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ABSTRACT OF DISSERTATION 
 
 
 
 
 

DEEP BRAIN STIMULATION FOR PARKINSON’S DISEASE:  AN 
INVESTIGATION OF POST-SURGICAL SELF-REGULATION  

AND EXECUTIVE FUNCTIONING 
 

Parkinson’s Disease (PD) is a common neurodegenerative disorder that attacks 
the basal ganglia and contributes to a range of motor, cognitive, and behavioral 
impairments (e.g., tremor, rigidity, and executive dysfunction). This dysfunction may 
contribute to self-regulatory impairment across several domains, including cognitive 
skills, thought processes, and emotion. Deep Brain Stimulation (DBS) is a neurosurgical 
procedure that allows for direct and reversible manipulation of brain activity in patients 
with PD. The procedure is growing in popularity and is commonly used as an adjunct or 
in some instances an alternative to dopaminometic medications. Preliminary studies 
suggest mild executive dysfunction follows DBS but as the literature is in its early stages, 
there is a need to examine further the range of executive deficits and self-regulatory 
impairment observed in PD following DBS.  

 
In the present study, twenty-seven PD patients post-DBS completed a brief 

neuropsychological test battery and provided measures of heart rate variability (HRV). 
Patients also completed questionnaires regarding their ability to self-regulate emotions 
and thought patterns. Scores were compared to the patient’s pre-surgical performance as 
well as to a group of healthy older adults.  

 
Results suggest DBS leads to significant declines in executive function (EF) and 

self-regulation (SR). Patients had significantly worse scores on neuropsychological tests 
of EF (i.e., phonemic fluency, semantic fluency, and working memory) when compared 
to their preoperative performance. Similarly, DBS patients had significantly worse scores 
than controls on measures of EF (i.e., verbal fluency, attention, mental flexibility) and 
verbal memory. With regard to physiological functioning, lower baseline HRV was 
linked to worse EF but fewer impulsive-compulsive behaviors in DBS patients. 
Correlations among measures of theoretically similar constructs (i.e., EF and SR) modest 
and variable, challenging the idea that SR in different domains depends on a common 
resource. 

 



               
 

  

The results of the current study suggest that PD patients are prone to a variety of 
self-regulatory deficits, ranging from subtle to severe. They are likely to experience small 
declines in EF post-DBS that may contribute to these self-regulatory impairments. 
However, this research suggests that both the quantity and quality of impairment varies, 
and that the correlates of these deficits may be different between patients. Clinically, it is 
important for health care professionals working with PD to recognize the presence of 
self-regulatory deficits and to be aware of the potential obstacles that might arise from 
such impairments within a patient’s daily life. 
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Chapter 1: Introduction 

Parkinson’s Disease 

 Parkinson’s Disease (PD) is a common degenerative disorder of the central 

nervous system. It has been estimated that about one million people are affected in the 

United States alone, with about 66,000 new diagnoses made each year (Kowal, Dall, 

Charkabarti, Storm, & Jain, 2013). The disease is characterized by a loss of dopamine-

generating cells in the substantia nigra region of the basal ganglia and the accumulation 

of α-synuclein protein aggregates (Lewy bodies) within neurons. As a result, individuals 

experience a variety of extrapyramidal symptoms including resting tremor, rigidity, 

slowness, gait abnormalities, cognitive impairments, depression, and other 

neurobehavioral concerns (Jankovic, 2008).  

 In general, most attention is paid to the motor symptoms of PD; however, the 

cognitive and psychological issues associated with the disease can be as much or even 

more debilitating for the patient. The most common psychopathology associated with PD 

is depression (Aarsland, Larsen, Lim, Janvin, Karlsen, Tandberg, & Cummings, 1999). A 

recent review of depression prevalence within PD has estimated that about 17% of 

patients with PD meet criteria for Major Depressive Disorder, 13% meet criteria for 

Dysthymia, and 22% endorse subclinical symptoms of depression (Reijnders, Ehrt, 

Weber, Aarsland, & Leentjens, 2008). The cognitive impairments associated with PD are 

diverse, including difficulty with attention (sustained and divided), slowed speed of 

mental processing, trouble with problem-solving and other executive functions, problems 

with memory recall, word-finding and naming abnormalities, as well as difficulties with 

visuospatial abilities (Dubois & Pillon, 1996). Furthermore, these deficits may be related 
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to problematic behaviors and thoughts across domains important to functioning. 

Consequently, there is a need to clarify the prevalence and pattern of cognitive and 

behavioral deficits in PD, which have a sizeable impact not only on the patient’s health, 

but also on his or her sense of wellbeing.  

 Along with the symptoms described above, autonomic dysfunction is quite 

prevalent in Parkinson’s disease. Autonomic dysfunction in Parkinson disease can 

manifest as low blood pressure upon standing (orthostatic hypotension) leading to 

lightheadedness or dizziness, constipation, difficulty swallowing, abnormal sweating, 

urinary leakage, and sexual dysfunction (abnormally decreased or increased interest in 

sex). These autonomic symptoms can precede the classic motor symptoms by years, are 

common in all stages of PD, and negatively impact patient’s quality of life (Visser, 

Marinus, Stiggelbout, & Van Hilten, 2004). Consequently, there is a need to clarify the 

prevalence and understand the effect that various therapeutic modalities have on these 

autonomic symptoms. 

The Basal Ganglia 

 First described by Thomas Willis in the 17th century, the basal ganglia are located 

deep within the brain and consist of five subcortical nuclei: globus pallidus, caudate, 

putamen, substantia nigra, and the subthalamic nucleus (Leisman, Melillo, & Carrick, 

2013). The nuclei of the basal ganglia have long been known to serve motor functions; 

within the extrapyramidal motor system, they subserve motor refinement. When these 

areas are damaged, motor dysfunction such as tremors, dyskinesias, or rigidity emerges 

(Bhatia & Marsden, 1994). Within the past several decades, growing evidence has led 

researchers to conceptualize communication between the cortex and the basal ganglia in 
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terms of multiple (closed) parallel cortico-striato-thalamocortical loops (Alexander, 

Delong, & Strick, 1986; Middleton & Strick, 2000; Thorn, Atallah, Howe, & Graybiel, 

2010). These circuits originate in the cortex, project to the basal ganglia (striatum and 

thalamus) and return back to the cortex. The impairments seen with motor functioning in 

PD are consequences of disruptions to these parallel loops. 

 These loops can be further divided into two pathways based on their effects on 

movement: the direct pathway (stimulates movement) and the indirect pathway (inhibits 

movement; Middleton & Strick, 2000). In the direct pathway, the motor cortex and the 

substantia nigra pars compacta (SNc, via the D1 Dopamine receptor) excite the striatum. 

When the striatum is excited, it sends inhibitory signals to the globus pallidus internla 

(GPi) and substantia nigra pars reticulate (SNr). At rest, GPi and SNr inhibit the 

thalamus, but when the GPi and SNr are inhibited, the thalamus is able to freely send 

excitatory signals to the motor cortex, thereby increasing movement. 

 In the indirect pathway, the motor cortex excites the striatum while the SNc (via 

D2 dopamine) inhibits the striatum. This, in turn, inhibits the globus pallidus external 

(GPe). When the GPe is inhibited, there is less inhibition of the subthalamic nucleus 

(STN) resulting in excitation of the GPi. As mentioned above, GPi sends inhibitory 

signals to the thalamus, so when it is excited, there is less excitation of the motor cortex 

and therefore, less movement. These two pathways provide a balance between the 

competing excitatory and inhibitory impulses; imbalance between the direct and indirect 

pathways results in dysfunction.  

In addition to the two main basal ganglia pathways, recent research has 

demonstrated that several cortical areas have excitatory projections directly to the STN 
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(Jahanshahi, Obeso, Rothwell & Obeso, 2015). These cortical areas include the motor 

cortex, supplementary motor area, premotor cortex, anterior cingulate cortex, and the 

dorsolateral prefrontal cortex, among others (Kitai & Deniau, 1981; Hartmann-von 

Monakow, Akert, & Kiinzle, 1978). Together these pathways are known as the 

hyperdirect pathway, as it is the quickest action output route (Nambu, Tokuno, & Takada, 

2002).  

 As mentioned earlier, PD results from the loss of dopaminergic neurons in the 

SNc. Because the nigrostriatal pathway excites the direct pathway and inhibits the 

indirect pathway, the loss of this DA input tips the balance in favor of activity in the 

indirect pathway. Thus, the GPi neurons are abnormally active, keeping the thalamic 

neurons inhibited. Without the thalamic input, the motor cortex neurons are not excited, 

and the motor system is less able to execute motor plans in response to the patient’s 

volition (i.e., bradykinesia, rigidity). 

 Although these loops were originally studied within motor systems, Alexander, 

Delong, and Strick (1986) suggested the basal ganglia serves just as important a role with 

cognitive and affective abilities as it does with motor abilities. They hypothesized that the 

basal ganglia targets premotor and prefrontal cortices along with the primary motor 

cortex, thereby serving to “fine-tune” cognitive abilities along with motor actions. 

Damage to particular circuits within the basal ganglia disrupts specific cognitive abilities 

subserved by those circuits. For example, when the anterior cingulate circuit, which 

connects the cingulate cortex to the striatum, is damaged, individuals have difficulty with 

motivation and procedural learning; damage to the dorsolateral prefrontal circuit 

(connecting the prefrontal cortex to the caudate, globus pallidus interna, and substantia 
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nigra) results in impaired higher-order executive functions (Leisman, Melillo, & Carrick, 

2013). The model of cortico-striato-thalamocortical (CSTC) circuits has begun to provide 

an integrated explanation for the non-motor symptoms of Parkinson’s disease and the 

neurocognitive side effects attributed to deep brain stimulation (DBS) (discussed below). 

Executive Functions 

 Despite the range of cognition affected by the disease, executive dysfunction 

seems to be the most profound impairment (Kudlicka, Clare, & Hindle, 2011). The term 

executive functions (EF) typically refers to a “wide range of cognitive processes and 

behavioral competencies which include verbal reasoning, problem-solving, planning, 

sequencing, the ability to sustain attention, resistance to interference, utilization of 

feedback, multi-tasking, cognitive flexibility, and the ability to deal with novelty” (Chan, 

Shum, Toulopoulou, & Chen, 2008, p. 201). Although there is general agreement that EF 

is a heterogenous concept (Godefroy, Cabaret, Petit-Chenal, Pruvo, & Rousseaux, 1999), 

there is less agreement concerning the best way to break down ‘executive functions’ into 

sub-constructs (e.g., initiating, inhibiting, switching; Alvarez & Emory, 2006).  

 In the absence of a fully agreed upon conceptualization (Aron, 2008), studying EF 

can be difficult. This theoretical uncertainty contributes to another difficulty with 

research on EF- “the lack of a clear gold standard measure against which putative EF 

measures can be compared” (Royall, Lauterbach, Cummings, Reeve, Rummans, Kaufer, 

LaFrance, & Coffey, 2002, p. 381). Although ‘executive’ and ‘frontal lobe’ tasks are 

often applied interchangeably, the use of executive function tasks as ‘frontal lobe 

indicators’ is not warranted by current research (Alvarez & Emory, 2006). While the 

frontal lobes may be involved in EF, other brain regions are also necessary, including 
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subcortical structures (e.g., basal ganglia). Furthermore, most research indicates that 

measures of EF have low reliability and low intercorrelations (Alvarez & Emory, 2006; 

Miyake, Friedman, Emerson, Witzki, Howerter, & Wagner, 2000). However, this may 

not be surprising when comparing such heterogeneous sub-constructs.  

 Given the variability within skills labeled as EF, clinically, it is useful to specify 

the individual EF abilities involved, especially in clinical conditions such as PD. A recent 

meta-analysis by Kudlicka and colleagues (2011) examined the pattern of executive 

dysfunction of patients with Parkinson’s disease compared to healthy controls. Moderate 

deleterious effects were seen for phonemic fluency (e.g., FAS), working memory (e.g., 

Digit Span Backward), concept formation (e.g., WCST), and inhibition of unwanted 

responses (e.g., Stroop Test). Large effects were found for phonemic fluency (e.g., 

Animals), alternating fluency, and mental flexibility/divided attention (e.g., TMT B).  

Executive Functions and Self-Regulation 

 Despite the controversial nature of EF as a cohesive neuropsychological domain, 

there is general agreement, that EF broadly defined “control and regulate thought and 

action” (Friedman, Miyake, Corley, Young, DeFries, & Hewitt, 2006, p. 172), “enable us 

to formulate goals and plans” (Aron, 2008, p. 124), and are important for "independent 

and responsible social behavior” (Lezak, Howieson, Bigler, & Tranel, 2012, p. 30). 

Similarly, the construct of self-regulation (SR) refers to the ability to control or override 

one’s thoughts, emotions, impulses, and behavior and refers to processes that facilitate 

adaptive behavior and flexibility essential for accomplishing goals (Gailliot et al., 2007). 

Both EF and SR are limited resources and can be depleted, leading to difficulty in 

controlling and regulating behavior and trouble functioning in everyday life (Baumeister, 
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Bratslavsky, Muraven, & Tice, 1998; Gailliot et al., 2007; Marios & Ivanhoff, 2005; 

Miyake, Friedman, Emerson, Witzki, Howerter, & Wagner, 2000; Schmeichel, 2007). 

Conversely, both can also be strengthened or enhanced through practice (Davidson, 

Zacks, & Williams, 2003; Muraven, Baumeister, & Tice, 1999; Oaten & Cheng, 2006). 

High SR and executive control have positive outcomes (e.g., more effective coping skills, 

superior academic performance, less susceptibility to substance abuse, and reduced 

aggression; Gailliot et al., 2007). 

 Although there are theoretical parallels between EF and SR (Kaplan & Berman, 

2010), they are typically measured in different ways. EF often refers to the unpracticed 

ability to execute cognitive processes (as measured by standard neuropsychological 

tests). SR, on the other hand, is a practiced function that is better understood when 

interpreted within the context of real-life situations. Thus, EF likely contributes to the 

ability to self-regulate in diverse situations. Hence, Schmeichel (2007) proposes that 

depleted self-regulatory resources may more accurately be considered examples of 

reduced resources for executive control. 

 The ability to self-regulate may be heavily dependent on EF, and vice versa. 

People with PD who have poor EF may demonstrate decreased capacity for self-

regulation in multiple areas, including cognition. The effects of self-regulatory 

impairment may also have a significant impact on everyday life. Patients with PD with 

executive impairment have been compared to patients with damage to their frontal lobes 

in that they may perform well on many standardized tests and show no obvious signs in 

structured settings but fail to perform well in everyday situations (Rogers, Sahakian, 
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Hodges, Polkey, Kennard, & Robbins, 1998; Owen, Roberts, Hodges, Summers, Polkey, 

& Robbins, 1993).  

Central Autonomic Network and Physiological Self-Regulation 

Autonomic resources may be important components of the capacity for executive 

control and SR, and may be especially vital for people with PD. Benarroch (1993) 

identified the Central Autonomic Network (CAN), a set of functionally reciprocal neural 

structures that integrate autonomic, neuroendocrine, and behavioral responses with 

emotion, attention, and other executive functions, thereby linking executive and self-

regulatory functions of the cortex to parasympathetic control of the heart. Thayer & Lane 

(2000, 2009) proposed a neurovisceral integration model suggesting “individual 

differences in vagal function (as indexed by HRV) at rest reflect the activity of a flexible 

and integrative neural network and allows the organism to effectively organize emotional, 

cognitive, and behavioral responses in the service of goal-directed behavior and 

adaptation” (Gillie & Thayer, 2014, p. 1). 

The CAN is thought to be the link between the autonomic nervous system (ANS) 

and brain areas associated with higher order cognitive functioning (e.g., prefrontal 

cortex). It allows the prefrontal cortex to exert inhibitory control over subcortical 

structures to generate cognitive, behavioral, and physiological responses that support 

goal-directed behavior and adaptability. The output of this inhibitory circuit extends to 

autonomic inputs to the heart, including the vagus nerve. When the prefrontal cortex 

exerts inhibitory control, vagal tone increases leading to increased heart rate variability 

(HRV), the physiological phenomenon of variation in beat-to-beat intervals. For this 

reason, examining the parasympathetic influence on the heart via HRV can provide an 
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index of an individual’s capacity to effectively function in a complex and challenging 

environment and HRV can serve as an important physiological correlate of self-

regulatory capacity and executive functioning (Thayer & Lane, 2009).  

Supporting this theory, HRV has been associated with prefrontal activity and SR 

(e.g., inhibition, cognitive flexibility, delayed response). Specifically, low resting HRV 

may correlate with decreased prefrontal activation, impaired EF, disrupted emotion 

modulation (i.e., enhanced/prolonged threat response), and perseverative thoughts 

(Brosschot, Gerin, & Thayer, 2006; Thayer, 2007). Studies using pharmacological and 

neuroimaging techniques demonstrate that prefrontal cortical activity is associated with 

vagally mediated HRV (Lane, McRae, Reiman, Chen, Ahern, & Thayer, 2009; Thayer, 

Ahs, Fredrikson, Sollers, & Wagner, 2012). HRV is also associated with SR; a growing 

body of research has found that individuals with higher levels of HRV at rest demonstrate 

enhanced performance on cognitive control tasks that require working memory, 

attentional modulation, and inhibition (Hansen et al., 2003; Hansen et al., 2004; Park and 

Thayer, 2014). Low resting HRV also predicts less persistence on tasks requiring self-

regulatory effort (Segerstrom & Solberg Nes, 2007) and decreased HRV was found to be 

associated with stress and worry after controlling for personality, mood, and demographic 

factors (Pieper, Brosschot, Van der Leeden, & Thayer, 2007). Thus, HRV is thought to 

“reflect the ability to allocate and maintain attention, which are crucial to the control of 

emotion and performance” (Demaree, Pu, Robinson, Schmeichel, & Everhart, 2006, p. 

162). 

 There is converging evidence of impaired autonomic functions in PD. Patients 

with PD have been shown to have impaired sympathetically mediated neurocirculatory 
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innervation (Haensch, Herch, Jorg, & Isenmann, 2009) resulting in decreased heart rate 

variability (Haapaniemi, Pursianinen, Korpelainen, Hulkuri, Sotaniemi, & Myllyla, 

2001). This sympathovagal imbalance is also correlated with disease severity. Individuals 

who have more severe PD demonstrate more severe autonomic dysfunction (e.g., 

decreased HRV, orthostatic hypotension).  

 There is evidence to suggest that SR and EF are overlapping and related 

constructs that have at least one common autonomic marker (e.g., HRV). In fact, Brook 

and Julius (2000) propose that autonomic imbalance is related to a range of 

cardiovascular abnormalities. These cardiovascular factors associated with SR may be 

particularly important for people with PD. It could be true that the relationships between 

physiological factors (e.g., HRV) and SR are interactive. People with PD have impaired 

cortical functions, which may compromise both HRV and self-regulation, thereby 

resulting in the range of self-regulatory deficits in PD. Successful self-regulation and 

executive functions rely on autonomic activity, and there is a need to study these 

physiological resources in relation to other forms of self-regulation.  

Deep Brain Stimulation 

 Despite the previously mentioned neurocognitive, psychological, and autonomic 

dysfunction that commonly occur with PD, the majority of treatment options are focused 

on motor symptoms. The most common approach for treating the motor abnormalities 

associated with PD is administering dopaminometic medications and other 

pharmacologic agents (Olanow & Koller, 1998). However, patients often experience 

unpleasant side effects from the medications and/or require increasing doses as the 

disease progresses. In order to pursue an alternative and hopefully more effective 
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treatment, researchers have sought to find a nonpharmacologic surgical option. Over the 

past few decades, deep brain stimulation (DBS), specifically targeting the basal ganglia, 

has gained popularity in both clinical and research settings as a treatment option for 

idiopathic Parkinson’s disease (Sironi, 2011). 

 DBS is a neurosurgical procedure involving the implantation of a pacemaker in 

the brain that sends electrical impulses to specific target sites (Benabid, Chabardes, 

Mitrofanis, & Pollak, 2009). DBS allows for direct and reversible manipulation of brain 

activity in a controlled manner. The most common targets for DBS within Parkinson’s 

disease are the subthalamic nucleus (STN) and globus pallidus pars interna (GPi) (Pollak, 

Fraix, Krack, Moro, Mendes, Chabardes, Koudsie, & Benabid, 2002).   

 Although the exact mechanism for the effectiveness of DBS is unknown, several 

theories have been proposed. One theory suggests that DBS acts by reversibly inhibiting 

the target site, as the effects are similar to those from ablation (removal of brain tissue; 

Ashby & Rothwell, 1999). In support of this theory, many studies have shown that high-

frequency stimulation increases the excitatory response from the implanted site which 

then has an inhibitory downstream effect (Hashimoto, Elder, Okun, Patrick, & Vitek, 

2003; Windels, Bruet, Popuard, Feuerstein, Bertrand, & Savasta, 2003). For example, 

GPi stimulation may activate GPe, which results in increased GABA signals sent back to 

GPi, thereby inhibiting GPi (Benazzouz & Hallett). A second theory suggests DBS is 

effective because it blocks the depolarization of downstream myelinated axons, and a 

third theory postulates that DBS works through “neuronal jamming”, whereby activation 

of a particular target site results in a surge of incoherent messages being sent to 

downstream nuclei, which are then ignored (Ashby, Kim, Kumar, Lang & Lozano, 1999; 
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Kern & Kumar, 2007). Further research is needed to better understand the mechanism of 

action for DBS.  

 Randomized controlled trials have found that stimulating the STN or GPi is 

equally effective at improving motor symptoms and dyskinesias (Anderson, Burchiel, 

Hogarth, Favre, & Hammerstad, 2005; Follett et al., 2010). However, there has been 

some discrepancy as to whether DBS’ impact on cognitive, behavioral, and mood 

symptoms differs between target sites. A recent meta-analysis of the cognitive sequelae 

of deep brain stimulation for treatment of Parkinson’s disease demonstrated that there are 

small declines in psychomotor speed, learning & memory, attention/concentration, 

executive functions, and overall cognition, and medium declines in verbal fluency 

following DBS of the STN (STN-DBS; Combs et al., 2015). Fewer cognitive declines 

were seen following DBS of the GPi (GPi-DBS), however, small effects were still found 

for worsened attention/concentration and verbal fluency. The results suggested that 

broadly speaking, GPi-DBS may be safer than STN-DBS in terms of its effect on 

cognition.  

 However, Combs et al. (2015) expressed concern over the relatively low number 

of studies available to examine the overall cognitive effect of GPi-DBS (k = 9). Since 

there were few studies available, it is less likely that the estimated effects found for GPi-

DBS were representative of the “true effect.” As such, more studies are needed to fully 

understand the neurocognitive profile associated with GPi-DBS.   

Deep Brain Stimulation and Heart Rate Variability 

 As described above, HRV is often used as a proxy for autonomic control and 

studies have shown suppressed HRV in both untreated and treated patients with PD 
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(Haapaniemi, Purianinen, Korpelainen, Huikuri, Sotaniemi, & Myllyla, 2001; Devos, 

Kroumova, Bordet, Vodougnon, Guieu, Libersa, & Destee, 2003). Although there has 

been substantial investigation of the effects of DBS on both the motor and cognitive 

symptoms in PD, less research is available investigating the impact on autonomic control. 

Preliminary studies suggest that although DBS significantly decreases motor disability, it 

has no significant effect on autonomic function (Azevedo, Santos, Frietas, Rosas, Gago, 

Garrett, & Rosengarten, 2010) and more specifically, no effect on HRV (Ludwig et al, 

2007; Erola, Heikkinen, Tuominen, Juolasmaa, & Myllyla, 2006). However, these studies 

have only included DBS with STN as the target site.  

 Given Thayer and Lane’s (2000, 2009) compelling theory that parasympathetic 

influence on the heart (i.e. HRV) is reflective of the prefrontal cortex’s ability  to self-

regulate, declines in self-regulation after DBS ought to be related to declines in HRV. 

Therefore, the preliminary findings that changes in executive dysfunction are 

independent from changes in HRV are surprising.  However, current research has not yet 

examined this phenomenon within the context of Thayer and Lane’s (2000, 2009) model, 

nor in the context of GPi-DBS, and more research is necessary to better understand this 

theory in the context of a disease state, such as PD. 

Purpose of the Present Study 

 Given that there is no cure for PD, and that treatment options are limited in scope 

and effectiveness, palliative care in this disease is of utmost importance and should 

incorporate areas that patients report are most critical to their well being (e.g., 

psychological). Furthermore, there is a need to examine the full range of deficits 

observed in PD following DBS as the consequences of even “mild” deficits may be quite 
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large and may reflect an underlying pattern of self-regulatory deficits across areas 

important to functioning. The present study employed neurocognitive, psychological, and 

physiological measures to investigate the effect of DBS on SR and EF in patients with 

PD compared to healthy education/gender-matched controls. Based on the previous 

literature the following hypotheses were tested: 

1. There will be individual differences in EF and SR capacity. Specifically, 

examining the distribution of cognitive and self-regulatory impairments (with 

regard to emotions and thought processes) in people with PD before and after 

DBS will reveal continuous distributions of scores on measures of SR and EF, 

supporting the idea that deficits exist on a spectrum, rather than being discrete 

disease entities.  

2. The second aim of this study was to establish the construct validity of EF and 

SR by examining relationships between reports of SR mediated functions in 

various domains (e.g., social regulation, emotional regulation, and regulation 

of thought processes) and executive control.  We expected convergence 

among measures of EF (e.g., COWA, Animals, TMT, and IGT, see below). 

Likewise, it was hypothesized that there will be moderate to high positive 

correlations among different forms of SR (e.g., emotional, social, thought 

processes).  

3. There will be statistical evidence of overlap between EF and SR, given the 

theoretical linkage of constructs. Based on prior research, we expect that EF 

will predict self-regulatory capacity, even when controlling for potentially 
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confounding variables (e.g., intelligence, duration of disease, and time of 

testing). 

4. SR and EF will correlate with physiological measures (i.e., HRV), such that 

HRV will be lowest in those patients reporting more self-regulatory and 

executive deficits.   

5. Given the common cognitive, emotional, and autonomic concerns in PD, it 

was predicted that the DBS group would demonstrate worse scores on EF, 

memory, depression, and HRV when compared to healthy older adults. 

6. Lastly, we hypothesized there would be a decline in EF following DBS, such 

that participants would have lower scores on EF measures post-DBS when 

compared to their Pre-DBS scores.   

 



 

Chapter 2: Methods 

Participants 

 Twenty-seven patients with Parkinson’s disease who have an implanted deep 

brain stimulation device [five implanted in subthalamic nucleus (STN-DBS) and twenty-

two implanted in globus pallidus internus (GPi-DBS)] and a baseline pre-surgical 

neuropsychological evaluation available were enrolled in the study. Patient groups were 

recruited from the University of Kentucky’s Deep Brain Stimulation Clinic. Participants 

were informed of the study through recruitment fliers, calls from clinic staff, and letters 

sent out by the patient’s neurosurgeon. Participants were excluded from the study if they 

had an implanted cardiac pacemaker, as the pacemaker would interfere with accurate 

HRV measurement. Twenty-seven education and gender-matched controls from an 

archival longitudinal study of older adults (study protocol described previously in 

Segerstrom, Roach, Evans, & Schipper, 2010) were used as a comparison group to 

evaluate differences between the patient population and healthy controls. Based on power 

analysis, this sample size provided adequate power (.80) to detect a large effect (d = .70) 

of impaired executive function in patients with PD. Demographic characteristics of the 

sample are provided in Table 1. The sample was representative of the population of 

individuals diagnosed with PD with regard to gender and age. However, the healthy older 

adult control group was significantly older than the DBS group. Ultimately, age was not 

controlled for in the present study as to allow for a more conservative comparison 

between the two groups on EF and SR measures. Because neurocognitive and autonomic 

decline is expected as people age (Salthouse, 2009; Pfeifer, Weinberg, Cook, Best, 

Reenan, & Halter, 1983), having an older control group would make it more difficult to 
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detect any potential effects. Additionally, there was a significantly greater amount of time 

between the two testing sessions for DBS participants compared to HC. However, months 

between testing sessions did not significantly correlate with any EF or SR variable, so 

this was not a covariate in analyses. Table 2 depicts the demographic characteristics for 

PD specific variables in the DBS group. 

Procedure 

 Healthy control group. The older adult control group was made up of 

individuals between the ages of 60-95 who were assessed as part of a separate ongoing 

longitudinal study, the Thought, Stress, and Immunity Study (TSI) from August 2012-

August 2014 (PI: Suzanne C. Segerstrom, Ph.D). As part of that study, 

neuropsychological and psychological evaluations were conducted on 147 healthy, older 

adults in Lexington, KY. Participants completed two-hour long visits, once every six 

months for ten years. During these visits they were administered a series of cognitive 

tasks as well as psychological questionnaires assessing their level of stress, emotional 

experience, and emotional expression by a clinical psychology doctoral student. All 

participants were English-speakers, over the age of 60, living in Lexington, KY, in good 

health and not being treated for any chronic medical or neurological conditions. The 

twenty-seven TSI participants included in the present study were matched to the DBS 

patient group on gender and education parameters. Furthermore, to control for potential 

practice effects, only data from the first two visits of the longitudinal study were used in 

the present sample. 

 Deep Brain Stimulation group. The DBS group was recruited from patients of 

Dr. Craig van Horne who previously underwent surgery for DBS implantation at the 
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Kentucky Neuroscience Institute (KNI) from January 2012 and December 2015. All 

patients had been referred for comprehensive neuropsychological testing prior to surgery 

by the attending neurosurgeon in order to evaluate the appropriateness of the surgery.  

 Baseline visit. Assessments included a standardized clinical interview with a 

licensed clinical neuropsychologist (Dr. Amelia Anderson-Mooney) and administration 

of a neuropsychological battery by a licensed psychometrist. The pre-surgical test battery 

included the following primary neuropsychological measures investigated in the current 

study: Trail Making Test A&B  (TMT A & TMT B), FAS, Animals, Weschler Adult 

Intelligence Scale 4th edition Digit Span subtest (WAIS-IV Digit Span), and Geriatric 

Depression Scale (GDS). Several other measures were included as part of the 

comprehensive presurgical battery but will not be discussed as they were not included in 

the follow-up test battery.  

 Follow up visit. Approximately 6 to 18 mo. following DBS surgery, patients were 

mailed a letter from their neurosurgeon informing them of the current study and 

providing a means to contact the primary author if they were interested in participating. 

Approximately one month after the letters were mailed out, a clinic staff member 

contacted eligible patients and asked if they would be interested in speaking with the 

primary author to discuss the study. The primary author then contacted all interested 

patients and discussed the study procedures, compensation, and rationale behind the 

research. To be eligible for participation, the following criteria were met: diagnosis of 

idiopathic Parkinson’s disease, having an active, implanted DBS in either STN or GPi, 

PD diagnosis greater than two years prior to participation, and fluency in English. 

Participants who were eligible and interested in participating scheduled a visit to come to 
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campus to complete study procedures. All attempts were made to schedule patients on the 

same day as other DBS-related appointments in order to allow for the most up-to-date 

medical information and to reduce the burden of traveling to and from campus. See 

Figure 1 for a flow chart depicting participant recruitment. The study took place in a 

quiet, isolated room within the Psychology Department building, Kastle Hall, and 

participants were allowed to park in a reserved research spot directly outside of the 

building to minimize any physical exertion. Participants were compensated $20 cash for 

their time.  

 When a participant first arrived for the study, he or she read a combined 

HIPAA/Consent form to allow the primary researcher (first author) to obtain relevant 

medical information from electronic medical records. Participants were then administered 

University of California, San Diego Brief Assessment of Capacity to Consent (UBACC) 

to assess their capacity to consent to participate. If the participant was able to sufficiently 

explain procedures and their rights as a study volunteer, he or she signed the combined 

HIPAA/Consent form. Next, participants completed a demographic questionnaire. Once 

completed, participants had their heart rate variability measured via a mobile EKG unit 

(described below). While the EKG unit was connected, the participants were asked to fill 

out the Behavioral Rating Inventory of Executive Functions (BRIEF) questionnaire 

silently (as talking can interfere with the EKG reading). Following this, a clinical 

psychology graduate student administered all other study measures (Geriatric Depression 

Scale, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s disease, Rey 

Auditory Verbal Learning Task, Trail Making Test, Controlled Oral Word Association 

Test, Animals, WAIS-IV Digit Span Subtest, and the Iowa Gambling Task) in a 
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randomized order. All together, these procedures took approximately 90 minutes. 

Measures 

 Descriptive Measures 

Demographics. As noted earlier, demographic information (e.g., age, education, 

marital status, gender, and ethnicity) was obtained from patients. Additionally, patients 

provided disease-related information (e.g., date of diagnosis, date of DBS) that was later 

verified in the individual’s medical record. All other pertinent medical information was 

obtained from the electronic medical record upon the patient’s written consent (e.g., pre-

surgical motor function from the Unified Parkinson’s Disease Rating Scale (UPDRS), 

medication usage before and after DBS to calculate levodopa equivalency daily dose 

(LEDD), DBS stimulation settings, results from pre-surgical neuropsychological testing).  

Capacity to consent. Given the potential for significant cognitive impairment in 

patients with PD, it was important to assess the prospective participant’s ability to 

consent to being involved in the research study. All participants were administered the 

University of California, San Diego Brief Assessment of Capacity to Consent (UBACC; 

Jeste, Palmer, Appelbaum, et al., 2007). The UBACC is a 10-item practical instrument 

used to assess decision-making capacity. After the participant reviewed the consent form 

in detail, the research assistant explains that he or she would ask a few brief questions 

about the study, and proceeded with the UBACC items. Participants were given a copy of 

the consent form, so they did not have to rely solely on their ability to memorize the 

protocol details when giving consent. 
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Self-Regulation and Affective Measures 

 Behavioral Rating Inventory of Executive Functions (BRIEF; Roth, Isquith, 

& Gioia, 2005). The BRIEF is a 75-item measure of executive regulation of behavior that 

consists of nine non-overlapping empirically derived clinical scales that measure various 

aspects of executive functioning as applied to daily life (Inhibit, Self-Monitor, 

Plan/Organize, Shift, Initiate, Task Monitor, Emotional Control, Working Memory, 

Organization of Materials), that form two broader indices of behavioral regulation and 

meta-cognition. Both the scales and indexes have adequate internal consistency, ranging 

from .73-.90 for clinical scales and .93-.96 for indexes on the self-report form and .80-.93 

for clinical scales and .95-.98 for indexes on the informant-report form. The two broad 

indices were used in the current study as measures of self-reported global regulation with 

higher scores indicating worse regulation. The internal consistence of this scale in the 

current sample was .94 for DBS patients and .96 for healthy older adult controls.  

 Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease- 

Rating Scale (QUIP-RS; Weintraub, Mamikonyan, Papay, Shea, Xie, & Siderowf, 2012). 

The QUIP is a 28-item, self-report rating scale of impulse control symptoms in PD. The 

QUIP was designed with the goal of having a brief, self-completed screening instrument 

for use in clinical care and clinical research that covered the range of impulsive-

compulsive behaviors reported in PD. In the current study, the QUIP served as an 

indication of clinically related self-regulation deficits. The internal consistency of this 

scale in the current sample was .93 for DBS patients. 

Geriatric Depression Scale (GDS; Yesavage, Brink, Rose, Lum, Huang, Adey, & 

Leirer, 1982). The GDS is a 30-item self-report questionnaire measuring depression in 
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older adults. The GDS is often administered to individuals with Parkinson’s disease (even 

those younger in age) as it does not contain the physiological symptoms that other 

depression inventories often include. This is important because the physiological 

symptoms common in depression are also seen in non-depressed patients with PD, and 

may cause over-diagnosis of depression in this group (Hoogendijk, Sommer, Tissingh, 

Deeg, & Wolters, 1998). The GDS is a reliable and valid measure of geriatric depression. 

The scale has high degree of internal consistency (Cronbach’s α = 0.94; Split-half 

reliability r = 0.94) and strong one-week test-retest reliability (r = 0.85). Evidence for the 

validity of the GDS comes from comparisons of the mean scores associated with subjects 

classified as normal, mildly depressed, or severely depressed (based on Research 

Diagnostic Criteria) as well strong correlations found between GDS and other valid 

measures of depression like the Zung Self-Rating Depression Scale (r = 0.84) and the 

Hamilton Rating Scale for Depression (r = 0.83). The internal consistency of this scale in 

the current sample was .88 for DBS patients. 

Neuropsychological Measures 

 Rey Auditory Verbal Learning Test (RAVLT; Schmidt, 1996) The RAVLT is a 

list-learning measure of verbal learning and memory. It consists of a 15-item word list 

that is presented five times, always in the same order, with a test of recall immediately 

following each trial. The measure also includes a test of short-delay recall, long-delay 

recall, and recognition. The RAVLT total score and delayed recall scores have high test-

retest reliability and are sensitive to brain dysfunction in a variety of neurological 

conditions (Strauss, Sherman, & Spreen, 2006). RAVLT raw scores were corrected based 

on age using meta-norms provided in the RAVLT test manual.  
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 Trail Making Test A & B (TMT A & TMT B; Tombaugh, 2004) The TMT is one 

of the most well validated and widely utilized assessments of scanning and visuomotor 

tracking, divided attention, and cognitive flexibility (Lezak, Howeison, Bigler, & Tranel, 

2012). The TMT is broken into two parts, Part A and Part B. TMT Part A is thought to 

tap into an individual’s motor speed, visuo-motor tracking, and scanning abilities, 

whereas Part B incorporates a component of executive functioning (divided attention and 

task switching). The TMT is extremely popular among clinicians and researchers due to 

its high sensitivity to the presence of cognitive impairment. In addition, several studies 

document the effectiveness of the TMT as a predictor of instrumental activities of daily 

living (iADLs) among the elderly (Cahn-Weiner, Boyle, & Malloy, 2002) and of 

functional outcome following acquired brain injury (Acker & Davis, 1989; Ross, Millis, 

& Rosenthal, 1997). The test-retest reliability of the TMT varies for Part A and Part B, 

but for the most part is adequate. The external and discriminant validity of the test have 

been assessed in depth and it does seem to effectively measure the cognitive domains it 

purports to assess. TMT A and TMT B raw scores were corrected based on age, 

education, and gender according to the Revised Comprehensive Norms for the Expanded 

Halstead Reitan Battery. 

 Controlled Oral Word Association Test (COWAT; Reitan & Wolfson, 1985). 

The Controlled Oral Word Association Test is part of the Expanded Halstead-Reitan 

Neuropsychological Battery and is a test of phonemic fluency. The COWAT requires an 

examinee to orally produce as many words as possible beginning with a specified letter in 

one minute. The present study used the standard three trial version with the letters F, A, 

and S (Lezak et al., 2012). The COWAT is a sensitive indicator of brain dysfunction 
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(Lezak, Howeison, Bigler, & Tranel, 2012) and an important component in most 

comprehensive assessments of neurocognitive functioning. COWAT raw scores were 

corrected based on age, education, and gender according to the Revised Comprehensive 

Norms for the Expanded Halstead Reitan Battery. 

 Animals (Reitan & Wolfson, 1985). The “Animals” category is the most common 

category used to test semantic fluency. During this test the examinee is asked to produce 

as many animal names as possible within a one-minute interval. There is evidence that 

measures of semantic fluency can be more useful than other common neuropsychological 

measures in the detection of dementia (Heun, Papassotiropoulos, & Jennssen, 1998). The 

“Animals” test is sensitive to impaired verbal fluency in patients with PD (Henry & 

Crawford, 2004). Animals raw scores were corrected based on age, education, and gender 

according to the Revised Comprehensive Norms for the Expanded Halstead Reitan 

Battery. 

 Weschler Adult Intelligence Scale 4th edition Digit Span Subtest (WAIS-IV 

Digit Span; Weschler, 2008). The WAIS-IV (Wechsler, 2008) is a test system measuring 

general intellectual functioning, summarized by index scores in verbal comprehension, 

perceptual reasoning, working memory, and processing speed. The present study 

included the Digit Span (DS) subtest from the WAIS-IV. The Digit Span subtest requires 

participants to repeat increasing strings of digits forwards (DS Forwards), backwards (DS 

Backwards), and in numerical order (DS Sequencing), according to the given 

instructions. The Digit Span subtest has been studied extensively in neurological 

populations, and has demonstrated adequate sensitivity (60%) and strong specificity 

(87%). The Digit Span raw scores were corrected based on age using the WAIS-IV test 
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manual. 

 Iowa Gambling Task (IGT; Bechara, Damasio, Demasio, & Anderson, 1994). 

The IGT is a measure of executive function thought to simulate real-life decision-making. 

During this task, participants are instructed to choose from one of four decks (A, B, C, D; 

60 cards each) until 100 selections have been made. After each selection, participants 

receive a reward and/or penalty in play money. The decks have pre-determined rewards 

and penalties (e.g., Decks A and B have a high rewards and penalties, decks C and D 

have low rewards and penalties). Additionally, decks A and C have more frequent 

penalties and decks B and D less frequent penalties. A greater selection of cards from 

decks A and B (disadvantaged decks) results in a net loss and a greater selection of cards 

from decks C and D (advantage decks) results in a net gain.  The performance measures 

used in the current study were the number of cards chosen from each deck (A, B, C, or 

D), total advantaged minus disadvantaged decks, and the amount of money earned. The 

Iowa Gambling Task computer generated report converts raw scores to demographically 

corrected T scores. 

Autonomic Functioning 

 Heart Rate Variability (HRV). HRV is a measure of parasympathetic control over 

the heart that is an index of self- regulatory capacity (Segerstrom & Nes, 2007). Increased 

parasympathetic activity leads to more variable intervals between heartbeats, and 

therefore higher HRV. HRV is calculated as the root mean squared successive differences 

in the inter-beat interval (Camm, Malik, Bigger, Breithardt, Cerutti, & Cohen, 1996). 

Participants were asked to sit quietly for a period of 10 minutes. The first two minutes 

served as an acclimatization period, and the data for that period were discarded. The data 
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from the following eight minutes were analyzed to provide baseline HRV. The ECG was 

sampled at 1000 samples/sec. To obtain the ECG, three Ag/AgCl electrodes with shielded 

leads were attached in Type II configuration. These leads were connected to an 

ambulatory, wireless ECG monitor (MindWare Mobile Impedance Cardiograph Model# 

50-2303-00). Data were analyzed using the MindWare Heart Rate Variability Analysis 

Software (MindWare, Cahana, OH). 

Data Analysis 

 Alpha was set at .05, two-tailed, for all inferential tests. All neurocognitive 

measure raw scores were corrected based on appropriate norms (see measure 

descriptions). Because the normative data provided various standardized scores (e.g., T 

scores, standard scores), neurocognitive scores were then converted to a common metric, 

a standard score, with mean of 100 and standard deviation of 15.   

The test of Hypothesis 1 (Deficits in EF and SR capacity exist on a spectrum) 

primarily involved exploratory data analyses to examine the distributions of each 

dependent variable. First, univariate analyses (i.e., descriptive statistics and 

scatterplot/boxplot examination) were run to reveal any potential outliers in the data, the 

degree and direction of asymmetry of the distribution (skewness), and the peakedness of 

the distribution (kurtosis) of each variable. This examination of the distribution of values 

identified whether deficits exist on a continuum and informs whether there are 

subsequent constraints on r and whether the assumptions of regression analyses and 

ANOVA are violated with regard to linearity and normality of the dependent variable. 

The test of Hypothesis 2 (Establish construct validity of EF and SR) involved a 

Pearson product-moment correlation coefficient matrix to examine the relationships 
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among the various measures of SR and EF. Zero-order correlations were examined to test 

Hypothesis 3 (Evidence for overlap between SR and EF), that superior EF would be 

associated with better self-regulatory ability across domains. The possibility of a need to 

statistically control for some variables [e.g., intelligence, time between assessments, 

dopaminergic dose equivalence, and pre-surgical functional status (UPDRS On)] through 

partial correlations was examined, but was unnecessary given the lack of significant 

relationships.  

The test of Hypothesis 4 (Predict HRV from SR and EF) was similarly conducted 

by examining zero-order correlations among facets of SR and heart rate variability. 

Again, the possible need to statistically control for some variables (e.g., intelligence, time 

of assessment, respiratory functioning, and functional status) was explored, but was 

unnecessary given the lack of significant relationships. 

The test of Hypothesis 5 (Demonstrate worse EF, SR, and HRV in PD), involved 

the use of independent samples t-tests to examine mean-level differences between the 

DBS group and healthy older adult controls. 

Lastly, to test Hypothesis 6 (Demonstrate decline in EF post-DBS), paired 

sample t-tests were conducted to examine mean-level differences between pre-surgical 

and post-surgical neurocognitive performance.  
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Chapter 3: Results 

Distribution of SR and EF in DBS Patients 

Descriptive statistics revealed that most continuous variables were normally 

distributed. Examination of skewness statistics, scatterplots, and boxplots revealed no 

problematic outliers or significant skewness for most variables. However, there was 1 

variable (BRIEF Behavioral Regulation Index) for which the kurtosis statistic was > 2 

standard errors (Kurtosis statistic = 6.350, SE = .541), which warranted consideration for 

transformation. Upon examining the distribution of BRIEF Behavioral Regulation Index, 

three outliers were discovered (86, 87, 103). These outliers were closely examined and 

ultimately were removed from the dataset as they fell outside the typical range of values 

(i.e. < 65). The removal of these 3 outliers corrected the leptokurtic variable (Kurtosis 

statistic = -1.048, SE = .532), thus no transformation was performed. Therefore, normal 

and continuous distributions suggest that self-regulatory and executive impairments in 

PD do exist on a spectrum, rather than as discrete disease entities, as predicted in 

Hypothesis 1. 

Construct Validity of EF 

 The first part of Hypothesis 2 aimed to examine the construct validity of EF. A 

correlation matrix including data from all participants (Table 3) revealed that the 

relationship among various domains of EF varied.  A similar correlation matrix including 

only data from the DBS participants provided equivalent results (Table 4). There were 

moderate relationships between verbal fluency (FAS, Animals) and working memory 

(DS Forward, Backward, and Sequencing; r ≈ .27-.37) and strong relationships between 

verbal fluency (FAS, Animals) and mental flexibility (TMT A, TMT B; r ≈ .48-.53), 
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however, verbal fluency measures (FAS, Animals) were not significantly correlated with 

decision-making (IGT).  

Moderate relationships were also found between working memory (DS Backward 

and Sequencing) and mental flexibility (TMT B; r ≈ .30 - .39), such that greater working 

memory abilities predicted stronger set-shifting and flexibility of thinking. There was a 

strong relationship between immediate attention capacity (DS Forward) and decision-

making (IGT; r = .49), such that greater immediate attention correlated with more greater 

decision-making. However, immediate attention capacity (DS Forward) was not related 

to mental flexibility (TMT B; r = .09).  

 Similarly, there were moderate to large relationships (r ≈ .28 - .55) between 

aspects of verbal memory (e.g., encoding, retrieval, recognition) and various EF domains. 

Thus, there was sufficient evidence to conceptualize all EF and other cognitive measures 

by their distinct components (e.g., verbal fluency, working memory, flexibility, decision-

making, verbal encoding, verbal retrieval, and recognition). Hypothesis 2 was not 

supported in that inter-correlations of EF measures varied greatly and, contrary to our 

hypothesis, EF measures were highly correlated with verbal memory.  

Construct Validity of SR 

The second part of Hypothesis 2 aimed to establish construct validity for SR by 

examining the bivariate correlations, including data from DBS participants (see Table 5), 

between self-report self-regulation (BRIEF total score, indices, and subscales) and the 

severity/presence of impulse control disorders (QUIP-RS). Modest relationships were 

seen between overall self-reported self-regulation (BRIEF Total) and impulse control 

symptoms (r = .35), similar findings were found for the BRIEF indices of Behavioral 
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Regulation (r = .37) and Meta Cognition (r = .26). When examining specific aspects of 

self reported SR, there were modest correlations between impulse control difficulties and 

the BRIEF subscales Inhibit, Shift, Emotional Control, Initiate, Task Monitor, and 

Organization of Materials. There were strong correlations (r ≈ .49 - .51) between impulse 

control difficulties and the BRIEF subscales self-monitor and Plan/Organize, such that 

greater impulsive-compulsive problems correlated with greater dysfunction in self-

reported abilities of self-monitoring and planning. Hypothesis 2 was supported in that SR 

measures were related to one another. However, given that these relationships were only 

modest in magnitude, the use of a composite index of SR that combines measures of SR 

into a single index is not supported.  

Evidence for Overlap between SR and EF  

Hypothesis 3 proposed that EF would contribute to SR. Given the lack of support 

for composite SR and EF constructs, measures of EF were examined in relation to 

individual domains of SR (i.e., inhibition, shifting, emotional control, initiation, task 

monitoring, impulsivity, etc.) primarily using zero-order correlations with all participants 

(HC and DBS). Correlations between potential confounding variables (e.g., depression, 

time of assessment, LEDD, disease duration) were examined to determine whether there 

was a need to control for these variables. Depression was highly related to both EF and 

SR measures. Specifically, greater depression was related to worse working memory (r ≈ 

-.21 - .32), mental flexibility (r ≈ -.36 - .38), and greater global dysregulation (r ≈ .22 - 

.48). Given the significant relationships between depression and EF or SR, partial 

correlations were utilized to examine the relationship of EF and SR controlling for GDS 

score (see Table 6).  Table 7 provides the partial correlations for EF and SR relationships 
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when controlling for GDS score with DBS participants only. There was no need to 

statistically control for other suspected confounds (e.g., time of assessment, LEDD, 

disease duration).  

Correlations between EF performance and SR reports after controlling for 

depression were generally in the small to medium range, with a few notable exceptions. 

Better immediate attention (Digit Span Forward) was significantly related to self-reported 

shifting (r = -.48), emotional control (r = -.42), working memory (r = -.49), planning (r = 

-.42), and task monitoring (r = -.43), such that greater attention capacity correlated with 

less SR. In addition, worse immediate attention (Digit Span Forward) predicted greater 

number of impulse-control concerns (QUIP-RS; r = -.39). Similarly, mental flexibility 

(TMT) was significantly related to self-reported initiation (r = -.46) such that stronger 

mental flexibility correlated with less difficulties with initiation. Decision making (IGT) 

was significantly related to self-reported inhibition (r = -.55), shifting (r = -.52), 

emotional control (r = -.42), working memory (r = -.61), and task monitoring (r = -.50). 

Therefore, greater decision making capabilities predicted less dysregulation.  

Evidence against the hypothesis that EF predicts SR functioning was found within 

the relationships of EF to impulse control issues (QUIP-RS). Impulse-control disorders 

were only modestly related to verbal fluency (FAS, Animals; r ≈ .24-.26) and mental 

flexibility (TMT A, TMT B; r ≈ .27-.35), such that stronger fluency and 

flexibility/switching predicted greater severity of impulse-control issues.  

Hypothesis 3 was partially supported since generally speaking, greater EF tended 

to predict less reported SR difficulties. However, higher scores on specific EF 

subdomains (i.e., verbal fluency, and mental flexibility) may actually predict more 
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impulse-control concerns. 

Physiological Functioning: Does EF or SR Matter? 

 Hypothesis 4 proposed that better EF, and better ability to self-regulate across 

domains, would be associated with more optimal autonomic functioning (i.e., higher 

HRV). As shown in Table 8, correlations between autonomic functioning (i.e., HRV) and 

measures of EF varied greatly. There were significant, moderate to large relationships 

between HRV and mental flexibility (TMT A and TMT B; r ≈ .41-.47), such that stronger 

mental flexibility predicted better autonomic functioning (i.e., higher HRV). These 

relationships tended to be stronger for DBS patients than for healthy controls. Moderate 

relationships between HRV and working memory (DSF, DSB, and DSS; r ≈ .34 - .42) 

were seen only in healthy controls. This relationship was practically nonexistent for DBS 

patients (r ≈ -.05 - .10). Smaller relationships, though not significant, were seen between 

HRV and decision-making (IGT; r = .12), such that greater scores predicted higher 

resting HRV. HRV did not correlate well with phonemic or semantic fluency. Generally, 

greater EF was associated with more optimal autonomic functioning, as predicted.  

 Table 9 displays the correlations among autonomic functioning and measures of 

SR. There were no significant correlations seen between subscales of the BRIEF and 

HRV. However, when examining the magnitude of the Pearson correlation coefficients, 

small positive correlations were found between self-report SR subscales Inhibit, Shift, 

Self-Monitor, and Planning for DBS patients (r = .11 - .28), suggesting greater self-

reported dysregulation relates to higher HRV. Similarly, small positive correlations were 

found between self-report SR subscales Self-monitor, Initiate, Planning, Task 

Monitoring, and Organization (r ≈ .12 - .29) for healthy older adult controls. Unlike what 
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was predicted, lower SR was associated with more optimal autonomic functioning. 

Comparable findings were seen with impulse control concerns, as impulse control 

difficulties were significantly related to higher HRV (r  = .40). 

 Initially, it was hypothesized that impulse control disorders reflected clinically 

severe self- regulation difficulties. Therefore, the finding that impulse control problems 

were significantly related to higher HRV, and not lower HRV as seen with other SR, was 

quite surprising. Further analyses were conducted in an attempt to explore this result. 

Bivariate correlations between HRV and various subscales of the QUIP-RS were 

examined. Large positive relationships were seen between HRV and difficulty controlling 

thoughts about various activities (e.g., gambling, sex, buying, eating, hobbyism 

(compulsive pursuit of a hobby), punding (stereotyped, ritualistic behaviors); r = .51, p = 

.008), having urges or desires to perform those various behaviors (r = .54, p = .004), and 

engaging in activities to continue behaviors (r = .40, p = .044).  When examining the 

various behaviors related to HRV, a large significant relationship was found between 

higher HRV and increased hobbyism/punding (r = .46, p = .017). Moderate relationships 

were seen between higher resting HRV and sex (r  = .36, p = .068), buying (r = .33, p 

=.091), and eating (r = .32, p = .105).  

Cognitive, Emotional, and Autonomic Functioning in PD 

Hypothesis 5 predicted that the DBS group would have worse neurocognition, 

greater dysregulation, greater depression, and worse autonomic functioning than healthy 

older adults. Initial analyses utilizing independent samples t-test found group differences 

on several variables. Table 10 presents results of post-test group differences on 

neurocognitive measures with effect sizes. With regards to cognitive functioning, the 
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DBS group performed significantly worse than HC on COWA (t = 3.197, p = .002), TMT 

A (t = 4.753, p < .001), TMT B (t = 5.795, p < .001), RAVLT total learning, (t = 4.670, p 

< .001), RAVLT short delay recall (t = 3.730, p < .001), RAVLT long delay recall (t = 

4.574, p < .001), and RAVLT recognition (t  = 3.693, p < .001). There were no 

significant differences between HC and DBS on the Digit Span subtests. For a graphical 

representation of the various group differences between DBS and HC, see Figure 2. 

Table 11 depicts the group differences with effect sizes for measures of self-

regulation, HRV, and depression. The DBS group had a significantly higher rate of 

depressive symptoms on GDS when compared to HC (t = -4.972, p < .001). With regards 

to physiological functioning, DBS group had significantly lower HRV than HC (t = 

2.350, p = .023). Lastly, on a measure of reported self-regulation (i.e., BRIEF), DBS 

group endorsed significantly more difficulties with inhibition (t = -2.591, p = .012), 

emotional control (t = -2.385, p = .021), initiation, (t = -3.478, p = .001), working 

memory (t = -3.189, p = .002), planning/organizing (t = -2.714, p = .009), and task 

monitoring (t = -2.041, p = .046).  

Post-surgical Executive Functioning in PD 

 Hypothesis 6 proposed there would be significant decline between DBS pre-

surgical and post-surgical performance on executive function measures. Paired samples t-

tests were utilized to examine the differences between testing sessions. Figure 3 presents 

a graphical representation of differences between DBS pre- and post-surgical scores and 

Table 12 depicts the differences between testing sessions with effect sizes. There was 

significant decline on FAS (phonemic fluency; t = 2.689, p = .013), Animals (semantic 

fluency; t = 2.505, p = .020), and Digit Span Backwards subtest (working memory; t = 
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2.290, p = .032). There was a trend towards decline on Digit Span Sequencing (working 

memory; t = 1.751, p = .093) and TMT B (mental flexibility; t = 1.727, p = .099). Effect 

size examinations of these pre-test, post-test differences revealed small effects of DBS on 

EF measures. As a control comparison, there was no significant decline between testing 

sessions for the healthy older adults. Thus, hypothesis 6 was supported in that post-DBS 

patients experienced significant declines in verbal fluency and working memory, which 

would not be expected in normal aging. 
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Chapter 4: Discussion 

Overview of Findings 

 Although classically viewed as a movement disorder, the cognitive, emotional, 

and autonomic symptoms of PD have been increasingly identified; and these extra-motor 

symptoms can be quite distressing for the patient. As there is no cure for PD, greater 

understanding of the available treatment options (such as DBS) on these extra-motor 

symptoms is of the utmost importance. The current study aimed to elucidate the 

prevalence and pattern of executive deficits and behavioral dysregulation in patients with 

PD after DBS. The present study used neuropsychological, behavioral, and physiological 

methods to examine dysfunction associated with DBS and PD. An innovative aspect of 

this project was the exploration of self-regulatory domains in patients with PD using a 

healthy older adult comparison group.  

Relationships between SR and EF 

 This research revealed that the scope of extra-motor impairment in PD can be 

wide, with deficits existing on a continuum such that some, but not all, patients evidence 

deficits in self-regulatory abilities to effectively manage emotions and thought processes. 

This informs research and clinical work with PD as self-regulatory and executive deficits 

may be part of the disease process, but the severity will vary between patients.  

 Of particular interest in this study was the lack of convergence of self-regulatory 

deficits across domains. Given prior research that suggests executive control and 

behavioral self-regulation rely on a similar resource, and that depletion of this resource 

on one task can impair subsequent performance on others (Thayer & Lane, 2009), it was 

surprising that there was not a consistent pattern that emerged among domains of SR and 
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EF. However, this likely was a consequence of poor convergence among the individual 

measures of EF and SR. For example, individual EF abilities of verbal fluency, working 

memory, attention capacity, and mental flexibility correlated well with one another, 

however a measure of decision-making (IGT) was only related to immediate attention 

capacity. Though decision-making was included as a neuropsychological measure of EF, 

the finding that the IGT was not highly related to other neuropsychological measures is 

consistent with a recent review by Toplak and colleagues (2010). In their paper, they 

demonstrate that decision-making on the IGT is highly separated from other cognitive 

abilities and more consistent with a test of rationality than our traditional tests of 

intelligence.  

Additionally, there were significantly strong relationships between aspects of 

verbal memory and EF measures, suggesting significant overlap between these abilities in 

patients with PD. Given the related yet distinct nature of the various components of EF, 

conceptualizing EF as a non-unitary construct is informative and important, especially for 

future studies. This may be particularly true in PD as deficits may influence clinically 

important outcomes.  

 Similarly, among the nine aspects of self-reported self-regulation assessed in the 

current study (BRIEF subscales: Inhibition, Shifting, Emotional Control, Initiation, Task 

Monitoring, Impulsivity Organization of Materials, Self-Monitoring, 

Planning/Organizing) only self-monitoring and planning were related to clinical 

dysregulation (i.e., Impulsive Compulsive Symptoms), suggesting that the impulsive-

compulsive concerns (as measured by the QUIP-RS) account for only a small variance of 

potential self-regulatory difficulties.  
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 Another interesting finding of the present study was that self-reported SR (as 

measured by the BRIEF) and clinical impulsive-compulsive concerns (QUIP-RS) related 

to EF in opposing ways, suggesting the relationship between EF and SR varies based on 

the individual abilities examined. Thus, it is necessary to examine these relationships at 

the individual level as opposed to broader constructs. As hypothesized, worse immediate 

attention (DSF), poor decision-making (IGT), and poor mental flexibility (TMT B) were 

strongly related to poor self-reported SR abilities. However, contrary to our hypothesis, 

clinical impulsive-compulsive concerns were inversely related to EF. Impulse-control 

concerns were originally included in the present study to serve as a clinical indicator of 

poor SR. Greater verbal fluency and mental flexibility were strongly predictive of worse 

impulse-control issues. This finding persisted even when examining the specific actions 

involved (e.g., thinking about activity, urges/desires, engaging in activity) or breaking 

down impulse-control issues into various types of behaviors (e.g., hobbyism/punding, 

sex, buying, and eating). 

 Again, the results from the present study imply that impulse-control issues related 

to PD and DBS are related to stronger EF. One possible explanation of this finding is that 

stronger EF and SR predispose an individual with PD to develop impulse-control issues, 

or more likely, patients with greater impulse-control issues may develop stronger EF and 

HRV as a means to compensate for impulsive and compulsive difficulties.  

Relationship of Physiological Resources to EF and SR 

 The current study partially converges with research linking vagally-mediated 

HRV to prefrontal activity and EF (Thayer, 2006; Thayer, Hansen, Saus-Rose, & 

Johnsen, 2009; Segerstrom & Nes, 2007). Higher resting HRV was associated with 
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greater psychomotor speed and attention (TMT A), mental flexibility, (TMT B), 

phonemic fluency (FAS), and working memory (DSB & DSS), which converges with 

research linking decreased EF to decreased (i.e., worse) HRV (Thayer et al., 2009). 

However, the pattern of association among measures of SR and HRV was unexpected, 

such that poorer self-reported SR (BRIEF) and greater clinical impulse-control issues 

(QUIP-RS) were significantly associated with greater HRV.  

 This study suggests the mechanisms by which HRV indexes the capacity for self-

regulation in PD patients may differ from other “healthy” samples. If decreased HRV is 

in fact associated with the disease process of PD, examining individual differences in 

HRV may be particularly informative to self-regulatory processes. Alternatively, HRV 

could be more dynamic in PD patients than in “healthy” samples, which may suggest 

both theoretical and methodological adaptations for non-healthy samples.  

 Another surprising finding is the inverse relationship seen between the QUIP-RS 

and HRV. Perhaps, impulse-control concerns seen in patients with PD are unrelated to 

disruptions of prefrontal circuitry and are not reflective of SR as it has been previously 

conceptualized.  It is possible that Thayer and Lane’s (2000) model pertains to 

egosyntonic behaviors such as rumination, emotional dysregulation, and addiction, but 

does not translate to explaining egodystonic behaviors, such as those seen with impulse-

control issues or obsessive-compulsive disorders. Another possible explanation is that 

stronger EF and SR predispose an individual with PD to develop impulse-control issues, 

or alternatively, patients with greater impulse-control issues develop stronger EF and 

HRV as a means to compensate for impulsive and compulsive difficulties. Future studies 

that include a non-DBS PD control group would be useful in expounding upon this 
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finding. More research is needed to deconstruct this novel outcome and to examine the 

limitations of Thayer and Lane’s model.  

Post-surgical Cognitive, Emotional, and Physiological Functioning in PD  

 Consistent with what was hypothesized, patients with PD were more depressed 

and had worse neurocognitive, self-regulatory, and physiological functioning than 

healthy older adults. With regards to neurocognitive functioning, patients with PD had 

worse scores on tests of phonemic fluency (FAS), psychomotor speed and attention 

(TMT A), mental flexibility (TMT B), and verbal memory (RAVLT). Patients with PD 

endorsed more difficulties with inhibition, emotional control, initiation, working 

memory, planning/organizing, and task monitoring and had significantly lower HRV than 

older adults. These findings replicate previous research and highlight the prevalence and 

severity of extra-motor symptoms in PD.  

 Based on previous research it was predicted that there would be significant 

declines in executive functioning in patient’s post-DBS when compared to their 

presurgical test scores. As hypothesized  patient’s post-DBS had significantly worse 

scores on tests of phonemic fluency (FAS), semantic fluency (Animals), and working 

memory (DS) with marginal declines in mental flexibility (TMT B). These declines were 

small in magnitude, consistent with what was found in a recent meta-analysis of post-

DBS cognitive functioning (Combs et al., 2015). No differences were seen with regard to 

executive functioning changes between patients who received STN-DBS to those who 

were implanted in GPi, consistent with recent literature suggesting no differences 

between cognitive profiles of the two target sites (Okun et al., 2009). The present study 

supports the notion that DBS is relatively well tolerated from an executive standpoint. 
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However, the functional significance of these declines remains unclear. A small 

decrement in verbal fluency and working memory may or may not impact an individual’s 

daily life, hence the conclusion that DBS is considered to be neurocognitively benign.  

Limitations 

 While this study provides an important contribution to the current body of 

literature on self-regulatory, emotional, and executive functioning in patients with PD 

after DBS, limitations must be acknowledged. Though care was used to arrange a 

demographically equivalent healthy older adult control group, matching based on age and 

time between testing sessions was not possible. In addition, the sample of patients was 

both small and varied. Although there was sufficient power to detect large effects, which 

had been previously obtained in research on EF, a larger sample would have increased 

the power to detect small to moderate effects, which may be clinically important in PD. A 

related methodological concern is Type 1 error due to multiple comparisons. The current 

study did not involve a correction (e.g., Bonferroni) for Type I error. Given the limited 

sample size, the caution in relying on p – values in small samples, the risk of neglecting 

Type 2 error, and the absence of theoretically guided a priori hypotheses (in many 

instances); preservation of power was a priority. Another major limitation for the study is 

the absence of presurgical measures of SR (i.e., BRIEF and QUIP-RS) and HRV. As a 

result, it was not possible to investigate changes in SR and HRV due to DBS surgery. 

Future research needs to include such measures in both pre-and post-surgical assessments 

to investigate the impact of DBS on these domains.  

Conclusions 

  In summary, if cross-validated, the results of the current study suggest that PD 
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patients are prone to a variety of self-regulatory deficits, ranging from subtle to severe. 

They are also likely to experience small declines in executive functioning post-DBS that 

may contribute to self-regulatory impairments. However, this research suggests that both 

the quantity and quality of impairment varies, and that the correlates of these deficits may 

be different between patients. Clinically, it is important for health care professionals 

working with PD to recognize the presence of self-regulatory deficits and to be aware of 

the potential obstacles that might arise from such impairments within a patient’s daily 

life.  
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Table 2.1. Descriptive Statistics by Group 
  DBS 

n = 27 
 

HC  
n = 27 

 
t or Χ2 p 

Age M (SD) 66.07 (9.93) 75.63 (3.44) 4.72 <.001 

Education M (SD) 15.74 (3.19) 15.70 (2.80) 0.05 0.96 

Months between 
testing 

M (SD) 20.69 (9.13) 13.56 (1.27) 4.02 <.001 

Gender % Male 63.0% 63.0% 0.00 1.00 

Race % Caucasian 100% 100% 0.00 1.00 

Marital Status % Married 50% 50% 0.00 1.00 
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Table 2.2. Descriptive statistics of DBS on PD specific variables 
  N M SD 

Time 

Months Since DBS 27 19.766 22.861 

Years Since Diagnosis 27 11.185 5.561 

Motor Function 

Pre UPDRS Off Meds 21 50.524 17.730 

Pre UPDRS On Meds 18 26.611 17.614 

Dopaminergic 
Medications 

Pre LEDD 26 879.250 555.405 

Post LEDD 27 425.833 311.466 

DBS Stimulation  
Settings  

Left DBS Voltage (V) 26 3.921 0.717 

Left DBS Pulse width (µs) 26 93.077 34.382 

Left DBS Frequency (Hz) 26 178.654 27.697 

Right DBS Voltage (V) 26 3.877 0.736 

Right DBS Pulse width (µs) 26 93.462 22.617 

Right DBS Frequency (Hz) 26 172.692 20.844 

Note: N = Sample Size, M = Mean, SD = Standard Deviation; DBS, deep brain 

stimulation patient group; PD, Parkinson’s disease; UPDRS, Unified Parkinson’s Disease 

Rating Scale; LEDD, levodopa equivalency daily dose
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Patients who 
completed study  

n  = 28 

Final sample used for 
analyes 
 n = 27 

Figure 2.1. Flow chart depicting participant recruitment and final enrollment for DBS 
Patient Group 
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Table 3.1. Inter-correlations among cognitive measures for all participants 

  COWA 
Animal

s DSF DSB DSS 
TMT 

A TMT B 
TMT 
B-A 

IGT 
Total 

IGT 
Money 

RAVLT 
Total 

Learning 

RAVLT 
SD 

Recall 

RAVLT 
LD 

Recall 
RAVLT 
Recog. 

COWA -                          

Animals .825** -      
 

      
DSF .268** .286* -     

 
      

DSB .368** .279* .557** -    
 

      
DSS .366** .307* .491** .517** -   

 
      

TMT A .527** .484** .233* .380** .394** -  
 

      
TMT B .476** .459** .097 .300** .340** .776** -  

      
TMT B-A -.051 .172 -.002 -.161 -.255* -.286** -.425** -       

IGT Total -.119 -.019 .488** .106 -.123 -.069 -.183 -.233* -      
IGT 

Money -.064 .020 .693** .382* .128 .064 -.025 -.112 .868** -     
RAVLT 
Learning .457** .407* .322** .449** .482** .549** .550** -.165 -.228 .057 -    

RAVLT  
SD Recall .446** .370 .286* .401** .338** .517** .487** -.076 .010 .200 .822** -   
RAVLT 

LD Recall .395** .409* .162 .292* .267* .464** .468** .474* -.164 -.016 .746** .809** -  

RAVLT 
Recog. .520** .544** .068 .197 .237* .619** .556** .314 -.239 -.081 .588** .596** .619** - 

Note: COWA, Controlled Oral Word Association Test, DSF, Digit Span Forward, DSB, Digit Span Backward; DSS, Digit 
Span Sequencing; TMT, Trail Making Test; IGT, Iowa Gambling Task; RAVLT; Rey Auditory Verbal Learning Task 
*p < .05, **p < .01
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Table 3.2. Inter-correlations among cognitive measures for DBS Group 

  COWA Animals DSF DSB DSS 
TMT 

A 
TMT 

B 
TMT 
B-A 

IGT 
Total 

IGT 
Money 

RAVLT 
Total 

Learning 

RAVLT 
SD 

Recall 

RAVLT 
LD 

Recall 
RAVLT 
Recog. 

COWA -                          

Animals 
.825** - 

     

 

     
 

DSF 
.313* .286* - 

    

 

     
 

DSB 
.297* .279* .627** - 

   

 

     
 

DSS 
.389** .307* .597** .601** - 

  

 

     
 

TMT A 
.499** .484** .228 .368** .405** - 

 

 

     
 

TMT B 
.403** .459** .015 .307* .367** .781** - 

 

     
 

TMT B-A 
.136 .172 .135 -.048 -.145 -.293* -.311* -       

IGT Total 
-.119 -.019 .488** .106 -.123 -.069 -.183 .474* - 

    
 

IGT Money 
-.064 .020 .693** .382* .128 .064 -.025 .314 .868** - 

   
 

RAVLT 
Learning .459* .407* .312 .527** .554** .510** .469* -.266 -.228 .057 - 

  
 

RAVLT  
SD Recall .379 .370 .331 .204 .249 .387 .260 -.006 .010 .200 .742** - 

 
 

RAVLT 
LD Recall .455* .409* .153 .126 .202 .404* .287 -.103 -.164 -.016 .702** .815** -  
RAVLT 

Recognition .604** .544** .059 .058 .269 .624** .496* -.047 -.239 -.081 .481* .545** .634** 
- 

Note: COWA, Controlled Oral Word Association Test, DSF, Digit Span Forward, DSB, Digit Span Backward; DSS, Digit 
Span Sequencing; TMT, Trail Making Test; IGT, Iowa Gambling Task; RAVLT; Rey Auditory Verbal Learning Task 
*p < .05, **p < .01 
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Table 3.3. Correlations between DBS ratings of SR and severity of ICDs 
 

  QUIP-RS 

BRIEF Subscales 

Inhibit .261 

Shift .298 

Emotional Control .282 

Self-Monitor .506** 

Initiate .284 

Working Memory .176 

Plan/ Organize .487* 

Task Monitor .274 

Organization of Materials .236 

BRIEF Indices 
Behavioral Regulation .369 

Meta Cognition .260 

BRIEF Total  Total Score .347 

Note: DBS, deep brain stimulation patient group; SR, self-regulation; ICD, impulse 
control disorder; QUIP-RS, Questionnaire for Impulsive-Compulsive Disorders in 
Parkinson’s disease Rating Scale; BRIEF, Behavior Rating Inventory of Executive 
Function 
* p < .05, ** p < .01 
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Table 3.4. Partial correlations among measures of EF and SR controlling for depression for all participants 
 

  COWA Animals DSF DSB DSS TMT A TMT B 
TMT  
B-A IGTº 

BRIEF 
Subscales 

Inhibit -.077 -.234 -.341 -.055 .067 .081 -.125 -.045 -.550** 

Shift -.149 -.309 -.480* -.240 -.055 .055 -.101 .119 -.515** 

Emotional 
Control -.069 -.184 -.422* -.316 .146 .129 -.066 -.129 -.422* 

Self-Monitor .111 .088 -.330 -.145 .128 .114 .111 -.051 -.232 

Initiate -.154 -.265 -.327 -.271 -.103 -.334 -.456 .247* -.347 

Working 
Memory -.169 -.306 -.490* -.209 -.114 -.172 -.280 .207 -.608** 

Plan/ 
Organize .063 .043 -.420* -.250 -.225 -.111 -.161 .213 -.106 

Task Monitor -.025 -.186 -.431* -.204 -.012 -.019 -.179 .189 -.502* 

Organization 
of Materials .064 .090 -.188 -.086 -.115 -.113 -.189 -.013 -.023 

BRIEF 
Indices 

Behavioral 
Regulation -.079 -.076 -.434* -.280 -.034 -.111 .008 -.051 -.309 

Meta 
Cognition -.072 -.085 -.347 -.221 -.297 -.444* -.368 .194 -.238 

BRIEF 
Total Total SR -.082 -.091 -.415* -.266 -.233 -.370 -.270 .103 -.289 

QUIP-RSº 
Impulse-
Control 
Symptoms 

.263 .238 -.393 -.160 -.171 .354 .274 .057 -.019 
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Note: EF, Executive Functioning; SR, Self-Regulation; COWA, Controlled Oral Word Association Test; DSF, Digit Span 
Forward; DSB, Digit Span Backward; DSS, Digit Span Sequencing; TMT, Trail Making Test; IGT, Iowa Gambling Task; 
BRIEF, Behavior Rating Inventory of Executive Function; QUIP-RS, Questionnaire for Impulsive-Compulsive Disorders in 
Parkinson’s disease, Rating Scale 
* p < .05, ** p < .01 
º Correlations calculated for DBS patient group only 
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Table 3.5. Partial correlations among measures of EF and SR controlling for depression for DBS Group 
 

  COWA Animals DSF DSB DSS TMT A TMT B 
TMT 
B-A IGTº 

BRIEF 
Subscales 

Inhibit -.028 -.040 -.156 .111 -.022 -.106 -.067 .177 -.306 

Shift -.160 -.166 -.507* -.297 -.284 -.143 .008 .111 -.176 

Emotional 
Control -.058 -.040 -.287 -.356 .107 -.020 -.001 -.159 -.134 

Self-Monitor .047 .048 -.219 -.116 .057 -.062 .094 -.021 -.282 

Initiate -.180 -.185 -.145 -.260 -.253 -.678** -.574** .330 -.053 

Working 
Memory -.166 -.178 -.425* -.180 -.272 -.435* -.301 .166 -.420* 

Plan/ Organize -.017 -.031 -.361 -.252 -.369 -.319 -.256 .260 -.131 

Task Monitor .098 .089 -.364 -.199 -.168 -.287 -.163 .227 -.168 

Organization of 
Materials -.024 -.037 -.165 -.086 -.180 -.234 -.291 .088 -.172 

BRIEF 
Indices 

Behavioral 
Regulation -.079 -.091 -.415* -.266 -.233 -.370 -.270 .009 -.289 

Meta Cognition -.072 -.076 -.434* -.280 -.034 -.111 .008 .238 -.309 

BRIEF 
Total Total SR -.082 -.085 -.347 -.221 -.297 -.444* -.368 .179 -.238 

QUIP-
RSº 

Impulse-Control 
Symptoms .237 .231 -.327 -.137 -.267 .277 .278 .057 .008 
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Note: EF, Executive Functioning; SR, Self-Regulation; COWA, Controlled Oral Word Association Test; DSF, Digit Span Forward; 
DSB, Digit Span Backward; DSS, Digit Span Sequencing; TMT, Trail Making Test; IGT, Iowa Gambling Task; BRIEF, Behavior 
Rating Inventory of Executive Function; QUIP-RS, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s disease, Rating 
Scale.  
* p < .05, ** p < .01 
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Table 3.6. Correlations between HRV and cognitive measures 

  
Total Sample 

HRV 
DBS Patients 

HRV 
HC Group 

HRV 

COWA .166 .070 .030 

Animals .079 .079 - 

DSF .164 -.054 .353 

DSB .178 -.035 .417* 

DSS .203 .102 .340 

TMT A .466** .594** .248 

TMT B .414** .556** .226 

TMT B-A -.126 -.186 -.059 

IGT -.121 -.121 - 

Note: HRV, Heart Rate Variability, COWA, Controlled Oral Word Association Test; 
DSF, Digit Span Forward; DSB, Digit Span Backward; DSS, Digit Span Sequencing; 
TMT, Trail Making Test; IGT, Iowa Gambling Task 
* p < .05, ** p < .01
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Table 3.7. Correlations between HRV and SR measures 

 
 

Total 
Sample 
HRV 

DBS Patients 
HRV 

HC Group 
HRV 

BRIEF Subscales 

Inhibit -.038 .134 .022 

Shift -.016 .109 -.010 

Emotional Control -.057 .046 .053 

Self-Monitor .142 .275 .124 

Initiate -.045 -.040 .260 

Working Memory -.162 .037 -.175 

Plan/ Organize .046 .152 .223 

Task Monitor -.030 -.070 .288 

Organization of 
Materials -.009 -.046 .166 

BRIEF Indices 
Behavioral Regulation -.017 .027 .053 

Meta Cognition -.050 .012 .191 

BRIEF Total Total Score -.034 .072 .139 

QUIP-RSº Impulse-Control 
Symptoms .399** .399** - 

Note: HRV, Heart Rate Variability; SR, Self-Regulation; BRIEF, Behavior Rating 
Inventory of Executive Function; QUIP-RS, Questionnaire for Impulsive-Compulsive 
Disorders in Parkinson’s disease, Rating Scale 
** p < .01 
º Correlations calculated for DBS patient group only 
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Figure 3.1. Bar graph depicting group differences on neurocognitive measures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: M = Mean, SD = Standard Deviation; Errors bars denote +/- SEM ; COWA, Controlled Oral Word Association Test; DSF, Digit 
Span Forward; DSB, Digit Span Backward; DSS, Digit Span Sequencing; TMT, Trail Making Test; RAVLT, Rey Auditory Verbal 
Learning Task; DBS, Deep Brain Stimulation 
* p < .05 
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Table 3.8. Post-test group differences on neurocognitive measures 
  DBS 

n = 27 
 

HC  
n = 27 

 
d 

COWA                          
(Standard Score) 

M 
(SD) 

86.926 
(17.151) 

100.944 
(14.995) 

0.870 

DSF                            
(Standard Score) 

M 
(SD) 

103.519 
(15.052) 

109.815 
(13.408) 

0.442 

DSB                             
(Standard Score) 

M 
(SD) 

96.111 
(15.212) 

101.481 
(14.598) 

0.411 

DSS                           
(Standard Score) 

M 
(SD) 

96.667 
(13.445) 

102.593 
(12.662) 

0.454 

TMT A                      
(Standard Score) 

M 
(SD) 

84.231 
(17.072) 

107.962 
(18.882) 

1.318 

TMT B                      
(Standard Score) 

M 
(SD) 

83.000 
(14.991) 

108.056 
(16.422) 

1.594 

TMT B-A                        
(Raw- Seconds) 

M 
(SD) 

49.722 
(33.230) 

59.046 
(67.347) 

0.176 

RAVLT Total           
(Standard Score) 

M 
(SD) 

90.429 
(21.407) 

117.031 
(19.629) 

1.295 

RAVLT SD Recall   
(Standard Score) 

M 
(SD) 

90.735 
(15.479) 

113.705 
(17.681) 

1.382 

RAVLT LD Recall   
(Standard Score) 

M 
(SD) 

90.312 
(19.169) 

113.705 
(17.681) 

1.269 

RAVLT Recognition 
(Standard Score) 

M 
(SD) 

92.481 
(20.845) 

109. 598 
(10.135) 

0.920 

Note: M, Mean, SD DBS, Deep brain stimulation group; HC, Healthy older adult 
controls; COWA, Controlled Oral Word Association Test; DSF, Digit Span Forward; 
DSB, Digit Span Backward; DSS, Digit Span Sequencing; TMT, Trail Making Test; 
RAVLT, Rey Auditory Verbal Learning Task 
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Table 3.9. Post-test group differences on measures of SR, HRV, and depression  

Note: SR, self-regulation; DBS, Deep brain stimulation group; HC, Healthy older adult 
controls; COWA, Controlled Oral Word Association Test; DSF, Digit Span Forward; 
DSB, Digit Span Backward; DSS, Digit Span Sequencing; TMT, Trail Making Test; 
BRIEF, Behavior Rating Inventory of Executive Functions; RSA, respiratory sinus 
arrhythmia; HRV, heart rate variability; GDS, Geriatric Depression Scale 

   
 

 DBS 
n = 27 

 

HC  
n = 27 

 
d 

Self- Regulation 

 Inhibition M 
(SD) 

14.296 
(4.445) 

11.815 
(2.237) 

0.705 

 Shift M 
(SD) 

11.148 
(5.067) 

9.519 
(2.408) 

0.411 

 Emotional 
Control 

M 
(SD) 

16.889 
(5.918) 

13.704 
(3.625) 

0.649 

 Self-Monitor M 
(SD) 

9.889 
(3.017) 

9.370 
(1.904) 

0.206 

BRIEF 
Subscales 

Initiate M 
(SD) 

13.519 
(3.867) 

10.370 
(2.677) 

0.947 

 Working 
Memory 

M 
(SD) 

16.333 
(5.657) 

12.519 
(2.578) 

0.868 

 Plan/ 
Organize 

M 
(SD) 

17.482 
(4.964) 

14.333 
(3.419) 

0.739 

 Task 
Monitor 

M 
(SD) 

11.482 
(4.847) 

9.407 
(2.099) 

0.555 

 Organization 
of Materials 

M 
(SD) 

14.111 
(4.774) 

12.667 
(2.922) 

0.365 

 

BRIEF 
Indices 

Behavioral 
Regulation 

M  
(SD) 

47.250 
(7.571) 

44.537 
(8.765) 

0.331 

 Meta 
Cognition 

M 
(SD) 

72.926 
(20.080) 

59.889 
(11.177) 

0.802 

 BRIEF 
Total 

Total Score M 
(SD) 

125.148 
(34.774) 

104.426 
(18.903) 

0.740 

Physiological 
RSA 
 

HRV M 
(SD) 

3.735 
(1.274) 

4.771 
(1.903) 

0.640 

Depression 
GDS Depression M 

(SD) 
9.889 

(6.925) 
2.852 

(2.476) 
1.353 
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Table 3.10. Differences between pre- and post-test DBS neurocognitive scores 
  Pre- Test 

n = 22 

Post-Test 
n = 24 d 

COWA M 
(SD) 

93.304 
(17.256) 

86.565 
(17.738) 

- 0.39 

Animals M 
(SD) 

91.652 
(19.821) 

85.609 
(18.989) 

- 0.31 

DSF M 
(SD) 

106.875 
(14.804) 

104.167 
(14.421) 

- 0.19 

DSB M 
(SD) 

101.667 
(10.901) 

95.833 
(15.440) 

- 0.44 

DSS M 
(SD) 

101.667 
(15.156) 

96.667 
(12.910) 

- 0.36 

TMT A M 
(SD) 

87.696 
(21.743) 

82.696 
(19.139) 

- 0.24 

TMT B M 
(SD) 

88.909 
(20.810) 

82.955 
(17.126) 

- 0.31 
 

VLT* Total 
Recall 

M 
(SD) 

82.696 
(11.640) 

90.429 
(21.407) 

0.45 

VLT* Long 
Delay Recall 

M 
(SD) 

78.636 
(16.989) 

90.312 
(19.169) 

0.64 

VLT* 
Recognition 

M 
(SD) 

87.522 
(16.892) 

92.481 
(20.845) 

0.26 

Note: DBS, Deep brain stimulation patient group; COWA, Controlled Oral Word 
Association Test; DSF, Digit Span Forward; DSB, Digit Span Backward; DSS, Digit 
Span Sequencing; TMT, Trail Making Test; Verbal Learning Test (VLT) 
*DBS patients were administered the Hopkins Verbal Learning Test (HVLT) on pre-test 
and the Rey Auditory Verbal Learning Task (RAVLT) on post-test. Scores were normed 
on a standard metric to compare across tests. 
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Figure 3.2. Bar graph depicting DBS pre- and post-test scores on neurocognitive measures 

 
Note: M = Mean, SD = Standard Deviation; DBS, deep brain stimulation patient group; COWA, Controlled Oral Word 
Association Test; DSF, Digit Span Forward; DSB, Digit Span Backward; DSS, Digit Span Sequencing; TMT, Trail Making 
Test 
* p < .05 
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