

University of Kentucky UKnowledge

DNP Projects

College of Nursing

2015

Comparing MUST and the NRI Tools in the Identification of Malnutrition in Heart Failure Patients

Cassondra D. Degener University of Kentucky, cddegener@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/dnp_etds

Part of the Cardiovascular Diseases Commons, Critical Care Nursing Commons, and the Nutritional and Metabolic Diseases Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Degener, Cassondra D., "Comparing MUST and the NRI Tools in the Identification of Malnutrition in Heart Failure Patients" (2015). *DNP Projects*. 36. https://uknowledge.uky.edu/dnp_etds/36

This Practice Inquiry Project is brought to you for free and open access by the College of Nursing at UKnowledge. It has been accepted for inclusion in DNP Projects by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

STUDENT AGREEMENT:

I represent that my DNP Project is my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine).

I hereby grant to The University of Kentucky and its agents a royalty-free, non-exclusive and irrevocable license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I also authorize that the bibliographic information of the document be accessible for harvesting and reuse by third-party discovery tools such as search engines and indexing services in order to maximize the online discoverability of the document. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Assistant Dean for MSN and DNP Studies, on behalf of the program; we verify that this is the final, approved version of the student's DNP Project including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Cassondra D. Degener, Student

Dr. Melanie Hardin Pierce, Advisor

FINAL DNP CAPSTONE REPORT

Comparing MUST and the NRI Tools in the Identification of Malnutrition in Heart

Failure Patients

Cassondra D. Degener, BSN, RN, RD

University of Kentucky College of Nursing May 2015

Melanie Hardin-Pierce, DNP, APRN, ACNP-BC Committee Chair/Academic Advisor Fran Hardin-Fanning, PhD, RN Committee Member Darlene Welsh, PhD, MSN, RN Committee Member/Clinical Mentor

Dedication

I would like to dedicate this final capstone project to my husband Kyle Degener. You have been my inspiration, my rock and motivation for the last five years. Thank you for encouraging me to pursue my dreams of becoming a Nurse Practitioner, and for all the sacrifices you have made to help me accomplish this endeavor. Without you all this would not be possible.

Acknowledgements

I would like to acknowledge the following people for their assistance with various aspects of this project:

Dr. Melanie Hardin-Pierce (academic advisor & committee chair): for serving as my advisor over the past five years, for supporting me and guiding me through my educational journey; for the time she spent reading and reviewing my work, and for her dedication to educating future nurse practitioners.

Dr. Fran Hardin-Fanning (committee member): for her dedication to her students, for her time spent reading, reviewing, and editing my manuscripts, and for her continued support and encouragement.

Dr. Darlene Welsh (clinical mentor): for taking the time to read, review, and edit my manuscripts and lend your expertise throughout my capstone processes

Amanda Green (core measures coordinator): for supplying me with the necessary patient information for my project

Susan Westneat (statistician): for taking her time to assist me with data analysis for my final project

Amanda Wiggins (statistician): for taking time to guide me through the statistical analysis of my project

Whitney Kurtz-Ogilvie (writing specialist): for her time spent reviewing my work and improving my academic writing skills

Table of Contents

Acknowledgements	iii
List of Tables	v
Introduction to Final DNP Capstone Report	1
Manuscript 1	5
Manuscript 2	38
Manuscript 3	63
Final DNP Capstone Report Conclusion	94
Appendix A: Data Collection Tool	97
References	98

Manuscript 1	
Table 1: Review of the MUST Literature	18
Manuscript 2	
Table 1: Review of the NRI Literature	50
Manuscript 3	
Table 1: Patient demographics	84
Table 2: Blood biochemical measures	86
Table 3: Malnutrition prevalence	87
Table 4: Malnourished patient demographics	88
Table 5: Malnourished patient lab and biochemical measures	90
Table 6: Prediction accuracy: Albumin, MUST and NRI compared to prealbumin	.91
Table 7: Prediction accuracy: MUST compared to NRI	91

List of Tables

Introduction to Final DNP Capstone Report

Cassondra Degener

University of Kentucky

Heart failure (HF) is one of the top five leading causes of death in the United States and each year roughly 825,000 people are newly diagnosed (Go et al., 2013). It is estimated that one million Americans with decompensated HF are admitted to the hospital every year, which contributes to over \$35 billion in healthcare costs (Chaudhry et al., 2013). The high incidence of hospitalizations and increased healthcare costs among HF patients may be attributed to a number of causes, including malnutrition (Lemon et al., 2009). Malnutrition prevalence in HF patients is as high as 66% (Aziz et al., 2011).

The dietary intake and quality of those with HF is poor, which may lead to damaging effects on disease progression and overall health status (Lemon et al., 2009; Arcand et al., 2009). Poor dietary intake may be attributed to diminished appetite and early satiety due to hepatic and gastrointestinal congestion, which is common in this population (Kalantar-Zadeh, Anker, Horwich, & Fonarow, 2008; Nicol et al., 2002). Other reasons for inadequate nutrient intake may be attributed to dietary restrictions, fatigue, shortness of breath, nausea, anxiety and depressed mood (Lennie, Moser, Heo, Chung, & Zambroski, 2006). Dietary intake in HF patients may be calorically the same as healthy individuals, but they differ significantly in macro and micronutrient composition (Machado d'Almeida, Perry, Clausell, & Souza, 2015). This lack of macro and micronutrients can be detrimental to the overall health status of patients and lead to worsening disease progression and outcomes (Machado d'Almeida et al., 2015).

Early identification of malnutrition is important to improving outcomes and overall nutritional status of patients (Corkins et al., 2014). Traditional measures of nutrition status such as laboratory (i.e. serum albumin and prealbumin) and

anthropometric measures (i.e. body mass index and percentage weight loss) are beneficial in identifying malnutrition; however, they are not enough and can delay the recognition of malnutrition, especially in HF patients (Araujo, Lourenco, Rocha-Gonocalves, Ferreira, & Bettencourt, 2011; Corkins et al., 2014). To assist with the early identification of malnutrition, researchers have developed a number of different screening tools. Subjective screening tools can be rapid, easy and inexpensive ways to identify malnutrition among hospitalized patients. With all the subjective screening tools available, there are few studies available which evaluate the best methods of identifying malnutrition in the HF population. Two screening tools, the Malnutrition Universal Screening Tool (MUST) and Nutritional Risk Index (NRI), have shown some potential to be reliable methods of evaluating the nutritional status of HF patients.

This practice inquiry project, through a retrospective electronic medical record review, evaluated the presence of malnutrition in 100 HF patients admitted to the University of Kentucky Chandler Medical Center. The primary goal of this project was to test the performance of albumin, NRI and MUST in comparison to the reliable screening measure of prealbumin, among HF patients admitted to the hospital. The objectives were to (i) evaluate HF patients for the presence of malnutrition using four screening measures (i.e., albumin, prealbumin, NRI and MUST), and (ii) determine laboratory and co-morbidity trends among malnourished patients.

This evaluation project of HF patients will provide insight and guide further research on effective objective and subjective screening methods that may help in the identification of malnutrition in hospitalized patients with HF. This practice inquiry

project includes three manuscripts each of which discuss relevant aspects of malnutrition and HF, and the best methods to screen for malnutrition.

- Manuscript one is a literature review that examined the available studies in which MUST was evaluated and compared to other, similar screening tools and objective nutritional methods. Sixteen studies were evaluated in the review with respect to MUST's effectiveness in screening malnourished patients in multiple patient populations in hospital and outpatient settings.
- Manuscript two evaluated the available literature on NRI and provided evidence to support whether or not it is reliable in various populations. The review evaluated ten studies which compared NRI to other reliable screening tools and made recommendations for practice.
- Manuscript three evaluated hospitalized HF patients for the presence of malnutrition.
 Four screening measures were used in order to determine laboratory and co-morbidity trends among malnourished HF patients admitted to the University of Kentucky Chandler Medical Center.

Manuscript 1

Malnutrition Universal Screening Tool: A Review of the Literature

Cassondra Degener RD, BSN, RN, CCRN, DNP Student

University of Kentucky

Abstract

Purpose: The purpose of this literature review was to find the studies available evaluating the Malnutrition Universal Screening Tool (MUST) and comparing it to similar screening tools and objective nutritional methods. The strengths, weaknesses and reliability of MUST will be evaluated in comparison to other reliable screening tools, and recommendations for practice will be provided.

Design and Methods: Literature review to find the available studies from 2004-2014 published in English using the databases of EBSCOhost, Academic Search Complete, CINAHL, and MEDLINE. Ancestry searching was used to find additional articles meeting the above criteria.

Results: Overall the search produced 52 articles, but only sixteen met the inclusion criteria. Of the studies included in this review, six screened hospitalized patients, two evaluated outpatients, seven articles examined chronic diseases (cancer, HF, and renal failure), and one assessed elderly patients.

Practice Implications: The MUST has demonstrated evidence of reliability and validity in multiple patient populations including outpatients, hospitalized, cancer, elderly, and chronic disease. Many researchers noted the best nutritional screening methods were those which combined a subjective screening tool and objective measures. There is a growing need for studies that evaluate MUST and multiple subjective screening methods against objective measures in the HF population.

Search Terms: Adult, elderly, cancer, chronic disease, heart failure, hospitalized patients, malnutrition, malnutrition universal screening tool, screening tools, and surgery.

Background and Significance

Malnutrition is a major health problem in the United States. The prevalence of malnutrition is 23% among hospitalized inpatients, with malnourished patients spending 4.5 days longer in the hospital compared to well-nourished ones (Gout, Barker, & Crowe, 2009). The increased hospital length of stay can triple healthcare costs from \$9,485 for the average hospitalized patient to \$26,944 for malnourished ones (Corkins et al., 2014). Disease-related malnutrition occurs with chronic diseases such as rheumatoid arthritis, cancer, renal failure and HF (Jensen et al., 2010).

Heart failure is one of the top five leading causes of death in the United States (Go et al., 2013). Every year roughly 825,000 people are newly diagnosed with HF and one in five will die within one year of diagnosis (Go et al., 2013). Heart failure accounts for 1 million hospital admissions per year, with an average length of stay (LOS) of 4.9 days (Centers for Disease Control, 2013).

Malnutrition is highly prevalent in the HF population and can lead to a condition called cardiac cachexia (Hoes, 2007). Roughly 15 percent of HF patients will develop cardiac cachexia, which is associated with a poor prognosis (Hoes, 2007). Cardiac cachexia is responsible for increased morbidity and mortality, and decreased quality of life among patients with HF (Moughrabi & Evangelista, 2007). There is a growing need for a reliable, easy to use screening tool that can be used in the HF population which will assist health providers to identify and treat malnourished patients.

Many instruments are available to help evaluate nutrition risk in hospitalized patients. The Malnutrition Universal Screening Tool, or MUST, was originally developed by the Malnutrition Advisory Group for the British Association of Parenteral

and Enteral Nutrition (Elia, 2010). The MUST is a five-step tool that evaluates BMI score, recent weight loss and acute disease, assigns an overall numerical risk, and then provides management guidelines (Elia, 2010). Step one is the BMI category which provides scores as follows: BMI > 20 = 0 points, 18.5 - 20 = 1 point, and < 18.5 = 2 points (Appendix A). Step two provides a weight loss score based on the amount of weight lost in the past 3-6 months: a score of 0 for 5%, 1 for 5-10%, and a 2 for >10%. Step three is to determine if the patient has been acutely ill and if there has been or is likely to be no nutritional intake for >5 days which provides a score of 2. For step four, the user adds all point scores together: a total score of 0 = low risk, 1 = medium risk, and 2 or more = high risk. Step five provides appropriate management guidelines based on the overall malnutrition risk score. Patients who score a 0 are at a low nutritional risk, and no interventions are necessary. A score of 1 indicates moderate risk patients and close dietary monitoring is recommended. A score of 2 or more means the patient should have a complete nutrition assessment by a registered dietitian (Elia, 2010). One benefit of the MUST tool is that it guides the user to either seek immediate nutrition consultation for high risk patients, or to observe medium risk patients upon hospital admission.

Purpose of the Integrative Review

The purpose of this literature review was to examine the available studies in which MUST was evaluated and compared to other, similar screening tools and objective nutritional methods (i.e. albumin and prealbumin). This paper also seeks out to determine if MUST is reliable in screening for malnutrition in multiple patient populations including HF. Sixteen studies were evaluated in the following review with respect to MUST's effectiveness in screening malnourished patients in multiple patient populations in hospital and outpatient settings. The strengths, weaknesses and reliability of MUST were evaluated in comparison to other reliable screening tools and practice recommendations were made. MUST was chosen over other screening measures because of its ease of use and rapid completion by the user, making it practical to use in any healthcare setting.

Methods

Search Method

The EBSCOhost, Academic Search Complete, CINAHL, and MEDLINE databases were searched through the UK Libraries website. Inclusion criteria involved published studies which compared MUST to other reliable screening methods in adult patients in multiple settings such as the hospital, outpatient clinics, or long term care facilities. The search only included articles from 2004-2014 which were either published in English or translated into English. Keywords used in the search included *adult*, *elderly, cancer, chronic disease, heart failure, hospitalized patients, malnutrition, malnutrition universal screening tool, screening tools,* and *surgery*. I used ancestry searching to find additional articles meeting the above criteria. Studies were excluded if they were published before 2004, not written or published in English, and if they did not compare MUST to other nutritional screening methods.

Search Outcome

Overall the search produced 52 articles, but only sixteen met the inclusion criteria. Of the studies included in this review, six studies involved hospitalized patients, two evaluated outpatients, and one screened the elderly. Disease specific studies included four oncology, two cardiac and one renal. The cardiac studies consisted of patients

undergoing heart surgery, not specific medically managed HF patients. Of the sixteen studies, eight were prospective, five were cross-sectional, two were observational, and one was longitudinal.

Findings and Synthesis of Themes

Several themes emerged during this literature review with regards to screening tools and practice recommendations for nutritional screening. In addition to MUST, a number of subjective screening tools were compared in the studies including the following: Subjective Global Assessment (SGA), Patient-Generated SGA (PG-SGA), Nutrition Risk Screening 2002 (NRS-2002), Nutritional Risk Index (NRI), Geriatric NRI (GNRI), Malnutrition Screening Tool (MST), Modified MST (Mod-MST), Short Nutritional Assessment Questionnaire (SNAQ), Mini-Nutritional Assessment (MNA), MNA Short Form (MNA-SF), and the Cardiac Surgery Specific MUST (CSSM). Overall ten studies recommended specific screening tools for use in malnutrition risk assessment, while two suggested anthropometric or objective measures, two proposed a combination of subjective screening tools and objective measures, and two recommended further research as opposed to any specific screening measures. The following section will illustrate those themes. Refer to Table 1 for specifics about each study and their limitations.

MUST Recommended Alone or in Combination with Other Screening Tools

Of the sixteen studies in this review, seven found MUST to be reliable. Four of those seven recommended MUST alone, while three suggested MUST and other subjective screening tools. Stratton et al. (2004) evaluated eight different screening tools among medical and surgical patients and found MUST and MST to be the easiest tools to

complete, according to feedback from nurses, nutritionists and medical students. Based on their statistical analysis (Table 1), overall MUST showed high validity (Table 1) compared to the other evidence based malnutrition diagnostic tools (Stratton et al., 2004). Poulia et al. (2012) on the other hand conducted their study to evaluate the nutritional status of hospitalized elderly patients using six screening tools. The authors found MUST and MNA-SF to be the most reliable with sensitivities of 87.3% and 98.1% respectively, but MUST and SGA demonstrated the best agreement compared to the gold standard, with kappa values of 0.64 and 0.71 respectively (Poulia et al., 2012). Both studies suggested the use of MUST over all the other tools used in their studies (Stratton et al., 2004; Poulia et al., 2012).

Tu, Chien, and Chou (2012) compared MUST, NRI and SGA in their study comprised of forty five colorectal cancer patients. They demonstrated MUST and NRI to be comparable measures with higher sensitivities (96.0% & 95.2%) and lower specificities (75% & 62.5%). The authors found MUST to be easier to complete, inexpensive and faster compared to NRI and SGA (Tu et al., 2012). Another study also compared three screening tools in the oncology setting (Amaral, Antunes, Cabral, and Kent-Smith, 2008). The MUST showed the highest agreement with the reference tool of NRS-2002 based on its sensitivity of 97.3%, specificity of 77.4% and kappa agreement of 0.64 (Amaral et al., 2008). The authors also recommended MUST based on its reliability (Amaral et al., 2008; & Tu et al., 2012).

Among hospitalized patients, Velasco et al. (2010) and Kyle, Kossovsky, Karsegard, and Pichard (2006) compared three different screening tools using SGA as the standard. Velasco et al. (2010) found good agreement between NRS-2002 and SGA

(kappa 0.62) and MUST and SGA (kappa 0.64). Based on their statistical analysis (Table 1), both studies demonstrated that MUST and NRS-2002 were the most reliable tools and one or the other should be implemented for malnutrition screening upon hospital admission. In addition to MUST and NRS-2002, one study also recommended the use of SGA (Kyle et al., 2006).

Vicente et al. (2013) evaluated gastric and colorectal patients using NRI, MUST, MST, SGA, BMI and albumin. Statistical analysis showed MUST had a sensitivity and specificity of 84% and 73.4% respectively. Vicente et al. (2013) suggested MUST and SGA were the best screening methods among cancer patients. These seven studies demonstrated MUST to be reliable in multiple populations including medical, surgical, cancer and elderly patients. The authors recommended MUST alone or in combination with NRS-2002 or SGA.

Alternative Screening Tools Recommended for Practice

Neelemaat et al. (2011) evaluated hospitalized medical and surgical patients to compare six subjective tools and two anthropometric measures. They found MST and SNAQ to be faster and easier tools, when compared to the more comprehensive tools of MUST and NRS-2002. The MST and SNAQ had adequate sensitivities and specificities of \geq 70%, but their scores were slightly lower than the other tools. Based on all the available information, the authors suggested the use of either MST or SNAQ upon hospital admission (Neelemaat et al., 2011). Like Neelemaat et al. (2011), hospitalized medical and surgical patients were also screened by Olivares et al. (2014), but the authors only used four subjective tools. The authors found the NRS-2002 and MNA-SF to be highly reliable measures compared to SGA, with kappa values of 0.57 and 0.67

respectively (Table 1; Olivares et al., 2014). In contrast to other studies, the authors suggested the use of NRS 2002 because it was the easiest and took the least amount of time to complete (Olivares et al., 2014).

One study evaluated the nutritional status of hospitalized medical patients using three screening tools (Gibson, Sequeira, Cant and Ku, 2012). Based on statistical analysis, MUST and Mod-MST had sensitivities of 80% and 77% respectively, with specificities of 85% and 83% (Gibson et al., 2012). Both tools had 29 false negatives, but MUST had 14 false positives while Mod-MST had 16. Noting similar scores between the tools, the authors suggested the use of the Mod-MST on hospital admission given it was easier and faster to use (Gibson et al., 2012). In these three studies evaluating surgical and/or medical patients, the authors recommended four different subjective tools including MST, SNAQ, NRS-2002 and Mod-MST (Neelemaat et al., 2011; Olivares et al., 2014; & Gibson et al., 2012).

Alternative Objective Measures Recommended for Practice

One study did not recommend MUST, but rather objective screening measures (Boleo-Tome, Monteiro-Grillo, Camillo, & Ravasco, 2011). The authors evaluated the nutritional status of cancer patients using objective measures and two subjective tools. Results indicated that MUST was the best tool for routine screening in radiation cancer patients given its sensitivity of 80% and specificity of 89% (Boleo-Tome et al., 2011). Given the time constraints of health professional however, the authors suggested the use of percent weight loss over the last 3-6 months to be used with admission screenings (Boleo-Tome et al., 2011).

In contrast to Boleo-Tome et al. (2011), Leistra et al. (2013) compared objective and subjective methods in the outpatient setting and did not find MUST or the other subjective tool (SNAQ) to be reliable. They found both subjective screening tools to have insufficient validity, noting SNAQ identified too few and MUST too many patients as being malnourished (Table 1). Their recommendation was to use anthropometric measures and weight loss to better identify malnourished patients in the outpatient setting (Leistra et al., 2013). These two studies suggest that subjective tools may be useful but are not comparable to objective measures in terms of efficiency and reliability.

Combination of Screening Tools and Objective Measures

A few researchers noted the best nutritional screening methods were those which combined a subjective screening tool and objective measures such as lab values and anthropometric measures (Almeida, Correia, Camilo, and Ravasco, 2011; Van Venrooij et al., 2011). Almeida et al. (2011) compared four screening tools to the objective measures of percentage weight loss and BMI in surgical patients to determine their nutritional status. Van Venrooij et al (2011) on the other hand, used four screening tools and two objective measures to screen cardiac surgery patients. Based on statistical analysis, found the NRS-2002 and MUST tools to be the most concordant with sensitivities of 80% and 85% respectively (Table 1; Almeida et al., 2011). The authors went on to suggest the combination of either NRS-2002 or MUST with percentage weight loss on admission (Almeida et al., 2011). In contrast, Van Venrooij et al. (2011) found the CSSM tool to be the most reliable, noting a sensitivity and specificity of 74.1% and 70.1% respectively. They too recommended a combination of objective and

subjective screening measures in the cardiac surgery population in order to accurately identify those who may truly be malnourished.

No Specific Tool Recommendations

In two studies screening chronic disease patients, the authors did not find sufficient evidence to recommend a specific subjective screening tool. Lawson et al. (2012) evaluated the nutritional status of renal patients using the three screening tools, while Lomivorotov et al. (2013) compared SGA to three screening tools in cardiac surgery patients. Lawson et al. (2012) found MUST and MST were not sensitive enough for all types of renal patients with sensitivities of 53.8% and 48.7% respectively. They did note both tools showed fair reliability compared to anthropometric nutritional markers (Table 1). Based on statistical analysis the authors did not recommend one specific tool for nutritional screening, but did stress the need for larger studies which evaluate multiple screening methods in renal patients (Lawson et al., 2012). Lomivorotov et al. (2013) found SNAQ and MUST had comparable accuracy in detecting malnutrition but not in predicting post-operative outcomes (Table 1). This led the authors to not recommend a specific screening tool but suggest that more research is needed to understand the use of nutrition screening tools in the HF and cardiac surgery populations (Lomivorotov et al., 2013). The above research studies indicated more research is needed to evaluate subjective screening tools among patients with chronic diseases such as HF and renal failure (Lawson et al., 2012; Lomivorotov et al. 2013).

Practice Implications

Malnutrition is highly prevalent in hospitalized, chronic disease patient populations but often remains unidentified and untreated (Lawson et al., 2012). The overwhelming cost of malnutrition suggests the need for a consistent and reliable nutrition screening method that is easy to use and transferable across multiple patient populations (Elia, 2009). The Malnutrition Universal Screening Tool has demonstrated evidence of reliability and validity in multiple patient populations including outpatients, hospitalized, cancer, elderly, and chronic disease.

There appear to be major gaps in the literature involving a consistent and reliable screening tool which can be used for patients with chronic diseases such as renal and HF. The MUST was utilized in cardiac surgery patients, but not specifically in medically managed HF patients. Through this literature review, MUST showed reliability and validity in various patient populations. Implementing its use upon hospital admission may help identify those at malnutrition risk earlier and possibly improve patient outcomes. There is a growing need for studies that evaluate MUST and multiple subjective screening methods in combination with objective measures (i.e. albumin, prealbumin and recent weight loss) in the HF population.

Conclusions

No one tool has demonstrated consistent reliability and validity in screening for malnutrition among multiple patient populations in various healthcare settings. Malnutrition can occur in many patient populations including chronic diseases such as cancer, liver failure and HF (Jensen et al., 2010). In HF, malnutrition can be as prevalent as 36% based on serum albumin levels and the presence of less than 90% ideal body weight (Nicol, Carroll, Homeyer, & Zamagni, 2002). The use of MUST in the HF patient population is not well described in the literature; however, it has been used with success

in other adult and elderly populations. More research needs to be conducted within the HF population to better identify a reliable and valid tool for this population.

Table 1 Review of the MUST Literature

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
	_		Methods			
Almeida,	Prospective	Three hundred	BMI, recent %	Compared to	NRS 2002 and	MUST and NRI
Correia,	cross-	surgical	weight loss,	SGA the	MUST are the most	were made into
Camilo,	sectional	hospitalized	Nutrition Risk	Sensitivity,	concordant, valid	two categories for
&	study, over	patients; ages	Screening 2002	Specificity,	and reliable tools to	the purpose of the
Ravasco:	eight months	43 - 77; 44%	(NRS 2002),	PPV, NPV:	detect nutrition risk	study, but each
2011	with all data	male; 46%	Malnutrition	NRS 2002 -	in surgical patients.	were originally
	collected by a	cancer patients	Universal	80%, 89%,	>5% weight loss	developed into
	single		Screening Tool	87%, 100%;	over six months	three and four
	research		(MUST),	MUST - 85%,	was reliable and	categories. Made
	dietitian to		Nutritional Risk	93%, 89%,	valid. Percent	two categories in
	determine		Index (NRI),	99%; NRI -	weight loss	order to determine
	nutritional		Subjective	29%, 27%,	estimation should	comparisons, but
	status.		Global	24%, 27%;	be mandatory in	only two
			Assessment	BMI - 43%,	routine practice to	categories could
			(SGA)	39%, 35%,	increase outcome	affect the results.
				31%; % wt loss	driven nutrition	
				- 89%, 93%,	management.	
				81%, 89%		

Author	Study Design and	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	Purpose	Demographics	Screening			
			Methods			
Amaral,	Prospective study	One hundred	MUST,	Compared	MUST is most	Inherent to design,
Antunes,	over two months	thirty cancer	Malnutrition	to NRS	concurring with	patients admitted to
Cabral,	at a	patients (head	Screening	2002;	NRS 2002 in	the study may not
Alvest, &	comprehensive	and neck, GI,	Tool (MST)	sensitivity,	hospitalized cancer	represent the full
Kent-	cancer center in	GU, breast,	& NRS 2002	specificity,	patients and better	spectrum of cancer
Smith:	Portugal. One	lymph,		PPV, NPV,	at identifying	patients. Small
2008	researcher	endocrine,		kappa	patients at risk for	sample size in some
	collected all data	respiratory,		agreement:	increased length of	diagnostic groups
	to determine	bone); ages 43-		MUST -	stay. MST was a	compromised the
	nutritional status	71; 44% female		97.3%,	better diagnostic	influence for some
	and the tools'			77.4%,	value in head/neck,	types of patients.
	ability to predict			63.2%,	peritoneal and GI	Excluded critically
	length of stay.			98.6%, 0.64;	cancers. The three	ill patients because
				MST -	screening tools	their nutritional
				48.7%,	agreed with respect	status would
				94.6%,	to identifying	seriously be
				78.3%,	head/neck cancer	affected. But this
				82.2%, 0.49	patients at highest	limited the
					nutritional risk.	usefulness of the
					MST was easiest	studied tools in
					for patients to use	such diagnoses.
					for self-screening	
					because it required	
					no training	
					compared to MUST	
					and NRS-2002.	

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Boleo-	Prospective	Four hundred	BMI, %	Compared to	MUST was	Included a
Tome,	cross-sectional	fifty adult	weight loss,	SGA: MUST	strongly	heterogeneous
Monteiro-	study over ten	cancer patients;	Patient	sensitivity 80%,	recommended to be	population of
Grillo,	months to	ages 18-95;	Generated-	specificity 89%,	integrated in	cancer patients in
Camilo, &	classify	60% male;	Subjective	PPV 87%, NPV	routine screening in	terms of primary
Ravasco:	nutritional risk	predominantly	Global	100%, kappa	the radiation	site, nutritional
2011	and status	with breast,	Assessment	0.86;	oncology setting.	goals, radiologic
	categories;	prostate, lung	(PG-SGA),	Percentage of	It should be the	fields and
	compare results	and colorectal	and MUST	malnourished	primary tool to	prognosis. Study
	between	cancer		patients: BMI	refer patients for	population was
	nutritional			4%, SGA 29%,	exact nutritional	restricted to
	parameters;			and MUST	screening with the	radiotherapy
	and validate			31%	PG-SGA tool.	patients and cannot
	MUST in the				Based on time	be generalized to
	cancer				constraints of	all cancer patients;
	population. All				health	however it is a
	data collected				professionals, it is	good basis for
	by single				recommended to	future studies in
	research				use % weight loss	oncology.
	dietitian.				in last 3-6 months	
					as a valid and	
					minimum	
					parameter to	
					predict nutritional	
					risk.	

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Gibson,	Prospective	Two hundred	MUST,	Malnutrition risk	MUST and Mod-	Large sample may
Sequeira,	study to	sixty two	Modified	by tool: MUST	MST were valid and	have more
Cant, &	explore the	medical ward	Malnutrition	32.4%; Mod-MST	feasible to use with	confidently
Ku: 2012	ease of use of	patients; mean	Screening	32.8%, SGA	medical patients.	predicted the two
	two screening	age 70.8 ±	Tool (Mod-	26.7%. Compared	Little variation	groups of
	tools.	16.3yrs; 51.5%	MST), SGA	to SGA, sensitivity	between the two	misclassified
	Compare the	female		& specificity:	tools compared to	patients. There
	validity in			MUST 80%, 85%;	SGA, but sensitivity	were a number of
	adult acute			Mod-MST 77%,	and specificity were	patients admitted
	hospital			83%. False	\leq 85%. MUST took	to the hospital but
	patients over 2			negatives/false	up to five minutes	missed in the
	months in 2			positives: MUST	longer and Mod-	screening process.
	separate			14/29; Mod-MST	MST was easier to	Only three staff
	screening			16/29.	use. Mod-MST was	members
	phases.				recommended	completed the
					because one needs	interviews and
					to choose tools that	may need a larger
					are effective and	sample in order to
					easy to use in	apply to other
					massive-screening	groups.
					programs.	

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Kyle,	Population	Nine hundred	NRI,	Moderate/severe	Significant	SGA does not
Kossovsky,	study to test	ninety five adult	MUST,	nutritional risk:	association	allow for
Karsegard	the sensitivity	medical and	NRS-	SGA 39%, NRI	between LOS and	categorization of
& Pichard:	and	surgical	2002,	25%, NRS-2002	moderate to severe	mild malnutrition
2006	specificity of	patients; 53%	SGA	28%, MUST 37%.	malnutritional	and focuses on
	three	male; mean age		Compared to SGA,	status among all	chronic not acute
	screening	50.5 ± 21.9		sensitivity,	tools. NRS-2002	malnutrition.
	tools	(<10d LOS),		specificity, PPV,	had higher	Screeners should
	compared to	65.4 ± 18.7		NPV, kappa: NRI	sensitivity and	have been better
	SGA, to	(>11d LOS)		43.1%, 89.3%,	specificity	trained on the
	assess the			76.2%, 66.3%, 0.24;	compared to SGA	screening tools
	association			MUST 61.2%,	than NRI and	before
	between			78.6%, 64.6%,	MUST. The	implementing the
	nutritional			76.1%, 0.26; NRS-	authors	study. LOS was
	risk and			2002 62%, 93.1%,	recommended	studied as an
	hospital LOS			85.1%, 79.4%, 0.48	using the NRS-	outcome
	over a 3				2002, MUST and	parameter, but
	month period.				SGA tools on	many other factors
					admission to	influence LOS, not
					screen patients for	just malnutrition,
					malnutrition.	which were not
						assessed in this
						study.

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Lawson,	Cross-sectional	Two hundred	SGA,	1) Validity	MUST and MST	Need a larger
Campbell,	and longitudinal	seventy six	MUST,	compared to	not sensitive	sample to
Dimakopoulos,	study to	patients; in three	MST	SGA, sensitivity,	enough to	better
& Dockrell:	determine the	study arms: 1) 190		specificity, PPV,	identify all of the	determine
2012	validity and	pts, median age		NPV, & k:	malnourished	reliability in
	reliability of two	65, 48% female; 2)		MUST - 53.8%,	renal in-patients;	all renal
	screening tools	46 pts, median age		78.3%, 73.7%,	despite being	patients. Fluid
	in renal patients	61, 49% female; 3)		60%, 0.316;	fairly reliable and	status could
	over six months	40 pts, median age		MST - 48.7%,	related to other	not be
	in a London	64, 48.5% female.		85.5%, 78.7%,	markers of	determined in
	tertiary hospital.	All patients		60.2%, 0.335. 2)	nutritional status.	this patient
	Study divided	received peritoneal		Risk of	There is a	population
	into three study	or hemodialysis,		malnutrition	growing need for	which may
	arms: 1)	renal replacement		classification:	more research on	skew patient
	concurrent and	therapy, or		MUST 22.5%;	a renal-specific	weights and
	predictive	transplant.		MST 27.5%. 3)	nutrition	effect
	validity; 2)			Agreement	screening tool.	nutritional
	construct			between repeat		status
	validity; 3)			tests, k value:		estimates.
	reliability.			MUST 0.58		
				(moderate);		
				MST 0.33 (fair).		

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Leistra,	Cross-sectional	Two thousand	BMI, %	BMI and %	Validity of MUST	Patients
Langius,	multicenter	two hundred	weight loss,	weight loss - 6%	and SNAQ is	completed the
Evers, van	study at nine	thirty six	MUST, Short	severe, 7%	insufficient for	assessment
Bokhorst-	hospitals in the	hospital	Nutritional	moderate; MUST -	hospital	forms, rather
de van der	Netherlands to	outpatients	Assessment	9% severe, 6%	outpatients. SNAQ	than trained
Schueren,	determine the	patients; ages	Questionnaire	moderate; SNAQ -	identified too few	medical
Visser, de	validity of	40-72 years;	(SNAQ)	3% severe, 2%	undernourished	professionals.
Vet, &	screening tools	52.4% female		moderate.	patients, while	There remains
Kruizenga:	in identifying			Sensitivity,	MUST identified	an absence of a
2013	severely			Specificity, PPV,	too many. It is	gold standard
	undernourished			NPV	recommended to	screening tool
	patients.			(severe/moderate):	measure weight,	with which to
				MUST - 75%/82%,	height and weight	compare other
				94%/95%,	loss to better	tools. Only
				43%/71%,	determine	two tools were
				98%/97%; SNAQ -	undernourishment	used in the
				43%/29%,	in hospital	study and with
				99%/98%,	outpatients.	the variety of
				78%/72%,		tools available,
				96%/90%.		more could
						have been
						used.

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
	_		Methods			
Lomivorotov,	Prospective	Eight hundred	SGA, NRS	Compared to	SNAQ and	SGA is limited in
Efremov,	cohort study	ninety four	2002,	SGA,	MUST have	cardiac disease
Boboshko,	over eight	patients; > 53	MUST,	malnourished	comparable	because it relies on
Nikolaev,	months to	years of age;	Mini-	patients,	accuracy in	the interviewer's
Vedernikov,	assess the	21% > 65	Nutritional	sensitivity,	detecting	training and on the
Lomivorotov,	prognostic	years; 37%	Assessment	specificity,	malnourished	interpretation of the
& Karaskov:	value of	female, 14%	(MNA),	PPV, NPV:	patients. MUST	results, making it
2012	different	with Diabetes;	SNAQ	NRS 2002 -	independently	less able to
	screening tools	2.4% with EF		6%, 38.3%,	predict post-op	reproduce in daily
	in	< 35%; 8.7%		95.4%, 31.6%,	complications.	clinical practice. It
	cardiopulmona	redo surgery		96.5%; MUST	All tools were	has also been known
	ry bypass			- 17%, 97.9%,	insufficiently	to miss acute
	patients.			87.1%, 29.7%,	sensitive to the	changes in
				99.9%, MNA -	risk for	nutritional status and
				23%, 81.8%,	development of	miss some cases of
				80.7%, 20.4%,	post-op	malnutrition. The
				98.6%; SNAQ	complications.	precise analysis of
				- 17%, 91.5%,	Need to study if	body composition
				87.5%, 28.9%,	pre-op nutrition	using bioelectrical
				99.5%;	interventions will	impedance was not
					improve patient	performed, and can
					outcomes. Need	affect the lack of
					to develop more	correspondence
					sensitive methods	between nutritional
					for screening this	screening results and
					population.	BMI. Long term
						data was not
						analyzed.

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
	_		Methods			
Neelemaat,	Cross	Two hundred	MST, SNAQ,	No risk	MST and SNAQ	Pre-set
Meijers,	sectional	seventy five	MNA short	compared to at	are quick and easy	definition of
Kruizenga,	screening to	patients; 62%	form (MNA-	risk patients;	tools and suitable	malnutrition
van	compare five	over 60 yrs;	SF), MUST,	sensitivity,	for use in hospital	(BMI and
Ballegooijen,	malnutrition	37% female	NRS 2002,	specificity,	inpatient settings	weight loss)
& van	screening		BMI,	PPV, NPV:	with sensitivity and	could not be
Bokhorst-de	tools against		unintentional	MST 78%,	specificity $\leq 70\%$.	determined in all
Vander	a reliable		weight loss	96%, 89%,	MST and SNAQ	patients. Data
Schueren:	screening			91%; SNAQ	performed well	was completed
2011	method in			75%, 84%,	compared to the	by trained
	one hospital.			66%,90%;	more	Dietitians, but
				MUST 96%,	comprehensive	25% did not
				80%, 69%,	tools, MUST and	have their
				98%; NRS	NRS 2002, on	nutritional status
				2002 92%,	criterion validity.	determined.
				85%, 72%,	MNA-SF showed	Selection bias
				96%; MNA-SF	great sensitivity but	was excluded
				100%, 41%,	low specificity in	because of this,
				42%, 100%.	the elderly	and the actual
				The authors	population. MUST	rate of
				suggested a	was less applicable	malnutrition
				sensitivity and	in the study because	could be higher.
				specificity of	there were a lot of	
				\geq 70% for a tool	missing values.	
				to be considered	-	
				adequate.		

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Olivares,	Prospective	Five hundred	SGA,	Compared to	Any of the tests	Could not be
Ayala, Salas-	study to	thirty seven	MNA-SF,	SGA,	would be good to	extrapolated to other
Salvado,	determine the	adult patients;	NRS	sensitivity,	use on admission	hospitals in different
Muniz,	prevalence of	45% medical,	2002,	specificity,	to screen for	countries because it
Gamundi,	malnutrition,	55% surgical;	MUST	PPV, NPV, k-	malnutrition. NRS	was conducted in a
Martinez-	identify	ages 43-78;		value: MNA-	2002 was chosen	second level
Indart, &	malnutrition risk	56.4% male		SF - 69.9%,	because it was the	hospital in Spain.
Masmiquel:	factors, and			94.7%, 93%,	easiest and took the	Could not assess
2014	compare			75.8%, 0.67;	least amount of	other population
	validity of tools			NRS 2002 -	time. Difference in	types for
	to the SGA in			68.9%, 90.1%,	malnutrition rates	malnourishment
	hospitalized			92.4%, 62.3%,	between tools can	such as surgery or
	patients during a			0.57; MUST -	be explained by	transplant patients.
	four month			64.1%, 91.9%,	severity of	
	period.			91.5%, 65.3%,	underlying disease,	
				0.56	population setting,	
					and age. NRS-	
					2002, MNA-SF	
					and SGA have high	
					reliability. MUST	
					is invalidated after	
					adjusting for risk	
					factors because	
					weight loss and	
					low BMI are not	
					frequent in the	
					study population.	

Table 1 (continued)

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Poulia,	Prospective	Two hundred	NRI,	Compared to	The NRI was	Some patients had to
Yannakoulia,	study to	forty eight	GNRI,	true nutritional	higher in	have the
Karageorgou,	evaluate of	elderly patients	SGA,	status	sensitivity and	questionnaires
Gamaletsou,	the efficacy	> 60 years;	MUST,	(combined	PPV than the	translated for them and
Panagiotakos,	tools to	mean age 75.2	MNA-	index),	other tools, but	results then had to be
Sipsas, &	predict	+/- 8.5yrs; 52%	SF, and	sensitivity,	scored lower in	translated again,
Zampelas:	malnutrition	male; admitted	NRS-	specificity, PPV,	specificity and	making for some
2012	in elderly	for neurologic	2002	NPV, kappa:	NPV. MUST	miscommunication
	patients	syndrome,		NRI - 71.7%,	and MNA-SF	among patients and
	admitted to	fever, blood		48.8%, 85.4%,	were the most	researchers. Some
	the hospital in	disease,		29.3%, 0.550;	valid. MUST	patients estimated
	Athens,	rheumatologic		GNRI - 66%,	and SGA	height and weight
	Greece over	disease,		92.1%, 94.6%,	showed better	instead of being
	nine months.	malignancy,		56.45%, 0.465;	agreement with	accurately measured
		hemorrhage,		SGA - 84.3%,	the combined	by researchers and in
		diabetes, GI,		91.4%, 95.2%,	index. The	4.8% of patients,
		kidney or		74.3%, 0.707;	researchers	anthropometric
		respiratory		MUST - 87.3%,	concluded that	measurements were
		disease		76.8%, 88.4%,	the combination	not available. These
				75%, 0.638;	of objective and	variations in accuracy
				MNA-SF -	subjective	of measurements could
				98.1%, 50%,	diagnostic tools	affect calculations and
				79.9%, 93.2%,	that are easy to	results.
				0.545; NRS	use are the best	
				2002 - 99.4%,	for nutritional	
				6.1%, 68.2%,	screening.	
				83.3%, 0.088		

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Stratton,	Series of	Among all series	MUST,	Concurrent validity	A desirable	Bias in
Hackston,	prospective	of studies: a) 50	MEREC	= percentage of	screening tool	concurrent
Longmore,	studies (one	outpatients, b)	Bulletin tool	patients placed in	should be	validity is
Dixon,	outpatient, four	75 medical	(MEREC),	same nutrition risk	rapid and easy	possible. The
Price,	inpatient	inpatients, c) 85	Hickson and	category as MUST:	to use.	sample
Stroud,	settings) to	surgical	Hill tool	a) MEREC 92%,	Results	demographics of
King, &	assess the	inpatients, d) 86	(HH), NRS,	HH 84%; b)NRS	indicate	the five separate
Elia: 2004	prevalence of	elderly patients,	MST, MNA-	89% (<65yrs), 92%	MUST was	investigations
	malnutrition	e) 50 medical	SF, SGA, and	(>65yrs), MST 88%	rapid and	were not
	risk between	inpatients, and f)	undernutrition	(>65yrs); c) MNA	easy/very easy	disclosed. The
	MUST and	52 surgical	risk score	80%; d) MNA	to use and	only thing known
	other screening	inpatients.	(URS)	77%; e) SGA	showed 'fair-	about those
	tools for	Specific patient		72%/92%; f) URS	good' to	patients are the
	inpatients and	demographics		67%/77%. Ease of	'excellent'	age
	outpatients,	not reported		use of tools/time to	concurrent	classifications
	determine			complete: MUST -	validity with	and patient
	concurrent			very easy and easy	most of the	cohorts (medical
	validity of			(3-5min); MST -	other tools.	or surgical,
	MUST and			very easy (3 min);		inpatient or
	other tools, and			MNA - easy (5		outpatient). This
	the ease of use			min); NRS, HH (5-		leaves the
	of the screening			7 min), SGA &		inability to
	tools.			URS (5-10 min) -		reproduce the
				difficult.		same studies.
Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
--------	-----------------	--------------------	----------------	---------------------	-----------------------	----------------
and	and Purpose	Demographics	Screening			
Year			Methods			
Tu,	Prospective	Forty five	Anthropometric	Compared to	Overall the NRI had	Small sample
Chien,	study to assess	patients; mean	measures,	prealbumin,	the highest	size and
&	the nutritional	age 62.1 yrs \pm	biochemical	sensitivity,	sensitivity and	convenience of
Chou:	status of	11.5; 56% male	markers, MUST,	specificity, PPV,	second highest	inclusion. Not
2012	patients with		NRI, & SGA	NPV, kappa:	specificity when	many patient
	colorectal			MUST - 64%,	compared to	demographics
	cancer before			60%, 66.7%,	prealbumin than the	noted in the
	and after			57.1%, 0.239;	MUST and SGA	study.
	surgery in			NRI - 80.9%,	tools. The MUST	
	Taiwan over			70.8%, 70.8%,	and NRI tools were	
	two years.			80.9%, 0.51;	comparable	
				SGA - 72.4%,	measures, easy to	
				81.2%, 87.5%,	administer and	
				69.1%, 0.50	require minimal	
					training to complete,	
					compared to the	
					SGA. MUST is best	
					to use.	

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographic	Screening			
		S	Methods			
Van	Single-center	Three	low-fat free	Accuracy in	Accuracy in	The bioelectrical
Venrooij,	prospective	hundred	mass index	detecting FFMI,	detecting FFMI	impedance makes
Van	observational	twenty five	(FFMI),	prevalence,	before surgery was	assumptions and
Leeuwen,	cohort study	adult cardiac	MUST,	sensitivity,	considerably higher	therefore the true
Hopmans,	over 23	surgery	SNAQ,	specificity, PPV,	for MUST than	nutritional status
Borgmeije	months.	patients;	cardiac	NPV, positive	SNAQ. SNAQ	may be affected by
r-Hoelen,	Purpose was to	mean age	surgery-	likelihood ratio, area	does not identify	disease state. In
De Vos, &	compare	$65.7 \pm 10.1;$	specific	under the curve:	'unintentional	cardiac patients
De Mol:	undernutrition	27.7%	version of	MUST - 8.3%,	weight loss' which	bioelectrical
2011	screening tools	female;	MUST	59.3%, 82.7%,	is important in	impedance can be
	to low-fat free	19.4% had	(CSSM)	23.9%, 95.7%, 3.4,	determining	affected by higher
	mass index in	BMI > 30;		0.71; SNAQ - 8.3%,	malnutrition risk.	BMIs and
	patients	4% had BMI		18.5%, 93.6%,	Further research on	extracellular fluid
	undergoing	< 21		20.8%, 92.6%, 2.9,	the cardiac specific	imbalances. The
	cardiac			0.56; CSSM - 8.3%,	MUST is	reference standard
	surgery, and			74.1%, 70.1%,	recommended	for undernutrition
	assess			18.5%, 96.7%, 2.5,	because it	does not take into
	association			0.72. Post-op	integrates age and	account weight
	with			adverse outcomes	sex. It is	loss and low BMI.
	postoperative			defined by MUST &	recommended to	BMI is only a
	adverse			SNAQ: 5.8%	use the FFMI	blunt tool for
	outcomes.			infection, 2.5%	measure with	measuring body
				mortality, 36.4%	unintentional	fatness. Experts
				prolonged ICU LOS,	weight loss and low	lack agreement
				33.1% prolonged	BMI to identify and	about an optimal
				hospital LOS.	refer malnourished	definition and
					patients.	operationalism of
						undernutrition.

Author and	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
Year	and Purpose	Demographics	Screening			
			Methods			
Velasco,	Observational	Four hundred	NRS	Compared to	Best agreement	Some patients who
Garcia,	multicenter	patients; mean	2002,	SGA,	with MUST and	could not be
Rodriguez,	study to evaluate	age 67.4 ± 16.1	MUST,	sensitivity,	SGA, and NRS-	weighed gave an
Frias,	nutritional risk in	yrs; 60% male;	SGA, &	specificity, PPV,	2002 and SGA.	estimation of their
Garriga,	hospitalized	66% medical,	MNA	NPV,	It is	weight, which
Alvarez,	patients using	34% surgical		agreement: NRS	recommended to	could lead to
Peris, &	four screening	patients. Main		2002 - 74.4%,	use MUST and	skewed results.
Leon: 2010	tools.	diagnoses were		87.2%, 76.1%,	NRS-2002 upon	There was a lower
	Evaluations	pneumonia, HF,		86.2%, 0.62;	admission. MNA	prevalence of
	performed by a	COPD, surgery,		MUST - 71.6%,	detected more	malnourished
	single	neurologic		90.3%, 80.1%,	patients at risk	patients compared
	investigator at	vascular disease,		85.4%, 0.64;	but it can only be	to similar studies
	each hospital	and other medical		MNA - 95%,	used in the	in surgical
	over five	diagnoses.		61.3%, 57.2%,	elderly	populations. This
	months.			95.7%, 0.491.	population.	may be due to the
				LOS for patients		fact that this study
				(p<0.001): No		mainly comprised
				risk - NRS 2002		of elective
				8.9days, MUST		surgeries where
				9.2days, MNA		patients may be in
				8.1days, SGA		better nutritional
				8.8days; At risk		health.
				- NRS 2002		
				13.7days,		
				MUST		
				13.6days,		
				12.4days, SGA		
				13.7days.		

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Vicente,	Cross-	One hundred thirty	BMI,	Compared to	MUST was the	Although the
Barao,	sectional	seven colorectal	albumin,	SGA; Group 1	most sensitive tool	sample size was
Silva, &	study to	(n=116) and gastric	SGA,	sensitivity,	for screening	large, it included a
Forones:	evaluate	(n=21) cancer	NRI,	specificity: BMI	nutrition, but with	small number of
2013	nutritional	patients divided into	MUST	- 10%, 100%;	a lower specificity.	patients with gastric
	screening	two groups; group	and MST	albumin - 30%,	NRI had a lower	cancer, only 15% of
	methods used	one undergoing		92%; NRI - 68%,	sensitivity but a	the study
	to screen	treatment for cancer,		64%; MST -	higher specificity.	population. The
	patients seen	mean age $60.2 \pm$		52%, 84%;	Overall the	authors noted
	in an	12.2yrs, 48% male;		MUST - 72%,	subjective tools	inconsistency with
	oncology	group two patients		49%. Group 2	showed a higher	other studies in the
	clinic in Sao	post tumor removal		sensitivity,	sensitivity but	number of
	Paulo during	undergoing follow-		specificity: BMI	lower specificity	malnutrition patients
	an 18 month	up treatment, mean		- 15.3%, 100%;	then objective	compared to other
	period.	age 61.3 ± 11.6 yrs,		albumin -	measures. MUST	studies in similar
		45.2% male		15.3%, 93.8%;	and SGA in	populations. This
				NRI - 55.8%,	combination are	was attributed to the
				83.6%; MST -	better for	patients not being
				61.5%, 91.8%;	identifying	hospitalized and in
				MUST - 84%,	nutritional risk.	fairly good health.
				73.4%.		

References

- Almeida, A. I., Correia, M., Camilo, M., & Ravasco, P. (2011). Nutritional risk screening in surgery: Valid, feasible, easy! *Clinical Nutrition*, 31, 206-211.
- Amaral, T. F., Antunes, A., Cabral, S., Alvest, P., & Kent-Smith, L. (2008). An evaluation of three nutritional screening tools in a Portuguese oncology centre. *Journal of Human Nutrition and Dietetics*, 21, 575-583.
- Boleo-Tome, C., Monteiro-Grillo, I., Camilo, M., & Ravasco, P. (2011). Validation of the Malnutrition Universal Screening Tool (MUST) in cancer. British Journal of Nutrition, 108, 343-348.
- Centers for Disease Control and Prevention (2013). Heart failure facts. Retrieved from: <u>http://www.cdc.gov/dhdsp/data_statistics/fact_sheets/docs/fs_heart_failure.pdf</u>
- Corkins, M. R., Guenter, P., DiMaria-Ghalili, R. A., Jensen, G. L., Malone, A., Miller, S.,
 ... Resnick, H. E. (2014). Malnutrition diagnoses in hospitalized patients: United
 States, 2010. *Journal of Parenteral and Enteral Nutrition*, 38, 186-195.
- Elia, M. (2009). The economics of malnutrition. Nestle Nutrition, 12, 29-40.
- Elia, M. & Malnutrition Advisory Group (2010). The '*MUST*' Report: Nutritional screening of adults, a multidisciplinary responsibility. *British Association of Parenteral and Enteral Nutrition*, 1-11.
- Gibson, S., Sequeira, J., Cant, R., & Ku, C. (2012). Identifying malnutrition risk in acute medical patients: Validity and utility of *Malnutrition Universal Screening Tool* and *Modified Malnutrition Screening Tool*. Nutrition and Dietetics, 69, 309-314.
- Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J. ... Turner, M. B. (2013). Heart disease and stroke statistics – 2014 update. A report

from the American Heart Association. Circulation, 129, e28-e292.

- Gout, B. S., Barker, L. A., & Crowe, T. C. (2009). Malnutrition identification, diagnosis and dietetic referrals: Are we doing a good enough job? *Nutrition and Dietetics*, 66, 206-211.
- Hoes, M. (2007). Clinical epidemiology of heart failure. Heart, 93, 1137-1146.
- Jensen, G. L., Mirtallo, J., Compher, C., Dhaliwal, R., Forbese, A., Grijalba, R. F., ... Waitzberg, D. (2010). Adult starvation and disease-related malnutrition: A proposal for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. *Journal of Parenteral and Enteral Nutrition*, 34(2), 156-159.
- Kyle, U. G., Kossovsky, M. P., Karsegard, V. L. & Pichard, C. (2006). Comparison of tools for nutritional assessment and screening at hospital admission: A population study. *Clinical Nutrition*, 25, 409-417.
- Lawson, C. S., Campbell, K. L., Dimakopoulos, I., & Dockrell, M. E. (2012). Assessing the validity and reliability of the *MUST* and *MST* nutrition screening tools in renal inpatients. *Journal of Renal Nutrition*, 22(5), 499-506.
- Leistra, E., Langius, J. A., Evers, A. M., van Bokhorst-de van der Schueren, M. A., Visser, M., de Vet, H. C., & Kruizenga, H. M. (2013). Validity of nutritional screening with *MUST* and *SNAQ* in hospital outpatients. *European Journal of Clinical Nutrition*, 67, 738-742.
- Lomivorotov, V. V., Efremov, S. M., Boboshko, V. A., Nikolaev, D. A., Vedernikov, P.
 E., Lomivorotov, V. N., & Karaskov, A. M. (2012). Evaluation of nutritional screening tools for patients scheduled for cardiac surgery. *Nutrition, 29*, 436-442.

- Moughrabi, S. M. & Evangelista, L. S. (2007). Cardiac cachexia at a glance. *Progress in Cardiovascular Nursing*, *Spring*, 101-103.
- Neelemaat, F., Meijers, J., Kruizenga, H., van Ballegooijen, H., & van Bokhorst-de van der Schueren, M. (2011). Comparison of five malnutrition screening tools in one hospital inpatient sample. *Journal of Clinical Nursing*, 20, 2144-2152.
- Nicol, S. M., Carroll, D. L., Homeyer, C. M., & Zamagni, C. M. (2002). The identification of malnutrition in heart failure patients. *European Journal of Cardiovascular Nursing*, 1, 139-147.
- Olivares, J., Ayala, L., Salas-Salvado, J., Muniz, M. J., Gamundi, A., Martinez-Indart, L., & Masmiquel, L. (2014). Assessment of risk factors and test performance on malnutrition prevalence at admission using four different screening tools.
 Nutricion Hospitalaria, 29(3), 674-680.
- Poulia, K. A., Yannakoulia, M., Karageorgou, D., Gamaletsou, M., Panagiotakos, D., B., Sipsas, N., V., & Zampelas, A. (2012). Evaluation of the efficacy of six nutritional screening tools to predict malnutrition in the elderly. *Clinical Nutrition*, *31*, 378-385.
- Stratton, R. J., Hackston, A., Longmore, D., Dixon, R., Price, S., Stroud, M., ...Elia, M. (2004). Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the '*Malnutrition Universal Screening Tool*' (*MUST*) for adults. *British Journal of Nutrition, 92*, 799-808.
- Tu, M. Y., Chien, T. W., & Chou, M. T. (2012). Using a nutritional screening tool to evaluate the nutritional status of patients with colorectal cancer. *Nutrition and Cancer*, 64(2), 323-330.

- Van Venrooij, L. M., Van Leeuwen, P. A., Hopmans, W., Borgmeijer-Hoelen, M. M., De Vos, R., & De Mol, B. A. (2011). Accuracy of quick and easy undernutrition screening tools *Short Nutritional Assessment Questionnaire, Malnutrition Universal Screening Tool*, and *Modified Malnutrition Universal Screening Tool* in patients undergoing cardiac surgery. *Journal of the American Dietetics Association, 111*, 1924-1930.
- Velasco, C., Garcia, E., Rodriguez, V., Frias, L., Garriga, R., Alvarez, J., ... Leon, M. (2010). Comparison of four nutritional screening tools to detect nutritional risk in hospitalized patients: a multicenter study. *European Journal of Clinical Nutrition*, 65, 269-274.
- Vicente, M. A., Barao, K., Silva, T. D., & Forones, N. M. (2013). What are the most effective methods for assessment of nutritional status in outpatients with gastric and colorectal cancer? *Nutricion Hospitalaria*, 28, 585-591.

Manuscript 2

Nutritional Risk Index: A Review of the Literature Cassondra Degener RD, BSN, RN, CCRN, DNP Student University of Kentucky

Abstract

Purpose: The purpose of this literature review was to analyze the available literature on the Nutritional Risk Index (NRI) tool and provide evidence to support its reliability and validity in various populations. The literature review will examine the strengths and weaknesses of NRI compared to other nutrition evaluation methods, compare results between studies and make recommendations for practice.

Design and Methods: Literature review for articles in English or translated into English from 2004 to 2014 using the following databases: EBSCOhost, CINAHL, MEDLINE and Academic Search Complete. Once articles were chosen to be included in the review, footnote chasing took place to find additional studies which evaluated NRI and other screening methods.

Results: Over 34 articles were found but ten studies which met the inclusion criteria of NRI and other screening methods. Of the included studies, three evaluated hospital inpatients, three screened cancer patients, two assessed the nutritional status of the elderly, and two examined the nutritional status of HF patients.

Practice Implications: Implementation of the NRI on admission in combination with anthropometric measures may help assist providers in identifying multiple patient populations at risk for malnutrition. No one tool has been proven as the gold standard of nutrition assessment, making it necessary to evaluate multiple tools in the HF population. **Search Terms**: *malnutrition, screening tools, adult, nutritional risk index, hospitalized patients, heart failure, cancer, surgery, chronic disease* and *elderly*

Background and Significance

Malnutrition is associated with increased healthcare costs and worse outcomes among hospitalized patients (Elia, 2009). According to the most current nationallyrepresentative data describing US hospital discharges, the average patient remains in the hospital for 4.4 days, while malnourished patients spend an average of 12.6 days (Corkins et al., 2014). The longer hospital stay triples healthcare costs for malnourished patients, increasing from \$9,485 for the average patients to \$26,944 for malnourished ones (Corkins et al., 2014). Malnutrition is present when a patient's serum albumin level is less than 3.3g/dL, the transferrin is less than 0.16g/dL, and/or the prealbumin is less than 15mg/dL (Beck & Rosenthal, 2002). Malnourished patients have increased hospital length of stay (LOS) and increased readmission rates and are more likely to be discharged to a long term care or rehabilitation facility (Chima et al., 1997).

Heart failure is one of the leading causes of death in the United States, and in 2009 one in nine deaths included HF as a contributing cause (Centers for Disease Control and Prevention [CDC], 2013). The CDC estimates 5.1 million people in the United States have HF (2013). Malnutrition is highly prevalent among hospitalized HF patients at a rate of 66%, but often remains unidentified and untreated (Aziz et al., 2011; Stratton et al., 2006). Most HF patients are unable to consume enough calories to meet the body's demands, which often leads to a condition called cardiac cachexia (Nicol et al., 2002). Cardiac cachexia is a disorder characterized by muscle wasting and protein-energy malnutrition (Moughrabi & Evangelista, 2007). A patient with HF who loses 7.5% or more of his or her body weight over a period of six months most likely has cardiac cachexia (Anker et al., 1997). Cardiac cachexia is responsible for increased morbidity

and mortality and decreased quality of life among patients with HF (Moughrabi & Evangelista, 2007). There is a growing need to find a standardized tool to help providers identify malnourished patients earlier and intervene faster. Early recognition of malnutrition by healthcare providers could lead to early intervention, decreased morbidity and mortality, and decreased healthcare costs and LOS (Elia, 2009; Stratton, Green, & Elia, 2004).

Researchers have developed a number of different screening tools to assist healthcare providers with the identification of malnutrition in hospitalized patients. One tool in particular, the Nutritional Risk Index (NRI), was developed by the Veterans' Affairs Total Parenteral Nutrition Cooperative Study Group to determine nutritional risk in the postsurgical patient population (Al-Najjar & Clark, 2012). The NRI uses objective measurements to calculate a score from the following formula: 1.5 x serum albumin + 41.7 x current weight/ideal body weight (Aziz et al., 2011). A score of > 100 means there is no evidence of malnutrition, 97.5 - 100 indicates mild malnutrition, 83.5 - 97.5means moderate malnutrition, and < 83.5 signifies severe malnutrition (Al-Najjar & Clark, 2012). Since its development, the tool has demonstrated evidence of validity in many patient populations including hospitalized patients, outpatients, surgical patients, the elderly and those with HF and cancer, making it useful to implement in any setting or population (Al-Najjar & Clark, 2012; Faramarzi, et al., 2013; Almeida et al., 2011).

Purpose of the Integrated Review

The purpose of this literature review was to analyze the available literature on the NRI and provide evidence to support whether or not it is reliable in various populations (i.e. oncology, hospitalized, elderly and HF). The following review evaluates ten studies

which compared NRI to other reliable screening tools such as Subjective Global Assessment (SGA), Nutrition Risk Screening 2002 (NRS 2002), Mini-Nutritional Assessment (MNA) and MUST in multiple patient populations. As of now, no one tool has been shown to be a gold standard for evaluating nutritional status among all patient populations in the different healthcare settings. The literature review will examine the strengths and weaknesses of the NRI compared to other nutrition evaluation methods, compare results between studies as to which screening tools are the most reliable and make recommendations for practice.

Methods

Search Method

A search for published studies comparing NRI to other reliable nutritional screening instruments and methods was executed using EBSCOhost via the UK Libraries website. Databases used within EBSCOhost included Academic Search Complete, CINAHL, and MEDLINE. The search only included articles in English or translated into English ranging from 2004 to 2014. Keywords used in the search were *malnutrition, screening tools, adult, nutritional risk index, hospitalized patients, heart failure, cancer, surgery, chronic disease* and *elderly*. Once articles were chosen to be included in the review, I used ancestry searching to find additional studies which evaluated NRI and other screening methods. Inclusion criteria involved recent studies that compared NRI to other screening methods. Studies were excluded if they were not published in English, were written before 2004, or did not compare NRI to other reliable tools or screening methods.

Search Outcome

The overall search produced 34 articles, of which ten met the criteria of comparing NRI to other reliable screening tools and objective measures (albumin, weight loss and BMI). Of the included studies, three evaluated hospital inpatients, three screened cancer patients, two assessed the nutritional status of the elderly, and two evaluated HF patients. The designs of the studies varied ranging from three prospective, three cross-sectional, two controlled population, one retrospective cohort and one retrospective analysis.

Findings and Synthesis of Themes

There were major themes that arose from this review which related to malnutrition risk screening and the best methods in which to do so upon healthcare admission. This review included ten studies which compared NRI to other reliable screening methods in order to evaluate the nutritional status of various patient populations. Screening tools evaluated in addition to NRI in the studies included: NRS-2002, MUST, SGA, Patient Generated SGA (PG-SGA), Geriatric Nutritional Risk Index (GNRI), Mini-nutritional Assessment Short Form (MNA-SF), and Malnutrition Screening Tool (MST).

Of the ten studies, three recommended specific screening tools as the most reliable methods of nutritional screening. Kyle, Kossovsky, Karsegard, and Pichard (2006) recommended NRS-2002, MUST and SGA, while Aziz et al. (2011), and Al-Najjar and Clark (2012) suggested the use of NRI. Six studies found the best methods were a subjective screening tool in combination with anthropometric measures or objective laboratory values. Of those six studies, MUST and SGA were suggested as the

subjective measures of choice by Poulia et al. (2012) and Vicente, Barao, Silva and Forones (2013), while Tu, Chien and Chou (2012) suggested MUST and NRI. Three studies did not mention specific subjective screening tools to be used in combination with objective measures (Faramarzi, Mahdavi, Mohammad-Zadeh and Nasirimotlagh, 2013; Meireles, Wazlawik, Bastos and Garcia, 2012; & Cereda, Limonta, Pusani, and Vanotti, 2006). The final study simply recommended recent percentage of weight loss as the minimal screening method, even though the authors found NRS-2002 and MUST were the most concordant, reliable and valid tools to use in surgical patients (Almeida, Correia, Camilo, & Ravasco, 2011).

According to all the authors, they did agree that the best method for nutritional screening is the use of an easy and inexpensive tool that requires little training. A few authors suggested more research be done to determine the best all-around screening tool to use in multiple patient populations, noting the inconsistency among current literature and screening tools (Al-Najjar & Clark, 2012; Aziz et al., 2011; Cereda et al., 2006). The following sections will illustrate those themes. Refer to Table 1 for specifics about each study and their limitations.

Recommendation of Specific Subjective Tools

Two studies that reviewed NRI and HF were conducted by Al-Najjar and Clark (2012) and Aziz et al. (2011). In their study, Al-Najjar and Clark (2012) included outpatients with left ventricular chronic HF attending a community HF clinic, while Aziz et al. (2011) evaluated serum albumin and NRI to assess the incidence of malnutrition and outcomes of adults admitted to the hospital with acute decompensated HF. Al-Najjar and Clark (2012) found NRI to be a univariable predictor of mortality (chi-square 25,

p<0.001), and an independent predictor of outcomes in multivariable analysis (chi-square 12, p<0.001). Aziz et al. (2011) determined NRI was the strongest predictor for LOS (odds ratio 1.7, 95% confidence interval 1.58-1.9; p=0.005). The authors also found moderate to severe NRI scores were associated with higher death and readmission rates (Aziz et al., 2011). Based on their statistical analysis, the authors of both studies concluded the NRI was a helpful prognostic marker in patients with HF compared to BMI or albumin alone (Al-Najjar & Clark, 2012; Aziz et al., 2011). The authors also recognized the need for more randomized controlled studies which evaluate NRI and HF patients in order to find a consistent and reliable screening method in this population (Al-Najjar & Clark, 2012; Aziz et al., 2011).

The other study which recommended specific subjective screening tools evaluated the nutritional status of hospitalized adult medical and surgical patients (Kyle et al., 2006). The authors used SGA as the gold standard and compared results between three other tools, NRI, MUST, and NRS-2002 (Kyle et al., 2006). They found MUST and NRS-2002 to be the most concordant with SGA with kappa values of 0.26 and 0.48 respectively. The MUST had the advantage of being less time consuming and required less examiner training, even though it produced a lower sensitivity and specificity of 61.2% and 78.6% respectively (Kyle et al., 2006). Based on statistical analysis and the tool's ease of use, the authors concluded that NRS-2002, SGA, and to a lesser extent MUST, were the best screening tools to evaluate patients upon hospital admission (Kyle et al., 2006).

Combination of Objective and Subjective Screening Methods

Poulia et al. (2011) evaluated the efficacy of six subjective screening tools to predict malnutrition in hospitalized elderly patients (>60 years old) admitted to the hospital in Athens, Greece. Tu et al. (2011) used three screening tools to evaluate the nutritional status of colorectal cancer patients, while Vicente et al. (2013) used four tools to screen colorectal and gastric cancer patients. Poulia et al. (2011) found MUST and MNA-SF to be the most reliable with a sensitivity of 87.3% and 98.1%, and specificity of 76.8% and 50% respectively. The best agreement with the combined index (gold standard) was with SGA and MUST noting kappa values of 0.71 and 0.64 respectively (Poulia et al., 2011). In their study, Tu et al. (2011) found MUST, NRI and SGA to have sensitivities of 64%, 80.9%, and 72.4% with specificities of 66.7%, 70.8%, and 81.2% respectively. In contrast to SGA, the authors determined MUST and NRI were comparable measures, easy for healthcare providers to administer, and required minimal training to complete (Tu et al., 2011). Vicente et al. (2013) determined MUST had a sensitivity of 84% and specificity of 73.4% when compared to SGA. They also found the subjective measures to have higher sensitivities but lower specificities than the objective measures (Table 1). Based on statistical analysis, the authors suggested that MUST and SGA were the best screening measures (Poulia et al, 2011; & Vicente et al., 2013). Tu et al. (2011) on the other hand recommended the use of MUST and NRI when screening hospitalized cancer patients due to their ease of use and requirement of minimal training to complete.

Cereda et al. (2006) compared NRI and GNRI to albumin and prealbumin in elderly patients admitted to a long-term care facility in Como, Italy. Faramarzi et al.

(2013) screened colorectal cancer patients using albumin, NRI and PG-SGA, while Meireles et al. (2012) screened hospitalized surgical patients using three screening tools and anthropometric measures (fat mass index, body cell mass, and standardized phase angle). Cereda et al. (2006) found NRI and GNRI to have similar reliability using Pearson's linear correlation coefficients of 0.98 and 0.95 respectively, in comparison to the objective measures of albumin and prealbumin. Faramarzi et al. (2013) found NRI to have a sensitivity, specificity and kappa value of 66%, 60% and 0.27 when compared to PG-SGA. Using SGA as the gold standard, Meireles et al. (2012) found NRS-2002 and NRI had kappa coefficient values of 0.49 and 0.26 respectively. Based on their statistical analysis, the authors suggested a combination of subjective and objective measures, but did not recommend a specific screening tool (Cereda et al., 2006; Faramarzi et al., 2013; & Meireles et al., 2012). Cereda et al. (2006) further suggested the need for long-term prospective studies which evaluate the nutritional status of the elderly using multiple subjective screening tools and objective measures.

Objective Measures Recommended for Practice

Almeida et al. (2011) conducted their study on 300 adult surgical patients admitted to the hospital. They used the Subjective Global Assessment (SGA) as the gold standard nutritional screening method and compared it to three subjective screening tools, BMI and percentage weight loss. They found MUST and NRS-2002 to be the most concordant with SGA (Almeida et al., 2011). The sensitivity of MUST and NRS-2002 were 85% and 80%, while the specificities were 89% and 93% respectively. The sensitivity and specificity of percentage weight loss were also higher at 89% and 93% respectively. Compared to the subjective measures, percentage weight loss was more

cost effective and less time consuming (Almeida et al., 2011). The authors concluded that percentage weight loss screening on admission should be mandatory in routine practice at the very least, in order to increase outcome driven nutrition management (Almeida et al., 2011).

Practice Implications

Early identification and treatment of malnutrition may help decrease hospital costs, inpatient LOS and readmission rates. The costs of HF alone are high. The presence of a complication such as malnutrition can increase healthcare costs and the length of hospital stays dramatically. The NRI has demonstrated evidence of reliability and validity in the hospitalized, cancer, elderly, and HF patient populations. Best results are seen when a subjective tool is used in combination with anthropometric (BMI and % weight loss) and laboratory measures (serum albumin and prealbumin) to identify those at risk for malnutrition. Implementation of subjective screening tools on admission in combination with anthropometric measures may help assist providers in identifying multiple patient populations at risk for malnutrition.

There are major gaps in the literature in regards to consistency among nutrition screening tools in multiple populations. There are conflicting data in research today as to which nutritional screening tool is the most valid and reliable across various clinical settings and in different patient populations. The elderly, cancer and hospitalized patients were the most common populations in which NRI was evaluated; however, in those studies, researchers mainly evaluated NRI and SGA.

Two of the ten studies recommended the use of NRI alone while the others which found NRI useful, also recommended other screening tools. In the two studies which

evaluated NRI and HF patients, the tool was not compared to other subjective screening tools, only objective and anthropometrics measures. It would be helpful to see NRI compared to other similar screening tools to determine the most reliable in HF patients. Overall, there needs to be more studies in which a variety of tools are used in accordance with biometric nutritional screening parameters such as laboratory data and body measurements in order to determine the most accurate and reliable screening tool.

Conclusion

This literature review revealed a lack of studies in which multiple tools evaluated the nutritional status of HF patients. Of the two studies reviewed that pertained to HF patients, one study compared NRI to traditional nutritional biomarkers, while the second used NRI to evaluate HF patient outcomes. Multiple subjective screening tools need to be studied within this population to better identify malnutrition among HF patients. No one tool has been proven as the gold standard of nutrition assessment, making it necessary to evaluate multiple tools in the HF population.

Table 1 Review of the NRI Literature

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Al-Najjar,	Retrospective	Five hundred	Nutritional	Prevalence	Increased age and	Large study
& Clark:	cohort study	thirty eight	Risk Index	according to	decreased BMI and	population but did
2012	over six years at	outpatients;	(NRI), BMI	NRI: 23%	hemoglobin were	not take into
	a community	mean age 71 \pm	and various	moderate, 2.8%	associated with	account changes in
	CHF clinic.	9.9; 76% male;	laboratory	being severe.	increased incidence	medical therapy
	Evaluate	all with left	variables	NRI correlation	of malnutrition.	for patients when
	nutrition	ventricular	(albumin,	coefficient:	NRI was a helpful	determining
	screening	systolic	hemoglobin,	BMI 0.87,	prognostic marker	malnutrition
	methods and	dysfunction	white blood	hemoglobin	in patients with HF	prevalence. The
	their application		count,	0.19, and age -	in an outpatient	patient population
	to HF patients.		platelets,	0.24 (p < 0.001)	setting. There is a	was a convenience
			creatinine,		need for a large	sample and
			potassium)		randomized	included a large
					controlled trials	number of males
					using NRI to	compared to
					evaluate	females, 76% and
					malnutrition effects	24% respectively.
					on mortality.	They also did not
						compare NRI to
						other methods of
						nutritional analysis
						in determining
						prevalence of
						malnutrition in the
						HF population.

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Almeida,	Prospective	Three hundred	BMI, recent	Compared to	NRS 2002 and	MUST and NRI
Correia,	cross-sectional	surgical	% weight	SGA the	MUST are the most	were made into
Camilo, &	study, over	hospitalized	loss,	Sensitivity,	concordant, valid	two categories for
Ravasco:	eight months	patients; ages	Nutrition	Specificity,	and reliable tools to	the purpose of the
2011	with all data	43 - 77; 44%	Risk	positive	detect nutrition risk	study, but each
	collection by a	male; 46%	Screening	predictive value	in surgical patients.	were originally
	single research	cancer patients	2002 (NRS	(PPV), negative	>5% weight loss	developed into
	dietitian to		2002),	predictive value	over six months was	three and four
	determine		Malnutrition	(NPV): NRS	reliable and valid.	categories. Made
	nutritional		Universal	2002 - 80%,	Percent weight loss	two categories in
	status		Screening	89%, 87%,	estimation should	order to determine
			Tool	100%; MUST -	be mandatory in	comparisons, but
			(MUST),	85%, 93%,	routine practice to	only two
			NRI,	89%, 99%; NRI	increase outcome	categories could
			Subjective	- 29%, 27%,	driven nutrition	affect the results.
			Global	24%, 27%;	management.	
			Assessment	BMI - 43%,		
			(SGA)	39%, 35%,		
				31%; % wt loss		
				- 89%, 93%,		
				81%, 89%		

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Aziz,	Controlled	One thousand	Serum	NRI risk: none	NRI scores	Could not
Javed,	population	one hundred	albumin and	666 (60%),	correlated with the	calculate periodic
Pratep,	study to assess	patients with	NRI	mild 63 (6%),	lower serum	NRI scores in
Musat,	the incidence of	acute		moderate 213	albumin levels.	patients after
Nader,	malnutrition	decompensated		(19%), severe	NRI is better	admission to the
Pulimi,	and outcomes	HF; No risk		168 (15%).	prognostic indicator	hospital. This
Alivar,	of adults	mean age 68 ±		Values for	of morbidity and	could have helped
Herzog &	admitted with	14yrs, 51%		mod/severe	mortality in HF	evaluate
Kukin:	acute	male; mild risk		risk:	patients than BMI	nutritional status
2011	decompensated	mean age $72 \pm$		readmission	or albumin alone.	throughout the
	HF	14yrs, 51%		rates	Recommend NRI to	hospital stay
		male; moderate		52%/68%; LOS	further stratify these	which may have
		ris k 72 \pm 14yrs,		10/10.9 days;	patients for nutrition	affected patient
		59% male;		mortality rates	depletion	outcomes.
		severe risk		15%/19% (p <	assessment. Need	
		mean age 68 ±		0.001). Average	more trials to	
		15vrs. 56%		albumin: no risk	determine if	
		male		3.9, mild risk	nutrition therapy is	
				3.4, mod risk	helpful to improve	
				3.2, severe 2.6	outcomes in HF	
					patients.	

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Cereda,	Retrospective	One hundred	Albumin,	Nutrition risk:	Concluded that a	Sample included
Limonta,	analysis to	seventy seven	prealbumin,	GNRI - mod	prospective study	patients picked for
Pusani, &	compare	elderly patients;	Geriatric	14.2%, severe	comparing the two	convenience and
Vanotti:	traditional	38% male;	Nutritional	3.5%; NRI -	tools would be	resided in a long-
2006	malnutrition	mean age $80 \pm$	Risk Index	mod 33.8%,	beneficial given	term care setting.
	markers and	8.6 yrs	(GNRI) and	severe 3.9%.	their similar	Those patients are
	screening tools		NRI	Pearson's linear	reliability and	usually less likely
	to determine			correlation	agreement to	to be at nutritional
	malnutrition			coefficient:	traditional markers	risk as opposed to
	risk of elderly			albumin -	in elderly patients	those in the
	admitted to a			GNRI 0.95;	admitted with an	hospital who are
	long-term care			NRI 0.98;	acute illness. GNRI	acutely ill. The
	unit			prealbumin -	and NRI showed	study was
				GNRI 0.52,	significant	retrospective and
				NRI 0.52	correlations with all	collected data
					other biochemical	could be incorrect.
					markers of nutrition	
					status.	

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Faramarzi,	Prospective	Fifty two	Anthropomet	Prevalence of	NRI had lower	Small sample size
Mahdavi,	study to	patients; mean	ric data,	malnutrition:	sensitivity and	and convenience
Mohamma	validate NRI	age 54 years \pm	albumin,	SGA 33%	specificity than	of inclusion. NRI
d-Zadeh,	against patient-	16.8 yrs; 77%	NRI, PG-	moderate, 19%	SGA in assessing	tool uses albumin,
&	generated	male.	SGA	severe; NRI	nutritional status of	while SGA is
Nasirimotl	subjective			35% mod, 10%	cancer patients.	based on weight
agh: 2013	global			severe. When	Each tool has its	history, dietary
	assessment			compared to the	own advantages and	intake, diagnosis
	(PG-SGA), in			SGA, NRI	disadvantages (cost	and physical
	adult colorectal			sensitivity 66%,	and ease of use).	assessment.
	cancer patients			specificity 60%,	Best nutrition	Albumin may be
	before			PPV 64%, NPV	assessment is a	affected by disease
	radiotherapy.			62%, kappa	combination of	state and
	All data			0.267	anthropometric	inflammation,
	collected by one				measures and	making NRI
	nutritionist.				subjective scoring	results less
					systems.	accurate.

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Kyle,	Population	Nine hundred	NRI, MUST,	Moderate/sever	Significant	SGA does not
Kossovsky	study to test the	ninety five adult	NRS-2002,	e nutritional	association between	allow for
,	sensitivity and	medical and	SGA	risk: SGA 39%,	LOS and moderate	categorization of
Karsegard	specificity of	surgical		NRI 25%,	to severe	mild malnutrition
& Pichard:	three screening	patients; 53%		NRS-2002	malnutritional status	and focuses on
2006	tools compared	male; mean age		28%, MUST	among all tools.	chronic not acute
	to SGA, to	50.5 ± 21.9 (<		37%.	NRS-2002 had	malnutrition.
	assess the	10d LOS), 65.4		Compared to	higher sensitivity	Screeners should
	association	± 18.7 (> 11d		SGA,	and specificity	have been better
	between	LOS)		sensitivity,	compared to SGA	trained on the
	nutritional risk			specificity,	than NRI and	screening tools
	and hospital			PPV, NPV,	MUST. The	before
	LOS over a			kappa: NRI	authors	implementing the
	three month			43.1%, 89.3%,	recommended using	study. LOS was
	period.			76.2%, 66.3%,	the NRS-2002,	studied as an
				0.24; MUST	MUST and SGA on	outcome
				61.2%, 78.6%,	admission to screen	parameter, but
				64.6%, 76.1%,	patients for	many other factors
				0.26; NRS-	malnutrition.	influence LOS, not
				2002 62%,		just malnutrition,
				93.1%, 85.1%,		which were not
				79.4%, 0.48		assessed in this
						study.

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Meireles,	Cross-sectional	One hundred	SGA, NRS	Nutritional risk:	NRS 2002 showed	Sample size could
Wazlawik,	study to assess	twenty four	2002, NRI,	NRS 2002	the best agreement	have been larger.
Bastos, &	the relationship	hospitalized	Fat-Free	19.3%; NRI	with SGA. Highest	The BMI cut off
Garcia:	between	surgical	Mass Index	69.5%; FFMI	malnutrition	was 34. Obese
2012	nutritional risk	patients; mean	(FFMI), Fat	12.9%; FMI	prevalence seen	patients can be
	tools and	age 52.26 ±	Mass Index	8.1%; %BCM	with NRI. The best	very malnourished
	parameters	14.95 yrs;	(FMI), body	46.8%; SPA	malnutrition	and should have
	derived from	56.5% female;	cell mass	4.8%.	indicator is a	been included in
	bioelectrical	33.1% > 60 yrs	(%BCM),	Agreement	combination of	the study.
	impedance		standardized	between SGA	anthropometric	
	analysis with		phase angle	and screening	measures with	
	SGA over 6		(SPA)	parameters (k	subjective screening	
	months.			coefficient):	tools.	
				NRS 0.490;		
				NRI 0.256;		
				FFMI 0.342;		
				FMI 0.190;		
				%BCM -0.085;		
				SPA 0.038		

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
	-		Methods			
Poulia,	Prospective	Two hundred	NRI, GNRI,	Compared to	The NRI was higher	Some patients had
Yannakoul	study to	forty eight	SGA,	true nutritional	in sensitivity and	to have the
ia,	evaluate the	elderly patients	MUST, mini	status	PPV than the other	questionnaires
Karageorg	efficacy of tools	> 60 years;	nutritional	(combined	tools, but scored	translated for them
ou,	to predict	mean age 75.2	assessment -	index),	lower in specificity	and results then
Gamaletso	malnutrition in	± 8.5yrs; 52%	screening	sensitivity,	and NPV. MUST	had to be
u,	elderly patients	male; admitted	form (MNA-	specificity,	and MNA-SF were	translated again,
Panagiotak	admitted to the	for neurologic	SF), and	PPV, NPV,	the most valid.	making for some
os, Sipsas,	hospital in	syndrome,	NRS-2002	kappa: NRI -	MUST and SGA	miscommunication
&	Athens, Greece	fever, blood		71.7%, 48.8%,	showed better	among patients
Zampelas:	over nine	disease,		85.4%, 29.3%,	agreement with the	and researchers.
2012	months.	rheumatologic		0.550; GNRI -	combined index.	Some patients
		disease,		66%, 92.1%,	The researchers	estimated height
		malignancy,		94.6%, 56.45%,	concluded that the	and weight instead
		hemorrhage,		0.465; SGA -	combination of	of being accurately
		diabetes, GI,		84.3%, 91.4%,	objective and	measured by
		kidney or		95.2%, 74.3%,	subjective	researchers and in
		respiratory		0.707; MUST -	diagnostic tools that	4.8% of patients,
		disease		87.3%, 76.8%,	are easy to use are	anthropometric
				88.4%, 75%,	the best for	measurements
				0.638; MNA-	nutritional	were not available.
				SF - 98.1%,	screening.	These variations in
				50%, 79.9%,		accuracy of
				93.2%, 0.545;		measurements
				NRS 2002 -		could affect
				99.4%, 6.1%,		calculations and
				68.2%, 83.3%,		results.
				0.088		

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Tu, Chien,	Prospective	Forty five	Anthropomet	Compared to	Overall the NRI had	Small sample size
& Chou:	study to assess	colorectal	ric measures,	prealbumin,	the highest	and convenience
2012	the nutritional	cancer patients;	biochemical	sensitivity,	sensitivity and	of inclusion
	status of	mean age 62.1	markers,	specificity,	second highest	
	patients with	yrs ± 11.5; 56%	MUST, NRI,	PPV, NPV,	specificity when	
	colorectal	male	& SGA	kappa: MUST -	compared to	
	cancer before			64%, 60%,	prealbumin than	
	and after			66.7%, 57.1%,	MUST and SGA.	
	surgery in			0.239; NRI -	The MUST and	
	Taiwan over			80.9%, 70.8%,	NRI were	
	two years.			70.8%, 80.9%,	comparable	
				0.51; SGA -	measures, easy to	
				72.4%, 81.2%,	administer and	
				87.5%, 69.1%,	require minimal	
				0.50	training to	
					complete, compared	
					to the SGA. MUST	
					is best to use.	

Author	Study Design	Sample and	Nutrition	Results	Conclusions	Limitations
and Year	and Purpose	Demographics	Screening			
			Methods			
Vicente,	Cross-sectional	137 colorectal	BMI,	Compared to	MUST was the	Although the
Barao,	study to	(n=116) and	albumin,	SGA; Grp 1	most sensitive tool	sample size was
Silva, &	evaluate	gastric (n=21)	SGA, NRI,	sensitivity,	for screening	large, it included a
Forones:	nutritional	cancer patients	MUST and	specificity:	nutrition, but with a	small number of
2013	screening	divided into two	the	BMI - 10%,	lower specificity.	patients with
	methods used to	groups; group	Malnutrition	100%; albumin	NRI had a lower	gastric cancer,
	screen patients	one undergoing	Screening	- 30%, 92%;	sensitivity but a	only 15% of the
	seen in an	treatment for	Tool (MST)	NRI - 68%,	higher specificity.	study population.
	oncology clinic	cancer, mean		64%; MST -	Overall the	The authors noted
	in Sao Paulo	age 60.2 ±		52%, 84%;	subjective tools	inconsistency with
	during an 18	12.2yrs, 48%		MUST - 72%,	showed a higher	other studies in the
	month period.	male; group two		49%. Grp 2	sensitivity but lower	number of
		patients post		sensitivity,	specificity then	malnutrition
		tumor removal		specificity:	objective measures.	patients compared
		undergoing		BMI - 15.3%,	MUST and SGA in	to other studies in
		follow-up		100%; albumin	combination are	similar
		treatment, mean		- 15.3%, 93.8%;	better for	populations. This
		age 61.3 ± 11.6		NRI - 55.8%,	identifying	was attributed to
		yrs, 45.2% male		83.6%; MST -	nutritional risk.	the patients not
				61.5%, 91.8%;		being hospitalized
				MUST - 84%,		and in fairly good
				73.4%.		health.

References

- Al-Najjar, Y. & Clark, A. L. (2012). Predicting outcome in patients with left ventricular systolic chronic heart failure using a *Nutritional Risk Index*. *American Journal of Cardiology*, 109, 1315-1320.
- Almeida, A. I., Correia, M., Camilo, M., & Ravasco, P. (2011). Nutritional risk screening in surgery: Valid, feasible, easy! *Clinical Nutrition*, 31, 206-211.
- Anker, S. D., Ponikowski, P., Varney, S., Chua, T. P., Clark, A. L., Webb-Peploe, K. M.,
 ...Coats, A. J. (1997). Wasting as independent risk factor for mortality in chronic heart failure. *The Lancet*, 349(9058), 1050-1053.
- Aziz, E. F., Javed, F., Pratep, B., Musat, D., Nader, A., Pulimi, S., ... Kukin, M. L.
 (2011). Malnutrition as assessed by *Nutritional Risk Index* is associated with worse outcome in patients admitted with acute decompensated heart failure: An ACAP-HF data analysis. *Heart International*, 6(2), 3-8.
- Beck, F. K., & Rosenthal, T. C. (2002). Prealbumin: A marker for nutritional evaluation. *American Family Physician*, 65(8), 1575-1578.
- Center for Disease Control and Prevention (2013). Heart failure facts. Retrieved from: http://www.cdc.gov/dhdsp/data_statistics/fact_sheets/docs/fs_heart_failure.pdf
- Cereda, E., Limonta, D., Pusani, C., & Vanotti, A. (2006). Assessing elderly at risk of malnutrition: The new *Geriatric Nutritional Risk Index* versus *Nutritional Risk Index. Nutrition*, 22, 680-682.
- Chima, C. S., Barco, K., Dewitt, M. A., Teran, J. C., & Mullen, K. D. (1997).
 Relationship of nutritional status to length of stay, hospital costs, and discharge status of patients hospitalized in the medicine service. *Journal of the American Dietetic Association*, *97*(9), 975-980.

- Corkins, M. R., Guenter, P., DiMaria-Ghalili, R. A., Jensen, G. L., Malone, A., Miller, S.,
 ... Resnick, H. E. (2014). Malnutrition diagnoses in hospitalized patients: United
 States, 2010. *Journal of Parenteral and Enteral Nutrition, 38*, 186-195.
- Elia, M. (2009). The economics of malnutrition. Nestle Nutrition, 12, 29-40.
- Faramarzi, E., Mahdavi, R., Mohammad-Zadeh, M., & Nasirimotlagh, B. (2013).
 Validation of *Nutritional Risk Index* method against *Patient-Generated Subjective Global Assessment* in screening malnutrition in colorectal cancer patients. *Chinese Journal of Cancer Research*, 25(5), 544-548.
- Kyle, U. G., Kossovsky, M. P., Karsegard, V. L. & Pichard, C. (2006). Comparison of tools for nutritional assessment and screening at hospital admission: A population study. *Clinical Nutrition*, 25, 409-417.
- Meireles, M. S., Wazlawik, E., Bastos, J. L., & Garcia, M. F. (2012). Comparison between nutrition risk tools and parameters derived from bioelectrical impedance analysis with Subjective Global Assessment. Journal of the Academy of Nutrition and Dietetics, 112, 1543-1549.
- Moughrabi, S. M. & Evangelista, L. S. Cardiac cachexia at a glance. *Progress in Cardiovascular Nursing*, 2007; Spring: 101-103.
- Nicol, S. M., Carroll, D. L., Homeyer, C. M., & Zamagni, C. M., (2002). The identification of malnutrition in heart failure patients. *European Journal of Cardiovascular Nursing*, 1, 139-147.
- Poulia, K. A., Yannakoulia, M., Karageorgou, D., Gamaletsou, M., Panagiotakos, D., B., Sipsas, N., V., & Zampelas, A. (2012). Evaluation of the efficacy of six nutritional screening tools to predict malnutrition in the elderly. *Clinical*

Nutrition, 31, 378-385.

- Stratton, R. J., King, C., & Elia, M. (2004). Simple cost-analysis of changes in hospital length of stay with oral nutritional supplements from randomized controlled trials. *Clinical Nutrition*, 23, 906-915.
- Stratton, R. J., King, C. L., Stroud, M. A., Jackson, A. A., Elia, M. (2006). 'Malnutrition Universal Screening Tool' predicts mortality and length of hospital stay in acutely ill elderly. *British Journal of Nutrition* 95(2), 325–330
- Tu, M. Y., Chien, T. W., & Chou, M. T. (2012). Using a nutritional screening tool to evaluate the nutritional status of patients with colorectal cancer. *Nutrition and Cancer*, 64(2), 323-330.
- Vicente, M. A., Barao, K., Silva, T. D., & Forones, N. M. (2013). What are the most effective methods for assessment of nutritional status in outpatients with gastric and colorectal cancer? *Nutricion Hospitalaria*, 28, 585-591.

Manuscript 3

Evaluating Nutritional Risk in Heart Failure Patients Using Four Screening Tools: A

Retrospective Chart Audit

Cassondra Degener RD, BSN, RN, CCRN, DNP Student

University of Kentucky

Abstract

The purpose of this project was to test the performance of albumin, NRI and MUST screening tools in comparison to the standardized measure of prealbumin among HF patients admitted to the University of Kentucky Chandler Medical Center. Inclusion criteria included all HF patients with the 428 diagnostic code, admitted from January 1, -December 31, 2013, ages 18 and older, with all laboratory values available specified in the data collection tool (Appendix A). A retrospective electronic medical record (EMR) review was performed for 100 patients who met the inclusion criteria. All data were collected through the University of Kentucky's secure network via the EMR program Sunrise Clinical Manager. Serum albumin, prealbumin, MUST and NRI found 79, 85, 53 and 92 patients to be at nutritional risk, respectively. The NRI tool compared better with prealbumin than albumin and MUST, when screening for malnutrition in HF patients. The sensitivity of NRI compared to prealbumin was 92.9%. The results of this study provide evidence that NRI in combination with laboratory measures may be beneficial in identifying malnutrition among HF patients. There is still a need for further research into effective screening methods among this population.

Evaluating Nutritional Risk in Heart Failure Patients Using Four Screening Tools: A

Retrospective Chart Audit

Malnutrition incidence among hospitalized inpatients is prevalent at a rate of 23% (Gout, Barker, & Crowe, 2009). According to the most current nationally-representative data describing U.S. hospital discharges, malnourished patients spent an average of 12.6 days in the hospital compared to 4.4 days for other patients (Corkins et al., 2014). With an increased hospital length of stay, the average hospital cost will triple for those patients, rising from \$9,485 to \$26,944 (Corkins et al., 2014). Visceral proteins such as albumin and prealbumin are useful markers to detect malnutrition in adults and the elderly (Sergi et al., 2006). Traditionally albumin has been the most commonly used indicator, with prealbumin increasing in popularity in the recent years (Beck & Rosenthal, 2002). Prealbumin is the most sensitive indicator for protein synthesis because it contains one of the highest ratios of essential and nonessential amino acids compared to any protein in the body (Beck & Rosenthal, 2002). Normal levels for albumin and prealbumin are 3.3-4.8g/dL and 16-35mg/dL respectively (Beck & Rosenthal, 2002). Serum albumin has a half-life of 20 days and can be affected by hydration status and renal function. The halflife of prealbumin is two days and is not typically affected by hydration status, renal or liver function. Prealbumin levels will decrease if a patient is consuming 60% or less of their required daily protein intake (Le Moullac, Gouache, & Bleiberg-Daniel, 1992). Once adequate supplementation of proteins is restored, increased prealbumin synthesis will typically occur within 2-4 days (Le Moullac et al., 1992). Low levels of albumin and prealbumin are associated with a low body mass index (BMI) and a poor nutritional status (Sergi et al., 2006). In HF patients, renal insufficiency is common and can lead to
false elevation of serum albumin and prealbumin; therefore, malnutrition cannot be ruled out if these levels are on the lower end of normal (Sergi et al., 2006).

An estimated 5.1 million Americans have HF (Centers for Disease Control, 2013). Malnutrition prevalence among HF patients is as high as 66% based on serum albumin levels and the presence of less than 90% ideal body weight (Aziz et al., 2011; Nicol et al., 2002). Malnutrition in HF patients may be caused by hepatic and gastrointestinal (GI) congestion due to elevated right sided heart pressures, resulting in anorexia, malabsorption, dyspepsia, and protein wasting enteropathy (Nicol et al., 2002). These changes may lead to the patient feeling full and satisfied due to hepatic and GI congestion rather than consuming a full meal (Nicol et al., 2002). Cardiac cachexia (CC) is the presence of severe malnutrition in HF patients which can be associated with advanced myocardial dysfunction, poor prognosis and decreased survival (Moughrabi & Evangelista, 2007). The definition of CC is "unintentional nonedematous weight loss greater than 6% of a patient's previous weight over a period of six months regardless of BMI, and in the absence of other primary cachectic states such as cancer, thyroid disease and severe liver disease" (Moughrabi & Evangelista, 2007, p. 101).

Changes in weight are not always an accurate measure of nutritional status given the fluid volume overload often present in HF (Araujo, Lourenco, Rocha-Gonocalves, Ferreira, & Bettencourt, 2011). Nutritional markers among patients with CC were assessed, and prealbumin, albumin, hemoglobin, lymphocyte count and triglycerides levels were significantly lower compared to healthy HF patients (Araujo et al., 2011). Based on multivariate logistic regression analysis, prealbumin was the only laboratory

marker independently associated with CC occurrence through an odds ratio of 1.08 and 95% confidence interval 1.01-1.17 (p<0.001; Araujo et al., 2011).

Laboratory values of albumin and prealbumin are useful in identifying malnutrition in the general and HF populations, but they have a few limitations in their accuracy. Albumin concentrations can be affected by hydration, renal function, and the presence of infection or inflammation (Beck & Rosenthal, 2002). Prealbumin can decrease in the post-surgical phase, in the presence of inflammation, and in conditions associated with protein malnutrition (e.g., malignancy, cirrhosis and zinc deficiency; Beck & Rosenthal, 2002). Overall, prealbumin is a better nutrition laboratory marker of acute changes in nutritional status, while albumin more accurately identifies chronic malnutrition. Aside from prealbumin and albumin, there is currently a lack of literature that compares other laboratory trends and trends in co-morbidities among malnourished HF patients.

Subjective nutritional screening tools can be easy, rapid and inexpensive methods of identifying malnutrition risk and prevalence among patients. There are a number of screening tools available, but there are few studies which identify the best methods to measure malnutrition and its severity in the HF population. However, two subjective screening tools have shown some promise among this population, the Malnutrition Universal Screening Tool (MUST) and the Nutritional Risk Index (NRI). In two studies, multiple screening tools were tested in cardiac surgery patients and the MUST was reported as being the most sensitive in detecting malnutrition (Lomivorotov et al, 2012; Venrooij et al., 2011). In comparison to the Subjective Global Assessment (SGA) screening tool, MUST had a sensitivity of 97.9 and specificity of 87.1 (Lomivorotov et al

al., 2012). The MUST was also the only tool to be significantly associated with postoperative complications following open heart surgery according to multivariate logistic regression analysis (odds ratio 1.5; 95% confidence interval 1.1 - 2.4; p=0.02). Researchers recommended MUST in screening cardiac surgery patients, but also indicated more research needs to be conducted among HF patients to determine the most reliable tool (Lomivorotov et al, 2012; Venrooij et al., 2011).

Two studies compared NRI to a traditional nutrition biomarker, albumin, to determine its reliability in identifying malnutrition among HF patients (Al-Najjar & Clark, 2012; Aziz et al., 2011). When evaluating NRI and other nutritional screening parameters as predictors of outcomes and mortality, NRI was a useful prognostic marker in outpatients with HF (Al-Najjar & Clark, 2012). According to statistical analysis, NRI was a univariable predictor of mortality (chi-square 25, p < 0.001), and an independent predictor of outcome in multivariable analysis (chi-square 12, p <0.001; A-Najjar & Clark, 2012). In another study, NRI was found to be the most significant predictor of allcause mortality and readmission rates associated with episodes of acute decompensated HF (Aziz et al., 2011). Using Cox's hazard regression models, NRI had a univariate odds ratio of 3.03, and a 95% confidence interval of 3.22-3.94 with p < 0.0001; a multivariate odds ratio of 3.1, and a 95% confidence interval of 2.34-4.22 with p < 0.0001 (Aziz et al., 2011). The authors suggested further research be conducted using NRI in the HF population to determine malnutrition prevalence and its effects on morbidity and mortality (Al-Najjar & Clark, 2012; Aziz et al., 2011). Implementing the use of NRI or MUST on admission for HF patients may help identify the presence of malnutrition earlier so that the malnourished may be referred to a dietitian for appropriate nutritional

intervention earlier. Noting the negative impacts of malnutrition on the patient, early recognition and management may help decrease hospital lengths of stay, readmission rates and associated healthcare costs.

Description of Practice Inquiry Project

This practice inquiry project, through a retrospective EMR review, evaluated the presence of malnutrition in 100 HF patients admitted to the University of Kentucky Chandler Medical Center between January 1, and December 31, 2013.

Goals and Objectives

The objectives of this project were to (i) evaluate HF patients for the presence of malnutrition using four screening measures (i.e., albumin, prealbumin, Nutritional Risk Index and Malnutrition Universal Screening Tool), and (ii) determine laboratory and co-morbidity trends among malnourished patients. Based on these objectives, the primary goal of this project was to test the performance of albumin, NRI and MUST in comparison to prealbumin, among HF patients admitted to the University of Kentucky Chandler Medical Center.

Methods

Human subject and research approval procedures

Once the project proposal was developed an expedited proposal was then submitted and approved by the hospital's Institutional Review Board (IRB). Noting the project was a retrospective EMR review, patient consent was waived in compliance with IRB regulations.

Study Setting

The study was conducted at the University of Kentucky Chandler Medical Center, which is an 875-bed level 1 trauma center located in central Kentucky.

Study Design and Selection of Participants

A retrospective EMR review was performed. Inclusion criteria encompassed all HF patients with the 428 diagnostic code, admitted from January 1, - December 31, 2013, ages 18 and older, with all laboratory values available specified in the data collection tool (Appendix A). The HF core measures coordinator provided a list of HF patients with medical record numbers in order to obtain 100 patients who met the inclusion criteria. A convenience sample was obtained of the first 100 patients from every HF diagnostic code (428.0, 428.2, 428.3, and 428.4) who had all laboratory values available in their EMR. The master list consisted of the medical record numbers for the 100 patients, who were randomly assigned a study number.

In order to collect specific data via the EMR, a total of 100 patient records were reviewed using the master list of medical record numbers. All data were collected through the University of Kentucky's secure network through the EMR program, Sunrise Clinical Manager, which requires an active username and password to access. The collected data included the following: demographics (gender, age, and ethnicity), admitted unit (intensive care, telemetry, or progressive), HF diagnostic code, percent ejection fraction (% EF), anthropometric measures (height, weight, BMI), presence of unexplained weight loss, presence of acute illness or no nutritional intake >5 days, dietitian consult, day of first dietitian note, intensive care unit (ICU) length of stay (LOS), hospital LOS, diet order on admission, and dietary intake. Laboratory measures, which included B-type natriuretic peptide (BNP), glomerular filtration rate (GFR), glucose, HgbA1c, creatinine, albumin, and prealbumin, were obtained from the initial set of labs acquired within the first 24 hours of admission. If the laboratory value wasn't available within the first 24 hours, the first available value was then used. Height, weight, BMI and presence of recent weight loss were obtained from the adult patient profile, which every patient must have completed within 24 hours of admission. Ejection fraction was collected from results of the first echocardiogram conducted on admission. The orders and documents sections of the patient's EMR provided admission orders which indicated to which unit the patient was admitted, transfer orders if the patient was moved throughout their hospital stay, diet order, if a dietitian was consulted and when the first nutrition note was documented.

Outcome Measure

For the purpose of this study, malnutrition or non-nutritional risk will be classified as follows for each screening tool: the non-nutritional risk group will have albumin > 3.2g/dL, prealbumin $\ge 11mg/dL$, NRI score of ≥ 82.1 , and a MUST score of 0; the nutritionally at risk group will have albumin $\le 3.2g/dL$, prealbumin $\le 10.9mg/dL$, NRI ≤ 82 , and a MUST score of ≥ 1 .

Instruments

Nutritional risk based on serum prealbumin can be classified into four categories: normal is 16.0 - 35.0mg/dL, increased risk is 11.0 - 15.9mg/dL, significant risk 5.0 - 10.9mg/dl, and poor prognosis with < 5.0mg/dL (Prealbumin in Nutritional Care Consensus Group, 1995). When the serum albumin level is ≤ 3.2 g/dL a patient is at an increased risk of being malnourished (Beck & Rosenthal, 2002). The NRI was developed by the Veterans' Affairs Total Parenteral Nutrition Cooperative Study Group to determine nutritional risk in the postsurgical patient population (Al-Najjar & Clark, 2012). The NRI uses the patient's serum albumin, and the ratio of current body weight to ideal body weight to predict a patient's malnutrition status. The score is calculated as follows: 1.5 x serum albumin + 41.7 x current weight/ideal body weight. A score of > 100 means there is no evidence of malnutrition, 97.5 - 100 indicates mild malnutrition, 83.5 - 97.5 means moderate malnutrition, and < 83.5 signifies severe malnutrition (Al-Najjar & Clark, 2012).

The MUST was originally developed by the Malnutrition Advisory Group for the British Association of Parenteral and Enteral Nutrition (Elia, 2010). MUST is a five-step tool that is easy to use and usually takes 3-5 minutes to complete. It evaluates BMI score, recent weight loss, and acute disease, then assigns an overall numerical risk (Elia, 2010). A score of 0 = 1 ow risk, 1 = medium risk, and $\ge 2 = high$ risk. Based on the MUST score appropriate management guidelines are provided. A score of 0 requires no intervention. Patients with a score of 1 require close dietary intake monitoring to evaluate for necessary supplements. A score of 2 or more requires immediate nutritional evaluation by a dietitian.

Data Analysis

Data analysis was performed using SPSS ® v. 21.0 (SPSS Inc., Chicago, IL).

Descriptive statistics. Data on patient age, gender, ethnicity, anthropometric measurements, blood biochemical parameters, ICU and hospital LOS were analyzed using descriptive statistics. In order to determine trends among patient demographics and

blood biochemical measures among the malnourished groups, descriptive statistics were also computed using SPSS.

Consistency analysis. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and confidence intervals (95%) were conducted to compare the performance of serum albumin, MUST and NRI in comparison to serum prealbumin levels. In the following equations, *a* represents test positive true cases; *b* represents test positive not cases; *c* represents test negative true cases; and *d* represents test negative not cases:

Sensitivity (Sn) = a / (a+c)PPV = a / (a+b)95% $CI (Sn) = Sn \pm 1.96 \sqrt{[Sn(1-Sn)] / a + c}$ 95% $CI (Sp) = Sp \pm 1.96 \sqrt{[Sp(1-Sp)] / b + d}$

Results

Characteristics of the Study Population

The demographics of the participants are presented in Table 1. The mean age was 62.8 ± 11.5 years, with 53% males involved in the study. The majority of patients were diagnosed with systolic HF (49%), followed by diastolic HF (26%), then unspecified congestive HF (23%), and finally combined diastolic and systolic HF (2%). A normal EF% of > 55 was seen in 32% of patients, while 68% had a decreased EF% (< 55). Seventy one patients were admitted to a telemetry unit, while eight went to a progressive floor, and 21 were admitted to the ICU. Nineteen patients admitted to telemetry or progressive floors were transferred into the ICU at some point during their hospital admission. For all patients, the mean hospital LOS was 16 days (± 31). For those who

were in the ICU, fifteen patients stayed for 1 - 5 days, twelve remained for 6 - 10 days, and thirteen stayed for > 10 days.

Aspects of Blood and Biochemical Parameters

Table 2 outlines the range of blood biochemical measures for all patients in the study. The mean glucose level was 147mg/dL, while the mean albumin and prealbumin levels were 2.8g/dL and 11.1mg/dL respectively. One patient had a normal BNP level, indicating no signs of fluid volume overload upon admission, and eight patients showed very little signs. The rest of the study population all showed some signs of fluid volume overload associated with decompensated HF upon admission; seven patients indicated mild decompensated HF, seven moderate, with 77 showing severe signs of unstable HF upon admission. Thirty five patients had normal kidney function on admission with creatinine levels less than 1.2mg/dL, while 65 showed signs of renal insufficiency with levels > 1.2mg/dL. The GFR, another marker for renal function, was normal for 32 patients (> 60%), and abnormal for 68 patients (< 60%). A three month average of blood glucose levels, HgA1c, was reported for all patients and indicates a patient's risk for developing diabetes mellitus. Based on those HgbA1c levels, 42 patients had normal glucose levels over the last three months, with 26 indicating they were at risk for diabetes and 32 were diabetic.

Malnutrition Prevalence

Analysis showed a range of malnutrition prevalence based on each screening measure. Table 3 shows the prevalence of malnutrition among HF patients, based on each tool's malnutrition classifications and the limits set by this study. Analysis of serum albumin levels revealed 21 patients were not at nutritional risk and 79 were at risk.

Serum prealbumin levels suggested 15 patients had no nutritional risk, 34 had a low nutritional risk, 46 were at moderate risk, and five at high risk. Analysis using MUST indicated 47 patients were not at nutritional risk, while 15 were at a low risk and 38 at a high risk. Results of the NRI analysis indicated six patients had no nutritional risk, two had a low risk, three had a moderate nutritional risk, and 89 were at a high risk. Based on the study cut off limits for nutritional risk albumin, prealbumin, MUST and NRI found 79, 85, 53 and 92 patients to be at risk, respectively.

Characteristics of Malnourished Patients

Tables 4 and 5 provide the trends for malnourished patients with respect to patient characteristics, and laboratory and biochemical measures. The mean ages for malnourished patients according to each method were MUST 64.5 years, NRI 63.3 years, prealbumin 63.2 years, and albumin 63.5 years (Table 4). Of the malnourished patients identified by MUST, 27 (50.9%) were female and 26 male. For NRI 40 (43.5%) malnourished patients were female and 52 male. Prealbumin identified 39 (45.9%) female and 46 male patients, while albumin found 35 (44.3%) female and 44 male patients. Dietitian consults on admission for those identified as malnourished were ordered for 32 patients recognized by MUST, 39 patients per NRI, 41 based on prealbumin, and 36 identified by albumin. Some patients were seen by a dietitian, regardless if a consult was placed for routine screening, hospital length of stay or ICU admission. Based on each tool, the number of identified malnourished patients seen by a dietitian were as follows: MUST 48 (90.6%), NRI 67 (72.8%), prealbumin 47 (81%), and albumin 59 (74.7%).

When analyzing hospital LOS for each screening method, MUST showed that malnourished patients remained in the hospital for a mean of 21.1 days, while NRI suggested they stayed 16.4 days, prealbumin indicated a mean of 16.9 days, and albumin indicated malnourished patients stayed for 16.3 days. The mean EF for those malnourished based on MUST, NRI, prealbumin, and albumin were 35.1%, 36.6%, 38.2%, and 39.7% respectively. The mean creatinine values for malnourished patients were 1.5mg/dL according to MUST and NRI, while prealbumin and albumin observed a mean of 1.6mg/dL. Renal function based on GFR was reduced for 33 (62.3%) patients according to MUST, 63 (68.5%) per NRI, 58 (68.2%) according to prealbumin, and 54(68.4%) patients with albumin.

Comparison of Nutrition Screening Methods

Tables 6 shows the sensitivity, specificity, PPV and NPV values for each tool compared to prealbumin, and Table 7 compares MUST to NRI. Sensitivity of a screening tool suggests sensitiveness to a certain factor (Lalkhen & McCluskey, 2008). In this study, test sensitivity was the proportion of at nutritional risk cases as diagnosed by albumin, prealbumin, MUST and NRI. Specificity identifies the patients who are not at nutritional risk and are classified appropriately (Lalkhen & McCluskey, 2008). A high sensitivity may provide more false positives, or patients falsely identified as malnourished, while a high specificity may give many false negatives. This means more patients who are not malnourished may be classified as malnourished and may be subject to extra treatment or testing. Conversely with a lower sensitivity and higher specificity, malnourished patients may be misclassified as not malnourished and thus will not receive

appropriate treatment. For the purpose of this study, a higher sensitivity and a lower specificity was desired.

MUST, NRI and albumin compared to prealbumin. In comparison to prealbumin as a screening parameter, MUST revealed 49 true positive cases, four false positives, 11 true negatives and 36 false negatives. There were 79 true positives, 13 false positives, two true negatives and six false negatives with NRI. Serum albumin levels showed 72 true positives, seven false positives, eight true negatives, and 13 false negatives when compared to prealbumin as a screening parameter. The sensitivity of MUST was 57.6% with a specificity of 73.3%, PPV 92.5%, and NPV of 23.4%. For NRI, the sensitivity, specificity, PPV and NPV were 92.9%, 13.3%, 85.7%, and 25.0% respectively. The sensitivity of albumin was 85.0%, with a specificity of 53.3%, PPV of 91.1% and NPV of 38.1%.

MUST compared to NRI. When comparing the two subjective screening tools with NRI as the reference method, MUST had 50 true positives, three false positives, five true negatives, and 42 false negatives. The sensitivity, specificity, PPV and NPV of MUST were 54.3%, 62.5%, 94.3%, and 10.6% respectively.

Discussion

This project was designed to compare nutritional screening measures and evaluate trends among malnourished HF patients. The results showed malnutrition prevalence to be 53 - 92% based on the four screening tools. The prevalence among albumin, prealbumin and NRI were similar, but MUST identified the fewest patients as malnourished at 53%. The high incidence of malnutrition is not consistent with the prevalence of 66% seen in the study conducted by Aziz et al. (2011). This may be

attributed to an increased prevalence of inflammation and infection seen in this population, which was not evaluated in this study.

Malnutrition prevalence in male HF patients ranged from 49 - 57%, which is pretty similar to the prevalence of 66% seen in other studies (Aziz et al., 2011). The average LOS for malnourished patients in this study ranged from 16 – 22 days, which appears to be much higher than those seen in other studies. For example, Aziz et al. (2011) found the average hospital LOS to be 7 – 11 days for malnourished. The larger range seen in this study may be attributed to a few outlying patients who had extremely long lengths of stay ranging from 70 – 278 days. For patients who were in the ICU, 25 – 39% remained for \leq 10 days, while 11 – 23% stayed for > 10 days. There were no studies which measured ICU LOS, but rather focused solely on hospital LOS.

In terms of renal function, in this study 62 - 68% had a decreased GFR rate, and elevated creatinine values averaging 1.5 - 1.6mg/dL. These measures of renal function indicate that most of the malnourished patients experienced some sort of renal dysfunction in addition to their HF. The average glucose values ranged from 134 - 156mg/dL, while the mean HgbA1c levels were 6.0 - 6.5%. These elevated glucose and HgbA1c levels indicated most of the population was diabetic or at risk for becoming diabetic. Upon admission BNP levels were collected for patients included in this study. Based on those values 91% of the entire study population showed mild to severe decompensated HF associated with fluid volume overload on admission to the hospital (Table 2). Decompensated HF can worsen a patient's prognosis and outcomes, and lead to more hospital readmissions and cardiac cachexia (Araujo et al., 2011). The presence of other comorbidities in addition to malnutrition and HF may also lead to worse

outcomes and a poor prognosis for these HF patients. Other studies that measured specific laboratory values did not mention trends among the malnourished, so there is little data available to determine patterns among the malnourished HF patient population.

Once patients are identified as malnourished or at risk for malnutrition, the next step is providing appropriate treatment in order to correct the condition. Part of that step is taking a multidisciplinary approach and involving a dietitian in the patient care plan. Based on the results of this study, only 45 dietitian consults were placed at admission for all the patients, but 74 patients were seen at some point during their admission by a dietitian. When looking at patients identified as malnourished by the screening tools, 42 – 60% received a consult on admission and 73 - 91% were actually evaluated by a dietitian. The low number of consults on admission for the malnourished patients is concerning because even though a majority of those patients were eventually seen by an RD, that first nutritional evaluation may have been delayed by a few days or even a week. This delay in evaluation may lead to worsening malnutrition, a poor prognosis, and increased morbidity and mortality.

In comparison to prealbumin, MUST found 36 false negatives, while NRI and albumin only found six and thirteen respectively. When compared to NRI, MUST found 42 false negatives. This is concerning because 36 – 42 patients were not accurately identified by MUST when they truly were malnourished.

Ideally a perfect screening tool would have a sensitivity of 100%, but this is unrealistic. There is not a specific cut off for an adequate sensitivity range, but in general \geq 85% sensitivity is acceptable in most of the literature (Aziz et al., 2011; Lomivorotov et al., 2012; Van Venrooij et al., 2011). For this study, in striving for a higher sensitivity, a

lower specificity was acceptable in order to correctly identify the population as malnourished. When compared to prealbumin the sensitivity of MUST was 57.6%, while NRI and albumin were 92.9% and 84.7% respectively. NRI and albumin showed optimal sensitivities compared to prealbumin in identifying patients as malnourished, while MUST did not have the most favorable sensitivity. The specificities for MUST, NRI and albumin were lower at 73.3%, 13.3%, and 53.3% respectively, but given the higher sensitivities of NRI and albumin, these levels are more acceptable. These sensitivity and specificity values can be attributed to the high incidence of true positives and low false positives seen with NRI and albumin, and the moderate amount of true positives and false negatives observed with MUST. Between the two subjective screening tools, NRI performed best when compared to prealbumin given the high sensitivity level, even though the specificity of MUST was higher than NRI. When comparing MUST to NRI, the sensitivity and specificity remained less than optimal at 54.3% and 62.5% respectively. This too can be attributed to the higher number of false negatives.

Overall the higher sensitivities of NRI (92.9% and 94.9%) mean it is the better screening tool because there is a possibility that only 5-7% of patients who may be malnourished were not correctly identified. The lower sensitivities of MUST at 57.6% and 54.3% indicate that there is a possibility that it misidentified 42-46% of patients as not being malnourished. Currently no other research is available that compares these tools to the laboratory markers of prealbumin and albumin in the HF patient population, making it difficult to identify trends among the tools.

Limitations

As is the case with all studies, this study had a few limitations. First off, the chart review was completed retrospectively, meaning all data collected are second hand information. Height, weight and BMI may be inaccurate in that some measurements may have been self-reported instead of accurately measured by the health provider. Presence of recent weight loss, which is required for the MUST calculation, relied on the admission patient profile being accurately completed by the patient's nurse. The profile information may have come from a family member of the patient who did not accurately track the patient's weight, or the patient may not recall recent weight loss over the past six months. Both the BMI and recent weight loss inconsistencies could have affected the overall MUST scores and their comparison to the other screening tools.

Another limitation is that albumin and prealbumin levels may not have been collected immediately upon admission. Prealbumin has a half-life of two days, and without adequate protein intake the value can decrease. These laboratory values may be lower than normal in the presence of infection and inflammation. Markers for inflammation and infection such as C-reactive protein and lymphocyte count were not collected in this study, which may have been the reason for the increased prevalence of malnutrition among HF patients.

Implications for Practice

Accurately identifying malnutrition in HF patients is difficult without a standardized tool with which to evaluate patients. Some subjective tools and objective measures work well in one population and not in others, such as HF patients. This study has shown that NRI compares fairly well to prealbumin as a malnutrition screening tool

and that MUST was less optimal in terms of sensitivity and specificity. Implementing NRI in combination with traditional laboratory screening measures could be beneficial in identifying malnutrition in the HF population. Earlier identification of malnourished HF patients on admission could lead to quicker nutrition evaluations by dietitians and appropriate intervention. More rapid treatment of malnutrition could help improve nutritional status among HF patients and may in turn help decrease hospital costs, LOS and readmission rates.

Implications for Future Research

This project further identifies the need for a prospective study which evaluates a large cohort of HF patients with a variety of subjective and objective screening measures. Other studies may be helpful in narrowing down specific screening parameters which work well in the HF patient population. If HF patients are accurately identified as being malnourished, then other measures associated with malnutrition may be examined. Such measures include outcomes, treatment options, laboratory and comorbidity trends among the malnourished, and morbidity and mortality.

Conclusion

Heart failure is prevalent and associated with increased healthcare costs and frequent hospital readmissions. Malnutrition is associated with a significant health risk and financial burden. The development of malnutrition in the presence of HF will worsen a patient's myocardial dysfunction, decrease survival rates and lead to a poor prognosis (Moughrabi & Evangelista, 2007). Early identification and treatment of malnutrition in HF patients may help decrease associated healthcare costs and improve outcomes. Quick, easy, inexpensive and reliable malnutrition screening methods may

help identify patients more quickly and accurately in order to reverse early malnutrition. The results of this study provide evidence that NRI in combination with laboratory measures may be helpful in identifying malnutrition among HF patients. There are a number of nutritional screening tools available which are easy to use and inexpensive to implement. Further research into NRI and other screening tools among the HF population may be beneficial.

Tables

Parameter	Mean (SD)
Age (years)	62.8 (11.5)
Hospital LOS (days)	16 (31)
	Ν
Gender	
Male	53
Female	47
Ethnicity	
Caucasian	77
African American	18
Other	5
BMI	
≤ 18	3
19-24	30
25 - 29	20
≥ 30	47
HF Diagnostic Code	
428.0 (unspecified CHF)	23
428.2 (systolic HF)	49
428.3 (diastolic HF)	26
428.4 (sys & dias HF)	2
Ejection Fraction (%)	
< 55%	68
> 55%	32
Admit to:	
Telemetry Bed	71
Progressive Bed	8
ICU	21
Hospital LOS	
2 – 5 days	38
6 – 10 days	22
11 – 15 days	10
> 15 days	30
ICU LOS	
0 days	60
1-5 days	15
6 – 10 days	12
> 10 days	13
Dietitian Consult	
No	55
Yes	45

Table 1:	Patient Demos	raphics
1 4010 1.	i unom Domog	Jupines

Table 1 (continued)

Parameter	Ν
Dietitian Note	
No	26
Yes	74

Parameter	Mean (SD)
Glucose (normal < 140mg/dL)	147 (83)
Albumin (normal 3.3-4.8g/dL)	2.8 (0.6)
Prealbumin (normal 16-35mg/dL)	11.1 (4.5)
	Ν
BNP (pg/mL)	
< 100 (no HF s/s)	1
100 – 300 (few HF s/s)	8
301 – 600 (mild HF)	7
601 – 900 (moderate HF s/s)	7
>901 (severe HF s/s)	77
Creatinine (normal < 1.2mg/dL)	
≤ 1.2	35
> 1.2	65
GFR (normal > 60%)	
< 60	68
> 60	32
HgbA1c (%)	
Normal (< 5.6)	42
At Risk (5.7 – 6.5)	26
Diabetic (> 6.5)	32

Table 2: Blood Biochemical Measures

BNP – B-type Natriuretic Peptide; GFR – Glomerular Filtration Rate; s/s – signs and symptoms

Parameter	Ν	No Risk	At Risk
		Total (%)	Total (%)
MUST Score		47	53
Low risk: 0	47		
Mod risk: 1	15		
High risk: ≥ 2	38		
NRI score		8	92
No risk: > 98	6		
Low risk: 92 – 98	2		
Mod. risk: 82 – 91	3		
High risk: < 82	89		
Albumin		21	79
No risk: $> 3.2g/dL$	21		
At risk: ≤ 3.2 g/dL	79		
Prealbumin		15	85
No risk: $\geq 16 \text{mg/dL}$	15		
Low risk: 11 – 15.9mg/dL	34		
Mod risk: 5 – 10.9mg/dL	46		
High risk: < 5mg/dL	5		

Table 3: Malnutrition Prevalence

Study Characteristics	% at risk: Number (%)			
	MUST	NRI	Prealbumin	Albumin
	(<i>n</i> = 53)	(<i>n</i> = 92)	(<i>n</i> = 85)	(<i>n</i> = 79)
Gender				
Female	27 (50.9)	40 (43.5)	39 (45.9)	35 (44.3)
Male	26 (49.1)	52 (56.5)	46 (54.1)	44 (55.7)
Race				
Caucasian	44 (83.0)	71 (77.2)	66 (77.6)	63 (79.7)
African American	6 (11.3)	16 (17.4)	15 (17.6)	12 (15.2)
Other	3 (5.7)	5 (5.4)	4 (4.7)	4 (5.1)
Admit to:				
Telemetry	31 (58.5)	65 (70.7)	58 (68.2)	55 (69.6)
Progressive	2 (3.8)	8 (8.7)	8 (9.4)	8 (10.1)
ICU	20 (37.7)	19 (20.7)	19 (22.4)	16 (20.3)
HF Diagnostic Code				
428.0 (unspecified HF)	10 (18.9)	19 (20.7)	23 (27.1)	22 (27.8)
428.2 (systolic HF)	27 (50.9)	48 (52.2)	40 (47.1)	34 (43.0)
428.3 (diastolic HF)	14 (26.4)	23 (25.0)	20 (23.5)	21 (26.6)
428.4 (sys. & dia. HF)	2 (3.8)	2 (2.2)	2 (2.4)	2 (2.5)
ICULOS				
0 days	20 (37.7)	55 (59.8)	50 (58.8)	50 (63.3)
1-5 days	12 (22.7)	14 (15.2)	13 (15.3)	12 (15.2)
6-10 days	9 (17.0)	11 (12.1)	9 (10.7)	8 (10.1)
> 10 days	12 (22.7)	12 (13.2)	13 (15.3)	9 (11.4)
RD Consult	21 (20 C)	52 (57 C)	44 (51.0)	AO(EAA)
NO Vac	21(39.6)	53(57.6)	44 (51.8)	43 (54.4)
res	32 (00.4)	39 (42.4)	41 (48.2)	30 (43.0)
RD Note				
No	5 (9.4)	25 (27.2)	11 (19.0)	20 (25.3)
Yes	48 (90.6)	67 (72.8)	47 (81.0)	59 (74.7)
~~~		<i>cr (12.0)</i>	., (01.0)	

Table 4: Malnourished Patient Demographics

Parameter	% at risk: Mean (SD)			
	MUST	NRI	Prealbumin	Albumin
	( <i>n</i> = 53)	( <i>n</i> = 92)	( <i>n</i> = 85)	( <i>n</i> = 79)
Age (years)	64.5 (12.2)	63.3 (11.6)	63.2 (11.6)	63.5 (11.5)
BMI	28.5 (10.9)	28.2 (6.8)	29.6 (8.9)	29.2 (8.9)
Hospital LOS (days)	22.1 (41.0)	16.4 (32.1)	16.9 (33.3)	16.3 (33.7)
<b>EF</b> %	35.1 (18.2)	36.6 (18.0)	38.2 (18.4)	39.7 (18.3)

Table 4 (	(continued)
-----------	-------------

<b>Study Characteristics</b>	% at risk: Number (%)			
	MUST	NRI	Prealbumin	Albumin
	( <i>n</i> = 53)	( <i>n</i> = 92)	( <i>n</i> = 85)	( <i>n</i> = 79)
<b>GFR</b> (%)				
< 60	33 (62.3)	63 (68.5)	58 (68.2)	54 (68.4)
> 60	20 (37.7)	29 (31.5)	27 (31.8)	25 (31.6)
		% at risk:	Mean (SD)	
	MUST	NRI	Prealbumin	Albumin
	( <i>n</i> = 53)	( <i>n</i> = 92)	( <i>n</i> = 85)	( <i>n</i> = 79)
Glucose (mg/dL)	133.9 (65.4)	144.9 (80.5)	149.1 (87.1)	152.9 (90.3)
BNP (ng/mL)	7665 0	7921-1	8557 9	7872 /
	(13003.7)	(11576.9)	(11892.2)	(11652.6)
	(1000017)	(110/00)	(110)=(-)	(1100210)
Creatinine (mg/dL)	1.5 (0.8)	1.5 (0.7)	1.6 (0.7)	1.6 (0.7)
HgbA1c (%)	6.0 (1.2)	6.3 (1.4)	6.4 (1.5)	6.5 (1.6)
Albumin (g/dL)	2.8 (0.5)	2.8 (0.6)	2.8 (0.6)	2.6 (0.5)
Prealbumin (mg/dL)	9.6 (3.9)	11.0 (4.4)	9.6 (3.0)	10.3 (4.0)

Table 5: Malnourished Patient Lab and Biochemical Measures

Parameter	Sensitivity (CI) ^a	Specificity (CI) ^a	PPV ^a	NPV ^a
Albumin ( <i>n</i> = 100)	84.7 (77.1, 92.3)	53.3 (28.0, 78.6)	91.1	38.1
MUST ( <i>n</i> = 100)	57.6 (46.5, 68.1)	73.3 (44.8, 91.1)	92.5	23.4
NRI ( <i>n</i> = 100)	92.9 (84.7, 97.1)	13.3 (2.3, 41.6)	85.7	25.0

Table 6: Prediction Accuracy: Albumin, MUST and NRI compared to Prealbumin

CI, Confidence Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value

^a values are n (%)

Parameter	Sensitivity (CI) ^a	Specificity (CI) ^a	PPV ^a	NPV ^a
MUST ( <i>n</i> = 100)	54.3 (43.7, 64.7)	62.5 (25.9, 89.9)	94.3	10.6

CI, Confidence Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value ^a values are *n* (%)

## References

- Al-Najjar, Y. & Clark, A. L. (2012). Predicting outcome in patients with left ventricular systolic chronic heart failure using a *Nutritional Risk Index*. *American Journal of Cardiology*, 109, 1315-1320.
- Araujo, J. P., Lourenco, P., Rocha-Gonocalves, F., Ferreira, A., & Bettencourt (2011). Nutritional markers and prognosis in cardiac cachexia. *International Journal of Cardiology*, 146, 359-363.
- Aziz, E. F., Javed, F., Pratep, B., Musat, D., Nader, A., Pulimi, S., ... Kukin, M. L.
  (2011). Malnutrition as assessed by *Nutritional Risk Index* is associated with worse outcome in patients admitted with acute decompensated heart failure: An ACAP-HF data analysis. *Heart International*, 6(2), 3-8.
- Beck, F. K., & Rosenthal, T. C. (2002). Prealbumin: A marker for nutritional evaluation. *American Family Physician*, 65(8), 1575-1578.
- Corkins, M. R., Guenter, P., DiMaria-Ghalili, R. A., Jensen, G. L., Malone, A., Miller, S.,
  ... Resnick, H. E. (2014). Malnutrition diagnoses in hospitalized patients: United
  States, 2010. *Journal of Parenteral and Enteral Nutrition*, 38, 186-195.
- Elia, M. & Malnutrition Advisory Group (2010). The '*MUST*' Report: Nutritional screening of adults, a multidisciplinary responsibility. *British Association of Parenteral and Enteral Nutrition*, 1-11.
- Gout, B. S., Barker, L. A., & Crowe, T. C. (2009). Malnutrition identification, diagnosis and dietetic referrals: Are we doing a good enough job? *Nutrition and Dietetics*, 66, 206-211.
- Lalkhen, A. G., & McCluskey, A. (2008). Clinical tests: sensitivity and specificity. *Continuing Education in Anesthesia, Critical Care and Pain,* 8(6), 221-223.

- Le Moullac, B., Gouache, P., & Bleiberg-Daniel, F. (1992). Regulation of hepatic transthyretin messenger RNA levels during moderate protein and food restriction in rats. *Journal of Nutrition, 122*, 864-870.
- Lomivorotov, V. V., Efremov, S. M., Boboshko, V. A., Nikolaev, D. A., Vedernikov, P.
  E., Lomivorotov, V. N., & Karaskov, A. M. (2012). Evaluation of nutritional screening tools for patients scheduled for cardiac surgery. *Nutrition, 29*, 436-442.
- Moughrabi, S. M. & Evangelista, L. S. (2007). Cardiac cachexia at a glance. *Progress in Cardiovascular Nursing*, *Spring*, 101-103.
- Nicol, S. M., Carroll, D. L., Homeyer, C. M., & Zamagni, C. M. (2002). The identification of malnutrition in heart failure patients. *European Journal of Cardiovascular Nursing*, 1, 139-147.
- Prealbumin in Nutritional Care Consensus Group (1995). Measurement of visceral protein status in assessing protein and energy malnutrition: Standard of care. *Nutrition*, *11*, 169-171.
- Sergi, G., Coin, A., Enzi, G., Volpato, S., Inelmen, E. M., Buttarello, M., ... Bonometto,
  P. (2006). Role of visceral proteins in detecting malnutrition in the elderly. *European Journal of Clinical Nutrition*, 60, 203-209.
- Van Venrooij, L. M., Van Leeuwen, P. A., Hopmans, W., Borgmeijer-Hoelen, M. M., De Vos, R., & De Mol, B. A. (2011). Accuracy of quick and easy undernutrition screening tools *Short Nutritional Assessment Questionnaire, Malnutrition Universal Screening Tool*, and *Modified Malnutrition Universal Screening Tool* in patients undergoing cardiac surgery. *Journal of the American Dietetics Association, 111*, 1924-1930.

Conclusion to Final DNP Capstone Report

Cassondra Degener

University of Kentucky

#### Conclusion

This capstone evaluates HF patients admitted to the University of Kentucky Chandler Medical Center for the presence of malnutrition. Four nutritional screening measures were used to determine the best methods that can be used by health professionals in order to accurately identify malnutrition in the HF population. This study found malnutrition prevalence among HF patients to be fairly high at a rate of 53-92%. The average hospital length of stay for malnourished patients was found to be 16-22 days. Serum albumin, prealbumin and NRI demonstrated the best ability to screen HF patients for malnutrition. Given these high rates of malnutrition, more needs to be done in order to more accurately screen patients upon hospital admission and treat them immediately. Early identification and treatment may help improve outcomes, decrease hospital lengths of stay and overall healthcare costs.

Manuscript one concluded that based on the available literature, no one tool demonstrated consistent reliability and validity in screening for malnutrition among multiple patient populations in various healthcare settings. Malnutrition can occur in many patient populations including chronic diseases such as cancer, liver failure and HF (Jensen et al., 2010). The MUST demonstrated evidence of reliability and validity in multiple patient populations such as cancer, chronic disease, the elderly, hospitalized patients and outpatients. The use of MUST in the HF patient population is not well described in the literature; however it has been used with success in other adult and elderly populations. More research needs to be conducted within the HF population to better identify a reliable and valid tool for this population.

Manuscript two revealed through a review of the literature that there is a lack of studies in which multiple tools evaluated the nutritional status of HF patients. Of the two studies reviewed that pertained to HF patients, one study compared NRI to traditional nutritional biomarkers, while the second used NRI to evaluate HF patient outcomes. Multiple subjective screening tools need to be studied within this population to better identify malnutrition among HF patients. No one tool has been proven as the gold standard of nutrition assessment, making it necessary to evaluate multiple tools in the HF population.

Manuscript three showed that NRI compared well to prealbumin, while MUST was less optimal in terms of sensitivity and specificity. Implementing NRI in combination with traditional laboratory screening measures could be beneficial in identifying malnutrition in the HF population. There are a number of nutritional screening tools available which are easy to use and inexpensive to implement. Further research into NRI and other screening tools among the HF population may be beneficial.

Overall this practice inquiry project has shown a high prevalence of malnutrition in HF patients based on four nutritional screening methods. The need of future research into effective screening tools in this population is necessary in order to accurately identify malnutrition and take action to treat it as quickly as possible. Early intervention may help increase quality of life and outcomes for HF patients.

# Appendix

Appendix	A:	Data	Collection	Tool
----------	----	------	------------	------

Subject ID #	Sex (1=F 2=M)	Age (yr)	Race (1 = Caucasian, 2 = African American, 3 = other)	Admit to: (1 = ICU, 2 = tele, 3 = prog)	HF diagnostic code	% EF	Height (in)

Wt (kg)	BMI	Unexplained wt loss	Pt acutely ill or no nutritional intake >5 days	GFR	Glu cose	Hgb A1c	Creatinine	Albu min	BNP

Prealb umin	RD consult (y/n)	RD note (day #)	ICU LOS	Hosp LOS	Diet Order	Diet intake	Calculated MUST score	Calculated NRI score

#### References

- Araujo, J. P., Lourenco, P., Rocha-Gonocalves, F., Ferreira, A., & Bettencourt (2011). Nutritional markers and prognosis in cardiac cachexia. *International Journal of Cardiology*, 146, 359-363.
- Arcand, J., Floras, V., Ahmed, M., Al-Hesayen, A., Ivanov, J., Allard, J. P., & Newton,G. E. (2009). Nutritional inadequacies in patients with stable heart failure.*Journal of the American Dietetic Association, 109*, 1909-1913.
- Chaudhry, S. I., McAvay, G., Chen, S., Whitson, H., Newman, A. B., Krumholz, H. M.,
  & Gill, T. M. (2012). Risk factors for hospitalization among older persons newly diagnosed with heart failure: The cardiovascular health study. *Journal of the American College of Cardiology*, *61*(6), 635-642.
- Corkins, M. R., Guenter, P., DiMaria-Ghalili, R. A., Jensen, G. L., Malone, A., Miller, S.,
  ... Resnick, H. E. (2014). Malnutrition diagnoses in hospitalized patients: United
  States, 2010. *Journal of Parenteral and Enteral Nutrition*, 38, 186-195.
- Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J. ...
  Turner, M. B. (2013). Heart disease and stroke statistics 2014 update. A report from the American Heart Association. *Circulation*, 129, e28-e292.
- Jensen, G. L., Mirtallo, J., Compher, C., Dhaliwal, R., Forbese, A., Grijalba, R. F., ... Waitzberg, D. (2010). Adult starvation and disease-related malnutrition: A proposal for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. *Journal of Parenteral and Enteral Nutrition*, 34(2), 156-159.

Kalantar-Zadeh, K., Anker, S. D., Horwich, T., B., & Fonarow, G. C. (2008). Nutritional

and anti-inflammatory in chronic heart failure. *American Journal of Cardiology*, *101*, 89-103.

- Lemon, S. C., Olendzki, B., Magner, R., Li, W., Culver, A. L., Ockene, I., & Goldberg,
  R. J. (2009). The dietary quality of persons with heart failure in NHANES 1999-2006. *Journal of General Internal Medicine*, 25(2), 135-140
- Lennie, T. A., Moser, D. K., Heo, S., Chung, M. L., & Zambroski, C. H. (2006). Factors influencing food intake in patients with heart failure. *Journal of Cardiovascular Nursing*, 21(2), 123-129.
- Machado d'Almeida, K. S., Perry, I. D., Clausell, N., & Souza, G. C. (2015). Adequacy of energy and nutrient intake in patients with heart failure. *Nutricion Hospitalaria*, *31*, 500-507.
- Nicol, S. M., Carroll, D. L., Homeyer, C. M., & Zamagni, C. M. (2002). The identification of malnutrition in heart failure patients. *European Journal of Cardiovascular Nursing*, 1, 139-147.