L> LF 2> TY 3> OF	PE : RGAN	PRT ISM:	Homo	o saj	piens	3								
<400)> SH	EQUEI	ICE :	11											
Met 1	Asp	Asp	Asp	Asp 5	Val	Phe	Pro	Pro	Tyr 10	Val	Leu	Arg	Pro	Asp 15	Asp
Gly	Gly	Pro	Arg 20	Val	Thr	Ile	Asn	Thr 25	Ala	Ile	Gly	His	Ile 30	Asn	Arg
Tyr	Сув	Ala 35	Arg	Leu	Pro	Ser	Asp 40	Pro	Phe	Thr	His	Leu 45	Ala	Pro	Гла
СЛа	Arg 50	Thr	Arg	Glu	Leu	Pro 55	Asp	Gly	Thr	Phe	Tyr 60	Ser	Thr	Leu	Tyr
Leu	Pro	Ile	Asn	Ser	Pro	Leu	Arg	Ala	Ser	Ile	Val	Gly	Pro	Pro	Met

65					70					75					80
Ser	Суз	Val	Arg	Leu 85	Ala	Glu	Arg	Val	Val 90	Ala	Leu	Ile	Суз	Сув 95	Glu
Lys	Leu	His	Lys 100	Ile	Gly	Glu	Leu	Asp 105	Asp	His	Leu	Met	Pro 110	Val	Gly
Lys	Glu	Thr 115	Val	Lys	Tyr	Glu	Glu 120	Glu	Leu	Asp	Leu	His 125	Asp	Glu	Glu
Glu	Thr 130	Ser	Val	Pro	Gly	Arg 135	Pro	Gly	Ser	Thr	Lys 140	Arg	Arg	Gln	Сув
Tyr 145	Pro	Lys	Ala	Ile	Pro 150	Glu	Сүз	Leu	Arg	Asp 155	Ser	Tyr	Pro	Arg	Pro 160
Asp	Gln	Pro	Суз	Tyr 165	Leu	Tyr	Val	Ile	Gly 170	Met	Val	Leu	Thr	Thr 175	Pro
Leu	Pro	Asp	Glu 180	Leu	Asn	Phe	Arg	Arg 185	Arg	Lys	Leu	Tyr	Pro 190	Pro	Glu
Asp	Thr	Thr 195	Arg	Сүз	Phe	Gly	Ile 200	Leu	Thr	Ala	Lys	Pro 205	Ile	Pro	Gln
Ile	Pro 210	His	Phe	Pro	Val	Tyr 215	Thr	Arg	Ser	Gly	Glu 220	Val	Thr	Ile	Ser
Ile 225	Glu	Leu	Lys	Lys	Ser 230	Gly	Phe	Met	Leu	Ser 235	Leu	Gln	Met	Leu	Glu 240
Leu	Ile	Thr	Arg	Leu 245	His	Gln	Tyr	Ile	Phe 250	Ser	His	Ile	Leu	Arg 255	Leu
Glu	Lys	Pro	Ala 260	Leu	Glu	Phe	Lys	Pro 265	Thr	Asp	Ala	Asp	Ser 270	Ala	Tyr
Сув	Val	Leu 275	Pro	Leu	Asn	Val	Val 280	Asn	Asp	Ser	Ser	Thr 285	Leu	Asp	Ile
Asp	Phe 290	Lys	Phe	Met	Glu	Asp 295	Ile	Glu	Lys	Ser	Glu 300	Ala	Arg	Ile	Gly
Ile 305	Pro	Ser	Thr	Lys	Tyr 310	Thr	Lys	Glu	Thr	Pro 315	Phe	Val	Phe	Lys	Leu 320
Glu	Asp	Tyr	Gln	Asp 325	Ala	Val	Ile	Ile	Pro 330	Arg	Tyr	Arg	Asn	Phe 335	Asp
Gln	Pro	His	Arg 340	Phe	Tyr	Val	Ala	Asp 345	Val	Tyr	Thr	Asp	Leu 350	Thr	Pro
Leu	Ser	Lys 355	Phe	Pro	Ser	Pro	Glu 360	Tyr	Glu	Thr	Phe	Ala 365	Glu	Tyr	Tyr
Lys	Thr 370	Lys	Tyr	Asn	Leu	Asp 375	Leu	Thr	Asn	Leu	Asn 380	Gln	Pro	Leu	Leu
Asp 385	Val	Asp	His	Thr	Ser 390	Ser	Arg	Leu	Asn	Leu 395	Leu	Thr	Pro	Arg	His 400
Leu	Asn	Gln	Lys	Gly 405	Lys	Ala	Leu	Pro	Leu 410	Ser	Ser	Ala	Glu	Lys 415	Arg
ГЛа	Ala	Lys	Trp 420	Glu	Ser	Leu	Gln	Asn 425	Lys	Gln	Ile	Leu	Val 430	Pro	Glu
Leu	Cys	Ala 435	Ile	His	Pro	Ile	Pro 440	Ala	Ser	Leu	Trp	Arg 445	Lys	Ala	Val
Суа	Leu 450	Pro	Ser	Ile	Leu	Tyr 455	Arg	Leu	His	Суз	Leu 460	Leu	Thr	Ala	Glu
Glu	Leu	Arg	Ala	Gln	Thr	Ala	Ser	Asp	Ala	Gly	Val	Gly	Val	Arg	Ser
465 Leu	Pro	Ala	Asp	Phe	470 Arg	Tyr	Pro	Asn	Leu	475 Asp	Phe	Gly	Trp	Lys	480 Lys

Ser	Ile	Asp	Ser 500	Lys	Ser	Phe	Ile	Ser 505	Ile	Ser	Asn	Ser	Ser 510	Ser	Ala
Glu	Asn	Asp 515	Asn	Tyr	Суз	Lys	His 520	Ser	Thr	Ile	Val	Pro 525	Glu	Asn	Ala
Ala	His 530	Gln	Gly	Ala	Asn	Arg 535	Thr	Ser	Ser	Leu	Glu 540	Asn	His	Asp	Gln
Met 545	Ser	Val	Asn	Сүз	Arg 550	Thr	Leu	Leu	Ser	Glu 555	Ser	Pro	Gly	Lys	Leu 560
His	Val	Glu	Val	Ser 565	Ala	Asp	Leu	Thr	Ala 570	Ile	Asn	Gly	Leu	Ser 575	Tyr
Asn	Gln	Asn	Leu 580	Ala	Asn	Gly	Ser	Tyr 585	Asp	Leu	Ala	Asn	Arg 590	Asp	Phe
Суз	Gln	Gly 595	Asn	Gln	Leu	Asn	Tyr 600	Tyr	Lys	Gln	Glu	Ile 605	Pro	Val	Gln
Pro	Thr 610	Thr	Ser	Tyr	Ser	Ile 615	Gln	Asn	Leu	Tyr	Ser 620	Tyr	Glu	Asn	Gln
Pro 625	Gln	Pro	Ser	Asp	Glu 630	Суз	Thr	Leu	Leu	Ser 635	Asn	Lys	Tyr	Leu	Asp 640
Gly	Asn	Ala	Asn	Lys 645	Ser	Thr	Ser	Asp	Gly 650	Ser	Pro	Val	Met	Ala 655	Val
Met	Pro	Gly	Thr 660	Thr	Asp	Thr	Ile	Gln 665	Val	Leu	Lys	Gly	Arg 670	Met	Asp
Ser	Glu	Gln 675	Ser	Pro	Ser	Ile	Gly 680	Tyr	Ser	Ser	Arg	Thr 685	Leu	Gly	Pro
Asn	Pro 690	Gly	Leu	Ile	Leu	Gln 695	Ala	Leu	Thr	Leu	Ser 700	Asn	Ala	Ser	Asp
Gly 705	Phe	Asn	Leu	Glu	Arg 710	Leu	Glu	Met	Leu	Gly 715	Asp	Ser	Phe	Leu	Lys 720
His	Ala	Ile	Thr	Thr 725	Tyr	Leu	Phe	Сүз	Thr 730	Tyr	Pro	Asp	Ala	His 735	Glu
Gly	Arg	Leu	Ser 740	Tyr	Met	Arg	Ser	Lys 745	Lys	Val	Ser	Asn	Cys 750	Asn	Leu
Tyr	Arg	Leu 755	Gly	LÀa	Lys	ГЛа	Gly 760	Leu	Pro	Ser	Arg	Met 765	Val	Val	Ser
Ile	Phe 770	Asp	Pro	Pro	Val	Asn 775	Trp	Leu	Pro	Pro	Gly 780	Tyr	Val	Val	Asn
Gln 785	Asp	Lys	Ser	Asn	Thr 790	Asp	Lys	Trp	Glu	Lys 795	Asp	Glu	Met	Thr	Lys 800
Aap	Суз	Met	Leu	Ala 805	Asn	Gly	Lys	Leu	Asp 810	Glu	Asp	Tyr	Glu	Glu 815	Glu
Aap	Glu	Glu	Glu 820	Glu	Ser	Leu	Met	Trp 825	Arg	Ala	Pro	Lys	Glu 830	Glu	Ala
Asp	Tyr	Glu 835	Asp	Asp	Phe	Leu	Glu 840	Tyr	Asp	Gln	Glu	His 845	Ile	Arg	Phe
Ile	Asp 850	Asn	Met	Leu	Met	Gly 855	Ser	Gly	Ala	Phe	Val 860	Lya	Lys	Ile	Ser
Leu 865	Ser	Pro	Phe	Ser	Thr 870	Thr	Asp	Ser	Ala	Tyr 875	Glu	Trp	Lys	Met	Pro 880
Lys	Lys	Ser	Ser	Leu 885	Gly	Ser	Met	Pro	Phe 890	Ser	Ser	Asp	Phe	Glu 895	Asp
Phe	Asp	Tyr	Ser 900	Ser	Trp	Asp	Ala	Met 905	Cys	Tyr	Leu	Asp	Pro 910	Ser	Lys

Ala Val Glu Glu Asp Asp Phe Val Val Gly Phe Trp Asn Pro Ser Glu

-continued

		915				9	920				925	5		
Glu	Asn 930	Сув	Gly	Val	Asp	Thr (935	Gly I	ıya G	ln S	er I 9	le Sei 40	r Tyr	: Ast	o Leu
His 945	Thr	Glu	Gln	Cys	Ile 950	Ala A	Asp I	ya S	er I 9	le A 55	la Asp	p Cya	va]	l Glu 960
Ala	Leu	Leu	Gly	Cys 965	Tyr	Leu ?	Thr S	er C 9	уз G 70	ly G	lu Arç	g Ala	a Ala 975	a Gln 5
Leu	Phe	Leu	Сув 980	Ser	Leu	Gly I	Leu I 9	ya V 85	al L	eu P	ro Val	l Ile 990	e Lys)	s Arg
Thr	Asp	Arg 995	Glu	Lys	Ala	Leu (Cys 1000	Pro	Thr	Arg	Glu As 10	sn E 005	he A	Asn Se
Gln	Gln 1010	Lya	Asn	ı Leu	. Ser	Val 1019	Ser 5	Сув	Ala	Ala	Ala 1020	Ser	Val	Ala
Ser	Ser 1025	Arg	Ser	Ser	Val	Leu 1030	Lya D	Asp	Ser	Glu	Tyr 1035	Gly	Суз	Leu
Lys	Ile 1040	Pro	Prc	Arg	і Сла	Met 1049	Phe 5	e Asp	His	Pro	Asp 1050	Ala	Asp	Lys
Thr	Leu 1055	Asn	His	Leu	l Ile	Ser 1060	Gly D	Phe	Glu	Asn	Phe 1065	Glu	Lya	Lys
Ile	Asn 1070	Tyr	Arg	l Phe	e Lys	Asn 1075	Lya 5	Ala	Tyr	Leu	Leu 1080	Gln	Ala	Phe
Thr	His 1085	Ala	Ser	Tyr	His	Tyr 1090	Asr. D	1 Thr	Ile	Thr	Asp 1095	Суз	Tyr	Gln
Arg	Leu 1100	Glu	Phe	e Leu	. Gly	Asp 1109	Ala 5	ı Ile	Leu	Asp	Tyr 1110	Leu	Ile	Thr
Lys	His 1115	Leu	Tyr	Glu	ı Asp	Pro 1120	Arg D	g Gln	His	Ser	Pro 1125	Gly	Val	Leu
Thr	Asp 1130	Leu	Arg	Ser	Ala	Leu 1139	Val 5	. Asn	Asn	Thr	Ile 1140	Phe	Ala	Ser
Leu	Ala 1145	Val	Lys	Tyr	Asp	Tyr 1150	His O	Lys	Tyr	Phe	Lys 1155	Ala	Val	Ser
Pro	Glu 1160	Leu	Phe	e His	Val	Ile 1169	Asp 5) Asp	Phe	Val	Gln 1170	Phe	Gln	Leu
Glu	Lys 1175	Asn	ı Glu	. Met	Gln	Gly 1180	Met D	Asp	Ser	Glu	Leu 1185	Arg	Arg	Ser
Glu	Glu 1190	Asp	Glu	ı Glu	ı Lys	Glu 1199	Glu 5	ı Asp	Ile	Glu	Val 1200	Pro	Lys	Ala
Met	Gly 1205	Asp	Ile	Phe	e Glu	Ser 1210	Leu)	ı Ala	Gly	Ala	Ile 1215	Tyr	Met	Asp
Ser	Gly 1220	Met	Ser	Leu	. Glu	1229	Val 5	. Trp	Gln	Val	Tyr 1230	Tyr	Pro	Met
Met	Arg 1235	Pro	Leu	l Ile	e Glu	Lys 1240	Phe D	e Ser	Ala	Asn	Val 1245	Pro	Arg	Ser
Pro	Val 1250	Arg	Glu	Leu	Leu	Glu 1259	Met 5	Glu	Pro	Glu	Thr 1260	Ala	Lys	Phe
Ser	Pro 1265	Ala	Glu	ı Arg	Thr	Tyr 1270	Asr O	Gly	Lys	Val	Arg 1275	Val	Thr	Val
Glu	Val 1280	Val	Gly	' Lys	Gly	Lys 1289	Phe 5	e Lys	Gly	Val	Gly 1290	Arg	Ser	Tyr
Arg	Ile 1295	Ala	Lys	Ser	Ala	Ala 1300	Ala D	ı Arg	Arg	Ala	Leu 1305	Arg	Ser	Leu
Lys	Ala	Asn	Gln	n Pro	Gln	ı Val	Pro) Asn	Ser					

-continued

<210> SEQ ID NO 12 <211> LENGTH: 257 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 12 Phe Glu Asn Phe Glu Lys Lys Ile Asn Tyr Arg Phe Lys Asn Lys Ala Tyr Leu Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile Thr Asp Cys Tyr Gln Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp 35 40 45 Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp Pro Arg Gln His Ser Pro Gly Val Leu Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr Ile Phe Ala Ser Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp Asp Phe Val Gl
n Phe Gln Leu Glu Lys Asn Glu Met Gln Gly Met Asp Ser Glu Leu Arg Arg Ser Glu Glu Asp Glu Glu Lys Glu Glu Asp Ile Glu Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile Tyr Met Asp Ser Gly Met Ser Leu Glu Thr Val Trp Gln Val Tyr Tyr Pro Met Met Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser Pro Val Arg Glu Leu Leu Glu Met Glu Pro Glu Thr Ala Lys Phe Ser Pro Ala Glu Arg Thr Tyr Asp Gly Lys Val Arg Val Thr Val Glu Val Val Gly Lys Gly Lys Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile Ala Lys Ser Ala Ala Ala Arg Arg Ala Leu Arg Ser Leu Lys Ala Asn Gln Pro Gln Val Pro Asn Ser <210> SEQ ID NO 13 <211> LENGTH: 247 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 13 Phe Glu Asn Phe Glu Lys Lys Ile Asn Tyr Arg Phe Lys Asn Lys Ala Tyr Leu Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile Thr Asp Cys Tyr Gln Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp Pro Arg Gln His Ser Pro

-continued

Gly Val Leu Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr Ile Phe Ala Ser Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp Asp Phe Val Gln Phe Gln Leu Glu Lys Asn Glu Met Gln Gly Met Asp Ser Glu Leu Arg Arg Ser Glu Glu Asp Glu Glu Lys Glu Glu Asp Ile Glu Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile Tyr Met Asp Ser Gly Met Ser Leu Glu Thr Val Trp Gln Val Tyr Tyr Pro Met Met Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser Pro Val Arg Glu Leu Leu Glu Met Glu Pro Glu Thr Ala Lys Phe Ser Pro Ala Glu Arg Thr Tyr Asp Gly Lys Val Arg Val Thr Val Glu Val Val Gly Lys Gly Lys Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile Ala Lys Ser Ala Ala Ala Arg Arg Ala Leu Arg Ser Leu <210> SEQ ID NO 14 <211> LENGTH: 234 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 14 Phe Glu Asn Phe Glu Lys Lys Ile Asn Tyr Arg Phe Lys Asn Lys Ala Tyr Leu Leu Gln Ala Phe Thr His Ala Ser Tyr His Tyr Asn Thr Ile Thr Asp Cys Tyr Gln Arg Leu Glu Phe Leu Gly Asp Ala Ile Leu Asp Tyr Leu Ile Thr Lys His Leu Tyr Glu Asp Pro Arg Gln His Ser Pro
 Gly Val Leu Thr Asp Leu Arg Ser Ala Leu Val Asn Asn Thr Ile Phe

 65
 70
 75
 80
 Ala Ser Leu Ala Val Lys Tyr Asp Tyr His Lys Tyr Phe Lys Ala Val Ser Pro Glu Leu Phe His Val Ile Asp Asp Phe Val Gln Phe Gln Leu Glu Lys Asn Glu Met Gln Gly Met Asp Glu Asp Ile Glu Val Pro Lys Ala Met Gly Asp Ile Phe Glu Ser Leu Ala Gly Ala Ile Tyr Met Asp Ser Gly Met Ser Leu Glu Thr Val Trp Gln Val Tyr Tyr Pro Met Met Arg Pro Leu Ile Glu Lys Phe Ser Ala Asn Val Pro Arg Ser Pro Val Arg Glu Leu Leu Glu Met Glu Pro Glu Thr Ala Lys Phe Ser Pro Ala

-continued

Glu Arg Thr Tyr Asp Gly Lys Val Arg Val Thr Val Glu Val Val Gly Lys Gly Lys Phe Lys Gly Val Gly Arg Ser Tyr Arg Ile Ala Lys Ser Ala Ala Ala Arg Arg Ala Leu Arg Ser Leu <210> SEQ ID NO 15 <211> LENGTH: 550 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 15 Met Asp Ser Glu Gln Ser Pro Ser Ile Gly Tyr Ser Ser Arg Thr Leu Gly Pro Asn Pro Gly Leu Ile Leu Gln Ala Leu Thr Leu Ser Asn Ala Ser Asp Gly Phe Asn Leu Glu Arg Leu Glu Met Leu Gly Asp Ser Phe Leu Lys His Ala Ile Thr Thr Tyr Leu Phe Cys Thr Tyr Pro Asp Ala His Glu Gly Arg Leu Ser Tyr Met Arg Ser Lys Lys Val Ser Asn Cys Asn Leu Tyr Arg Leu Gly Lys Lys Lys Gly Leu Pro Ser Arg Met Val Val Ser Ile Phe Asp Pro Pro Val Asn Trp Leu Pro Pro Gly Tyr Val Val Asn Gln Asp Lys Ser Asn Thr Asp Lys Trp Glu Lys Asp Glu Met Thr Lys Asp Cys Met Leu Ala Asn Gly Lys Leu Asp Glu Asp Tyr Glu Glu Glu Asp Glu Glu Glu Glu Ser Leu Met Trp Arg Ala Pro Lys Glu Glu Ala Asp Tyr Glu Asp Asp Phe Leu Glu Tyr Asp Gln Glu His Ile Arg Phe Ile Asp Asn Met Leu Met Gly Ser Gly Ala Phe Val Lys Lys Ile Ser Leu Ser Pro Phe Ser Thr Thr Asp Ser Ala Tyr Glu Trp Lys Met Pro Lys Lys Ser Ser Leu Gly Ser Met Pro Phe Ser Ser Asp Phe Glu Asp Phe Asp Tyr Ser Ser Trp Asp Ala Met Cys Tyr Leu Asp Pro Ser Lys Ala Val Glu Glu Asp Asp Phe Val Val Gly Phe Trp Asn Pro Ser Glu Glu Asn Cys Gly Val Asp Thr Gly Lys Gln Ser Ile Ser Tyr Asp Leu His Thr Glu Gln Cys Ile Ala Asp Lys Ser Ile Ala Asp Cys Val Glu Ala Leu Leu Gly Cys Tyr Leu Thr Ser Cys Gly Glu Arg Ala Ala Gln Leu Phe Leu Cys Ser Leu Gly Leu Lys Val Leu Pro Val Ile

-continued

ГЛа	Arg	Thr	Asp	Arg 325	Glu	Lys	Ala	Leu	Сув 330	Pro	Thr	Arg	Glu	Asn 335	Phe
Asn	Ser	Gln	Gln 340	Гла	Asn	Leu	Ser	Val 345	Ser	Суз	Ala	Ala	Ala 350	Ser	Val
Ala	Ser	Ser 355	Arg	Ser	Ser	Val	Leu 360	Lys	Asp	Ser	Glu	Tyr 365	Gly	Сүз	Leu
Lys	Ile 370	Pro	Pro	Arg	Суз	Met 375	Phe	Asp	His	Pro	Asp 380	Ala	Asp	Гүз	Thr
Leu 385	Asn	His	Leu	Ile	Ser 390	Gly	Phe	Glu	Asn	Phe 395	Glu	Lys	Lys	Ile	Asn 400
Tyr	Arg	Phe	Lys	Asn 405	Гла	Ala	Tyr	Leu	Leu 410	Gln	Ala	Phe	Thr	His 415	Ala
Ser	Tyr	His	Tyr 420	Asn	Thr	Ile	Thr	Asp 425	Суз	Tyr	Gln	Arg	Leu 430	Glu	Phe
Leu	Gly	Asp 435	Ala	Ile	Leu	Asp	Tyr 440	Leu	Ile	Thr	ГЛа	His 445	Leu	Tyr	Glu
Asp	Pro 450	Arg	Gln	His	Ser	Pro 455	Gly	Val	Leu	Thr	Asp 460	Leu	Arg	Ser	Ala
Leu 465	Val	Asn	Asn	Thr	Ile 470	Phe	Ala	Ser	Leu	Ala 475	Val	Гла	Tyr	Asp	Tyr 480
His	Lys	Tyr	Phe	Lys 485	Ala	Val	Ser	Pro	Glu 490	Leu	Phe	His	Val	Ile 495	Asp
Asp	Phe	Val	Gln 500	Phe	Gln	Leu	Glu	Lys 505	Asn	Glu	Met	Gln	Gly 510	Met	Asp
Ser	Glu	Leu 515	Arg	Arg	Ser	Glu	Glu 520	Asp	Glu	Glu	Гла	Glu 525	Glu	Asp	Ile
Glu	Val 530	Pro	Lys	Ala	Met	Gly 535	Asp	Ile	Phe	Glu	Ser 540	Leu	Ala	Gly	Ala
Ile 545	Tyr	Met	Asp	Ser	Gly 550										
<u>.</u>	o. ~-	10 -		1.6											
<21) <21) <21)	0> SH 1> LH 2> TY	SQ II ENGTH (PE:) NO 1: 54 PRT	16 49											
<21	3> OF	RGAN	ISM:	Homo	o saj	pien	s								
Asp	ser	Glu	Gln	⊥° Ser	Pro	Ser	Ile	Glv	Tvr	Ser	Ser	Ara	Thr	Leu	Glv
1 Pro	Asn	Pro	Glv	5 Leu	Ile	Leu	Gln	Ala	10 Leu	Thr	Leu	Ser	Asn	15 Ala	Ser
Aer	Glv	Phe	20 20		Glu	Arc	Leu	25 Glu	Met	Len	Glu	Agn	30 Ser	Phe	Len
чаћ	стү	35 35	ABII	ыeu	эти	чтд	40	эти	net	Leu	ату	лар 45	Ser	FIIG	лец
Γλa	His 50	Ala	Ile	Thr	Thr	Tyr 55	Leu	Phe	Сүз	Thr	Tyr 60	Pro	Asp	Ala	His
Glu 65	Gly	Arg	Leu	Ser	Tyr 70	Met	Arg	Ser	Lys	Lys 75	Val	Ser	Asn	Сув	Asn 80
Leu	Tyr	Arg	Leu	Gly 85	Lys	Lys	Lys	Gly	Leu 90	Pro	Ser	Arg	Met	Val 95	Val
Ser	Ile	Phe	Asp 100	Pro	Pro	Val	Asn	Trp 105	Leu	Pro	Pro	Gly	Tyr 110	Val	Val
Asn															
	Gln	Asp 115	Lys	Ser	Asn	Thr	Asp 120	Lys	Trp	Glu	Lys	Asp 125	Glu	Met	Thr

Glu 145	Asp	Glu	Glu	Glu	Glu 150	Ser	Leu	Met	Trp	Arg 155	Ala	Pro	Lys	Glu	Glu 160
Ala	Asp	Tyr	Glu	Asp 165	Asp	Phe	Leu	Glu	Tyr 170	Asp	Gln	Glu	His	Ile 175	Arg
Phe	Ile	Asp	Asn 180	Met	Leu	Met	Gly	Ser 185	Gly	Ala	Phe	Val	Lys 190	Lys	Ile
Ser	Leu	Ser 195	Pro	Phe	Ser	Thr	Thr 200	Aap	Ser	Ala	Tyr	Glu 205	Trp	Гλа	Met
Pro	Lys 210	Lys	Ser	Ser	Leu	Gly 215	Ser	Met	Pro	Phe	Ser 220	Ser	Asp	Phe	Glu
Asp 225	Phe	Asp	Tyr	Ser	Ser 230	Trp	Asp	Ala	Met	Суз 235	Tyr	Leu	Asp	Pro	Ser 240
Lys	Ala	Val	Glu	Glu 245	Asp	Asp	Phe	Val	Val 250	Gly	Phe	Trp	Asn	Pro 255	Ser
Glu	Glu	Asn	Cys 260	Gly	Val	Asp	Thr	Gly 265	Lys	Gln	Ser	Ile	Ser 270	Tyr	Asp
Leu	His	Thr 275	Glu	Gln	СЛа	Ile	Ala 280	Asp	Lys	Ser	Ile	Ala 285	Asp	Суз	Val
Glu	Ala 290	Leu	Leu	Gly	СЛа	Tyr 295	Leu	Thr	Ser	CAa	Gly 300	Glu	Arg	Ala	Ala
Gln 305	Leu	Phe	Leu	СЛа	Ser 310	Leu	Gly	Leu	Lys	Val 315	Leu	Pro	Val	Ile	Lys 320
Arg	Thr	Aap	Arg	Glu 325	ГÀа	Ala	Leu	Сув	Pro 330	Thr	Arg	Glu	Asn	Phe 335	Asn
Ser	Gln	Gln	Lys 340	Asn	Leu	Ser	Val	Ser 345	Суз	Ala	Ala	Ala	Ser 350	Val	Ala
Ser	Ser	Arg 355	Ser	Ser	Val	Leu	Lys 360	Asp	Ser	Glu	Tyr	Gly 365	Сув	Leu	Lys
Ile	Pro 370	Pro	Arg	Сүз	Met	Phe 375	Asp	His	Pro	Asp	Ala 380	Asp	Lys	Thr	Leu
Asn 385	His	Leu	Ile	Ser	Gly 390	Phe	Glu	Asn	Phe	Glu 395	Lys	Lys	Ile	Asn	Tyr 400
Arg	Phe	Lys	Asn	Lys 405	Ala	Tyr	Leu	Leu	Gln 410	Ala	Phe	Thr	His	Ala 415	Ser
Tyr	His	Tyr	Asn 420	Thr	Ile	Thr	Asp	Cys 425	Tyr	Gln	Arg	Leu	Glu 430	Phe	Leu
Gly	Asp	Ala 435	Ile	Leu	Asp	Tyr	Leu 440	Ile	Thr	Lys	His	Leu 445	Tyr	Glu	Asp
Pro	Arg 450	Gln	His	Ser	Pro	Gly 455	Val	Leu	Thr	Asp	Leu 460	Arg	Ser	Ala	Leu
Val 465	Asn	Asn	Thr	Ile	Phe 470	Ala	Ser	Leu	Ala	Val 475	Lys	Tyr	Asp	Tyr	His 480
Lys	Tyr	Phe	Lys	Ala 485	Val	Ser	Pro	Glu	Leu 490	Phe	His	Val	Ile	Asp 495	Asp
Phe	Val	Gln	Phe 500	Gln	Leu	Glu	Lys	Asn 505	Glu	Met	Gln	Gly	Met 510	Asp	Ser
Glu	Leu	Arg 515	Arg	Ser	Glu	Glu	Asp 520	Glu	Glu	Lys	Glu	Glu 525	Asp	Ile	Glu
Val	Pro 530	Lys	Ala	Met	Gly	Asp 535	Ile	Phe	Glu	Ser	Leu 540	Ala	Gly	Ala	Ile
Tyr 545	Met	Asp	Ser	Gly											

84

60 120

180

240

300

360

420

480

540

600 660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

<210> SEQ ID NO 17 <211> LENGTH: 10323 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 17 cggaggcgcg gcgcaggctg ctgcaggccc aggtgaatgg agtaacctga cagcggggac gaggcgacgg cgagcgcgag gaaatggcgg cggggggggg ggcggc ggctccggga ggcctgggct gtgacgcgcg cgccggagcg gggtccgatg gttctcgaag gcccgcggcg ccccgtgctg cagtaagctg tgctagaaca aaaatgcaat gaaagaaaca ctggatgaat gaaaagccct gctttgcaac ccctcagcat ggcaggcctg cagctcatga cccctgcttc ctcaccaatg ggtcctttct ttggactgcc atggcaacaa gaagcaattc atgataacat ttatacgcca agaaaatatc aggttgaact gcttgaagca gctctggatc ataataccat cqtctqttta aacactqqct caqqqaaqac atttattqca qtactactca ctaaaqaqct gtcctatcag atcaggggag acttcagcag aaatggaaaa aggacggtgt tcttggtcaa ctctgcaaac caggttgctc aacaagtgtc agctgtcaga actcattcag atctcaaggt tqqqqaatac tcaaacctag aaqtaaatgc atcttqqaca aaagaqagat qqaaccaaga gtttactaag caccaggttc tcattatgac ttgctatgtc gccttgaatg ttttgaaaaa tqqttactta tcactqtcaq acattaacct tttqqtqttt qatqaqtqtc atcttqcaat cctagaccac ccctatcgag aaattatgaa gctctgtgaa aattgtccat catgtcctcg cattttggga ctaactgctt ccattttaaa tgggaaatgt gatccagagg aattggaaga aaagattcag aaactagaga aaattcttaa gagtaatgct gaaactgcaa ctgacctggt ggtcttagac aggtatactt ctcagccatg tgagattgtg gtggattgtg gaccatttac tgacagaagt gggctttatg aaagactgct gatggaatta gaagaagcac ttaattttat caatgattgt aatatatctg tacattcaaa agaaagagat tctactttaa tttcgaaaca gatactatca gactgtcgtg ccgtattggt agttctggga ccctggtgtg cagataaagt agetggaatg atggtaagag aactacagaa atacatcaaa catgagcaag aggagetgca caggaaattt ttattgttta cagacacttt cctaaggaaa atacatgcac tatgtgaaga gcacttetca ectgeetcae ttgaeetgaa atttgtaaet eetaaagtaa teaaaetget cgaaatctta cgcaaatata aaccatatga gcgacagcag tttgaaagcg ttgagtggta taataataga aatcaggata attatgtgtc atggagtgat tctgaggatg atgatgagga tgaagaaatt gaagaaaaag agaagccaga gacaaatttt ccttctcctt ttaccaacat tttgtgcgga attattttg tggaaagaag atacacagca gttgtcttaa acagattgat aaaqqaagct qqcaaacaaq atccaqaqct qqcttatatc aqtaqcaatt tcataactqq acatqqcatt qqqaaqaatc aqcctcqcaa caaacaqatq qaaqcaqaat tcaqaaaaca ggaagaggta cttaggaaat ttcgagcaca tgagaccaac ctgcttattg caacaagtat tgtagaagag ggtgttgata taccaaaatg caacttggtg gttcgttttg atttgcccac agaatatcga tcctatgttc aatctaaagg aagagcaagg gcacccatct ctaattatat aatgttagcg gatacagaca aaataaaaag ttttgaagaa gaccttaaaa cctacaaagc tattgaaaag atcttgagaa acaagtgttc caagtcggtt gatactggtg agactgacat tgatcctgtc atggatgatg atgacgtttt cccaccatat gtgttgaggc ctgacgatgg tggtccacga gtcacaatca acacggccat tggacacatc aatagatact gtgctagatt

US 9,464,289 B2

85

accaagtgat	ccgtttactc	atctagctcc	taaatgcaga	acccgagagt	tgcctgatgg	2220
tacattttat	tcaactcttt	atctgccaat	taactcacct	cttcgagcct	ccattgttgg	2280
tccaccaatg	agctgtgtac	gattggctga	aagagttgta	gctctcattt	gctgtgagaa	2340
actgcacaaa	attggcgaac	tggatgacca	tttgatgcca	gttgggaaag	agactgttaa	2400
atatgaagag	gagcttgatt	tgcatgatga	agaagagacc	agtgttccag	gaagaccagg	2460
ttccacgaaa	cgaaggcagt	gctacccaaa	agcaattcca	gagtgtttga	gggatagtta	2520
tcccagacct	gatcagccct	gttacctgta	tgtgatagga	atggttttaa	ctacaccttt	2580
acctgatgaa	ctcaacttta	gaaggcggaa	gctctatcct	cctgaagata	ccacaagatg	2640
ctttggaata	ctgacggcca	aacccatacc	tcagattcca	cactttcctg	tgtacacacg	2700
ctctggagag	gttaccatat	ccattgagtt	gaagaagtct	ggtttcatgt	tgtctctaca	2760
aatgcttgag	ttgattacaa	gacttcacca	gtatatattc	tcacatattc	ttcggcttga	2820
aaaacctgca	ctagaattta	aacctacaga	cgctgattca	gcatactgtg	ttctacctct	2880
taatgttgtt	aatgactcca	gcactttgga	tattgacttt	aaattcatgg	aagatattga	2940
gaagtctgaa	gctcgcatag	gcattcccag	tacaaagtat	acaaaagaaa	caccctttgt	3000
ttttaaatta	gaagattacc	aagatgccgt	tatcattcca	agatatcgca	attttgatca	3060
gcctcatcga	ttttatgtag	ctgatgtgta	cactgatctt	accccactca	gtaaatttcc	3120
ttcccctgag	tatgaaactt	ttgcagaata	ttataaaaca	aagtacaacc	ttgacctaac	3180
caatctcaac	cagccactgc	tggatgtgga	ccacacatct	tcaagactta	atcttttgac	3240
acctcgacat	ttgaatcaga	aggggaaagc	gcttccttta	agcagtgctg	agaagaggaa	3300
agccaaatgg	gaaagtctgc	agaataaaca	gatactggtt	ccagaactct	gtgctataca	3360
tccaattcca	gcatcactgt	ggagaaaagc	tgtttgtctc	cccagcatac	tttatcgcct	3420
tcactgcctt	ttgactgcag	aggagctaag	agcccagact	gccagcgatg	ctggcgtggg	3480
agtcagatca	cttcctgcgg	attttagata	ccctaactta	gacttcgggt	ggaaaaaatc	3540
tattgacagc	aaatctttca	tctcaatttc	taactcctct	tcagctgaaa	atgataatta	3600
ctgtaagcac	agcacaattg	tccctgaaaa	tgctgcacat	caaggtgcta	atagaacctc	3660
ctctctagaa	aatcatgacc	aaatgtctgt	gaactgcaga	acgttgctca	gcgagtcccc	3720
tggtaagctc	cacgttgaag	tttcagcaga	tcttacagca	attaatggtc	tttcttacaa	3780
tcaaaatctc	gccaatggca	gttatgattt	agctaacaga	gacttttgcc	aaggaaatca	3840
gctaaattac	tacaagcagg	aaatacccgt	gcaaccaact	acctcatatt	ccattcagaa	3900
tttatacagt	tacgagaacc	ageceeagee	cagcgatgaa	tgtactctcc	tgagtaataa	3960
ataccttgat	ggaaatgcta	acaaatctac	ctcagatgga	agtcctgtga	tggccgtaat	4020
gcctggtacg	acagacacta	ttcaagtgct	caagggcagg	atggattctg	agcagagccc	4080
ttctattggg	tactcctcaa	ggactcttgg	ccccaatcct	ggacttattc	ttcaggcttt	4140
gactctgtca	aacgctagtg	atggatttaa	cctggagcgg	cttgaaatgc	ttggcgactc	4200
cttttaaag	catgccatca	ccacatatct	attttgcact	taccctgatg	cgcatgaggg	4260
ccgcctttca	tatatgagaa	gcaaaaaggt	cagcaactgt	aatctgtatc	gccttggaaa	4320
aaagaaggga	ctacccagcc	gcatggtggt	gtcaatattt	gatccccctg	tgaattggct	4380
tcctcctggt	tatgtagtaa	atcaagacaa	aagcaacaca	gataaatggg	aaaaagatga	4440
aatgacaaaa	gactgcatgc	tggcgaatgg	caaactggat	gaggattacg	aggaggagga	4500

-continued

tgaggaggag	gagagcctga	tgtggagggc	tccgaaggaa	gaggctgact	atgaagatga	4560
tttcctggag	tatgatcagg	aacatatcag	atttatagat	aatatgttaa	tggggtcagg	4620
agcttttgta	aagaaaatct	ctctttctcc	tttttcaacc	actgattctg	catatgaatg	4680
gaaaatgccc	aaaaaatcct	ccttaggtag	tatgccattt	tcatcagatt	ttgaggattt	4740
tgactacagc	tcttgggatg	caatgtgcta	tctggatcct	agcaaagctg	ttgaagaaga	4800
tgactttgtg	gtggggttct	ggaatccatc	agaagaaaac	tgtggtgttg	acacgggaaa	4860
gcagtccatt	tcttacgact	tgcacactga	gcagtgtatt	gctgacaaaa	gcatagcgga	4920
ctgtgtggaa	gccctgctgg	gctgctattt	aaccagctgt	ggggagaggg	ctgctcagct	4980
tttcctctgt	tcactggggc	tgaaggtgct	cccggtaatt	aaaaggactg	atcgggaaaa	5040
ggccctgtgc	cctactcggg	agaatttcaa	cagccaacaa	aagaaccttt	cagtgagctg	5100
tgctgctgct	tctgtggcca	gttcacgctc	ttctgtattg	aaagactcgg	aatatggttg	5160
tttgaagatt	ccaccaagat	gtatgtttga	tcatccagat	gcagataaaa	cactgaatca	5220
ccttatatcg	gggtttgaaa	attttgaaaa	gaaaatcaac	tacagattca	agaataaggc	5280
ttaccttctc	caggctttta	cacatgcctc	ctaccactac	aatactatca	ctgattgtta	5340
ccagcgctta	gaattcctgg	gagatgcgat	tttggactac	ctcataacca	agcaccttta	5400
tgaagacccg	cggcagcact	ccccgggggt	cctgacagac	ctgcggtctg	ccctggtcaa	5460
caacaccatc	tttgcatcgc	tggctgtaaa	gtacgactac	cacaagtact	tcaaagctgt	5520
ctctcctgag	ctcttccatg	tcattgatga	ctttgtgcag	tttcagcttg	agaagaatga	5580
aatgcaagga	atggattctg	agcttaggag	atctgaggag	gatgaagaga	aagaagagga	5640
tattgaagtt	ccaaaggcca	tgggggatat	ttttgagtcg	cttgctggtg	ccatttacat	5700
ggatagtggg	atgtcactgg	agacagtctg	gcaggtgtac	tatcccatga	tgcggccact	5760
aatagaaaag	ttttctgcaa	atgtaccccg	ttcccctgtg	cgagaattgc	ttgaaatgga	5820
accagaaact	gccaaattta	gcccggctga	gagaacttac	gacgggaagg	tcagagtcac	5880
tgtggaagta	gtaggaaagg	ggaaatttaa	aggtgttggt	cgaagttaca	ggattgccaa	5940
atctgcagca	gcaagaagag	ccctccgaag	cctcaaagct	aatcaacctc	aggttcccaa	6000
tagctgaaac	cgctttttaa	aattcaaaac	aagaaacaaa	acaaaaaaaa	ttaaggggaa	6060
aattatttaa	atcggaaagg	aagacttaaa	gttgttagtg	agtggaatga	attgaaggca	6120
gaatttaaag	tttggttgat	aacaggatag	ataacagaat	aaaacattta	acatatgtat	6180
aaaattttgg	aactaattgt	agttttagtt	ttttgcgcaa	acacaatctt	atcttctttc	6240
ctcacttctg	ctttgtttaa	atcacaagag	tgctttaatg	atgacattta	gcaagtgctc	6300
aaaataattg	acaggttttg	tttttttt	tttgagttta	tgtcagcttt	gcttagtgtt	6360
agaaggccat	ggagcttaaa	cctccagcag	tccctaggat	gatgtagatt	cttctccatc	6420
tctccgtgtg	tgcagtagtg	ccagtcctgc	agtagttgat	aagctgaata	gaaagataag	6480
gttttcgaga	ggagaagtgc	gccaatgttg	tetttettt	ccacgttata	ctgtgtaagg	6540
tgatgttccc	ggtcgctgtt	gcacctgata	gtaagggaca	gatttttaat	gaacattggc	6600
tggcatgttg	gtgaatcaca	ttttagtttt	ctgatgccac	atagtcttgc	ataaaaaagg	6660
gttettgeet	taaaagtgaa	accttcatgg	atagtettta	atctctgatc	tttttggaac	6720
aaactgtttt	acattccttt	cattttatta	tgcattagac	gttgagacag	cgtgatactt	6780
acaactcact	agtatagttg	taacttatta	caggatcata	ctaaaatttc	tgtcatatgt	6840
atactgaaga	cattttaaaa	accagaatat	gtagtctacg	gatattttt	atcataaaaa	6900
-			-			
-continued

tgatetttgg ctaaacaccc cattttacta aagteeteet gecaggtagt teecactgat 6960 ggaaatgttt atggcaaata attttgcctt ctaggctgtt gctctaacaa aataaacctt 7020 agacatatca cacctaaaat atgctgcaga ttttataatt gattggttac ttatttaaga 7080 agcaaaacac agcaccttta cccttagtct cctcacataa atttcttact atacttttca 7140 7200 7260 gtttgcgata aactgccgta attttgatac atctgtgatt taggtcatta atttagataa 7320 actageteat tattteeate tttggaaaag gaaaaaaaaa aaaaettett taggeatttg cctaagtttc tttaattaga cttgtaggca ctcttcactt aaatacctca gttcttcttt 7380 tettttgeat geatttttee eetgtttggt getatgttta tgtattatge ttgaaatttt 7440

aattttttt tttttgcact gtaactataa tacctcttaa tttacctttt taaaagctgt 7500 gggtcagtct tgcactccca tcaacatacc agtagaggtt tgctgcaatt tgccccgtta 7560 attatgettg aagtttaaga aagetgagea gaggtgtete atattteeea geacatgatt 7620 ctgaacttga tgcttcgtgg aatgctgcat ttatatgtaa gtgacatttg aatactgtcc 7680 tteetgettt atetgeatea teeaceeaca gagaaatgee tetgtgegag tgeacegaca 7740 gaaaactgtc agctctgctt tctaaggaac cctgagtgag gggggtatta agcttctcca 7800 gtgttttttg ttgtctccaa tcttaaactt aaattgagat ctaaattatt aaacgagttt 7860 7920 ttqaqcaaat taqqtqactt qttttaaaaa tatttaattc cqatttqqaa ccttaqatqt ctatttqatt ttttaaaaaa ccttaatqta aqatatqacc aqttaaaaca aaqcaattct 7980 tgaattatat aactgtaaaa gtgtgcagtt aacaaggctg gatgtgaatt ttattctgag 8040 qqtqatttqt qatcaaqttt aatcacaaat ctcttaatat ttataaacta cctqatqcca 8100 qqaqcttaqq qctttqcatt qtqtctaata cattqatccc aqtqttacqq qattctcttq 8160 atteetggea ceaaaateag attgttttea eagttatgat teeeagtggg agaaaaatge 8220 ctcaatatat ttgtaacctt aagaagagta ttttttgtt aatactaaga tgttcaaact 8280 tagacatgat taggtcatac attctcaggg gttcaaattt ccttctacca ttcaaatgtt 8340 ttatcaacag caaacttcag ccgtttcact ttttgttgga gaaaaatagt agattttaat 8400 ttgactcaca gtttgaagca ttctgtgatc ccctggttac tgagttaaaa aataaaaaag 8460 tacgagttag acatatgaaa tggttatgaa cgcttttgtg ctgctgattt ttaatgctgt 8520 aaagttttcc tgtgtttagc ttgttgaaat gttttgcatc tgtcaattaa ggaaaaaaaa 8580 aatcactcta tgttgcccca ctttagagcc ctgtgtgcca ccctgtgttc ctgtgattgc 8640 aatgtgagac cgaatgtaat atggaaaacc taccagtggg gtgtggttgt gccctgagca 8700 cgtgtgtaaa ggactgggga ggcgtgtctt gaaaaagcaa ctgcagaaat tccttatgat 8760 gattgtgtgc aagttagtta acatgaacct tcatttgtaa attttttaaa atttcttta 8820 taatatgett teegeagtee taactatget gegttttata atagettttt ceettetgtt 8880 ctgttcatgt agcacagata agcattgcac ttggtaccat gctttacctc atttcaagaa 8940 aatatgetta acagagagga aaaaaatgtg gtttggeett getgetgttt tgatttatgg 9000 aatttgaaaa agataattat aatgootgoa atgtgtoata tactogoaca acttaaatag 9060 gtcatttttg tctgtggcat ttttactgtt tgtgaaagta tgaaacagat ttgttaactg 9120 aactettaat tatqttttta aaatqtttqt tatatttett ttetttttte ttttatatta 9180 cqtqaaqtqa tqaaatttaq aatqacctct aacactcctq taattqtctt ttaaaatact 9240

US 9,464,289 B2

91

-continued

gatattttta tttgttaata atactttgcc ctcagaaaga ttctgatacc ctgccttgac	9300
aacatgaaac ttgaggctgc tttggttcat gaatccaggt gttcccccgg cagtcggctt	9360
cttcagtcgc tccctggagg caggtgggca ctgcagagga tcactggaat ccagatcgag	9420
cgcagttcat gcacaaggcc ccgttgattt aaaatattgg atcttgctct gttagggtgt	9480
ctaatccctt tacacaagat tgaagccacc aaactgagac cttgatacct ttttttaact	9540
gcatctgaaa ttatgttaag agtctttaac ccatttgcat tatctgcaga agagaaactc	9600
atgtcatgtt tattacctat atggttgttt taattacatt tgaataatta tatttttcca	9660
accactgatt actiticagg aatitaatta titccagata aatitciita tittatattg	9720
tacatgaaaa gttttaaaga tatgtttaag accaagacta ttaaaatgat ttttaaagtt	9780
gttggagacg ccaatagcaa tatctaggaa atttgcattg agaccattgt attttccact	9840
agcagtgaaa atgatttttc acaactaact tgtaaatata ttttaatcat tacttctttt	9900
tttctagtcc atttttattt ggacatcaac cacagacaat ttaaatttta tagatgcact	9960
aagaattcac tgcagcagca ggttacatag caaaaatgca aaggtgaaca ggaagtaaat	10020
ttctggcttt tctgctgtaa atagtgaagg aaaattacta aaatcaagta aaactaatgc	10080
atattatttg attgacaata aaatatttac catcacatgc tgcagctgtt ttttaaggaa	10140
catgatgtca ttcattcata cagtaatcat gctgcagaaa tttgcagtct gcaccttatg	10200
gatcacaatt acctttagtt gtttttttg taataattgt agccaagtaa atctccaata	10260
aagttatcgt ctgttcaaaa aaaaaaaaa aaaaaaaaaa	10320
aaa	10323
<210> SEQ ID NO 18 <211> LENGTH: 1374 <212> TYPE: PRT <213> ORGANISM: Schizosaccharomyces pombe	
<400> SEQUENCE: 18	
Met Asp Ile Ser Ser Phe Leu Leu Pro Gln Leu Leu Arg Lys Tyr Gln 1 5 10 15	
Gln Asp Val Tyr Asn Ile Ala Ser Lys Gln Asn Thr Leu Leu Val Met	
20 25 30	
Arg Thr Gly Ala Gly Lys Thr Leu Leu Ala Val Lys Leu Ile Lys Gln 35 40 45	
Lys Leu Glu Glu Gln Ile Leu Ile Gln Glu Ser Asn Leu Glu His Lys	
50 55 60	
Lys Ile Ser Val Phe Leu Val Asn Lys Val Pro Leu Val Phe Gln Gln 65 70 75 80	
Ala Glu Tyr Ile Arg Ser Gln Leu Pro Ala Lys Val Gly Met Phe Tyr	
85 90 95	
GIY GIU Leu Ser IIe GIU Met Ser Glu GIn Leu Leu Thr Asn Ile Ile 100 105 110	
Leu Lys Tyr Asn Val Ile Val Ile Thr Ala Asp Leu Phe Tyr Leu Phe	
115 120 125	
Leu Ala Arg Gly Phe Leu Ser Ile Asn Asp Leu Asn Leu Ile Ile Phe 130 135 140	
Asp Glu Cys His His Ala Ile Gly Asn Asp Ala Tyr Ala Arg Tle Met.	
145 150 155 160	
Asn Asp Phe Tyr His Arg Ala Lys Ala Val Leu Ser Lys Lys His Phe	
105 1/0 1/5	

-continued

		_		_				_		_					
Thr	Leu	Pro	Arg 180	Ile	Phe	Gly	Met	Thr 185	Ala	Ser	Pro	Phe	Thr 190	Gly	Lys
Lys	Gly	Asn 195	Leu	Tyr	His	Arg	Leu 200	Tyr	Gln	Trp	Glu	Gln 205	Leu	Phe	Asp
Ser	Lys 210	Ala	His	Val	Val	Ser 215	Glu	Asn	Glu	Leu	Ala 220	Asp	Tyr	Phe	Cya
Leu 225	Pro	Glu	Glu	Ser	Tyr 230	Val	Met	Tyr	Ser	Asn 235	Lys	Leu	Val	Val	Pro 240
Pro	Ser	Asp	Ser	Ile 245	Ile	Lys	Lys	Суз	Glu 250	Glu	Thr	Leu	Gln	Gly 255	Cys
Lys	Leu	Ile	Ser 260	Arg	Ala	Val	Lys	Thr 265	Ala	Leu	Ala	Glu	Thr 270	Ile	Asp
Met	Gly	Leu 275	Trp	Phe	Gly	Glu	Gln 280	Val	Trp	Leu	Tyr	Leu 285	Val	Asp	Phe
Val	Glu 290	Thr	Lys	Arg	Leu	Lys 295	Lys	Lys	Ala	Leu	Gly 300	Lys	Gln	Leu	Ser
Asp 305	Aab	Glu	Glu	Leu	Ala 310	Ile	Aap	Arg	Leu	Lys 315	Ile	Phe	Val	Glu	Asp 320
Trp	Lys	Asn	Asn	Lys 325	Tyr	Ser	Asp	Asn	Gly 330	Pro	Arg	Ile	Pro	Val 335	Phe
Asp	Ser	Thr	Asp 340	Val	Thr	Asp	Lys	Val 345	Phe	Lys	Leu	Leu	Glu 350	Leu	Leu
Lys	Ala	Thr 355	Tyr	Arg	Lys	Ser	Asp 360	Ser	Val	Arg	Thr	Val 365	Ile	Phe	Val
Glu	Arg 370	Lys	Ala	Thr	Ala	Phe 375	Thr	Leu	Ser	Leu	Phe 380	Met	Lys	Thr	Leu
Asn 385	Leu	Pro	Asn	Ile	Arg 390	Ala	His	Ser	Phe	Ile 395	Gly	His	Gly	Pro	Ser 400
Asp	Gln	Gly	Glu	Phe 405	Ser	Met	Thr	Phe	Arg 410	Arg	Gln	Lys	Asp	Thr 415	Leu
His	Lys	Phe	Lys 420	Thr	Gly	Гла	Tyr	Asn 425	Val	Leu	Ile	Ala	Thr 430	Ala	Val
Ala	Glu	Glu 435	Gly	Ile	Asp	Val	Pro 440	Ser	Суз	Asn	Leu	Val 445	Ile	Arg	Phe
Asn	Ile	Cys	Arg	Thr	Val	Thr 455	Gln	Tyr	Val	Gln	Ser	Arg	Gly	Arg	Ala
Arg	Ala	Met	Ala	Ser	Lys	Phe	Leu	Ile	Phe	Leu	Asn	Thr	Glu	Glu	Leu
465 Leu	Ile	His	Glu	Arg	470 Ile	Leu	His	Glu	Glu	4 /5 Lys	Asn	Leu	Lys	Phe	480 Ala
Leu	Ser	Glu	Leu	485 Ser	Asn	Ser	Asn	Ile	490 Phe	Aap	Ser	Leu	Val	495 Cys	Glu
Glu	Arg	Glu	500 Arg	Val	Thr	Asp	Asp	505 Ile	Val	Tyr	Glu	Val	510 Gly	Glu	Thr
Gly	Ala	515 Leu	Leu	Thr	Gly	Leu	520 Tyr	Ala	Val	Ser	Leu	525 Leu	Tyr	Asn	Phe
Cve	530 Asn	Thr	Leu	Ser	Ara	535 Asp	Val	Tvr	Thr	Ara	540 Tvr	Tvr	Pro	Thr	Phe
545			u	201 0	550			-y-		555	- y -	- 7 -			560
Thr	АІА	GIN	Pro	сув 565	ьeu	ser	сту	Trp	1yr 570	сув	rne	GIU	vai	GIU 575	ьeu
Pro	Lys	Ala	Cys 580	Lys	Val	Pro	Ala	Ala 585	Gln	Gly	Ser	Pro	Ala 590	Lys	Ser
Ile	Arg	Lys	Ala	Lys	Gln	Asn	Ala	Ala	Phe	Ile	Met	Cys	Leu	Asp	Leu

-continued

		595					600					605			
Ile	Arg 610	Met	Gly	Leu	Ile	Asp 615	Lys	His	Leu	Lys	Pro 620	Leu	Asp	Phe	Arg
Arg 625	Lys	Ile	Ala	Asp	Leu 630	Glu	Thr	Leu	Glu	Glu 635	Asp	Glu	Leu	Lys	Asp 640
Glu	Gly	Tyr	Ile	Glu 645	Thr	Tyr	Glu	Arg	Tyr 650	Val	Pro	Lys	Ser	Trp 655	Met
Lys	Val	Pro	Glu 660	Asp	Ile	Thr	Arg	Cys 665	Phe	Val	Ser	Leu	Leu 670	Tyr	Thr
Asp	Ala	Asn 675	Glu	Gly	Asp	Asn	His 680	Ile	Phe	His	Pro	Leu 685	Val	Phe	Val
Gln	Ala 690	His	Ser	Phe	Pro	Lys 695	Ile	Asp	Ser	Phe	Ile 700	Leu	Asn	Ser	Thr
Val 705	Gly	Pro	Arg	Val	Lys 710	Ile	Val	Leu	Glu	Thr 715	Ile	Glu	Asp	Ser	Phe 720
Lys	Ile	Asp	Ser	His 725	Leu	Leu	Glu	Leu	Leu 730	Lys	Lys	Ser	Thr	Arg 735	Tyr
Leu	Leu	Gln	Phe 740	Gly	Leu	Ser	Thr	Ser 745	Leu	Glu	Gln	Gln	Ile 750	Pro	Thr
Pro	Tyr	Trp 755	Leu	Ala	Pro	Leu	Asn 760	Leu	Ser	Сув	Thr	Asp 765	Tyr	Arg	Phe
Leu	Glu 770	Asn	Leu	Ile	Asp	Val 775	Asp	Thr	Ile	Gln	Asn 780	Phe	Phe	Lys	Leu
Pro 785	Glu	Pro	Val	Gln	Asn 790	Val	Thr	Asp	Leu	Gln 795	Ser	Asp	Thr	Val	Leu 800
Leu	Val	Asn	Pro	Gln 805	Ser	Ile	Tyr	Glu	Gln 810	Tyr	Ala	Phe	Glu	Gly 815	Phe
Val	Asn	Ser	Glu 820	Phe	Met	Ile	Pro	Ala 825	Lys	Lys	Lys	Asp	Lys 830	Ala	Pro
Ser	Ala	Leu 835	Суз	Lys	Lys	Leu	Pro 840	Leu	Arg	Leu	Asn	Tyr 845	Ser	Leu	Trp
Gly	Asn 850	Arg	Ala	Lys	Ser	Ile 855	Pro	Lys	Ser	Gln	Gln 860	Val	Arg	Ser	Phe
Tyr 865	Ile	Asn	Asp	Leu	Tyr 870	Ile	Leu	Pro	Val	Ser 875	Arg	His	Leu	Lys	Asn 880
Ser	Ala	Leu	Leu	Ile 885	Pro	Ser	Ile	Leu	Tyr 890	His	Ile	Glu	Asn	Leu 895	Leu
Val	Ala	Ser	Ser 900	Phe	Ile	Glu	His	Phe 905	Arg	Leu	Aap	Суз	Lys 910	Ile	Asp
Thr	Ala	Cys 915	Gln	Ala	Leu	Thr	Ser 920	Ala	Glu	Ser	Gln	Leu 925	Asn	Phe	Asp
Tyr	Asp 930	Arg	Leu	Glu	Phe	Tyr 935	Gly	Asp	Cys	Phe	Leu 940	Lys	Leu	Gly	Ala
Ser 945	Ile	Thr	Val	Phe	Leu 950	ГЛа	Phe	Pro	Aab	Thr 955	Gln	Glu	Tyr	Gln	Leu 960
His	Phe	Asn	Arg	Lys 965	Lys	Ile	Ile	Ser	Asn 970	Сув	Asn	Leu	Tyr	Lys 975	Val
Ala	Ile	Aap	Cys	Glu	Leu	Pro	Lys	Tyr	Ala	Leu	Ser	Thr	Pro	Leu	Glu
Ile	Arg	His	980 Trp	Суз	Pro	Tyr	Gly	985 Phe	e Glı	ı Ly:	s Sei	r Th:	990 r Se	er As	ар Lya
0	D	995			1 -		1000)			-1 -	100	05		

-continued

Aap I	Met 1025	Val	Glu	Ala	Ser	Ile 1030	Gly	Ala	Сув	Leu	Leu 1035	Asp	Ser	Gly
Leu i	Asp 1040	Ser	Ala	Leu	Lys	Ile 1045	Суз	Lys	Ser	Leu	Ser 1050	Val	Gly	Leu
Leu i	Asp 1055	Ile	Ser	Asn	Trp	Asp 1060	Glu	Trp	Asn	Asn	Tyr 1065	Phe	Asp	Leu
Asn '	Thr 1070	Tyr	Ala	Asp	Ser	Leu 1075	Arg	Asn	Val	Gln	Phe 1080	Pro	Tyr	Ser
Ser (Tyr 1085	Ile	Glu	Glu	Thr	Ile 1090	Gly	Tyr	Ser	Phe	Lys 1095	Asn	ГÀа	Lys
Leu l	Leu 1100	His	Leu	Ala	Phe	Ile 1105	His	Pro	Ser	Met	Met 1110	Ser	Gln	Gln
Gly :	Ile 1115	Tyr	Glu	Asn	Tyr	Gln 1120	Gln	Leu	Glu	Phe	Leu 1125	Gly	Asp	Ala
Val I	Leu 1130	Asp	Tyr	Ile	Ile	Val 1135	Gln	Tyr	Leu	Tyr	Lys 1140	Lys	Tyr	Pro
Asn i	Ala 1145	Thr	Ser	Gly	Glu	Leu 1150	Thr	Asp	Tyr	Lys	Ser 1155	Phe	Tyr	Val
Cys I	Asn 1160	Lys	Ser	Leu	Ser	Tyr 1165	Ile	Gly	Phe	Val	Leu 1170	Asn	Leu	His
Lys :	Tyr 1175	Ile	Gln	His	Glu	Ser 1180	Ala	Ala	Met	Суз	Asp 1185	Ala	Ile	Phe
Glu :	Tyr 1190	Gln	Glu	Leu	Ile	Glu 1195	Ala	Phe	Arg	Glu	Thr 1200	Ala	Ser	Glu
Asn I	Pro 1205	Trp	Phe	Trp	Phe	Glu 1210	Ile	Asp	Ser	Pro	Lys 1215	Phe	Ile	Ser
Asp :	Thr 1220	Leu	Glu	Ala	Met	Ile 1225	Суз	Ala	Ile	Phe	Leu 1230	Asp	Ser	Gly
Phe :	Ser 1235	Leu	Gln	Ser	Leu	Gln 1240	Phe	Val	Leu	Pro	Leu 1245	Phe	Leu	Asn
Ser 1	Leu 1250	Gly	Asp	Ala	Thr	His 1255	Thr	Lys	Ala	Lys	Gly 1260	Asp	Ile	Glu
His I	Lys 1265	Val	Tyr	Gln	Leu	Leu 1270	Lys	Asp	Gln	Gly	Cys 1275	Glu	Asp	Phe
Gly	Thr 1280	Lys	Сүз	Val	Ile	Glu 1285	Glu	Val	Lys	Ser	Ser 1290	His	Lys	Thr
Leu l	Leu 1295	Asn	Thr	Glu	Leu	His 1300	Leu	Thr	Lys	Tyr	Tyr 1305	Gly	Phe	Ser
Phe l	Phe 1310	Arg	His	Gly	Asn	Ile 1315	Val	Ala	Tyr	Gly	Lys 1320	Ser	Arg	Lys
Val i	Ala 1325	Asn	Ala	Lys	Tyr	Ile 1330	Met	Lys	Gln	Arg	Leu 1335	Leu	Lys	Leu
Leu (Glu 1340	Asp	Lys	Ser	Asn	Leu 1345	Leu	Leu	Tyr	Ser	Cys 1350	Asn	Сүз	Lys
Phe :	Ser 1355	Lys	Lys	Lys	Pro	Ser 1360	Asp	Glu	Gln	Ile	Lys 1365	Gly	Asp	Gly
Lys V	Val 1370	Lys	Ser	Leu	Thr									
<210: <211:	> SEÇ > LEN) ID IGTH	NO 1 : 412	L9 25										

<212> TYPE: DNA
<213> ORGANISM: Schizosaccharomyces pombe

-continued

<400> SEQUI	ENCE: 19					
atggatattt	caagttttct	acttcctcaa	cttttacgta	aatatcaaca	agatgtgtat	60
aatatcgcga	gcaagcaaaa	tactttactt	gttatgagaa	cgggcgctgg	taagacatta	120
cttgctgtga	agttgataaa	acaaaagctc	gaggagcaaa	ttttaatcca	agaatcaaat	180
cttgaacata	aaaaaatatc	agtttttctc	gtcaacaaag	tccctttggt	atttcaacaa	240
gcggaataca	ttcgatctca	actaccggct	aaggttggca	tgttttatgg	cgaattatct	300
atagaaatga	gcgagcagtt	gttgactaat	attatattga	agtataatgt	gattgttatt	360
actgcagatt	tgttctattt	gtttcttgca	agaggttttc	tttcaataaa	tgatttgaat	420
ttaattatat	tcgacgaatg	tcatcatgca	attggaaatg	atgcgtatgc	tcgcatcatg	480
aatgattttt	atcacagagc	caaagcagta	ttgtcaaaaa	aacatttcac	cctaccaaga	540
atttttggta	tgactgcttc	accattcact	ggaaaaaaag	gaaacttata	ccatcgactg	600
tatcaatggg	agcaattatt	tgattctaaa	gcacacgtgg	tttcggaaaa	cgagctagcc	660
gattacttct	gtcttcccga	agaaagctat	gtaatgtatt	ccaataagtt	ggttgtgcca	720
ccctcggatt	ctattatcaa	gaaatgcgag	gaaactcttc	aaggatgcaa	gttaatttct	780
cgggctgtta	agactgcttt	agcagaaacc	atagatatgg	gtetttggtt	tggggagcaa	840
gtttggttat	atttggttga	ttttgtggaa	acgaaaagat	taaaaaaaaa	ggctttaggg	900
aagcagttgt	cagatgacga	ggaactggca	attgaccggt	taaaaatatt	tgttgaagat	960
tggaaaaata	acaaatattc	agacaatggc	cctagaatcc	ctgtttttga	ttccactgat	1020
gttactgata	aagtctttaa	actcttagaa	ttgttaaagg	ctacttaccg	caaaagtgat	1080
agcgttcgta	cggttatttt	cgttgaaaga	aaagctacgg	cgtttacttt	aagtttgttt	1140
atgaaaactc	ttaatctgcc	taacatccgc	gctcattctt	ttataggaca	tggaccgtcc	1200
gatcagggtg	aattttctat	gacattcagg	aggcaaaaag	atacccttca	taagtttaag	1260
actggaaaat	ataatgtttt	aattgctact	gcagttgcag	aagaaggtat	cgatgtacca	1320
tcatgtaact	tagttatacg	cttcaatatt	tgtcggactg	tcacccagta	tgtccaatct	1380
cgaggtagag	cgagagcaat	ggcttcaaag	tttctaattt	ttttaaacac	agaagagttg	1440
ttaattcatg	aacgcattct	acacgaagaa	aaaaatctta	aatttgccct	ttcagagctc	1500
agcaattcga	atatttttga	ttcattggta	tgtgaggaaa	gagaacgtgt	gactgatgat	1560
atcgtctatg	aagttggcga	gactggtgct	ttactcacag	ggttgtatgc	agttagtctg	1620
ctttataact	tttgtaacac	actttcaaga	gacgtataca	caagatatta	tcccactttt	1680
acagctcaac	cctgtctttc	aggttggtat	tgttttgagg	tagaattgcc	aaaagcctgc	1740
aaagttccag	cggctcaagg	atctcccgct	aaatcaatta	ggaaagccaa	acagaatgct	1800
gcgttcatca	tgtgtttgga	tctgattcgt	atgggtctta	tagacaaaca	tttaaaaccc	1860
ctagatttta	gaagaaaaat	tgccgacctt	gaaactcttg	aggaagacga	gctaaaagat	1920
gaaggttata	tcgagacata	tgagcgctat	gtaccaaaaa	gttggatgaa	agttcctgaa	1980
gatattacac	gttgcttcgt	ctctttactt	tatactgatg	ctaatgaagg	agacaatcat	2040
atattccatc	ccttagtgtt	tgtacaagct	cattcattcc	ccaaaattga	tagctttatt	2100
cttaattcga	ctgttggccc	ccgagttaaa	attgttttag	aaacgattga	ggatagtttt	2160
aagatcgatt	ctcatctgct	tgagttgtta	aaaaaatcaa	ctcgttatct	acttcaattc	2220
ggtttatcta	cttctcttga	gcaacaaata	cctactcctt	actggcttgc	gcctttaaat	2280
ttgtcatgca	cggattaccg	gttcttagaa	aatctgatag	atgttgacac	tatccaaaat	2340

US 9,464,289 B2

101

ttttttaaat taccggaacc tgttcaaaat gttactgatt tgcaatccga tactgtatta

ttagtaaatc cacagtcaat atatgaacag tatgcttttg agggatttgt caattctgaa

tttatgattc ctgctaaaaa gaaagataag gccccttctg ccttatgtaa gaaacttcct

-continued

ttacgattaa attattcact ttggggcaat agagctaaat ccattcccaa atcacagcaa 2580 gtgcgcagtt tttatatcaa tgacctctat attctccccag tctctagaca tttgaaaaac 2640 2700 agegeettge taataceete catactgtae catattgaaa aettattggt egeetettet tttatcgaac actttcgact tgattgtaaa attgacactg cttgtcaggc tttaacatct 2760 gcggaatcac aattgaattt tgattacgat cgtctagagt tttacggaga ctgctttcta 2820 aaattgggtg cttctattac agtttttttg aaatttcctg atactcaaga gtaccaactg 2880 cattttaatc gaaagaaaat tattagcaac tgtaatttgt ataaagtagc aatagattgt 2940 gagttgccga agtatgctct ctcgactccc ttggaaatcc gtcattggtg tccatatggt 3000 3060 tttcagaaaa gcacatcgga taagtgccgc tacgccgttt tacagaaatt atcggttaag aggatagcag atatggtcga agctagtatc ggtgcatgtc ttttagacag tggacttgac 3120 3180 tcaqcactca aqatctqtaa atctttaaqc qttqqtctqc tqqatatcaq caattqqqat gagtggaaca attattttga tttaaataca tatgcggatt cactgagaaa tgttcaattc 3240 ccttactcct cgtatataga ggaaactatt ggatattcat ttaaaaacaa gaaactactc 3300 catttqqcat ttattcatcc ttccatqatq tctcaqcaaq qtatttacqa aaactatcaa 3360 cagttggagt ttttgggtga tgctgtattg gattacatta tcgtacaata cctttataaa 3420 aagtateeta aegeaaette tggegaatta aetgattaea aatettttta tgtgtgtaae 3480 aagagtctat catacattgg ctttgttttg aatttgcaca aatatatcca acatgaaagc 3540 gcagcaatgt gtgatgcaat atttgaatat caagaattaa ttgaagcgtt cagggagact 3600 gcttcagaga atccgtggtt ctggtttgaa attgattcac caaagttcat ttcagatact 3660 ttagaagcta tgatatgtgc cattttttg gattctgggt ttagtttaca atctctacaa 3720 ttcgttttac ctcttttct taattcgtta ggggatgcga cacatactaa ggctaaagga 3780 gatattgaac acaaggtata ccaattactg aaagatcagg gatgtgaaga cttcggaaca 3840 aagtgtgtca tcgaggaggt gaaatccagt cacaaaacat tgttaaatac tgaactccat 3900 ttaacaaagt attatgggtt ttcattcttc cgccacggga atattgttgc ttacggcaaa 3960 tcccgtaaag ttgccaatgc aaagtatatt atgaaacaaa gacttctcaa attgttagag 4020 gataagteta aettaetttt gtattettgt aattgeaaat ttagtaagaa aaageeatea 4080 gatgagcaaa taaaaggaga tggaaaagtt aaaagtttga cttga 4125 <210> SEQ ID NO 20 <211> LENGTH: 754 <212> TYPE: PRT <213> ORGANISM: Giardia lamblia virus <400> SEQUENCE: 20 Met His Ala Leu Gly His Cys Cys Thr Val Val Thr Thr Arg Gly Pro 1 10 15 Ser His Trp Leu Leu Leu Asp Thr His Leu Gly Thr Leu Pro Gly Phe Lys Val Ser Ala Gly Arg Gly Leu Pro Ala Ala Glu Val Tyr Phe 35 40 45 Glu Ala Gly Pro Arg Val Ser Leu Ser Arg Thr Asp Ala Thr Ile Val

102

2400

2460

	50					55					60				
Ala 65	Val	Tyr	Gln	Ser	Ile 70	Leu	Phe	Gln	Leu	Leu 75	Gly	Pro	Thr	Phe	Pro 80
Ala	Ser	Trp	Thr	Glu 85	Ile	Gly	Ala	Thr	Met 90	Pro	His	Asn	Glu	Tyr 95	Thr
Phe	Pro	Arg	Phe 100	Ile	Ser	Asn	Pro	Pro 105	Gln	Phe	Ala	Thr	Leu 110	Ala	Phe
Leu	Pro	Leu 115	Leu	Ser	Pro	Thr	Ser 120	Pro	Leu	Asp	Leu	Arg 125	Ala	Leu	Met
Val	Thr 130	Ala	Gln	Leu	Met	Cys 135	Asp	Ala	Lys	Arg	Leu 140	Ser	Asp	Glu	Tyr
Thr 145	Asp	Tyr	Ser	Thr	Leu 150	Ser	Ala	Ser	Leu	His 155	Gly	Arg	Met	Val	Ala 160
Thr	Pro	Glu	Ile	Ser 165	Trp	Ser	Leu	Tyr	Val 170	Val	Leu	Gly	Ile	Asp 175	Ser
Thr	Gln	Thr	Ser 180	Leu	Ser	Tyr	Phe	Thr 185	Arg	Ala	Asn	Glu	Ser 190	Ile	Thr
Tyr	Met	Arg 195	Tyr	Tyr	Ala	Thr	Ala 200	His	Asn	Ile	His	Leu 205	Arg	Ala	Ala
Asp	Leu 210	Pro	Leu	Val	Ala	Ala 215	Val	Arg	Leu	Asp	Asp 220	Leu	Lys	Asb	His
Gln 225	Ile	Pro	Ala	Pro	Gly 230	Ser	Trp	Asp	Asp	Leu 235	Ala	Pro	Lys	Leu	Arg 240
Phe	Leu	Pro	Pro	Glu 245	Leu	Сүз	Leu	Leu	Leu 250	Pro	Asp	Glu	Phe	Asp 255	Leu
Ile	Arg	Val	Gln 260	Ala	Leu	Gln	Phe	Leu 265	Pro	Glu	Ile	Ala	Lys 270	His	Ile
Сүз	Aab	Ile 275	Gln	Asn	Thr	Ile	Cys 280	Ala	Leu	Asp	Lys	Ser 285	Phe	Pro	Asp
Сүз	Gly 290	Arg	Ile	Gly	Gly	Glu 295	Arg	Tyr	Phe	Ala	Ile 300	Thr	Ala	Gly	Leu
Arg 305	Leu	Asp	Gln	Gly	Arg 310	Gly	Arg	Gly	Leu	Ala 315	Gly	Trp	Arg	Thr	Pro 320
Phe	Gly	Pro	Phe	Gly 325	Val	Ser	His	Thr	Asp 330	Val	Phe	Gln	Arg	Leu 335	Glu
Leu	Leu	Gly	Asp 340	Ala	Val	Leu	Gly	Phe 345	Ile	Val	Thr	Ala	Arg 350	Leu	Leu
Суз	Leu	Phe 355	Pro	Asp	Ala	Ser	Val 360	Gly	Thr	Leu	Val	Glu 365	Leu	Lys	Met
Glu	Leu 370	Val	Arg	Asn	Glu	Ala 375	Leu	Asn	Tyr	Leu	Val 380	Gln	Thr	Leu	Gly
Leu 385	Pro	Gln	Leu	Ala	Glu 390	Phe	Ser	Asn	Asn	Leu 395	Val	Ala	Lys	Ser	Lys 400
Thr	Trp	Ala	Asp	Met 405	Tyr	Glu	Glu	Ile	Val 410	Gly	Ser	Ile	Phe	Thr 415	Gly
Pro	Asn	Gly	Ile 420	Tyr	Gly	Сүз	Glu	Glu 425	Phe	Leu	Ala	Lys	Thr 430	Leu	Met
Ser	Pro	Glu 435	His	Ser	Lys	Thr	Val 440	Gly	Ser	Ala	Cya	Pro 445	Asp	Ala	Val
Thr	Lys 450	Ala	Ser	Гла	Arg	Val 455	Суз	Met	Gly	Glu	Ala 460	Gly	Ala	His	Glu
Phe 465	Arg	Ser	Leu	Val	Asp 470	Tyr	Ala	Cys	Glu	Gln 475	Gly	Ile	Ser	Val	Phe 480

-continued

Cya	Ser	Ser	Arg	Val 485	Ser	Thr	Met	Phe	Leu 490	Glu	Arg	Leu	Arg	Asp 495	Ile
Pro	Ala	Glu	Asp 500	Met	Leu	Asp	Trp	Tyr 505	Arg	Leu	Gly	Ile	Gln 510	Phe	Ser
His	Arg	Ser 515	Gly	Leu	Ser	Gly	Pro 520	Gly	Gly	Val	Val	Ser 525	Val	Ile	Asp
Ile	Met 530	Thr	His	Leu	Ala	Arg 535	Gly	Leu	Trp	Leu	Gly 540	Ser	Pro	Gly	Phe
Tyr 545	Val	Glu	Gln	Gln	Thr 550	Asp	ГЛа	Asn	Glu	Ser 555	Ala	Сүз	Pro	Pro	Thr 560
Ile	Pro	Val	Leu	Tyr 565	Ile	Tyr	His	Arg	Ser 570	Val	Gln	Cys	Pro	Val 575	Leu
Tyr	Gly	Ser	Leu 580	Thr	Glu	Thr	Pro	Thr 585	Gly	Pro	Val	Ala	Ser 590	Lys	Val
Leu	Ala	Leu 595	Tyr	Glu	Lys	Ile	Leu 600	Ala	Tyr	Glu	Ser	Ser 605	Gly	Gly	Ser
Lys	His 610	Ile	Ala	Ala	Gln	Thr 615	Val	Ser	Arg	Ser	Leu 620	Ala	Val	Pro	Ile
Pro 625	Ser	Gly	Thr	Ile	Pro 630	Phe	Leu	Ile	Arg	Leu 635	Leu	Gln	Ile	Ala	Leu 640
Thr	Pro	His	Val	Tyr 645	Gln	Lys	Leu	Glu	Leu 650	Leu	Gly	Asp	Ala	Phe 655	Leu
Lys	Суз	Ser	Leu 660	Ala	Leu	His	Leu	His 665	Ala	Leu	His	Pro	Thr 670	Leu	Thr
Glu	Gly	Ala 675	Leu	Thr	Arg	Met	Arg 680	Gln	Ser	Ala	Glu	Thr 685	Asn	Ser	Val
Leu	Gly 690	Arg	Leu	Thr	Lys	Arg 695	Phe	Pro	Ser	Val	Val 700	Ser	Glu	Val	Ile
Ile 705	Glu	Ser	His	Pro	Lys 710	Ile	Gln	Pro	Asp	Ser 715	Lys	Val	Tyr	Gly	Asp 720
Thr	Phe	Glu	Ala	Ile 725	Leu	Ala	Ala	Ile	Leu 730	Leu	Ala	Cys	Gly	Glu 735	Glu
Ala	Ala	Gly	Ala 740	Phe	Val	Arg	Glu	His 745	Val	Leu	Pro	Gln	Val 750	Val	Ala
Asp	Ala														
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	EQ II ENGTH PE : RGANI) NO H: 22 DNA ISM:	21 265 Giar	rdia	lamb	olia	viru	ıs						
<400)> SE	EQUEN	ICE :	21											
atgo	catgo	ett t	ggga	acact	g tt	gcad	cagtt	gtg	jacta	icta	gago	jacca	atc d	cact	ggttg
ctac	ettet	ag a	acact	caco	et go	gcad	cette	, cca	igggt	tta	aggt	tagt:	ige a	aggeo	gaggg
acaa	actat	ad t	agag	igrar atat	a ci	radto	rcatt	y ggu	.ccga	iggg	tact	aaa		racat	tteet
actt	cato	ida d	tgad	atto	ia et	caad	caato	a cct	caca	age	aata	acact	tt d	ccto	qattt
atat	ccaa	atc c	cacca	acaat	t cç	jccad	ccto	, g gca	atttt	tac	cctt	acta	atc t	ccta	iccage
ccto	ctgga	act t	gegt	gcat	t aa	atggt	cact	gca	acaac	etca	tgtg	ytgat	:gc a	aago	gettg
tcaç	gatga	at a	ataca	agact	a tt	ccad	ttta	ı tct	gcat	ccc	tcca	atggg	gog t	atgg	ıttgca
acto	cccga	aa t	aago	stggt	c to	ttta	atgto	gtt	ctt	ıgga	tcga	attct	ac c	ccaaa	actage

US 9,464,289 B2

107

ctttcttact ttaccagagc aaatgaatca ataacataca tgagatacta tgcaacagcc

-continued

cacaatattc	acctgcgtgc	tgcagatctt	ccgcttgtgg	cagcagtcag	attagacgat	660
ctaaaagacc	accagattcc	cgcgcctgga	tcctgggatg	atttggctcc	caagcttcgc	720
ttcctgccgc	ctgagctctg	cctactgctg	ccagatgaat	ttgatctaat	cagggtccag	780
gcgcttcaat	ttctaccaga	gattgctaag	cacatatgtg	acatacagaa	tacaatctgt	840
gccctggata	aaagctttcc	tgactgtggg	cggatcggtg	gcgagcgata	ctttgcaatc	900
actgccggac	ttcggctcga	tcagggggcgt	ggacgagggc	ttgccggttg	gagaacaccc	960
tttgggcctt	ttggtgtaag	tcacaccgat	gttttccagc	gactcgaatt	gctaggagat	1020
gctgtgttag	gctttatcgt	gactgcccgc	ctcctttgcc	tttttccaga	tgcgtctgtg	1080
ggaacacttg	ttgagctaaa	gatggagctt	gttcgcaatg	aggctctaaa	ctatcttgta	1140
caaacgcttg	gacttcctca	gttggcggag	ttttccaaca	accttgtggc	gaagagcaaa	1200
acatgggcag	atatgtatga	ggagatcgtt	ggatcaatct	ttacgggacc	taatggaatc	1260
tatggctgtg	aggaatttct	tgcgaagacg	cttatgagtc	ccgaacactc	caagacagta	1320
ggatctgcct	gtccagatgc	agtcaccaag	gcatcaaagc	gtgtttgcat	gggagaagcg	1380
ggggcgcatg	aattcagaag	ccttgtggac	tatgcttgtg	agcaaggcat	tagtgtcttc	1440
tgttcttcgc	gggtgtcaac	tatgtttctc	gagcgtctca	gagacattcc	agcagaggac	1500
atgctagatt	ggtaccgact	tggtatccag	ttttcgcatc	gttcaggcct	atcaggacct	1560
ggcggcgtcg	tatcagttat	agacataatg	acacatttgg	ctcgaggcct	atggctgggc	1620
tctccaggct	tctatgttga	acagcaaact	gataagaatg	agtcggcttg	tccgcccact	1680
atacctgttt	tatatatcta	tcatcgctct	gtgcagtgtc	ctgttttata	tgggtcgctc	1740
acagaaaccc	ctacagggcc	cgttgcttct	aaggttctcg	ctctctatga	gaagattctg	1800
gcatatgagt	catcaggagg	tagtaagcat	atagcagctc	agacagttag	cagatctctg	1860
gccgtaccca	ttcctagtgg	cactatcccc	ttcctgattc	ggttattgca	aatagcacta	1920
actcctcacg	tgtaccaaaa	acttgagctt	cttggagacg	cattcctgaa	gtgcagcctt	1980
gctctccatc	tccacgctct	ccaccccacg	ctcacagagg	gcgctcttac	acgcatgcgg	2040
caatctgcag	aaacaaattc	tgtactggga	agattgacaa	aaaggtttcc	ttctgtagtt	2100
tctgaggtta	ttatagaatc	ccatccgaaa	atacagcctg	acagcaaggt	ttatggcgat	2160
acatttgaag	ccattttggc	agcaattett	cttgcgtgcg	gggaagaggc	agcaggtgct	2220
tttgttcgag	agcatgttct	cccacaagta	gtagctgatg	cgtag		2265
<210> SEQ : <211> LENG: <212> TYPE <213> ORGAI <220> FEAT <223> OTHEI <400> SEQUI	ID NO 22 FH: 91 : DNA VISM: Artif: RE: R INFORMATIC ENCE: 22	icial Sequer DN: oligonud	nce Sleotide			
cccgggttca	cgccattctc	ctgcctcagc	ctcacgagta	gctgggacta	caggcgcccg	60
acaccactcc	cggctaattt	tttgtatttt	t			91
<210> SEQ 3 <211> LENG	ID NO 23 FH: 29					

<12> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: 108

-continued	
<223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 23	
tgaggtcagg agatcgagac catcccggc	29
<210> SEQ ID NO 24 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 24	
tgaggtcagg agatcgaaac catcccggc	29
<210> SEQ ID NO 25 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 25	
tgaggtcagg agttcgaaac catcccggc	29
<210> SEQ ID NO 26 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: oligonucleotide	
<400> SEQUENCE: 26	
tgaggtcagg agttcgagac catcccggc	29
<210> SEQ ID NO 27 <211> LENGTH: 291 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 27	
ggeegggege ggtggeteae ggetgtaate eeageaettt gggaggeega ggegggtgga	60
tcacctgagg tcaggagttc gagagcagcc tggccaacat ggtgaaaccc cgtctctact	120
aaaaatacaa aaattageeg gregtggtgg egggegeetg taateeeaee taetegggag	180
gctgaggcag gagaatcgct tgaacccggg aggccgagct tgcagtgagc cgagatcgcg	240
ccactgcact ccageetggg caacaagage gaaaeteegt eteaaaaaaa a	291
<210> SEQ ID NO 28 <211> LENGTH: 302 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 28	
ggccgggcgc aatggctcag acctctaatc ccgacacttt gcgaggctga ggcgggcaga	60
tcacctgagg tcaggagttc gaaaccatcc tggctgacat ggtgaaaccc cgtctctact	120
aaaaatacaa aaaattagcc gggcgtggtg gtgggtgcct gtagtcccag ctactcggca	180
ggagaatggc gtgaaccctg gaggcggagg ttacggtgag ccgaggtcgc gccactgcac	240
tccagcctgg gctacagagc gcgacttggt ctcaaaaaac aaacaggcaa aaagaaaaaa	300

302

aa

- 1	1	1
		_

-continued	l

-contributed						
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	D NO 29 H: 221 DNA ISM: Homo s	apiens				
<400> SEQUENCE: 29						
atcccagcac	tctggcaggc	cgaggcgggt	ggatcatgag	gtcaggagat	cgagaccatc	60
ccggccaaca	cagcgaaacc	ccatctctac	taaaaaatac	aaaaagaaaa	aattagccag	120
gtgtggtggt	gggcgcctgt	agtctcagct	gctcgggagg	ctgaggcggg	agagttgctt	180
gggcccggga	ggcggaggtt	gcagtgagcc	gggatcacgc	с		221

What is claimed is:

- 1. An isolated nucleotide molecule selected from:
- a double-stranded RNA molecule that inhibits expression of Alu RNA, wherein a first strand of the doublestranded RNA comprises a sequence selected from SEQ ID NO: 1, 2, 3, 4, 5, and 6 and including about 19 to 25 nucleotides; and
- a vector comprising an oligonucleotide that inhibits the expression of Alu RNA, comprising a sequence

selected from SEQ ID NO: 22, 23, 24, and 25 and including about 29 to 100 nucleotides; and a vector comprising an oligonucleotide that inhibits the expression of Alu RNA, consisting of the sequence of SEQ ID NO: 26.

112

2. A method of protecting an RPE cell, comprising administering a nucleotide molecule of claim **1**.

* * * * *