
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Civil Engineering Civil Engineering 

2016 

Use Of Laboratory Geophysical And Geotechnical Investigation Use Of Laboratory Geophysical And Geotechnical Investigation 

Methods To Characterize Gypsum Rich Soils Methods To Characterize Gypsum Rich Soils 

Raghava A. Bhamidipati 
University of Kentucky, jones.kgp@gmail.com 
Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.391 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Bhamidipati, Raghava A., "Use Of Laboratory Geophysical And Geotechnical Investigation Methods To 
Characterize Gypsum Rich Soils" (2016). Theses and Dissertations--Civil Engineering. 45. 
https://uknowledge.uky.edu/ce_etds/45 

This Doctoral Dissertation is brought to you for free and open access by the Civil Engineering at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ce_etds
https://uknowledge.uky.edu/ce
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Raghava A. Bhamidipati, Student 

Dr. Michael E. Kalinski, Major Professor 

Dr. Yi-Tin Wang, Director of Graduate Studies 



 
 

 

  

A dissertation submitted in partial fulfillment of the requirements for the 
degree of Doctor of Philosophy in the College of Engineering at the 

University of Kentucky 

 

By  

Raghava A. Bhamidipati 

Lexington, Kentucky 

Director: Dr. Michael E. Kalinski, Ph.D., P.E, Professor of Civil Engineering 

Lexington, Kentucky 

Copyright © Raghava A. Bhamidipati 2016 

 

USE OF LABORATORY GEOPHYSICAL AND GEOTECHNICAL 

INVESTIGATION METHODS TO CHARACTERIZE GYPSUM RICH SOILS 

DISSERTATION 



 
 

 

 

 

ABSTRACT OF DISSERTATION 

 

USE OF LABORATORY GEOPHYSICAL AND GEOTECHNICAL 

INVESTIGATION METHODS TO CHARACTRIZE GYPSUM RICH SOILS 

 Gypsum rich soils are found in many parts of the world, particularly in arid and 
semi-arid regions. Most gypsum occurs in the form of evaporites, which are minerals that 
precipitate out of water due to a high rate of evaporation and a high mineral concentration. 
Gypsum rich soils make good foundation material under dry conditions but pose major 
engineering hazards when exposed to water. Gypsum acts as a weak cementing material 
and has a moderate solubility of about 2.5 g/liter. The dissolution of gypsum causes the 
soils to undergo unpredictable collapse settlement leading to severe structural damages. 
The damages incur heavy financial losses every year.  

The objective of this research was to use geophysical methods such as free-free 
resonant column testing and electrical resistivity testing to characterize gypsum rich soils 
based on the shear wave velocity and electrical resistivity values. The geophysical testing 
methods could provide quick, non-intrusive and cost-effective methodologies to screen 
sites known to contain gypsum deposits. Reconstituted specimens of ground gypsum and 
quartz sand were prepared in the laboratory with varying amounts of gypsum and tested. 
Additionally geotechnical tests such as direct shear strength tests and consolidation tests 
were conducted to estimate the shear strength parameters (drained friction angle and 
cohesion) and the collapse potential of the soils.  

The effect of gypsum content on the geophysical and geotechnical parameters of 
soil was of particular interest. It was found that gypsum content had an influence on the 
shear wave velocity but had minimal effect on electrical resistivity. The collapsibility and 
friction angle of the soil increased with increase in gypsum. The information derived from 
the geophysical and geotechnical tests was used to develop statistical design equations and 
correlations to estimate gypsum content and soil collapse potential.  
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1. Introduction 
 

1.1 Background 

Gypsum is a sulfate mineral made up of hydrated calcium sulfate, CaSO4.2H2O. It 

is a very soft mineral with a Moh’s scale hardness of 1.5-2.0 and can be easily scratched 

with a finger nail. Gypsum is naturally found in various forms such as alabastrine, 

crystalline and fibrous. It is known to occur in shades of white, pink, red, yellow and 

brown and is sometimes translucent. Albastrine gypsum or alabaster is the most widely 

occurring form. It is composed of secondary crystals of gypsum which can measure up 

to a few centimeters. The fibrous variety, also known as satin spar, is the most easily 

recognizable form of gypsum. It is generally white in color and contains gypsum fibers 

(Figure 1.1). The crystalline form occurs in crystals of varying sizes. The larger crystals 

are usually about 1 m long and possess fan or blade-like shapes.  

Gypsum consists of about 21% water by weight and 50% water by volume (Cooper 

& Calow, 1998). Heating of gypsum causes it to lose three-fourths of its water and form 

calcium-sulfate hemihydrate ((2CaSO4.H2O) which is commonly known as plaster of 

Paris. This material is mixed with water to form a paste that dries and sets to form a hard 

material. Due to its abundance and physical and chemical properties, gypsum is widely 

used as a construction material in many parts of the world.  

Anhydrite (CaSO4) is a mineral produced by the dehydration of primary gypsum. The 

dehydration process takes place when gypsum gets buried at great depths. Anhydrite is 

typically found at a depth of 100-500 m. It is harder and denser than gypsum. The Mohs 

scale hardness of Anhydrite is about 3.0 -3.5 and it can be scratched using a piece of 
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annealed copper. Anhydrite generally assumes a laminated or the chicken wire-mesh 

structure (Cooper & Calow, 1998).  

 

Figure 1.1 Satin spar gypsum (Jones, 2013) 

Gypsum is present throughout the world in many geological periods ranging from 

Cambrian to recent. Most gypsum deposits are found in arid and semi-arid regions of the 

world. Although it is difficult to establish the extent of soils containing gypsum in the 

world, Eswaran and Zi-Tong (1991) estimated 207 million hectares of soils with gypsum 

horizons (Herrero & Porta, 2000). Most gypsum occurs in the form of evaporites. 

Evaporites are defined as minerals that precipitate out of water due to high mineral 

concentrations or a high rate of evaporation. Gypsum is frequently associated with 

dolomite and salt deposits. Gypsum is also associated with limestone, mudstone and 

sandstone sequences deposited in lakes and basins. Some places such as the Persian Gulf 

States which are known to have recent coastal deposits, also contain gypsum.  



3 
 

Gypsum is present in substantial amounts all over the world, but only a fraction 

of it is exploited. In a broad sense, gypsum occurs predominantly in Southern and Eastern 

Europe, Middle Eastern countries, parts of North Africa and the United Sates. In the 

United States, gypsum is found in significant quantities in New Mexico, Texas, Arizona, 

California, Utah, Nevada, Wyoming and Utah. In some places such as Southern New 

Mexico near Alamogordo, gypsum is the main component of the soil. This region is well 

known for the White Sands National Monument, which is comprised of gypsum sand 

dunes.  

  Gypsum is extensively used as a fertilizer for crops and as a building material. 

The major gypsum producing countries and the annual production rate in thousand metric 

tons is shown in Table 1.1 (Founie, 2007). In the USA, commercially useful Gypsum 

deposits are found in a number of states.  The distribution of gypsum soil and rock across 

the world is shown in Figure 1.2.  Figure 1.3 shows the distribution of gypsiferous soils 

in North-East Africa, Southern Europe and South-west Asia.  

Table 1.1 Major gypsum producing countries and their annual output (Founie, 
2007) 

Country Gypsum production (thousand metric 
tons) 

United States 21,000 
Spain 13,200 
Iran 13,000 

Canada 9,500 
Thailand 8,335 

China 7,500 
Mexico 7,000 
Japan 5,950 
France 4,800 

Australia 4,000 
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Figure 1.2 Distribution of gypsum rocks and soil across the world (Cooper & 
Calow, 1998) 

 

Figure 1.3 Gypsiferous soil distribution in northeast Africa, southern Europe 
and southwest Asia. (Alphen & Rios Romero, 1971) 
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1.2 Gypsiferous soils and rocks 

 Gypsum rich soils around the world are commonly described using the terms 

‘gypsiferous’ or ‘gypseous’. According to Herrero and Porta (2000), the term 

‘gypsiferous’ should be used for those soils which are ‘gypsum bearing’ or contain some 

gypsum, but where gypsum is not the dominant soil component. Likewise, ‘gypseous’ 

should be used to describe those soils which contain a significant amount of gypsum and 

the physical and chemical properties of the soil are attributed to the gypsum.  However 

‘gypsiferous’ is the more generic term which has commonly been used to define soils 

containing gypsum.  

 Gypsum is more common in soils of arid regions than soils of humid regions. Arid 

regions are generally known to have vast amounts of sand and the soil is mostly poorly 

graded. In these regions, extensive saline flats known as ‘sabkhas’  develop in low lying 

coastal areas or inland plains with shallow water tables. These plains are underlain by 

sand, silt or clay and contain salt. Gypsum along with dolomite, calcite, anhydrite, 

magnesite etc., is a common mineral in such regions (Bell, 2007). Due to scant 

precipitation there is very little downward leaching and salts such as gypsum precipitate 

in the pores surface deposits of soils. The gypsum sands are typically characterized by 

low strength and low density. The low bulk density is attributed to the low specific gravity 

of gypsum which is around 2.3.  The sands are often cemented to a certain extent by salts 

like halite, calcite and gypsum. These types of soils pose a number of engineering 

problems related to permeability, deformability and low strength. The properties of 

gypsiferous soils depend upon several factors, such as the origin of the gypsum deposit, 

depth of the soil layer and effects of weathering and evapotranspiration. Gypsum is easily 
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transported by water.  Based on the size of the gypsum crystals, gypsum soil layers can 

have a powdery or a sandy appearance (Alphen & Rios Romero, 1971). 

A commonly occurring feature of soils in arid regions is the formation of crusts or 

cretes. This is brought about by the cementation of minerals which takes place when 

mineral salts get precipitated from groundwater. Temperature and humidity conditions 

also influence the formation of cretes. Calcium carbonate generally precipitates in this 

manner, when the concentration exceeds 60%, to form ‘calcrete’. Cretes are hard material 

with hardness varying with depth. Gypcrete is a similar crustal formation which occurs 

in many places (Bell, 2007).  

The soil survey staff, USA (1960), define ‘gypsic horizon’ as a layer secondarily 

enriched with calcium sulfate. Furthermore, it should have a thickness of at least 15 cm 

and a minimum of 5% or more gypsum than underlying layer. The product of the layer 

thickness in cm and gypsum percentage should be more than 150 (Alphen & Romero, 

1971).  

The geotechnical properties of gypsum rich soils are characterized by their Atterberg 

limits, grain size distribution, strength, cohesion, angle of internal friction, 

compressibility, collapsibility, hydraulic conductivity etc. These properties vary 

considerably from place to place and are largely dependent on the local soil mineralogy. 

Studies have shown that in most places, gypsic subsoils do not contain more than 15% 

clay (Alphen & Rios Romero, 1971). For a majority of gypsiferous soils, the drainage 

varies from moderate to rapid. The drainage may however decrease if a gypsum incrusted 

layer is present. A great variation in hydraulic conductivity has been observed, the values 

ranging from 5.7E-05 cm/s to about 9.3E-03 cm/s. Hydraulic conductivity is an important 
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soil property that quantifies the rate of flow of water through soil. Based on the data 

collected from soils in Azerbaijan, Spain and Syria it was found that usually there is more 

than 35% gypsum present in subsurface layers and 5% or less gypsum is present in the 

surface layers. Exceptions can however occur if the surface profiles are highly eroded.  

Gypsum rocks consist of gypsum or anhydrite, usually in one or more forms of 

alabaster.  Anhyrdite rock is stronger than gypsum rock. Papadopolpos et al. (1994) 

investigated the influence of crystal size on the geotechnical properties of gypsum. They 

conducted point load tests and unconfined compression tests on samples of gypsum rocks 

and found that fine grained material like alabaster had the highest strength, followed by 

large crystals such as selenite (Bell, 2007). Medium sized crystals showed the lowest 

strength. The presence of impurities in the calcium sulfate rock also showed to increase 

the strength of the rock by decreasing the size of the crystals (Skinner,1959; Bell, 2007).  

Bell (1994) conducted tensile strength tests on samples of anhydrite and gypsum and 

found that anhydrite had a very high tensile strength whereas gypsum had a medium to 

high tensile strength. The solubility of gypsum varies from 2.1-2.6 g/l which is relatively 

high among minerals. This often leads to the formation of caverns and sinkholes in thick 

beds of gypsum.  A summary of the different physical properties of gypsum and anhydrite 

rocks is shown in Table 1.2.  Alabaster is quite often wrongly identified as limestone, 

which causes a number of engineering hazards (Cooper & Calow, 1998). Figure 1.4 

shows scanning electron microscope image of sulfate rich soil in Texas (Harris et al., 

2004). Figure 1.5 shows gypsum strata outcropping in United Arab Emirates.  
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Table 1.2 Some physical properties of gypsum and anhydrite 

Property Gypsum Anhydrite 
Specific gravity, Gs 2.3-2.4 2.9-3.0 

Moh’s scale hardness 1.5-2.0 3.0-3.5 
color White, grey, pink, 

yellowish-brown 
Grey and pale bluish grey 

Porosity, n Around 4-7 % Around 3% 
Unconfined compressive 

strength, Su 
24-35 MPa 66-123 Mpa 

Tensile strength 2.2-3.6 Mpa 7.1-8.2 Mpa 
Schmidt hammer 

hardness (ASTM D5873) 
8-23 35-37 

Young’s modulus, E 15-36 GPa 56-87 GPa 
 

 

Figure 1.4 SEM image of sulfate-rich soil in Texas (Harris et al., 2004) 
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Figure 1.5 Pinkish gypsum strata outcropping west of Abu Dhabi, United Arab Emirates 
(Shahid & Abdelfattah, 2009). 

1.3 Gypsum soils in agriculture 

 The presence of a limited amount of gypsum in soils in arid regions is helpful for 

plant growth. Gypsum prevents alkali formation in soils when the land is irrigated under 

conditions of inadequate drainage. At low concentrations gypsum is known to be a soil 

amending agent. Gypsum provides calcium and sulfur nutrients to soil and has been used 

as a fertilizer. It sometimes reduces the toxicity of soils by moving into the soil and 

displacing ions like Al3+. It is also known to improve the structure of the soil in the capacity 

of a binding or a flocculating agent where it holds the soil particles together. This in turn 

addresses problems such as erosion and water logging and enables root penetration through 

soils.  

Higher concentrations of gypsum may however prove detrimental to plant growth. 

Alphen and Romero (1971) reported that soils with more than 25% gypsum content caused 
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reduction in crop yields. At higher concentrations, cementation takes place between the 

soil and gypsum, the layer becomes hard and makes it difficult for roots to grow deeper 

into the soil. Nevertheless, if the gypsum layer around the root zone is granular or powdery, 

then it is does not pose a major problem.  Excess gypsum in soil may also interfere with 

the nutrient intake of plants, specifically, potassium and magnesium by decreasing amount 

of exchangeable cations from the soil. Nitrogen and phosphate content in soils is also low 

in gypsiferous surface layers. This leads to a decrease in crop-yield and calls for the use of 

fertilizers. Alfalfa, wheat, maize, barley, cotton and apricots are examples of some of the 

major crops that are cultivated on gyspiferous soils.  

The depth of gypsic layer is of special concern as it affects the water-holding 

capacity of the soil. Studies have shown that, if a gypsic layer occurs at a depth of less than 

60 cm, then it reduces the water holding capacity in the root zone (Alphen & Rios Romero, 

1971). When the gypsum layers is present at a depth of more than 1 meter, then the soil is 

deemed safe for irrigation and cultivation. Gypsum soils pose the risk of moderate to high 

ground subsidence due to the dissolution of gypsum and increased percolation. This aspect 

is a major engineering hazard while constructing irrigational facilities such as canals in 

gypsiferous soils and will be discussed in detail in subsequent sections of this dissertation. 
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1.4 Engineering and geological considerations of gypsum soils and rocks 

Gypsum is a widespread mineral occurring in numerous places around the world. 

The unique physical and chemical properties of gypsum lend some peculiar properties to 

gypsiferous soils which are often very problematic. Gypsum rich soils are known to cause 

a number of engineering and geological hazards which incur heavy financial losses every 

year. Some of the most significant engineering hazards of gyspiferous soils are discussed 

in the following section. 

1.4.1 Subsidence due to dissolution of gypsum 

Geological disasters due to gypsum dissolution and subsidence have been 

occurring throughout the world and are well documented. Many places like northern 

England, Lithuania, Germany, France, Turkey, Russia, the Shanxi and Hebei coalfields 

of China and the United States, have suffered significant losses due to subsidence caused 

by gypsum (Cooper & Calow, 1998). 

  The rapid dissolution of gypsum poses a major threat to any development at sites 

with gypsiferous soils. The solubility of gypsum is about 2100 mg/l which is considerably 

higher than the solubility of limestone (400 mg/l). It gets easily dissolved even in non-

saline waters. The reaction is very rapid as long as the groundwater is not saturated with 

gypsum. In spite of seemingly high solubility among minerals, gypsum belongs to the 

class of sparingly soluble salts and as such solutions attain equilibrium concentrations at 

low gypsum concentrations. Upon dissolution in water gypsum liberates Ca2+ and SO42- 

ions according to the equation: 

CaSO4.2H2O + H2O  Ca2+ +SO42- + 3H2O    (1.1) 
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  Flowing water often dissolves more gypsum than still water because the former is 

usually unsaturated with respect to calcium sulfate and saturation does not occur. 

Moderate river action can annually dissolve up to 1 meter of gypsum and the dissolution 

rates are similar even underground (Bell, 2007). The volume change characteristics of 

soil due to dissolution of calcium sulphate (anhydrite) were studied by Al-Amoudi and 

Abduljauwad (1994) using conventional and modified odometer tests. From their 

experiments it was found that in the conventional odometer test, the void ratio of calcium 

sulphate samples showed a marked increase when permeated with distilled water and 

brine. This high difference in void ratios shows the compressibility of the soil matrix 

(Azam, 2000).  

Alabastrine, the most commonly occurring form of gypsum is often misidentified 

as limestone at many sites which leads to serious engineering problems. Alabastrine is 

weaker than limestone and consequently has lesser arching potential. This causes gypsum 

karsts to collapse more easily than limestone. These features cause rapid development 

and expansion of underground caves and cavities. Sinkholes and caves develop readily in 

thick beds of gypsum which are responsible for massive cracking and subsidence on the 

ground surface at many places. Sometimes extended periods of rainfall in certain places 

have caused collapse of soils in a very short span of time (Bell, 2007). In some places 

where gypsum beds reach the ground surface, the dissolution of gypsum can be detected 

by the appearance of funnel shaped sinkholes formed by the collapse of the overlying 

seams. The rate of subsidence depends on factors such as the dimensions of the cavity 

and the physical and geotechnical properties of the overlying deposit.  
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 The presence of joints and cracks in rocks and aquifers propagate the development 

of underground caves in many gypsum outcrops. Gypsum karst is often characterized by 

collapse passages.  The dissolution of gypsum is higher at the joints and large cavities 

grow and develop in these zones. As these cavities increase in size, they tend to become 

unstable and collapse. Once the roof of the cavity collapses, the cavity starts moving 

upwards towards the surface. In this process brecciated rock columns are left below, 

which are termed as breccia pipes or collapse columns. The nature of the rock overlying 

gypsum determines the size of the collapsed area. If competent rock is present, the 

breccias pipes and collapse areas are usually 10-30 m in diameter, whereas in the presence 

of soft mudstone, the collapse areas are about 3-5 m in diameter. The amount of gypsum 

removed and the bulking factor of the collapsed material are the factors which govern the 

depth of the holes. In Lithuania and Germany the holes are about 10-20 m deep. When 

the dissolution of gypsum takes place on the top surface rock, which is in contact with an 

overlying water bearing deposit, the outcome is not necessarily a cave system. This kind 

of dissolution has been observed extensively near Zaragoza in Spain. In such cases, most 

of the dissolution takes place at the interface of the overlying deposit and gypsum. If thick 

unconsolidated fluvial deposits are resting on top of gypsum, they might fail and collapse 

into the cavities inside the rock (Cooper & Calow, 1998). Ripon in Yorkshire, England, 

is one of the places worst affected by subsidence caused by gypsum dissolution (Figure 

1.7). Several major collapses have occurred here within a century and more such collapses 

are likely. It is not unusual to find collapse hollows of 80 m diameter and 30 m depth in 

this region. Figure 1.6 shows the development of a subsidence sinkhole underneath a soil 
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deposit on limestone karst, following a pattern similar to that of sinkholes in gypsum 

karst. 

 

Figure 1.6 Development of a sinkhole in limestone karst (Waltham, 2008) 

Development of sinkholes and caverns in beds of gypsum located below 

reservoirs is a major engineering hazard. They grow and develop very rapidly within a 

few years. Considerable amounts of leakage and water losses occur at some reservoir 

beds due to the presence of limestone and gypsum karst. Tremendous amounts of seepage 

forces keep getting built up due to the dissolution of gypsum in reservoir beds which leads 

to leakage.  The unwarranted subsidence and leakage from caves have caused many dams 

and reservoirs to be abandoned and rendered useless. As of 1998, 24 dam sites have been 

known to be seriously impacted by gypsum dissolution, 14 of which are within the United 

States. The catastrophic failure of the St. Francis Dam in Los Angeles, California, in 1928 

is one the biggest engineering disasters to have occurred, resulting in the death of 400 

people (Yilmaz, 2001) (Figure 1.8). The failure was brought about by the dissolution of 

gypsum cement and conglomerate in the left abutment of the dam. The Mosul Dam in 
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Iraq, constructed on the Tigris River, is facing a serious threat of a disastrous failure 

because of the constant dissolution and erosion of gypsum rock lying underneath the dam 

(Fig. 1.9). The failure of the dam could lead to severe losses of lives and infrastructure 

on the downstream side (Martin, 2016).    

When dry gypsum rich soil comes in contact with water it becomes collapsible 

and hazardous, posing major engineering challenges for geotechnical engineers. 

Structures like irrigation canals and dams have been reported to show major deformations 

and failures. Many such instances have been reported in Iraq. Additionally, phenomenon 

such as uneven settlement and excessive deformation of structures result when 

gypsiferous soils are exposed to water. This occurs primarily due to the dissolution of 

salts and loss of cementing material present leading to an increase in void ratio. This leads 

to a loss of stability in the soil and grains re-arrange into a denser configuration. The soil 

in such cases is known to be ‘collapsible’ and is characterized by its ‘collapse potential’. 

Numerous researchers have tried to study collapsible soils in the Middle East, especially 

in Iraq, and assess the collapse potential of the soils. Many structures constructed on 

gypsum soils in Iraq were reported to having developed crack patterns and uneven 

deformations when the supporting soil came in contact with water (Al-Saoudi et al., 

2013). Several researchers have conducted extensive investigations on the engineering 

and collapse properties of gypsum soils in different regions of Iraq.  Jennings and Knight 

(1975) gave the most widely used criteria for establishing the hazard level of collapsible 

soils based on collapse potential. In Ebro Valley, Spain, hydraulic structures built on loess 

deposits had undergone major deformations even when the soil contained just 3.5% 
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gypsum.  Alphen and Romero (1971) stated that any gypsiferous soil containing more 

than 2% gypsum is unsuitable for foundations.  

 

 

 
Figure 1.7 Example of subsidence in gypsum karst in Ripon, England (Cooper & Calow, 1998) 
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Figure 1.8 A picture of the damaged St. Francis dam in Los Angeles, 1928 (Rogers, 2007) 

 

 

Figure 1.9 The Mosul dam in Iraq, built on a bed of gypsum rock (Hanchey, 2016) 
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1.4.2 Volume change  

The relative stability of gypsum and anhydrite is dependent on temperature, 

moisture and pressure conditions. Considerable volume change occurs when anhydrite is 

hydrated to form gypsum. Gypsification of anhydrite causes catastrophic problems like 

heaving of floors in tunnels and uplift in dams. Other significant damage includes 

cracking of concrete and other structural members, uplifting of slabs and heave of 

pavements.  Likewise the dehydration of gypsum results in volume shrinkage and fracture 

due to settlement. The distress in soil increases considerably if the moisture content keeps 

varying from time to time (Bell, 2007). Azam (2003) investigated the influence of 

calcium sulfate mineralogy on swelling and consolidation of soils in eastern Saudi Arabia. 

Gypsum is usually stable at temperatures below 38 o C and anhydrite is stable above 58 o 

C and pressure of around 100 kPa. The hydration of anhydrite into gypsum is shown in 

the reaction below: 

CaSO4 + 2H2O  CaSO4.2H2O     (1.2) 

Conventional or modified oedometer tests have been used to study the heaving 

characteristics of calcium sulfate rich soils. Some studies have found that it expands about 

one-fourth as much as clay. Anhydrite (CaSO4) transforms to bassanite (CaSO4.0.5H2O) 

before getting converted to gypsum (CaSO4.2H2O). The volume changes, which are about 

30-60 % generate pressures in the range of 2 to 69 MPa. Humidity and local weather 

condition play a major role in this transformation. Gypsification does not depend much 

on temperature but it takes place at a relative humidity of 100 % (Azam, 2003). Likewise 

the dehydration of gypsum can bring about a decrease in volume of up to 38.5%. In both 
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the hydration and dehydration reaction, the crystalline structures of gypsum and anhydrite 

are affected.  

 The process of hydration does not require much time. It could occur at any depth 

depending upon the location of anhydrite. If anhydrite occurs at shallow depths, the 

hydration process is gradual and is followed by gypsum removal from the solution. On 

the other hand, if it occurs at greater depths, anhydrite gets confined and the process of 

hydration leads to a gradual buildup of a huge amount of pressure which sometimes gets 

liberated in a sudden and a rapid fashion (Bell, 2007).  

1.4.3 Corrosion of Concrete 

  The presence of gypsum in soil often causes corrosion of concrete, when the 

sulphate component of gypsum reacts with the free quicklime (CaO) in concrete. What 

takes place is an acid-base reaction whose rate depends on the texture of the soil and the 

relative strengths of the acid (SO42-) and base (CaO) groups. The reaction is responsible 

for weakening of concrete. Corrosion of concrete is a common phenomenon in areas 

experiencing frequent wetting and drying cycles as well as those areas where the gypsum 

content in soil is more than 1%. In arid regions where the concentration of evaporates is 

high, other sulphates in the soil such as magnesium sulphate and sodium sulphate also 

result in the weakening of concrete due to corrosion (Muckel, 2004).  

1.4.4 Formation of Ettringite and Thaumasite 

In the presence of Sulphate rich compounds like gypsum in soil, the occurrence 

of calcium oxide and a high pH favour the formation of ettringite and thaumasite, two 

expansive minerals. This usually happens after the application of calcium-based 

stabilizers to soil. Calcium based stabilizers are added to soils to improve or modify some 
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of their engineering properties like strength and workability,  but the formation of 

ettringite and thaumasite may cause serious distresses and damage to structures due to 

heaving. The scale of damage and distress caused by the formation of ettringite and 

thaumasite depend upon the strength of the soil and the spatial distribution of ettringite 

or thaumasite in the soil matrix. Often the cost of reconstruction is much higher than the 

original cost of soil stabilization (Little & Nair, 2009).  

Ettringite is a hydrous calcium alumino-sulphate mineral 

(Ca6[Al(OH)6]2.(SO4)3.26H2O) which gets precipitated in highly alkaline conditions in 

soils and concrete with abundant amounts of sulphate. Thaumasite is a complex 

compound often found in the presence of ettringite. It is essentially a calcium carbonate 

silicate sulphate hydrate mineral represented by the structural formula 

(Ca6[Si(OH)6]2(CO3)2(SO4)2.24H2O). Thaumasite is assumed to be formed due to the 

alteration of ettringite in the presence of carbonates and silica 

Ettringite formation is followed by expansion in volume of the soil matrix the 

magnitude dictated by the amount of fines in the soil. The presence of water aids the 

reaction by partly dissolving the gypsum and thus making more sulphate ions available 

for reaction. The Molar volume of ettringite formed by external hydration is 1.37 times 

the volume of the original reactants. Unlike ettringite, the final volume of thaumasite is 

only about 0.45 times the volume of the initially present ettringite. Thaumasite formation 

reduces the overall size of the matrix and results in degradation or crumbling of the 

matrix, a fact that has been verified from field observations.  
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1.4.5 Miscellaneous problems 

Sand dunes are common geological features of many arid regions where the sand 

originates from weathering of rocks or from unconsolidated deposits. One of the biggest 

problems associated with gypsum dunes in arid regions is the destabilization of inactive 

dunes by construction activity. The disturbed dune tends to get re-activated, starts to 

migrate and buries the structures which come in its way. Another major problem is the 

contamination of groundwater from waste water disposal facilities built on gypsum 

dunes. The absence of fines in the soil leaves no scope for filtration of the effluent before 

it touches the ground water table. The roughly uniform size of the sand grains provides a 

good medium for the easy movement of effluent into the groundwater. Since gypsum gets 

dissolved without much difficulty, it adds more to the problem of groundwater 

contamination (Mulvey, 1992). Gypsum aquifers yield very hard water and their rate of 

pollutant transmission is comparable to that of rivers (Alphen & Rios Romero, 1971). 

Soils in arid regions, especially the sabkha soils often have little strength. In some cases, 

normally and slightly overconsolidated clays are found to be very sensitive. The low 

strength of the soils is due to the concentrated solutions of salts such as gypsum. 
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1.5 Research objectives 

 The various challenges and problems associated with gypsum soils have been 

briefly described in this chapter. The engineering hazards posed by gypsum soils affect 

not only lives of people but also cause heavy economic losses every year. The geological 

hazards of gypsum have been known to people for quite some time and most of the major 

engineering disasters have been documented. As countries keep growing and economies 

keep developing, there is a need to develop the residential, energy and infrastructural 

sectors accordingly. Over a period of time one simply cannot avoid construction in a 

region because of the presence of gypsum. In lieu of these aspects, there is an increasing 

demand for establishing quicker cost-effective techniques to identify and assess sites with 

gypsum rich soils and predict any potential hazards that might be associated with the 

engineering properties of the soil. Researchers have studied collapsible soils for several 

years and many empirical relationships have been proposed by them. Often these 

relationships are specific to a region and may not always work in other regions of the 

world. Geotechnical investigations, which include both in-situ and laboratory based tests 

are generally laborious and time consuming. Also the information derived from these are 

much localized. They do not give a broad picture of the site conditions, spread out across 

an area.   

Geophysical testing methods may address these issues by offering quick and 

inexpensive ground investigation techniques and being non-destructive and non-intrusive 

in nature. These methods primarily include seismic testing, electrical resistivity testing, 

micro-gravity and electromagnetic methods. While some of these tests are better suited 

for in-situ investigations, some tests can be conducted both on a laboratory scale as well 
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as a field scale. These days, geophysical methods are playing an increasingly important 

role in civil engineering. The methods may also be specifically applied to characterize 

and assess proposed construction sites in regions known to contain gypsum soils. The 

results from these tests may be interpreted directly or indirectly using correlations. 

Geophysical parameters are usually proxies to geotechnical spatial variables such as 

density, moisture, void ratio etc., and accordingly offer valuable site information at a bulk 

level.   

The main objective of this research was to use some geophysical testing methods 

to investigate gypsum soils and develop certain criteria to estimate the geotechnical 

parameters that are responsible for causing collapse settlement. These include factors 

such as gypsum content, moisture content, density etc.  The effect of gypsum content on 

soil behavior was of particular interest.  

1.6 Scope of research 

 This research aims at using a combination of laboratory scale geophysical and 

geotechnical tests to study gypsum rich soils and characterize them based on the test 

results. The geophysical methods serve as non-intrusive soil testing methods which are 

both rapid and inexpensive. The study also proposes to see if the information derived 

from the geophysical tests could be correlated to known geotechnical parameters of soil. 

The soils used for this research are reconstituted gypsum and quartz sand mixtures mixed 

at different proportions. Research work was broadly divided into three phases, the first 

involving laboratory geophysical testing and the second phase consisting of geotechnical 

tests. The geophysical tests included free-free resonant column (FFRC) testing to study 

gypsum soils based on shear wave velocity data and electrical resistivity testing to study 
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gypsum soils based on resistivity trends. Geotechnical tests consisted of direct shear 

strength tests and consolidation tests, which were used to measure the shear strength 

properties and collapse potential respectively. Specific gravity tests and grain size 

analysis was performed in addition to these tests.  

 Lastly, statistical analysis of these results was conducted and some predictive 

equations were developed to estimate the soil parameters that influence the collapse 

settlement of gypsum soils. A flowchart was developed to predict gypsum content of the 

soils in field using geophysical techniques. Each chapter in the dissertation is a 

presentation of the different phases of research: 

 Chapter 2: Overview of research methods: Discusses the main research 

methodologies that were considered for the research which include both 

geophysical and geotechnical laboratory methods.  

 Chapter 3: Electrical resistivity testing : This chapter describes the different  tests 

conducted to study the variation is resistivity with change in moisture content, 

gypsum content and dry density, along with the results and interpretations.  

 Chapter 4: Free-free resonant column testing: Describes the variation in stiffness 

of gypsiferous soils with change in gypsum content, effective stress and moisture 

content. This is followed with a discussion of the results and interpretation.  

 Chapter 5: Laboratory geotechnical testing: This chapter details the examinations 

of some geotechnical properties of the sandy gypsum soils considered for the 

research. These include the friction angle, cohesion, specific gravity and grain 

size distribution of the soils.  
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 Chapter 6: Consolidation and collapse potential testing: This chapter contains a 

discussion of laboratory investigations conducted to look into the collapse 

settlement problem associated with gypsum soils. Collapsibility of gypsum sands 

is studied under varying conditions of gypsum content, moisture content and time 

of loading. 

 Chapter 7. Statistical analysis of test results and estimation of gypsum content: 

Single and multiple variable regression analysis is performed on the test data to 

develop relationships between the soil variables. Additionally, a methodology is 

proposed to estimate the gypsum content of the soils in the field, based on the 

geophysical test results.  

 Chapter 8. Conclusion: Summarizes the main outcomes of the research and its 

uses. It also describes some limitations of the research and offers suggestions for 

future research.  
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2. Overview of Research Methods 

2.1 Introduction 

 A set of geophysical and geotechnical tests were used to conduct this research. This 

chapter gives a brief overview of the common testing methods that could be used for 

studying gypsiferous soils in a laboratory setup. The geotechnical properties of the soils 

that could be investigated were the friction angle (φ), cohesion, specific gravity, dry 

density, collapsibility and hydraulic conductivity, whereas electrical resistivity and 

stiffness (quantified by shear wave velocity, vs ) were  the geophysical properties. The soils 

chosen for research were reconstituted soils made up of quartz sand and ground gypsum. 

Soil samples were prepared by mixing quartz sand and gypsum in different proportions of 

gypsum by weight, with gypsum content ranging from 0- 100%. Throughout the research 

‘gypsum content’ represents the percentage of the mass of gypsum with respect to the mass 

of the soil sample. 

Gypsum Content (GC) = (mass of gypsum/ mass of soil) X 100%     (2.1) 

Some tests required the use of samples made up entirely of quartz sand or gypsum. The use 

of reconstituted gypsum sand mixtures in the absence of actual field samples could be 

justified by the fact that gypsiferous soils in arid regions are primarily sandy soils.  
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2.2 Geotechnical methods 

2.2.1 Direct shear strength test (ASTM D3080) 

 Direct shear strength testing (ASTM D3080) is used to estimate the shear strength 

properties of granular soils under drained conditions. It is one of the oldest and widely used 

tests in soil mechanics. In this test, a soil specimen is typically placed in a square or a 

circular box, which is divided horizontally into two halves. The two halves can be moved 

relative to each other under the presence of a vertical (normal) load, thus causing shearing 

of the soil specimen. The split between the two halves of the box defines the failure plane 

of the soil specimen. The box is placed in a shear machine which is operated either 

manually or using a computer (Fig 2.1).  

 

Figure 2.1 Geocomp Direct Shear Machine (Shear Trac II) used for this study 
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  For this research we use a circular metal shear box with a diameter of 2.5 in. and 

depth of 1in. Normal and horizontal loads were applied pneumatically and measured using 

load cells, so the maximum allowable load depends on the capacity of the load cell. There 

are two possible ways in which the specimen can be tested, namely, a stress-controlled test 

and a strain-controlled test. In the former test, horizontal force is incrementally applied to 

the specimen in discrete amounts until failure is reached. This test is more representative 

of field conditions. In a strain-controlled test, the specimen is displaced horizontally at a 

constant displacement rate until the specimen fails. The constant displacement is applied 

on one half of the specimen using a motor. This test has the advantage of measuring both 

the peak shear strength and the ultimate residual shear strength of the soil. In both tests, the 

horizontal and vertical displacements of the specimen are measured using analog or digital 

gauges.  

 The test can be used to measure both drained cohesion (c) and friction angle (φ) of 

a coarse-grained soil specimen. This is done by performing the test using different normal 

loads and plotting the Mohr-Coulomb failure envelope for the particular soil type (Fig 2.2). 

The slope of the failure envelope is the tangent of the friction angle and the y-intercept 

represents the cohesion. The shear stress and normal stress are related using the expression: 

τf = c + σ tan φ         (2.2) 

Where τf  is the shear stress at failure and σ is the normal stress acting on the soil. 

 The shear force versus displacement plots for soils show two unique responses 

(Fig. 2.3). Dense soils show a distinct peak shear strength, which is identified as the failure 

shear strength, followed by an ultimate residual or critical state shear strength. In the case 
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of loose soils, the shear strength increases with displacement till a constant or critical state 

shear strength is reached. This value is identified as the failure shear stress and is typically 

defined at a threshold strain (e.g. 5%).  The test is discussed in detail in Chapter 5.  

 

 

 

Figure 2.2 Mohr-Coulomb failure envelope (Kalinski, 2006) 
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Figure 2.3 Soil response to shear loading 

2.2.2 One-Dimensional Consolidation Test (ASTM D2435) 

 Consolidation is the time dependent dissipation of excess pore water pressure in a 

fine grained soil specimen subjected to loading and the accompanying decrease in void 

ratio.  This test is used to measure the long-term settlement and the change in void ratio of 

a fine grained specimen. Both the time rate of settlement and the ultimate settlement of soil 

can be estimated using this test and the field behavior of the soil can be predicted. The 

excess pore water pressure generated in the soil due to increase in effective stress is slowly 

dissipated, and the rate of dissipation is governed by the hydraulic conductivity of the soil. 

The test is performed using a consolidation load frame or an oedometer on a 

cohesive circular soil specimen that is typically 2.5 in. in diameter and approximately 0.75 

inches in thickness. The specimen is placed in a metal ring and is placed between two 

porous stones, one at the top and one at the bottom (Fig 2.4). The whole arrangement is 



31 
 

placed in a consolidation load cell which is filled with water to keep the specimen saturated. 

The specimen is loaded using a lever arm on which calibrated loads are placed. An analog 

or digital displacement gauge is used to measure the vertical deformation of the specimen 

under the applied load. Each load is placed for 24 hours and deformation measurements 

are taken at various time intervals. These data are used to plot the time-settlement plots 

which are used to evaluate the initial, primary and secondary stages of consolidation under 

an applied normal load. The parameters derived from this plot are the coefficient of vertical 

consolidation, cv , and the settlement corresponding to 100% degree of primary 

consolidation, d100.  

 

Figure 2.4 Consolidation cell test setup 
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After every 24 hours, the load on the specimen is increased and the settlement is 

continued. The cell is dismantled at the end of the test and soil sample is taken out and its 

dry mass is measured. The changes in void ratio of the specimen are back-calculated using 

the test data and a void ratio versus effective stress plot (popularly known as the e-log σ’ 

curve) is constructed (Fig. 2.5). This curve is used to evaluate parameters such as maximum 

past pressure (σ’max), coefficient of compression (cc) and coefficient of recompression (cr). 

These parameters are vital for the assessment of the field performance of the particular soil 

under long term loading. This test is discussed in further detail in Chapter 6.  

 

Figure 2.5 A typical e-log σ’ curve 
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2.2.3 Specific Gravity Test (ASTM D854) 

 Specific gravity (Gs) is a measure of the mass density of soil solids normalized 

relative to the mass density of water. Specific gravity depends on the mineralogy of a soil 

and consequently varies with soil types. Sands generally have Gs around 2.65 whereas 

clayey or silty soils have Gs in the range of 2.7-2.85. It is an important parameter to consider 

when studying gypsum rich soils since gypsum has a low specific gravity among minerals. 

Likewise, gypsum rich soils have a lower specific gravity than pure quartz or clay, the 

value depending on the gypsum content.  

This test is performed using a specific gravity bottle, calibrated to measure 500 ml 

of water (Fig. 2.6). A certain mass of oven dried soil sample is taken (M1). The mass of the 

volume of water displaced in the flask by this soil is measured (M2). Specific gravity of the 

soil is then calculated by the relation: 

Gs = M1 / M2                 (2.3) 

The soil and the water in the flask are ideally vacuumed for 2-4 hours to remove any air 

from the system which might otherwise affect the mass calculations. Specific gravity is 

often adjusted using a temperature correction factor ‘K’ and specific gravity at 20o C is 

reported.  
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Figure 2.6 Specific gravity test setup 

2.3 Geophysical laboratory methods 

2.3.1 Seismic tests 

 Low strain seismic testing refers to those tests in which the dynamic shear stresses 

induced on soil specimens are less than 0.001% and are essentially based on  propagation 

of waves through the soil matrix. In this strain range, stiffness is independent of strain and 

the material behaves in an elastic manner. These  are one of the most widely used 

geophysical tests and are specifically meant to identify the dynamic properties of soil used 

in solving problems associated with geotechnical earthquake engineering and soil 

dynamics. Low-strain tests also offer the advantage of testing the sample in a relatively 

undisturbed state, which helps in maintaining in-situ conditions of the soil specimens. 

Dynamic soil properties are determined from both field and laboratory seismic tests. 

Laboratory tests are conducted on smaller specimens, regarded as ‘elements’ or ‘models’. 
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These specimens serve to represent field soils and the tests conditions are created to mimic 

actual field conditions (Kramer, 1996). Soil stiffness and damping are the most extensively 

used parameters that are derived from these tests. Stiffness parameters include shear-wave 

velocity (vs) and small-strain shear modulus (Gmax) which are related as: 

Gmax = ρ vs
2           (2.4) 

Where ρ is the mass density of the soil and Gmax is the small strain shear modulus. 

Low strain seismic tests are based on the premise of creation of a wave pulse which 

produces a combination of P-waves, S-waves and surface waves. The arrival times of these 

waves at a distant location are recorded and analyzed. The arrival time is in turn used to 

calculate wave velocity as the energy travels through the soil media. It is a common practice 

to average the time-records from a number of impulses, to increase the signal to noise ratio. 

This helps in reducing the random noise and strengthening the original signal. P-waves 

have the highest velocity among all the waves generated.  

2.3.1.1 Fixed-free resonant column testing (ASTM D4015) 

Resonant column testing is a widely used laboratory test to measure the dynamic 

properties of soil. Cylindrical specimens of soils with a typical length /diameter ratio of 2:1 

are subjected to small strain harmonic loading in the axial or torsional mode using an 

electromagnetic loading assembly (Kramer, 1996). Cohesive soil specimens used for the 

test are generally 1.5 in. in diameter and 3.0 in.in length.   Some researchers have also 

conducted the test by using impulse loading and random noise loading. The base of the 

specimen is fixed to a pedestal and the top is free to rotate. The test is therefore commonly 

known as the ‘Fixed-free resonant column test’. Specimens are often put inside a confining 
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chamber to simulate in-situ stress conditions.  Typically undisturbed specimens are 

obtained from Shelby tubes and are consolidated prior to loading. Larger specimens are 

generally used for testing coarse grained soils. For this research, reconstituted gypsum sand 

specimens with 4.0 in. (10.2 cm) diameter and 9.0 in. (22.9 cm) length were used.  

The loading system for the fixed-free configuration consists of four coils and 

magnets positioned diametrically across the circular cap (Fig 2.7). These magnets respond 

to the electromagnetic field induced by the harmonic voltage pulse in the coils and impart 

torsional excitation to the specimen. The frequency and amplitude of the harmonic loading 

can be controlled. A function generator is used to produce a harmonic voltage pulse, used 

for loading the specimen from the top. The strain-response of the specimen is detected by 

accelerometers attached to the loading cap and recorded in the form of a time history. 

Response amplitude is analyzed as a function of frequency.  After subjecting the specimen 

to loading, the ‘resonant frequency’ (fn) of the specimen is identified as the frequency at 

which the strain-amplitude of the specimen is a maximum. It is dependent on the physical 

characteristics of the specimen such as its density, geometry, stiffness and confining stress.  

For a specimen of height ‘h’, polar moment of inertia ‘I’ and a top loading system 

with polar moment of inertia ‘Io’, the fundamental angular frequency of the specimen 

derived from the test (ωn), can be used to calculate the vs using the relationship: 

I / Io = (ωn h / vs) tan (ωn h / vs ),     (2.5) 

where ωn = 2 π fn   

When the top loading system is very light in comparison to the specimen, the above 

equation simplifies to: 
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vs = 4 fn h         (2.6) 

From the derived value of vs, shear modulus can be estimated using Eqn. 2.4.  

 

Figure 2.7 Block-diagram of a fixed-free resonant column test 

2.3.1.2 Free-Free Resonant column testing 

 Free-free resonant column testing (FFRC) is a simpler alternative to the 

conventional fixed-free resonant column test (Kalinski & Thummaluru, 2005). The Free-

Free Resonant Column testing is used for measuring small-strain shear modulus (Gmax) and 

small-strain material damping (Dmin) to predict the dynamic response of a soil site to 

earthquake shaking.  Soil stiffness can be estimated from this test by measuring shear-wave 

velocity (vs) or small-strain shear modulus (Gmax). Like the fixed-free resonant column test, 

this test makes use of a cylindrical soil specimen. The specimens is suspended horizontally 
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from two supporting rods in such a way that both the ends are free to rotate (Fig. 2.8). Each 

end of the specimen has a light plastic end cap attached. One end is glued to a device like 

a solenoid, which can impart torsional excitation to the specimen. Accelerometers are 

attached to the other end, which detect the strain response of the specimen, which is 

recorded as a time history or frequency spectra. The ‘resonant frequency’ (fn) of the 

specimen is identified as described in the fixed-free resonant column test. If both the end 

caps and the attachments are made of very light material, then they will have minimal 

impact on the rotational inertia of the system and the shear wave velocity, vs, is calculated 

by using the expression: 

vs  = 2 fn L           (2.7) 

Where L is the length of the specimen. This test was used to measure the stiffness 

of gypsum soil specimens and is discussed in detail in Chapter 4 of this dissertation. By 

using a combination of vacuum and cell pressure, the test can be performed by simulating 

stresses comparable to those of in-situ soils.  
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Figure 2.8 Block diagram of a free-free resonant column test 
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2.3.2 Electrical Resistivity Testing 

 Soils and rocks exhibit a wide range of electrical resistivity based on their 

mineralogical composition and the water content in their pores. Most minerals are generally 

insulators and their electrical conductivity is primarily due to the water present in the pores. 

Resistivity testing methods involve introduction of an electric current into the ground using 

two current electrodes and measuring the potential difference between two potential 

electrodes. The resistance measured in Ohms is converted to apparent resistivity (Ohm-m) 

based on the electrode configuration and geometry. Electrical resistivity (ER) of soil is 

affected by numerous parameters such as water content, fines content, temperature, density, 

mineralogy and salinity of pore-fluid. Resistivity measurements can thus provide an insight 

into these physical and chemical parameters of soil and their variation. The non-destructive 

and non-intrusive nature of the test makes it an attractive alternative for geotechnical 

investigations. Apart from engineering and geological studies, the ER technique is also 

widely used to assess soil conditions for agricultural purposes. 

 For a cylindrical soil body of cross sectional area A and length L, the electrical 

resistivity ρ in Ohm-m is given as: 

ρ = R (A/ L)           (2.9) 

where R is the measured resistance in Ohms  

For a potential drop of (V) Volts and a measured electric current of (I) Amperes, resistance 

(Ohms) is calculated using Ohms Law: 

R = V/I          (2.10) 
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2.3.2.1 Resistivity measurement using two-electrode soil box method (ASTM G187) 

 This test is used for laboratory measurement of electrical resistivity of soil samples. 

It is used to assess the corrosion potential of soils in foundations, which may be very 

detrimental for the life of underground structures. The test apparatus consists of a 

rectangular soil box constructed out of insulating material (Fig 2.9). Two metal end-plate 

electrodes are fitted at the opposite ends of the box. A soil sample is placed in the box such 

that it lies between the two end electrodes. A commercial resistance meter is used to 

measure the resistance of the soil. Resistance is directly measured across the two end plate 

electrodes in Ohms and is converted to apparent resistivity (Eqn. 2.9). The ratio ‘A/L’ is 

known as the soil box factor or geometry factor k. This test is relatively simple to conduct 

as is often used to complement the four-electrode soil box method (ASTM G57).  

 

Figure 2.9 Two-electrode soil box test 
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2.3.2.2 Resistivity measurement using four-electrode soil box method (ASTM G57) 

 This is another popular laboratory method to measure the electrical resistivity of 

soil samples. Like the two-electrode soil box test, this test finds extensive application in 

estimating the corrosion potential of soils which might be hazardous for the life of 

underground structures. Testing apparatus is made up of a rectangular box made of 

insulating material and is commercially available as the ‘Miller soil box’ (Fig. 2.10). The 

box has two end-plate metal electrodes through which electric current is passed through 

the soil. It also has two metal pins acting as inner electrodes across which the voltage drop 

is measured. Resistance is calculated as the measured voltage drop divided by the electric 

current. Current is measured by attaching an Ammeter in series with the circuit and 

potential drop between the inner electrodes is measured by connecting a voltmeter parallel 

to the circuit. The test uses the ‘Wenner electrode configuration’ in which all the electrodes 

are equally spaced. For a box with a cross sectional area A, electrode spacing l, and 

measured resistance R (Ohms), resistivity in Ohm-m is calculated as: 

ρ = R (A/l)           (2.11) 

The relationship is also expressed as: 

ρ = k R           (2.12) 

Where k = A/l is calculated as the soil box factor or geometry factor.  
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Figure 2.10. Four-electrode soil box test 

2.4 Conclusion 

 This chapter describes the geotechnical and geophysical laboratory tests that were 

considered for the research. In this research, resonant column tests and ER tests were 

conducted first, followed by geotechnical tests. Some tests were modified or used in an 

alternative manner to suit the needs of the research. All the tests were conducted on 

reconstituted specimens of gypsum sand mixtures. Tests were repeated on several samples 

by varying one or more parameters such as gypsum content, moisture content, confining 

stress or dry density. There were a few more tests such as constant hydraulic conductivity 

test which were proposed for testing the soils, but was later deemed unsuitable for the 

research based on the information gathered from literature survey. Some alternative 

geophysical tests can be used in the laboratory to characterize soils. These methods have 

been described in Appendix C of the dissertation.    
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3. Electrical Resistivity Testing of Reconstituted Gypsum Rich Soils 

 

3.1 Background 

 Electrical resistivity profiling is a widely used non-invasive geophysical method 

for sub-surface investigations. The method was first developed by Schlumberger in the 

early 20th century to characterize subsurface features of rocks and was subsequently applied 

by oil companies to locate potential petroleum reserves underground (Samouelian et al., 

2005).  Many properties of soil and rock show a good correlation with electrical resistivity. 

The basic principle involves introduction of a direct current or an alternating current into 

the ground and measuring the resulting potential difference between two points. Figure 3.1 

shows the typical electrical resistivity range of some common earth materials. There is a 

wide range of electrical resistivity for soils, ranging from 100 - 105 Ohm-m. Numerous 

factors dictate the electrical properties of earth materials, the most important ones being 

soil water content, mineralogy, fraction of fines, grain size, salinity, pore-fluid, bulk 

density and temperature.  

 Resistivity tests can also be used to monitor the temporal variations in these soil 

properties. In addition to being a widely used site investigation method, resistivity testing 

also finds great use in agriculture (to monitor salinity levels of soils), studies involving the 

chemistry of groundwater and estimating the corrosion of underground structures. For this 

research, the electrical resistivity technique has been used as a possible alternative for 

characterization of gypsum rich soils on a laboratory scale.  
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Figure 3.1 Typical electrical resistivity range of earth materials (Samouelian et al., 2005) 

Several researchers studied the relationships between soil properties and their 

geoelectrical characteristics. Rhoades et al. (1976) and Rhoades et al.  (1977) developed a 

relationship correlating bulk soil electrical conductivity with pore-water electrical 

conductivity, volumetric water content and soil surface conductivity (Samouelian et al.,  

2005). Gupta and Hanks (1972) proposed a linear relationship between soil resistivity and 

water content. Archie (1942) proposed an empirical method for correlating electrical 

resistivity of clay-free granular soils with pore-water resistivity and porosity. Kalinski and 

Kelly (1993) estimated the volumetric water content of soils containing 20% clay. They 

also developed a circular four-probe resistivity cell as an alternative to the Miller soil box 

for laboratory measurements of soil resistivity. Guinea et al. (2010) described how 

laboratory measurements, theoretical models and field data can be used to identify 

commercial useful gypsum rock deposits in north-eastern Spain. Bhatt et al.  (2014) used 
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a statistical approach to establish a correlation between electrical resistivity and water 

content of sand in a laboratory setup.  

 The two-electrode soil box method (ASTM G187) and four-electrode soil box 

method (ASTM G57) were used for the study. In the two-electrode method, the resistivity 

of the soil is calculated by directly measuring the resistance of the soil across the length of 

the box using a standard multimeter. This particular test was based on the premise of 

Kalinski and Vemuri (2005), wherein, the effect of degree of saturation, compaction effort 

and volumetric moisture content on the electrical conductivity of clay were studied.  In the 

four-electrode soil box method, current from a steady DC source is applied across the ends 

of the box and the potential drop between the two inner electrodes is measured. Resistivity 

is calculated as K times the ratio of voltage by current, where K is the calibration constant 

of the box.  

3.2 Testing methodology 

 A wooden soil testing box with inner dimensions 15.0 cm x 6.0 cm x 6.0 cm was 

used for conducting the tests along with two rectangular electrodes placed at either ends of 

the box. The box was filled with a moist mixture of sand and gypsum. Knowing the weight 

and volume of the box, and the weight of dry soil, the volumetric water content () could 

be calculated. Resistivity () was computed as: 

 = R (A/ l) = R(K)         (3.1) 

Where A/l, the ratio of cross-sectional area to length, is the calibration constant. The soil 

resistance R is measured using a multimeter. Resistance of a mixture was measured and 
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plotted over a range of moisture content. The test was repeated for mixtures with varying 

proportions of gypsum and a comparison was made. 

3.2.1 Two-electrode soil box method (ASTM G187) 

A saturated mixture of gypsum and sand was placed in the box and lightly compacted 

until it was spread evenly in the box (eo = 0.62) to the top (Fig 3.2). The two electrodes at 

either ends of the box, made of wire mesh and aluminum foil, were connected to the two 

probes of a fluke multimeter and resistance was measured in k. Measurements were taken 

twice by reversing the polarity of the probes. The internal resistance of the multimeter was 

found to be 0.3, which is negligible compared to the resistance of the soil. Also the box 

constant (k) was determined to be 2.48.  Tap water was used for conducting these tests 

instead of de-ionized water because the objective was to make a relative comparison 

between soils with different gypsum percentages. The electrical conductivity of tap water 

typically ranged from 450 μS/cm to 700 μS/cm during the entire duration of research. This 

corresponds to an average resistivity of 17.4 Ohm-m.  
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Figure 3.2 -electrode soil box test arrangement 

The mixture when initially placed in the box was saturated at a moisture content of 

approximately 25%. The soil was allowed to sit and desiccate over a period of 5 to 6 days. 

During this time, resistance was measured at regular intervals. As water content decreased, 

the weight of the soil box also decreased. The change in weight at each point was recorded. 

Finally, when no further change in weight was observed, the final measurement was taken 

and the soil sample was removed from the box. To obtain a reasonably accurate dry weight 

of the soil sample, the soil was transferred into an oven safe container and the dried for 

several hours in an oven. The oven was set to 60o C per the ASTM standard to prevent the 

breakdown of gypsum into anhydrite or bassanite.  

 This method yielded profiles characteristic of those of typical resistivity versus 

water content plots (Fig 3.3). Resistivity was at the lowest when the mixture was close to 

saturation and increased as the water content decreased. The resistivity was also within the 

typical range of resistivties for quartz and feldspar. However this method had some major 

limitations. The resistance readings had a lot of fluctuation. To ensure a reasonable 
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recording, a number of measurements had to be taken and averaged. The other major 

disadvantage was that of directional variation of resistance. When the polarity of the 

multimeter probes was switched, there was a substantial difference in resistance reading. 

The difference was even more pronounced at lower moisture contents.  In lieu of these 

limitations and uncertainties, the two-electrode soil box method was discarded after testing 

two soil samples.  

 
Figure 3.3 Resistivity versus volumetric water content using 2-electrode resistivity box 
method 
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3.2.2 Four-electrode soil box method (ASTM G57) 

 Due to the shortcomings of the two-electrode soil box method, a four-electrode testing 

scheme was implemented. The test was based on the Wenner configuration (Fig 3.4) in 

which 4 electrodes are placed in a straight line with equal spacing. As such, the separation 

between the electrodes was 5.0 cm. The same wooden box was used for this test (Figs 3.5, 

3.6). It had a cross sectional area of 36.0 cm2   and a length of 15.0 cm.  

 
Figure 3.4. Wenner 4-electrode configuration 

 

A Steady DC power source from an Agilent E3620A power supply was used to 

maintain a steady current flow across the outer electrodes. It was set to supply 6.0 V DC.  

The current flow (i) through the box was measured using a multimeter connected in series 

with the soil box. Two stainless steel electrodes were placed in the middle to measure the 

voltage drop (V). Another multimeter was connected in parallel with the soil box to 

measure the voltage drop across the two inner electrodes. The arrangement is illustrated in 
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Figs 3.5 and 3.6. In this configuration, Resistance (R) was calculated as V/I and resistivity 

of the soil (ρ) was calculated as: 

 = K(R)          (3.2) 

 Where K is the calibration constant of the box. Considering a cross sectional area (A) 

of 33 cm2 and an electrode spacing (l) of 5.0 cm, K was determined to be 6.6 cm.  

Figure 3.5. Four-electrode soil box test configuration 

 

 
Figure 3.6. Four-electrode soil box test setup in lab 
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3.3 Relationship between resistivity and moisture content 

In the first part of the testing, resistivity was measured and plotted against 

volumetric moisture content (). A moist sample of soil was taken and filled into the 

box. It was lightly compacted to ensure uniform distribution across the box (eo ~ 0.6). 

Once the soil was filled and leveled, the DC power source was turned on to introduce 

current into the circuit. Using the ammeter and voltmeter components of the two 

multimeters, the current in the system and the voltage drop across the two inner 

electrodes could be read simultaneously.  

Measurements were taken twice a day and the mixture was allowed to dry naturally. 

The change in the weight of the box was used to estimate the change in moisture 

content. After about five days, when no further weight change was seen, the sample 

would be dismantled and the final moisture content of the soil would be found.  

A major advantage of this method was that current and voltage varied 

proportionately, keeping R stable. Also, reversing the direction of current did not show 

any appreciable change in resistance of the soil. Therefore this method was deemed 

more suitable to measure resistivity. Five different sands were tested and their results 

were plotted in Figs 3.7-3.12.  
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Figure 3.7 Resistivity versus vol. moisture content for 0% gypsum 

 

 
Figure 3.8 Resistivity versus vol. moisture content for 10% gypsum 
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Figure 3.9 Resistivity versus vol. moisture content for 20% gypsum 

 

 
Figure 3.10 Resistivity versus vol. moisture content for 40% gypsum 
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Figure 3.11 Resistivity versus vol. moisture content for 60% gypsum 

 

 

Figure 3.12 Composite resistivity versus  profiles using of the five soil samples 

 

 

R = 4.8745 θ-1.359

10

100

1000

10000

0.01 0.1 1

R
e

si
st

iv
it

y 
(Ω

-m
)

Vol.water content

10

100

1000

10000

0 . 0 1 0 . 1 1

R
ES

IS
TI

V
IT

Y
 (

Ω
-m

)

VOL. WATER CONTENT

0% gypsum 10% gypsum 20% gypsum 40% gypsum 60% gypsum



56 
 

3.4 Relationship between resistivity and gypsum content 

A set of tests were performed to see the effect of gypsum content on the bulk resistivity 

of gypsum-sand mixtures saturated with water. Mixtures were prepared with 25% water 

content. After being hydrated for about an hour, they were put in soil box and 

compacted lightly to ensure a uniform distribution. In all cases, void ratio of sands was 

kept close to 0.6. Next the voltage electrodes were inserted into the soil box and the 

apparatus was ready for testing.  

 The DC power source was set to 4V to supply a current for the circuit. The resulting 

current through the soil and potential drop between the inner electrodes were measured. 

Fifteen tests were performed in this manner on a number of mixtures, some of them 

being repeated multiple times. The resistivity at saturation was graphed against the 

gypsum content in the sands. The resulting plot is shown in Figure 3.13. 
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Figure 3.13 Resistivity plotted against gypsum content at S = 100%, using the wooden 
soil box 

 

 The testing scheme was repeated after a few months using a new acrylic soil box 

to validate this data. The box had the same inner and outer dimensions as the wooden 

box. Unlike the wooden box, the acrylic box was resistant to decay caused by prolonged 

contact with moist soil. Select mixtures were tested and the water content and 

compaction were carefully controlled to avoid any significant scatter in the data. All 

specimens were prepared at a dry density of approximately 1.5 g/cm3. The relatively 

small size of the test specimens ensured that the dry density values were comparable.  

Required amount of water to saturate the specimen was estimated. Again the resistivity 

was graphed against gypsum content, which yielded a plot as shown in figure 3.14. The 

two datasets compare favorably.   
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Figure 3.14 Resistivity plotted against gypsum content at S = 100%, using the plastic 
soil box 

 

The excess water collected on top of some soil samples was decanted and set for 

pore water resistivity measurements. Pore water resistivity was measured using an 

Extech 400 conductivity meter at 20o C (Fig. 3.15). The device can measure electrical 

conductivity, salinity and the total dissolved solids (TDS) in any solution. However 

only the conductivity values were recorded and converted to resistivity.  Table 3.1 

shows the pore water resistivity measurements obtained from the different soil samples. 

Figure 3.16 compares the pore water resistivity values with those of soil resistivity.  
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Table 3.1 Pore-water resistivity of soils with different gypsum contents 

Gypsum % Electrical resistivity (Ω-m) 
0 9.34 
10 2.85 
20 2.70 
30 3.09 
40 3.32 
50 3.22 
60 3.46 

 

 

 
Figure 3.15. Measuring pore-water resistivity using Extech-400 conductivity meter 
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Figure 3.16. Comparison of pore water resistivity with soil resistivity 

 

3.5 Observations and inferences 

Both sand (quartz) and gypsum are poor conductors of electricity and are essentially 

insulators at low moisture contents. In both the 2-electode and 4-electrode soil box 

tests, it was seen that the change in resistivity was mainly related to the change in water 

content of the soil.  Resistivity is found to decrease with an increase in volumetric water 

content. The general relationship between resistivity and water content was akin to 

y=a*x-b, where a ranged from 0.4 to 1.3 and b ranged from 0.9 to 1.4. This relationship 

can be seen in Figures 3.7-3.10.  The correlation was fairly good, yielding an R-squared 

value of 0.94 – 0.99.  The relationship can be compared to the empirical relation 

proposed by Archie (Samouelian et al., 2005):  

R = Rw a S-n -m        (3.3) 
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Where R is the soil resistivity, Rw is the pore water resistivity, S is the degree of 

saturation,  is the porosity and a, n and m are empirical constants. Since the test is 

performed on a same sample throughout, the porosity would remain constant leaving 

saturation the only variable. The equation then changes to: 

R = Rw a S-n         (3.4) 

   When dry, both gypsum and quartz are very good insulators. Under saturated 

conditions there is an increase in conductivity of gypsiferous soils, due to the liberation 

of Ca2+ and SO42- ions by gypsum. These liberated ions are partially dissolved in the 

water and partially adsorbed on the soil surface. After testing several mixtures at 

saturation, a general trend was observed where resistivity was at a maximum when 

there was no gypsum in the sample. It then dropped rapidly with increase in gypsum 

content, reaching minima at about 30% gypsum. Thereafter resistivity increased, and 

remained fairly constant up to about 70% gypsum. At very high gypsum 

concentrations, (>70%), the trend was a little ambiguous. One set of tests suggested a 

decrease in resistivity whereas the second set of tests maintained a fairly constant 

resistivity beyond 50% gypsum. 

Literature suggests that, soil surface acts as surface for adsorbent for Ca2+ and SO42- 

ions liberated in the presence of water (Bolan et al., 1991). As such, the dissolution of 

gypsum is more in saturated soil than in water itself. This explains the decrease in 

resistivity with increase of gypsum. But gypsum is known to be a sparingly soluble salt 

(2.0 – 2.6 g/l) (Adiku et al., 1992). This results in the pore-water attaining a saturation 

concentration at relatively small gypsum concentrations. Beyond this amount, no 

further gypsum can be dissolved and addition of gypsum could only result in 
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precipitation. This explains why there is no change in resistivity beyond a certain 

concentration of gypsum in the soil. It is the dissolved gypsum that causes the increase 

in conductivity. The conductivity of porewater measured at 20oC varied between 3.05- 

3.7 mmho/cm. These values correspond to a resistivity range of 2.7 - 3.3 Ω-m, as shown 

in Table 3.1.  

The ambiguity in resistivity at higher gypsum concentrations may be a result of 

higher settlement for the same compaction effort. From the consolidation tests it was 

found that settlement generally increased with increase in gypsum. Varying dry density 

affects the tortuosity of the soil which might ultimately affect the observed resistivity.   

To address this aspect, another set of tests were conducted to study the change in 

resistivity with density (porosity). Archie’s Law could again be applied to saturated 

sands to predict the resistivity of soils over a range of porosities. Unlike the previous 

testing regime, saturation would be kept constant in this case and the density is varied. 

The details of these tests and results will be discussed in the following sections.  

Even though there is not a very significant variation in resistivity of saturated sands 

with the addition of gypsum, this method could still be applied to characterize sites 

with gypsiferous soils. Electrical resistivity testing can be used with other site 

investigation methods in sites with low to moderate amounts of gypsum. 
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3.6 Relationship between resisitivity and porosity 

A series of tests was conducted to see the effect of soil density on electrical 

resistivity. The test was again based on the premise of Archie’s Law which states that 

bulk soil resistivity in rocks and granular soils is proportional to pore-water resistivity, 

degree of saturation and porosity. Since sample density can be varied by soil 

compaction, it is possible to perform the resistivity tests across a range of porosity.  

Three mixtures were tested with gypsum contents of 0%, 20% and 50%. The choice 

of mixtures was based on the results of the prior resistivity tests, which indicated a dip 

in resistivity at 20% gypsum content and a subsequent increase and stabilization. From 

the different tests, it was also found that sand could be packed to greater densities with 

increasing gypsum content. Based on all these results, it was expected that the mixtures 

might show specific resistivity trends based on the gypsum concentration and porosity. 

The effect of gypsum on the cementation exponent ‘m’ of the Archie’s Law was of 

particular interest.  

To perform this test, the four-electrode soil box was again used. Sand was the 

poured into the box. Initially sand was poured loosely to maintain a higher void ratio.  

In each subsequent test it was compacted more and more till the point where void ratio 

could not be reduced any further. The optimum amount of water required to saturate 

the specimen was estimated, based on the sample specific gravity and void ratio:  

Gs w = S e         (3.5) 

At saturation, S = 1, so the required water content was approximated using the 

expression: 



64 
 

w = e / Gs          (3.6) 

The calculated amount of tap water was added to the specimen in small amounts 

until complete saturation was attained. The tap water had an average resistivity of 16.6 

Ohm-m at 22o C.  The soil was then left to hydrate for fifteen minutes. After hydration, 

the ammeter and the voltmeter were connected to the box in the Wenner configuration 

and a DC current was passed at 4V using the Agilent E3620A DC power source.  

Measurements were taken at different values of porosity. Resistance values 

(KOhm) were converted to Resistivity (Ohm-m) using a conversion factor of 57.5. The 

factor was calculated based on the geometry of the box and electrode spacing. The 

resistivity was then plotted against porosity. A best fit curve was fitted through these 

points. Pore-water was collected from the loosely packed sands by compacting them 

and decanting the water collected on top. The electrical conductivity of porewater was 

measured using an Extech 400 conductivity meter in mmho/cm. Conductivity was 

converted to resistivity (Ohm-m). The pore-water resistivity values for the three 

specimens are shown in Table 3.2. The results are shown in Figures 3.17-3.19. 
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Figure 3.17. Resistivity versus porosity for 0% gypsum sand (saturated) 

 
Figure 3.18 Resistivity versus porosity for 20% gypsum sand (saturated) 
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Figure 3.19 Resistivity versus porosity for 50% gypsum sand (saturated) 

 

3.7 Observations and inferences 

For a given soil mixture, electrical resistivity showed a good correlation with 

porosity.  It was observed that electrical resistivity decreased with increasing porosity. 

The R-squared values fell in the range of 0.91 to 0.99. The best fit curve exponential 

curve was expected to have a form similar to that of Archie’s Law expression. The 

expression was again of the form y = a Rw x-m, where ‘m’ is the cementation exponent, 

‘a’ is a constant and Rw is the pore-water resistivity.  As all the specimens were tested 

at S = 100%, the saturation coefficient becomes unity. 

Of the three mixtures tested, sand with 20% gypsum showed the largest value of m. 

Higher m values usually represent a greater degree of cementation within a given soil 
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gypsum had an intermediate value. Table3.2 lists the mixtures and their corresponding 

m values from the resistivity-porosity plots.  

Table 3.2. Gypsum soil samples and their Archie’s Law parameters 

Soil Pore water resistivity 
(Ohm-m) 

m 

         0% gypsum 9.34 0.926 

20% gypsum  2.70 1.28 

        50 % gypsum 3.22 1.03 

  

The size of the box was a limitation in the test. Since the volume of the box was not 

very large (450 cm3), the range of void ratios at which soil could be placed and 

compacted was limited. This resulted in corresponding limited porosity range. For most 

cases, porosity could only be varied in the range of 0.28-0.40. This could also have 

impacted the parameter ‘m’ which is normally higher for rocks and subsurface soil 

formations. Typical m values range from 1.3 to 2.5 (Engler, 2012).  

Another observation which was verified from this test was the increase in 

compaction with increase in gypsum. In other words, sand with a greater proportion of 

gypsum could be compacted to lower porosities. This behavior could be explained by 

the fact that gypsum is a soft material. The application of greater compaction effort 

serves to crush gypsum, compressing the soil to a smaller volume. 
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3.8 Conclusion 

 Electrical resistivity of gypsum soils shows a good correlation with volumetric 

moisture content. It however does not have a unique relationship with gypsum content. In 

other words, the electrical resistivity of gypsiferous soils is fairly independent of gypsum 

content. The pore water resistivity measurements from the different specimens confirmed 

this observation. Electrical resistivity of the soils also varies with the porosity of the 

specimens.  Due to the small size of the specimen, porosity only varied over a narrow range 

and correspondingly, the variation in resistivity was small. It was also observed that among 

the three variables: moisture content, gypsum content and porosity, change in moisture 

content had the most significant impact on electrical resistivity.  The information derived 

from the electrical resistivity testing was used to develop statistical models which can be 

used for predictive analysis. These relationships and models are described in Chapter 7 of 

this dissertation.  
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4. Estimating the Stiffness of Gypsum Rich Soils using Free-free Resonant Column 

Testing 

4.1 Introduction 

 Gypsiferous soils across the world are susceptible to numerous engineering 

hazards, annually incurring losses of the order of millions of dollars. The unique properties 

of the mineral gypsum (CaSO4.2H2O), such as softness, moderate solubility and reactivity 

are responsible for rendering soils hazardous for new or existing constructions (Cooper & 

Calow, 1998). Gypsum is often found in arid regions of the world along with calcite and 

dolomite in the form of evaporites. Gypsum rich soils have a high permeability, low unit 

weight and are predisposed to settlement. The problem of subsidence is especially 

widespread and catastrophic.  

 There is a great need for developing non-destructive and non-intrusive tests to 

rapidly screen sites with gypsiferous soils. Geophysical testing methods such as seismic 

tests are known to be very effective for such analysis. Conventionally, fixed–free resonant 

column testing or the bender element testing methods (BE) have been in use for performing 

small-strain dynamic tests on soils (shear strains in the range of 10-3 to 10-4). The technique 

used in this study is known as the free-free resonant column testing (FFRC), a simpler 

alternative to the conventional fixed-free resonant column test (Kalinski & Thummaluru, 

2005). It has an advantage over bender element testing, wherein small strain material 

damping can also be estimated (Dmin). The interpretation of bender element data is also 

somewhat subjective. Free-free resonant column testing is used for measuring small-strain 

shear modulus (Gmax) and small-strain material damping (Dmin) to predict the response of a 

site to earthquake shaking. Small-strain shear modulus represents the largest value of shear 
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modulus of any given soil found at low strain amplitudes. Soil stiffness can be estimated 

from this test by measuring shear-wave velocity (vs). By using a combination of vacuum 

and cell pressure, the test can be performed over a range of comparable to those of in-situ 

soils.  

4.2 Test Setup 

The term ‘gypsiferous’ is broadly used to describe soils having a significant amount 

of gypsum, but not exceeding 50 % by proportion (Herrero & Porta, 2000). The natural 

gypsum content of soils in many gypsum affected areas of the world is typically within this 

range, although it could occasionally be exceptionally high in some locations. Gypsum is 

also usually found in arid regions, where soils generally have substantial coarse-grained 

fractions. Considering these aspect, mixtures of fine quartz (minus # 40 fractions) and 

ground gypsum were prepared in the laboratory with different percentages of gypsum by 

weight (Fig. 4.1). Table 4.1 shows the soils used for the tests and their respective gypsum 

percentages.   

Table 4.1.  Gypsum-sand mixtures used in testing 

Soil type Percentage of gypsum 

M0 0 

M10 10 

M20 20 

M30 30 

M40 40 

M50 50 

M100 100 
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Figure 4.1 Soil M30 (sand with 30 % gypsum) 

The mixtures were reconstituted into cylindrical specimens with an aspect ratio of 

2:1 using a latex membrane and two end caps. A rotary solenoid (Ledex 500, model No. 

H-1079-032) was attached to one end of the specimen and a pair of PCB accelerometers 

(PCB 353B16) was attached to the other end across the diameter. The accelerometers have 

a sensitivity of 10 mv/g and an operating frequency of 0.7 – 20,000 Hz (Kalinski & 

Thummaluru, 2005).  The usage of two accelerometers oriented in the same direction 

ensures that the recorded motion is predominantly torsional. The resonant frequency (fn) of 

the specimen was identified as the frequency which produces the maximum torsional 

amplification. The solenoid, which is connected to a function generator, excites the 

specimen in the torsional mode by imparting a transient pulse. Figure 4.2 shows the end 

caps with the positioning of the accelerometers and the solenoid. The torsional excitation 

of the specimen was measured by the accelerometers as a function of frequency.  The 

summed voltage output from the accelerometers was passed through a PCB signal 
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conditioner (Model no. 482A22) and recorded by a dynamic signal analyzer (Coco-80). 

The Coco-80 dynamic signal analyzer has a dynamic input range of 150 dB, 8 input 

channels and a maximum sampling rate of 102.4 kHz. It also has an output feature with an 

SMB connector and 100 dB dynamic range  

Vacuum was applied to one end of the specimen to provide positive effective stress. 

The specimen was then mounted in a free-free configuration on an assembly of two end 

plates and supporting rods. An acrylic tube is placed between the end plates. This 

arrangement represents a pressure cell and it is connected to an air pressure system (Figs. 

4.3, 4.4). The effective confining stress (o’) is measured as the sum of the vacuum and 

applied cell pressure.  

 
Figure 4.2 End caps of the specimen with their respective attachments 
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Figure 4.3. FFRC testing configuration 

 

 
Figure 4.4 Lab test setup 
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4.3 Methodology 

Kramer (1996) gave the following relationships between the length of the specimen 

(L) and the polar moment of inertia of the Specimen (I): 

I / Io = tan ,        (4.1) 

And  

 = 2 fn L/ Vs  ,        (4.2) 

where Io is the polar moment of inertia of the loading cap and the instruments attached to 

it.  

For the free-free condition,  

Tan = (1 + 2)/ (122 – 1)      (4.3) 

 Where, 1 = I1/ I 

and    2 = I2/ I 

And  I1 and I2 are the polar moments of inertia of the masses attached to the ends of the 

specimen. Equation 4.3 is an implicit equation and can be solved iteratively to obtain   . 

Unless I1 and I2 are not very small as compared to I, the observed resonant frequency of 

the specimen may be affected. For this reason, the end caps, porous stones and the electrical 

and torsional arrangement attached to them should be made of light material (Kalinski & 

Thummaluru, 2005). Assuming an average specimen mass of 3200 g, length (L) of 22.86 

cm and a specimen diameter of 4 in ( 10.16 cm) , the values of the polar moments of inertia 
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of the specimen (I), end cap with accelerometers and porous stone (I1) and end cap with 

solenoid and porous stone (I2) have been calculated and presented in Table 4.2. 

Table 4.2. Polar moments of inertia of the components of a typical test specimen 

Object Moment of inertia about the center of 
specimen (g-cm2) 

End  with accelerometers 2946.0 
End  with solenoid 2867.0 
Soil specimen 41290.2 

 

 In this context, I1 and I2 are very small compared in comparison to I. From trial and 

error, Equation 4.3 is solved and the value of    comes out to be 2.76. Shear wave velocity 

is then determined by rearranging Eqn. 4.2:   

vs = 2 πfn L /2.76         (4.4) 

 If the end cap assembly was sufficiently light then   would tend to π and Eqn. 4.2 

would be simplified to: 

vs = 2 fn L          (4.5) 

In this particular testing scheme,  fn of the specimens under different stress levels is 

recorded and is used to compute vs using Eqn. 4.4. The dynamic response of a site is 

characterized by stiffness of the soil which is measured by the small-strain shear wave 

velocity (vs) and small-strain shear modulus (Gmax). The relationship between these 

parameters is given by: 

Gmax = ρ Vs
2   ,         (4.6) 

where ρ is the mass density of soil . 
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Shear-wave velocity is known to increase with effective confining stress (o’) and is 

roughly proportional to the fourth root of o’. The variation in vs for the all the mixtures 

was studied over a pressure range of 17 kPa to 300 kPa. The test results could thus represent 

the shear-wave velocities of in-situ gypsiferous soils.  

4.4 Testing procedure 

4.4.1 Dry soil testing using cell pressure 

 Once a specimen was prepared, a vacuum of 17 kPa was applied to support the 

system. It was then mounted on the rods between the end plates. The acrylic cell was then 

introduced between the end plates and the arrangement was made air-tight by using o-rings 

and vacuum grease. At this point, the specimens were ready to be tested. Using the manual 

trigger operation of the function generator, a voltage pulse was sent to the solenoid. The 

torsional excitation of the specimen measured by the accelerometers was recorded as a 

time-domain signal using the Coco-80 dynamic signal analyzer. The analyzer converted 

the time-domain signal into a frequency domain signal or auto-power spectra (APS) using 

Fourier analysis (Fig. 4.5). The resonant frequency (fn) was identified from the APS. The 

setup and configurations of the function generator and dynamic signal analyzer required 

for conducting the tests are given in Appendix A.   

 Initial tests were performed using only vacuum and fn was identified at 17 kPa, 34 

kPa and 58 kPa. As it was not possible to attain a vacuum greater than 58 kPa, pressurized 

air was introduced into the cell to create confining pressure. As such, the effective stress 

acting on the specimen would be the sum of vacuum and confining pressure (Kalinski & 

Thummaluru, 2005). After the application of cell pressure, fn was measured at the following 

effective stresses: 85kPa, 105 kPa, 130 kPa, 160 kPa, 200 kPa, 230 kPa, 260kPa and 300 
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kPa. Once tested at a particular stress, the pressure was increased gradually to the next level 

and the specimen was allowed to stand for five to ten minutes before measurement was 

performed. This was done in order to ensure a uniform distribution of stress. To be 

consistent, the void ratio of all the specimens was kept close to 0.55. A typical soil 

specimen was 4.0 inches in diameter, 9.0 inches in length and weigh around 3200 g. Figures 

4.6-4.13 show the vs of the different soils plotted against o’. Seven different soils were set 

for testing. 

  After testing a particular soil, the air pressure was gradually reduced and turned 

off. The acrylic cell was removed and the specimen was dismantled after removing the 

vacuum. The membrane was changed every time before starting the test with a different 

mixture. 

  
a)                                                                       b) 

Figure 4.5. Dynamic signal analyzer showing the a) time-domain b) frequency domain 
spectra 
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Figure 4.6 plot of vs versus o’ for M0 (0 % gypsum), dry 

 

Figure 4.7 plot of vs versus o’ for M10 (10% gypsum), dry 
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Figure 4.8 plot of vs versus o’ for M20 (20% gypsum), dry 

 

Figure 4.9 plot of vs versus o’ for M30 (30% gypsum), dry 
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Figure 4.10 plot of vs versus o’ for M40 (40% gypsum), dry 

 

Figure 4.11 plot of vs versus o’ for M50 (50% gypsum), dry 
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Figure 4.12 plot of  vs versus Log o’ for M100 (100% gypsum), dry 

 

Figure 4.13 Comprehensive plot showing the best-fit vs versus o’ curves for all the soils 
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4.4.2 Tests on moist soils 

 After conducting free-free resonant column tests on dry gypsum soils, a series of 

tests was conducted to study the effect of moisture on the stiffness of gypsum sands and 

cementation effects. Specimens were initially prepared in a manner identical to the 

previous testing regime. A 58 kPa vacuum was applied and the resonant frequency of the 

dry specimens was measured. Once the measurement was taken, the specimen was 

dismounted and the vacuum was reduced to 17 kPa. The specimens were still intact under 

the lower vacuum and were seated in an upright position. Under this arrangement, water 

was permeated through the bottom of the specimens. Figure 4.14 shows the arrangement 

for saturating the specimens. The vacuum pipe was passed through a vacuum trap to ensure 

that no water escapes into the system in the process of saturating the soil.  

 
Figure 4.14 Assembly to saturate the soil specimens  
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Once no further increase in weight was observed, the specimen weight was noted 

and it was mounted back on the resonant column test apparatus. Degree of saturation, S, 

was estimated using the relation: 

S = Gs w /e          (4.7) 

Where w is the water content and e is the void ratio.  

Five soils were tested with gypsum content ranging from 0% to 40%. No cell 

pressure was used in this test because of the difficulty in assembling the acrylic cell around 

the water pipes. As such, testing was carried out at 58 kPa gauge vacuum. The vacuum 

would draw water out of the specimen, also aiding the change in moisture content. Clear 

resonant peaks could be obtained from saturation level below 85%. As the saturation 

decreased, the resonant frequency of the specimens increased.  

Measurements of resonant frequency were taken at varying degrees of saturation. 

The vacuum could only reduce the saturation to up to 50%. Beyond this point pressurized 

air was used to decrease the moisture content. The specimens would be dismounted and 

low pressure air (approx. 13 kPa) was passed through one end of the specimen while the 

other end would be kept open. This arrangement ensured the reduction of moisture content 

without disturbing the specimens. Decrease in saturation was calculated by change in 

weight of the specimen before each measurement. The shear wave velocity was plotted 

against the degree of saturation for each specimen. Five soil specimens with 0%, 10%, 

20%, 30% and 40% gypsum were originally tested. Another soil sample with 60% gypsum 

was tested subsequently to validate some trends predicted from the previous tests. Figures 

4.15 - 4.21 show vs of the different soils plotted against S.  
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Figure 4.15 Plot of vs versus degree of saturation (S) for M0 (0 % gypsum) at 58 kPa 

 

 
Figure 4.16 Plot of vs versus degree of saturation (S) for M10 (10% gypsum) at 58 kPa 
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Figure 4.17 Plot of vs versus degree of saturation (S) for M20 (20% gypsum) at 58 kPa 

 
Figure 4.18 Plot of vs versus degree of saturation (S) for M30 (30% gypsum) at 58 kPa 
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Figure 4.19 Plot of vs versus degree of saturation (S) for M40 (40% gypsum) at 58 kPa 

 
Figure 4.20 Plot of vs versus degree of saturation (S) for M60 (60% gypsum) at 58 kPa 
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Figure 4.21 Comprehensive vs versus S plot for all soils tested at 58 Kpa 

 

4.4.3 Testing moist soils using cell pressure 

 After performing resonant column tests on moist soils using 58 kPa of vacuum, two 

additional tests were performed on moist sands with the addition of cell pressure. These 

tests were performed in order to study the influence of cell pressure on the shear wave 

velocities of moist soils. In other words, the tests were carried out to verify whether an 

increase in effective stress would still yield similar looking vs versus S profiles. In addition 

to the 58 kPa of vacuum a cell pressure of 69 kPa was used leading to an effective stress 

of 127 kPa. The same acrylic pressure cell arrangement was used as in the dry soil testing 
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considerably in the process of assembling the pressure cell and making the pressure 

connections before the actual measurements could be taken. Secondly, the cell had to be 

dismantled once in a while to note the change in the weight of the specimen to estimate the 

degree of saturation.  Because of these limitations, the test was discontinued after testing 

two specimens of soil specimens with 0% gypsum and 30% gypsum. A pair of 

measurements were taken each time, one at 127 kPa (with cell pressure) and one at 58 kPa 

(without cell pressure). Some meaningful results were however obtained from the two tests. 

Figures show the plots obtained from these tests. The figures show variations in Vs with S 

with and without using cell pressure.  

 
Figure 4.22 Plot of vs versus S for 0% gypsum specimen at two different confining stresses 
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Figure 4.23 Plot of vs versus S for 30% gypsum specimen at two different confining stresses 

 

4.5 Results 

 For the dry soil testing, mixtures M10-M50 were tested first, followed by M100 
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This  showed that quartz sand with 10 to 20 percent gypsum content had the highest 

stiffness of all the mixtures tested. Shear wave velocity decreased as gypsum content 

increased beyond 30%. The stiffness of soil samples at higher gypsum contents was lower 

and the specimen made up 100% gypsum showed the lowest stiffness. Shear wave velocity 

of the specimens was found to be nearly proportional to the fourth root of o’ (the 

exponential term varying between 0.21 -0.25). To ascertain this trend of stiffness variation 

in gypsum soils, another set of tests was later performed on five soil samples with gypsum 

content ranging from 0%-75%. No cell pressure was used in these tests. The results of the 

test are shown in Fig. 4.24. The results of these tests were comparable to the earlier results 

and serve to confirm that stiffness of the specimens was higher at gypsum contents of 10%-

30%.  

 It was also noticed that, with more gypsum content, the specimens could be 

compacted to slightly lower void ratios. This was due to the crushing of gypsum particles 

under the applied compaction effort. But the dry density and stiffness values still remained 

lower because of the lower specific gravity of gypsum as compared to quartz.  

 In the tests involving moist soils it was seen that vs increased rapidly with decrease 

in saturation. Shear wave velocity was lowest at moisture levels close to saturation. This 

trend followed till a saturation of about 50% beyond which no further moisture could be 

removed by the vacuum system. Between saturations of 50%-30% the rate of increase in 

vs was somewhat slow. It would then sharply increase peaking at saturations of 10%-20%. 

When the saturation was further lowered, the soil would start to break apart, disturbing the 

speciemens significantly. The testing would thus be discontinued below S = 8 %. The plots 
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of vs versus S for all the specimens tested  is shown in Figures 4.15-4.21. Figure 4.21 shows 

the comprehensive vs versus S plot for all five soils tested. 

It was also observed that at low saturations, soils with 10% and 20% gypsum 

exhibited the highest vs .Shear wave velocity  as high as 290 m/s were measured at these 

specific moisture and gypsum combinations. The trends point towards an increase in 

stiffness of the specimens with decerasing moisture content. Matric suction is the main 

factor which contributes to the increase in stiffness of the soils at low moisture content. 

Cementation between the gyspum and quartz particles also enabled the increase in stiffness 

of the speciemens as the water content was decreased. This aspect was observed in the 

dismantled speciemens where the soil mass still mainted the cylindrical shape even after 

turning off the vacuum and drying the specimens. Both these factors tend to overweigh 

each other at different gypsum concentrations. Matric suction appeared to be the 

dominating factor at low gypsum contents as infered by the distinct peaks in the curve. As 

the gypsum content was increased, cementation effect was more dominant and the peak 

became smaller and less distinct. To further verify this aspect, another specimen with 60% 

gypsum was tested at a later point. As predicted, it was found that below a certain moisture 

level, the soil stiffness was almost constant. Even at very low values of S, the speciemn 

was steady and had a constant value of vs. The specimen was very stiff even after 

dismantling (Fig. 4.25), pointing towards a high level of cementation and crete formation 

as descibed in Chapter 1.  

 Finally the tests on moist soils using cell pressure showed an increase in vs with 

increase in effective stress. The trend was however identical to that obtained in the case of 

soils without cell pressure. Figures 4.22-4.23 illustrate this trend. It can be seen that the 
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profiles for both soil types are the same, the addition of cell pressure causing the original 

profile to shift upwards. This seems reasonable because of the fact that vs increases with 

increase in effective stress.  

 

Figure 4.24 Comprehensive plot of vs versus o’ curves for the dry soils tested without cell-
pressure 
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Figure 4.25 Dismantled specimen with 60% gypsum content 

 

4.6 Conclusion 

  Free-free resonant column testing on reconstituted gypsum soils led to some useful 

conclusions. The tests on dry soils using cell pressure showed that stiffness of gypsiferous 

sands (vs) increases with increasing confining stress. The increase in shear wave velocity 

was roughly proportional to the fourth root of confining pressure. This result was in 

agreement with the results of Kalinski and Thummaluru (2005), wherein free-free resonant 

column testing was used to measure the stiffness of dry Ottawa sand over a range of 

confining stresses. Figure 4.26 compares the results of Kalinski and Thummauluru (2005) 

with that of a soil specimen used in this research. The shear wave velocity values also 

compare with Cha and Cho (2007), where bender elements tests were used to estimate the 

shear wave velocity of sandy soils acquired from three different harbor construction sites 

in Korea, tested under varying void ratios. 
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Figure 4.26. Comparison of vs versus σo’ between Ottawa sand (Kalinski & 
Thummaluru, 2005) and 20% gypsum sand 
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Gypsum has a lower specific gravity (2.32) than quartz (2.65). As such, when the 

proportion of gypsum in soils is high, the lower specific gravity of gypsum becomes a 

dominant factor and the soil stiffness would be lower. This aspect has been confirmed by 

testing a pure gypsum specimen which yielded the lowest vs profiles among all the mixtures 

tested.  The vs values obtained for each of the specimens were representative of typical in-

situ shear wave velocities of soils, which vary between 130 m/s to 400 m/s (SCDOT, 2008). 

In the case of moist gypsum sands mixtures, the stiffness of the samples increased 

with decreasing moisture content. When the gypsum content was lower, matric suction 

becomes the primary factor which leads to an increase in stiffness of the samples. As such, 

soils with lower gypsum content were found to be the stiffest of all the soils tested at low 

degrees of saturation. At higher gypsum contents, matric suction was countered by cement 

hydration reaction brought about by the water, causing more gypsum particles to bond with 

quartz. The profiles of soils with 40% and 60% gypsum show that cementation becomes 

the dominating factor at higher gypsum concentrations and the influence of moisture and 

matric suction becomes insignificant. This behavior is explained by the apparent 

‘plateauing’ of the vs versus S curves for M40 and M60 at degrees of saturation below 35%.  

This was also verified from the fact that for the same effective stress (58kPa), the stiffness 

of the moist soils were much higher than those of dry soils.  These results are in agreement 

with Qian et al. (1991) where it was shown that the shear modulus of partially saturated 

subrounded and angular sands was maximum at a degree of saturation of 10%-20%. The 

influence of matric suction on shear modulus was also more pronounced at lower confining 

stresses. 



96 
 

Lastly, the results from the two resonant column tests on moist specimens showed 

that stiffness of moist soils increased with increase in effective stress but the nature of the 

profile itself was not dependent on the confining stress.  It is the amount of gypsum in the 

soil which determines the stiffness change of a soil under varying moisture levels.   It can 

be concluded that 10%-20% is the optimum gypsum content to induce appreciable stiffness 

into the soil.  

These results could be used as a basis for conducting non-destructive surface 

geophysical tests, to measure the in-situ vs of soils in places where the engineering 

properties of gypsiferous soils are of concern. They can also be correlated with known 

geotechnical parameters of soils such as shear strength at places where adequate data or 

measurements are not available.  
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5. Laboratory Geotechnical Tests on Reconstituted Gypsum Soils 

 

5.1 Introduction 

 Geotechnical testing of gypsum-sand mixtures was an important part of the research 

study. Gypsum soils are known to be complex engineering materials and it is essential to 

have a good understanding of the geotechnical properties of these soils in order to predict 

the engineering risks that might be associated with them in the field. The tests used in this 

research were mainly those which were applicable to coarse grained soils. These include 

direct shear strength test, grain size analysis, specific gravity tests, collapse potential testing 

and dissolution. The first three tests are discussed in this chapter whereas collapse potential 

tests and dissolution are described in the next chapter.  

The direct shear strength test (ASTM D3080) is a very widely used method to 

determine the shear strength properties of granular soils. The test is specifically used to 

look at the friction angle () and cohesion intercept (c) of granular soils under conditions 

of drained loading. For granular soils, cohesion is typically very low. Due to the inherent 

difficulty in preparing specimens of cohesionless soils for triaxial testing, direct shear 

strength test is chosen as an alternative. Shear strength is used to estimate the bearing 

capacity of foundations and also used to assess the stability of earth slopes and retaining 

structures (Kalinski, 2006). The test was conducted for this study using a computer 

controlled direct shear machine (Geocomp Shear trac II) shown in Figure 5.1.  

Gypsum is known to be a cementing agent in soil fabric. The cementing action 

comes into play when the soil comes in contact with water. In a typical cement hydration 

reaction, the calcium component of gypsum enables the formation of a calcium-silicate-
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hydrate compound which is a strong amorphous material. It is usually present in cement 

rich materials like mortar and concrete. As such, in-situ gypsum soils can possess some 

degree of cohesion as opposed to pure quartz which has negligible cohesion.  

Haeri et al. (2005) studied the mechanical properties of gypsum -cemented gravelly 

sand which was used to resemble alluvial soils of Tehran, Iran. The cement content varied 

from 1.5% to 6.0%. Triaxial tests were conducted on the soils and gypsum was used as the 

cementing agent. It was found that the cemented sands showed a brittle failure pattern 

indicating the brittle nature of gypsum as a cementing agent. They also noticed that friction 

angle increases slightly and the cohesion intercept increases significantly with an increase 

in cement content.  A series of tests were conducted to see the impact of gypsum 

concentration on shear strength parameters of the test soils. Al-Marsoumi et al. (2008) 

investigated the mechanical properties of six gypsiferous sandy soil samples collected near 

Basrah in southern Iraq. Unconfined compression tests and triaxial tests were performed 

on these samples and it was found that both the cohesion and the internal friction angle 

increase with the addition of gypsum and attained a peak at a gypsum content of about 

30%. This displays the dual role of gypsum as a cementing agent at lower concentrations 

and a dispersing agent at higher concentrations.  Leaching contributes to loss of gypsum 

thereby decreasing the shear strength parameters.  

The specific gravity of the gypsum-sand mixtures and grain size analysis were also 

additionally performed on the soil samples that were used for the research. Specific gravity 

(Gs) determination is important in geotechnical engineering problems as it has a significant 

effect on the unit weight of soils. Grain size analysis helps in classification of soils and 
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helps predict their engineering characteristics like hydraulic conductivity, friction angle 

and cohesion.  

Since gypsiferous soils are known to be susceptible to dissolution and collapse, 

hydraulic conductivity testing (ASTM D2434) was also considered as a part of the required 

geotechnical tests. Gypsum soils could be characterized based on their hydraulic 

conductivity values, but research shows that determination of hydraulic conductivity for 

gypsum soils is difficult (Al-Saoudi et al., 2013). This is because the rate of flow of water 

varies as gypsum dissolves in the permeameter and the soil particles rearrange themselves 

in the process of testing. Therefore the results generated are not very reliable. Due to this 

reason, hydraulic conductivity testing was not considered for this study.  

5.2 Direct shear strength test setup 

 The soil for the test is placed in a metal shear box which consists of two halves. 

Both the halves are connected with screws. Soil is poured gently into the box, using a 

funnel from a drop height of 1.0 inch (2.54 cm). It is tapped lightly to ensure a uniform 

distribution through the box. The box is 1.1 inches (2.8 cm) in depth and has a diameter of 

2.5 inches (6.4 cm), yielding a total soil volume of approximately 5.4 in3 (90 cm3).  Porous 

stones are put at the top and the bottom of the box. Table 5.1 shows the details of a typical 

test specimen. Once the soil is filled, a loading cap is put on top of the box. Based on prior 

testing experience, it was assumed that the sand would belong to the category of loose soils.  
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Table 5.1 Specifications of the shear box for a typical specimen 

Soil depth 1.1 in. (2.8cm) 
Diameter 2.5 in. (6.4cm) 

Cross-section area 4.9 in2 (32.0 cm2) 
Volume  5.4 in3 (90 cm3) 

 

 

 

 

Figure 5.1 Geocomp Shear Trac II direct shear machine used for this study 

 The box is then put in the direct shear machine as shown in Fig 5.1. It has two load 

cells for horizontal and vertical loading and two LVDTs to read the corresponding 

deflections. The load cells and LVDTs are positioned and adjusted to fit snugly against 

each other and the loads are initially set to zero. The shear machine was operated using 

computer software named SHEAR. Soil parameters like specific gravity, specimen depth 

and diameter, moisture content and the required normal stress are entered into the software. 

Once the details are entered, the initial loads and deflections are zeroed and the test file is 

created.  
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 The first part of the test involves consolidation of the soil specimen under the given 

normal load. For sands the primary and secondary consolidation are normally completed 

in about 3-4 minutes. After consolidation is complete, the locking pins are removed from 

the shear box and the shearing phase of the test is started. The software is configured in 

such a way that the test is ‘strain controlled’ i.e. the rate of shear displacement of the motors 

is constant. The horizontal deformation rate is set to 0.02 in./min. A maximum horizontal 

deformation of 0.3 in. is set to be the default end point of the test. 

As the test progresses, the shear stress () versus horizontal deformation (H) plot 

increases rapidly and gradually decreases to a constant level. A typical test plot produced 

by SHEAR is shown in Fig. 5.2. When no further change in  is observed with H, the test 

is stopped. This value of  is known as the peak shear stress or f for loose soils. The value 

is recorded along with the vertical and horizontal displacements. For a given gypsiferous 

soil, the test is repeated at four different normal loads (N) and f  is noted for each test. The 

tests were conducted at N values of 15.0 psi, 30.0 psi, 45.0 psi and 60.0 psi (104 kPa, 207 

kPa, 311 kPa and 414 kPa). The peak shear stresses are plotted against the corresponding 

normal stress and the ‘Mohr-Coloumb failure envelope’ for the particular gypsiferous sand 

is derived. The friction angle () and cohesion (c) of the soil are determined from this plot.  

The first set of tests was conducted on dry soils. The second set of tests was 

conducted on saturated soil samples, kept moist for 1 hour post preparation. For most 

gypsiferous sands tested under dry conditions,  is generally between 34o to 44o and 

cohesion is nearly zero. Soaking the soils however gives rise to a finite value of cohesion 

because of the onset of cement-hydration reaction. 
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Figure 5.2 Typical SHEAR plot for  versus H.  

 

5.3 Results and observations 

 The following plots show the Mohr-coulomb failure envelopes of the 10%, 20%, 

30%, 40% and 60% gypsum-sand mixtures respectively. The soils were tested under dry 

conditions. The first two soils were tested at five normal stresses while the remaining were 

tested at four normal stresses. The plots (Figs. 5.3-5.6) showed unique friction angles for 

each soil type. Cohesion intercepts were generally very small.  

In the next part of the test, the same mixtures were tested after each specimen was 

saturated and kept soaked for one hour. This was done in order to examine the possible 

effect of cement-hydration which might cause an increase in cohesion as compared to dry 

sands (Figs 5.7-5.10). 
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Figure 5.3 Plot of f versus σ 10% gypsum (dry). 

 

Figure 5.4 Plot of f versus σ for 20% gypsum (dry). 
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Figure 5.5 Plot of f versus σ for 30% gypsum (dry). 

 

 

Figure 5.5 Plot  of f versus σ for 40% gypsum (dry). 
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Figure 5.6 Plot of f versus σ for 60% gypsum (dry) 

 

Figure 5.7 Plot of f versus σ for 10% gypsum (cemented). 
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Figure 5.8 Plot of f versus σ for 20% gypsum (cemented). 

 

Figure 5.9 Plot of f versus σ for 40% gypsum (cemented). 
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Figure 5.10 Plot of f versus σ for 60% gypsum (cemented). 
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thereafter decreasing with gypsum. Figure 5.12 shows the cohesion intercept plotted 

against gypsum content in the cemented and uncemented sands.  

 
Figure 5.11 Friction angle versus gypsum content for the specimens tested 

 
Figure 5.12 Cohesion versus gypsum content for the specimens tested 
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5.4 Inferences 

The amount of gypsum in the sand affects both the friction angle and cohesion. The 

increase in  can be interpreted from two viewpoints. Introduction of gypsum into the sand 

matrix causes an increase in angularity and filling up of the void spaces, thereby increasing 

. Gypsum, being a soft material, can be easily crushed under high loads. As such, the more 

gypsum in the soil, the more vertical consolidation the soil can undergo. In this process it 

attains a much denser configuration in comparison to soils with smaller gypsum content. 

As the void ratio is lower in a denser configuration,  is correspondingly higher. The 

relationship between gypsum content and consolidation is not exactly precise. This aspect 

would be described in detail in the next chapter on consolidation and collapse. Figure 5.13 

shows the void ratio versus stress plot for two gypsum-sand samples. Void ratio was 

calculated from the height of consolidation in test, before the shearing step was performed.  

It can be seen that the soil with more gypsum tends to consolidate more.  
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Figure 5.13 Void ratio versus normal stress 
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maximum at a gypsum concentration of 20%. Gypsum is known to be a sparingly soluble 

salt and therefore attains saturation concentration in solution at fairly low amounts of 

gypsum. Increasing the gypsum in the solution would cause the excess gypsum to 

precipitate. At this concentration, enough silica surface is available to act as a sink for the 

released ions, thereby promoting dissolution. When a good amount of calcium ions are 

released, sufficient cementation hydration reaction takes place enhancing the cohesive 

strength of the soil.  

The results appear to be consistent with the findings of Al-Marsoumi et al. (2008), 

in which the cohesive strength of some gypsiferous soil samples collected in southern Iraq 

(with an average gypsum content of 15.5 %) was seen to be maximum when their gypsum 

content was increased by 20%. After 30% increase in gypsum content the cohesive strength 

started to decrease. The friction angle however showed a different trend. The friction angle 

generally increased with the addition of gypsum unlike the results of Al-Marsoumi et al. 

where it peaked at around 35% gypsum and subsequently reduced. The difference in results 

could be due to the differences in the tests conducted and also the variation in soil 

composition.  
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5.5 Specific gravity test (ASTM D854) 

 Gypsum rich soils are typically low density soils because of the low specific gravity 

of gypsum. While the specific gravity of quartz sand is close to 2.65, that of gypsum is 

around 2.32. In this regard, specific gravity of the soils was expected to decrease with 

increase in gypsum content. A series of specific gravity tests was performed on five soils 

with gypsum contents of 0%, 20%, 50%, 75% and 100%. Approximately 50 grams of each 

soil was used for testing and Gs was determined using a specific gravity flask, distilled 

water and a vacuum arrangement according to the ASTM D854 test specifications. Table 

5.2 shows the Gs values of the five soils tested. Figure 5.14 shows the Gs of the soils plotted 

against their gypsum content. 

Table 5.2 Measured specific gravity values of the soils  

Soil type Gs 

0% gypsum 2.63 

20% gypsum 2.56 

50% gypsum 2.46 

75% gypsum 2.38 

100%  gypsum 2.33 
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Figure 5.14 Specific gravity plotted against gypsum content 
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Gs = -0.0031 (GC) + 2.6228        (5.1) 
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5.6 Grain size analysis (ASTM D422) 

 Grain size analysis was performed on the quartz sand and gypsum used in the 

research to estimate the grain size distribution of these materials. The information derived 

from this test helps classifying the soils and estimating their engineering characteristics. 

Since coarse grained soil was used, mechanical sieve analysis (ASTM D422) was deemed 

suitable to develop gradation curves for the quartz and gypsum samples. Six sieves with 

sizes shown in Table 5.3 were used for the test.  Approximately 750 grams of each material 

was chosen for the analysis. Mechanical sieving was performed for five minutes and the 

mass of the material retained on each sieve as used to determine the grain size distribution. 

Figure 5.15 shows the gradation curve for the quartz and gypsum samples. 

Table 5.3 Sieve sizes used in grain size analysis of quartz and gypsum 

Sieve number Opening (mm) 
10 2.0 
40 0.425 
60 0.25 
100 0.15 
140 0.105 
200 0.075 
pan - 
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Figure 5.15 Gradation curves for quartz sand and gypsum 

 

 From the gradation curves it was found that the quartz sand was poorly graded and 

was classified as SP according to USCS (Cu = 1.76 and Cc = 1.04). More than 70% of the 

grain sizes were within the range 0.2 mm -0.4 mm. It could also be classified as clean sand 

since the percentage of fines was less than 2%. Gypsum on the other hand had a wider 

range of particle sizes varying from 0.075 mm to 2.0 mm (Cu = 4.66 and Cc = 0.86). The 

gradation curve showed that the gypsum sample had about 10% fines. Since the gypsum 

was non-plastic, it was assumed that the fine-grained fraction was silty. Therefore gypsum 

was classified as SP-SM according to the USCS.  
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5.7 Conclusion 

 Some samples of reconstituted gypsiferous sands were tested for their geotechnical 

properties. The effect of gypsum on the cohesive strength and friction angle was of 

particular interest. Direct shear strength testing was performed on the soils under dry and 

soaked conditions, the latter assumed to bring about cementation. Mohr-Coulomb failure 

envelopes were plotted for each soil type and their shear parameters were calculated from 

the failure envelopes. The tests revealed that for both the dry and wet samples, friction 

angle generally increases with increasing gypsum content. While the dry soils showed 

insignificant amount of cohesion and no relationship with gypsum content, the soaked 

samples had an appreciable amount of cohesion. Cohesion was particularly high for a soil 

sample with 20% gypsum content. It can be concluded that gypsum soil samples with a 

history of saturation exhibit a greater cohesion.  

 Specific gravity tests showed a decrease in Gs with increase in gypsum content. 

This aspect of gypsum soils is important, because Gs is directly associated with the unit 

weight of soils which is essential for all major geotechnical calculations. The resulting 

mechanical sieve analysis showed that both the quartz sand and gypsum were poorly 

graded, with gypsum having a wider range of particle size distribution. The knowledge of 

grain size helps in the determination of geotechnical and geophysical soil parameters like 

cohesion, friction angle, hydraulic conductivity, stiffness and electrical conductivity.  

The results were cross-checked with electrical resistivity methods using Archie’s 

law and also soil salinity and conductivity tests from soil water extracts. These aspects are 

described in the succeeding chapters. Apart from shear strength, the consolidation or 

collapse of gypsiferous soils is another major geotechnical parameter that has to be 
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investigated. All these parameters together have a great role to play in determining the 

safety and hazard potential of gypsiferous soils from an engineering viewpoint. The next 

chapter describes the collapse settlement of gypsiferous sands under varying conditions of 

gypsum concentration, moisture content and also the effect of time and dissolution on 

collapse.  
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6. Consolidation and Collapse Potential Testing of Gypsum Soils 

 

6.1 Introduction 

 Collapse settlement is one of the most severe problems associated with gypsiferous 

soils around the world. These soils are characterized by low density and loose structure 

with gypsum often acting as a moderate cementing or binding agent. Gypsum is a material 

of low specific gravity of about 2.32 and a solubility of 2.1-2.5 g/L. Under natural 

conditions these soils are fairly stable and act as good foundation material but the soils 

undergo rapid settlement and loss of volume upon the introduction of water. This behavior 

is also known as hydro-compression settlement. Addition of water contributes to the loss 

of cementing material through leaching and dissolution processes which in turn lead to 

decrease in strength and stability of the soils. Clemence and Finbarr (1981) defined 

collapsible soils as “any unsaturated soils which goes through a radical rearrangement of 

particles and great loss of volume upon wetting with or without additional loading”.  

 Underground water pipelines, irrigation canals, dams, construction activities and 

sudden changes in water table elevations are some of the causes of collapse hazards in 

gyspiferous soil regions. Over the years, several researchers developed guidelines and 

criteria to quantify collapsible soils based on their physical properties. The double 

oedometer test and single collapse test are two widely used laboratory methods for 

determining collapse (Al-Rawas, 2000). The collapse settlement of a soil can be 

quantitatively estimated from a parameter called ‘collapse potential’, also referred to as 

CP.  
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 To conduct a double oedometer test, two identical samples of soil are placed in an 

oedometer and progressively loaded up to the ultimate desired load. One of the samples is 

kept at its natural moisture content while the other sample is saturated. The difference in 

settlements (ΔH) of the dry and saturated specimens at 200 kPa is noted. This method was 

proposed by Jennings and Knight (1975). For a single collapse test, a sample of soil is put 

in an oedometer frame and gradually loaded to 200 kPa. At this point, the sample is 

suddenly flooded with water and left for 24 hours.  The settlement during this period (ΔH) 

is noted and loading is continued till the final load. From either test, CP is expressed as: 

CP = ΔH/H0 = [Δe /1+e0] * 100%                      (6.1) 

Where ΔH is the change in height of the specimen, H0 is the initial sample height, Δe is the 

change in void ratio and e0 is the initial void ratio of the sample (Al-Rawas, 2000).  Figure 

6.1 shows a typical plot from a collapse potential test. 

 Jennings and Knight (1975) also suggested a classification system to estimate the 

degree of severity of collapse settlement on the basis of CP. This classification is shown in 

Table 6.1 (Al-Rawas, 2000).  
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Table 6.1 Severity of collapse based on CP values 

Collapse Potential (%) Severity 

0-1 No problem 

1-5 Moderate trouble 

5-10 Trouble 

10-20 Severe trouble 

>20 Very severe trouble 

 

 

Figure 6.1. Plot showing the typical result from a CP test (Al-Rawas, 2000) 
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The collapse potential of gypsiferous soils has been studied by numerous 

researchers especially in the Middle East. Collapse potential is influenced by factors such 

as gypsum content, unit weight, initial moisture content, initial void ratio and soil plasticity. 

Fattah et al. (2011) used the computer program Settle3D to determine the 

hydrocompression settlement and collapse potential of gypsiferous soils in Iraq. They 

found that collapse potential increased with increasing gypsum content and increase in 

thickness of the collapsible layer but was not dependent on the footing dimensions. In 

another study using single collapse test and double oedometer test methods on Al-Tar 

region soils of Iraq, Fattah et al. (2008) discovered that collapse potential increases with 

increase in gypsum content. In an accompanying time-dependent study they obsereved that 

soils with low gypsum content showed a substantial decrease in collapse potential with 

time. Nashat (1990) found collapse potential to increase for a gypsum content of 20%-60% 

and decrease thereafter. However many other researchers in Iraq found minimal effect of 

gypsum content on collapse potential. Al-Ani and Seleam (1993), along with other 

researchers, found that increase in initial water decreases collapse potential (Seleam, 2006).  

For this research, the collapse and consolidation behavior of gypsum-sands was 

studied using two methods. In the first method the collapsibility of soils was studied by 

varying the gypsum content, water content and time. The Geocomp direct shear machine 

(ShearTrac II) was used to bring about consolidation and a methodology similar to that of 

double oedometer test was applied. In the second method a consolidation load frame 

(Figure 6.2) was used and a single collapse test type of testing was performed on the 

gypsum soils by varying the gypsum content and time period. The testing procedures and 

results are described in the following sections.  
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Figure 6.2 Consolidation load frame  

6.2. Collapsibility tests using Geocomp direct shear machine 

When a sample of soil is set for shear strength testing in the shear machine, the 

sample is first consolidated under the required normal pressure. Considering the soil used 

for the study was sandy gypsum soil, this technique could be used to consolidate the soil 

and thus provide the required data to estimate collapse potential. An approach similar to 

that of the DOT test was adopted in which two identical samples were tested one after 

another at 200 kPa. The first one was tested under natural moisture content and the second 

sample was saturated. Strain was calculated using the relation  = H/H , where H was 
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the change in height (inches) and H was the initial height (1.1”). The difference in strains 

between these two samples was regarded as the collapse potential (CP). 

The soil is first poured into the shear box and the box is put in the direct shear 

machine. The samples were all predominantly loose soils with void ratios (e) between 0.62-

0.68 and a dry density of 1.48-1.60 g/cc. The sample dimensions and the physical 

properties of the soil and the load specifications are entered into the SHEAR software. Once 

the horizontal and vertical loads and deflections are initialized and set to zero, the soil is 

ready for testing. The test is then started and normal consolidation of the soil is allowed to 

occur under the load of 200 kPa. Since the soil is a fine grained sand, both the primary and 

secondary consolidation are almost complete within five to seven minutes. At this point, 

the test was terminated. Figure 6.3 shows a typical SHEAR consolidation plot. In a direct 

shear test, the next step would involve the shearing phase. The following sections discuss 

the tests conducted using this setup.  

 

Figure 6.3 Consolidation versus time plot using SHEAR  
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6.2.1 Collapse potential with change in gypsum content 

Seven different soil samples were taken with gypsum content ranging from 10% to 

80%. Each sample was individually tested first dry then saturated. The samples were loaded 

to 200 kPa and consolidation was allowed to continue to the point where no further change 

in vertical displacement was visible. The difference in strains of the saturated and dry 

samples was the collapse potential. Figure 6.4 shows the plot for strains versus gypsum 

content for the soils tested under dry and saturated states. Figure 6.5 shows the plot of 

collapse potential versus gypsum content of the soils tested.  

 

Figure 6.4 Vertical strain versus gypsum content at 200 kPa 
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Figure 6.5 Collapse potential versus soil gypsum content at 200 kPa 

 

From the tests, it was seen that collapse potential for the samples varied between 

1.5% - 3.8 % . Using the Jennings and Knight (1975) classification criteria, the soils could 

be classified as moderately troublesome. The scatter in the data points also suggested that 

gypsum content did not seem to have any observable effect on the CP of the samples. This 

conclusion was in agreement with Seleam (2006) where CP of the tested soils varied in a 

narrow range 0.71% -1.45% and gypsum content showed little impact on it. In the next 

section, the impact of water content on collapse potential is described. 
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6.2.2 Vertical strain with change in water content 

For conducting this test, the soil samples were put in the shear box and a certain 

amount of water was added to each sample. The water content was calculated using the 

relationship: 

w% = mwat / msoil.        (6.3) 

Where mwat is the mass of water added and msoil is the weight of the soil in the box. 

The sample was allowed to sit for ten minutes to ensure uniform distribution of water 

through the soil. It was estimated that approximately 25 g of water would be required to 

saturate each sample. The box was then transferred to the shear machine and the 

consolidation test was conducted. Four different soils with gypsum content varying from 

20%-70% were taken and several tests were conducted on each soil type. The data were 

plotted and averaged to find any trend between water content and strain. In some trial runs 

it was found that the value of collapse potential was negative. To avoid this discrepancy, 

vertical strains instead of collapse potential were plotted against water content. Figures 6.6 

-6.10 show the plots for vertical strain versus initial moisture content for the different soils.  
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Figure 6.6 Strain versus initial w% for 20% gypsum at 200 kPa 

 

Figure 6.7 Strain versus initial w% for 30% gypsum at 200 kPa 
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Figure 6.8 Strain versus initial w% for 50% gypsum at 200 kPa 

 

 

Figure 6.9 Strain versus initial w% for 70% gypsum at 200 kPa 
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Figure 6.10 Strain versus initial w% plot for all soils tested 

These plots revealed that vertical strain initially increases with moisture content to 

about 15%. This roughly corresponds to a degree of saturation of 60%. Beyond this point 

vertical strains appeared to decrease as water contents draws close to saturation.. This 

observation seems to be in agreement with Al-Rawas (2000) and Jennings and Knight 

(1975). The former states that collapse phenomenon will only occur up to a certain critical 

degree of saturation. Collapse mechanism is commonly known to occur in unsaturated 

soils. Jenning and Knight (1975), states that the critical degree of saturation is 50-60% for 

fine silty sands.   
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of the soils versus gypsum content. This led to the possibility of re-investigating the 

relationship between collapse potential and gypsum content using a different method of 

testing.   

 

Figure 6.11 strain versus gypsum content at 200 kPa 
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(S/cm) and Salinity (ppm) of the effluent were measured using the Extech 400 

conductivity meter (Fig. 6.13).  

 

Figure 6.12 test arrangement for gypsum dissolution  

 

Figure 6.13. The Extech 400 conductivity meter in use 
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The two soil samples were set in this arrangement for periods of 10 minutes, 1020 

minutes (17 hours) and 2700 minutes (2 days). After the designated time, the shear box 

was taken to the direct shear machine and consolidated under a vertical load of 30 psi (200 

kPa). Figure 6.14 shows the vertical strain versus soaking time for the two soils on a semi-

log scale.  

 

Figure 6.14 Vertical strain versus soaking time at 200 kPa 
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Table 6.2 Electrical conductivity and salinity of effluent water 

Time  
(Minutes) 

30% gypsum 
Conductivity 

(μS/cm) 

30% gypsum 
Salinity 
(ppm) 

50% gypsum 
Conductivity 

(μS/cm) 

50% gypsum 
Salinity 
(ppm) 

10 4010 2160 3400 1820 
1020 3460 1840 3270 1750 
2700 3290 1740 3290 1740 

 

Gypsum is a sparingly soluble salt and both EC and salinity are indicators of 

solubility. From the table, it is seen that for both the soils EC and salinity either remains 

fairly constant with time. This means that while water continuously leaches gypsum from 

the soil, the concentration of gypsum itself in the effluent is relatively unchanged. The 

water was most likely saturated with gypsum at concentrations of approx. 2.5 g/L.  

 

 

 

 

 

 

 

 

 

 



134 
 

6.3 Collapsibility tests using consolidation load frame 

Investigation of collapsibility using the previous method yielded information about 

the effect of water content , time and dissolution on collapse but no significant relationship 

with gypsum content of the soils. The vertical strain profiles of the soils showed an increase 

in strain with increase in gypsum under both dry and saturated conditions. It was therefore 

decided that collapse potential would be re-investigated using a different method. The use 

of a one-dimensional consolidation load frame was considered. The ASTM D2435 test 

configuration for one-dimensional consolidation testing of cohesive soils was used. The 

same setup could also be used to determine the long-term deformation of the soils (creep).  

The principle of SCT proposed by Knight (1963) was used in this test. The 

dimensions of the sample are given in Table 6.3. All the sample had a void ratios in the 

range of 0.56 -0.64. The samples was gradually loaded up to 200 kPa and the corresponding 

deformation at each load was recorded. At 200 kPa, the sample was inundated with water 

and left for 24 hours. Then it was further loaded till the final load. The different loading 

steps are shown in Table 6.4.  

Table 6.3 Dimensions of a test sample 

Sample detail units 

diameter 6.35 cm 

depth 1.88 cm 

volume 59 cm3 
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Table 6.4 loading steps in the collapse potential test 

Step Load (kPa) Condition 

1 48 Dry 

2 96 Dry 

3 200 Dry 

4 200 (Inundation) Inundated 

5 312 Inundated 

 

 

6.3.1 Collapse potential with gypsum content  

A series of tests were initially conducted with a 1 hour time period between the 

loading steps. Eight soil samples were tested with gypsum content ranging from 5% to 

75%. The tests were primarily conducted to assess the feasibility of the study using the 

consolidation frame setup. Figure 6.15 shows the deflection versus load plot for three soils.  

Unlike the collapse tests using the direct shear machine, the CP values from this test setup 

showed a well-defined relationship with gypsum content.  
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Figure 6.15 Collapse potential versus gypsum content (1 hour collapse step) 
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between collapse potential and gypsum content. Figure 6.17 shows the vertical strain 

versus load plots for the five soils tested.  
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Figure 6.16 Collapse potential versus gypsum content (24 hours collapse step) 

 

Figure 6.17 strain versus vertical load for all the soils tested 
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6.3.2 Collapse potential with time 

This test was performed as a continuation to the 1 hour collapse step tests in order 

to examine the effect of long term loading on gypsum soil settlement (creep). After the 

final load (312 kPa) was applied a deflection reading was taken after 1 hour and the load 

was left on the load frame. The creep tests were performed on three samples with 10%, 

30% and 60% gypsum contents by allowing the loading in the final step to continue for 72 

hours (Figure 6.18). Measurements were taken every 24 hours, for three days. The plots 

showed that the long term settlement of the soil samples increased with gypsum content.  

 

Figure 6.18 Creep deformation of three soil samples over 72 hours 
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6.4 Inferences and conclusion 

Vertical strain and collapse potential were measured for different gypsum sand 

samples subjected to normal loading. The consolidation tests were performed by varying 

the gypsum content, initial water content and time. Data from the collapse test were 

collected and plotted. Though there was a small amount of scatter in the data, all the results 

indicate that collapse potential increases with increasing gypsum content of the soils. This 

behavior is attributed to the dissolution of gypsum in water and also its softness. The 

gypsum in the sand acts as a weak cementing agent and the soils have a fairly good amount 

of strength. When these soils are loaded under dry conditions, they compress under the 

loads. The sudden addition of water however causes a partial loss of cementing material 

through dissolution, crushing and re-arrangement. This results is an increase in settlement 

over time. The tests involving the use of consolidation load frame yielded more accurate 

results. Based on the Jennings and Knight (1975) criteria, soil samples with less than 10% 

gypsum could be classified under ‘no trouble’ category and soils with 10%-70% gypsum 

could be classified under ‘moderate trouble’ category.  

The collapse settlement is also dependent on the moisture content of the soil, 

increasing with increase in moisture content. It is also dependent on the soil grain size and 

peaks at around a degree of saturation of 50-60 % for fine grained sands. The tests 

involving collapse versus time showed that long term settlement increased with time and 

gypsum content. This was because of the dissolution and leaching of gypsum.  Dissolution 

of gypsum was determined by measuring the electrical conductivity and salinity of the 

effluent. The electrical conductivity (μS/cm) and salinity (ppm) values remained fairly 

constant with time because of the sparing solubility of gypsum.  
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The results discussed here appear to be in agreement with the work of Fattah et al. 

(2008) and Fattah et al. (2011) wherein the hydrocompression behavior of gypsum sands 

in Iraq was studied using single and double oedometer tests and the computer program 

Settle3D. In the two studies conducted, it was found that the collapse potential of the soils 

used for footings increased with increasing gypsum content. For the double oedometer test 

and creep test, they chose three soil samples with gypsum content varying from 14% to 

66%. The three samples were designated N1, N2 and N3 with their gypsum contents being 

66%, 44% and 14.8 % respectively. The collapse potential plot of the three soils is shown 

in Figure 6.20. The long term deformation of the soils is also associated with their gypsum 

content. Soils with lower gypsum went through lesser creep deformation.  

 

Figure 6.20 Collapse potential test results of three soil samples (Fattah et al., 2011) 
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Researchers also studied the effect of relative density and initial void ratio on 

collapse potential of gypsiferous soils. In most of the studies, collapse potential was found 

to increase with increasing initial void ratio (Seleam, 2006). These tests however could not 

be successfully conducted and verified in the lab because of the small specimen size. For 

both the test setups (consolidation load frame and direct shear machine), the sample volume 

was at best 90 cm3 and as such it was difficult to compact the specimen to void ratios lower 

than 0.6. For almost all the collapse tests conducted in this research, the void ratio of the 

sample was in the range of 0.62-0.68.  

In this research, the collapse tests were conducted at a normal stress of 

approximately 200 kPa. However the collapse potential could also be studied at different 

normal stresses depending on the requirements. An empirical equation has been presented 

by Seleam (2006) which can be used to convert collapse potential at any given pressure to 

collapse potential at 200 kPa: 

CP200 = 140.25*(CPpressure)0.0135 *(200 / pressure) 0.0069 -139.05   (6.4) 

There is ample scope for further research in the area of collapsibility of gypsum 

soils. The effect of various physical and chemical parameters on collapsibility should be 

studied within any region known to have a history of collapsibility. It is also essential to 

develop different testing schemes which can be used to indirectly assess the collapse 

potential of soils without significantly disturbing the soils. Geophysical surveys, GPR, 

remote sensing and GIS are some examples of alternate means of testing that can be used 

to assess collapsibility of gypsum soils. 
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7. Statistical analysis of test results and estimation of gypsum content 

 

7.1 Introduction 

 Electrical resistivity and free-free resonant column tests were conducted on 

reconstituted gypsum rich soil specimens to observe any variability in physical parameters 

that could be reflected by the variations in resistivity and shear wave velocity trends. The 

important properties of gypsum soils that control their physical and chemical behavior are 

gypsum content, moisture content, void ratio, dry unit weight and fines content. 

Geophysical tests to measure vs and electrical resistivity were conducted by varying one or 

more of these parameters and while keeping the others constant. In the field, however, these 

variables could change spatially and temporally. Likewise, the knowledge of vs and 

electrical resistivity data at a site could help estimate the physical conditions of the soil. 

These estimates could only be made if we have some design guidelines or statistical trends 

that relate vs or resistivity with the physical or chemical properties of the soil. To address 

these aspect, statistical analysis was performed on the tests data using tools such as multiple 

regression analysis. In a similar manner, statistical analysis was also performed on the 

geotechnical tests such as collapsibility tests and direct shear strength tests, to estimate how 

the soil properties varied with changes in one or more physical parameters. Regression 

analysis also indicated which factors had a relatively higher impact on the variability of  vs, 

resistivity, collapse potential and shear strength.  Based on these results, statistical design 

equations were created to correlate the different geotechnical and geophysical parameters.  

 

 



143 
 

7.2 Regression Analysis 

 Regression analysis is one the most widely used statistical tools by engineers to 

establish relationships between dependent and independent variables. Statistical analysis 

also helps in developing predictive relationships, wherein the knowledge of one or more 

variables can help estimate the value of an unknown variable. Empirical equations are then 

developed to relate soil data with available geophysical information collected at a site. For 

this research, data analysis features of EXCEL were used to perform statistical analysis of 

soil variables. Multiple linear regression analyses can be performed to model the variability 

of a dependent variable with respect to one or more independent variables for a chosen 

level of confidence. The typical outputs gathered from regression analysis are: coefficient 

of determination (R2), standard deviation (σ), significance level F, p-values of independent 

variables and residuals. These values help us assess the significance of a regression and the 

relative impact of the different independent variables on the dependent variable. Non-linear 

regression was used to assess the validity of a relationship between a dependent and 

independent variable, wherever deemed suitable.  

Free-free resonant column testing was performed on reconstituted gypsum soils to 

measure vs by varying effective stress, moisture content and gypsum content. Electrical 

resistivity tests were conducted by varying gypsum content, moisture content and dry 

density.  

 Collapse potential of a soil can be influenced by a number of factors such as gypsum 

content, initial void ratio, dry unit weight, effective stress, moisture content, percentage 

fines and Atterberg limits of the soil. A reasonable estimate of some of these parameters 
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can shed light on the collapse potential of soil. It could also provide information about the 

shear strength properties of soil (c and φ ) . 

7.3 Statistical analysis of shear wave velocity data 

 Several tests were conducted on gypsum soil specimens to measure vs. The first set 

of tests was conducted on dry soils by varying gypsum content and effective stress. The 

next set of tests was conducted on moist soils by varying gypsum content and degree of 

saturation while keeping the effective stress constant. Data points from all of these tests 

were collected in such a way that, the range of all three variables, gypsum content, effective 

stress and degree of saturation were covered. It was shown in Chapter 3 that vs had a very 

good correlation with effective stress. In this context, multiple variable regression analysis 

was used to see if vs could be reasonably correlated with gypsum content and water content 

as well. A 95% confidence level was chosen for the analysis.  Appendix B shows the data 

considered for this regression. 

 The analysis revealed a very poor correlation of vs with the three parameters. The 

summary output of the analysis is shown in Table 7.1. The complete analysis along with 

the ANOVA table is shown in Appendix B. The very high p-values of the individual 

variables shows that they play a very insignificant role in the regression, which was 

performed for a 95% confidence level ( α = 0.05). The significance level F and adjusted R2 

values were also extremely low indicating that there is a very low correlation between the 

dependent and independent variables.  Because of these aspects, the regression was 

considered insignificant.  
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 Table 7.1 Regression outputs of vs modeled as a function of GC, σ’ and w %. 

Regression parameter Value 
R-square 0.077 

Adjusted R-square -0.022 
Standard deviation 33.06 

Number of observations 32 
Significance F 0.517 

 

 Further interpretation of the variables revealed that, the influence of water content 

on the stiffness of gypsum soils varied in a very non-linear fashion. The impact of water 

content on the soil stiffness also varied with soil gypsum content. While in general, vs 

increased with decrease in degree of saturation, matric suction and cementation affects 

influence stiffness below a certain degree of saturation. In soils with GC < 30%, matric 

suction caused a sharp increase in vs between S= 10%-20% . In soils with GC >40%, the 

effect of matric suction was overweighed by cementation, causing vs to plateau below S = 

40% . Due to these qualitative material variations, the linear regression model could not be 

used to explain the variability of vs with using GC%, σ’ and S% as the dependent variables.  

  Another statistical analysis was performed using only two variables, GC% and σ’ 

as the dependent variables. To perform this regression, only the data points from the tests 

with cell pressure were taken as most of these tests were performed at zero degree of 

saturation. The confidence level was again chosen as 95%. Appendix B shows the detailed 

output of the regression analysis.  

This analysis showed a much better correlation between vs and the two variables. 

The key outputs from the regression analysis are shown in table 7.2. The significance F of 

the regression, R2 value as well as the individual p-values of the independent variables 
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point towards a good overall significance of the model. The y-intercept and the coefficients 

of GC and σ’ are used to generate the linear regression equation. 

vs = 140.2 – 0.348 (GC) + 0.328(σ’)      (7.1) 

 This equation predicts vs as a linear function of GC and σ’. The predicted and actual 

values of vs are shown in Figure 7.1. There was some scatter in the data, but it still had a 

well-defined trend. Among the two variables, effective stress has a more significant impact 

on vs. the standard deviation of the predicted data is 15.18. The values are fairly well 

predicted around the mid-range but are somewhat scattered around the ends.  

Table 7.2 Regression outputs of vs modeled as a function of GC and σ’ 

Regression parameter Value 
R-square 0.77 

Adjusted R-square 0.74 
Standard deviation 15.18 

Number of observations 18 
Significance F 1.54 E-05 

 

 

Figure 7.1 Comparison of predicted vs actual shear wave velocities 
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 It was shown in Chapter 3 that when vs varied approximately with the fourth root 

of effective stress according to the expression vs = C σn. The average value of the 

exponential term ‘n’ was calculated and was recorded as 0.233. Figure 7.2  shows the C 

values of the specimens plotted against their gypsum content.The plot shows that the values 

of C range from 44 to 56 and are higher for M20 and M30.  

 

Figure 7.2 regression coeffecient C vs gypsum content 

 Shear wave velocities measured in all the tests using cell pressure were normalised 
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50%. A second order polynomial curve was fitted through the data points (Figure 7.4). The 

curve showed a good fit with an R2 value of 0.92. Since soil stiffness increased up to 20 % 

gypsum content and decreased thereafter, a second order equation could help estimate the 

different possible gypsum contents that could be associated with a normalized vs value. The 

equation of the curve was: 

vs’ = -0.0277 (GC)2 + 0.9134(GC) + 54.53     (7.2) 

Where vs’ is the normalized shear wave velocity and GC is the gypsum content. This model 

is however applicable to only soils with less than 50% gypsum and zero degree of 

saturation.  

 

Figure 7.3 Normalised shear wave velocity versus soil gypsum content 
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Figure 7.4. Normalised shear wave velocity versus  gypsum content for specimens with 
less than 50% gypsum 
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points (Fig 7.6).  The curve was similar to the one reported above and had an R2 of about 

0.85. The equation of the curve is shown below: 

vs’ = -0.0099 (GC)2 + 0.43(GC) + 61.67       (7.3) 

 This lead to the conclusion that the gypsum content of a gypsiferous soil sample 

with up to 50% gypsum can be estimated from shear wave velocity measurements using a 

second order polynomial approximation.  

Figure 7.5 Normalised shear wave velocity versus soil gypsum content ( tested without 
cell pressure)  
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Figure 7.6  Normalised shear wave velocity versus  gypsum content for specimens 
containing up to 50% gypsum (tested without cell pressure) 
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Figure 7.7. Normalised shear wave velocity versus degree of saturation 
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7.4 Statistical analysis of electrical resistivity data 

 Electrical resistivity tests were performed on several gypsum soil samples using the 

four-electrode box resistivity method (ASTM G57). Tests were performed to observe 

changes in soil resistivity by varying moisture content, gypsum content and dry density. 

These tests and their results were described in chapter 3. Resistivity was found to vary with 

all the three variables under consideration. However, when performing resistivity 

measurements in the field, the spatial variability of all of these parameters must be 

considered. To address this aspect, statistical analysis was performed on the datasets to 

model resistivity as a function of gypsum content, moisture content and dry density. 

Multiple linear regression analysis was again chosen as the modeling tool to assess if any 

relationship could be established between resistivity and the three variables mentioned.  

 Pore-water resistivity measurements of the different soil samples showed that the 

values were comparable for all gypsum bearing soils. All the measurements were 

conducted at 22o C.  However the soil sample with 0% gypsum had a much higher pore-

water resistivity. Table 7.3 lists the soil specimens and their pore water resistivity. The 

resistivity measurements by varying the soil moisture content were normalized with their 

respective pore-water resistivity values to yield a parameter named normalized resistivity 

(R’). The resulting plot is shown in Figure 7.8. The plot shows that normalized electrical 

resistivity (R’) is comparable for all soils containing gypsum, irrespective of their gypsum 

content. When the soil has no gypsum, the normalized resistivity is lower than that of 

gypsiferous soils. This information could be used to estimate the moisture content of a 

gypsiferous soil sample from electrical resistivity data.  

 



154 
 

Table 7.3 Pore water resistivity of gypsum soil specimens 

Specimen Pore-water resistivity (Ohm-m) 

0% gypsum 9.30 

10% gypsum 2.85 

20% gypsum 2.70 

40% gypsum 3.32 

60% gypsum 3.03 

 

 

Figure 7.8 Normalized electrical resistivity versus volumetric water content 
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 Resistivity was also found to vary with dry density of the specimen. Resistivity 

measurements were performed on saturated soil specimens over a range of dry densities 

and normalized with their respective pore-water resistivity. The resulting plot is shown in 

Figure 7.9. Normalized resistivity had a good linear correlation with the sample dry 

density. The coefficient of determination was 0.899 indicating a good regression between 

the two variables. It could be used to determine dry density of gypsiferous soils by 

measuring resistivity.  There were however some limitations to this model. It was difficult 

to achieve dry densities lower than 1.45 g/cc or higher than 1.85 g/cc under the given testing 

conditions. The range of normalized electrical resistivity values were between 5 to 10 

which was also a fairly narrow range.  

 
Figure 7.9 Normalized electrical resistivity vs dry density 
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 Next, a multiple linear regression analysis was performed on the resistivity test 

data. Twenty two data points were chosen in such a way that they were representative of 

the range of GC%, volumetric moisture content, and dry density. Specimen M0 (with 0 % 

gypsum) was not considered for the analysis because non-gypsiferous soil showed much 

different resistivity measurements than gypsiferous soils. The confidence level was chosen 

at 95% (α = 0.05). The complete regression output along with the ANOVA table is shown 

in Appendix B. They key outputs from the regression are shown in Table 7.4. The analysis 

showed a good overall relationship between resistivity and the three variables. This was 

seen from an R2 value of 0.756 and a significance F level of 9.30 E-06 (much smaller than 

α). On a closer inspection, it was found that volumetric moisture content was the only 

significant variable contributing to the regression. Gypsum content and dry density yielded 

p-values much larger than α rendering them insignificant from the regression point of view. 

As it was seen previously, resistivity varied only over a very narrow range with dry density, 

but it had a much broader range of variation with moisture content.  

Table 7.4 Regression outputs of resistivity modeled as a function of GC%, vol. water 
content and dry density 

Regression parameter Value 
R-square 0.756 

Adjusted R-square 0.715 
Standard deviation 4.84 

Number of observations 22 
Significance F 9.36 E-06 
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Due to the relative insignificance of GC% and dry density on the output range of 

electrical resistivity, the two variables were eliminated and normalized electrical resistivity 

for all gypsiferous soils was modeled solely as a function of volumetric moisture content. 

Thirty three datasets were chosen from the resistivity versus moisture tests on soils M10, 

M20, M40 and M60. The plot showed a good exponential relationship between resistivity 

and moisture content. The value of R2 of 0.94 was also comparatively higher for this model. 

This regression was accurate for a volumetric water content of 0.05 to 0.30. For water 

content below 0.05, the resistivity values increase sharply in no defined order.  

 
Figure 7.10 Normalized resistivity versus volumetric water content 
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 This relationship between normalized resistivity and volumetric water content can 

be used to model the latter. Substituting y and x with resistivity and volumetric water 

content respectively, the equation is: 

R’ = 1.1216 θ-1.527        (7.4) 

where R’ is the normalized resistivity. By re-arranging the terms of the equation, θ can be 

expressed as a function of R’ as shown in Equation 7.4. Volumetric moisture content can 

be estimated from resistivity measurements using this expression.  

θ = exp (0.075 - 0.655 ln R’)       (7.5) 
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7.5 Statistical analysis of direct shear strength test data 

 Direct shear strength tests were conducted using the Geocomp Shear Trac II direct 

shear machine to study the shear strength parameters c and φ of gypsum soils. The tests 

were conducted on dry soil specimens and saturated soil specimens. Mohr-coulomb failure 

envelopes were plotted for each soil type for the test results. For both the soil types it was 

found that friction angle φ increased with gypsum content. Cohesion was very small for 

the dry soils and the mean value of cohesion for all the soil types was 0.69 psi (4.7 kPa).  

Cohesion was higher and more significant for the saturated specimens because of the 

cementation action of gypsum. While there was no relationship with gypsum content, the 

average cohesion value measured for the saturated specimens was 5.35 psi (37 kPa).  

 Five gypsum-sand mixtures were tested under try conditions and four mixtures 

were tested in saturated conditions. Accordingly, more data were available to perform a 

regression analysis on the dry direct shear strength datasets. As mentioned above, the 

average value of cohesion c was very small and it did not show any distinct variation with 

gypsum content. A linear relationship was found between friction angle φ (degrees) and 

gypsum content. The relationship is shown in figure. The R2 value for this regression was 

0.89 indicating a fairly good relationship between the two variables. Friction angle is 

related to gypsum content through the linear relation: 

φ = 0.1295 (GC) +35.297        (7.6) 
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Figure 7.11 Friction angle versus gypsum content of dry gypsum sand mixtures 
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data from five soil samples. It can be further developed by testing more soil samples. The 

approach can also be extended to cemented soils by conducting more tests.  

 
Figure 7.12 Predicted versus actual shear strength values of dry gypsum sand 
specimens  
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7.6 Statistical analysis of collapse potential data 

 One-dimensional consolidation test setups were used to measure collapse potential 

or vertical strain on gypsiferous soil samples. Tests were conducted on the soil samples by 

varying gypsum content and water content. The change in vertical strain of the samples 

was also measured with respect to time. As mentioned previously, the void ratios of the 

soil samples could not be varied significantly due to the small size of the test specimens 

and most of these tests were conducted at comparable initial void ratios (0.65 to 0.72). The 

outcomes of each of these tests are discussed here. 

 Collapse potential of soils was measured at a normal stress of 200 kPa according to 

Jennings and Knight (1975) and it was found to increase with increasing gypsum content. 

Soil samples with gypsum content ranging from 5% to 75% were tested. The variation of 

collapse potential with gypsum content had a linear relationship as shown in Figure 7.13. 

The R2 value of 0.996 indicated a good relationship between the two variables. The 

regression equation of the best fit line could therefore be used to correlate CP with GC%. 

The equation is shown as: 

CP = 0.0635 (GC %) + 0.0279      (7.9) 

The equation is developed by analyzing only five samples. A more reliable equation 

can possibly be developed by testing more gypsum soils samples. The plot shows that soils 

with less than 10% gypsum can be classified under ‘no trouble’ category and soils with 

10%-70% gypsum can be classified under ‘moderate trouble’ category, according to 

Jennings and Knight (1975).  
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Figure 7.13 Collapse potential versus gypsum content 
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Figure 7.14 Vertical strain versus moisture content  

 

 
Figure 7.15 Collapse settlement of gypsum soils versus time  
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Multiple regression analysis was performed on the long term deformation data  

shown above, with vertical strain as the dependent variable and gypsum content and time 

(hours) as the independent variables. The confidence interval was again chosen at 95%. 

The analysis was performed on all the twelve data sets available. The main outputs from 

the analysis are shown in Table 7.5.The regression parameters indicate a statistically 

significant model. The ANOVA table for this regression is presented in Appendix B. The 

regression equation is shown below. In this expression, time,‘t’ is measured in minutes.  

ε% = 0.0219 (GC%) +0.000319 (t) -0.0331     (7.10) 

Table 7.5 Regression outputs of strain modeled as a function of GC and time (mins.) 

Regression parameter Value 
R-square 0.787 

Adjusted R-square 0.740 
Standard deviation 0.407 

Number of observations 12 
Significance F 9.4 E-04 
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7.7 Estimating gypsum content using geophysical methods 

 From the previous sections it was seen that shear-wave velocity varies with degree 

of saturation and gypsum content. At lower gypsum contents (< 20%), vs increased sharply 

between S% of 10-25% owing to matric suction. On the other hand, the peak was gradually 

replaced by a plateau at higher gypsum contents due to the predominance of cementation 

effect. Figure 7.16 shows how the vs of five soils with gypsum content ranging from 10%-

60% varied between 10%-35% degree of saturation. Table 7.6 shows the average rate of 

decrease of vs with S%, for the different specimens. This information about the rate of 

change of shear wave velocity between 10%-35% degrees of saturation can be used to 

estimate the gypsum content of soils. 

Figure 7.16. Shear-wave velocity versus degree of saturation for five gypsum soils 
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Table 7.6 Average rate of change of vs between 10%-35% degree of saturation 

Gypsum content Average rate of change of vs (m/s/S %) 
10 -3.46 
20 -2.58 
30 -1.46 
40 -0.83 
60 -0.74 

 

 The negative rate of change of vs indicates that shear wave velocity decreases with 

increase in degree of saturation. It was shown using Eqn. 7.5, that normalized electrical 

resistivity can be used to predict the volumetric moisture content of gypsum soils.  

 Using Eqn. 7.5 and the information from table 7.6, an approach can be developed 

to predict the gypsum content of soils using geophysical methods. This approach presented 

here was developed for an effective stress of 58 kPa.  For other effective stresses, it can be 

assumed that rate of change of vs with S% would be proportional to the fourth root of 

effective stress. As such, vs will only increase a little with an increase in effective stress. 

Also the tested specimens were loose to medium-dense sands with an average dry density 

of about 1.66 g/cc. Generally higher vs values are obtained for dense soils.  

 As an example, if vs for a gypsum soil at 58 kPa is 220 m/s, the vs for the soil at 80 

kPa for the same S% would be (80/58)0.25 times higher, which equates to 238 m/s. 

Considering this aspect, it can be assumed that for small increments of depth, the effect of 

overburden stress on vs would be minimal and the main reasons for changes in vs would be 

cementation and matric suction. For convenience, the rate of change of vs with S% can be 

defined using a variable called ‘M’ value, with units of m/s/S%.  
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Using a combination of electrical resistivity data and shear-wave velocity data, the 

gypsum content of a soil layer in the field can be estimated. The different steps used in this 

process are described below: 

i) Conduct ER measurements and normalize the resistivity values with respect 

to pore water resistivity of gypsum soils.   

ii) The normalized electrical resistivity values can be used to estimate the 

volumetric moisture content of the soil along a vertical section, using Eqn. 

7.5. 

iii) Next the volumetric moisture content should be converted to degree of 

saturation. 

iv) Shear wave velocity measurements should be conducted along the vertical 

section, with small increments of depth (about 1.5 m). 

v) The rate of change of vs with respect to degree of saturation should be noted 

using the ‘M’ value described above.  

vi) If M is greater than 2.0 m/s/S%, then the soil contains 20% or less gypsum. 

If M is between 1.0-2.0 m/s/S%, then the soil has an intermediate gypsum 

content, ranging from 20%-40%. Finally, if M is less than 1.0 m/s/S%, the 

soil has a significant fraction of gypsum (40% or more).  

vii) Further estimation of gypsum content can be done using a quadratic 

relationship like Eqn. 7.2 and use of engineering judgement.  

viii) Using the value of gypsum content, collapse potential of the soil can be 

estimated using Eqn. 7.9. 
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These eight steps to estimating gypsum content and collapse potential can 

be shown in the form of a flowchart (Fig. 7.17). It should be noted that the approach 

is hypothetical and works only over a small range of S% and under the assumptions 

that the soil layer is homogeneous and gypsum is uniformly distributed in the layer.  

 

Figure 7.17. An approach to estimating gypsum content and collapse potential of soil using 
geophysical methods. 
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7.8 Conclusion 

Statistical analysis was performed on the geophysical test data to develop equations 

or relationships to predict the geotechnical parameters that effect the collapsibility of 

gypsum soils. Equations 7.1 and 7.2 are predictive equations based on shear wave velocity 

data. They can be used to estimate gypsum content of soils and also the effective stresses. 

These expressions were developed using soils tested under zero degree of saturation. Even 

though water content also significantly affects the soil stiffness, the change is influenced 

by factors like cementation effect and matric suction making it difficult to lay down a 

predictive model. 

 Electrical resistivity data can be used to predict the soil moisture content and dry 

density. Moisture content has a much greater influence on resistivity while dry density 

values have a lesser influence. The latter can be used over a fairly small range of dry density 

and electrical resistivity. The variation of resistivity with gypsum content is marginal. 

Equation 7.5 can be used to predict volumetric moisture content from normalized electrical 

resistivity measurement. The equation works well for a volumetric content range of 0.05 

to 0.30.  

Data from direct shear testing of dry gypsum sand mixtures was used to model 

drained friction angle as a linear function of gypsum content (Eq. 7.6). The mean value of 

cohesion was chosen and Eqn. 7.8 was developed to estimate the drained shear strength of 

gypsum soils for given values of normal stress. The equation predicted the shear strength 

of soils with a fair level of accuracy. The approach could also be used to predict the shear 

strength of cemented or saturated soils by conducting more tests.  
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Statistical analysis was also performed on the collapsibility tests data. The 

knowledge of soil gypsum content and the time of saturation can be used to predict the 

collapse potential and vertical settlement of soils. This has been shown using equations 7.9 

and 7.10. Collapse potential increases linearly with gypsum content. Figure 7.14 shows the 

variation in vertical settlement of gypsum soils with respect to water content. The relatively 

small size of test specimens made it difficult to bring about a significant change in the 

initial void ratios or dry densities of the specimens. Soil moisture content, dry density and 

gypsum content can be obtained from the geophysical test results.  

The results from electrical resistivity testing and free-free resonant column testing 

were used to develop an approach to predict the gypsum content of soils in the field. It is 

based on the premise that for different gypsum soils, shear wave velocity changes with 

degree of saturation. The approach can work over a limited range of moisture contents, for 

loose to medium-dense gypsum soils. The knowledge of gypsum content helps in 

predicting the geotechnical soil parameters like collapse potential and shear strength.  

The accuracy of the statistical analysis and models could be further improved if 

more test data was available. In the laboratory setup, the geophysical and geotechnical tests 

had some limitations and not all variables could be controlled and tested. The limited range 

of void ratios attainable is one such example. The analysis could also be improved by using 

non-linear multiple variable analysis tools. Multiple linear regression is not always the best 

tool to analyze variability of dependent and independent parameters.  The use of statistical 

software packages such as MINITAB or SPSS could also assist developing more precise 

models. In spite of these limitations the analyses presented offer an approach as to how the 
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geophysical tests could be used to estimate the parameters that effect collapsibility of 

gypsum soils.  
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8. Conclusion 

8.1 Summary 

 The objective of this research was to characterize gypsum rich soils in a laboratory 

setup, using geophysical and geotechnical investigation methods. The information 

gathered from these tests could be used in estimating the collapse potential and engineering 

hazards that could be associated with the soils. Shear wave velocity vs, and electrical 

resistivity were the geophysical parameters that were used for characterizing the soils.  

Free-free resonant column testing was used to measure the vs of the specimens. Electrical 

resistivity tests were conducted using the 2 and 4 electrode soil box resistivity methods.  

The geotechnical investigations consisted of determination of friction angle, cohesion, 

consolidation settlement and specific gravity of the soil specimens. The tests were 

conducted using the direct shear testing machine and the one-dimensional consolidation 

load frame.  

 Statistical analyses were performed on the test results using single and multiple 

variable regression analysis, in order to develop co-relations and design equations. The 

relationships and analysis performed on the geophysical test data was used to determine 

the factors that significantly affect the collapse potential of gypsum rich soils. An empirical 

method was developed to estimate the gypsum content of soils from electrical resistivity 

and shear wave velocity data collected at a site. The approaches described in this research 

could be further developed and used in site investigations in places known to contain 

gypsum soils. The following section provides a summary of the main outcomes and 

findings of this research. The later sections describe some of limitations that were 

encountered during the research and ideas for further research.  



174 
 

8.2 Observations and Inferences 

 Shear wave velocity of gypsum soils varies with effective confining stress. It also 

varies with the gypsum content of the soils, though the variation is not linear. 

Stiffness of the soils is maximum at gypsum content around 20%. The differences 

are appreciable at higher confining stresses.  A second order polynomial equation 

was developed to represent this variation in stiffness with respect to gypsum 

content for soils with up to 50% gypsum. This equation can be solved to estimate 

gypsum contents corresponding to a particular normalized vs value.  

 Shear wave velocity of gypsum soils also varies the soil moisture content. Stiffness 

of soils increases with a decrease in degree of saturation. At degrees of saturation 

below 40%, two mechanisms lead to an increase in soil stiffness. For soils with 

more than 30% gypsum, cementation occurs between quartz and gypsum particles 

leading to an increase in stiffness. For soils with less than 30% gypsum, matric 

suction leads to an increase in effective stress at lower degrees of saturation. This 

result is consistent with the findings of Qian et al. (2008).  The effect of 

cementation is not appreciable at low gypsum contents. Both these mechanisms 

can be seen when vs is plotted against degree of saturation. Matric suction causes a 

sharp increase in stiffness between S = 10%-20%, while cementation leads to an 

increase and a subsequent plateau in vs below S = 40%.  The rate of change of  vs 

with S% can be used to characterize the soils based on their gypsum content and 

an empirical method has been proposed for the same.  

Both matric suction and cementation lead to a substantial increase in 

stiffness of soils. Soil specimens previously subjected to saturation showed a 
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greater stiffness as compared to freshly prepared gypsum-quartz mixtures. These 

type of soils could be more representative of soils in situ.  

 Electrical resistivity of gypsum soils increases with decrease in moisture content. 

The relationship between resistivity and volumetric water content can be estimated 

using an exponential curve. The electrical conductivity of the soil is primarily 

because of the pore water and the dissociated calcium and sulphate ions in the pore 

water. The pore water resistivity is comparable for all gypsum soils, regardless of 

gypsum content.  

 The relatively small variation in pore water resistivity with respect to gypsum 

content is attributed to gypsum belonging to the class of sparingly soluble salts. 

This causes the solution to attain saturation at low salt concentrations. Increasing 

the gypsum concentration in the soil does not increase the ion concentration in the 

pore water and the excess gypsum precipitates on to the soil.  

 The resistivity of soils with no gypsum is higher due to the absence of calcium and 

sulphate ions. Electrical resistivity increases with gypsum up to 20% and stabilizes 

with further increase in gypsum content.  

 Electrical resistivity of gypsum soils increases with increase in dry density. Within 

a fairly small range, the relationship between resistivity and dry density is linear.  

The variation was in accordance with Archie’s law. Since the conductivity of the 

soil is mainly due to pore water, decrease in soil porosity leads to increase in 

resistivity.  Dry density however had a smaller impact on resistivity as compared 

to volumetric moisture content.  
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 Specific gravity (Gs) of the soil specimens decreases with increase in gypsum. This 

is because of the lower Gs of gypsum (2.32) in comparison to quartz (2.65). The 

more the proportion of gypsum in the soil, the lower its specific gravity. This also 

causes dry unit weights of soil specimens to decrease with gypsum content.  

 From consolidation testing, it was found that vertical deformation of the soil 

specimens increases with increase in gypsum content.  Gypsum being a very soft 

mineral gets crushed under the application of normal load. Increasing the gypsum 

content of the soil leads to the crushing of gypsum particles and moving the soil 

into increasingly denser configurations.  

 The drained friction angle of soil (φ) increases with gypsum content, because 

consolidation of the test specimen increased with gypsum. This increase in density 

led to a rise in friction angle. The increase was less pronounced in case of saturated 

(cemented) specimens. The Mohr-coulomb failure envelopes of different gypsum-

sand specimens showed that cemented specimens had a significant amount of 

cohesion (c) in comparison to dry (uncemented) specimens. This result was 

comparable to resonant column test results, wherein cemented specimens higher 

stiffness (vs) than uncemented specimens.  

 The Collapse potential of gypsum soils increases linearly with gypsum content. 

These results are in agreement with the findings of Fattah et al. (2008). The severity 

of collapse of a soil specimen is estimated by the criteria defined by Jennings and 

Knight (1975). Based on this criteria, soils with more than 10% gypsum were 

classified into ‘moderate trouble’ category based on the severity of collapse 
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potential. Likewise, specimens with more than 70% gypsum came under ‘trouble’ 

category. 

8.3 Limitations of the research  

 The research was conducted using reconstituted gypsum-sand mixtures in a 

laboratory setting. Therefore there were limitations on the tests that were conducted and 

the conditions that could be created in the setting. Some of these aspects are described in 

this section. 

 The physical properties of gypsum and quartz such as electrical conductivity and 

stiffness are not drastically different. Therefore the geotechnical and geophysical 

tests yield results that vary in a fairly narrow range. It as such becomes necessary 

to repeat the tests several times in order to derive meaningful conclusions.  

 Most of the geophysical tests have non-unique results. Shear wave velocity and 

electrical resistivity do not show a well-defined variation with gypsum content. 

This is unlike geotechnical test data such as friction angle (φ) and collapse potential 

which increase linearly with gypsum content. As result, it is difficult to develop 

design equations using regression analysis to model gypsum content from the 

available geophysical data.  

 There was no standardized compaction procedure used for specimen preparation. 

Fine grained soils are generally compacted using the standard or modified proctor 

methods. These methods could not be used since the soil specimens being tested 

were coarse grained.  

 Because of the small size of the specimens used in consolidation tests, direct shear 

testing and electrical resistivity testing, it was difficult to achieve a wide range of 
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void ratios. All the tested specimens had a roughly uniform void ratio. Since the 

geotechnical and geophysical soil properties known to vary significantly with dry 

unit weight, this aspect was a major limitation on the tests and the spectrum of 

results that could be generated.  

 The soils used in the research are simple mixtures of quartz and ground gypsum.  It 

does not contain a significant amount of fines nor does it represent the macroscopic 

field conditions and heterogeneities. Seismic and electrical resistivity tests 

performed in the field might yield results much different from those of laboratory 

results. Electrical resistivity data could be different by orders of magnitude in 

clayey and silty soils. The presence of cavities or discontinuities in the subsurface 

also alter resistivity and shear wave velocity.  

8.4 Suggestions for future research 

 This research study provides an insight into the behavior of gypsum soils 

under varying physical conditions. This information derived from this research 

could be used in establishing the geotechnical parameters that play a role in the 

collapsibility of gypsum soils and classifying the soils in terms of severity of 

collapse. There is however ample scope for further research in this field. More tests 

could be performed on the soils and the data could be used to predict and develop 

better relationships between the test parameters. Some of the following ideas could 

be tried and implemented in testing gypsiferous soils in order to estimate their 

engineering hazard potential.  
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 Free-free resonant column tests can be carried out using cell pressure at different 

moisture contents. This would provide more information about the variation in 

stiffness of moist gypsum soils especially at higher effective stresses. Soils with a 

history of saturation are stiffer than freshly prepared soil samples because of 

cementation between gypsum and quartz. A comparative analysis could be 

performed to estimate the increase in stiffness due to cementation. Alternatively, 

previously saturated and dried soil samples can be setup for resonant column testing 

to estimate the stiffness. 

 Gypsum soils in arid regions mostly contain coarse grained soil fractions, but they 

could also contain up to 15% fines (Alphen & Rios Romero, 1971). The presence 

of fines might have a marked effect on soil electrical conductivity, shear strength 

and collapsibility. It is therefore essential to investigate the soils including some 

percentage fines. These soils could be more representative of field soils. Likewise, 

the effect of grain size of gypsum soils on stiffness and collapsibility could be 

studied.  

 Laboratory data should be compared with field measurements. Shear wave velocity 

measurements and resistivity measurements should be conducted at sites containing 

gypsiferous soils. The measurements may vary by orders of magnitude, especially 

for electrical resistivity testing. Appropriate correlations can then be made between 

lab and field measurements and empirical equations can be developed to estimate 

the geotechnical soil parameters than are known to be responsible for collapsibility.  
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  Computer models (2- and 3-dimensional) can be used to simulate field soil 

conditions and estimate collapsibility at any given site. Computer models could also 

be used to simulate shear wave velocities and electrical resistivity profiles. Remote 

sensing and GIS analysis can be used along with the available geotechnical or 

geophysical information to characterize sites and estimate any engineering hazard 

that might be associated with them.  

 Geochemical methods are widely used to estimate gypsum content of soils. 

Gypsum content is estimated by measuring the concentration of Ca2+ and SO42- ions 

dissolved in water and precipitating them with chemicals of known concentrations. 

The use of barium chloride (BaCl) solution to detect sulfate ions is well known 

(Porta, 1998).  These methods could be used to supplement the available 

geophysical data. 

  Thermogravimetric methods and X-ray diffraction are also popular tools used to 

determine the gypsum content in soils (Porta, 1998) . These methods can be used 

in addition to geotechnical and geophysical tests.  
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Appendix A. Using the Function Generator and Dynamic Signal Analyzer in the 

Free-Free Resonant Column testing 

A.1 Function Generator and Amplifier 

 In the Free-Free resonant column testing, a Ledex 500 rotary solenoid is used to 

provide torsional excitation to the specimen. The solenoid is powered by a HP 3314A 

function generator, which imparts a transient voltage pulse to the former (Fig. A.1). The 

parameters of the function generator are set to those shown in Table A.1. After setting up 

these parameters, pressing the manual trigger button causes a 25-ms half-sinusoidal energy 

pulse with a 2.0 volts peak amplitude to be generated. The output of the function generator 

is sent to  a  PYLE PRO PZR 3000 amplifier which amplifies the voltage pulse by a factor 

of 8 (Fig A.2). The amplified output signal can be transmitted to the solenoid through either 

channel 1 or channel 2 The output levels on either channels are controlled by the respective 

knobs, which can be rotated clockwise to increase the level.  

Table A.1 Input parameters for the HP 3314A function generator (Kalinski, 1998) 

Parameter Value 
Mode N Cycle 

Frequency 20 Hz 
Amplitude  1.0 V 

Offset -0.52V 
Symmetry 50% 

Phase 90 degrees 
N 1 

Function (sine, square, triangle) Sine wave 
Trigger Manual 
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Figure A.1. HP 3314A Function generator 

 

Figure A.2. PYLE PRO PZR 3000 amplifier 
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A.2 Dynamic Signal Analyzer and EDM software 

 The Coco-80 dynamic signal analyzer (Crystal Instruments) was used to measure 

the response of the soil specimen to the torsional excitation. The strain response of the soil 

specimen is detected by the accelerometers. The output from the accelerometers is passed 

through PCB signal conditioner before being transmitted to the signal analyzer. The 

response is measured in the form of time history or frequency spectra. The analyzer has 

eight different input channels.  In order to conduct these measurements the dynamic signal 

analyzer must be set to the following configurations. 

After switching on the signal analyzer, the start screen is displayed with the list of 

available projects. To conduct the free-free resonant column test we need to load the auto-

power spectra (APS) analysis function for a particular input channel. This is done by 

pressing the setup – CSA application group – linear and power spectra. By pressing enter, 

the analysis function is loaded. The acquisition mode is set to free-run to enable the 

capturing of random or irregular signals.  

Windows should be loaded to measure the time history and power spectra. This is 

done by clicking on the ‘Traces’ menu and clicking ‘trace and window settings’. From the 

menu we select ‘add window’ (Figure A.3). If the input from the accelerometers is 

connected to channel1, we select: 

Window 1: ch1 - to measure time history 

Window 2: APS (ch1) – to measure power spectra  

In the ‘Param’ menu, the input parameters should be set to those shown in Table 

A.2. 
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Table A.2. Input parameters of the signal analyzer for a Free-Free resonant column 
test (Kalinski, 1998) 

Parameter Value 
Frequency 1.8432 kHz 

Block size/Line 1024/450 
Window type Uniform 
Average mode Linear 

Average number 128 
 

Once the test is started, we click ‘start’ to perform the time history measurements. 

Upon the completion of the test, the resonant frequency fn is identified from the APS 

window (Figure A.4). Pressing the ‘save’ button twice will save the time-domain and 

frequency-domain records. To access the recorded time block and APS, we must press File 

- Enter (select) - View file (Figure A.5).  

 

Figure A.3 Loading the time and APS trace windows 
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Figure A.4 APS window for measuring the resonant frequency fn 

 

Figure A.5 viewing a saved file 
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The saved files can be downloaded to a computer using the engineering data 

management (EDM) software. The software comes with the Coco-80 signal analyzer and 

is loaded and activated on a computer using the License Key. Data can be transferred from 

Coco-80 to the computer using a USB cable, Ethernet or a wireless SD card. For this 

research, data was transferred to the computer using a USB cable. This mode of connection 

offers the advantage that the IP settings of the computer need not be adjusted to read the 

signal analyzer. Once the connection is established, the software detects the data files, 

which include time stream records, saved signals and CSA projects. Both the Coco-80 and 

the EDM software use ASAM ODS format for the data, which have a suffix ATFX (CI, 

2008). The required files can be selected and downloaded to the computer.  

The EDM software facilitates the viewing, exporting and searching of data. The 

data can be exported to other formats such as ASCII and UFF. It also contains tools for 

analyzing the data files. The time and frequency characteristics of the signals can be studied 

in detail using operations such as zooming and panning. Relative comparisons can be made 

between different signals.  Additionally, important information such as peak and harmonic 

frequencies can be identified using cursors.  Figures A.6 and A.7 show the time-stream and 

APS windows in the EDM software.  
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Figure A.6 Time domain window in the EDM software 

 

 

 

Figure A.7 APS window in the EDM software 
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Appendix B. Multiple variable regression Outputs 

 

B.1 Shear wave velocity as a function of gypsum content, effective stress and degree 

of saturation 

 

 
 
 
 

 

In this regression the dependent variable (Y) is shear wave velocity (vs). The 

different independent variables are:  

X Variable 1: gypsum content (GC) 

X Variable 2: effective stress (σ’) 

X Variable 3: degree of saturation (S%) 

The regression equation is: 

vs = -0.305 (GC) - 0.030( σ’) -0.241 (S%) + 183.18    (B.1) 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.277102883

R Square 0.076786008

Adjusted R Square -0.022129777

Standard Error 33.06626669

Observations 32

ANOVA

df SS MS F Significance F

Regression 3 2546.291196 848.7637322 0.77627658 0.5171081

Residual 28 30614.5838 1093.377993

Total 31 33160.875

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 183.1778069 18.7714011 9.758344938 1.6471E-10 144.72633 221.6293 144.7263348 221.629279

X Variable 1 -0.30577233 0.217520772 -1.405715542 0.17080866 -0.7513434 0.139799 -0.751343432 0.13979877

X Variable 2 -0.030118363 0.111333383 -0.270524102 0.78874123 -0.2581745 0.197938 -0.258174461 0.19793773

X Variable 3 -0.241112025 0.253438538 -0.95136291 0.34956082 -0.7602573 0.278033 -0.760257336 0.27803329
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B.2 Shear wave velocity as a function of gypsum content and effective stress  
 

 
 
 
In this regression the dependent variable (Y) is shear wave velocity (vs). The 

different independent variables are:  

X Variable 1: gypsum content (GC) 

X Variable 2: effective stress (σ’) 

The regression equation is: 

vs = -0.348(GC) + 0.328( σ’) + 140.16     (B.2) 

 
 
 
 
 
 
 
 
 

 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.878468

R Square 0.771706

Adjusted R Square 0.741267

Standard Error 15.18729

Observations 18

ANOVA

df SS MS F Significance F

Regression 2 11695.24586 5847.623 25.35238 1.54422E-05

Residual 15 3459.807074 230.6538

Total 17 15155.05294

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 140.1668 7.932859703 17.66914 1.885E-11 123.2583537 157.07533 123.258354 157.075334

X Variable 1 -0.34827 0.10994573 -3.16764 0.0063722 -0.582612107 -0.113925 -0.5826121 -0.11392455

X Variable 2 0.328087 0.04808306 6.823346 5.76E-06 0.225600721 0.430574 0.22560072 0.43057395
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B.3 Electrical resistivity as a function of gypsum content, volumetric water content 

and dry density 

 

 
 
 
 
In this regression the dependent variable (Y) is electrical resistivity (ER). The 

different independent variables are:  

X Variable 1: gypsum content (GC) 

X Variable 2: Volumetric water content (θ) 

X Variable 3: Dry density (ρ) 

The regression equation is: 

ER = 0.041 (GC) -84.16 (θ) + 4.6 (ρ) + 16.49     (B.3) 

 

 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.86978531

R Square 0.75652649

Adjusted R Square 0.71594757

Standard Error 4.8414025

Observations 22

ANOVA

df SS MS F Significance F

Regression 3 1310.95358 436.984526 18.6433382 9.36143E-06

Residual 18 421.905207 23.4391782

Total 21 1732.85879

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 16.4965156 14.7745947 1.11654607 0.27887197 -14.543756 47.53678726 -14.543756 47.5367873

X Variable 1 0.04073945 0.06066485 0.67154951 0.51039805 -0.08671267 0.168191573 -0.086712671 0.16819157

X Variable 2 -84.162207 12.401408 -6.7865042 2.345E-06 -110.216599 -58.107816 -110.2165987 -58.107816

X Variable 3 4.60439834 10.0931458 0.45619061 0.6537091 -16.600514 25.80931071 -16.60051403 25.8093107
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B.4 Vertical strain as a function of gypsum content and time 
 

 

 

In this regression the dependent variable (Y) is vertical strain (ε%). The different 

independent variables are:  

X Variable 1: gypsum content (GC) 

X Variable 2: Time (t) 

The regression equation is: 

 ε %  = 0.022 (GC) + 0.0003 (t) - 0.33     (B.4) 

 

 

 

 

 

 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.887299

R Square 0.787299

Adjusted R Square 0.740032

Standard Error 0.407365

Observations 12

ANOVA

df SS MS F Significance F

Regression 2 5.52817235 2.764086 16.656482 0.000944

Residual 9 1.49351921 0.165947

Total 11 7.02169156

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept -0.33123 0.27586197 -1.20072 0.2605066 -0.955277 0.29280962 -0.955277 0.29280962

X Variable 1 0.021913 0.00572299 3.829029 0.0040337 0.0089672 0.0348598 0.0089672 0.0348598

X Variable 2 0.000319 7.3963E-05 4.318738 0.0019367 0.0001521 0.00048674 0.0001521 0.00048674
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Appendix C. Alternative laboratory geophysical methods for soil investigation 

 

C.1. Bender Element Testing (Camacho-Tauta et al., 2012) 

 Bender element testing is another popularly used small-strain method to measure 

the shear wave velocity in laboratory soil specimens (Fig C.1). A bender element (BE) 

consists of two piezoelectric materials bonded together. The application of a voltage pulse 

causes one of the piezoelectrics to expand while the other shrinks. This process causes the 

element to bend in one direction depending on the polarization. The piezoelectric material 

is such that a mechanical disturbance causes it to produce a voltage. The bending of the 

element generates a shear wave that propagates through the soil specimen.  The BE at the 

other end responds to this shear disturbance and produces a voltage. Therefore a BE couple 

can be used as a source and a receiver.   An oscilloscope measures the time difference 

between these two voltage pulses (t). Shear wave velocity is then calculated as the distance 

between the bender elements (L) divided by t: 

vs = L / t          (C.1) 

Small strain shear modulus can again be estimate using Eqn. C.1.  

Bender element testing offers the advantage of easy coupling with other 

geotechnical test setups. It is commonly used along with triaxial tests, direct shear tests and 

oedometer tests. The test is easy to conduct but the interpretation of arrival time is often 

difficult and subjective.  
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Figure C.1. Block diagram showing the setup of a BE test 
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C.2. Four-probe resistivity cell (Kalinski & Kelly, 1993) 

 This test is an alternative to the Miller soil box method to measure the electrical 

resistivity of soil. While the Miller box is easy to use and does not necessitate the 

calculation of calibration factors between measured resistance and resistivity, it has the 

limitations of offering very little control on water content and pore-water resistivity. Also 

the Miller box allows resistivity to be measured only in one path and small scale 

heterogeneities cannot be accounted for. The four-probe resistivity cell (Fig. C.2) addresses 

these issues. Both disturbed and undisturbed soil specimens can be tested using this setup. 

 In this method a circular cell constructed of non-conducting material is used, kept 

open at both sides. It has eight electrodes spaced at equal intervals. For each measurement 

four adjacent electrodes are used at a time. The two outer electrodes are the current 

electrodes and the inner electrodes measure the potential drop. Eight such resistivity 

measurements are taken and the resistivity of the soil is calculated from the average value 

derived from the measurements. For a specimen with average measured resistance R, 

resistivity is calculated using the expression: 

ρo = f (Rk1 + k2)         (C.2) 

Where f is the temperature correction factor and k1 (m)  and k2  (Ohm-m) are cell 

constants . In order to derive the cell constants, a solution of known resistivity is used and 

several resistance measurements are made. Relationships between measured resistance and 

known resistivity are derived, thus helping establish the values of cell constants. 

Laboratory measurements are standardized to a temperature of 20o C and thus for 

measurements made at this temperature, the temperature correction factor becomes unity.  
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 The test has the advantage of being used along with a pressure membrane apparatus, 

which can be used to vary the moisture content in fine grained soils. A porous plate 

apparatus is used for the same purpose for granular soils. These features also enable the 

measurement of pore-water resistivity. The specimen should be held with a plastic cap or 

a filter paper since the cell is open from both the sides. Another major advantage of this 

test is that the resistivity of soil derived from averaging eight measurements gives a very 

representative value. However the derivation of cell constants from each cell using a 

standard solution is a tedious and complex process.  

 

Figure C.2 Four-probe resistivity cell  
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