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The Pharmacokinetics and Toxicology of Aluminum in the Brain 

Robert A. Yokel* 

Department of Pharmaceutical Sciences College of Pharmacy 511C Multidisciplinary Sciences Building 725 Rose Street 

University of Kentucky Academic Medical Center Lexington, KY, 40536-0082 

Abstract: The chemical forms (species) of aluminum in blood plasma and brain extracellular fluid are considered, as they 

are the candidates for brain aluminum uptake and efflux. The blood-brain barrier is the primary site of brain aluminum up-

take. The mechanism of brain uptake of aluminum transferrin, long thought to be mediated by transferrin-receptor medi-

ated endocytosis, requires further investigation. Brain Al citrate uptake has been attributed to the sodium-independent L-

glutamate/L-cystine exchanger system, system Xc-. Reports have suggested aluminum can compromise blood-brain barrier in-

tegrity, however the studies were conducted with aluminum concentrations greatly exceeding those seen in human blood 

plasma. Aluminum appeared in cerebrospinal fluid suggesting it can cross the choroid plexus and in brain after intranasal appli-

cation suggesting it can be taken up by cranial nerves, but neither of these routes has been definitively demonstrated. Brain 

aluminum efflux appears to be carrier-mediated, however the mechanism has not been identified. A small increase in brain 

aluminum seems sufficient to produce neurotoxicity. Once aluminum enters the brain it persists there for a very long time; es-

timates of the half-life range from 20% of the lifespan to greater than the lifespan. Al persistence in bone, which maintains the 

majority of the body burden, may influence brain Al, due to equilibrium among the body’s organs. Chelation therapy with des-

ferrioxamine has been shown to reduce some manifestations of aluminum toxicity although it may increase redistribution of 

aluminum to the brain to increase aluminum-induced neurotoxicity. An orally-effective aluminum chelator that is an improve-

ment over desferrioxamine has not yet been demonstrated. Although a non-essential metal, there are mechanisms enabling 

aluminum to get into the brain, accumulating over the lifespan, and creating the potential to contribute to many neurodegenera-

tive disorders.  

Keywords: Aluminum, blood-brain barrier, brain efflux, brain influx, chelation, choroid plexus. 

1. INTRODUCTION 

 Aluminum (Al) is not known to serve any essential func-
tion in the human, so one might consider its unintended 
presence in the body as having potential risk and no benefit. 
Its ability to produce neurotoxicity was demonstrated over 
100 years ago [1]. Its potential to produce brain damage was 
well illustrated with the onset of dialysis encephalopathy 
(DES) during the onset of widespread hemodialysis. Some 
dialysis patients exposed to Al in the dialysis fluid or from 
receipt of oral Al-based phosphate binders developed a gen-
eralized brain dysfunction, leading to seizures and fatality 
[2]. The safety of Al in the human has been controversial for 
a century, including its use in cookware and food storage. 
Further controversy developed when it was suggested Al 
may be a neurotoxic factor in Alzheimer’s disease (AD) [3]. 
Owing to the recognition of Al as a neurotoxicant, it is bene-
ficial to understand the mechanisms of brain entry and exit, 
the residence time of Al in the brain, and factors that influ-
ence these endpoints, i.e., Al toxicokinetics. For humans 
who develop neurobehavioral signs and symptoms due to 
brain Al overload, or suspect they are suffering from Al in-
toxication, it is useful to know potential diagnostic and 
treatment approaches to Al overload. This review focuses on 
Al toxicokinetics in the brain and chelation therapy to diag-
nose and treat Al overload.  

*Address correspondence to this author at the Department of 
Pharmaceutical Sciences College of Pharmacy 511C Multidisciplinary 

Sciences Building 725 Rose Street University of Kentucky Academic Medi-
cal Center Lexington, KY, 40536-0082; Tel: 859-257-4855;  

Fax: 859-257-7585; E-mail: ryokel@email.uky.edu 

2. THE CHEMICAL FORMS (SPECIES) OF ALUMI-

NUM THAT MIGHT ENTER AND EXIT THE BRAIN 

 Aluminum can occur in various chemical forms (species) 
in vivo, which have different physical, chemical and biologi-
cal properties [4]. The toxicokinetics of Al is dependent on 
its chemical species. Based on thermodynamic modeling, 
and consistent with experimental observations, there are two 
primary Al species in blood extracellular fluid (ECF), i.e. 
plasma; Al transferrin (Tf) accounts for ~ 93% and Al citrate 
~ 5.5% [5], making them the primary candidates for brain Al 
uptake. Given the rapid formation of the 1:1 and 1:2 
Al:citrate complexes and slow formation of the 1:3 complex 
at the low Al concentrations of blood plasma [5], the Al cit-
rate species in blood available to enter the brain might be the 
1:1 and/or 1:2 complex.  

 The concentration of Tf is very low in cerebrospinal fluid 
(CSF) (< 0.25 μM), and presumably brain ECF, compared to 
30 μM in blood plasma [6]. Furthermore, it has been sug-
gested that there are no available binding sites for Al on Tf 
in brain ECF [7]. In contrast, the citrate concentration in 
brain ECF is higher than in plasma (180 vs. 99 μM). CSF pH 
is the same as blood plasma. These suggest that 90, 5, 4, and 
1% of Al in CSF, and presumably brain ECF, is associated 
with citrate, hydroxide, Tf, and phosphate, respectively, ac-
cording to calculations conducted by Harris [8]. As Al citrate 
is the predominant Al species in brain ECF, it is likely to be 
the Al species transported into brain cells from CSF and 
brain ECF or out of the brain.  

  1877-945X/12 $58.00+.00 © 2012 Bentham Science Publishers  
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 Because the free Al ion and its complexes with Tf and 
citrate are quite hydrophilic (the octanol/aqueous distribu-
tions are 0.0052 and 0.0019, respectively), they would be 
expected to diffuse across membranes such as the blood-
brain barrier (BBB) at a rate comparable to sucrose, which is 
a very slow BBB permeant [9].  

3. THE SITES AND RATES OF BRAIN ALUMINUM 
UPTAKE 

3.1. From the Blood Across the Blood-Brain Barrier 

 Al is most often absorbed from the gastrointestinal tract 
or across the lungs into systemic circulation. Alternatively, 
there is evidence some metals can be taken up by exposed 
sensory nerves in the nasal cavity and possibly transported 
into the brain, as discussed below.  

 Patients who received brain surgery for a tumor after 
consuming an Al-rich antacid for 10 days had 2-fold higher 
brain Al concentration than patients who consumed an ant-
acid low in Al [10], demonstrating oral Al absorption and 
distribution into the human brain in the presence of normal 
renal function. This was supported by similar findings in 
normal rats and rats with renal failure [11-14].  

 There are two routes by which Al might enter the brain 
from blood, 1) through the BBB, and 2) through the choroid 
plexus (CP) into the CSF of the ventricles within the brain 
and then into the brain. Aluminum can rapidly enter brain 
ECF and CSF, although its concentrations in these two fluids 
are less than in blood [15-18]. To assess the primary route of 
brain Al uptake, the flux of Al through the BBB and the CP 
was assessed by concurrent microdialysis of the rat’s frontal 
cortex, a lateral ventricle, and a jugular vein. This was con-
ducted with an i.v. injection of Al citrate at a dose that ex-
ceeded the capacity of Tf to bind Al, therefore favoring Al 
citrate as the Al species most likely to circulate in blood and 
be available to enter the brain. Dialysate Al concentration 
from the cortex peaked in the first 5 min sample and was 
higher than from the lateral ventricle [15]. The rapid appear-
ance of Al in the frontal cortex was attributed to brain Al 
entry through the BBB rather than through the CP into CSF 
and then diffusion into the brain. This was concluded based 
on the following points: 1) the Al concentration was lower in 
the CSF than in the frontal cortex, 2) Al diffusion from a 
lateral ventricle into the brain would be against bulk CSF 
flow within brain parenchyma to lateral ventricles [19], and 
3) some frontal cortical regions in the rat are 1.5 mm from a 
lateral ventricle and 1 mm from the subarachnoid space. This 
distance was thought to be too great for Al to diffuse from 
CSF to the frontal cortex within 5 min. The ~ 100- to 1000-
fold greater surface area of the BBB microvessels than the 
vasculature perfusing the CP make the BBB the more likely 
portal of brain Al entry. It was further concluded that Al en-
tered the brain by a carrier-mediated process. The rate of Al 
citrate flux through a membrane by diffusion was estimated 
to be 4 x 10

-16
 mol cm

-2
 sec

-1
 [20]. Brain capillary surface 

area has been estimated to be 240 cm
2
/g brain [21]. Brain 

ECF occupies ~ 15% of brain volume. The unbound plasma 
Al concentration after the i.v. injection of Al citrate was es-
timated to be ~ 1 mM based on the Al concentration (~ 30 

M) in the dialysate from microdialysis probes in the jugular 
vein [15] and a relative recovery, using microdialysis, of Al 

from plasma ultrafiltrate of 3.25%. If 4 x 10
-16

 mole of Al 
diffuses through 1 cm

2
 of membrane/sec, then ~ 3 x 10

-11
 

mole of Al could diffuse through 240 cm
2
 of capillary endo-

thelial cells into 1 gram of brain in 5 min. Assuming the lat-
ter amount of Al distributed throughout brain ECF, the Al 
concentration would be ~ 2 x 10

-17
 M, producing a brain/ 

blood ratio of 0.0002. However, the brain/blood ratio seen 5 
min after this i.v. injection of Al citrate was ~ 0.15 [15], 
suggesting Al citrate brain uptake is carrier mediated.  

 The influx transfer coefficient (Kin) for Al has been re-
ported in two non-peer-reviewed reports. For the free Al ion 
it was reported to be ~ 1000 x 10

-5
 mL/sec/g; in the presence 

of Tf, that would maximally bind 40% of the Al, it was ~ 
300 x 10

-5
 mL/sec/g [22]. In contrast, a much lower value (~ 

0.035 x 10
-5

 mL/sec/g) was reported in a second study, 
which was based on quite variable results after a 50 h Al 
perfusion [23]. The procedures used in both of these studies 
may have underestimated Kin because they did not account 
for potential brain Al efflux. The first utilized a 45 sec wash-
out that followed brain Al perfusion. The second employed a 
50 h infusion. The former values, when compared to the 
brain capillary diffusion rate of sucrose (2.9 x 10

-5
 mL/sec/g) 

[9], support the conclusion of carrier-mediated brain Al up-
take. 

 Studies in which rats were i.v. or i.p. injected with Al 
citrate, Al chloride or Al-Tf resulted in ~ 0.0008 to 0.009% 
of the Al dose/g brain [15, 24-26]. These results show that 
the extent of brain Al uptake is low. The percentage of the 
dose of Al injected s.c. into pregnant rats on gestation day 15 
was 0.0067 and 0.0002% in maternal and fetal brain, respec-
tively, 5 days later [27], demonstrating the ability of Al to cross 
the placenta and fetal BBB. 

4. THE MECHANISMS OF BRAIN ALUMINUM UP-
TAKE 

 The barrier properties of the BBB are primarily attributed 
to the tight junctions between opposing plasma membranes 
of the endothelial cells that comprise the microvessels that 
perfuse the brain, greatly limiting paracellular diffusion [28]. 
Contributing to this barrier are two additional properties of 
these endothelial cells; 1) the nearly total absence of fenes-
trations through which substances might diffuse and 2) the 
low rates of fluid phase endocytosis that might engulf Al in 
the blood and internalize it. Further membrane barriers are 
provided by the following; (i) a basement membrane that 
surrounds the brain microvascular endothelial cells 
(BMECs), (ii) pericytes that surround ~ 30% of the endothe-
lial abluminal cell surface, and (iii) astrocyte foot processes 
that cover > 90% of the surface of the endothelial cells and 
pericytes [29]. The BMECs are extensively distributed 
throughout the brain, so that every brain cell is within ~ 30 to 
50 m of a blood supply, providing very rapid exchange of 
substances between blood and brain cells (Arnold Scheibel, 
personal communication). This anatomy can be seen in many 
of the figures of the human cerebellum published by Duver-
noy et al. [30] and in mouse cortex (Fig. 2B of [31]). 

 Mechanisms of brain uptake include diffusion and carrier 
mediated transport. As noted above, paracellular diffusion 
through the BBB is greatly limited, if not prevented. Diffu-
sion through BBB membranes greatly decreases as size ex-
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ceeds ~ 400 daltons and favors lipophilic substances [31]. 
Many transporters are expressed at the BBB [31]. Some me-
diate brain uptake, others prevent brain uptake, and some are 
bidirectional. Some are equilibrative. Some are energy-
dependent that are able to move substrates unidirectionally 
and against a concentration gradient. There are receptor-
mediated mechanisms which may operate by facilitated dif-
fusion and are often bidirectional [31]. An example of metal 
species-specific transport at the BBB is the large neutral 
amino acid transporter that facilitates brain influx of the 
methylmercury L-cysteine complex, which is perhaps mis-
taken for the structurally similar L-methionine [32].  

 The Al-Tf complex was shown to bind to (be taken up 
by) IMR 32 and C1300 neuroblastoma cells with an equilib-
rium constant and uptake half-life (t ) similar to the iron 
(Fe)-Tf complex [33, 34]. Uptake of Al following Al-Tf ex-
posure has been shown with non-CNS cells, and was gener-
ally greater than from Al citrate [35-41]. Using whole brain 
homogenate, the binding of Al-Tf was shown to have a 
lower affinity than Fe-Tf, but was quite high, leading the 
authors to suggest Tf and its receptor may enable brain Al 
access [42]. Oligodendrocytes took up more Al as Al-Tf than 
Al citrate or the Al ion (introduced as the chloride) [43]. 
These results suggested Al might enter the brain via transfer-
rin-receptor mediated endocytosis (TfR-ME).  

 Based on the rate of TfR-ME of Fe into the brain (Kin = 
0.08 x 10

-5
 mL/sec/g), the blood Al concentration from its 

injection to the time of brain harvest, and assuming that Al-
Tf was cleared from blood to brain over the four h by a first 
order process, TfR-ME could account for the observed brain 
influx of Al (above). The contribution of TfR-ME to brain Al 
uptake is consistent with the positive correlation between Al 
concentration in cortical and hippocampal neurons and the den-
sity of TfRs [44]. However, the affinity of TfR 1 for the Al-Tf 
complex was found to be very weak in vitro, leading Hémadi 
et al. to caution that Al transfer from blood to cell cytoplasm 
may not follow the TfR-ME pathway [45]. In another report 
from the same laboratory Ha-Duong et al. found no interac-
tion between Al-Tf and the TfR [46]. Based on structural and 
physicochemical characteristics of apo-Tf, Fe-Tf, Al-Tf and 
the TfR (diffusion coefficient, hydrodynamic radius, capil-
lary electrophoretic mobility, and zeta potential) and calcula-
tion of acidic amino acid residues, Sakajiri et al. concluded 
that the driving force for the formation of a complex of metal 
and the TfR is the electrostatic interaction between the nega-
tive charge of the former and positive charge of the latter. 
Because the Al-Tf complex surface charge is nearly the same 
as apo-Tf, and less negative than Fe-Tf, they suggested for-
mation of an Al-Tf and TfR complex is not possible [47].  

 Several groups have reported that Al-Tf reduces brain Fe 
uptake. Studies to elucidate the mechanism of this found that 
the Al-Tf complex reduced the level of TfR mRNA in hu-
man erythroleukemia (K562) cells and the density of surface 
Tf binding sites on oligodendrocytes [35, 43]. However, a 
more recent report failed to find an effect of Al-Tf on TfR 
mRNA levels, TfR surface antigenic sites, or total TfR 
(membrane plus cytoplasm) quantity [41]. The latter results 
suggested Al-Tf was acting on sites other than the TfR to 
modulate Fe uptake. Therefore, it appears that the long held 

assumption that TfR-ME plays a role in mediating brain Al 
uptake may not be true. This requires further investigation.  

 There is evidence for a mechanism transporting Al citrate 
across the BBB. Brain Al uptake in the presence of Tf was 
lower than in its absence [22]. There was a lack of signifi-
cant difference in brain Al uptake in hypotransferrinemic vs. 
control mice and after treatment with a TfR antibody in mice 
infused with Al citrate [48].  

 Given that the coordination binding of Al to citrate in-
volves two carboxylates and the hydroxyl group, leaving a 
terminal carboxylate group unbound at physiological pH [49, 
50], it was hypothesized that the monocarboxylate transporter 
(MCT) mediates Al citrate distribution across the BBB. In-
troduction of 2,4-dinitrophenol (a metabolic inhibitor), pyru-
vate (a competitive substrate for the MCT), mersalyl (an MCT 
inhibitor), carbonyl cyanide p-trifluoromethoxyphenyl-hydra-
zone (FCCP, a proton ionophore that should reduce the proton 
gradient required by the MCT for substrate transport), and a 
decrease of proton availability on the brain side of the BBB 
all produced results consistent with the hypothesis [51, 52]. To 
further assess the hypothesis studies were conducted with rat 
erythrocytes, which express MCT-1 and the anion exchanger. 
The results did not show significant uptake of Al citrate into 
erythrocytes [53]. To investigate the properties of the carrier 
mediating Al citrate brain uptake, studies were conducted 
with an immortalized murine BBB endothelial cell line. The 
results suggested Al citrate uptake was energy dependent, 
ATP- but not Na/K-ATPase-dependent, and not a substrate for 
a dicarboxylate carrier or the -ketoglutarate exchanger. Its 
uptake was inhibited by numerous compounds, most of 
which are MCT substrates or inhibitors [53]. These results 
and the properties of the organic anion transporting polypep-
tide (oatp) family suggested it as a candidate. Al citrate 
weakly inhibited the uptake of an organic anion transported 
substrate in oocytes expressing rOAT3, suggesting it may be 
a substrate of an organic anion transporter (B. Feng, K.M. 
Giacomini & Yokel, unpublished observations).  

 Magnesium D-aspartate was found to reduce brain Al 
accumulation following Al L-glutamate administration [54]. 
As D-aspartate is a substrate for glutamate transporters, it 
was suggested that it might cause the counter-transport of Al 
citrate. Investigating this hypothesis it was found that Al 
citrate uptake into an immortalized rat BBB endothelial cell 
line was inhibited by ligands for the sodium-independent L-
glutamate/L-cystine exchanger system Xc

-
. Aluminum citrate 

uptake was increased into cells loaded with these ligands, sug-
gesting a trans-stimulatory effect. These results suggest that 
system Xc

-
 may mediate Al citrate uptake into the brain across 

the BBB [55].  

5. THE EFFECTS OF ALUMINUM ON THE BLOOD-
BRAIN BARRIER 

 There have been many studies assessing the potential of 
Al to compromise BBB function. Most were conducted util-
izing conditions and Al concentrations that are not relevant 
to humans. Following the i.p. injection of Al chloride or Al 
lactate, often 100 mg Al/kg or greater, the brain concentra-
tion of BBB markers increased [56-60]. This dose is 1000- 
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fold greater than the average daily oral Al intake by humans. 
Considering that oral Al bioavailability is ~ 0.3% and assuming 
100% absorption of Al from the peritoneal cavity during this 
time, this dose would be expected to produce blood Al levels 
that far exceed those relevant to typical Al intake by humans. 
In vivo studies with bovine BMECs suggested Al interacts 
with the cell membrane surface [61]. Acellular studies sug-
gested Al perturbation of membrane structure, perhaps due 
to its competition for Ca binding, production of vesicle fu-
sion, and membrane rigidification [62].  

 The i.p. injection of 100 mg Al/kg (as chloride) resulted 
in a dose-dependent increase of brain uptake of 

125
I-N-Tyr-

delta-sleep-inducing peptide and 
125

I- -endorphin 1 and 2 h 
later [63, 64]. Efflux of the 

125
I-labelled proteins Tyr-MIF 

(Tyr-Pro-Leu-Gly-amide) and enkephalins from the brain 
after their intracerebroventricular injection was inhibited by 
i.p. injection of Al 100 mg Al/kg (as chloride), whereas ef-
flux of technetium pertechnetate, albumin and D-Tyr-MIF-1 
was not [65]. Reviewing their results, Banks and Kastin con-
cluded that Al increased transmembrane diffusion and selec-
tively altered saturable transport systems [66]. Subcutaneous 
injection of 100 μg Al/kg (as chloride hexahydrate) reduced 
brain influx and efflux of quinidine (a cation) and reduced 
aspirin (an anion) efflux from the brain without affecting its 
influx [67]. Studies exposing goat BMECs to Al at a concen-
tration at least 10-fold greater than the threshold for clinical 
concern [68] produced alterations in the biophysical and bio-
chemical properties of the BBB. These results suggest Al 
could alter flux of agents across the BBB, disrupting brain 
chemistry. However, considering the very large dose of Al 
used in these studies, the relevance of the findings to human 
exposure is questionable. 

6. FROM THE BLOOD ACROSS THE CHOROID 
PLEXUS 

6.1. The Choroid Plexus and its Transporters 

 There is a CP in each of the two lateral, the third, and the 
fourth ventricles of the brain. They have a monolayer of 
epithelial cells that, like the BBB, have tight junctions, and 
express many carriers. They are the sites of production of 
most of the CSF. Substances that cross the CP from blood 
enter the CSF. The ability of Al to distribute into the CSF 
from blood was demonstrated by the presence of measurable 
Al in CSF within 30 min after its i.v. injection as either the 
chloride or sulfate salt [17, 69]. However, as brain ECF Al 
concentration was greater than CSF Al concentration follow-
ing i.v. Al administration [15], and a source of CSF is brain 
ECF, it is possible that the Al seen in the CSF crossed the 
BBB rather than the CP. There are no peer-reviewed reports 
assessing the extent, rate, or mechanism of Al flux across the 
CP that lack the confounding factor of flux across the BBB.  

 The CSF Al concentration was reported to be < 1 to 6 
μg/L in normal humans and those with Parkinson’s disease 
and AD, and somewhat higher (3 and 7 μg/L) in three Al-
intoxicated dialysis patients [6, 70-72]. The Al appeared to 
be associated with citrate. As the Al concentration in serum 
was ~ 25-fold higher than in CSF, it appears that the CP does 
not allow free Al flux.  

7. ALUMINUM UPTAKE FROM THE NASAL CAV-
ITY 

7.1. Brain Aluminum Entry via the Olfactory and Tri-

geminal Neurons 

 The roof of the nasal cavity is the only site where the 
nervous system is directly exposed to the environment, as 
terminals of the olfactory and sensory branch of the trigemi-
nal nerves. Uptake from the nasal cavity into the olfactory 
nerve, followed by retrograde axonal transport to the olfac-
tory bulb and beyond, was shown in studies of the polio vi-
rus, colloidal silver-coated gold, manganese, rubidium, thal-
lium, yttrium, perhaps nickel, ~ 35-nm 

13
C particles, and ~ 

30 nm agglomerates of manganese, and may occur for other 
metals [73-81]. The anatomy of this process was reviewed 
[82]. The olfactory neurons project into the mucus that cov-
ers the olfactory epithelial surface, enlarging into an olfac-
tory knob that has ciliary extensions (the sites of odor recep-
tors) and extensive endocytotic vesicles. Exogenous sub-
stances might be taken up from the nasal cavity by the odor 
receptors or by endocytosis. Olfactory nerve axons can 
transport, by retrograde axonal transport, substances to the 
olfactory bulb, where they synapse with mitral and tufted 
cells, the secondary olfactory neurons. These latter cells can 
transport substances to the olfactory cortex, where they syn-
apse on pyramidal cells, the tertiary olfactory neurons. Py-
ramidal cells have synaptic connections with pathways to 
multiple cortical and subcortical regions. These neuronal 
pathways provide a mechanism for distribution to multiple 
brain regions of exogenous substances that are able to cross 
synapses. Manganese uptake by the sensory branch of the 
trigeminal nerve within the nasal cavity has also been de-
scribed [83]. Some of the distribution into the brain may 
have occurred by routes other than via the cranial nerves, 
such as through CSF or across the BBB. Although this route 
of uptake appears to deliver a very small percentage of drug 
or metal to the brain, it could be significant over a lifetime 
[78, 84]. There is the potential for Al uptake via this route, 
however most airborne Al is in Al silicates which contain 
very little ionic, exchangeable Al [85].  

 To assess whether Al can enter the brain from the nasal 
cavity, Gelfoam® containing 0.5 mL of 15% Al lactate, 5% 
Al chloride, or 15% sodium lactate was implanted for one 
month into the nasal recess of rabbits [86]. Elevated Al and 
neuropathological changes were seen in the olfactory bulb, 
piriform cortex, hippocampus and cerebral cortex, but not in 
cerebellum, brainstem or spinal cord. These results sug-
gested Al uptake from the nasal cavity and Al-induced pa-
thology in pathways connected to the olfactory tract. How-
ever, concern was raised about the possibility that this pro-
longed exposure mechanically disrupted the olfactory epithe-
lia [87]. Al uptake and granulomas in the piriform cortex, 
basal forebrain, hippocampus, and neocortex were also re-
ported from a 75 mM suspension of a lipophilic Al flavonol 
complex placed in the nasal cavity of the rabbit [88]. Com-
pared to the typical urban air concentration of 1 μg Al/m

3 
and 

inhalation of 20 m
3
/day which is not necessarily all delivered 

through the nose and which is composed mostly of insoluble 
Al silicates, one must question the physiological relevance of 
this route of Al exposure. To further assess the possibility 
that Al can enter the brain from the nasal cavity, rats were 
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nose-only exposed to aerosolized Al chlorohydrate and brain 
Al assessed [89]. A significantly greater Al concentration in 
the olfactory bulb was seen than in non-olfactory brain re-
gions. Rats exposed to lipophilic Al acetylacetonate under 
conditions designed to maximize inhalation via the nasal-
olfactory system showed increased brain Al in the olfactory 
bulb, cortex, hippocampus, and entorhinal area. Elevated Al 
was also seen in the cerebellum, a structure which is not 
within, or directly connected neuronally to, the olfactory 
pathway [90], These data suggested that Al may have dif-
fused through the CSF, rather than being transported through 
neurons.  

7.2. Brain Entry from the Nasal Cavity via the CSF Sur-
rounding Cranial Neurons  

 A second potential route of Al uptake from the nasal cav-
ity is via the CSF in the perineural space surrounding the 
olfactory nerve. This has also been postulated as a route of 
brain prion uptake [91]. Aluminum diffusion by this route 
would be expected to initially result in distribution into CSF 
in the subarachnoid space and over the cortical surface. 

8. BRAIN ALUMINUM EFFLUX 

 Evidence suggesting an Al efflux mechanism at the BBB 
was provided from results of studies in which Al was i.v. 
infused for sufficient time to achieve steady state Al concen-
trations in blood and brain ECF. An eight-fold range of infu-
sion rates was used. The ratio of Al in the brain compared to 
the blood was ~ 0.15. If diffusion mediated transmembrane 
Al flux, then, (Al clearance into the brain from blood) x (Al 
unbound concentration in blood ECF) should equal (Al 
clearance out of the brain) x (Al unbound concentration in 
brain ECF). As this ratio was much less than 1, it suggested 
that Al clearance out was greater than the clearance in, lead-
ing to the conclusion that brain Al efflux is mediated by a 
process other than diffusion [16]. The mechanism(s) mediat-
ing brain Al efflux has not been identified.  

9. BRAIN ALUMINUM CONCENTRATION AND DIS-
TRIBUTION  

 The concentration of Al in the brain is much lower than 
many other tissues, even in the presence of overt neurotoxic-
ity. Increased brain Al concentrations of ~ 4- to 6-fold in 
rabbits and somewhat higher increases in humans suffering 
from DES were associated with neurotoxicity [92-94]. Brain 
Al concentrations in victims of Creutzfeld-Jakob disease were 
not different from controls. As this neurodegenerative disorder 
is associated with widespread neuronal and glial pathology, it 
was concluded that brain damage alone does not result in ele-
vated brain Al [95]. Similarly, brain Al was not elevated in 20 
patients who died from liver disease or other complications of 
chronic alcoholism [96]. 

 Based on a literature review of Al concentration in vari-
ous brain regions Speziali and Orvini concluded that Al is 
generally higher in grey than white matter [97]. Using the 
Morin method to visualize Al, a positive fluorescence signal 
was detected in disintegrating neurofibrillary tangles and the 
senile plaque amyloid cores of non-demented elderly sub-
jects. It was also seen in the wall of the capillary vessels of 

the BBB, perivascular glial supporting tissues, nuclei of as-
trocytes, and nuclei and nucleoli of neurons in normal brain 
tissue [98]. 

10. BRAIN ALUMINUM RESIDENCE TIME  

 Most studies have reported a positive correlation between 
brain Al concentration and age [98-105]. This increase could 
be due to increased exposure with age, an increasingly leaky 
BBB with ageing, a decreased ability to remove Al from the 
brain with age (i.e., due to age-associated impaired kidney 
function), or very slow, or no, elimination of brain Al.  

 The rate of Al elimination from the entire organism may 
drive the rate of Al clearance from the brain, owing to the 
expected equilibrium among the compartments of Al storage. 
The skeletal system is the major compartment of Al storage, 
containing ~ 58% of the human Al body burden [106].  

 Aluminum persists for a very long time in rat brain fol-
lowing systemic injection of very small doses of 

26
Al. Rat 

brain 
26

Al increased slightly from days 5 to 35 after an i.p. 
26

Al injection [24], suggesting a lack of brain Al elimination. 
However, the possibility of 

26
Al precipitation and delayed 

absorption from the peritoneal cavity, the small number of 
subjects, and the lack of a non-

26
Al dosed group to control 

for cross-contamination undermine confidence in these re-
sults. A subsequent study found no decrease in brain 

26
Al 

concentration up to 270 days after 
26

Al injection [107]. 
When 

26
Al was given i.v. to rats that were euthanatized up to 

256 days later, the t  of brain Al was estimated to be ~ 150 
days [26]. Offspring of rats that were given 

26
Al injections 

daily from day 1 to 20 postpartum were weaned on day 20 
and sacrificed up to 730 days postpartum. Aluminum con-
centrations decreased over the 730 days in all tissues. At 
postpartum day 730, brain 

26
Al had decreased to ~ 15% of 

that seen at weaning (day 20 postpartum) [108]. Calculation 
of the elimination t s by the author of this review suggested 
they were ~ 13 and 1635 days in brain. There is little pub-
lished information on allometric scaling of metal elimination 
rates that could be used to extrapolate these results from the 
rat to the human. 150 days is ~ 20% of, and 1365 days ex-
ceeds, the rat’s normal life span. For comparison, the whole-
body t  of Al in the human was estimated to be 50 years 
[109]. As brain Al was not determined for at least 3 t s in the 
animal studies and the estimated whole-body t  of Al in the 
human is well beyond the study period, these estimated ter-
minal t s of brain Al are not expected to have a high degree 
of accuracy. 

11. CHELATION OF BRAIN ALUMINUM 

 In initial uncontrolled studies, desferrioxamine (DFO) 
was given to patients with DES. DFO mobilized Al from 
storage sites into blood, increased Al elimination, and re-
versed some DES symptoms [110, 111]. Further clinical 
studies showed that DFO can reduce DES mortality [112]. 
DFO administered to a few AD patients for > three months 
was claimed to significantly reduce brain Al when compared 
to a few non-DFO-treated subjects [113]. To assess the po-
tential for DFO to benefit patients with AD, 25 probable AD 
patients were given 125 mg (0.19 mmol) DFO i.m. twice 
daily five days weekly for two years [114]. The control 
groups of probable AD patients received oral lecithin or no 
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treatment. A lower mortality and a slower rate of deteriora-
tion of activities of daily living were seen in the DFO-treated 
group. Average cortical brain Al at autopsy in three humans 
with AD treated with a higher dose of DFO was lower than 
three AD subjects who received a lower dose, suggesting 
that DFO-mobilization of Al from the brain might have con-
tributed to the beneficial effects in these patients [115]. Fur-
ther studies are necessary to confirm these results and to de-
termine if the beneficial effect of DFO is mediated by Al 
and/or Fe chelation, by reduction of oxidative injury, or via 
some other mechanism. 

 In animal studies, twice daily i.m. DFO injections con-
siderably reduced the brain Al concentration in rabbits that 
were given intracisternal Al maltolate injections [116]. Re-
peated i.p. DFO injections to rats that had been given a sin-
gle i.v. Al injection reduced the brain Al t  from ~ 150 to ~ 
55 days [26]. These animal studies demonstrate the ability of 
DFO to accelerate Al clearance from the brain. It is not 
known if DFO enters the brain to chelate and reduce brain Al 
or if the reduction of brain Al is due to peripheral Al chela-
tion causing redistribution of Al out of the brain. 

 There are numerous reports of the onset or exacerbation 
of encephalopathy and seizures during or shortly after dialy-
sis in Al-loaded humans whose Al accumulation was treated 
with DFO [117-127]. These adverse effects have been attrib-
uted to DFO and to Al mobilization by DFO. Al in CSF in-
creased in a patient whose DES worsened after DFO [126]. 
To determine if DFO therapy can cause a redistribution of Al 
to the brain, non-protein bound Al in brain, liver, and blood 
ECF was measured in Al-loaded rats after DFO administra-
tion. DFO rapidly increased free Al in the liver, suggesting 
that it mobilized hepatocyte Al and formed an Al:DFO com-
plex, aluminoxamine. An increase in brain ECF Al was also 
seen which could have been due to chelation of brain Al or 
distribution of the Al complexed from the liver into the brain 
[128]. The efficacy of a low-dose DFO therapeutic regimen 
has been shown [129].  

 As DFO is ineffective orally and has significant clinical 
toxicity, there has been a decades-long search for an orally 
effective Fe (and Al) chelator. Two orally-absorbed hy-
droxypyridinone chelators (deferiprone [termed L1 & CP20] 
and CP94), which were developed to overcome the lack of 
oral absorption of DFO, decreased brain Al after i.p. injec-
tion [130]. However, little change of brain free Al concentra-
tion was seen in Al-loaded rats after injection of these and 
two other hydroxypyridinone chelators [131]. Repeated oral 
administration of six hydroxypyridinone chelators to Al-
loaded rabbits increased Al elimination, primarily in the 
urine, and decreased blood Al levels. A few of these chela-
tors increased CSF Al, but only one (CP-24) significantly 
decreased brain Al concentration [132]. A substituted 
pyrimidine given by gavage was found to reduce brain Al in 
Al-loaded mice, although not as effectively as i.p. DFO, pro-
viding some hope of the ability to synthesize an orally effective 
Al chelator [133]. 

 There has been little study of combined therapies to re-
duce brain Al. Using Al-loaded human brain cell nuclei, the 
ability of concurrent addition of various chelators to mobi-
lize Al was assessed. Combined ascorbate and Feralex-G (a 
maltol, glycine and glucosamine complex) was found to be 

effective, leading the authors to suggest that ascorbate pene-
trated the nucleus to complex Al, followed by diffusion of 
the Al complex to regions where it could be accessed by 
larger chelators [134]. Oral administration of glutathione 
paired with Tiron given i.p. reduced oxidative stress in the 
brain to a greater extent than Tiron alone, but the combina-
tion did not enhance the ability of Tiron to reduce brain Al 
[135]. Five consecutive daily i.p. injections of N-(2-
hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) to Al-
loaded rats significantly reduced blood and brain Al nearly 
to control rat levels, but the addition of oral citrate did not 
further decrease Al levels [136].  

12. CONCLUSION 

 In summary, there is evidence for transporter-mediated 
influx and efflux of Al across the BBB, the primary site of 
brain Al uptake. The glutamate transporter system Xc

-
 has 

been suggested to mediate brain Al citrate uptake. The role of 
Al-Tf in brain Al uptake and the underlying mechanism(s) 
require further research to understand. There is also evidence 
for carrier-mediated Al efflux from the brain, however, the 
mechanism(s) have not yet been identified. Identification of 
the mediating process(es) and factors that influence it (them) 
might provide insight into ways to reduce the brain’s Al bur-
den. It appears that Al persists in the brain for a long time 
[with t  estimates of 20% of, to beyond, the lifespan], and 
accumulates over the lifespan, creating the potential to con-
tribute to neurodegenerative disorders. As this is of concern, 
ways to avoid this would be valuable to understand. Chela-
tion therapy can reduce some of the effects of Al toxicity, 
probably in the presence of profound Al intoxication. How-
ever, chelating agents also appear to have the potential to 
enhance Al-mediated neurotoxicity due to redistribution of 
the Al-chelator complex. A better understanding of the fac-
tors that impact on the redistribution of the Al-chelator com-
plex to the brain, and identification of chelators that have 
less or no risk to do this would be valuable. It would be 
highly desirable to resolve the contentious controversy of the 
role of, or lack of, Al as a contributing factor in AD.    

13. ABBREVIATIONS 

AD = Alzheimer’s disease 

Al = Aluminum  

BBB = Blood-brain barrier 

BMEC = Brain microvascular endothelial cell 

CP = Choroid plexus  

CSF  = Cerebrospinal fluid  

DES = Dialysis encephalopathy syndrome  

DFO = Desferrioxamine 

ECF = Extracellular fluid  

Kin  = Influx transfer coefficient 

MCT = Monocarboxylate transporter 

Tf = Transferrin 

TfR = Transferrin-receptor 

TfR-ME = Transferrin-receptor mediated endocytosis  
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