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ABSTRACT OF THESIS

Development of an Unmanned Aerial Vehicle
for Atmospheric Turbulence Measurement

An unmanned aerial vehicle was developed to study turbulence in the atmospheric
boundary layer. The development of the aircraft, BLUECAT5, and instrumentation
package culminated in a series of flight experiments conducted in two different loca-
tions near Stillwater, Oklahoma, USA. The flight experiments employed the use of
two of the unmanned aerial vehicles flying simultaneously, each containing a five-hole
pressure probe as part of a turbulence-measuring instrumentation package. A total
of 18 flights were completed with the objective to measure atmospheric properties at
five altitudes between 20 and 120 meters. Multiple flights were flown over two days in
which the effects of the diurnal cycle on the boundary layer were investigated. Pro-
files for mean wind velocity, temperature, and humidity all follow expected boundary
layer behavior throughout the day. Evolution of the boundary layer can be seen with
the early morning, stable boundary layer identified and its transition to the early
mid-day convective mixed boundary layer observed. The corresponding increase in
turbulence intensity was found to be significant. The success of the test campaign
demonstrated the ability of the developed unmanned system to measure turbulence
in the atmospheric boundary layer.

KEYWORDS: Atmospheric boundary layer, Turbulence, Unmanned Aerial Vehicle,
Five-hole probe, Hot-wire anemometry

Brandon M. Witte
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Chapter 1 Introduction

Boundary layers are among the most frequently studied phenomena in fluid dynam-

ics partly due to the interesting and challenging physics which occur when viscous

and inertial forces compete within a fluid moving over a solid body. Boundary layers

are also observed in many practical scenarios such as the flow within pipes, oceanic

currents, airflow over an aircraft’s wings, etc. Thus the study of boundary layers has

led to significant contributions to our understanding of fluid dynamics and continues

to be an essential component in the investigation of the “mystery” that is turbulent

flow. One of the most prevalent and increasingly important boundary layers existent

on earth is the atmospheric boundary layer, which has risen in importance due to the

growing challenges presented by global climate change and its role in global climate

dynamics.

A key scaling parameter in fluid dynamics is the Reynolds number, which describes

the ratio of inertial forces to viscous forces or, equivalently, the ratio of the largest

scales of turbulence to the smallest scales. The atmospheric boundary layer experi-

ences some of the largest Reynolds number flows encountered on earth. Stull defines

the atmospheric boundary layer as “the boundary layer that is part of the tropo-

sphere that is directly influenced by the presence of the earth’s surface, and responds

to surface forcings with a timescale of about an hour or less” [2]. The atmospheric

boundary layer is the lowest section of earth’s troposphere ranging from the sur-

face of the earth to anywhere between 100 m to 3,000 m high. It is responsible for

weather formation, fog formation, heat transfer to the upper atmosphere, and pol-
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lution trapping. The earth’s surface, being the underlying boundary to the lower

atmosphere, introduces many forces through friction drag, heat transfer, and evapo-

ration, all which create instabilities in the flow. The result of these forces provides us

with the highly turbulent atmospheric boundary layer acting as a momentum sink as

well as a heat source and buffer between the earth’s surface and the free atmosphere

above. Turbulence is a crucial component of the atmospheric boundary layer due to

its role in the transport of mass, momentum, and heat between the earth’s surface

and the atmosphere. Turbulence is also heavily dissipative in that it converts kinetic

energy into internal energy through viscous shear and introduces a broad range of

scales in length and time, chaotically contributing to the complexity of the flow [3].

It is the complexity found in the highly turbulent atmospheric boundary layer that

limits our understanding of its transporting processes. “The complexity of turbulence

is evidenced by the fact that after more than a century of concerted research effort,

many of its seemingly simple questions remain unanswered” [4]. The complexity of

the flow in the atmospheric boundary layer can be further expanded when obstacles

such as terrain, houses or foliage introduce additional wakes within the boundary

causing additional momentum losses.

Modern studies of turbulence typically take place in a laboratory and are conducted

either experimentally or computationally through numerical simulations. Experimen-

tal evaluation of turbulence commonly utilizes wind or water tunnels to set boundary

conditions within a controlled environment. Experimental investigation in a labora-

tory typically produces relatively small Reynolds number turbulence as a result of

limitations in achievable size, fluid type, and velocity imposed by the facilities used.

However, within these studies there are many ways to interrogate the flow in question

such as fixed point sensors or optical techniques. Computational fluid dynamics has

become increasingly popular for the study of turbulence as the computational power

of computers increases. Direct numerical simulation is the most accurate, solving the

2



governing equations without modeling. However direct numerical simulation requires

immense computational resources to simulate high Reynolds numbers as all length

and time scales must be resolved within the simulation, and the Reynolds numbers

contained within the atmospheric boundary layer are still out of reach. Thus, turbu-

lence models are introduced to reduce the computational costs. These are typically

employed in the form of closure models for the Reynolds-Averaged Navier-Stokes

equations, or subgrid-scale models within large eddy simulation. Simulations have

greatly contributed to the understanding of turbulence and the coherent structures

within them, but models are beginning to be pushed to their respective limits.

As noted, the high Reynolds numbers that characterize the atmospheric boundary

layer have proven problematic to replicate in a laboratory. In an attempt to miti-

gate this issue, researches have utilized several techniques to record turbulence data

directly in the atmospheric boundary layer. These techniques include tower, balloon,

and manned-aircraft mounted sensors. However, it is evident that these techniques

have disadvantages including large time and monetary costs and limited modularity

of these systems. The experimental challenges associated with measuring in the at-

mosphere are compounded by the unpredictability of the flow in both magnitude and

direction, issues related to thermal stability of the flow, and the isolated measure-

ments offered by of the tower and balloon approaches [5]. Since these fixed acquisition

systems record data at a point over a long period of time, providing strictly temporal

information, there is a necessity to assume that the flow structure does not evolve as

it advects past the sensors.

Taylor’s hypothesis suggested by G.I. Taylor in 1938, states that turbulence can

be considered as “frozen” as it advects past a sensor. In other words, any arbitrary

property of the turbulent fluid is independent of time as it transverses through space.

This simplification should only be considered when an eddy’s evolution time is less

than the time it takes for the eddy to traverse past the acquisition probe [2]. For

3



small scales of turbulence this hypothesis has been proven to work fairly well but is

subject to error when considered for larger scales. Thus, the usage of the Taylor’s

hypothesis in the highly turbulent atmospheric boundary layer is a cause for concern

and the impact of its application needs to be further examined.

The work in this thesis is concerned with developing a new approach to study

turbulence in the atmospheric boundary layer which has the potential to alleviate

many of the shortcomings of existing measurement techniques. This approach will

utilize unmanned aerial vehicles (UAVs) as they provide a platform that can acquire

significant atmospheric data anywhere within the lower surface layer, overcoming

restrictions created by tower-based point measurements and high flying, expensive

manned aircraft. The idea of using unmanned aerial vehicles as a research platform

in the atmospheric boundary layer is still in its infancy but has limitless potential,

as commercially available systems for autonomous flight are becoming increasingly

reliable. The development of this approach has been a continually evolving process,

producing a fully operational system that was tested and flown during the 28th and

29th of June, 2016 in Stillwater Oklahoma as part of a large-scale measurement

campaign.

4



Chapter 2 Background

2.1 Turbulence Theory

The study of turbulence can be traced back to the 1500’s and Leonardo da Vinci,

with the most commonly cited example, his sketches of turbulent eddies swirling

within a pool of water. However, progress in the understanding of turbulent behavior

was limited until the late 19 th century when Osborne Reynolds started his pipe flow

experiments. It was in these experiments that Reynolds discovered that the flow

within a pipe became irregular, or turbulent, when a dimensionless ratio created by

the combination of diameter, average velocity within pipe, fluid density, and fluid

viscosity exceeded a critical value [6]. This ratio is now known as the Reynolds

number

Re =
ρUL

µ
(2.1)

and can be generalized to different types of flow using the fluid’s density and dynamic

viscosity ρ and µ respectively, and appropriate selection of the flow’s characteristic

velocity and length scales U and L.

More importantly, realizing that turbulence is far too complicated to reach a de-

tailed understanding of the phenomenon, Reynolds developed a statistical approach

to study turbulence in which the flow variables were separated into mean and fluctu-

ating components

ζ(t) = ζ + ζ ′(t) (2.2)

where ζ(t) represents an arbitrary time-dependent fluid property decomposed into
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time-averaged, ζ and fluctuation ζ ′(t) components. In this thesis, the overline will be

used to indicate a time-averaged quantity. This decomposition led to the derivation

of the incompressible Reynolds-Averaged Navier-Stokes (RANS) equation

ρ

[
∂ui
∂t

+ uj
∂ui
∂xj

]
= − ∂p̄

∂xi
+

∂

∂xj

[
µ
∂ui
∂xj
− ρ u′iu′j

]
, (2.3)

where tensor notation is used and ui is the ith component of the velocity vector

and xi is the ith component of the position vector in an inertial frame of reference.

This equation is essentially identical to the incompressible Navier-Stokes equation

for fluid flow, except that the averaging process has introduced the Reynolds stress

tensor, ρ u′iu
′
j. The Reynolds stress is introduced by decomposition and averaging of

the nonlinear acceleration terms, but is traditionally treated as a stress as it can be

thought of as the component of the total stress tensor stemming from momentum

transfer from the fluctuating velocity field to the mean velocity field [1]. As a result,

the right side of equation 2.3 can be viewed as the sum of three stresses: the isotropic

or pressure stress, the viscous stress, and the Reynolds stress [1].

Following Reynolds groundwork on the statistical approach to turbulence, it was

Ludwig Prandtl who took the next steps in the verification and development of this

method. Prandtl’s most successful theory of turbulence was the mixing-length theory

based on the concept of the mean free path in thermodynamics which states that

before a fluid parcel mixes with the surrounding fluid, it’s properties remain constant

along a characteristic length. The model was an attempt to describe momentum

transfer within turbulent flow of a boundary layer by the means of eddy viscosity.

This allowed him to surmise that near the solid wall of a turbulent flow, the average

velocity profile is logarithmic. This important discovery in turbulent behavior was

expanded upon by Von Kármán in 1930 when he first published his new law of the

wall, also known as the ‘log law’. This law states that for constant property turbulent
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flow at a certain point, the mean velocity U near a smooth, flat surface is proportional

to the logarithm of the distance from the wall to that point [7]. This can be written

for a coordinate system with it’s origin on the surface, x1 parallel to the surface and

x2 directed away from the surface as

u1
+ =

1

K
lnx+2 +B, (2.4)

x+2 =
x2uτ
ν

, (2.5)

u+1 =
u1
uτ
, (2.6)

uτ =

√
τw
ρ
. (2.7)

Here B and K are constants, with K known as the von Kármán constant, and τw is

the shear stress imposed by the fluid at the surface (i.e. skin friction). The log law,

while very beneficial to modeling turbulent flow, is valid only in regions of the flow

close to the wall and only at sufficiently high Reynolds number [7].

The next significant steps in turbulence analysis were taken by the British physicist

G.I Taylor in the 1930’s. Taylor introduced much of the formal statistical analysis

approaches used today, such as the concept of the turbulence spectrum [8] and the con-

cept of homogeneous and isotropic turbulence, which simplifies analytical approaches

to turbulence. An illustration of how the turbulence spectrum changes with respect

to various Reynolds numbers can be shown in figure 2.1.

Even though real turbulence is, in fact, generally not isotropic his mathematical

techniques have proven valuable in the description of small scale turbulence where the

flow is exceptionally close to isotropic conditions. Another contribution of Taylor’s

which has been used extensively in experiments was his ‘frozen flow’ hypothesis which

is frequently applied to convert temporal information into spatial information. Taylor
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Figure 2.1: Illustration of two dimensional turbulence kinetic energy spectra at various
Reynolds numbers, courtesy of Dr. Sean C. Bailey.

explained the simplification in his 1938 paper that “if the velocity of the air stream

which carries the eddies is very much greater than the turbulence velocity, one may

assume that the sequence of changes in u at a fixed point are simply due to the

passage of an unchanging pattern of turbulent motion over the point” [8]. From this

assumption, a time-dependent property of the flow can be converted into spatially-

dependent property [9] following

ζ (xi) ≈ ζ (U∗i t) , (2.8)

where U∗i is a suitably selected advection velocity, typically ui. This hypothesis is par-

ticularly valuable, and often necessary, to relate experimental results (typically taken

using a fixed sensor measuring a time-dependent property) to analytical descriptions

(typically spatially dependent).

Lewis Richardson a British meteorologist, conducted research within the atmo-

sphere with the overall goal of weather prediction. He was among the first to propose
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that turbulence consisted of different sizes of eddies, where the sizes defined charac-

teristic length scales of these eddies. He suggested that the turbulent kinetic energy,

quantified as

k =
1

2
u′iu
′
i, (2.9)

is transferred from the large unstable eddies to the smaller eddies, which in turn break

down into even smaller eddies until the remaining energy in the flow is dissipated into

internal energy through viscous dissipation [6]. As the Reynolds number increases, the

number of transformations between large to small eddies becomes sufficiently large

and the movement of the smaller eddies cannot be ignored from the macroscopic

structure of the flow [3]. This idea is referred to as the spectral energy cascade and

can be identified in figure 2.1. The eddy size is inversely related to the wavenumber,

κ = 2π/λ, where λ is the wavelength of the turbulent eddy. Therefore, typically as

the eddy size decreases, or wavenumber increases, its kinetic energy decreases.

The energy cascade concept was later formalized in the 1940’s by A. M. Kolmogorov,

a Russian statistician very well respected in the 20th century. His work yielded some

of the most important results in turbulence theory. His first hypothesis states “At

sufficiently large Reynolds numbers, the statistical properties of the relative velocity

in a sufficiently small space-time region depend only on the turbulent kinetic energy

dissipation rate per unit mass, ε, and the kinematic viscosity, ν [3]. This allowed him

to derive on dimensional grounds the smallest scales that contain turbulent kinetic

energy. These are the Kolmogorov length, velocity and time scales, respectively

η =

(
ν3

ε

) 1
4

, (2.10)

vK = (νε)
1
4 , (2.11)

τK =
(ν
ε

) 1
4
. (2.12)
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His second hypothesis was that at scales much larger than η (which dissipate en-

ergy) and much smaller than the largest scales (at which kinetic energy is produced),

the kinetic energy transfer between scales must be only dependent on ε. From this

idea Kolmogorov and Obukhov derived that the turbulent kinetic energy within this

subrange must be proportional to

k(κ) ∝ ε
2
3κ−

5
3 (2.13)

in what is known as the five-thirds law [6].

Numerous contributions to the study of turbulence from the 1940’s through re-

cent decades have provided much progress in the understanding and theory, as well

as the analysis and calculations of this chaotic and random phenomenon. In recent

years much attention has been directed toward computational methods of analyzing

turbulent flow. With the ever growing power of digital computers, calculating the

relevant properties of turbulent flows becomes more and more attainable. Some pop-

ular computational approaches include: modeling the Reynolds stress tensor to close

the Reynolds-averaged Navier-Stokes (RANS) equations; direct numerical simulation

(DNS) in which the Navier-Stokes equation is fully resolved in time and space; and

large-eddy simulation (LES) in which the energy containing eddies are resolved, and

the small-scale turbulence is modeled.

2.2 Boundary Layers

In 1904 Ludwig Prandtl introduced the revolutionary concept of the boundary layer

within a fluid over a flat surface. His proposal hypothesized that friction caused fluid

flow immediately adjacent to the wall to stick to the surface and that these frictional

effects were only present in a small region near the wall which he described as the

boundary layer [10]. This concept is still among the most important and frequently
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experienced fluid dynamic properties and has been the root of considerable research

throughout the past century.

Boundary layers can be described as either laminar or turbulent with the character-

ization generally driven by the Reynolds number of the flow, where the characteristic

length and velocity scales in equation 2.1 are the distance downstream and the ve-

locity just outside the boundary layer (the ‘free-stream’ velocity). As Re rises the

inertial forces become more and more dominant, eventually transitioning the flow

from a laminar to a turbulent boundary layer.

According to Smits and Marusic the transition to turbulence in a boundary layer can

take place with a corresponding Reynolds number on the order of 104 depending on

the surface roughness and amount of turbulence experienced upstream [4]. It is within

this transition region that fluctuations and turbulent eddies begin to appear, causing

time variances of the fluid’s properties to become increasingly significant. These time

dependencies arise from the complex, random, and irregular attributes present within

turbulent flow, effectively mixing the fluid’s properties in all directions. Although this

region experiences considerable mixing of fluid particles, there is very little net transfer

of mass across the top of the boundary layer [11]. It should be noted that an exact

solution has been found for the velocity and pressure components of a 2-dimensional

laminar boundary layer by solving the steady state Navier-Stokes equations in what

is known as the Balsius boundary layer. However, this is not the case for turbulent

boundary layers and, despite the success of the log-law (equation 2.4), the study of

turbulent boundary layers is still an active area of research, particularly with respect

to the effect of Reynolds number on the properties of turbulence. In no small part,

the challenges of studying turbulent boundary layers are caused by the range of

scales involved. Near the surface, the turbulence scales with uτ and ν (inner scaling),

whereas far from the surface the turbulence scales with the free-stream velocity and

the thickness of the boundary layer (outer scaling). At low Reynolds numbers, there is
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insufficient separation between these scales to separate inner- and outer-scaled effects.

However, the atmospheric boundary layer (ABL) can experience Reynolds numbers

on the order of 108 and is consequently almost always turbulent with a very wide range

of scales. “The [ABL] also differs from its laboratory counterpart in the significance

of the Coriolis effect and in it variable and non-neutral bouyancy” [5]. The earth’s

rotation does not greatly affect the atmospheric surface layer, defined as the bottom

10% of the ABL where turbulent stresses vary by less than 10% of their magnitude [2].

However, the variable, non-neutral buoyancy produced by the heating and cooling of

the earth’s surface during the the diurnal cycle causes variances in the structure of

the ABL as shown in figure 2.2.

Figure 2.2: Atmospheric boundary layer structure evolution through the diurnal cycle.

During daytime hours the ABL is primarily composed of the turbulent mixed layer,

also referred to as the convective mixed layer. The mixed layer is labeled as convective

because the flow is mainly driven by buoyancy effects initiated by convective heat

transfer between the surface and the atmosphere. This creates warm air near the

surface of the earth which begins to rise, and when coupled with frictional shear

forces the resultant turbulence tends to rapidly mix heat, momentum, and humidity.

As the day transitions into the night-time hours the radiation heat transfer from the
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sun to the ground eases, and the cooling of the surface diminishes the transfer of heat

to the air eliminating nearly all forces due to buoyancy. With the buoyancy effects

removed, the turbulence in the mixed layer begins to decay, forming two distinct

layers known as the residual layer and the stable boundary layer which is illustrated

in the middle section of figure 2.2. The residual layer does not come into contact with

the earth’s surface and is therefore not a boundary layer by definition. The resultant

stable boundary layer, labeled as nocturnal due to its frequent presence during the

night, experiences periods of short bursts of turbulence occurring within it [2]. When

studying turbulence, researchers frequently focus on the period of transition from

stable to convective conditions, when the surface temperature and atmosphere are at

equilibrium. During this period, the buoyancy effects are typically negligible and the

turbulence is predominantly produced only by shear produced between the wind and

the surface.

The turbulence within the surface layer is of most interest and is the aim of study

for this thesis. Due to the extremely large Reynolds numbers, the huge variability of

eddy length scales, and the unpredictable boundary conditions it has proven compu-

tationally unfeasible to replicate using modern computer aided tools. Therefore, it is

necessary to study the atmospheric boundary layer turbulence experimentally to gain

a greater understanding of the turbulence and fluid transport properties within it.

2.3 Techniques to Measure Atmospheric Turbulence

Many techniques have been utilized to acquire turbulence data in the atmospheric

boundary layer. Some of these methods include tower point measurements, balloon

vertical profiling, sonic detection and ranging (SODAR), light radar (Lidar) sensors,

and even aircraft. Tower and balloon point measurements typically take advantage

of an array of sensors to gather relevant data and generally provide higher resolution

when compared with SODAR and Lidar [12]. Common wind sensors applied on towers
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include cup and vane anemometers, sonic anemometers, and hotwire anemometers.

SODAR and Lidar are used to profile the velocity field by emitting and measuring the

scatter of sound and light respectively. Lastly, aircraft are generally equipped with

an instrumentation package to record both atmospheric properties and the platform’s

motions and can acquire much more data than the alternative stationary techniques

as a result of the speeds at which they fly. However, excessive prices and high alti-

tudes at which manned aircraft must fly generally make this technique less desirable,

particularly for studying the atmospheric surface layer. The study of turbulence in

the atmosphere is by no means restricted to the aforementioned techniques, how-

ever these methods are the most common for atmospheric turbulence research, and

therefore are expanded upon here.

Towers are among the most widely used platforms for investigating atmospheric

turbulence. They are relatively simple to set up and provide substantial versatil-

ity in the form of different types of atmospheric sensors aupported. Cup and sonic

anemometers, wind vanes, pressure transducers, thermistors, thermocouples, and hot-

wire anemometers are extensively used on towers to study the exchange of properties

in the ABL. In an investigation of the effects of Reynolds number on turbulent prop-

erties, Folz and Wallace equipped a tower with an array of 24 hotwire anemometers

in parallel to measure turbulence data in the salt flats of Utah [5]. In order to mimic

laboratory type conditions the experiments were conducted during early hours pro-

viding near-nuetral stablity and the salt flats allowed for a smooth and flat bounding

surface. A Dopplar SODAR was utilized by Horiguchi et. al. in order to measure a

vertical profile of winds to investigate coherent structures in the atmospheric bound-

ary layer [13]. Again, the measurements were taken at specific times to approximate

a near-neutral boundary layer. Both of these experiments, as well as many other

tower-based experiments [14–16], require significant setup time, are fixed in space

usually in an ideal “laboratory” like setting such as the salt flats of Utah, and are

14



reliant on the atmosphere convecting past the sensors.

Manned aircraft have been used in atmospheric research for decades in order to mit-

igate the restrictions imposed by tower-based measurement systems. With manned

aircraft it is possible to measure data over a large span of area and altitudes, ac-

quire information over various surfaces, and with the velocities of the aircraft, collect

statistically significant data quicker than a tower-based systems. It is possible to

equip many of the same sensors that towers employ for wind measurements. Hotwire

anemometers are commonly used on manned aircraft as they provide a fast response

capable of investigating all scales of turbulence experienced in the ABL. In order

to investigate the small-scale turbulence in the atmosphere, Sheih et. al equipped a

hotwire probe to a single engine Piper Cherokee and flew in straight line paths at mul-

tiple altitudes over a tower-based system [17]. Many similar experiments with manned

aircraft have been conducted including measuring mean wind, temperature and hu-

midity profiles [18–21], measuring atmospheric turbulence [17,22], and even tracking

pollutant concentrations [23]. While aircraft alleviate some of the shortcomings of

tower based systems, they introduce other disadvantageous traits to atmospheric tur-

bulence research, such as relatively high minimum altitude at which they can collect

data, expensive operational costs, safety concerns for the pilot, etc.

Within the past decade, unmanned aerial vehicles (UAVs) have become increasingly

useful in the study of the atmospheric boundary layer. They provide an ideal platform

for bridging the gap between tower-based systems and manned aircraft. UAVs have

recently been used for various research in the ABL including but not limited to agricul-

ture research, gas distribution mapping [24], vertical profiling of wind, temperature,

and humidity [25,26], investigation of weather development, and turbulence and wind

estimation [27,28]. The use of unmanned aerial vehicles to conduct measurements in

the ABL represents new possibilities for obtaining a spatial description of the struc-

ture and organization of turbulence. The ability of a UAV to spatially sample the
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flow field using a high temporal response sensor translates into a spatially sampled

flow field with reduced reliance on Taylors flow hypothesis. In addition, within the

30 minute period of quasi-stationarity within the ABL a UAV, like manned aircraft,

will be able to collect substantially more data than a fixed-point measurement which

requires the turbulence to convect past the measurement point. A UAV also has an

advantage over fixed towers in terms of portability and the potential to measure in lo-

cations where construction of a tower is prohibitive or unfeasible. Finally, UAVs offer

distinct advantages over manned aircraft in their ability to safely perform measure-

ments within meters of the surface, the ability to preform measurements in remote

locations beyond the range of an airfield, and through greatly reduced operational

costs [29].

The majority of the work that has been done in the study of turbulence in the

ABL have utilized wind sensors that have a temporal response on the order of that of

sonic anemometers. The M2AV UAV by Van den Kroonenberg et al. uses a five hole

pitot probe which can resolve all three components of the wind vector to 40 Hz [30].

Mayer et al. developed a UAV that can estimate wind vector solely by comparing

constant throttle thrust and the ground speed observed which is sampled at just 2

Hz [31]. The use of a five-hole pitot probe is frequently used to measure wind speed

and is applied in the work of Thomas et al. to measure wind speed and direction,

potential temperature, and water vapor flux [32]. It would therefore be highly bene-

ficial to employ a sensor with a much greater temporal response, such as a hot-wire

anemometer, to a UAV in order to resolve wavelengths in the atmosphere on the order

of the Kolmogorov scale [2]. The work in this thesis demonstrates the feasibility of

conducting atmospheric turbulence measurements with a hot-wire sensor, discussed

further in in chapter 4, however the primary work focuses on the development of

a highly robust and reliable unmanned system equipped with a five-hole pitot tube

in order to acquire high quality atmospheric turbulence data. The development of
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this system will open doors to further the capability of using unmanned systems to

investigate that atmospheric boundary layer.
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Chapter 3 Data Reduction

The use of aircraft as a research platform introduces an additional level of com-

plexity and difficulty in measuring and analyzing atmospheric data due to the highly

dynamic properties and ever-changing state of the airborne platform. Much work

has been done over the past decades to develop a data reduction scheme for aircraft

being used as atmospheric turbulence research platforms [33–35]. The objective of

the measurements is to extract the wind velocity using a velocity signal measured by

a multi-hole pressure probe or hot-wire sensor mounted on a vehicle which will be

experiencing six degree-of-freedom rotation and translation. We assume the general

configuration of the aircraft illustrated in Fig. 3.1 equipped with a velocity sensor

aligned with the vehicle axis but mounted a distance from the center of gravity of

the vehicle where rS−CG denotes the vector that points from the center of gravity to

the measurement volume of the respective wind sensor. We assume that the vehicle

is equipped with a true air speed (TAS) sensor such as a Pitot-static tube. We also

assume that the vehicle is equipped with an inertial navigation system or sensors,

located at, or near, the center of gravity, which can determine the translational po-

sition and velocity, rUAV and UUAV respectively. In addition we assume that the

rotational position, indicated through the Euler angles of pitch, roll and yaw (θ, φ

and ψ respectively) and the angular velocity ΩUAV are provided by the autopilot.

Thus, the time-varying position and orientation of the vehicle are known. It is noted

that [·]I denotes a vector in the earth-fixed inertial frame, and [·]B is used to denote

a vector in the vehicle-fixed body frame.
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Figure 3.1: Standard airplane body axes.

To isolate the wind vector from the sensor measurements, we first note that the

traveling probes will also sense the velocity of the plane relative to the velocity of the

air in the atmosphere. Therefore, define the recorded relative velocity

[U r]B = [US]B − [W ]B (3.1)

where US = [us1 us2 us3]
T is the velocity of the sensing volume and W is the velocity

of the atmosphere, i.e., the wind. The components of the inertial frame are taken as

north, east and down. The components of the body frame are shown in Figure 3.1.

Since the sensors face forward, it follows that U r = [ur1 ur2 ur3]
T are the components

of relative velocity normal, tangential, and bi-normal to the sensor axis, and are thus

the components of velocity measured by the respective sensor.

We start first with the general case in which the applied sensor is capable of resolving

these three components of velocity, such as with a multi-hole pressure probe or a three-

or four-wire hot-wire probe in which a suitable data reduction scheme (i.e. such as

provided by Wittmer et. al [36] or Döbbeling et. al [37]) has been used to convert

the voltage measured by the anemometer into velocity magnitude and direction.

Let [UUAV ]I denote the velocity of the vehicle given by the vehicle’s inertial nav-

igation system and assume that this measurement is taken at the center of gravity.

The velocity of the sensor in the body frame is given by

[US]B = [us1 us2 us3]
T = [UUAV ]B + [Ω× rS−CG]B, (3.2)
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where Ω = [P Q R]T .

Next, recall that a vector in the inertial frame is transformed into the body frame

by [·]B = LBI [·]I , where

LBI =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 , (3.3)

C11 = cos θ cosψ,

C12 = cosφ sinψ,

C13 =− sin θ,

C21 = sinφ sin θ cosψ − cosφ sinψ,

C22 = sinφ sin θ sinψ + cosφ cosψ,

C23 = sinφ cos θ,

C31 = cosφ sin θ cosψ + sinφ sinψ,

C32 = cosφ sin θ sinψ − sinφ cosψ,

C33 = cosφ cos θ,

and φ, θ, and ψ are the roll, pitch, and yaw angles, respectively [38]. Similarly, a

vector in the body frame is transformed into the inertial frame by [·]I = LIB[·]B,

where LIB = L−1BI = LT
BI .

The desired wind velocity is that in the inertial frame [W ]I = [u v w]T, where u is

the component of wind along the north axis and v is the component of wind along the

east axis and w is the component of wind along the vertical axis. The wind velocity

in the body frame is then

[W ]B = LBI [W ]I (3.4)
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=


C11wn + C12we + C13wd

C21wn + C22we + C23wd

C31wn + C32we + C33wd

 .

Combining (3.2) and (3.4) with (3.1) leads to

[W ]I = [UUAV ]I + [Ω]I × rS−CG −LIB[U r]B. (3.5)

Thus, the desired quantity [W ]I can be determined from the measured velocities

[U r]B, [UUAV ]I , [Ω]I and the known quantity rS−CG.

In the case where the applied sensor is a multi-hole pressure probe, an additional

transformation step to the reduction scheme is necessary. Typical calibration proce-

dures for these probes will result in the sensor reporting the true airspeed along with

the aircraft’s angle of attack, α, and sideslip angle, β allowing for the calculation of

all three components of velocity. The angle of attack and sideslip angle are used to

transform the recorded relative velocity, U r, into x, y, and z components using the

transformation LBA according to [34,39,40] defined as

LBA = D−1


1

tan β

tanα

 , (3.6)

where D is the normalization factor defined as

D =
√

(1 + tan2 α + tan2 β). (3.7)

The updated equation used to find the desired quantity [W ]I when using the multi-
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hole pressure probe is thus

[W ]I = [UUAV ]I + [Ω]I × rs−CG −LIBLBA[U r]A. (3.8)

where [·]A denotes the additional aerodynamic coordinate system recorded by the

multi-hole pressure probe.
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Chapter 4 Early Aircraft Development

The development of a reliable unmanned system capable of recording high quality

atmospheric boundary layer turbulence data is a continuous effort, with iterative

improvements in airframe capabilities as well as on-board instrumentation. The

“Boundary Layer Unmanned Experiments Categorizing Atmospheric Turbulence”

(BLUECAT) project began with two fixed wing aircraft designed and constructed

from scratch using carbon fiber composite materials. These two aircraft, BLUECAT1

and BLUECAT2 respectively, proved our capability to develop such custom aircraft

in-house at the University of Kentucky but required significant investiment in both

time and money. Consequently, the development of these two generations of BLUE-

CAT airframes has been suspended in favor of lower-cost, simpler, systems in order to

facilitate instrumentation development. BLUECAT3 and BLUECAT4 were chosen

to alleviate the heavy costs experienced by the preceding UAVs and their prelimi-

nary development, tests and results are discussed in this section. BLUECAT3 and

BLUECAT4 serve as proof-of-concept systems to test the feasibility and survivability

of using hot-wire probes on UAVs to measure the small scales of turbulence in the

ABL.

4.1 BLUECAT3

The BLUECAT3 airframe is based on the almost ready to fly (ARF) fixed wing

Super Falcon 120 kit, featuring a wing span of 160 cm, a payload capacity of ap-

proximately 2.75 kg, and a maximum take-off weight of 8.25 kg. The fuselage of
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the aircraft is 200 cm long and only 14 cm at the widest region providing limited

space for the on-board systems. The aft of the fuselage is fitted with a DLE-20 20cc

gasoline engine capable of outputting up to 1.85 kW at 9,000 rpm. This engine,

coupled with 35×25 cm pusher configuration propeller, allows BLUECAT3 to reach

cruise speeds of 35 m/s. It is desired to achieve these higher flight speeds with faster

response probes because it enables us to obtain statistically significant measurements

much faster than typical tower or ground based systems. The fuselage of the aircraft

houses the 0.95 liter Dubro fuel tank, the Pixhawk autopilot, the turbulence instru-

mentation package, and the lithium polymer (LiPo) batteries used to power different

systems on the aircraft.

Figure 4.1: BLUECAT3 airframe equipped with hot-wire instrumentation.

Several modifications to the fuselage were needed to accommodate all the systems

due to it’s limited space and access. These modifications include implementing an

additional hatch rearword of the fuselage in order to install the gasoline tank as

well as facilitate in the installation of the wings and tail at the flight facility, and

adding an external payload bay under the fuselage and wings to provide further

room for instrumentation. The hatch was molded using the fuselage of the airframe

with fiberglass composite material and the instrumentation bay mold was a custom
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design in order to provide ample space while simultaneously limiting disturbances

of the airflow around the aircraft. Early flights with BLUECAT3 did not include

this pouch and led to the heavier instrumentation shifting the center of gravity up,

contributing to the aircraft becoming unstable at the lower flight speeds of takeoff

and landing. With the addition of this payload bay underneath the fuselage, the

heavier instrumentation, i.e. batteries and constant temperature anemometer, were

able to be housed lowering the center of gravity and greatly increasing the stability

of the airframe.

4.2 BLUECAT4

BLUECAT4 is a octo-rotorcraft that is commercially available from DJI as the

Spreading Wings S1000+. The Spreading Wings octocopter is specificallly designed

for high level professional aerial photography and, for that reason, it provides a highly

stable and dependable system. The S1000+ has eight 4114 pro KV:400 500 W max

power electric motors capable of outputting a total of 4000 W total. The motors,

coupled with 38×13 cm, propellers are capable of producing a maximum gross take

off weight of 11.3 kg. At 9 kg BLUECAT4 can hover for about 12 minutes while

outputting 1500 W. The airframe is constructed from carbon fiber composite and has

a diagonal wheelbase of 1.1 meters leading to an empty weight of 4.31 kg. The electric

speed controller (ESC) requires a minimum of a 6S LiPo battery outputting greater

than 40 Amps in order to meet these specifications. BLUECAT4 uses two 5000 mAH

6S batteries in parallel to satisfy this requirement.

Like BLUECAT3, some modifications were needed to aid in the mounting of the

instrumentation package. A 30.5×30.5 cm fiberglass composite shelf was constructed

and attached underneath the central hub of the octocopter. This shelf houses all

of BLUECAT4’s turbulence instrumentation, including the constant temperature

anemometer, data acquisition unit, and batteries. Additionally, a long carbon fiber
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Figure 4.2: BLUECAT4 multi-rotor equipped with hot-wire instrumentation.

boom was added to the airframe in order to extend the probes out away from the

down-wash produced by the propulsion motors. Early flights with BLUECAT4 ex-

perienced rather short flight times of approximately ten minutes due to the excess

weight brought about by the instrumentation system. It will be necessary to inves-

tigate the use lighter sensors and configurations in order to increase the flight time

of this airframe which allows for a greater statistical significance of the data being

measured.

4.3 Preliminary Experiments

The main focus of the data collection on BLUECAT3 and BLUECAT4 was to im-

plement a hot-wire anemometer for measuring turbulence properties. Each airframe’s

instrumentation thus consisted of a hot-wire probe and anemometer, Pitot-static sen-

sor, data acquisition unit, a Pixhawk autopilot, and batteries. The hot-wire probe

and pitot-static sensor provided measurements of the mean wind speed and wind fluc-

tuations; the data acquisition unit was used to record the output voltages from the

hot-wire and pitot sensors; and the autopilot produced the six degree-of-freedom at-

titude and velocity measurements of the respective aircraft. In addition, the Pixhawk
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provided stability improvements for BLUECAT3 and aided the autonomous flight of

BLUECAT4 throughout the experiments.

Single-component hot-wire probes were constructed at the University of Kentucky

by soldering Wollastan wire to TSI model 1201 hot-wire prongs. Using a 15% nitric

acid/water solution, the wire was etched in order to expose the 2.5µm platinum core

wire. The acidic solution was routed through a tiny needle creating a small bubble

at its tip, into which the wire was maneuvered into using a micro-positioner. This

method provides the ability to create hot-wire sensors with great control over the

sensing length. For the flight tests with BLUECAT3 and BLUECAT4, wires with

length of 500µm were used. This length was specifically chosen to maintain an aspect

ratio of 200, which minimizes heat transfer to the prongs and corresponding high

order errors in the probe’s frequency response.

The output from the hot-wire sensor is routed to a small Model 1750 constant tem-

perature anemometer (CTA). The 1750 CTA utilizes a 5:1 bridge ratio and frequency

response reaches up to 100 KHz. A 15 volt supply is necessary to power the unit and

an additional control resistor is required to complete the fourth leg of the Wheatstone

bridge within the circuit. For the test flights with both airframes a 1.5 overheat ratio

was used. Generally a slightly higher overheat ratio is desired when using hot-wire

anemometers, however the probes that were made for these had a resistance of around

12 ohms leading the operating resistance of the CTA to increase above the upper limit

of 20 ohms. After the hot-wire signal leaves the CTA, it is filtered by a 4th order

low-pass LTC1563 anti-aliasing filter designed to meet a cutoff frequency of 10 KHz

before data acquisition.

To measure the stream-wise component of velocity in the ABL, the single-component

hot-wire was mounted along the roll axis in the nose of BLUECAT3 and extended 16.5

cm forward of the nose by using a stainless steel hot-wire probe holder. The stainless

steel probe holder was mounted in the modified nose cone through two holes fitted
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with vibration isolating rubber grommets. These vibration isolators were installed in

order to improve the survivability of the hot-wire probes to vibrations introduced by

the 20cc gasoline engine. Mounting the probe in this forward configuration helps to

minimize any error caused by flow disturbances induced from the airframe itself.

In the case of BLUECAT4, a carbon fiber boom was used to extend the sensors past

the rotors of the octocopter. A custom, 3D-printed mount was designed to secure the

sensors at the tip of the cylindrical carbon fiber boom. The mount had two through

holes that housed the Pitot-static sensor and hot-wire probe respectively in a level

and fixed position facing radially from the center of the octocopter. The mount was

fixed at the edge by inserting the custom mount into the end of the boom and using

a cotter pin to anchor it in place. This was done to provide some modularity to the

mount in the case of additional sensors being added to the instrumentation system

in the future. The completed design was printed using a Makerbot Replicator 3D

printer available in the University of Kentucky’s wind tunnel laboratory. However,

with minimal vibrations compared to that of BLUECAT3 hot-wire survivability was

not a concern, although the data has shown to be subject to electric noise from the

eight electric-magnetic motors used for propulsion.

In order to determine the distance in front of the nosecone that the probe was

mounted on BLUECAT3, a quick study was developed and carried out in the Uni-

versity of Kentucky 2’×2’ wind tunnel. The goal of this experiment was to analyze

multiple probe locations in front of the airframe and determine a sufficient distance

in which the sensor output showed minimum affects from the nosecone. As a result

of the airframe of BLUECAT3 being too large to install into the wind tunnel, the

nose was cut off of the aircraft and a custom mount was made in order to install it

along with the hot-wire probe. The test investigated a total of six distances in front

of the nose (3.5”, 4.5”,6.5”,7.5” and 8.5”) at the cruise speed of 35 m/s. The power

spectrum was calculated after each run to demonstrate the effect of the nose on the
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Figure 4.3: BLUECAT3 nose cone in
wind tunnel during wind tunnel tests
for BLUECAT3 instrumentation.

Figure 4.4: Pre-multiplied power spectrum
at varied sensor location.

sensors and the setup and resulting plot is shown in figures 4.3 and 4.4. From this

information, it was concluded that a measurement location 6.5” or 16.5 cm upstream

of the aircraft nose was sufficient to minimize the effect of the nose on the sensor.

Like BLUECAT3, an investigation of probe mounting location was completed for

BLUECAT4. In order to test the effective area of the motors on the surrounding air.

In this case, a simple flow visualization was set up using theatrical stage fog. For this

test, the octocopter was mounted on a 3 meter pole in order to alleviate any ground

effects and a SAFE-X foggenerator was used above and below the rotor-craft in order

to get a visual representation of the flow structure around the motors as shown in

figure(4.5). This led to the designation of a measurement location 45 cm radially

outward from the motors as being more than a sufficient distance to avoid downwash

from the rotors.

4.4 Preliminary Measurements

A preliminary flight for each system was conducted in October of 2015 in order

to test the feasibility of using a hot-wire probe to measure turbulence with an un-
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Figure 4.5: BLUECAT4 flow visualization.

manned aerial vehicle. The flight experiments were conducted at the Lexington Model

Airplane Club’s (LMAC) flight facility located in Lexington Kentucky. The field is

equipped with a 650 ft asphalt runway, and was required for the take off and landing

of BLUECAT3. The flight path designated for BLUECAT3 followed a back and forth

race track pattern into the wind using manual remote control and is displayed in fig-

ure. BLUECAT4’s preliminary flight experiment consisted of hovering the octo-copter

at 100 meters for ten minutes with the probes facing in the direction of the wind. The

relatively short ten minute flights were conducted mid-day when the ABL was mixed

and unstable in an attempt to pick up turbulent properties in the measurements.

Figure 4.6: Flight path for BLUECAT3 preliminary measurements
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Figure 4.7: Power spectrum from
BLUECAT3 preliminary test flight.

Figure 4.8: Power spectrum from
BLUECAT4 preliminary test flight.

The flights demonstrated the survivability of the hot-wire sensors on UAVs despite

significant acceleration and vibration being introduced during to takeoff and landing.

The initial results in the form of power spectrum are shown in figures 4.7 and 4.8

for both BLUECAT3 and BLUECAT4 respectively. Both power spectra follow the

Kolmogrov −5/3 slope down to frequencies on the order of 1 kHz (roughly corre-

sponding to a spatial resolution of ≈ 3 cm at the BLUECAT3 flight speed of 35 m/s).

There is however noise that frequents the signal which needs to be investigated and

eliminated for each system. This preliminary information does allow the conclusion

that the unmanned systems discussed above are fully capable of providing quality

turbulence data, as seen by the −5/3 slope, down to the lowest scales of turbulent

structures experienced in the atmospheric boundary layer.

Although promising, these initial experiments also revealed limitations in the sys-

tems. For example, the BLUECAT3 gasoline engine was prone to failure and required

significant maintenance to ensure reliability. In addition, the aircraft required a paved

runway for takeoff and landing and the skill level required of the pilot was high, due

to its high flight speeds. The hot-wire probes were also found to be susceptable to

breakage caused by engine vibration during takeoff, when the engine hit a low fre-

quency resonant mode. The BLUECAT4 airframe had a very low endurance, limiting
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the suitability of this system for investigation of long wavelength turbulence modes,

and the stationary nature of the system meant that the Pitot-static tube was not

sensitive enough for calibrating the hot-wire. Furthermore if these probes were not

oriented directly into the wind, which would have to be done manually, significant

errors would be introduced into the measurements.

Although all of these issues were solvable, the additional development effort re-

quired was deemed prohibitive for the time allowed and inhibited the broader project

intended to obtain high quality turbulence statistics. It was therefore, decided that

a more robust system was required to obtain turbulence data. The remainder of

this thesis describes the efforts to deliver a reliable combination of airframe and in-

strumentation, implement the data reduction scheme discussed above, and obtain

turbulent statistics which can be used for atmospheric science.
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Chapter 5 Aircraft and Instrumentation Package Development

This chapter describes the unmanned aerial vehicle developed for this thesis de-

signed for measurements of atmospheric turbulence, and the instrumentation pack-

aged developed for the aircraft. The development of this unmanned aerial vehicle cul-

minated in a series of flight experiments conducted as part of the first CLOUDMAP

(Collaboration Leading Operational UAS Development for Meteorology and Atmo-

spheric Physics) test campaign in Oklahoma, USA. These flights were conducted at

two locations: (1) the Oklahoma State University’s flight facility (OSU UAFS) lo-

cated in Glencoe, and (2) the Marena Mesonet and Marena. The test campaign was

conducted from Tuesday June 28th. 2016 to Thursday June 30th, 2016 although only

measurements made on the 28th (OSU UAFS) and 29th (Marena Mesonet) are re-

ported here. Flight data was acquired from as early as 6:15 AM CST and ended as late

as 5:20 PM CST. At each location, multiple profile flights were performed consisting

of loitering at altitudes from 20 or 40 meters up to 120 meters in order to investigate

the development of the boundary layer throughout the day and straight line flight

trajectories at a fixed altitude used to obtain more detailed statistics. Flights were

limited to a maximum altitude of 120 meters in compliance with FAA rules and regula-

tions, however a higher altitude may be ideal for future studies. Two aircraft, dubbed

BLUECAT5, flying wing UAVs were used for these measurements and a third was

built and flown for complimentary measurements of atmospheric chemistry. For the

majority of turbulence measuring flights, the two UAVs, equipped identically, were

flown simultaneously to both maximize the statistical information recovered from the
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flight tests. A total of 18 flights were flown between the two aircraft, resulting in a

successful measurement campaign. Details of the airframe, instrumentation and flight

tests are provided below, with results from the experiments provided in the following

chapter.

5.1 BLUECAT5 Airframe

The flying wing Skywalker X8 is the Almost-Ready-to-Fly (ARF) airframe was

used as the foundation for BLUECAT5. This airframe was selected as the foundation

as it features a wingspan of 2.1 meters and total payload of ≈ 2.5 kg without mod-

ifications leading to a total weight of 5 kg. The removable wings and carbon fiber

wing spars allow for sufficient portability of the system and minimal setup time. The

aircraft is designed to be hand-launched and belly landed, eliminating its reliance on

prepared runways. The fuselage of the Skywalker X8 also provides ample room and

access for the avionics and measurement instrumentation systems. Like BLUECAT3,

BLUECAT5 is fitted with its propulsion system at the rear of the fuselage. However

BLUECAT5 makes use of an electric motor coupled with a 33 cm x 20 cm carbon

fiber folding propeller. The electric propulsion system provides greater simplicity

when compared with the DLE-20 gasoline engined used by BLUECAT3, leading to

higher reliability but resulting in reduced endurance. The Axi 4120/14 brushless elec-

tric motor used on BLUECAT5 requires a 4S 8000mAh battery utilizing a Phoenix

edge lite 75 electric speed controller (ESC). This combination, combined with the

relatively lightweight airframe and the large wing area of the aircraft, results in ef-

ficient power usage and flight times of close to 45 minutes at 17 m/s cruise speeds.

Because the Skywalker X8’s fuselage provided sufficient space for excess payload and

the sufficient aerodynamic properties of the aircraft, no significant modifications to

the airframe were necessary apart from changes required to mount the sensors in the

nose and fix the avionics and instrumentation packages within the payload bay.
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5.2 Autopilot and Inertial Navigation System

Pixhawk commercial autopilots running the open-source Ardupilot software were

used to convert the airframes for autonomous flight. The Pixhawk is a high per-

formance autopilot suitable for both fixed wing and multi rotor configurations. By

measuring the six degree-of-freedom attitude and rate information, the Pixhawk is

able to provide the necessary PWM outputs to the airframe control surfaces and

propulsion motor(s) to allow autonomous flight. The hardware of the pixhawk is a

combination of the popular PX4FMU (flight management unit) powered by a 168

MHz 32-bit STM32F427 Cortex M4 core with FPU and the PX4IO (airplane servo

and I/O module) which provides a 24 Mhz Cortex-M3 failsafe processor. The FMU

houses the necessary sensors for autonomous flight including a ST Micro L3GD20H

16 bit gyroscope, a ST Micro LSM303D 14 bit accelerometer / magnetometer, a

Invensense MPU 6000 3-axis accelerometer/gyroscope, and a MEAS MS5611 barom-

eter. The Pixhawk I/O supports 14 pulse width modulation (PWM) / servo outputs

along with other abundant communication interfaces including 5× UART serial ports,

2 CAN inputs, FUTABA S.Bus compatible input and output, SPI, I2C interface, 3.3

and 6.6V ADC inputs, and an external micro-USB port extension. In addition, the

Pixhawk autopilot provides a micro SD port for long-time high-rate on-board logging

of the flight parameters. The power requirements for the autopilot are 4.8 to 5.4V

through the supplied power module input as well as an additional 5V power supply

to the servo rail.

The relatively small form factor of the Pixhawk at 50 mm × 81.5 mm × 15.5mm

and 38 g allowed for expanded flexibility in the implementation of the system. The

autopilot unit was mounted near the center of gravity and along the centerline of the

BLUECAT5 airframe facing forward through the nose. The PWM control surface

outputs were wired out the rear of the autopilot to the respective servo in the wings as
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well as to the electric propulsion motor. A few supplementary sensors compatible with

the Pixhawk were also required for autonomous flight which included a GPS/compass

and an airspeed sensor. A 3DR uBlox GPS with compass provided the position and

ground velocity information of the aircraft. This unit was mounted on top of the

aircraft along the center line which provided a clear view of the sky for the GPS and

distanced the sensor from the electric propulsion motor which caused interference

to the magnetic compass. The airspeed sensor used to provide the pixhawk with

an accurate true airspeed was a mpxv7002dp pressure transducer connected to a

Pitot-static tube mounted in the nose of the aircraft. The airspeed sensor system is

discussed further in the next section.

The autopilot is designed to fly in a pattern described using predetermined way-

points defined by altitude, latitude and longitude. These waypoints are designated

within the ground station software (Mission Planner) installed on a laptop and used

to monitor and control the aircraft flight. While in flight, the ground station is used

to monitor the aircraft behavior and flight properties such as heading, attitude, veloc-

ity, altitude, etc.. In addition to observing the aircraft, the ground control station is

used to alter flight paths, change flight modes, and adjust certain control parameters

used for autonomous flight. The communications between the aircraft and ground

control station is accomplished via a 900 MHz radio telemetry link between an on-

board 3DR telemetry radio and an identical radio connected to the ground station

computer. While the parameters and waypoints are adjusted via the ground station,

the information is stored on-board the Pixhawk hardware in the aircraft. This means

that if connection were lost between the ground station and the UAV, the UAV is

able to maintain autonomous flight. Upon completion of the autonomous flight plan,

the UAV will enter a failsafe mode if a connection has not yet been established in

which the UAV will return to a home waypoint, determined by the position at which

the Pixhawk was armed, and loiter until a connection is re-established. This link is
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always connected prior to takeoff using the Mission Planner software.

Mission Planner is a full-featured ground control station software used for Ardupilot

based autopilots such as the Pixhawk. It is a vital piece to the auto-pilot system in

that it is used to install necessary firmware to autopilot; it is used to setup and tune

the UAV to reach optimal performance; It allows for the planning, saving, and loading

of autonomous mission plans via simple waypoint entry that utilizes Google maps;

and finally it is used to download and analyze mission logs created by the Pixhawk

which is necessary in the data reduction discussed in this thesis.

In addition to supporting autonomous flight the open source autopilot records the

six degree-of-freedom position, velocity, and GPS information needed for the data

reduction at 50 Hz, 10 Hz, and 5 Hz respectively. This information is both recorded

by the ground control station via telemetry and recorded at the increased frequencies

listed above to the micro SD card supported by the Pixhawk. This log file can then be

recovered and transferred after landing by the SD card. Initially, the data reduction

described in Chapter 3 was intended to be conducted using this information. However,

numerous preliminary flight tests revealed that bias was introduced in the resolved

wind vector by small inconsistencies in the reported vector. It was determined that

the greatest source of this bias was the magnetometer, used to determine aircraft yaw

in the inertial frame. Thus, a more accurate inertial navigation system (INS) was

required which did not rely on magnetometer data.

The VN-300 from VectorNav was selected as it is an extremely small INS that

utilizes dual GPS antennas to provide highly accurate heading measurements without

the reliance on magnetic sensors that are typically used. With the aid of advanced

Kalman filtering techniques the VN-300 provides a heading accuracy of 0.3◦ and

pitch/roll accuracy of 0.1◦ with ground velocity accuracy of ±0.05 ms−1. The INS

also provides an increased sample rate of up to 400 Hz for all variables, however a

200 Hz sample rate was used for the experiments. The VN-300 outputs a custom
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binary file that is programmable within the software provided with the system. The

outputs from the INS for this experiment were attitude angles yaw, pitch, and roll

in degrees along with their uncertainties and rates (degrees/second), temperature,

pressure, lattitude, longitude, altitude, and GPS velocities in the North, East, and

Down directions. The provided software was required to run the VectorNav system

and was installed on the on-board personal computer described in a later section.

5.3 Pitot-static tube

As mentioned previously, the UAV was equipped with a 30 cm long, 3.175 mm

diameter brass rcats-120 Pitot-static tube produced by RCATS Systems to provide

the autopilot with an accurate true airspeed (TAS) reading needed for autonomous

flight. In addition, the Pitot-static tube was used to provide a static reference for the

turbulence measurement system described below. The TAS information was also used

in the data reduction as a reference velocity signal for cross-correlating the autopilot

telemetry signal with the turbulence measurement system velocity signal. This Pitot

tube was mounted 25 cm out front of the nose of the aircraft away from the fuselage,

3 cm below the five-hole probe. The transducer used with the Pitot-static tube

and autopilot was acquired using a Freescale Semiconductor mpxv7002dp differential

pressure transducer with a 2 kPa range. This pressure transducer was then connected

to the Pixhawk autopilot via the 6.6V ADC pin and was set up and configured via

the Mission Planner ground control station software.

5.4 Launcher

Although designed to be hand launched, due to increased weight of the airframe

caused by the additional instrumentation, and to increase safety and reliability of

takeoffs, a launching system was developed in order to propel BLUECAT5 into flight.

Note that landing gear could also have been installed onto the airframe to allow for
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runway takeoff and landings, but this would have increased total weight and possibly

disrupt some of agreeable aerodynamic characteristics of the flying wing. In addition,

a launching system supports more diverse experiment locations because a runway

won’t be necessary for takeoff or landing.

The designed launcher consisted of a bungee system to pull the aircraft along a

pair of rails providing a required angle of attack and airspeed for liftoff. The launcher

base was created from 1” PVC pipe to provide a low friction rail system for the air-

craft. The launcher is 2 meters long set at a 13◦ angle ideal for takeoff. The bases

and rails of the PVC pipe can be detached in order to make the launching system

more portable. The 6 meter super-stretchable abrasion-resistant natural rubber rod

(1775T25) bungee from McMaster-Carr was attached to a large ground stake and

stretched to approximately 25 meters where it was attached to both a release mech-

anism and the aircraft itself in order to provide ample force to accelerate the aircraft

for takeoff. The release mechanism used to initiate launch was a simple design that

utilized a custom made wooden cradle attached to the ground with tent stakes. A

steel pin was then slid horizontally through the cradle and one end of the bungee

attachment and the launch was triggered by quickly removing the pin from the cradle

using a long rope.

The optimal bungee extension of 25 meters was determined from a series of tests

in which a test object of similar weight to BLUECAT5 was ”launched” along the

rails. Multiple launches took place with increasing bungee tensions until a sufficient

velocity of 12 m/s was met at the time the board left the rail. In order to attach the

bungee cord to the aircraft a plastic hook was added under the nose of the fuselage

at an angle that allows the bungee to be discarded after takeoff. The release of the

bungee from the UAV occurs as the aircraft flies over the ground stake and all tension

is removed from the bungee. the Figure 5.1 displays the launcher system during a

BLUECAT5 takeoff.
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Figure 5.1: BLUECAT5 takeoff with launcher

5.5 Turbulence Measurement System

To measure turbulence in the atmospheric boundary layer each BLUECAT5 UAV

was equipped with a five-hole pressure probe and supporting hardware. The on-board

instrumentation included the five-hole probe, pressure transducers, a data acquisition

unit (DAQ), and an on-board personal computer (PC). In overview, the geometry

of the five-hole probe produced different pressure at each of five ports on its surface

relative to the static pressure measured by the Pitot-static tube used by the autopilot.

The pressure transducers converted these pressure readings to a voltage, with their

high level inputs connected to the different ports of the five-hole probe, and the

reference ports connected to the static line from the Pitot-static tube. The voltages

from the pressure transducers were digitized by the data acquisition system, which was

controlled by the on-board computer which also stored all the information produced

by the INS and DAQ. These components are discussed in further detail below and the

connectivity of this system is summarized in Figure 5.2. A supplementary image of

the connectivity and locations of the major instrumentation components is provided

in figure 5.3.
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Control Surface 
Servos

PWM

5V 

PWM

Pressure, temperature, 
humidity and position data 

at 1 Hz

Five hole probe voltage data at 1 kHz 
and 6-DOF position data at 200 Hz

6-DOF position Data at 50 Hz
TAS and Pressure Data at 10 Hz
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Figure 5.2: Diagram illustrating BLUECAT5 instrumentation connections

5.5.1 Five-hole Probe

Multi-hole probes are designed to determine the magnitude and direction of the

local fluid velocity vector. Specifically, on aircraft, they provide the angle of attack

and side-slip angles typically denoted by α and β respectively. The five-hole probe is

made up of a cylindrical body with on hole along the centerline and four holes evenly

spaced cylindrically around an angled tip. Therefore, if the flow of the fluid is not

aligned with the center of the probe, each hole will read a different pressure which,

through calibration, can be used to estimate α, β and the velocity magnitude.

Multiple versions of five-hole probes for use on UAVs have been developed at the

University of Kentucky, with the most recent developed using a Form Labs Form1+

Desktop Stereolithography (SLA) 3D Printer. The five holes on the sensors are 1.2

mm in diameter and the tip of the probe supports a 30◦ tip angle. Each hole is con-

nected to a differential pressure transducer through 1.75 mm diameter Tygon tubing

protected by a 25 cm aluminum tube. The probe was mounted along the x-axis 25

cm in front of the fuselage and 60 cm away from the autopilot to minimize flow dis-
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Figure 5.3: BLUECAT5 instrumentation

turbances caused by the airframe. The five-hole probe pressure measurements were

acquired using TE Connected Measurements 4515-DS5A002DP differential pressure

transducers with a 0.5 kPa range. A custom circuit board was designed and con-

structed providing a compact layout for all five transducers with optional inputs for

1st order RC low-pass filters. A 100 Hz anti-aliasing low-pass filter was designed and

implemented prior to the signal being sent to the data acquisition system. These

transducers were powered by the 5 V output from the data acquisition unit.

Before flight, each five-hole probe was calibrated using a 0.3m × 0.3m wind tun-

nel located in the basement of the Ralph G. Anderson building at the University

of Kentucky. In order to complete the calibration, a custom traverse using Vexta

stepping motors was designed and mounted to the wind tunnel allowing the probe

to both pitch and yaw in with a step accuracy of 0.36◦. The calibration followed a

standard calibration technique outlined by Treaster and Yocum [41] due to the Wild-

mann et al. [42] study which showed better results in comparison to the Bohn et al.

method [43] which was described and utilized in Kroonenberg’s experiment [30]. For
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the calibration, the wind tunnel was set to a constant velocity, in this case 17 m/s

as this was the cruise speed for the experiments, and the five-hole probe was stepped

by 1◦ intervals between predetermined pitch and yaw angles of -15◦ and 15◦ for pitch

and -18◦ and 18◦ for yaw. At each angle, the current pressure values at each hole P1,

P2 through P5 were measured and averaged over five seconds. Additionally a fixed

Pitot-static tube was mounted into the wind tunnel to measure the dynamic pres-

sure throughout the calibration as well as provide a static reference for the five-hole

probe transducers. More details about the setup, design, and implementation of the

calibration of the five-hole probe is provided in Appendix A.

After the data is acquired from the calibration, the coefficients [a, b, q] are deter-

mined so that the wind direction and magnitude can accurately be calculated from

the pressure at each of the five holes of the probe. Specifically, these coefficients help

to determine α, β, and dynamic pressure Pdyn = 1/2ρuiui from the pressure values

P1, P2, through P5, whose locations on the five-hole probe are shown in figure 5.4. It

is noted that each of the pressures P1, P2, through P5, are measured as differential

pressures with a reference to static pressure from the Pitot-static tube.

Figure 5.4: Five-hole probe pressure port locations, front view

In order to calculate the calibration coefficients [a, b, q] , the following dimensionless
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pressure coefficients are calculated from the collected pressure values:

Cα =
P4 − P5

P1 −∆P
, (5.1)

Cβ =
P3 − P2

P1 −∆P
, (5.2)

Cq =
P1 − Pdyn
P1 −∆P

, (5.3)

where,

∆P =
P2 + P3 + P4 + P5

4
. (5.4)

The coefficients Cα, Cβ and Cq are defined as the coefficients of angle of attack, sideslip

angle, and dynamic pressure respectively. The role of Cq can be described as a

correction value for the dynamic pressure at varying angles of attack and sideslip.

These coefficients are used within a polynomial function determined using the known

wind tunnel variables α, β, and Pdyn. Specifically, these variables can be expressed

in terms of the described dimensionless coefficients,

α = fα(Cα, Cβ),

β = fβ(Cα, Cβ), (5.5)

Cq = fα(Cα, Cβ).

Here, the functions fx(Cα, Cβ) are expressed as an m order polynomial of the two

variables

fx(Cα, Cβ) =
m∑
i=0

(Cα)i

[
m∑
j=0

Xij(Cβ)j

]
, (5.6)

where Xij are the coefficients Cα,ij, Cβ,ij, and Cq,ij used for the estimation of α, β, and

Cq respectively. The estimation is solved by a least squares method for each function
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where the order was chosen to be six, thus m = 5, for these experiments. It must

also be noted that the angles of the probe experimentally calculated within the wind

tunnel during calibration, denoted here as αe and βe, are related to the analytical

estimation of the airflow angles experienced while in flight given by Phillips [40] as

αa = αe,

βa = arctan

(
tan βe
cosαe

)
. (5.7)

Two aircraft were used for these experiments and consequently two different five-

hole probes were utilized, each requiring separate calibration. The two five-hole

probes are identified by the monikers Kirk and Spock and the results of their cal-

ibrations displayed in figures 5.5 through 5.7. It can be seen in figure 5.5 that the

further away from angles (0,0) the probe gets, the more nonlinear the results become

making a higher order polynomial necessary for the estimation. Figures 5.6 and 5.7

display the result of using the calibration data to estimate the angle of the flow along

with the known angles designated by the stepper motors during calibration. For both

α and β the root mean square error (RMSE) was under 0.15◦ and the RMSE for

measured velocity Ur was well under 0.1 ms−1 as shown in table 5.1.

Table 5.1: Root Mean Square Error (RMSE) of Calibration Results

Coefficient RMSE Kirk RMSE Spock

α 0.0984◦ 0.1250◦

β 0.0976◦ 0.1248◦

Cq 0.0056 0.0099

|Ur| 0.05 ms−1 0.09 ms−1
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(a) Cα vs. Cβ (Kirk) (b) Cα vs. Cβ (Spock)

Figure 5.5: Dimensionless calibration coefficients Cα vs. Cβ showing nonlinearities
for larger airflow angles.

(a) Angle of attack calibration results (Kirk) (b) Angle of attack calibration results (Spock)

Figure 5.6: Calibration results for angle of attack. The figures show both the esti-
mated and known values for α in the order of which the measurements were taken.
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(a) Sideslip angle calibration results (Kirk) (b) Sideslip angle calibration results (Spock)

Figure 5.7: Calibration results for sideslip angle. The figures show both the estimated
and known values for β in the order of which the measurements were taken.

5.5.2 Temperature and Humidity Measurements

To measure temperature and humidity during flight, an iMet-XQ UAV sensor was

used, which provided a standalone solution for temperature and humidity measure-

ments. The sensor includes a GPS receiver, pressure, temperature and humidity

sensors all powered by a rechargeable battery. 16 Mb of data from the sensors can be

stored on board and downloaded post flight for analysis via usb. The iMet humidity

sensor supports a full 0 - 100% RH range at ± 5% RH accuracy with a resolution

of 0.7% RH. The on-board temperature sensor provides a ± 0.3◦C accuracy with a

resolution of 0.01◦C up to a maximum of 50◦C. The response times of these sensors

are on the order of 5 and 2 seconds respectively in still air with the iMet sampling

these sensors at 1 Hz.

5.5.3 Data Acquisition

The data acquisition system (DAQ) used to digitize the voltage output from the

five pressure transducers, as well as the voltage input to the transducers was an MCC

USB-1608FS-Plus data acquisition unit. This particular unit is capable of recording
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8 single-ended analog inputs simultaneously at 16 bit resolution at rates of up to

400 kS/s. During the experiments the DAQ recorded six channels at 1 kHz for each

channel. The DAQ also provided a 5 V signal to power the pressure transducers.

The DAQ was connected via USB to a Kangaroo Mobile Desktop Computer KJ2B#001-

NA having an Intel Atom X5-Z8500 (1.44 GHz) processor, 2 GB LPDDR3 RAM

and 32 GB eMMC storage running the Windows 10 Home operating system. A

custom Matlab script was written to control the acquisition, compiled as a stan-

dalone executable. This script allowed for the selection of which channels were to be

recorded, the duration of acquisition, and the voltage range at which each channel

was recorded. The Kangaroo PC was also used to simultaneously run the VN-300 INS

system through using the manufacturer provided software. The on-board PC stored

all recorded data on its 32 GB hard drive from both the data acquisition unit and

the additional INS. Data from both systems were stored onboard the eMMC memory

and then pulled post-flight via the USB connection for archiving and further analysis.

5.6 Sonic Anemometer

In order to provide a ground reference of wind velocity vector and temperature

during flights a Young Model 81000 ultrasonic anemometer was mounted on a 7.5

m tower. The sonic anemometer is a 3-axis wind sensor that provides the three

components of velocity in the inertial reference frame as well as a sonic temperature

measurement. The 81000 can measure wind speeds up to 40 m/s at a resolution of

0.01 m/s with accuracy of ± 0.05 m/s. From the three components of velocity the

direction of the wind can be provided 360◦ at a resolution of 0.1◦ with an accuracy

of ± 2◦. The temperature provided by the sonic anemometer is calculated based

on the speed of sound leading to an temperature measurement accuracy of ± 2◦C.

For the data reported here, the anemometer was set to output four analog voltages,

corresponding to u1, u2, u3 and temperature. The velocity components were output
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at their maximum sensitivity such that the voltage output could be converted to the

velocity in m/s following

ui = [(10× 2/5)× Vi]− 10 (5.8)

where Vi is the recorded voltage corresponding to component ui. The temperature

could be converted to degC following

T = [(100/5)× VT ] + 220− 273.15 (5.9)

where VT is the recorded voltage corresponding to the temperature.

The sonic anemometer was mounted to on a 7.62 meter tower and the voltage data

output from the anemometer recorded by a stand-alone high-speed Omega OM-LGR-

5329 multifunction data logger logging at 100 Hz. Both the anemometer and logger

were powered by a single 4S 3300 mAh lithium-polymer battery.

5.7 Measurement Procedures

The primary data sets acquired for this thesis were taken with two BLUECAT5

UAVs flying simultaneously with varying flight paths. Each UAV was equipped with

identical five-hole probe sensor packages as described earlier in this chapter. The data

was recorded on two sequential days in separate locations located near Stillwater, Ok-

lahoma in which vertical profiles were completed to measure atmospheric properties

such as mean wind speed, mean wind direction, temperature, humidity, and turbu-

lence characteristics. Before each flight, the instrumentation was started manually

through the on-board Kangaroo PC and the autopilot was connected to their respec-

tive ground stations. At the start of the data acquisition, zero reference voltages were

taken by applying a cover to both the five-hole probe and Pitot-static tube in order

to mitigate any wind velocity the sensors might be reading at ground level. The
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aircraft were then launched sequentially via the use of the custom-made launcher

under manual control. Once positive flight characteristics were confirmed through

manual flight, the aircraft were switched to autonomous flight, at which point the

autopilot began flying its flight path, defined using pre-determined waypoints. Fol-

lowing approximately 30 minutes of flight time, the aircraft were returned to manual

mode and recovered via belly landing on a runway. Immediately after each flight,

all relevant flight data including the five-hole probe voltage readings, autopilot logs,

VectorNav information and iMet files were transfered to a laptop for validation checks

and archiving on an external hard drive. The Kangaroo PCs and iMET sensors and

flight batteries were then replaced with ones containing full charge making the aircraft

ready for their next flight following an approximately 15 minute turnaround time. A

more detailed checklist for the measurement procedure is provided in Appendix B.

Flight details for each day are outlined in this section. All flights were flown under

the University of Kentucky’s blanket FAA Blanket Area Public Agency certificate of

authorization (COA) number 2016-ESA-32-COA.

5.7.1 Tuesday, June 28, 2016

The first set of data presented are from flight tests conducted throughout the day

on June 28, 2016. The flights were executed between 6:15 AM and 5:20 PM CST at

Oklahoma State’s Unmanned Aircraft Flight Station(UAFS) in Glencoe, OK, USA.

The UAFS is a dedicated UAV flight and test facility used by both hobbyists and

researchers at Oklahoma State University located 12 miles East of Stillwater, Ok-

lahoma. The flight station supports two runways (183 and 122 meters), an aircraft

hangar and a state-of-the-art control room with monitoring capabilities. The flight

area consists of a 1.61 by 1.61 km unpopulated land to use for research, education and

outreach in UAS. A satellite image of the Unmanned Aircraft Flight Station flight

area using Google Earth is shown in figure 5.8 as well as a top-down view of the flight
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patterns for each UAV. The flight area elevation varied by ± 5 meters throughout

the flight paths. The blue flight path represents BC5A’s loiters, the red flight path

depicts BC5B’s straight line flights, the blue diamond represents the location of the

sonic anemometer, and the green marker shows the location and direction of takeoff

for each UAV.

Figure 5.8: Oklahoma State’s Unmanned Aircraft Flight Station with day one ex-
periment’s flight paths. Blue circle: BC5A flight path; Red Line: BC5B flight path;
Blue diamond: Sonic anemometer; Green arrow: takeoff location and direction.

The UAVs used in these experiments will be referred to as BLUECAT5 A (BC5A)

and BLUECAT5 B (BC5B) for simplicity. BC5A followed a loitering profile pattern

for each flight throughout the day in which the aircraft held a predesignated altitude

for 2.5 minutes while flying in a circle of radius 80 meters before climbing to the

next altitude and repeating. A total of five distinct altitudes were executed for each

profile ranging from a minimum of 20 meters above ground to a maximum altitude of

120 meters for each flight limited due to FAA COA limitations. A maximum of two

profiles were flown per flight and a total of nine flights with BC5A were completed.
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An overview of the flight details of BC5A are listed in table 5.2 below and a three

dimensional depiction of the flight path is displayed in figure 5.9. Throughout the

day the hourly weather data was reported by the NOAA near Stillwater Regional

Airport and is summarized to the nearest flight in table 5.4 below.

Table 5.2: Tuesday, June 28, 2016 Flights Overview for BLUECAT5 A (Profile)

Flight # Takeoff Time (CST) Altitudes (m) # of Profiles

1 6:18 AM (40,60,80,100,120) 2
2 7:21 AM (20,40,60,80,120) 2
3 8:10 AM (20,40,60,80,120) 2
4 9:01 AM (40,60,80,100,120) 1
5 10:00 AM (40,60,80,100,120) 2
6 11:10 AM (40,60,80,100,120) 2
7 1:21 PM (40,60,80,100,120) 2
8 3:08 PM (40,60,80,100,120) 2
9 5:20 PM (40,60,80,100,120) 2

BC5B was flown at a constant altitude of 50 m following a straight line path ap-

proximately parallel to the direction of the wind wind for the duration of the flight.

A total of six flights were completed with the BC5B airframe, however data was only

successfully recovered from the latter four flights. An overview of the flight details of

BC5B are shown in table 5.3 below.

Table 5.3: Tuesday, June 28, 2016 Flights Overview for BLUECAT5 B (Line)

Flight # (BC5A #) Takeoff Time (CST) Altitudes (m) Flight Direction

1 (3) 8:07 AM 50 NE
2 (5) 9:57 AM 50 ENE
3 (6) 11:06 AM 50 NE
4 (8) 3:06 PM 50 NE

In addition to the simultaneous flights of BC5A and BC5B, the sonic anemometer

was used throughout the day. The objective of the sonic anemometer is to provide a

reference with respect to wind speed and direction as well as provide an additional

measurement point at 7.5 m. The tower was fixed in the northeast corner of the
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Table 5.4: NOAA Observed Weather Data on 6/28/2016 near Stillwater, OK

Hour Condition Temperature Humidity Wind (from)

6:00 AM Fair 21.7◦ C 96% RF Northwest at 1.5 m/s
7:00 AM Fair 22.8◦ C 94% RF Northeast at 2.1 m/s
8:00 AM Fair 26.1◦ C 82% RF North at 1.5 m/s
9:00 AM Fair 28.9◦ C 67% RF North at 1.5 m/s
10:00 AM Fair 31.1◦ C 57% RF Variable at 2.6 m/s
11:00 AM Fair 31.7◦ C 55% RF Variable at 2.1 m/s
1:00 PM A few clouds 32.8◦ C 49% RF Northeast at 3.1 m/s
3:00 PM Fair 34.4◦ C 44% RF Northeast at 5.1 m/s
5:00 PM A few clouds 33.3◦ C 44% RF East at 4.6 m/s

UAFS underneath the flightpath of BC5A in order to continue the vertical profile of

the UAV. The sonic anemometer was started at the beginning of the day and was set

to acquire data until stopped manually.

Figure 5.9: Flight paths for 6/28/2016 experiments at OSU UAFS

5.7.2 Wednesday, June 29, 2016

The second set of data presented in this thesis are from flight experiments on June

29, 2016. Flights began at 7:41 AM and concluded at 1:05 PM CST at the Marena

Mesonet in Marena, OK, USA. The Mesonet is described as a world-class environ-
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mental monitoring stations and Oklahoma contains a total of 121 stations spread

across the state. The Mesonet consists of a 10-meter-tall tower containing multiple

instruments to measure the environment every five minutes. The measurements pro-

vide parameters such as barometric pressure, relative humidity, air temperature, wind

speed, and wind direction between 0.75 m and 10 m. Because the Marena Mesonet

site was not a designated flight facility like UAFS, a grass runway was mowed near

the instrument to provide a section for landing. The flight area was similar to that

provided at UAFS but no definitive boundary was defined. A satellite image of the

Marena flight area using Google Earth is shown in figure 5.10 as well as a top-down

view of the flight patterns for each UAV. The flight area elevation varied by ± 2

meters throughout the flight paths. The blue flight path represents BC5A’s loiters,

the red flight path depicts BC5B’s loiter flight path, the blue diamond represents

the location of the sonic anemometer, and the green marker shows the location and

direction of takeoff for each UAV.

Fewer flights were flown in comparison to the Tuesday flight campaign as a result

of rougher landing conditions at the Marena site increasing risk of airframe and in-

strumentation damage during landings. Again, both BLUECAT5 A and BLUECAT5

B were flown simultaneously with BC5B introducing a different flight path for this

experiment. BC5B was flown in a concentric loiter around BC5A’s loiter at a radius

of 100 meters. Each UAV began their respective flight path at opposite end point

altitudes (i.e. BC5A started at 40 m and BC5C started at 120 m) and ascended or

descended through five distinct altitudes before reversing the process and descended

or ascended to their respective starting altitude. The sonic anemometer tower was

again used to provide a reference wind measurement as well as additional data at

7.5 m. Table 5.5 provides information for the flights at the Marena site for both

BLUECAT5 A and BLUECAT5 B and the flight path is illustrated in figure 5.11.

The weather data again was reported by the NOAA near Stillwater Regional Airport
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Figure 5.10: Marena Mesonet location with day two experiment’s flight paths.Blue cir-
cle: BC5A flight path; Red circle: BC5B flight path; Blue diamond: Sonic anemome-
ter; Green arrow: takeoff location and direction.

and is summarized in table 5.6 below.

Table 5.5: Wednesday, June 29, 2016 Flights Overview

Flight # BC5A Takeoff BC5B Takeoff Radius (m) A/B Altitudes

1 7:41 AM N/A 80 / 100 (40,60,80,100,120)
2 9:57 AM 9:58 AM 80 / 100 (40,60,80,100,120)
3 1:09 PM 1:05 PM 80 / 100 (40,60,80,100,120)

5.8 Implementation of Data Reduction

In order to implement the data reduction scheme described in Chapter 2, the inertial

data from the VectorNav INS consisting of the UAV’s velocity, Euler angles, and

Euler angle rates were needed in conjunction with the airspeed and direction given

by the five-hole probe. The five-hole probe data were sampled by the on-board data

acquisition system at 1 kHz where as the VN-300 INS sampled the inertial data at
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Table 5.6: NOAA Observed Weather Data on 6/29/2016 near Stillwater, OK

Hour Condition Temperature Humidity Wind (from)

8:00 AM Fair 22.2◦ C 79% RF Southwest at 3.1 m/s
10:00 AM Fair 26.7◦ C 64% RF South at 3.1 m/s
1:00 PM Fair 31.1◦ C 48% RF South at 4.6 m/s

Figure 5.11: Flight paths for 6/29/2016 experiments at Marena Mesonet. Left: Iso-
metric view of flight path. Right: Top-down view of flight path

200 Hz. In fact, between the four separate data systems that were described earlier

in this section, including the five-hole probe data acquisition system, the Pixhawk

autopilot, the VectorNav VN-300 INS, and the iMet temperature and humidity sensor,

each system was established with varying acquisition rates and start times during the

experiments. The acquisition rates for each system can be found in table 5.7 . Because

of this, the first step to the data reduction is to align the respective data systems time

series and re-sample the data at a consistent rate.

Table 5.7: Acquisition Rates for On-board Instrumentation Systems

System (Component) Acquisition Rate

Pixhawk (6-DoF attitude) 50 Hz
Pixhawk (Airspeed and barometric pressure) 10 Hz

Pixhawk (GPS data) 5 Hz
iMet-XQ 1 Hz

USB-1608FS-Plus data acquisition unit 1000 Hz
VectorNav VN-300 INS 200 Hz

To complete the alignment between the VN-300 INS and the five-hole probe data,
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the Pixhawk autopilot was used as a reference signal to which the other data systems

were aligned to. The Pixhawk’s GPS velocity, measured at 5 Hz, is used to align the

VN-300 INS and the Pixhawk’s air velocity data, measured at 10 Hz, is used to align

the five-hole probe measurements. This is done firstly by assuming the UAV position

and orientation smoothly transitions between sample points in the data log, allowing

for interpolation of the relevant Pixhawk data to 200 Hz using a cubic interpolation

scheme. Similarly the five-hole probe data is re-sampled from 1 kHz to 200 Hz as the

filter used for the pressure transducers was set to a 100 Hz cut-off frequency. With

the data set to identical sample rates, the relative time difference between the start

of each set of time-series data was then determined by cross-correlating the Pixhawk

data with the respective data from the sensors recorded by the DAQ and VN-300

INS. Before correlation between the five-hole probe data and the Pixhawk’s airspeed

data, the voltage output from the central hole on the five-hole probe was converted to

velocity so that the information being correlated represented the same measurement.

Identification of the location of maximum in the cross-correlation allowed determi-

nation of the relative shift between the initiation of sampling between the INS and

five-hole probe and Pixhawk data, consequently aligning the two INS and five-hole

probe data streams. As a result [rUAV (ti)]I , [UUAV (ti)]I , [Ω(ti)]I and the transforma-

tions LIB(ti) and LBA(ti) became known, where ti is the time corresponding to each

discrete sample of the five-hole probe velocity, [Ur(ti)]B, and direction, α(ti) and β(ti).

From this information the wind vector [W ]I was calculated from equation 3.8.
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Chapter 6 Results

This chapter presents results from the profile measurements taken during the Ok-

lahoma test campaign. The results are organized by the day the measurements were

recorded. Section 6.1 presents the results from the flight experiments on Tuesday,

June 28, 2016 and section 6.2 contains the results from the flight tests conducted on

Wednesday, June 29, 2016. For each flight, the altitude dependence of the mean wind

velocity, potential temperature, humidity, and turbulence statistics was investigated.

6.1 Tuesday, June 28, 2016

The flights at Oklahoma State University UAFS occurred on Tuesday, June 28 2016.

A total of nine flights were conducted, four of which were conducted simultaneously

with a second UAV flying a linear flight track, with the profile measuring flights

between 20 and 120 meters altitude. An overview of the flights are provided in tables

5.2 and 5.3. For each flight, two profiles were flown with each profile consisting of

the aircraft loitering in circular orbits at five different altitudes for approximately 2.5

minutes at each altitude. Each atmospheric parameter investigated was then averaged

using the data acquired during the loiter at the specific altitude. In addition to the

profile data, the same atmospheric parameters measured by the second UAV flying

straight line paths at a constant 50 meter altitude were also calculated. Finally a

tower-based sonic anemometer located at the center of the orbit provided the low

altitude data shown in this section. The symbols used to identify the data source

are provided in table 6.1. The mean wind velocity are presented in section 6.1.1.
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Sections 6.1.2 and 6.1.3 contain the profiles of potential temperature and humidity.

The turbulence properties of the atmospheric boundary layer are discussed in section

6.1.4.

Table 6.1: Symbols for 6/28/2016 flight experiments

Symbol Platform Flight Pattern

◦ BC5A Profile 1

� Sonic Anemometer Profile 1

◦ BC5A Profile 2

� Sonic Anemometer Profile 2

� BC5B Lines (50 meter alt)

6.1.1 Mean Wind Velocity

The three components of wind, W (t) = u(t)~e1 + v(t)~e2 +w(t)~e3, determined using

the data reduction scheme previously described in Chapter 3. The wind velocity

profiles were measured from early morning to late afternoon in order to investigate

the development of the boundary layer throughout the day. The mean wind velocity

magnitude from each UAV is plotted for each flight in figure 6.1 and the direction is

displayed in figure 6.2. In addition to the data from the UAVs, the tower equipped

sonic anemometer is also shown, providing the lowest altitude data point for each

profile.

During the initial flight at 6:18 AM a clear boundary layer was observed in the

wind velocity magnitude with the wind velocity increasing in magnitude as altitude

is gained, consistent with the expected boundary layer behavior. The readings from

the sonic anemometer are also consistent with the data acquired by the UAVs, partic-

ularly early in the morning. As the day progresses, a larger shear can be seen between

the tower measurement and the lowest data acquired from the aircraft as the bound-
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Figure 6.1: Mean wind velocity profiles for June 28, 2016 flights. Symbols as in table
6.1

ary layer transitions from stable conditions to those of a convective boundary layer.

As shown later, this results in stronger turbulent flow, which results in enhanced

transport of momentum between the surface and the atmosphere with a correspond-

ing increase in shear near the surface. This transition is due to the heating of the

earth from the rising sun which inverts the temperature gradient in the atmosphere,

producing additional turbulence due to buoyancy-driven convection. In addition to a

larger shear between the two lowest altitudes, the mean wind velocity demonstrates

larger magnitudes as the day progresses and was even found to increase between the

two profiles flown by BC5A during the same flight. For example as observed in flights

1, 3, and 6. In addition, the BC5B aircraft flying results taken at 50 meters agrees

with the data measured by BC5A.
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Figure 6.2: Mean wind direction profiles for June 28, 2016 flights. Symbols as in table
6.1

The wind direction, φ, was calculated based off of the 2-D wind vector (i.e. East-

North) using simple trigonometry by, φ = tan−1 v
u
. The wind directional vector

is thus defined as 0◦ being towards north and thus 180◦ is equal to -180◦. The

direction of the wind changed frequently throughout the day and even multiple times

per flight. During flight 1, the wind was essentially from the north (180◦) for both

profiles. During flight 2, the winds aloft shifted to such that the the direction became

highly altitude dependent, varying between -100◦ at low altitude and 100◦ at 120

m, eventually settling to being from the east (approximately -100◦) during flight 3,

which is where it stayed until the last flight of the day. During this last flight, the

wind direction varied significantly with altitude, with a direction shift of over 180◦

evident. Throughout the day, the UAV acquired data was consistent with those
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measured by the tower-based sonic anemometer. Also, when both BC5A and BC5B

were simultaneously taking data the wind direction was consistent between the two

aircraft.

6.1.2 Potential Temperature

Potential temperature is defined as the temperature that a fluid particle would have

at standard conditions, after correcting for pressure or compressibility effects. More

precisely, it is the temperature that a fluid particle would have if its pressure were

adiabatically brought to 1.0 bar. By using this definition, the temperature at each

measured altitude in the flight experiments is only a measure of heat content and

not correlated to pressure differences brought about by altitude changes. In this way

potential temperature is a useful tool to evaluate the stability conditions imposed by

the atmospheric boundary layer during flight.

To calculate potential temperature, a relationship is established between both the

temperature and pressure recorded by the UAVs allowing an approximation of po-

tential temperature, Θ, to be found from

Θ = T

(
p0
p

)R/Cp

, (6.1)

where T is the absolute temperature measured by the aircraft’s iMet sensor, p0 is

the standard atmospheric pressure (p0 = 1atm = 1bar = 101, 325Pa), p is the local

atmospheric pressure in Pascals recorded by the aircraft’s INS, and R/Cp is the ratio

of the gas constant to specific heat at constant pressure, which is equal to 0.286 for

air. The sonic anemometer’s potential temperature relied on the UAV measurements

of atmospheric pressure at an altitude of about 7.5 meters. The stability of the ABL

can inferred from the potential temperature profiles such that:

• A potential temperature decrease, i.e. dΘ/dz < 0, is taken to be unstable;

62



• A uniform potential temperature, dΘ/dz = 0 is labeled as neutral;

• And a potential temperature increase dΘ/dz > 0 shows a stable atmosphere .

where z represents altitude. The estimated potential temperature and potential tem-

perature variance are shown in figures 6.3 and 6.4 below.

Figure 6.3: Mean potential temperature profiles for June 28, 2016 flights. Symbols
as in table 6.1

Based on the guidelines of atmospheric stability according to potential temperature

discussed above, a stable boundary layer can be observed throughout the first two

flights of the day where the potential temperature increases with altitude. This

phenomenon is commonly referred to as a temperature inversion. The inversion shift

between a stable boundary layer to neutrally stable boundary layer seems to occur

during flight three which started at 8:10 AM. Flights four through nine follow a typical
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temperature profile for a convective surface layer, although for flight 6 it appears that

there might have been a brief period of near-neutral stability. The measurements from

the BC5B aircraft agree extremely well with the potential temperature measurements

provided by BC5A reinforcing confidence in the measurements made by the UAVs.

Although the temperature from the sonic anemometer agreed with the general trend

of the aircraft-based measurements, there are some flights where the anemometer is

±2◦ C from the value which would be extrapolated from the aircraft trend. Note that

this is the stated accuracy of the sonic anemometer’s temperature measurements.

Figure 6.4: Mean potential temperature variance profiles for June 28, 2016 flights.
Symbols as in table 6.1

The mean potential temperature variance is given by Θ′Θ′ where Θ′(t) = Θ(t)−Θ

and the overline indicates a time average. The potential temperature variance profiles

shown in figure 6.4 show a gradual increase in magnitude, once the stability conditions
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transition to convective conditions, with higher magnitudes near the surface. The

largest temperature variances appear to be measured by the sonic anemometer, this

could be due to the value provided by the sonic anemometer being calculated for

the entire flight duration, whereas the values at each flight level are from only a 2.5

minute sample. Temperature fluctuations with time scales longer than 2.5 minutes

would not be captured by BC5A. In addition, the time response of the sensors on

the aircraft and that provided by the sonic anemometer were different, resulting in

different frequency content being included in the provided variances.

6.1.3 Humidity

Another parameter measured during these experiments by the UAVs was humidity,

which describes the moisture content in the air. In this case relative humidity is

being presented, defined as the percentage of water vapor in the air compared to

the amount that the air could hold when saturated. A change in relative humidity

throughout the diurnal cycle is expected as water evaporates from the surface during

the daytime adding moisture to the air, and the changing temperature of the air

changes its maximum moisture content. The results from the June 28 flights are

displayed in the relative humidity profile shown in figure 6.5. The sonic anemometer

was not equipped with a humidity sensor thus, the 7.6 meter altitude data point is

not provided.

The important characteristic to observe in the humidity plots throughout the day

are the slopes of the profiles more so than the magnitudes themselves. The magnitudes

of the relative humidity are affected by temperature, which is changing throughout

the day, leading to the lower magnitude % RH later in the afternoon. However, it can

be seen that when the atmosphere was still stable (i.e. flights 1 and 2) the relative

humidity decreased with height. As the day progressed, and water content from the

surface began to evaporate and add moisture to the air, the relative humidity gradient
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Figure 6.5: Mean relative humidity profiles for June 28, 2016 flights. Symbols as in
table 6.1

evolved to become almost uniform as the boundary layer transitioned to the mixed

convective state. Like the temperature measurements presented in Section 6.1.2, this

change between ABL states seems to occur between the two profiles of flight 3, as

reflected in changes in the gradient of the humidity profile.

6.1.4 Turbulence Properties

While five-hole probes are unable to measure the smallest scales of turbulence

experienced in the atmospheric boundary layer, they are still able to capture most

of the energy containing wavelengths. One quantity which characterizes the forcing

the turbulence exerts on the flow field is the Reynold’s stress tensor ρu′iu
′
j, often

simplified to u′iu
′
j and i, j represent coordinates x, y, or z (East-West, North-South,
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Up-Down). Here, u′i represents the ith component wind velocity fluctuation. Because

the time scales of the turbulence are longer than the 2.5 min time the UAV spends at

a specific altitude, the Reynolds stress is not guaranteed to capture all of turbulence

content. To accommodate the change in wind direction over the course of the flight,

the turbulent kinetic energy per unit mass, k, is used here to quantify the turbulence

intensity as a function of altitude. Note that the vertical wind component and its

turbulence is a major product of the buoyancy force brought about by warming from

the surface. Here, we present a slightly modified turbulent kinetic energy

k∗ =
1

2
(u′2 + v′2). (6.2)

in order to investigate the properties of the z component of velocity, w, separately.

The profiles of k∗ are shown in figure 6.6 and the profiles of normal Reynolds stress

in the z direction w′2 are shown in figure 6.7. The x-z component of the tensor u′w′

is presented in 6.8 as it is connected to the turbulence production. The remaining

components of the Reynolds stress tensor are provided in Appendix C.

Although it is unlikely that all energy content is captured by the statistics, it is

apparent from these figures that the turbulent fluctuations in the atmosphere follow

the trend of the diurnal cycle; they are approximately zero throughout the early

morning periods of stability, and increase in magnitude once the convective conditions

initiate. In the profiles of k∗, it can be seen that as the ABL transitions to a convective

mixed boundary layer the ABL begins to show increasing turbulence content with

increasing altitude. In the neutrally stable boundary layer, the turbulence production

is driven by shear, resulting in the greatest turbulence content near the surface.

During the late afternoon, early evening flights the mixed boundary layer has likely

grown significantly large in respect to the maximum altitude at which the UAVs were

acquiring data. Therefore the step changes in altitude above 50 meters may not
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Figure 6.6: Profiles of k∗ for June 28, 2016 flights. Symbols as in table 6.1

provide a significant enough altitude change to analyze the effects of altitude on the

turbulent kinetic energy. ‘

Like the turbulent kinetic energy the w′2 and u′w′ components of the Reynolds

stress are shown to increase with altitude when the atmospheric boundary layer is in

its mixed state.

Due to its ability to capture longer time scales, the straight line path BC5B turbu-

lent data does not agree with the BC5A profile data and could be due in large part

to BC5B covering much more area and over more diverse topographical features in

comparison to BC5A. Interestingly, the calculations for the z component of Reynolds

stress from BC5B seem to agree well with the profile data. Note that due to the

proximity of the sonic anemometer to the surface, which constrains the velocity fluc-
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Figure 6.7: Profiles of w′2 component of Reynold stress tensor for June 28 flights.
Symbols as in table 6.1

tuations, for all data displayed in this section the sonic anemometer data provides a

consistent low altitude reference point for the turbulence fluctuations.

6.2 Wednesday, June 29, 2016

The objective of the test flights at the Marena Mesonet were focused on the use of

two UAVs simultaneously flying concentric loiters at different radii. This technique

allowed for the measurement of atmospheric properties at two altitudes within the

same profile at the same time. With two altitudes being measured simultaneously,

the impact of time evolution on the measured atmospheric properties can be further

investigated.
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Figure 6.8: Profiles of u′w′ component of Reynold stress tensor for June 28 flights.
Symbols as in table 6.1

A total of three flights were conducted between 40 and 120 meters altitude, two of

which were multi-UAV flights, as outlined in table 5.5. The flights took place from

early morning to early afternoon with less emphasis on investigating the development

of the atmospheric boundary layer and more emphasis on simultaneous profile mea-

surements. The BC5A airframe began its 80 meter radius loiter flight trajectory at 40

meter altitude and increased altitudes at 20 meter steps until it reached 120 meters

before stepping back down to its starting altitude. BC5B mirrored BC5A’s profile

pattern at a 100 meter loiter radius, beginning at 120 meters altitude and descending

to 20 meters before ascending again up to 120 meters. For each profile the aircraft

would loiter at 80 meter altitude simultaneously providing an excellent opportunity

to compare data points at that position. The same atmospheric quantities presented
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in the previous section were investigated for the Marena flight experiment. The sym-

bols used to identify the acquisition platform used to provide the atmospheric data

are outlined in table 6.2.

Table 6.2: Symbols for 6/29/2016 flight experiments

Symbol Platform Flight Pattern

◦ BC5A 80 m radius Profile ↑↓

� Sonic Anemometer 7.6 meter altitude

◦ BC5B 100 m radius Profile ↓↑

6.2.1 Mean Wind Speed and Direction

The three components of wind speed, W (t) were measured for each flight at the

Marena site. The profiles of mean wind velocity magnitude for both BC5A and BC5B

are shown in figure 6.9 with the wind direction shown in figure 6.10. A boundary

layer having increasing velocity with altitude can clearly be observed in the profiles

throughout the day, most predominately shown in the first flight of the day at 7:41

AM which also provides the largest average velocity value measured during the ex-

periments. The wind directions from the Marena site were much more consistent

throughout the day when compared to the measurements from June 28, in which the

wind direction significantly shifted over the course of the day. The latter two flights

were made with two UAVs flying simultaneously. The agreement of the measure-

ments of both wind speed and direction between the two appears to be reasonable,

particularly when the UAVs were simultaneously at similar altitudes (i.e. 60m, 80m,

and 100m). The maximum and minimum altitudes in which the data from the UAVs

differ the most experience a larger time gap between the measurements and thus wind

velocity deviations over time can be seen. The trend-lines from the sonic anemometer

agree extremely well for all flights for both mean wind speed and wind direction.

71



Figure 6.9: Mean wind velocity magnitude profiles measured on June 29, 2016. Sym-
bols as in table 6.2

6.2.2 Potential Temperature and Humidity

The profiles of mean and variance of potential temperature measured by BC5A

and BC5B are shown in figures 6.11 and 6.12 respectively. The potential temperature

progression follows a pattern similar to the June 28 flight experiments in that the

early morning flight shows increasing potential temperature with altitude indicating a

stable boundary layer and flights two and three show decreasing potential temperature

with altitude demonstrating that the ABL is no longer stable and has shifted to

a convective mixed boundary layer. The potential temperature variance from all

flights follows expected trends, increasing in magnitude with decreasing stability. The

disagreement in potential temperature variance between the two UAVs is likely caused

by the relatively slow response time of the iMet temperature sensor. This in addition

to the short loiter time of 2.5 minutes per altitude of the aircrafts introduces error

in the variance readings. The relative humidity profile measurements are displayed
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Figure 6.10: Mean wind direction profiles measured on June 29, 2016. Symbols as in
table 6.2

in figure 6.13. Again the data follows similar trends experienced at the UAFS. The

relative humidity initially decreases with altitude in the early morning and becomes

more uniform as the day progresses indicating that water vapor is being transported

from the ground to the atmosphere. The potential temperature and humidity data

measured between each UAV agree exceptionally well with one another at all altitudes

for each flight. The agreements between the two systems for wind speed, direction,

potential temperature, and humidity help to validate the instrumentation system and

data reduction scheme that has been developed.
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Figure 6.11: Mean potential temperature profiles measured on June 29, 2016. Sym-
bols as in table 6.2

6.2.3 Turbulence Properties

The profiles of k∗ and select components of the Reynolds stress tensor are provided

in figures 6.14-6.16. The k∗ results follow expected trends as the magnitude of the

turbulent energy increased with altitude as well as increasing throughout the day.

The same can be observed of the components of the Reynolds stress tensor. As can

be seen in figure 6.14, flight 2 shows excellent agreement between each UAV while

flight 3 demonstrates great agreement when the UAVs are simultaneously loitering

at the same or similar altitudes. However, while BC5A (blue) is at its maximum

altitude of 120 meters, BC5B (red) is at the minimum altitude of the profile at 20

meters. At these points each UAV measures the maximum turbulent kinetic energy

experienced during the test flight. It would appear that a large gust came through

at the halfway point of the experiment causing these maximums to be recorded and

thus altering the profile from a consistent trend.
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Figure 6.12: Profiles of the variance of potential temperature measured on June 29,
2016. Symbols as in table 6.2

Figure 6.13: Mean relative humidity profiles for June 29, 2016 flights. Symbols as in
table 6.2
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Figure 6.14: Profiles of k∗ measured on June 29, 2016. Symbols as in table 6.2

Figure 6.15: Profiles of w′2 measured on June 29, 2016. Symbols as in table 6.2
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Figure 6.16: Profiles of u′w′ measured on June 29, 2016. Symbols as in table 6.2
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Chapter 7 Conclusions and Future Work

An unmanned aerial vehicle capable of conducting atmospheric boundary layer

turbulence research was developed. This tool to conduct atmospheric research can

alleviate many shortcomings of existing measurement techniques, such as tower-based

point measurements, balloon launches and high flying, manned aircraft. After mul-

tiple previous versions of aircraft produced, the aircraft deemed BLUECAT5 was

tested and two were flown throughout the days of the 28th and 29th of June, 2016 in

Stillwater, Oklahoma. The experiments were conducted with a five-hole multi-hole

pressure probe turbulence instrumentation package capable of capturing the majority

of energy-containing wavelengths within the atmospheric boundary layer. The com-

plex instrumentation package developed for these experiments includes the five-hole

probe, Pitot-static tube, Pixhawk autopilot, VectorNav VN-300 INS, and iMet-XQ

sensor. To be able to investigate data recorded by a highly dynamic airborne platform,

a data reduction scheme was developed.

The data sets provided from the experiments conducted at Oklahoma demonstrate

the ability to use fixed-winged unmanned aerial vehicles to profile the atmospheric

boundary layer. The profiles for mean wind speed and direction, temperature, and

humidity all follow expected boundary layer behavior throughout a typical diurnal

cycle for both days. A sonic anemometer provided a low altitude data point, as well

as a reference point for verification of the aircraft-produced measurements. The data

from the sonic anemometer was consistent with the measurements from the unmanned

aerial vehicles. The turbulence properties measured by the unmanned aerial vehicles
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also show reasonable results, although the effects of the measurement path, particu-

larly the relatively short acquisition time of 2.5 minutes per altitude level needs to be

investigated further. The ability to fly two unmanned aerial vehicles simultaneously

to obtain multi-point measurement was also demonstrated. The agreement between

the measurements made by the two aircraft proved to be acceptable for both days

of flights. The straight line paths flown by one aircraft on day one agreed well with

the profile data measured by the other aircraft throughout the day. On day two,

simultaneous flights of profile patterns were conducted in order to provide simulta-

neous measurements at multiple altitudes. The data from these flights again showed

excellent agreement between the two aircraft, particularly when measuring at similar

altitudes.

With the successful tests of BLUECAT5, further developments and studies can be

taken to improve the abilities of the system and the results measured by the aircraft.

The calibration used for the five-hole probes in these experiments required removing

the probe from the aircraft to mount inside the wind tunnel, which consequently

removes any disturbances that may be caused by the airframe and picked up during

flight experiments. Ideally this calibration would include the aircraft being mounted

inside of the wind tunnel, but the facilities and the University of Kentucky did not

allow for this approach. In addition, the mounting of the sensors through the nose

of the aircraft leave much room for variability and introducing direction alignment

as they can vary each time the instrument is re-mounted. This can be alleviated by

standardizing the mounting procedure as well as developing a secondary calibration

method that utilizes a test flight to calculate the offsets in both angle of attack and

sideslip angle.

There is endless potential in the types of experiments that can be conducted with

unmanned aerial vehicles but some investigation is still required to determine the

optimal flight path to obtain the best statistics. It is desired to increase the length of
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the straight line paths flown to allow for the measurement of even larger scales of tur-

bulent motions that are currently being seen. Also, the profile-measuring flight paths

need to be developed further in order to optimize statistical convergence and altitude

density. Additionally, with the groundwork completed for BLUECAT3 and BLUE-

CAT4, and the feasibility of using hot-wire anemometers for atmospheric boundary

layer turbulence research, these systems can be combined with the knowledge gained

by the work of BLUECAT5. This would allow for a much greater response time in

the turbulence sensors leading to the capture of the smallest scales of turbulence ex-

perienced in the atmospheric boundary layer allowing the measurement of turbulence

dissipation properties.
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Appendices

A Five-hole Probe Calibration

The five-hole probe calibration rig was designed to be implemented into the Uni-

versity of Kentucky’s 0.3 ×0.3 meter wind tunnel. As mentioned in this thesis a series

of α and β angles are applied and five pressures are measured. The calibration rig

executes the necessary pitching and yawing of the probe and consists of two stepping

motors, an 90◦ bent aluminum bracket, a bent steel rod and a 3D printed clamp for

housing the probe. The photos in figures 1, 2, and 3 demonstrate the wind tunnel

set up with the Vexta stepping motors, the five-hole probe, and the fixed pitot-static

probe. Figure 1 shows the entire calibration rig installed into the wind tunnel during

a calibration run. It can be seen that two pieces of extruded aluminum and a long

piece ABS plastic were mounted to the top of the wind tunnel in order to secure the

stepping motors in place. The cylindrical steel rod was extended through the mid-

dle of the second stepper motor inside the wind tunnel and fixed to the 3-D printed

clamp that housed the probe. The top section of the rig can be viewed more closely in

figure 2. Inside the wind tunnel the five-hole probe was installed. It should be noted

that the steel rod was bent so that the tip of the probe could be placed along the

axis of yaw rotation to allow the probe to remain along the central axis of the wind

tunnel. The stationary pitot-static tube was also mounted inside the wind tunnel to

provide a constant reference measurement as well as provide a static pressure line

for the five-hole probe transducers. each port of the five-hole and pitot-static probe

were routed to mpxv7002 differential pressure transducers via 1.75 mm Tygon tubing
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through the top of the wind tunnel. The internal of the wind tunnel can be seen in

figure 3.

Figure 1: Overview of calibration rig setup

The calibration procedure is performed using a preexisting LABVIEW program.

The program controls the motion of the stepping motors and acquires the current

voltage measured by the sensors. Before beginning the calibration a zero velocity

reference needs to be acquired by running the program at a single (0,0) point as the

wind tunnel is off. The program will run through a series of angles determined by a

.txt file created by the user and save the mean voltages as a .txt file for each input

being required over the time designated in the program.

After the calibration is complete the coefficients are calculated using a Matlab code

as explained in Chapter 5. Attention is given to removing any offset imposed by user

error in alignment when installing the probe. This is completed by fitting a surface

on the pressure values from the central hole and calculating the maximum of that

surface as demonstrated in figure 4. An example of the results from a calibration are

displayed in Chapter 5.
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Figure 2: Top of wind tunnel mounting and setup.

Figure 3: Internal wind tunnel setup.
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Figure 4: Angular offset calculation. In this case, the offset for α is 2.1◦ and the offset
for β is 1.8◦
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B Instrumentation Measurement Procedure Checklist

PREFLIGHT

Power on Kangaroo (Username: ukyuav Password: ukyuav11)

Connect HDMI, bluetooth keyboard, and bluetooth mouse to Kangaroo

Connect DAQ to Kangaroo via USB

Connect 5V power supply from DAQ to transducer board

Start DAQami to ensure each transducer is reading 2.5 volts

Connect VectorNav VN-300 to Kangaroo via USB

Note: BC5A receives external power from servo rail on Pixhawk

Start VectorNav software and connect to the VN-300

Verify/set DAQ parameters in GetData txt file

Initiate GetData program to begin acquisition of five-hole probe transducers

Note: Ensure red tags on probes for first 20 seconds for zero readings

Once the green light on the DAQ begins flashing (∼45 seconds)

begin VectorNav acquisition via software

Disconnect HDMI and charger from Kangaroo

Begin iMet acquistion via button on sensor

POSTFLIGHT

Connect HDMI and charger to Kangaroo

Stop VectorNav recording via software

Disconnect VN-300 in software and unplug USB from Kangaroo

If GetData program is still running, kill process in task manager

Disconnect DAQ USB from Kangaroo

Remove/Replace Kangaroo with fully charged unit for data transfer and cooling

Transfer DAQ data from GetData folder (data.daq) to external storage

Convert data of VN-300 within VectorNav software (right click - export data)

Transfer VN-300 data to external storage

Stop acquistion of iMet and transfer sensor data

Remove micro-SD from Pixhawk and transfer data log to external storage

Note: this file is converted to matlab file via mission planner

Ensure all data is stored in same folder and named correctly

Execute post processing to check that data is good
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C Reynolds Stress Tensor

The remaining components of the Reynold’s stress tensor not presented in Chapter

6 are provided.

C.1 Tuesday, June 28, 2016

Figure 5: Profiles of u′2 measured on June 28, 2016. Symbols as in table 6.1
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Figure 6: Profiles of v′2 measured on June 28, 2016. Symbols as in table 6.1
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Figure 7: Profiles of u′v′ measured on June 28, 2016. Symbols as in table 6.1
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Figure 8: Profiles of v′w′ measured on June 28, 2016. Symbols as in table 6.1
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C.2 Wednesday, June 29, 2016

Figure 9: Profiles of u′2 measured on June 29, 2016. Symbols as in table 6.2
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Figure 10: Profiles of v′2 measured on June 29, 2016. Symbols as in table 6.2

Figure 11: Profiles of u′v′ measured on June 29, 2016. Symbols as in table 6.2
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Figure 12: Profiles of v′w′ measured on June 29, 2016. Symbols as in table 6.2
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