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Model ceria catalysts were evaluated for NOx storage and desorption performance 
under lean conditions. Three different storage temperatures (80 °C, 120 °C, and 160 °C) 
were utilized to evaluate NOx storage. Higher temperatures resulted in higher NOx 
storage. It was observed that storage of platinum promoted ceria resulted in higher NOx 
storage compared to promotion with palladium. NOx desorption behavior of platinum 
promoted ceria indicated that the majority of NOx is released at high temperatures (> 350 
°C), comparatively palladium promotion released more of the stored NOx at lower 
temperatures. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) 
indicated that platinum promotion results in NOx storage as thermally stabile nitrates, 
while palladium promotion results in NOx storage as thermally labile nitrites.  
 

Doping ceria with trivalent rare earth oxides has been shown to improve NOx 
storage by generating lattice oxygen vacancies. Ceria doped with Pr, Y, La, Sm, and Nd 
at two different concentrations (5 and 20 mol%) and promoted with Pt were evaluated. 
Doping ceria with 5% Sm, Nd, and Pr improved the amount of NOx stored while the 
addition of Sm and La did not improve storage. Upon increasing dopant concentration, 
NOx storage decreased in all cases but Pr. However, increasing Pr concentration was 
found to increase NOx storage as well as low temperature NOx release.  Ceria doped with 
Pr promoted with Pd increased the amount of NOx released at lower temperatures 
compared to Pt promotion, although palladium promotion resulted in lower storage. 
Similar DRIFTS spectra were obtained with Ce-Pr when promoted with Pt or Pd 
compared to model catalysts. Platinum promotion results in the storage of NOx at nitrates, 
which require high temperatures for removal. Comparatively, Pd promotion results in 
NOx stored at nitrites requiring lower temperatures for removal.  
 

Ceria doped with Pr proved to be promising, although not thermally stable when 
exposed to high temperatures as may be seen during a DPF clean up. Therefor, stabilizing 
Ce-Pr catalysts with Zr were evaluated. It was found that stabilizing Ce-Pr with Zr was 
not found to be beneficial to the catalyst performance.  

CERIA BASED CATALYST FOR LOW TEMPERATURE NOX STORAGE AND 
RELEASE 
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Chapter 1. General Introduction. 
 
 For over 40 years automotive companies have been striving to produce vehicles 

that meet ever tightening Environmental Protection Agency (EPA) emission standards. 

As seen in Figure 1.1, national NOx emission standards have dropped from ~6 g/mi in 

1960 to 0.07 g/mi in 2010 [1]. Not only does the EPA regulate nitrogen oxides (NOx), 

they regulate the emission of carbon monoxide (CO), particulate matter (PM), and 

hydrocarbons (HC).  

CO is a poisonous gas that is colorless and odorless. HCs have been linked to 

cancer in humans as well as contributing to the greenhouse gas effect. PM are fine 

particles found in aerosols that are produced during combustion processes, some of which 

have been linked to heart disease and lung cancer [2]. Most NOx is produced by several 

different combustion processes: fuel combustion for electrical utility operation, high 

temperature industrial operations (cement kilns), and operation of vehicles [3]. It’s 

estimated that 1% of NOx is produced in nature [4] through bacterial processes, 

lightening resulting in the oxidation of N2 to NOx, or biomass burning, i.e. forest fires 

where nitrogen is oxidized, producing NOx [5]. The other 99% of NOx emissions are 

generated by man made sources, including vehicle emissions [4]. 
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Figure 1.1. Reduction of NOx emissions between 1960-2010 [1]. Source: Air Quality 

Management in the United States. Reprinted with permission. 

 

1.1. Causes of Emission Regulation. 

 In October of 1948 in the town of Donora, Pennsylvania, a thick cloud of smog 

formed over the town and lingered for 5 days (Figure 1.2). During those 5 days 20 people 

were killed and almost half of the town’s population became sick [6]. Four years later in 

December 1952, thick smog emerged over London, England, becoming known as 

London’s “killer fog.” In the aftermath of the smog it was reported that 4,000 people died 

due to bronchitis and pneumonia caused by the smog. All transportation in London was 

crippled (except the underground) because people were unable to see, and it was reported 

that buses could only function with guides walking in front of the buses holding lanterns 

in front of them [7]. Events like these, prompted emission regulations in the U.S. as well 

as globally.  
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Figure 1.2. Smog coming from the stacks of Zinc Works of American Steel & Wire Co. 

in Donora, PA in 1948 [8]. Source: post-gazette.com. Reprinted with permission. 

 

1.2. Atmospheric Sources of NOx. 

 Increasing regulations on NOx emissions have been prompted by increases in 

photochemical smog, greenhouse gases, and acid rain produced by NOx reactions with 

atmospheric gases. On warm sunny days, especially in urban areas, smog warnings have 

become commonplace due to increased emissions and optimal conditions for smog 

production. Photochemical smog is produced through numerous reactions (1.1-1.6) [9]. 

When NO2 is struck by u.v. sunlight, NO2 is broken down to radical oxygen (O*) and 

NO, which begins the formation of photochemical smog. O* reacts further with O2 to 

form ozone (O3). After the formation of ozone, O3 will scavenge NO to form NO2 and O2 

dropping the ozone concentration. However, radical oxygens can also further react with 

volatile organic compounds (VOCs), denoted as RC in reaction 1.4, to form aldehydes 

and ketones (RCO). These aldehydes and ketones can be further oxidized to form 

peroxide radicals (RCO3). Oxygen can react with RCO3 to form more ozone and VOCs. 

RCO3 can form more NO2 by reacting with NO, which will go on to form more ozone, 

further contributing to global warming. A summary of the reactions previously discussed 

is presented below.  
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                                                         NO2 + u.v. ! O* + NO                                         (1.1) 

                                                               O* + O2 ! O3                                                 (1.2) 

                                                         O3 + NO ! O2 + NO2                                           (1.3)  

                                                RC + O* ! RCO + O2 ! RCO3                                   (1.4) 

                                                     O2 + RCO3 ! O3 + RCO2                                         (1.5) 

                                                   NO + RCO3 ! NO2 + RCO2                                      (1.6)  

 

 In addition to increasing ozone concentrations, NOx forms nitric acid (HNO3), 

which typically comprises 32% of acid rain [10]. Normal rainwater has a pH slightly less 

than 6, where as acid rain has a pH of 5.0-5.5 and as low as 4.5 in some areas (Figure 

1.3), making it harmful to the environment (i.e. killing marine life and crops) [11].  

 
Figure 1.3. National pH distributions from 2002 [12]. Source: Water.USGS.gov. 

Reprinted with permission. 
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  It is worth noting that nitric acid is also formed (steps 1.7-1.9) during lightening 

storms by the reaction of N2 and O2 to produce NO that can be further oxidized to NO2 

thus promoting acid rain through means of NO2 reacting with water forming nitric acid 

and NO [13]. 

 

                                                 N2 + O2 + lightening ! 2NO                                        (1.7) 

                                                       NO + ½ O2 ! NO                                                   (1.8) 

                                             3 NO2  + H2O ! 2 HNO3 + NO                                       (1.9) 

 

 Nitrous oxide (N2O) is a type of greenhouse gas. According to the EPA, 40% of 

N2O is produced through human activities [14]. Although NO and NO2 emissions are 

regulated by the EPA, N2O has a much longer half-life (+100 years) than NO or NO2 

[15]. N2O also has the largest impact towards global warming compared to other 

greenhouse gases (CO2, methane and F-containing gases) [16]. One pound of N2O 

compared to one pound of CO2 impacts global warming almost 300 times more than CO2, 

and hence N2O emissions are increasingly being subject to regulation [17]. 

 

1.3. Clean Air Act. 

 Events like those in Donora, PA and London led to government regulations on 

emission control. The first federal legislation passed on emission control in the United 

States was the Clean Air Act (CAA) of 1963. This was followed by the passing of the 

CAA of 1970 [18]. The CAA of 1970 required that emissions in 1975 model year cars be 

reduced by 90% or more [19], with new emission requirements leading the way for the 

first practical catalytic convertor design and lead-free gasoline. Amendments were made 

to the CAA throughout the 70s and important additions were made in the 90s regarding 

automobile exhaust emissions, resulting in programs like the Acid Rain Program created 

to control acid rain in 1990, followed by the introduction of National Ambient Air 

Quality Standards lowering levels of ground level ozone and the quantity of particulate 

matter that make up soot. 
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1.4. EPA Emission Standards. 

1.4.1. FTP-75 Drive Cycle. 

 To certify that a vehicle meets emission standards set forth by the EPA, the FTP-

75 drive cycle is utilized. The FTP-75 mimics urban driving through 4 different phases 

(Figure 1.4). The first phase in known as the cold start transient phase, that lasts for 505 

seconds. During the cold start transient phase the engine is started at ambient 

temperatures (20-30 °C). The second phase, the-called stabilized phase, is where the 

engine has had time to warm up and reach typical operating conditions, this lasting for 

866 seconds. After stabilization the engine is turned off for a minimum of 540 seconds to 

a maximum of 660 seconds for the hot soak phase. This phase mimics someone running a 

quick errand, i.e. going into a store for 10 minutes. Following the hot soak is the hot start 

transient phase, which lasts 505 seconds. Throughout the drive cycle there are constant 

stops and starts as there would be in an urban driving environment. Several basic 

parameters are set forth during the drive cycle: the duration is 1877 seconds, with a total 

distance traveled of 11.04 miles, an average speed of 21.2 mph, and a maximum speed of 

56.7 mph [20]. 

 

 

 
Figure 1.4. FTP-75 Drive Cycle [21]. Source: DieselNet.com. Figure reprinted with 

permission. 
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 In addition to the FTP-75 drive cycle two supplemental tests may be run as well: 

US06 and SC03.  US06 simulates high-speed driving and/or high acceleration with rapid 

speed fluctuations. US06 is representative of a 8.01 mile route that averages 48.4 mph, 

doesn’t exceed a speed of 80.3 mph, and has a total duration of 596 seconds [22]. SC03 is 

used to simulate conditions similar to the FTP-75 with the use of air conditioning. The 

drive cycles occurs in a lab with the temperature set to 35 °C, a 3.6 mile driving loop, 

with average speeds of 21.6 mph (max of 54.8 mph), and totaling 596 seconds [23]. 

 

1.4.2. Tier 1 Emission Standards. 

 Emission standards established with the Clean Air Act of 1990 led to more 

stringent criteria set forth by the EPA in Tier 1 and these guidelines began phasing-in 

throughout the mid-90’s. Tier 1 requirements were applied to all light duty vehicles 

(LDV) possessing a gross vehicle weight ratio (GVWR) of 8500 pounds or less. LDV 

vehicles are classified as passenger vehicles such as: cars, light-duty trucks, sport utility 

vehicles (SUV), mini-vans, and pick-up trucks. Emissions standards were broken into 

two types of mileage standards set forth by Tier 1 (miles or years—depending which 

milestone occurred first): 50,000 miles or 5 years and 100,000 miles or 10 years. 

Emission standards also varied depending on the type of fuel, i.e. diesel engines had 

different standards than gasoline engines [24]. 

 

1.4.3. Tier 2 Emission Standards. 

With the goal of further decreasing vehicle emissions, Tier 2 standards were 

phased in from 2004 to 2009. Differing from Tier 1, Tier 2 emission standards are the 

same for all LDV, regardless of fuel type. Emission levels are organized by bins in Tier 

2, as shown in Table 1.1. The reduction of NOx emissions will be the focus of this 

dissertation due to lower HC and CO emissions in diesel engines compared to 

stoichiometric gasoline engines, i.e. NOx emissions represent the main challenge. Tier 2 

mandates that manufacturers have an average fleet NOx emission of 0.07g/mile during 

the FTP-75 for the vehicles’ “usable lifetime” (10 years or 120,000 miles). Sulfur 

contents in gasoline and diesel fuels are also mandated by Tier 2. Gasoline is to have an 

average sulfur content of 30 ppm with no more than 80 ppm, while diesel fuel is to have a 
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maximum sulfur content of 15 ppm due to the ability of sulfur to deactivate diesel 

emission control catalysts [25]. 

 

Table 1.1. Tier 2 Emission Standards as determined by FTP-75 drive cycle, g/mi [26]. Source: 

DieselNet.com. Reprinted with permission. 
	

Bin 

# 

Intermediate Life (5 years/50,000 miles) Full Life (10 years/120,000 miles) 

NMOG CO NOx PM HCHO NMOG CO NOx PM HCHO 

8 0.1 3.4 0.14 -- 0.015 0.125 4.2 0.2 0.02 0.018 

7 0.075 3.4 0.11 -- 0.015 0.09 4.2 0.15 0.02 0.018 

6 0.075 3.4 0.08 -- 0.015 0.09 4.2 0.1 0.01 0.018 

5 0.075 3.4 0.05 -- 0.015 0.09 4.2 0.07 0.01 0.018 

4 -- -- -- -- -- 0.07 2.1 0.04 0.01 0.011 

3 -- -- -- -- -- 0.055 2.1 0.03 0.01 0.011 

2 -- -- -- -- -- 0.01 2.1 0.02 0.01 0.004 

1 -- -- -- -- -- 0 0 0 0 0 

 

1.4.4. Tier 3 Emission Standards. 

 The final set of emission standards arising from the Clean Air Act of 1990, Tier 3, 

is set to begin phasing in during 2017, the phase in period ending in 2025. There are 

several differences between Tier 2 and Tier 3, the first being the fact that non-methane 

organic gases (NMOG) and NOx categories are combined into one, and the second 

involving the extension of total emission certification life to 150,000 miles. Lastly, 

gasoline vehicles will be tested with gasoline containing 10% ethanol. With the new 

emission group of NMOG and NOx, manufacturer fleets must average 30 mg/mile for 

both gases combined (Table 1.2). Sulfur content in gasoline is lowered in Tier 3 from 30 

ppm to 10 ppm [27]. 
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Table 1.2. Tier 3 Emission Standards as determined by FTP-75 drive cycle [24]. Source: 

DieselNet.com. Reprinted with permission. 
	

Bin NMOG + NOx PM CO HCHO 

mg/mi mg/mi g/mi mg/mi 

Bin 160 160 3 4.2 4 

Bin 125 125 3 2.1 4 

Bin 70 70 3 1.7 4 

Bin 50 50 3 1.7 4 

Bin 30 30 3 1.0 4 

Bin 20 20 3 1.0 4 

Bin 0 0 0 0 0 

 

1.5. Solutions to Meet Stringent Emission Standards. 

In response to the CAA of 1970 automotive manufacturers developed the first 

practical catalytic convertor. The three way catalytic (TWC) converter was designed to 

convert nitrogen oxides (NOx), carbon monoxide (CO), and unburned hydrocarbons (HC) 

into nitrogen gas (N2), carbon dioxide (CO2), and water [28]. Within the first 25 years of 

use of catalytic convertors, 56 million tons of HC, 118 million tons of NOx, and 464 

billion tons of CO emissions were prevented [29]. 

TWCs needed to be able to withstand high temperatures because of large 

temperature gradients caused by exothermic catalytic reactions and high exhaust 

temperatures. They also needed to have large surface areas and be produced at low cost; 

because of these requirements car manufacturers considered using alumina beads and 

ceramic monoliths with a honeycomb structure as catalyst supports [30]. The catalyst also 

needed to be resistant to poisons, like sulfur, and have high mechanical strength [31]. 

Through the evolution of TWCs, ceramic monoliths made of cordierite, 

(Mg,Fe)2Al4Si5O18, were used as catalyst supports because of their low thermal 

expansion coefficient [32]. The extrusion of clay, talc, alumina, water, and organic 

additives was used to generate cordierite, which allowed for control of the geometry, size, 

and contour of the honeycomb [33]. The catalyst was applied by wash-coating the 
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monolith to generate a washcoat thickness of 20-150 µm depending on the application of 

the monolith [26].  

TWCs also saw the addition of rhodium and platinum to improve NO reduction 

activity. For later era TWCs palladium became a major component because of its lower 

cost, while ceria was employed for oxygen storage to reduce fluctuations in air/fuel ratios 

for stoichiometric engines (air: fuel = 14.7:1 by weight). Minimizing fluctuations allowed 

for balanced conversions of HC, CO, and NOx. In contrast, while lean burn engines (air: 

fuel = 20-50:1) are more efficient than stoichiometric engines, they produce excess 

oxygen in the exhaust that consumes reductants, making it difficult to convert NOx to N2 

[34]. 

 

1.6. Diesel Emission Control. 

The use of diesel engines over gasoline spark-ignited engines is attractive 

primarily due to their increased fuel efficiency. Diesel engines have increased fuel 

efficiency primarily due to extremely lean operating conditions and better combustion 

efficiency. The combustion of diesel fuel results in lower emissions of NOx, CO, and HC 

than stoichiometric engines due to lower combustion temperatures, but lower 

temperatures result in higher particulate matter (PM) [35]. To prevent PM emissions, 

manufacturers developed diesel oxidation catalysts (DOC) and diesel particulate filters 

(DPF). DOCs promote the oxidization of HC and CO to CO2 and H2O [36]. DPFs are 

utilized to store PM matter to be subsequently oxidized during periodic DPF regeneration 

events [37]. 

Advancing to modern lean-burn engines, lean NOx trap (LNT) and selective 

catalytic reduction (SCR) catalysts are used in place of TWCs. To optimize LNT NOx 

conversions while using minimal amounts of fuel, NOx is stored on an alkaline earth 

metal or alkali metal oxide. NOx storage is found to be more effective if NO is first 

oxidized to NO2, traditionally performed by a precious group metal (PGM) like platinum 

between 200 °C and 350 °C [38-40]. NO2 is then stored in the form of nitrates under lean 

conditions until NO2 breakthrough (~1-2 minutes) [41]. When breakthrough occurs, fuel 

is injected into the exhaust for regeneration of the storage capacity, during which metal 

nitrates and nitrites decompose to metal carbonates, oxides, and hydroxides. The released 
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NOx is subsequently reduced to N2 by the fuel-derived reductant species present (CO, H2, 

and HCs). Although N2 is the desired product from lean-rich cycling, N2O and NH3 are 

generated as by-products during cycling under certain conditions [32, 42].  

SCR represents the main alternative to the use of LNT catalysts. Effective 

reduction of NOx by NH3 using SCR catalysts was first discovered in 1957 [43]. NH3 is 

reduced NOx to N2 through standard SCR (reaction 1.12-1.13) or fast SCR reactions 

(reaction 1.14) [44]. NH3 can be generated in-situ by the thermal decomposition of urea  

(reactions 1.10-1.11) which is injected into the exhaust.  

 

                                                    (NH2)2CO ! NH3 + HNCO                                     (1.10) 

                                                    HNCO + H2O ! NH3 + CO2                                   (1.11)                                             

                                              4 NH3 + 4 NO + O2 ! 4 N2 + 6 H2O                             (1.12) 

                                             4 NH3 + 2 NO2 + O2 ! 3 N2 + 6 H2O                            (1.13) 

                                              NO + NO2 + 2 NH3 ! 2 N2 + 3 H2O                             (1.14) 

 

SCR catalysts were discovered in the 50s, however few applications for them 

existed until the 70s. In the 70s SCR catalysts were used on power plants in Japan to 

reduce NOx [43]. Early SCR catalysts utilized Pt technology, but weren’t effective in the 

desired temperature range (> 250 °C). Following the use of Pt catalysts, V2O5/Al2O3 

catalysts were studied for SCR use, however, they were not resistant to sulfur poisoning. 

Alumina reacts with SO3 to form Al2(SO4)3, deactivating the catalyst. To resist sulfur 

poisoning Al2O3 was replaced with TiO2 [45-46]. V2O5/TiO2 catalysts also operate at 

higher temperatures than Pt catalysts (300-400 °C) [47]. For even higher temperature 

operation zeolite based catalysts were found to perform the best [48].  

 

1.7. Use of Passive NOx Adsorbers. 

While typical LNT and SCR catalysts do not become active until ~200 °C, FTP-

75 testing begins under ambient conditions. Therefore, NOx can pass through the exhaust 

unreacted during the first 200 seconds of vehicle use before catalyst operating 

temperatures are reached [49-50]. The EPA Tier 3 standards which are set to start 

phasing in beginning in 2017 call for a 46% reduction in emissions from the Tier 2 
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standards (which requires that light duty trucks have an average fleet NOx emission of 

0.07g/mi) [51-53]. Hence to meet these more stringent emission standards it is important 

to decrease cold start emissions. To this end, the concept of a passive NOx adsorber 

(PNA) closely coupled to an urea-SCR catalyst has been suggested; the PNA is designed 

to store NOx as a nitrate and/or nitrite below 200 °C and to readily release the NOx above 

200 °C to be reduced downstream by the urea-SCR catalyst.  

 

1.8. Scope of Dissertation. 

 The research reported in this dissertation will discuss the use of PNAs to improve 

low temperature NOx mitigation to meet upcoming Tier 3 standards. Combining NMOG 

and NOx into one emission category in Tier 3 reduces NOx emissions compared to Tier 2 

standards. Moreover, Tier 3 requires that the emission control lifetime of an engine be 

increased from 120,000 miles to 150,000. To meet Tier 3 emissions standards it is 

imperative to reduce cold start NOx slip. In this study this is done by evaluating the use of 

ceria based mixed oxides for NOx storage below 200 °C and NOx release above 200 °C. 

The effect of different precious metals (Pt v. Pd) in NOx storage and release is studied 

and to understand how NOx is stored and released, Diffuse Reflectance Infrared Infourier 

Transform Spectroscopy (DRIFTS) is utilized to probe NOx storage and release 

mechanisms.  

 

The next chapter of this dissertation will focus on the essential background information 

involving PNAs and the mechanism of NOx storage and release.  

 

Chapter 3 will focus on Microscopy work performed on LNT and SCR catalysts. 

 

Chapter 4 will focus on the use of model ceria catalysts promoted with Pt or Pd.  

 

Chapter 5 evaluates the effect of doping ceria with other trivalent rare earth oxides. 

Doping ceria is known to generate vacancies in the lattice, therefore increasing oxygen 

mobility and potentially increasing NOx storage. 
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Chapter 6 focuses on the addition of zirconium to praseodymium-doped ceria to reduce 

catalyst sintering under the high temperatures experienced in exhaust systems (e.g. during 

DPF regeneration). 

 

Lastly, Chapter 7 will focus on all of the significant findings from the work discussed in 

previous chapters along with suggestions for future work regarding PNAs. The most 

common abbreviations used throughout the dissertation will be included in Appendix 1.  
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Chapter 2. Development of Passive NOx Adsorbers.  
 

The EPA began regulating vehicle emissions (CO, HC, PM, and NOx) in the 

1970s. Since then automotive manufacturers have continually developed and improved 

exhaust aftertreatment systems. For aftertreatment systems to meet evolving pollutant 

emission targets, the improvement of catalytic activity at low temperatures has become a 

key objective due to low the temperatures observed for diesel engines during the first 200 

seconds of the FTP-75 drive cycle (see Figure 2.1). Even with the use of an SCR catalyst, 

tailpipe NOx emissions are at their highest during the first 200 seconds of the drive cycle 

(see Figure 2.2). To overcome this problem, the use of a PNA closely coupled to an SCR 

catalyst has been suggested, see Figure A.2.1.  

 
Figure 2.1. Exhaust gas temperatures observed during the FTP-75 drive cycle on a 4.4 L 

diesel truck. Source: SAE 2012-01-0371 [1]. Reprinted with permission. 
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Figure 2.2. NOx concentrations pre- and post-SCR catalyst during the FTP-75 drive 

cycle. Source: Dieselnet.com [2]. Reprinted with permission.  

 

2.1. Patent Literature. 

A 1998 patent from Energy and Environmental Research Corporation first 

mentioned the use of a passive NOx adsorber, in conjunction with a TWC. The NOx 

storage component was claimed to store NOx below 180 °C, which was followed by 

release of NOx to the downstream TWC once operational temperatures were reached [3]. 

Subsequently, the use of a PNA closely coupled to an SCR catalyst appeared in a patent 

issued to Ford in 2001, which claimed the use of platinum-promoted γ−Al2O3 as the PNA. 

Under lean conditions Pt/Al2O3 stores NOx, although when hydrocarbons are present 

during lean conditions the catalyst simultaneously stores and reduces NOx via HC-SCR 

reactions. The addition of a urea-SCR component allows the stored NOx to be reduced to 

the desired N2 product as the temperature increases and NOx is desorbed from the PNA. 

The use of 2 wt.% of Pt loaded onto a γ−Al2O3 support achieves maximum NOx storage 

of 80% at 160 °C for ~200 seconds [4]. 

A subsequent US patent application submitted by GM incorporates an external 

fuel injection system and air pump to insure that the PNA catalyst is regenerated if the 

engine is shut off before regeneration is achieved. To do so, fuel and air are injected into 

the exhaust to raise the temperature of the catalyst, releasing any remaining NOx on the 
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PNA that is then reduced by residual NH3 on the surface of the downstream SCR catalyst 

[5]. 

In a 2012 patent issued to Johnson Matthey, it is claimed that the use of Pd 

supported on CeO2 as a PNA results in NOx storage at nitrites, therefore avoiding the 

need for NO to be oxidized to NO2 during storage [6]. Similarly, in a report by Chen et 

al. [7], Johnson Matthey’s diesel Cold Start Catalyst (dCSCTM) is reported to have the 

ability to store NOx as nitrite instead of nitrate, making it easier to desorb NOx at 

relatively low temperatures and thereby regenerate the catalyst. The dCSCTM incorporates 

the previously mentioned PNA from Johnson Matthey along with a hydrocarbon trap. In 

the first report concerning the application of a PNA to a diesel vehicle, Cummins 

researchers showed that the use of a PNA closely coupled with an SCR catalyst was able 

to greatly reduce NOx emissions on a light duty V8 truck that occurred during cold starts 

compared to an SCR-only catalyst system [8]. However, while the use of a PNA can be 

beneficial, the Cummins researchers concluded that more research was needed to develop 

the technology.  

 

2.2. Ceria-based PNAs. 

 Ceria is often used in exhaust aftertreatment systems because of its ability to 

readily store and release oxygen [9-10]; this has been attributed to the non-stoichiometric 

fluorite structure of ceria. The non-stoichiometric form contains Ce3+ ions in addition to 

Ce4+ ions that lead to anionic vacancies—that can function as NOx storage sites—in the 

crystal lattice as demonstrated in Figure 2.3 [4, 11-12]. It has been demonstrated that 17% 

of CeO2 can be reduced without changing the fluorite structure to the hexagonal form, 

Ce2O3 [13]. In a study of Pd/CeO2 by Cordatos and Gorte [14], it was found that oxygen, 

as well as NO, has the potential to move freely between Ce and Pd. Lattice oxygen from 

CeO2 can be transferred to the PGM at the PGM-ceria interface for oxidation reactions. 

The transfer of oxygen at the metal-ceria interface creates a reduced site on ceria, 

generating an adsorption site for NO. The adsorption of NO re-oxidizes the site to release 

N2 and complete the oxidation-reduction cycle. The high oxygen mobility and favorable 

redox properties of ceria make ceria an ideal candidate for applications requiring NOx 

storage and/or reduction. 
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Figure 2.3. Process of forming oxygen vacancies in the ceria lattice through the removal 

of oxygen from the lattice leaving behind two electrons. Source: Phys. Rev. Lett. [9]. 

Reprinted with permission. 

 

The fact that ceria is readily able to store and release oxygen due to its redox 

properties (e.g., through the creation of lattice oxygen vacancies by reduction of Ce4+ to 

Ce3+), aids NOx storage as shown in a number of recent studies [15-19]. Moreover, ceria 

has also been found to stabilize high dispersions of Pt [20] and reduce sulfur-induced 

deactivation of the active phase in LNT catalysts by acting as a sulfur sink [21-22]. 

Figure 2.4 compares NOx storage over BaO/Al2O3 promoted with platinum (PBA) to a 

physical mixture of Pt/BaO/Al2O3 and Pt/CeO2 (74:26 weight ratio), the mixture being 

denoted as PBAC. In the case of PBAC, little difference was observed in outlet NOx 

concentrations before and after catalyst sulfation, as well as desulfation.   
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Figure 2.4. Outlet NOx concentration comparisons for PBA and PBAC before and after 

sulfation. Source: Catal. Lett. [21]. Reprinted with permission. 

 

Moreover, when Pt/CeO2 is physically mixed with Pt/BaO/Al2O3 in a powder as 

well as in a monolith washcoat, NOx conversions below 400 °C are improved during NOx 

adsorption-reduction cycling [23-25]. Similarly, the addition of ceria to a Ba LNT 

catalyst improved NOx storage capacity at low temperatures and high temperature 

catalyst durability in findings by Rohart et al. [26]. Rohart also investigated the use of 

rare earth (RE) oxides in place of Ba in LNT catalysts and found that use of various Ce-

Pr, Ce-Nd and Ce-La oxides resulted in substantial NOx storage at low temperatures (< 

350 °C), whereas a BaO/Al2O3 reference catalyst showed poor storage in this temperature 

range (Figure 2.5).  
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Figure 2.5. Percentage of NOx stored after one minute as a function of temperature on 

various LNT supports promoted with 1 wt.% Pt. Source: Top. in Catal. [26]. Reprinted 

with permission. 

 

The Ce-Pr derivative stored over 90% of the NOx fed after 1 minute of storage at 

250 °C, while the Ce-La derivative stored about 70% of the NOx, and the Ce-Nd sample 

stored less than 40% of the NOx. These results paralleled catalyst ability to oxidize NO to 

NO2 at 250 °C [26]. Doping with rare earth oxides is also appealing due to their lower 

nitrate (Table 2.1) and nitrite (Table 2.2) decomposition temperatures compared to other 

metals. While group I and II metals have been evaluated for use in lean NOx trap 

catalysts, they aren’t viable options for low temperature operation under continuous lean 

conditions due to the high decomposition temperatures of the nitrates (e.g., bulk Ba 

nitrate decomposes at 645 °C). Alternatively, transition metals may be a viable option 

although not as appealing as rare earths because of their higher nitrate decomposition 

temperatures; nevertheless, the thermostability of their nitrates is generally lower than 

that of group I and II metals. 

 
Table 2.1. Comparison of decomposition temperatures for different metal nitrates [27-

31]. 
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Metal Decomposition Temperature (°C) 

Ag 450 

Al 167 

Ba 645 

Ca 575 

Ce 297 

Co 310 

Cs 406 

Cu 290 

Dy 280 

Fe 167 

Ga 202 

Gd 367 

K 850 

La 240-420 

Li 640 

Lu 230 

Mg 450 

Mn 200 

Na 750 

Nd 280-350 

Ni 300 

Pd 177 

Pr 220 

Pt 237 

Rb 600 

Rh 197 

Sm 200 

Sr 645 

Ti 217-339 
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Y 376 

Yb 270 

Zn 337 

Zr 300-600 

 

 

Table 2.2. Comparison of decomposition temperatures for different metal nitrites [27, 32-

33]. 

Metal Decomposition Temperature (°C) 

Ba 90-150 

Ca 267-315 

Li 220-270 

Ni 260 

K 410 

La 240 

Pr 220 

Nd 200 

Sm 200 

Dy 110 

Yb 90 

Sr 264 

Co 100 

Rb 450 

Tl 182 

 

 

In a recent article, Wang et al. discussed the use of Nd, La, and Y in a 

Pt/Ba/Ce0.6Zr0.4O2-Al2O3 LNT catalyst. The addition of La to the Ce-Zr mixed oxide 

improved NOx storage capacity at 200 °C compared to the non-RE containing 

counterpart, while the addition of Y and Nd did not improve storage [34]. Stakheev et al. 
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[35] studied NOx storage at low temperatures over Pt/CeO2-ZrO2. In their study it was 

confirmed that NOx storage occurs in two phases: nitrite storage (100-180 °C) and nitrate 

storage (> 200 °C). Under isothermal conditions (200 ppm NO, 10% O2, 6% H2O, and N2 

balance) the catalyst was found to store ~0.18 mmol/g NO after saturating it with NO at 

120 °C. Upon simulating NOx storage during a cold start (100-200 °C) only a small 

amount of NO was stored: ~0.049 mmol/g, indicating that the full capacity of the catalyst 

to store NOx isn’t utilized during cold starts. Reducing Pt/CeO2-ZrO2 under 5% H2/Ar at 

450 °C was found to increase NOx storage in the range of 100-150 °C. However, 

comparing storage after reduction to storage after oxidation over the 100-200 °C range, 

overall storage was found to be almost identical. NOx storage drastically decreased over 

the 100-200 °C range when adding CO2 to the gas feed due to competitive formation of 

surface carbonates with unstable surface nitrites.  

The activity of Ce-Pr mixed oxides has also been examined [36]. Researchers 

observed an increase in NO2 yield during NO oxidation from 24% for pure ceria to 39% 

for ceria doped with 20% Pr. Continuing to increase Pr content increased NO oxidation, 

indicating that Pr is a very active oxidation catalyst. Interestingly, increasing Pr content 

does not increase BET surface area but decreases it, indicating that NO oxidation activity 

is not as dependent upon surface area as generally reported for other catalysts. However, 

H2-TPR indicated that increasing Pr content lowers the reduction temperatures of the 

catalyst, further supporting the high activity of Pr toward NO oxidation. Additionally, 

TG-MS data indicated that pure CeO2 was not able to release O2 under inert conditions, 

whereas Ce-Pr mixed oxides were. Upon performing CO2-TPD it was observed that 

increasing Pr content increased surface carbonates, however, the carbonates did not affect 

NO oxidation ability. 

 

2.3. Non-rare earth doped ceria-based PNAs. 

Manganese-based catalysts have been studied as NOx adsorbers due to their 

excellent NO oxidation activity at low temperatures. Fe-Mn based catalysts were 

evaluated for NO adsorption at room temperature by Yang et al. [37]. Fe-Mn-Ti and Fe-

Mn-Zr oxides were found to be the best storage materials with a maximum NO storage 

capacity of 42-45 mg NO/g catalyst at 25 °C. Upon evaluating the effect of different 
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gases in the feed, it was observed that water greatly hinders NO storage, while SO2 and 

CO2 only slightly decreased storage. It was concluded that the high NO storage on the Fe 

mixed oxides can be attributed to their high surface areas as well as their ability to 

oxidize NO to NO2. In a later study by Yoshida et al., Cu-Mn based catalysts were used 

for NOx reduction by non-thermal plasma (NTP) and temperature swing adsorption 

(TSA) of engine NOx emissions fueled by waste heat from the engine [38]. TSA 

generates a mixture of N2 and NOx that is reduced by NTP. Improved performance was 

achieved by reinjecting the gas treated by NTP into the engine intake. When the catalyst 

was incorporated in the aftertreatment system, the NTP energy efficiency was higher 

(200 g NO2/kwh), as was the NOx conversion.  

Sun et al. [39] found that incorporating Ce into Mn-Sn catalysts improved NOx 

storage at 100 °C, Mn0.4Sn0.5Ce0.1 exhibiting the best NOx storage capacity. Through 

DRIFTS and other experimentation Sun et al. were able to conclude that the added CeO2 

plays two important roles during NOx storage. The first is its ability to oxidize NO to 

NO2. XPS results indicated the presence of increased defect concentrations in the tri-

metallic system compared to the bimetallic system, explaining the trimetallic system’s 

better oxidation activity.  Secondly, through NO- and NO2-TPD as well as DRIFTS 

measurements, NOx storage was found to be higher with increasing Sn/Ce interactions. 

This was attributed to the trimetallic system’s ability to expose more NOx storage sites on 

the surface. 

Mixed metal oxide catalysts of the type Ce-Co-Cr-O were evaluated for NO 

oxidation capabilities by Cao et al. [40] They observed a correlation between NO 

oxidation and Co3+ concentration (Figure 2.6). XRD and BET analysis indicated little 

change in the structure of the catalysts even with varying Co/Cr concentrations and 

doping with Ce. Higher Ce concentrations resulted in better dispersion of Co, thereby 

increasing the Co/Cr interactions (e.g., benefiting the interaction of Ce with Co and Cr), 

which should benefit adsorption of reactant gases (leading to higher catalytic activity) 

due to the redox properties of Ce. In doing so NO oxidation was greatly enhanced, thus 

increasing NOx storage. However, Cr-rich samples possessed low surface areas and hence 

comparatively lower NOx storage.  
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Figure 2.6. How differing ratios of Ce-Co-Cr affect NO conversion. Source: Asia Pacific 

Engineering [40]. Reprinted with permission. 

 

 Theis et al. [41] reported the use of Pt and Pd promoted catalysts (obtained from 

commercial catalyst suppliers) as low temperature NOx adsorbers (LTNAs). In their 

studies (which used aged catalysts) it was found that Pt- only and Pt-rich (Pt/Pd) catalysts 

exhibited low NOx storage and low NO oxidation activity during simulated cold starts. 

Following a rich pretreatment, Pt-only formulations exhibited better NOx storage 

attributed to improved NO oxidation activity. Pd-rich samples had high ethene and NOx 

storage during cold starts after aging. Additionally, most of the stored NOx was released 

as NO, suggesting NOx storage occurred as nitrites. Nitrite storage at low temperatures 

for Pd-rich samples resulted in improved robustness to SO2 poisoning as opposed to NOx 

stored as nitrates due to poisoning of nitrate storage sites. Upon NO adsorption-

desorption cycling, Pd-rich LTNAs lost NOx storage efficiency with each subsequent 

cycle due to the gradual reduction of Pd (present as PdO) by NO and ethene to form NO2 

and CO at low temperatures. CH4 oxidation tests confirmed that Pd was partially reduced 

after only 2 transient tests.  

In another recent study by researchers at Ford Motor Company, Pt and Pd on 

Al2O3 or ceria-zirconia (CZO) washcoats were evaluated for low temperature NOx 

storage and desorption under lean conditions [42]. NOx storage and release was studied in 

a reactor simulating the FTP-75 followed by US06 test cycle on a Ford Super Duty diesel 

truck. After aging at 700 °C under lean conditions, NO storage below 100 °C was greatly 

hindered on Pd/CZO by the presence of water in the feed. However, in the presence of 
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ethene with and without water, NOx storage improved due to beneficial interactions 

between ethene and NO during the cold start, although not through HC-SCR reactions 

(which are observed at higher temperatures). When reduced under rich conditions at 350 

°C, Pd/CZO showed higher NOx storage during the first cycle of the simulated FTP-75 

and US06 tests, but lower NOx storage on the subsequent cycles due to incomplete 

desorption of NOx during the US06 test. While storage gradually improved during 

cycling of Pd/CZO under lean conditions, the same behavior was not observed for 

Pd/Al2O3, indicating that Ce plays an important role in NOx storage. Reducing Pd/Al2O3 

resulted in higher NOx storage, similar to Pd/CZO, indicating that reduced Pd is an 

effective NOx storage component. In the case of Pt/Al2O3, water and ethene were found 

to severely hinder NOx storage and high concentrations of NO2 and N2O were formed. 

Rich reduction improved the catalyst’s tolerance to water and improved NO oxidation 

activity, although performance was still hindered by ethene. Pt/CZO produced lower 

amounts of NO2 and N2O after reduction and oxidation compared to Pt/Al2O3, but more 

than the Pd/CZO counterpart. Overall, Pd/CZO provided the best performance for NOx 

storage, while most of the NOx was released by 400 °C, and low NO2 and N2O formation 

was observed.   

 

2.4. Aluminum-based PNAs. 

Ji et al. [43] recently studied Pt/Al2O3 and Pt/La-Al2O3 for PNA use. They found 

that the addition of 1 wt.% La to Al2O3 increased NOx storage through the creation of 

new NOx storage sites. Although NOx storage was increased with the addition of La, most 

of the stored NOx was released above 250 °C compared to the non-La containing 

counterpart. Increased high temperature desorption with the addition of La is attributed to 

higher nitrate concentrations as confirmed by DRIFTS. Upon cycling of the catalysts, 

decreases in NOx storage and low temperature release (below 250 °C) continued with 

each subsequent cycle (La-doped Al2O3 being affected more). DRIFTS spectra indicated 

that the majority of NOx was stored on the Al2O3 support when pretreated under lean 

conditions. However, when pretreated under rich conditions NOx storage increased and 

the presence of NOx stored on Pt was observed.  
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Millo et al. [44] reported the use of an Advanced-Diesel Oxidation Catalyst (A-

DOC) to store NOx at low temperatures for the NEDC test (New European Drive Cycle, 

the European equivalent of the FTP-75 for passenger cars). Fresh catalysts exhibited high 

NOx storage, but aging under lean conditions significantly decreased NOx storage. Most 

of the stored NOx was released at temperatures above 200 °C, which is the minimum 

operating temperature for SCR catalysts. Upon analysis of NO/NO2 concentrations at low 

temperatures downstream of the DPF (e.g., at the inlet of the SCR catalyst), NO 

conversion over the closely coupled A-DOC was found to be negative, while NO2 

conversion was high, indicating that most NO2 was converted to NO.  Therefore, 

NO2/NOx ratios entering the SCR were low throughout the entire EUDC test, thus 

hindering high NOx conversions. Evidently, the use of A-DOC with a downstream SCR 

catalyst must be optimized because high NO2 concentrations are needed to facilitate SCR 

reactions at low temperatures. 

 Researchers at Toyota [45] explored the use of Ag on Al2O3 and TiO2 for NOx 

Storage Reduction (NSR). They found that NOx could be stored at 150 °C on Ag/Al2O3, 

temperatures where traditional NSR catalysts lose activity. By adding TiO2 to Ag/Al2O3, 

storage at 150 °C was improved and required desulfation temperatures were lowered to 

600 °C or less due to the presence of titania’s acid sites which suppress the support’s 

basicity and therefore decrease sulfur poisoning while increasing the Ag dispersion. To 

further improve the performance of Ag/TiO2/Al2O3, a small amount of palladium was 

added. In doing so, NOx release under rich conditions was greatly increased. The 

palladium promoted catalyst was also able to release NOx at 250 °C or lower. Building on 

the work by Toyota, researchers at General Motors evaluated the use of silver in place of 

platinum on Al2O3 [46-47]. Ren et al. found that the use of Ag resulted in higher NO to 

NO2 conversions below 200 °C compared to supplier DOCs. However, Ag requires the 

presence of H2 for NOx storage to keep Ag in its metallic state. Moreover, complete 

thermal desorption of stored NOx was not achieved until temperatures in excess of 400  

°C were reached. A minimum H2:NO ratio of 5 was found to maximize NO to NO2 

conversion when varying H2 and NO ratios. A silver loading of 1.3 wt% resulted in the 

best NOx storage, Figure 2.7. 
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Figure 2.7. The use of Ag promoted catalysts resulted in NO to NO2 oxidation at lower 

temperatures compared to a supplier DOC catalyst. Source: Cat. Today. [46] Reprinted 

with permission. 

 

While the presence of H2 is needed to ensure efficient NO oxidation and higher 

temperatures are needed to completely regenerate the catalyst, N2O formation was not 

observed over any of the catalysts studied. However, Ag is subject to deactivation by 

sulfur poisoning and poor recovery of catalytic activity after desulfation. Moreover, while 

promising as an upstream PNA, Ag/Al2O3 will not be able to replace supplier DOCs due 

to poor CO and HC oxidation activity. 

Researchers at Honda [48] have found that Pd/ZSM-5, as a NOx-trap Three Way 

Catalyst (N-TWC), has the ability to reduce HC and NOx emissions which have proven to 

be problematic for TWC catalysts. Pd/ZSM-5 exhibited NOx storage capability at room 

temperature and during cold starts NOx emissions were reduced from 200 ppm to under 

50 ppm. The catalyst is believed to store NO as a nitrosyl group (Pd-NO), and also stores 

27



28	
	

HCs during cold starts. As the catalyst heats up, CO and HC in the exhaust (or adsorbed 

HC) are used to reduce stored NOx (Figure 2.8).  

 

 
Figure 2.8. Adsorption and reduction of NO on Pd/ZSM-5. Source: SAE 2012-01-1002 

[48]. Reprinted with permission. 

 

2.5. NOx Storage and Release Mechanisms. 

Although NOx is generally stored in the form of nitrites and nitrates, the details of 

the specific mechanisms of adsorption and desorption are not well known. However, 

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) has been used in 

some cases to gain insight into NOx storage mechanisms.  A study by Luo and co-

workers established different NOx storage routes for Al2O3-and CeO2-containing catalysts 

during the adsorption of NO with O2 at 200 °C. The appearance of nitrite and nitrate 

bands was observed for Pt/Al2O3 and Pt/CeO2/Al2O3, while nitrite bands first appeared 

for Pt/CeO2 with the appearance of nitrate bands over time. DRIFTS studies conducted 

during temperature programmed desorption (TPD) saw a decrease in intensity of nitrite 

bands with increasing temperature for all catalysts [49].  

A DRIFTS studied conducted by Philipp et al. for unpromoted CeO2 found 

similar results to Luo et. al. Experiments involving only the adsorption of NO resulted in 

nitrite bands and no nitrate bands. However, when NO was adsorbed in the presence of 

O2 a bridged nitrate band appeared over time suggesting that the NO is adsorbed and then 

oxidized [50]. A 2007 study published by Symalla et al. for CeO2 and BaO/CeO2 found 

storage to be through a nitrite route, which is oxidized to form nitrates when oxygen is 

present. It was also found that oxidation to form nitrates decreases with increasing 
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amounts of BaO [51]. In summary, all three studies suggest that NO is stored through a 

nitrite route in CeO2-containing catalysts. These studies also suggest that the addition of 

different supports and promoters to the CeO2 can affect storage mechanisms.  
Finally, when Pd/CeO2-ZrO2-Pr2O3 was exposed under stoichiometric CO + HC + 

NOx + O2 reaction conditions, Yang et al. [52] observed the formation of nitrite surface 

species on ceria-rich catalysts at 50 °C, while zirconia-rich catalysts favored the 

formation of nitrates. Higher Zr content afforded a higher concentration of active oxygen 

species, facilitating the oxidation of nitrites to nitrates and explaining why Zr-rich 

catalysts favor NOx storage as nitrates at 50 °C. 

Different authors have suggested different mechanisms for nitrite and nitrate 

formation on CeO2 and CeO2-ZrO2 [53-58].The occurence of nitrite storage has been 

suggested to proceed through interactions of NO with Ce4+ sites to form nitrites (-NO2
-). 

Oxygen vacancies have also been found to play an important role in NOx storage. Nitrites 

can form by adsorption of NO onto an oxygen vacancy site, which is then oxidized 

through the interaction of neighboring lattice oxygens. Nitrates have been found to form 

through similar methods. Nitrite and nitrate formation on CeO2-containing catalysts will 

be discussed in more detail in Chapter 4.    

 

2.6. Summary.  

Diesel emission control is advancing to meet upcoming Tier 3 and LEVIII 

standards by focusing on the mitigation of cold start emissions. To meet more stringent 

emission control targets researchers are focusing on the type of precious metals used, i.e., 

the use of Pt which promotes the formation of nitrates (that require higher temperatures to 

be removed) versus the use of Pd that promotes the formation of nitrites requiring lower 

temperatures for removal compared to nitrates. NOx storage materials are also a focus of 

research. Doping CeO2 with other rare earth metals has been found to increase NOx 

storage at low temperatures (below 350 °C) by increasing lattice oxygen vacancies, 

doping with Pr appearing to be particularly promising for low temperature operations. 

Palladium promoted zeolites have also been found to be promising for PNA applications. 
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Chapter 3. Electron Microscopy Study of LNT and SCR catalysts. 
Note—This chapter was preprinted from: 

Wang, J.; Ji, Y.,; Jacobs, G.; Jones, S.; Kim, D.J.; Crocker, M. Effect of aging on NOx 

reduction in coupled LNT-SCR systems. Appl. Catal. B: Env. 2014, 148-149, 51-61. 

This article appears in this dissertation with permission from Elsevier.  

Note: Catalyst aging (description in section 3.2.1) was not performed by the author. 

 

3.1. Introduction 

While lean burn engines are more efficient than traditional stoichiometric engines, 

affording better fuel economy and producing lower CO emissions, they produce larger 

NOx emissions. Two approaches have been developed commercially to reduce NOx 

emissions: Lean NOx Trap (LNT) and Selective Catalytic Reduction (SCR) catalysts. 

LNT catalysts are designed to store NOx under lean conditions, the stored NOx being 

reduced to N2 by periodic operation under rich conditions. SCR catalysts effectively 

reduce NOx to N2 with NH3 (from an external source) in the presence of excess O2. 

Coupling LNT and SCR catalysts has been found to improve NOx removal and afford 

lower NH3 slip (generated over the LNT during rich purging) compared to the use of a 

LNT catalyst alone because the SCR catalyst is able to reduce NOx slip using the NH3. 

Moreover, when using a commercial Cu-chabazite catalyst as the SCR component it has 

been shown that a second NOx reduction pathway can operate. In this second reduction 

pathway, HCs that slip through the LNT catalyst during the rich phase of cycling can act 

as NOx reductants over the Cu-CHA (chabazite) catalyst [1-2]. The addition of the SCR 

catalyst also helps to reduce N2O emissions formed over the LNT catalyst [3]. Given that 

the SCR catalyst can contribute to the overall NOx reduction achieved by the system, a 

lower PGM loading can be used on the LNT to reduce NOx when coupled with a SCR 

catalyst, lowering the overall cost [2, 4]. 

Commercially available LNT catalysts have exhibited durability problems. By 

coupling LNT and SCR catalysts the durability of the system should be enhanced 

compared to the LNT-only case since the SCR catalyst can compensate, to a degree, for 

the decreased NOx conversion over the LNT. Deactivation of LNT catalysts has been 

30



31	
	

found to occur through two routes, the first being the sintering of the PGM resulting in 

phase segregation of the PGM and the NOx storage component (in this case Ba). The 

second deactivation route occurs through the accumulation of sulfur in the NOx storage 

phase that is not completely removed during periodic desulfation [5-8]. In contrast, Cu-

chabazite SCR catalysts are generally found to have high durability with respect to 

hydrothermal aging [9-10]. However, deactivation of Cu-chabazite catalysts can occur at 

high temperatures through dealumination of the zeolite, leading to the collapse of the 

zeolite framework, as well as Cu sintering [11].  

Seo et al. [12] evaluated the de-NOx performance of an LNT-SCR system after 

hydrothermal aging and sulfur poisoning. NOx conversion was found to be lower after 

aging for both the LNT only and LNT-SCR systems. However, the LNT-SCR system 

displayed increased NOx conversion of 10-30% compared to only the LNT. Combining 

the LNT and SCR catalysts also resulted in a decrease in NH3 emissions due to the 

consumption of NH3 (produced over the LNT) downstream by the SCR catalyst (via 

reaction with NOx). Although the LNT-SCR system did not recover its initial NOx 

conversion level after sulfur poisoning, the system was considered promising due to 

decreases in NH3 and N2O emissions compared to the LNT only. Researchers at Ford 

[13-14] reported numerous advantages of using Fe-zeolite or Cu-zeolite catalysts as the 

SCR component in LNT-SCR systems. The use of ion exchanged zeolites as the SCR 

catalyst was found to compensate for the decreased NOx reduction activity of the LNT 

after aging. It was also reported that lower desulfation temperatures were achieved and 

lower PGM loadings could be used for the LNT catalyst. Alternate NOx reduction 

pathways utilizing adsorbed HC species in place of NH3 were suggested and improved 

HC oxidation efficiency due to the SCR catalyst was reported.   

Ford also evaluated the addition of a Cu-CHA (chabazite) SCR catalyst to an 

LNT catalysts for HC conversion after aging [15]. The Cu-CHA catalyst converts 

significant amounts of HC by utilizing stored HC species during rich regeneration of the 

LNT catalyst. Stored HCs are released or react over the SCR catalyst during subsequent 

lean operation. The longer the SCR catalyst was aged, the lower the ability of the catalyst 

to store HCs during rich operation. However, absolute NOx and NMHC conversions over 

the Cu-CHA catalyst are increased when the upstream LNT catalyst is heavily aged due 
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to the increases HC and NOx slip from the LNT. Although it is not beneficial for fuel 

economy, the addition of the SCR catalyst significantly increases NOx and NMHC 

conversions compared to only the LNT catalyst. Placing the Cu-CHA catalyst both 

upstream and downstream of the LNT catalyst increased NMHC conversions. It is found 

to be most effective when placed upstream of the LNT, however, NOx conversion is 

lowered in this configuration. This is due to either the upstream SCR catalyst delaying 

warm up of the LNT or the SCR withholding HCs necessary for the LNT to be 

effectively regenerated under rich conditions.  

  The following study utilizes transmission electron microscopy (TEM) and 

scanning transmission electron microscopy (STEM) to understand the effect aging has on 

the LNT-SCR system. The LNT (Pt/BaO/CeO2) and SCR catalysts (Cu-chabazite) were 

provided by BASF. The aging protocol employed for these catalysts followed that 

disclosed in a recent publication (reference 18).  

 

3.2. Experimental. 

3.2.1. Aging protocol. 

 Catalyst aging was performed on a synthetic gas bench using a rapid aging 

protocol which has been detailed in earlier papers [16-17]. The LNT and SCR catalysts 

were placed in the same reactor, the SCR catalyst being placed downstream of the LNT. 

Each aging cycle was composed of three modes: sulfation, desulfation, and simulated 

DPF regeneration, the corresponding feed gas compositions being shown in Table 3.1. 

Fig. 3.1 summarizes the protocol used for the accelerated catalyst aging.  

 

Table 3.1. Composition of feed gas used for LNT-SCR system aging. Source: Appl. 

Catal. B. Env. Reprinted with Permission. 

Parameter Sulfation Desulfation DPF 
Regeneration Lean Rich Lean Rich 

Duration (s) 60 5 5 15 1800 
Temperature (°C) 300 300 700 700 650 

NO (ppm) 300 300 300 300 0 
O2 (%) 8 0 8 0 8 
CO (%) -- 5 0 4 0 
H2 (%) 0 1.3 0 1.3 0 
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SO2 (ppm) 45 45 0 0 0 
CO2 (%) 5 5 5 5 5 
H2O (%) 5 5 5 5 5 
N2 (%) Balance Balance Balance Balance Balance 

Space velocity (h-1) 60,000 60,000 60,000 60,000 60,000 
 

 
Figure 3.1. Summary of protocol used for accelerated catalyst aging. Source: Appl. Catal. 

B. Reprinted with Permission. 

 

As described previously [17], the maximum mid-bed temperature experienced by the 

LNT catalyst occurs during the desulfation mode of the aging cycle and typically 

corresponds to 770 ± 10 °C, this being higher than the 700 °C set-point due to the 

exotherm created by lean-rich cycling. This is illustrated in Figure 3.2, which depicts 

LNT catalyst inlet and mid-bed temperatures for one aging cycle. 
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Figure 3.2. LNT catalyst inlet and mid-bed temperatures during aging (one aging cycle 

depicted). Source: Appl. Catal. B. Env. Reprinted with permission. 

 

 The corresponding maximum temperature experienced by the SCR catalyst downstream 

of the LNT was 750 ± 10 °C (inlet temperature). Depending on actual fuel sulfur levels, 

one aging cycle is estimated to be the equivalent to 1000-1500 miles of road aging. In 

total, 50 cycles were used for the aging, requiring a total aging time of ca. 100 hours. At 

the end of each aging run a final desulfation was performed under constant rich 

conditions, corresponding to 2% H2 in the presence of 5% CO2 and 5% H2O at 750 °C for 

10 min, in order to remove as much residual sulfur as possible.  

 

3.2.2. Microscopy Methods.  

Materials for electron microscopy analysis (TEM, STEM, and EDS) were 

collected by scraping a small amount of washcoat from the catalyst samples and 

supporting the material on TEM grids obtained from Electron Microscopy Sciences. 

TEM and STEM investigations were conducted using a field emission JEOL 2010F 
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STEM outfitted with a URP pole piece, GATAN 2000 GIF, GATAN DigiScann II, 

Fischione HAADF STEM detector, Oxford energy-dispersive X-ray detector and 

EmiSpec EsVision software. STEM measurements were acquired for fresh and aged 

samples using a high-resolution probe at 2 Å. For the SCR catalyst samples, nickel grids 

purchased from Electron Microscopy Sciences (EMS) were used in addition to the copper 

grids.  

 

3.3. Results and Discussion. 

 Considering first the LNT catalyst samples, the alumina support appeared as spear 

shaped agglomerates in both fresh and aged LNT samples as displayed in Figure 3.3. 

Platinum particles appeared within the alumina support regions of the sample, measuring 

2 nm or smaller in size in both fresh and aged samples.  Platinum density appeared to be 

higher in barium rich areas. The size of the platinum particles was found to increase in 

aged samples (ranging from 13 nm to 27 nm in size—see figure A.2.2.), as confirmed by 

EDS in Figure 3.4, suggesting that Pt particle sintering occurred during aging. 
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Figure 3.3. STEM of fresh LNT catalyst showing rod-like structures of alumina. 

 

Al2O3 
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Figure 3.4. EDS line-scan on aged LNT catalyst indicating the presence of sulfur on the 

three sintered platinum particles in the upper right corner of the aged STEM image. 

Source: Appl. Catal. B. Env. Reprinted with permission. 

 

 In Figure 3.5, EDS also indicated the presence of sulfur associated with platinum 

particles in aged samples. Note that heavier supports appeared brighter in coloration than 

lighter supports, i.e. the CeO2 support appeared brighter than the BaO, which appeared 

brighter than the Al2O3 support, as pictured in Figure 3.5.  
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Figure 3.5. STEM image of aged LNT catalyst showing small platinum particles on the 

alumina support, while platinum density increases on barium rich areas. Source: Appl. 

Catal. B. Env. Reprinted with permission. 
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Figure 3.6. STEM image of aged LNT catalyst showing the different supports can be 

distinguished from one another in STEM because of the differences in atomic mass of 

Ce, Ba, and Al. a) CeO2 appears much brighter in comparison to Ba. b) Al2O3 appears 

much darker than supported Ba. Source: Appl. Catal. B. Env. Reprinted with permission. 

 

 Structural changes in the fresh and aged SCR catalyst were observed through 

TEM. The aged sample showed the presence of structures with less well-defined edges 

(Figure 3.7), while the fresh sample showed the presence of structures with generally 

well-defined edges.  Though this suggests loss of crystallinity after aging, this was not 

confirmed through powder x-ray diffraction (XRD). This is potentially due to the fact that 

XRD is a measure of the crystallinity of the bulk sample (indicating that the sample 

maintained a large degree of crystallinity), while TEM analyzes only a small amount of 

sample. The presence of Zr was also observed in both fresh and aged catalysts as 

confirmed by EDS in Figure 3.8. This suggests that the manufacturer added ZrO2 to the 

washcoat, possibly as a binder and/or diluent. TEM also indicated the presence of CuO 

structures on the zeolite surface after aging [18]. This occurrence is consistent with 

observations published in Catalysis Today by Schmieg and coworkers on Cu-SZM-13 

after aging. It was reported that Cu2+ originally located in the zeolite migrated to the outer 

zeolite surface and underwent agglomeration to form CuO during aging [19].   
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Figure 3.7. TEM images of the fresh SCR catalyst were found to have well-defined 

structures (Figure a). Aged structures exhibit less well-defined edges and contain Cu 

nanoparticles (highlighted, Figure b). Source: Appl. Catal. B. Env. Reprinted with 

permission. 

 
Figure 3.8. EDS spectra indicated the presence of Zr in the fresh SCR catalyst as well as 

the aged (not pictured). TEM inset is of the area on which EDS analysis was performed. 
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3.4. Conclusions. 

 Analysis of LNT and SCR catalysts subjected to simulated road aging revealed, in 

the case of the LNT, two main physico-chemical changes which contributed to catalyst 

deactivation: the accumulation of sulfur associated with the Pt, and sintering of the 

precious metals, resulting in decreased contact between the Pt and Ba phases. In the case 

of the SCR catalyst, upon aging some fraction of the Cu2+ species initially located in the 

zeolite migrated to the outer surface and underwent agglomeration to form CuO 

nanoparticles, although the catalyst maintained a high degree of activity in the NH3-SCR 

reaction (data not shown). The appearance of Zr was observed in both fresh and aged 

SCR catalysts, with no apparent change in structure after aging.  
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Chapter 4. Ceria-based Catalysts for Low-Temperature NOx Storage and Release 
Note—This chapter was reprinted from: 

Jones, S.; Ji, Y.; Crocker, M. Ceria-based Catalysts for Low-Temperature NOx Storage 

and Release. Catalysis Letters. 2015, 146, 909-917. 

This article appears in this dissertation with permission from Elsevier. 

 

4.1. Introduction. 

If automotive manufacturers are to meet future emission standards, reducing cold 

start emissions is imperative. This is particularly true for lean burn engines, for which the 

mitigation of NOx emissions is especially challenging. Current technology for NOx 

mitigation in lean burn systems is based on the use of Lean NOx Trap (LNT) and 

Selective Catalytic Reduction (SCR) catalysts that display limited activity below 200 °C. 

Moreover, in the case of urea-SCR, the slow rate of urea decomposition limits the ability 

to deploy this technology at low operating temperatures. Urea decomposition occurs in 

two steps [1-2]: in the first, the urea releases one equivalent of NH3 and one equivalent of 

isocyanic acid (HNCO); the latter is then hydrolyzed to NH3 and CO2. However, at low 

temperatures deposits can accumulate on the catalyst, in the form of undecomposed urea, 

or compounds (such as melamine complexes) which result from side reactions of the 

HNCO [3]. Given that the accumulation of these compounds can poison the SCR catalyst 

at low temperatures, in practice urea injection is typically ramped in the temperature 

range ~150-200 ºC, i.e., sub-stoichiometric amounts of urea are injected (to minimize 

catalyst poisoning at the expense of unconverted NOx), stoichiometric urea injection 

beginning at ca. 200 ºC [4]. This, in turn, limits the achievable NOx conversion.  

To address this problem, the use of passive NOx adsorbers (PNAs) has been 

suggested as a solution for the NOx slip emitted during cold starts [5]. The use of a 

passive NOx adsorber (PNA) coupled with an SCR catalyst was first mentioned by Ford 

Motor Company in a 2001 patent in which a PNA consisting of γ-Al2O3 promoted with 

platinum was claimed [6]. Ji et al. [7] recently studied Pt/Al2O3 and Pt/La-Al2O3 for PNA 

applications, finding that the addition of 1 wt% La to Al2O3 resulted in the creation of 

new NOx storage sites and improved NOx storage efficiency. However, according to TPD 

measurements, Pt/La-Al2O3 exhibited slightly lower NOx desorption efficiency below 
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250 ºC than Pt/Al2O3. DRIFTS measurements indicated that during NOx-TPD, nitrites 

and weakly bound nitrate species were initially removed from the surface of Pt/Al2O3 and 

Pt/La-Al2O3, NOx desorption at higher temperatures (>250 ºC) being mainly associated 

with nitrate decomposition. The use of Ag/Al2O3 for low temperature NOx storage has 

also been reported [8,9], albeit the presence of H2 is required for NO oxidation and 

adsorption below 200 °C. In a recent report by Honda, the use of a NOx trap three-way 

catalyst (N-TWC) consisting of Pd on ZSM-5 was able to reduce NOx and hydrocarbon 

emissions during cold starts which has proven to be a problem for traditional TWC 

catalysts [10].    

Ceria and ceria-containing systems also represent interesting candidates for PNA 

applications given that anionic vacancies in the crystal lattice [11-14] have been found to 

facilitate NOx adsorption [15-17]. Information concerning the mechanism of NOx storage 

on ceria has been provided by the results of several studies employing Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) measurements. Philipp 

et al. found that the adsorption of O2 and NO on bare ceria at 50 °C resulted in the 

adsorption of NO as a nitrite which subsequently underwent oxidation to nitrate [18]. In 

the case of NO/O2 adsorption on Pt/CeO2, Ji et al. [19] observed the formation of nitrites 

at 25 °C, while at 200 °C nitrates were formed almost exclusively. Luo et al. [20] also 

studied NO/O2 adsorption on Pt/CeO2 in the presence of O2 and concluded that NOx is 

initially stored as nitrite. In a similar vein, a 2012 patent claims the use of Pd supported 

on CeO2 as a PNA [21] and indicates that NO does not need to be oxidized to NO2 for 

storage to occur. Subsequently, Chen et al. [22] reported that a diesel Cold Start Catalyst 

(dCSCTM) incorporating the PNA from the aforementioned patent (together with a 

hydrocarbon trap), has the ability to store NOx as a nitrite, as opposed to nitrate, thereby 

making it easier to regenerate the NOx storage function of the catalyst. Recently, Yang et 

al. [23] reported DRIFTS data for Pd/CeO2-ZrO2-Pr2O3 catalysts exposed to 

stoichiometric CO+HC+NOx+O2 reaction conditions. For ceria-rich catalysts, nitrites 

were the main surface species formed at 50 ºC, while zirconia-rich compositions favored 

the formation of nitrates; this was attributed to the increased concentration of active 

oxygen species at higher Zr content, facilitating nitrite oxidation to nitrate.    
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Herein we report a comparison of 1 wt% Pt and Pd supported on ceria for PNA 

use. Although ceria is typically stabilized with other metals for automotive applications 

[24], in this study we used an unstabilized ceria support in order to simplify data 

interpretation. The NOx storage and desorption efficiencies of the catalysts were 

evaluated at several temperatures, in both the presence and absence of CO2 and H2O, and 

the ability of the catalysts to store and release NOx upon repeated adsorption-desorption 

cycling was ascertained. DRIFTS measurements were utilized to understand the surface 

species present during NOx adsorption and desorption.  

 
4.2. Experimental Methods. 

4.2.1. Catalyst Preparation.  

CeO2 was prepared by precipitation from aqueous Ce(NO3)3 [25] and calcined in 

air at 500 °C for 3 h (Figure A.2.3.).  1 wt% Pt or Pd was loaded onto the CeO2 by means 

of incipient wetness impregnation using aqueous solutions of [Pt(NH3)4](NO3)2 or 

Pd(NO3)2∗xH2O. The resulting samples were calcined at 500 °C for 3 h in a muffle 

furnace.  

 

4.2.2. Catalyst Characterization. 

X-ray powder diffraction analysis was conducted on a Phillips X’Pert 

diffractometer using Cu-Ka radiation (λ=1.540598 Å). Diffractograms were recorded 

between 5° and 90° (2θ) with a step size of 0.02°. Brunauer-Emmett-Teller (BET) 

surface area and pore volume measurements were performed by nitrogen physisorption at 

-196 °C using a Micromeritics Tri-Star 3000 system. Catalyst samples were outgassed 

overnight at 160 °C under vacuum prior to measurements.  

Pt and Pd dispersions were determined by means of pulsed CO chemisorption at -

78 °C using a Micromeritics AutoChem II Analyzer. Samples (250 mg) were loaded into 

the reactor and reduced in 10% H2/Ar at 300 °C for 10 min. In each case the sample was 

then purged with Ar for 20 min at the same temperature to remove residual H2 and then 

cooled to -78 °C prior to CO chemisorption. During the measurements 100 µl of CO was 

pulsed into the reactor every 2 min, the CO signal being monitored with a thermal 

conductivity detector (TCD). CO pulsing was terminated when the TCD signal reached a 
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constant value, i.e., the precious metal sites were saturated with CO. Assuming a 1:1 ratio 

of CO to surface Pt and Pd atoms, the metal dispersion was calculated based on the 

amount of CO adsorbed. The Pt dispersion was also measured for Pt/CeO2 using H2 

chemisorption at -78 °C, the value obtained (42%) showing good agreement with that 

obtained by CO chemisorption at -78 °C (46%).   

Materials for electron microscopy were supported on Cu grids purchased from 

Electron Microscopy Sciences. Transmission electron microscopy (TEM) and scanning 

transmission electron microscopy (STEM) studies were conducted using a field emission 

JEOL 2010F with a URP pole piece, GATAN 200 GIF, GATAN DigiScann II, Fischione 

HAADF STEM detector, Oxford energy-dispersive X-ray detector and EmiSpec 

EsVision software. STEM measurements were acquired for 1%Pd/CeO2 using a high-

resolution probe at 2 Å. 

  

4.2.3. NOx storage and desorption measurements. 

NOx storage and desorption efficiencies of the catalysts were determined in a 

quartz microreactor with a Pfeiffer Thermostar GSD301 mass spectrometer as the 

detector. Prior to measurements samples (170 mg) were pretreated at 550 °C for 10 min 

under a flow of 5% O2 in He (120 sccm) and then cooled to room temperature under 

flowing Ar. Samples were then equilibrated under a flow of 3.5% H2O, 5.0% CO2 and 

5% O2 (bal. He, 120 sccm) at the designated storage temperature; typically, this took 15 

min, at which point the feed and effluent H2O and CO2 concentrations were equivalent. 

NOx storage was initiated by adding 300 ppm NO to the feed. Storage experiments were 

conducted at 80 °C, 120 °C and 160 °C using a 5 min storage time. In all cases, a total 

flow rate of 120 sccm was used, corresponding to a gas hourly space velocity (GHSV) of 

ca. 30,000 h-1. At the completion of the storage period the feed gas was switched to 

bypass mode and the NO flow was switched off. When the NO concentration had 

dropped to zero, the gas was re-directed to the reactor and temperature programmed 

desorption (TPD) was carried out to study NOx desorption behavior using a ramp rate of 

10 °C/min from the storage temperature up to 500 °C.  

To understand the effect of multiple storage-desorption cycles, cycling 

experiments were also performed. Catalyst pretreatment and NOx storage were performed 
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as described above (using a storage temperature of 120 °C), after which TPD was 

performed up to 350 °C at a ramp of 10 °C/min under the same lean feed gas with the 

exclusion of NO. Subsequently, the temperature was lowered to 120 °C for the next NOx 

adsorption-desorption cycle. A total of five cycles were performed for both Pt/CeO2 and 

Pd/CeO2.  

NOx storage efficiency (hereafter denoted as NSE) is defined as the percentage of 

NOx passed over the catalyst that is stored, while NOx desorption efficiency (hereafter 

denoted as NDE) is defined as the percentage of stored NOx desorbed during TPD, i.e.:  

 

NSE = 1−
!"# !"# !"!

!

( !" !"!
!

x 100% 

 

NDE = 
!"# !"# !"! !

! !"

!"# ! ! ! !" !" 
x 100% 

 

in which t is the NOx storage time; [NO]in is the inlet NOx concentration during NOx 

storage; [NOx]out is the outlet NOx concentration during either NOx storage or the 

subsequent NOx desorption period; t(To) is the start time of NOx-TPD corresponding to 

the NOx storage temperature before the temperature is raised; t(T) is the end time of NOx-

TPD corresponding to the desired NOx desorption temperature.  

 

4.2.4. DRIFTS measurements. 

DRIFTS measurements were performed to monitor the surface species involved in 

NOx adsorption and desorption. Measurements were performed using a Nicolet 6700 IR 

spectrometer equipped with a Harrick Praying Mantis accessory and MCT detector. The 

reaction cell was sealed with a dome equipped with two ZnSe windows and one SiO2 

observation window. The temperature of the reactor cell was controlled and monitored by 

a K-type thermocouple placed beneath the reaction chamber. For each DRIFT spectrum 

an average of 115 scans was collected (requiring ca. 1 min) with a resolution of 4 cm-1. 

The spectrometer as well as the outside of the reaction cell were continuously purged 

with dry nitrogen to avoid diffusion of air into the system. Catalyst samples (~50 mg) 
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were pretreated in situ in 5% O2/Ar (120 sccm) at 500 °C for 1 h in order to remove 

moisture and carbonates, after which background spectra were collected (using the same 

feed gas) in the range 500-100 °C at intervals of 50 °C. NOx storage was carried out at 

100 °C for 30 min using a feed consisting of 5% O2/Ar and 300 ppm NO (120 sccm). 

During NOx storage, spectra were collected as a function of time. After 30 min of NOx 

storage, TPD was performed in flowing 5% O2/Ar flow (120 sccm), the temperature 

being raised from 100 °C to 500 °C at a rate of 10 °C/min. DRIFT spectra were recorded 

during TPD at intervals of 50 °C. Absorbance spectra were obtained by subtracting 

background spectra from the spectra collected during NOx storage and desorption.  

 

4.3. Results and Discussion. 

4.3.1. Sample characterization. 

Analytical data for the two PNA samples prepared in this work are collected in 

Table 1. After calcination at 500 °C the powder X-ray diffractogram of the CeO2 support 

contained diffraction lines corresponding to (111), (200), (220), (311), (222), (400), 

(331), (420) and (422) crystal planes (data not shown), characteristic of the fluorite 

crystal structure of CeO2. The average CeO2 particle size calculated using the Scherrer 

equation was 13.2 nm. From N2 physisorption data a BET surface area of 75.1 m2/g was 

obtained, which is typical of CeO2 prepared by precipitation methods [24]. Upon loading 

with 1 wt% Pt and 1 wt% Pd (followed by calcination) the specific surface area decreased 

to 71.7 m2/g and 71.3 m2/g, respectively, indicative of minimal pore filling of the support. 

CO chemisorption results indicated an average Pt particle size of 1.92 nm for the 

Pt/CeO2, the average Pd particle size being 2.41 nm in the Pd/CeO2 sample (Table 4.1). 

Consistent with the highly dispersed nature of the Pt and Pd in these samples, diffraction 

lines for Pt and Pd were not observed in their X-ray diffractograms. TEM analysis of 1 

wt% Pd/CeO2 revealed that the CeO2 crystals possessed a rod-like structure (data not 

shown). Individual Pd particles could not be imaged.  

 

Table 4.1. Summary of CeO2 particle size calculated from x-ray diffraction data, BET 

surface area (SA), pore volume, pore diameter, and metal particle size diameter 

determined by CO chemisorption. 
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Catalyst CeO2 

particle 

size (nm) 

BET SA 

(m2/g) 

Pore 

Diameter 

(nm) 

Pore 

Volume 

(cm3/g) 

Metal 

particle size 

(nm) 

CeO2 12.2 75.1 4.4 0.17 -- 

Pt/CeO2 12.6 71.7 4.4 0.16 2.71 

Pd/CeO2 13.0 71.3 4.4 0.16 2.83 

 

 

4.3.2. NOx adsorption.  

NOx storage temperatures of 80 °C, 120 °C, and 160 °C were utilized during NOx 

storage-desorption studies. The minimum temperature of 80 °C was chosen based on 

published data from Ford Motor Co. [26] showing that for a 4.4 L diesel engine the 

exhaust gas temperature behind a diesel oxidation catalyst (DOC), upstream of an SCR 

catalyst, reaches ~60 °C after the first ~10 s of a cold start, whereas temperatures greater 

than 180 °C are not obtained for ~180 seconds. Five minute NOx storage efficiency 

(NSE) data for CeO2, 1 wt% Pt/CeO2, and 1 wt% Pd/CeO2 are shown in Figure 4.1. 

Notably, the addition of Pt to CeO2 improved the NSE by more than a factor of two at 

120 °C at all times during the 5 min storage experiment. In comparison, the addition of 

Pd produced an increase of only 37.4% in the 5 min NSE compared to the bare CeO2 

sample.  Both Pt/CeO2 and Pd/CeO2 exhibited similar storage trends with respect to 

temperature, i.e., higher storage temperatures resulted in higher NSE (and hence higher 

amounts of stored NOx), this effect being most prominent for Pt/CeO2. As described 

below, this is can be attributed to the increase in oxygen mobility at the CeO2 surface at 

higher temperatures. Additionally, in the case of Pt/CeO2, an increase in the rate of NO 

oxidation can be expected in this temperature span, given that NO oxidation on Pt 

typically lights-off at temperatures in the range 100-200 °C [27]. Hence, increase of the 

temperature in this range should result in significantly enhanced rates of nitrate 

formation, with an accompanying increase in NSE. In the case of Pd, NO oxidation 

activity is comparatively low, even at high temperatures [28-29]. Consequently, at each 
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temperature Pt/CeO2 stored significantly more NOx than Pd/CeO2, as exemplified by 1 

min NSE values at 160 °C of 78.7 % for Pt/CeO2 and 31.1 % for Pd/CeO2.  

 

 
Figure 4.1. Comparison of NOx storage efficiency at 80, 120, and 160 °C for Pt/CeO2 and 

Pd/CeO2. Feed: 300 ppm NO, 5% O2, 5% CO2, 3.5% H2O and He balance. 

 

 

4.3.3. NOx desorption. 

NOx-TPD profiles obtained after NOx storage at 120 °C are shown in Figure 4.2. 

In each case two NOx desorption events were evident. The first occurred below 300 °C, 

while the second was characterized by a desorption maximum in the range 300-500 °C. 

The addition of Pt shifted both desorption peaks to lower temperatures compared to bare 

CeO2, while the addition of Pd to CeO2 shifted only the high temperature desorption peak 

to lower temperature. Both Pd/CeO2 and the CeO2 support released relatively more NOx 

at lower temperatures (compared to the higher temperature desorption peak) in 

comparison with Pt/CeO2; for the latter, the vast majority of the stored NOx was released 

at temperatures in excess of 300 °C.  
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Figure 4.2. NOx release profiles during temperature programmed desorption (TPD) after 

NOx storage at 120 °C for 5 min. 

 

The calculated NOx desorption efficiency (NDE) values for CeO2, Pd/CeO2 and 

Pt/CeO2 during thermal ramping to 500 °C are displayed in Figure 4.3; results are shown 

for three cases, corresponding to NOx storage at 80 °C, 120 °C and 160 °C. From the 

figure it is evident that the bare CeO2 and Pd/CeO2 samples consistently release a greater 

percentage of their NOx below 350 °C – the highest temperature the catalysts would see 

in an exhaust during the US06 cycle [5] – as compared to the Pt/CeO2 sample, which is in 

line with the higher NO oxidation activity of Pt/CeO2. In a previous study of NOx 

desorption from Al2O3 and Pt/Al2O3 samples we observed that NDE below 250 °C was 

greater for the bare Al2O3 support as compared to the Pt-containing sample [7]. This was 

attributed to the fact that NO oxidation results in the formation of nitrate species which 

are more thermally stable than the products of NO adsorption (nitrites). Moreover, NO 

which desorbs from Pt/Al2O3 can in principal be oxidized to NO2 and re-adsorbed to form 
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thermally stable nitrates. Similar reasoning can be applied to the samples studied in the 

present work.   

 

 
Figure 4.3. Comparison of NOx desorption efficiency for two different temperature 

ranges: < 350 °C and 350-500 °C. 

 

Figure 4.4 summarizes the absolute amount of NOx desorbed during TPD. Both 

Pt/CeO2 and Pd/CeO2 released increasing amounts of NOx with increasing NOx storage 

temperature. This trend was previously observed for Pt/Al2O3 and is a consequence of the 

increased amount of NOx stored at higher temperatures. Pt/CeO2 released significantly 

more NOx upon ramping to 500 °C than the Pd analog for all storage temperatures, again 

reflecting the greater amount of NOx stored. Notably, however, Pd/CeO2 released more 

NOx below 350 °C than Pt/CeO2 for the 80 °C and 120 °C storage temperatures as a 
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consequence of its superior NDE at lower temperatures. This suggests that Pd-based 

PNAs may offer advantages over their Pt analogs, particularly at lower temperatures.       

 

 
Figure 4.4. Effect of NOx storage temperature on the amount of NOx desorbed during 

TPD. 

 

4.3.4. Effect of CO2 and H2O on NOx adsorption/desorption. 

Storage/desorption studies were also performed in the absence of CO2 and H2O at 

120 °C for 5 min to facilitate a realistic comparison between microreactor data and 

DRIFTS spectra (vide infra). Figure 4.5 shows the measured NSE as a function of time, 

while Figure 4.6 shows the corresponding NDE data. Both catalysts stored more than 

double the amount of NOx that was stored in the presence of CO2 and water, indicating 

that CO2 and water can competitively adsorb with NOx [30]. For example, Pt/CeO2 stored 

83.9% of feed NOx after one minute at 120 °C, the corresponding NSE value measured in 

the presence of CO2 and H2O being 41.3%.  
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Figure 4.5. Comparison of NOx storage efficiency at 120 °C in the absence of H2O and 

CO2. 

 

According to the NDE data, Pd/CeO2 again released significantly more NOx at 

low temperatures (<300 °C) than Pt/CeO2 (Fig. 4.6). However, NOx desorption above 

350 °C for Pd/CeO2 was roughly double the amount of NOx released below 350 °C, 

whereas the amount of high temperature and low temperature NOx release in the presence 

of CO2 and water was roughly equal (Fig. 4.3). The same pattern was observed for 

Pt/CeO2, significantly more NOx being released above 350 °C in the absence of CO2 and 

water than in the presence of CO2 and water. This is a notable result, suggesting that in 

the absence of water and CO2 the formation of nitrates is preferred, resulting in a higher 

proportion of NOx being stored as more thermally stable nitrate (vide infra). Indeed, in 

our previous study [19] of NO oxidation over Pt/CeO2, addition of water to the feed 

resulted in a relative enhancement in the intensity of the nitrite bands present (relative to 

the nitrate bands) and also influenced the nature of the nitrate species formed, favoring 

the formation of nitrate species giving rise to an IR band at ~1550 cm-1 as opposed to 

those associated with a band at ~1525 cm-1. Overall it was concluded that the adsorption 
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of water on Pt/CeO2 both reduces the number of NOx adsorption sites and influences the 

nature of the adsorbed species, the data presented above being consistent with these 

earlier findings.  

 

 
Figure 4.6. Comparison of NOx desorption efficiency after storage 120 °C for 5 min in 

the absence of H2O and CO2. 

 

 

4.3.5. Adsorption/desorption cycling. 

For real world applications, a PNA would be cycled between ambient temperature 

(cold start) and an operating temperature at which some degree of NOx desorption would 

occur. For a light duty diesel engine, typical operating temperatures generally fall in the 

range ~180-350 °C [5]. To simulate this, cycling experiments were performed for both 

Pt/CeO2 and Pd/CeO2 with NOx storage at 120 °C for 5 min, followed by heating to 350 
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°C to induce thermal release of the stored NOx. This was repeated 5 times. Figure 4.7 

displays the measured NSE as a function of cycle number and Figure 4.8 summarizes the 

corresponding NDE data. In the case of Pt/CeO2 a decrease in NSE was observed 

between the first and second storage phases, although the NSE decreased only marginally 

thereafter from one cycle to the next. For Pd/CeO2 the NSE showed little variation, with 

only a slight decrease between the second and third cycles. Notably, both samples 

showed a progressive increase in NDE during ramping to 350 °C with increasing cycle 

number. This observation suggests that as cycling proceeds, strong adsorption sites are 

initially filled from which relatively little NOx is released during thermal ramping. 

Consequently, as cycling proceeds, weak storage sites are increasingly utilized, from 

which NOx is readily desorbed.  

 

 

 
Figure 4.7. Comparison of NOx storage efficiency during storage at 120 °C for 5 min for 

five consecutive adsorption-desorption cycles. Feed gas same as for Fig. 3.1. 

 

55



56	
	

 
Figure 4.8. Comparison of NOx desorption efficiency below 250 °C and 350 °C during 

TPD for five consecutive adsorption-desorption cycles. 

 

 

4.3.6. DRIFTS measurements. 

From the foregoing it is apparent that Pd/CeO2 tends to release more NOx below 

350 °C during NOx-TPD than its Pt analog (see Figures A.2.6 and A.2.7 for nitrite and 

nitrate species structures).  In an effort to rationalize these results, DRIFT spectra were 

obtained for Pt/CeO2 and Pd/CeO2 catalysts during NO storage in the presence of O2 at 

100 °C for 30 min (Figure 4.9). During NO storage on Pt/CeO2 strong absorption bands 

were observed corresponding to a bridging nitrate (1611 cm-1) and monodentate nitrates 

at 1547 cm-1 and 1522 cm-1 [30-32]. An additional strong band at 1634 cm-1 can be 

assigned to molecularly adsorbed NO2 [33]. Weaker bands appeared at 1462, 1400, and 

1313 cm-1 corresponding to two types of monodentate nitrites as well as a bidentate 

nitrite species, respectively [31,32]. During the later stages of NO storage, a weak 

bidentate nitrite band also appeared at 1170 cm-1 (which is paired with the band at 1313 

cm-1) [18-20].  

Somewhat different results were obtained for Pd/CeO2. During NO storage at 100 

°C, a strong bidentate nitrite band rapidly formed at 1173 cm-1 with a corresponding band 

at 1317 cm-1, while bands due to monodentate nitrites appeared at 1430 and 1298 cm-1. A 

strong band at 1633 cm-1 (molecularly adsorbed NO2) as well as weak nitrate bands at 

1572 and 1532 cm-1 also appeared early on. A corresponding weak nitrate band appeared 

at 1272 cm-1 after 2 minutes [20]. With time the band at 1633 cm-1 disappeared, while the 
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other nitrate bands simultaneously became more intense with additional nitrate bands 

appearing after 2 min at 1592, 1509, 1272, 1244, 1212 and 1007 cm-1 [19, 20, 30-32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

DRIFT spectra acquired during subsequent TPD are shown in Figure 4.10. In the 

case of Pt/CeO2, raising the temperature to 300 °C resulted in the disappearance of the 

nitrite bands at 1459, 1310, and 1166 cm-1. The bands at 1547 and 1514 cm-1 increased in 

intensity (with concomitant increases in the intensity of the related bands at 1227 and 

1030 cm-1), reaching their maximum intensity at 300 °C. Further increase of the 

temperature to 500 °C resulted in a gradual weakening of the intensity of these nitrate 
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Figure 4.9. Evolution of surface species during NOx storage at 100 °C. Feed: 

300 ppm NO, 5% O2, and Ar balance. Top: Pt/CeO2; bottom: Pd/CeO2. 
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bands. In comparison to Pt/CeO2, the nitrite bands observed for the Pd/CeO2 sample were 

removed at lower temperature. The monodentate nitrite band at 1431 cm-1 disappeared by 

200 °C. It should also be noted that the position and intensity of the nitrate bands 

remained almost unchanged until the temperature reached 450-500 °C, at which point the 

bands decreased in intensity. This suggests that for the Pd/CeO2 sample the nitrite species 

which disappeared were not converted to nitrates, i.e., they underwent thermal 

decomposition.    
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The above DRIFTS results indicate that compared to Pt/CeO2, Pd/CeO2 stores 

relatively more NO as nitrites, particularly at short storage times. We attribute this 

behavior to the lower NO oxidation activity of Pd [28,29]. According to the literature 

nitrites can be formed via the interaction of NO with Ce4+ sites (eqns. 4.1 and 4.2) [17,34-

36]. Moreover, recent studies suggest the involvement of oxygen vacancies in the 

formation of nitrites and nitrates [15-17], this being facilitated by electron and/or oxygen 

transfer on the catalyst surface. Specifically, nitrite can be formed on CeO2 by the 

adsorption of NO on an oxygen vacancy (Ce3-�) (eqn. 4.3) which is then oxidized by a 

neighboring lattice site (Ce4+-O*) to form a nitrite (Ce4+-NO2
-) (eqn. 4.4). Nitrates are 

formed by similar mechanisms through the adsorption of NO2 (eqns. 4.5 -4.7).  

 

                                                    Ce4+-O2- + NO ! Ce3+-NO2
-                                      (4.1) 

                              2Ce4+-OH- + NO ! Ce4+-NO2
- + Ce3+-� + H2O                             (4.2)                                                    

                                                    Ce3+-� + NO ! Ce4+-NO-                                                              (4.3) 

                                      Ce4+-NO- + Ce4+-O* ! Ce4+-NO2
- + Ce3+-�                           (4.4) 

    Ce4+-O2- + NO2 ! Ce3+-NO3
-                                        (4.5) 

                                                   Ce3+-� + NO2 ! Ce4+-NO2
-                                                           (4.6) 

                                        Ce4+-NO2
- + Ce4+-O* ! Ce4+-NO3

- + Ce3+-�                        (4.7) 

                                     Ce4+-NO2
- + NO2 ! Ce4+-NO3

- + NO                                (4.8) 

   

 The presence of Pt is not necessary for these reactions [15-17,34-36]; however, if 

present, Pt can fulfill several roles: Pt can chemisorb NO, which can then spill over onto 

the CeO2 surface where the reaction depicted in eqns. (4.1) - (4.3) can occur, or, if 

oxidation of NO occurs on Pt, the formed NO2 can react with the ceria surface to form 

nitrates according to eqns. (4.5) - (4.8); moreover, by dissociatively adsorbing O2, Pt can 

act as a conduit for the spillover of O onto the ceria surface, resulting in nitrite oxidation 

to nitrate. Notably, the rates of NO oxidation and O2 dissociation on Pt are likely to be 

related, as shown recently for Pd [37]. Indeed, the importance of O2 dissociation as the 

sole kinetically relevant step in NO oxidation on Pd was demonstrated by the finding that 

the rate of 16O2-18O2 exchange was equal to the NO oxidation rate at a given value of the 

oxygen chemical potential. Moreover, the rate law for steady state NO oxidation on Pd 
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was the same as that for Pt, implying that the same kinetically relevant steps are involved. 

This suggests that both of the above Pt-mediated pathways for nitrate formation should 

be important. Given that Pd is an inferior NO oxidation catalyst compared to Pt, the 

formation of nitrate according to the pathways depicted in eqns. (4.5) - (4.7) is less likely, 

particularly at low temperatures. However, it should be noted that as temperature 

increases the rate of oxygen mobility likewise increases and hence the rate of nitrite to 

nitrate oxidation (according to eqn. (4.7)) would be expected to increase.   

As indicated by the DRIFTS-TPD results presented above, nitrites are thermally 

less stable than nitrates, which explains why relatively more NOx is desorbed at low 

temperature (<350 °C) for the Pd/CeO2 catalyst compared to the high temperature release 

(350-500 °C). While Pt/CeO2 stores more NOx, Pd/CeO2 is more desirable for PNA use 

due to its ability to store NO as nitrites rather than nitrates, allowing Pd/CeO2 to release 

more NOx below 350 °C.  

 

4.4. Conclusions. 

 The NOx storage and desorption properties of Pt/CeO2 and Pd/CeO2 were 

investigated using microreactor and DRIFTS measurements. Promotion of CeO2 with 1 

wt. % Pt and with 1 wt.% Pd increased the amount of NOx storage compared to bare 

CeO2, Pt/CeO2 showing significantly higher NSE than Pd/CeO2 at all temperatures. 

However, for NOx stored at 80 °C and 120 °C, the use of Pd improved lower temperature 

NOx desorption (< 350 °C) compared to the Pt analog. During NOx storage and 

desorption cycling small decreases in NSE were initially observed for both samples, 

although stable NSE were achieved by the third adsorption-desorption cycle. Notably, 

both samples showed a progressive increase in NDE during ramping to 350 °C with 

increasing cycle number, suggesting that as cycling proceeds strong adsorption sites are 

initially filled from which relatively little NOx is released during thermal ramping. 

Consequently, as cycling proceeds, weak storage sites are increasingly utilized, from 

which NOx is readily desorbed. DRIFTS measurements indicated that NOx was stored 

predominately as nitrates on Pt/CeO2, while on the Pd sample primarily nitrites were 

formed; this difference is ascribed to the lower NO oxidation activity of Pd compared to 

Pt. Nitrite species were weakly bound on both the Pt- and Pd-containing samples, 
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typically being removed by 250 °C upon thermal ramping. The fact that NOx is primarily 

stored as nitrites on Pd/CeO2 therefore explains its high NDE below 350 °C. 
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Chapter 5. CeO2-M2O3 Passive NOx Adsorbers for Cold Start Applications 
 

5.1. Introduction. 

Mitigation of cold start NOx emissions is necessary for automotive companies to 

meet upcoming Tier 3 emission standards. This proves challenging in lean burn engines 

due to the necessary operating temperatures for current aftertreatment technology. 

Current lean exhaust systems use either Lean NOx Trap (LNT) or Selective Catalytic 

Reduction (SCR) catalysts which require temperatures of at least 200 °C to perform 

efficiently. Slow decomposition rates of urea at low temperatures limit the use of urea-

SCR catalysts below 200 °C. Urea decomposes through the release of NH3 and isocyanic 

acid (HNCO) from urea. The isocyanic acid is then hydrolyzed to NH3 and CO2 [1-2].  

Melamine and related compounds (formed by reaction of NH3 with HNCO) can deposit 

on the SCR catalyst surface at low temperatures, resulting in catalyst deactivation [3]. To 

prevent this type of catalyst poisoning urea injection is typically ramped over the range 

~150-200 °C, i.e. sub-stoichiometric amounts of urea are injected to minimize catalyst 

poisoning at the expense of unconverted NOx (stoichiometric injection begins at ~200 °C) 

[4]. However, ramping urea injection limits the amount of NOx that can be converted. 

 Researchers have suggested the use of Passive NOx Adsorbers (PNAs) as a 

solution for the mitigation of NOx slip during cold starts [5]. A Pt promoted γ-Al2O3 

PNA, coupled with a urea-SCR catalyst, was first mentioned in a 2001 patent by Ford 

Motor Co. [6]. Further use of Pt/Al2O3 as a PNA has been studied by Ji et al [7] who 

observed that the addition of 1 wt% La to Al2O3 increased NOx storage efficiency by 

increasing the number of NOx storage sites. However, while the addition of La improved 

NOx storage it did not benefit NOx desorption below 250 °C, relatively more NOx being 

desorbed at low temperatures for Pt/Al2O3 compared to Pt/La-Al2O3. DRIFTS data 

collected during NOx-TPD measurements indicated that nitrites and weakly bound nitrate 

species were initially removed from the catalyst surfaces in both cases. The use of 

Ag/Al2O3 has been studied as a non-PGM alternative for alumina-based catalysts for low 

temperature NOx storage, although the use of Ag requires that H2 be present for NO 

oxidation and adsorption below 200 °C [8-9]. Recently, Pd/ZSM-5 has been reported by 
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Honda [10] to possess the ability to reduce NOx and hydrocarbon (HC) emissions during 

cold starts as a NOx trap three way catalyst (N-TWC).  

 Ceria-based systems are also being studied for their low temperature NOx 

mitigation capabilities due to the anionic vacancies that can form in ceria’s fluorite 

crystal structure [11-14] which have been found to facilitate NOx adsorption [15-17].  

Doping ceria has been found to increase the number of vacancies in the crystal lattice 

[18-19]. Rohart et. al. found that the use of rare earth oxides (Ce-Pr, Ce-La, Ce-Nd) in 

place of Ba in LNT catalysts resulted in substantially higher NOx storage at low 

temperatures then their Ba counterparts. The Ce-Pr derivative stored over 90% of NOx 

fed after 1 minute of storage at 250 °C, while Ce-La stored ~70% of NOx, and the Ce-Nd 

catalyst stored less than 40%. These results paralleled catalyst ability to oxidize NO to 

NO2 at 250 °C [20]. In a study by Wang et al., the addition of Nd, La, and Y to 

Pt/Ba/Ce0.6Zr0.4O2-Al2O3 LNT catalyst was examined. The addition of La to Ce-Zr 

improved NOx storage at 200 °C compared to the non-rare earth containing counterpart, 

while the addition of Y and Nd did not improve storage [21]. In a recent study NOx 

storage capacity was found to improve when CeO2 was incorporated into a Mn-Sn 

support to create Mn0.4Sn0.5Ce0.1 [22]. NOx storage was evaluated at 100 °C, higher 

storage upon the addition of CeO2 being attributed to the catalyst’s ability to better 

oxidize NO to NO2. Through XPS, NOx storage, and H2-TPR data Sun et al. were able to 

correlate increased oxidation activity to the presence of Sn-Ce interactions and surface 

defect oxygen species. Different metal ratios of Ce-Co-Cr-O containing catalysts were 

evaluated for NOx storage by Cao et al. [23], who observed that storage was dependent 

on the Co3+ concentration. Higher Ce concentrations resulted in better dispersion of Co, 

thereby increasing Co/Cr interactions. As a result, NO oxidation was greatly enhanced, 

thus increasing NOx storage. 

 Diffuse Reflectance Transform Infrared Fourier Spectroscopy (DRIFTS) been 

extensively used to understand NOx storage and release on ceria. Phillipp et al. studied 

the adsorption of NO and O2 on bare ceria at 50 °C, finding that NO is initially stored as 

a nitrite and further oxidizes to nitrates [24]. In a study looking at temperature affects of 

NO/O2 adsorption on Pt/CeO2, Ji et al. [25] observed the formation of nitrites at room 

temperature while storage at 200 °C resulted in predominately nitrate formation. Other 
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studies have also found that NO/O2 adsorption on Pt/CeO2 initially results in NOx storage 

as nitrite, which then oxidizes to nitrate [26]. Similarly, in a 2012 patent by Johnson 

Matthey it is claimed that the use of Pd supported on CeO2 as a PNA results in NOx 

storage at nitrites, therefore avoiding the need for NO to be oxidized to NO2 during 

storage [27]. In a report by Chen et al. [28], the diesel Cold Start Catalyst (dCSCTM) is 

reported to have the ability to store NOx as nitrite over nitrate, making it easier to 

regenerate the catalyst’s ability to store NOx. The dCSCTM incorporates the previously 

mentioned PNA from Johnson Matthey along with a hydrocarbon trap. Jones et al. [29] 

reported the use of 1 wt.% Pt or Pd promoted CeO2 as PNA catalysts. It was found that 

Pd preferentially stores NOx as nitrites while Pt preferentially stores NOx as nitrates. This 

is attributed to Pt’s better oxidation capabilities compared to Pd. When Pd/CeO2-ZrO2-

Pr2O3 was exposed to stoichiometric amounts of CO + HC + NOx + O2, Yang et al. [30] 

observed the formation of nitrite surface species on ceria-rich catalysts at 50 °C, while 

zirconia-rich catalysts favored the formation of nitrates. At higher Zr content the 

concentration of active oxygen species is increased, facilitating the oxidation of nitrites to 

nitrates. 

 Herein, we report the comparison of CeO2 doped with Pr, Nd, Y, La, and Nd at 

different concentration levels for PNA use, as well as the comparison of doped CeO2 

when promoted with 1 wt.% Pt and Pd. NOx storage and NOx desorption efficiencies 

were determined at 120 °C, both in the presence and absence of CO2 and H2O, and 

catalyst ability to store and release NOx upon repeated adsorption-desorption cycling was 

evaluated. DRIFTS measurements were utilized to understand the NOx species present on 

the catalyst surface during NOx storage and desorption.  
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5.2. Experimental Methods. 

5.2.1. Catalyst preparation. 

Mixed oxides, CeO2-M2O3, were prepared by co-precipitation from aqueous 

Ce(NO3)3*6H2O and Sm(NO3)3*6H2O, Y(NO3)3*6H2O, Nd(NO3)3*6H2O, 

Pr(NO3)3*6H2O, or La(NO3)3*6H2O and calcined in air at 500°C for 3 h [31]. 1 wt% Pt 

or Pd was loaded onto the CeO2-M2O3 by means of incipient wetness impregnation using 

aqueous solutions of [Pt(NH3)4](NO3)2 or [Pd(NO3)2]xH2O. The resulting samples were 

calcined at 500 °C for 3 h in a muffle furnace.  

 

5.2.2. Catalyst Characterization. 

X-ray powder diffraction analysis was conducted on a Phillips X’Pert 

diffractometer using Cu-Ka radiation (λ=1.540598 Å). Diffractograms were recorded 

between 5° and 90° (2θ) with a step size of 0.02°. Brunauer-Emmett-Teller (BET) 

surface area and pore volume measurements were performed by nitrogen physisorption at 

-196 °C using a Micromeritics Tri-Star 3000 system. Catalyst samples were outgassed 

overnight at 160 °C under vacuum prior to measurements.  

Pt and Pd dispersions were determined by means of pulsed CO chemisorption at -

78 °C using a Micromeritics AutoChem II Analyzer. Samples (250 mg) were loaded into 

the reactor and reduced in 10% H2/Ar at 300 °C for 10 min. In each case the sample was 

then purged with Ar for 20 min at the same temperature to remove residual H2 and then 

cooled to -78 °C prior to CO chemisorption. During the measurements 10 ml of CO was 

pulsed into the reactor every 2 min, the CO signal being monitored with a thermal 

conductivity detector (TCD). CO pulsing was terminated when the TCD signal reached a 

constant value, i.e., the precious metal sites were saturated with CO. Assuming a 1:1 ratio 

of CO to surface Pt and Pd, the metal dispersion was calculated based on the amount of 

CO adsorbed.  

Temperature-programmed reduction (TPR) was performed using Micromeritics 

AutoChem II Analyzer. Ca. 150 mg of catalyst was loaded in the reactor and pretreated in 

10% O2/Ar at 500 °C for 30 min. After cooling the sample to room temperature (RT) the 

cold trap was submerged in a dry ice and isopropanol bath at -78 °C. Followed by TPR 
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being carried out in a 10% H2/Ar flow with a ramp of 10 °C/min from RT to 900 °C.  The 

H2 signal during TPR was monitored using a TCD. 

Raman spectra of the catalysts were recorded using a Jobin Yvon Horiba Raman 

dispersive spectrometer with a variable-power He–Ne laser source (632.8 nm), equipped 

with a confocal microscope with a 10x objective of long focal length. The spectrum of 

each sample was obtained as the average signal of two individual spectra of different 

areas of the sample. The acquisition time for each individual spectrum was 20 s. The 

detector was of the CCD cooled Peltier type.  

X-ray photoelectron spectroscopy (XPS, K-ALPHA, Thermo Scientific) was used 

to analyze the surfaces of the catalysts. All spectra were collected using Al-Kα radiation 

(1486.6 eV), monochromatized by a twin crystal monochromator, yielding a focused X-

ray spot with a diameter of 400 µm, at 3 mA × 12 kV. The alpha hemi-spherical analyser 

was operated in the constant energy mode with a pass energy of 50 eV. Charge 

compensation was achieved with a low energy electron flood gun and low energy argon 

ions from a single source. 

 

5.2.3. NOx storage and desorption measurements. 

NOx storage and desorption efficiencies of the catalysts were determined in a 

quartz microreactor with a Pfeiffer Thermostar GSD301 mass spectrometer as the 

detector. Prior to measurements samples (170 mg) were pretreated at 550 °C for 10 min 

under a flow of 5% O2 in He (120 sccm) and then cooled to room temperature under 

flowing Ar. Samples were then equilibrated under a flow of 3.5% H2O, 5.0% CO2 and 

5% O2 (bal. He, 120 sccm) at the designated storage temperature; typically, this took 15 

min, at which point the feed and effluent H2O and CO2 concentrations were equivalent. 

NOx storage was initiated by adding 300 ppm NO to the feed. Storage experiments were 

conducted at 120 °C using a 5 min storage time. In all cases, a total flow rate of 120 sccm 

was used, corresponding to a gas hourly space velocity (GHSV) of ca. 30,000 h-1. At the 

completion of the storage period the feed gas was switched to bypass mode and the NO 

flow was switched off. When the NO concentration had dropped to zero, the gas was re-

directed to the reactor and temperature programmed desorption (TPD) was carried out to 
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study NOx desorption behavior using a ramp rate at 10 °C/min from the storage 

temperature up to 500 °C.  

To understand the effect of multiple storage-desorption cycles, cycling 

experiments were also performed. Catalyst pretreatment and NOx storage were performed 

as described above (using a storage temperature of 120 °C), after which TPD was 

performed up to 350 °C at a ramp of 10 °C/min under the same lean feed gas with the 

exclusion of NO. Subsequently, the temperature was lowered to 120 °C for the next NOx 

adsorption-desorption cycle. A total of five cycles were performed for both Pt/CeO2 and 

Pd/CeO2.  

NOx storage efficiency (hereafter denoted as NSE) is defined as the percentage of 

NOx passed over the catalyst that is stored, while NOx desorption efficiency (hereafter 

denoted as NDE) is defined as the percentage of stored NOx desorbed during TPD, i.e.:  

 

NSE = 1−
!"# !"# !"!

!

!" !" !
!

x 100% 

 

NDE = 
!"# !"# !"! !

! !"

!"# ! ! ! [!"]!"
x 100% 

 

in which t is the NOx storage time; [NO]in is the inlet NOx concentration during NOx 

storage; [NOx]out is the outlet NOx concentration during either NOx storage or the 

subsequent NOx desorption period; t(To) is the start time of NOx-TPD corresponding to 

the NOx storage temperature before the temperature is raised; t(T) is the end time of NOx-

TPD corresponding to the desired NOx desorption temperature.  

 

5.2.4. DRIFTS Measurements. 

DRIFTS measurements were performed to monitor the surface species involved in 

NOx adsorption and desorption. Measurements were performed using a Nicolet 6700 IR 

spectrometer equipped with a Harrick Praying Mantis accessory and MCT detector. The 

reaction cell was sealed with a dome equipped with two ZnSe windows and one SiO2 

observation window. The temperature of the reactor cell was controlled and monitored by 
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a K-type thermocouple placed beneath the reaction chamber. For each DRIFT spectrum 

an average of 115 scans was collected (requiring ca. 1 min) with a resolution of 4 cm-1. 

The spectrometer as well as the outside of the reaction cell were continuously purged 

with dry nitrogen to avoid diffusion of air into the system. Catalyst samples (~50 mg) 

were pretreated in situ in 300 ppm NOx for 1 h then reduced at 450 °C for 15 min under 

10% H2 in order to remove carbonates, after which background spectra were collected 

(under Ar) in the range of 500-100 °C at intervals of 50 °C. NOx storage was carried out 

at 100 °C for 30 min using a feed consisting of 5% O2/Ar and 300 ppm NO (120 sccm). 

During NOx storage, spectra were collected as a function of time. After 30 min of NOx 

storage, TPD was performed in flowing 5% O2/Ar flow (120 sccm), the temperature 

being raised from 100 °C to 500 °C at a rate of 10 °C/min. DRIFT spectra were recorded 

during TPD at intervals of 50 °C. Absorbance spectra were obtained by subtracting 

background spectra from the spectra collected during NOx storage and desorption.  

 

5.3. Results and Discussion. 

5.3.1. Sample Characterization. 

Analytical data for CeO2-M2O3 (M = Pr, Sm, Y, La, Nd) samples (Table A.2.1.) 

promoted with 1 wt.% Pt or Pd or a 1:1 weight ratio of Pt and Pd (total metal loading of 1 

wt.%) are collected in Tables 5.1 and 5.2. Ceria was doped with the second rare earth 

metal at concentrations of 5 mol% and 20 mol%. Henceforth, all samples are referred to 

as Pt or PdCe5M (5 mol% of M present) or Ce20M (20 mol% of M present). After 

calcination at 500 °C powder X-ray diffractograms of the doped CeO2 supports contained 

diffraction lines corresponding to (111), (200), (220), (311), (222), (400), (331), (420) 

and (422) crystal planes (Figures 5.1 and 5.2), characteristic of the fluorite crystal 

structure of CeO2. There was no evidence of phase segregation according to the XRD 

data, and diffraction angles shifted to lower values when doping CeO2 due to the 

expansion of the lattice caused by the larger ions: Pr3+(113 pm), Sm3+ (109.8 pm), Y3+ 

(104 pm), La3+ (117.2 pm), and Nd3+ (112.3 pm). The average diameters of the 

crystallites in the supports calculated using the Scherrer equation ranged from 8.9-13.4 

nm. As the dopant concentration increased the lattice parameter (a) increased, 

corresponding to expansion of the lattice to accommodate the increased concentration of 

68



69	
	

the larger ions. However, the lattice parameter didn’t increase with increasing 

concentration of Y3+, indicating that Y forms a separate phase although it isn’t detectable 

in the X-ray diffractogram. XRD data obtained on the 80Ce-20Pr sample series after 

aging did not indicate a loss in crystallinity or the occurrence of phase segregation (not 

shown).  

 
Figure 5.1. X-ray diffraction patterns of Pt-promoted CeO2-M2O3 catalysts. 
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Figure 5.2. X-ray diffraction patterns of Pd- and Pt-Pd-promoted CeO2-Pr2O3 catalysts. 

 

 

From N2 physisorption data BET surface areas as large as 86.3 m2/g (PtCe20Nd) 

and as small as 41.1 m2/g (PdCe10Pr) were obtained, this range being typical of doped 

CeO2 prepared by co-precipitation methods [32]. CO chemisorption results for platinum-

promoted mixed oxides in the fresh state indicated that Pt particle size (dmetal) increased 

with increasing concentration of dopant except in the case of Pr. With Pt promotion, 

increasing the Pr content from 5% to 20 % resulted in a decrease in Pt particle size from 

3.29 nm to 1.3 nm (Table 5.1). Larger Pt particle sizes with increased dopant 

concentrations for La, Y, Sm, and Nd suggest weaker interactions with Pt and therefore 

decreased Pt dispersions. The opposite trend is observed when promoting Ce-Pr mixed 

oxides with Pd, indicating that Pt has stronger interactions with the Ce-Pr surface than 

Pd. Upon increasing the Pr content from 5% to 20%, Pd particle sizes increased from 

2.61 nm to 3.99 nm (Table 5.2). Consistent with the highly dispersed nature of the Pt and 

Pd in these samples, diffraction lines for Pt and Pd were not observed in their X-ray 

diffractograms. CO chemisorption data indicated that metal particle sizes increased after 

aging for all samples in the 80Ce-20Pr series. For example, CO chemisorption indicated 
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that PdCe20Pr had a Pd particle size of 3.99 nm in the fresh state, which increased to 8.30 

nm after aging. BET surface area measurements also evidenced a decrease in support 

surface area after aging indicative of support sintering. The largest decrease in surface 

area was observed for PdCe20Pr, which decreased from 66.2 m2/g (fresh) to 18.9 m2/g 

(aged). 

 

Table 5.1. Physical properties of Pt/CeO2-M2O3 used in this work. 

Catalyst dsupport 

 (nm) 

BET SA 

(m2/g) 

rpore 

 

(nm) 

Vpore 

(cm3

/g) 

dmetal 

(nm) 

a 

(nm) 

Fresh Aged Fresh Aged Fresh Aged 

PtCe 13.0 -- 71.3 -- 4.4 0.16 2.83 -- 0.540 

PtCe5Pr 13.2 -- 67.0 -- 3.8 0.13 3.29 -- 0.540 

PtCe10Pr 12.8 -- 50.9 -- 5.5 0.14 3.62 -- 0.542 

PtCe20Pr 10.0 13.9 65.9 24.1 3.4 0.11 1.30 4.98 0.544 

PtCe5Y 12.1 -- 65.8 -- 3.2 0.12 3.30 -- 0.542 

PtCe20Y 10.8 -- 62.1 -- 2.1 0.07 6.66 -- 0.542 

PtCe5La 10.0 -- 71.4 -- 2.4 0.10 2.61 -- 0.542 

PtCe20La 9.4 -- 57.6 -- 4.6 0.13 4.42 -- 0.546 

PtCe5Sm 12.8 -- 58.5 -- 3.6 0.10 1.77 -- 0.541 

PtCe20Sm 10.0 -- 55.2 -- 2.3 0.06 7.22 -- 0.544 

PtCe5Nd 13.4 -- 55.3 -- 5.1 0.14 2.25 -- 0.544 

PtCe20Nd 8.9 -- 86.3 -- 5.5 .024 4.23 -- 0.547 

 

 

 

 

 

 

 

Table 5.2. Physical properties of Pd/CeO2-Pr2O3 used in this work. 
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Catalysts dsupport (nm) BET SA 

(m2/g) 

rpore 

(nm) 

Vpore 

(cm3/g) 

dmetal (nm) a 

(nm) 

Fresh Aged Fresh Aged Fresh Aged 

PdCe 12.6 -- 71.7 -- 4.4 0.16 2.71 -- 0.540 

PdCe5Pr 12.4 -- 70.0 -- 3.8 0.13 2.61 -- 0.543 

PdCe10Pr 12.1 -- 41.1 -- 6.2 0.13 2.69 -- 0.542 

PdCe20Pr 10.0 14.9 66.2 18.9 3.4 0.24 3.99 8.30 0.546 

PtPdCe20Pr 10.0 13.2 64.5 26.1 3.5 0.11 2.61 9.73 0.542 

 

Raman analysis of the 80Ce-20Pr series, Figure 5.3, showed the presence of the 

typical F2g mode of ceria’s fluorite structure. Doping with Pr reduced the intensity of the 

F2g band while creating vacancies as seen by the additional band observed at ~560 cm-1. 

The lower Raman shift of the F2g band with Pr doping (Figure 5.4) is attributed to the 

expansion of the unit cell in the presence of Pr3+, which is larger than Ce4+.  Ce/Pr ratios 

of 2.6 as determined by XPS (summarized in Table 5.3) are below the nominal value of 4 

in the case of PdCe20Pr and PtCe20Pr, suggesting a ceria-rich core with a Pr-rich 

surface. The opposite was observed for PtPdCe20Pr, which exhibited a Ce/Pr ratio of 

15.8 indicating a Ce-rich surface with a Pr-rich core. Notably, the Ce3+ percentages 

determined by XPS were higher for PtCe and PdCe. This is attributed to Pr4+ reducing 

more easily than Ce4+; hence, Pr4+ reduction hinders Ce4+ reduction. In the case of 

PtPdCe20Pr the Ce3+ content was similar to that found for PtCe and PdCe due to the 

ceria-rich nature of the surface compared to the Pt- and PdCe20Pr samples. Ce/Pr ratios 

of aged samples in the Ce20Pr series as determined by XPS analysis are lower than the 

ratios found in the fresh state. This suggests that Pr diffuses to the surface during aging. 

For example, PdCe20Pr had a Ce/Pr ratio of 2.6 before aging, which decreased to 0.54 

after aging (values summarized in Table 5.4). The amount of Ce3+ present after aging also 

increased which may be indicative of Ce-Pr phase segregation.  
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Figure 5.3. Raman analysis of undoped and Pr-doped CeO2 catalysts. 
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Figure 5.4. Effect of Pr doping on the Raman shift of the CeO2 F2g band. 

 

Table 5.3. Atomic concentrations determined by XPS for fresh samples (*denotes 

nominal values). 

Species PtCe PdCe PtCe20Pr PdCe20Pr PtPdCe20Pr 

C 30.5 35.29 33.12 49.02 63.4 

Pt 0.27 -- 0.15 -- 0.1 

Pd -- 0.62 -- 0.43 0.1 

O 48.9 45.39 47.36 36.69 29.7 

Ce 20.33 18.71 14.04 10.05 6.3 

Pr -- -- 5.33 3.82 0.4 

Ce/Pr* -- -- 2.6 (4) 2.6 (4) 15.8 (4) 

Ce3+ (%) 36.8 33.2 25.6 26.7 34.9 
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Table 5.4. Atomic concentrations determined by XPS for aged samples (*denotes 

nominal values). 

Species PtCe20Pr PdCe20Pr PtPdCe20Pr 

C 10.75 70.87 5.06 

Pt 3.62 -- 1.38 

Pd -- 0.18 0.39 

O 42.9 20.57 46.88 

Ce 15.75 2.83 14.15 

Pr 26.99 5.23 31.96 

Ce/Pr* 0.58 (4) 0.54 (4) 0.44 (4) 

Ce3+ (%) 47.7 51.6 37.4 

 

 

TPR data, shown in Figure 5.5, for the samples in the Ce20Pr series, indicate that 

Pt and Pd reduce at lower temperatures than the bulk support [33]. The addition of 1 wt% 

Pd lowers reduction temperatures the most. The reduction of PdO and the surface in close 

contact with Pd gives rise to a reduction peak at 103 °C. Reduction of PtO to metallic Pt, 

which again is accompanied by reduction of the Ce20Pr surface, occurs nearly 100 °C 

higher than that of Pd, reaching a maximum at 213 °C. PtPdCe20Pr displayed a reduction 

temperature of 111 °C, only slightly higher than the reduction of Pd on PdCe20Pr. 

Additionally, two broad reduction peaks were observed for the samples containing PGM, 

over the range 300-600 °C and 600-900 °C. These two reduction events can be attributed 

to Pr4+ and Ce4+ in the bulk, respectively [34]. Unpromoted Ce20Pr exhibits two surface 

reduction peaks at ~400 and 500 °C, likely Pr-rich and Ce-rich areas. It should also be 

noted that possible reduction of surface carbonates/hydroxides may contribute to 

reduction peaks in the 300-600 °C range for these various samples [35-38]. 
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Figure 5.5. H2-TPR profiles of fresh catalysts from the Ce20Pr series. 

 

5.3.2. NSE and NDE for Pt-Promoted Catalysts. 

A NOx storage temperature of 120 °C was utilized during NOx storage-desorption 

studies. For platinum-promoted catalysts, doping Ce with 5 mol% of Pr, Nd, or Sm 

increased NSE compared to PtCe only. However, doping Ce with La and Y didn’t 

improve NSE. When the dopant concentration was increased to 20 mol%, NSE decreased 

in all cases except Pr (Figure 5.6). Indeed, increasing the amount of Pr increased NSE, 

while it severely hindered storage with Sm, Nd, Y, and La. Overall, utilizing 5% of the 

dopant in CeO2 resulted in the following ordering of NSE: Pr>Nd>Sm>Ce>La,Y. (See 

Figure A.2.4. for absolute NSE data). 
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Figure 5.6. Comparison of NOx storage efficiency at 120 °C for PtCe5-20M. Feed: 300 

ppm NO, 5% O2, 5% CO2, 3.5% H2O and He balance. 

 

NOx-TPD profiles for PtCe(5 or 20)M after NOx storage at 120 °C for 5 minutes 

are displayed in Figure 5.7. Two different desorption ranges are evident for all catalysts: 

below 300 °C and 300-500 °C. Doping CeO2 with 5 mol% of Y, La, Sm, and Pr shifted 

desorption peaks to higher temperatures compared to Pt/CeO2, while doping with 5 mol% 

of Nd shifter desorption peaks to lower temperatures. Upon increasing dopant 

concentration from 5 mol% to 20 mol% desorption peaks shifted to higher temperatures 

with the exception of doping with Pr. Indeed, increasing the concentration of Pr from 5 

mol% to 20 mol% shifted desorption peaks to lower temperatures. Relatively more NOx 

was released below 300 °C for PtCe5Pr and PtCe20Pr compared to higher temperature 

release. Conversely, relatively more NOx was released at temperatures surpassing 300 °C 

for CeO2 doped with La, Y, Sm, and Nd.  
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Figure 5.7. NOx-TPD profiles of PtCe(5-20)M after NOx storage at 120 °C for 5 minutes. 

 

Figure 5.8 summarizes NDE for PtCe(5-20)M catalysts at temperatures <350 °C 

and 350-500 °C. In all cases but Pr, most NOx was desorbed above 350 °C. The use of Pr 

greatly increased the amount of NOx desorbed below 350 °C in both relative and absolute 

terms (Figure 5.9) compared to higher temperature desorption. Desorbing the majority of 

NOx at lower temperatures is favorable since it makes it easier to regenerate the catalysts 

at typical diesel exhaust temperatures. Using Pr as a dopant in CeO2 greatly benefited 

NSE and NDE, making it an interesting material for PNA applications. (See Figures 

A.2.5. and A.2.6. for triplicates of samples with more than 100% total NDE.) 
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Figure 5.8. Comparison of NOx desorption efficiency after storage at 120 °C for two 

different temperature ranges: < 350 °C and 350-500 °C. 
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Figure 5.9. Comparison of amount of NOx desorbed after storage at 120 °C for two 

different temperature ranges: < 350 °C and 350-500 °C. 

 

 

5.3.3. NSE and NDE for Pd-Promoted Catalysts. 

Previous studies have shown that the use of Pd instead of Pt for CeO2 promotion 

results in storage of NOx as predominantly thermally less stable nitrites as opposed to 

thermally more stable nitrates [27-29]. This is attributed to the superior activity of Pt for 

NO oxidation, NO2 formation leading to storage as nitrate [39-40]. This was studied for 

the Ce(5-20)Pr supports in this work by promoting them with 1 wt% Pd and evaluating 

their NSE and NDE under the same conditions as the Pt-promoted catalysts. As seen in 

Figure 5.10 and similar to the Pt-promoted samples, higher concentrations of Pr resulted 

in higher NSE. While the incorporation of 10 mol% of Pr gave the highest NOx release 

below 350 °C (the same results being observed for NOx desorption in absolute values, see 

Figure 5.12) compared to high temperature release, the 20 mol% Pr sample stored more 

NOx, making it the best catalyst for PNA applications overall (Figure 5.11). Similar to the 

TPD profiles for the PtCe(5-20)M samples, two desorption events were observed for 

PdCe(5-20)Pr. The first occurred below 300 °C with the second occurring in the range of 
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300-500 °C. Doping CeO2 with Pr shifted desorption peaks to higher temperatures 

compared to undoped CeO2 as for the platinum-promoted counterparts. Unlike the Pt-

promoted samples, when the Pr content was increased from 5 mol% to 20 mol% the NOx 

desorption peaks did not shift to lower temperatures. Rather, they shifted to higher 

temperatures (Figure 5.13).   

 
Figure 5.10. Comparison of NOx storage efficiency at 120 °C for PtPd or PdCe5-20Pr. 

Feed: 300 ppm NO, 5% O2, 5% CO2, 3.5% H2O and He balance. 
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Figure 5.11. Comparison of NOx desorption efficiency after storage at 120 °C for PdCePr 

catalysts at two different temperature ranges: < 350 °C and 350-500 °C. 
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Figure 5.12. Comparison of amount of NOx desorbed after storage at 120 °C for two 

different temperature ranges: < 350 °C and 350-500 °C. 

 

 
Figure 5.13. NOx-TPD profiles of PdCe(5-20)Pr after NOx storage at 120 °C for 5 

minutes. 
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Compared to Pd, promotion with Pt resulted in a higher NSE at all concentrations 

of Pr. PtCe20Pr displayed an NSE 30% higher than that achieved for PdCe20Pr after 1 

minute of storage at 120 °C. The largest difference in NSE between Pt- and Pd-promoted 

samples occurred when CeO2 was doped with 5 mol% Pr. PtCe5Pr had an NSE 37% 

higher than that of PdCe5Pr. Although Pt-promotion resulted in higher NSE values, it 

was not as easy to regenerate the catalyst as compared to the same support promoted with 

Pd. Indeed, in all cases Pd-promoted Ce-Pr catalysts exhibited higher NDE below 350 °C 

compared to the Pt-promoted analogs. For example, PdCe20Pr released 13% more NOx 

below 350 °C than PtCe20Pr.  

To evaluate the use of Pt and Pd together, the Ce20Pr support was promoted with 

0.5 wt% Pt and 0.5 wt% Pd. According to NSE and NDE measurements the presence of 

Pt and Pd resulted in catalyst behavior similar to that of the Pt-only promoted 

counterpart, showing lower NDE below 350  °C than PdCe20Pr and displaying a NSE of 

63.6%, being lower than Pt (~88.0 %) but higher than Pd (57.8%) after the first minute. 

McCabe and co-workers found that utilizing Al2O3 promoted with Pt and Pd resulted in 

the catalyst behaving predominantly as its Pt only counterpart with regards to NO 

oxidation [41]. 

 

5.3.4. Cycling Studies.  

Cycling studies were conducted to mimic the behavior of a PNA being repeatedly 

transitioned between ambient temperatures (e.g., cold start) and normal operating 

temperatures during which NOx desorption occurs. Typical operating temperatures for a 

light duty diesel engine generally occur in the range ~180-350 °C [5]. To simulate this, 

cycling experiments were performed for the Ce20Pr series, NOx storage being performed 

at 120 °C for 5 minutes, followed by heating to 350 °C to induce thermal release of 

stored NOx. Five such cycles were performed. Figure 5.14 displays the measured NSE 

and the corresponding NDE as a function of cycle number for PtCe20Pr and PdCe20Pr. 

In the case of PtCe20Pr, a decrease in NSE was observed between the first and second 

storage phase, with only marginal changes from one cycle to the next thereafter. For 

PdCe20Pr NSE showed little variation, with only a slight difference between the third 

and fourth cycles. During temperature ramping to 350 °C both samples showed a 
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continued increase in NDE with continued cycling, more so for PdCe20Pr. This suggests 

that as cycling proceeds strong adsorption sites are initially filled from which relatively 

little NOx is released during thermal ramping. Consequently, as cycling proceeds, weak 

storage sites are increasingly utilized, from which NOx is readily desorbed. The increase 

in NDE from one cycle to the next when ramping to 350 °C was significantly more 

noticeable for PdCe20Pr, which further suggests that Pd preferentially stores NOx as 

thermally less stable nitrites. The same pattern is observed when ramping to 250 °C in the 

case of Pd-only. Comparing the cycling performance of PtCe20Pr, PdCe20Pr and 

PtPdCe20Pr, Figure 5.15 shows that the sample containing both Pt and Pd behaves 

predominately as the Pt-only sample. PtPdCe20Pr has NSE similar to PtCe20Pr with the 

only significant change in NSE being between the first and second cycle. It is also 

observed that NDE for the first cycle is similar to that of PtCe20Pr by releasing 

significantly less NOx than each subsequent cycle, while PdCe20Pr releases a similar 

amount of NOx during the first cycle when compared to the other cycles. 
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Figure 5.14. Comparison of NOx storage efficiency at 120 °C for 5 minutes and NOx 

desorption efficiency below 250 °C and 350 °C for five consecutive adsorption-

desorption cycles for Pt and PdCe20Pr. 

 

 
Figure 5.15. Comparison of NOx storage efficiency storage at 120 °C for 5 minutes and 

NOx desorption efficiency below 250 °C and 350 °C for five consecutive adsorption-

desorption cycles for PdPtCe20Pr. 
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5.3.5. Aging Studies. 

For real world applications, automotive catalysts need to be able to withstand high 

temperatures. During a typical DOC clean up the exhaust can reach temperatures up to 

800 °C [5]. To test the Ce20Pr series’ ability to withstand temperatures reached during a 

DOC clean off, the catalysts were aged at 750 °C for 16 hours under lean conditions (5% 

O2, 5% CO2, 3.5% H2O with He balance). After aging, catalysts were cooled to room 

temperature and NOx stored at 120 °C for 5 minutes followed by TPD. After aging NSE 

is severally hindered in all cases as displayed in Figure 5.16. PdCe20Pr displayed the 

worst NSE with the Pt containing counterparts having better NSE after aging. Although 

NSE significantly decreases after aging, the release of stored NOx below 350 °C is 

greatly enhanced (Figure 5.17). BET analysis indicates a loss of catalyst surface area, 

although XRD data doesn’t indicate any change in the structure of the support after 

aging, albeit the average diameter of the support particles slightly increased in size after 

aging as calculated using the Scherer equation. CO chemisorption also evidenced PGM 

sintering after aging, as indicated by increases in Pt and Pd particle sizes (summarized in 

Tables 5.1 and 5.2). All of the above indicates a loss in support surface area as well as 

evidence of PGM sintering, leading to the decrease in NSE after aging.  
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Figure 5.16. NSE comparison of Ce20Pr series after aging for 16 hours under lean 

conditions (5% CO2, 5% O2, and 3.5% H2O with He balance). 
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Figure 5.17. Comparison of NDE for Ce20Pr series after aging for 16 hours. 

 

 

5.3.6. NSE and NDE in the absence of CO2 and H2O. 

Storage/desorption studies were also performed in the absence of CO2 and water 

at 120 °C for 5 min to facilitate a realistic comparison between microreactor data and 

DRIFTS spectra (vide infra). Figure 5.18 shows the measured NSE, while Figure 5.19 

shows the corresponding NDE data. All of the catalysts in the Ce20Pr series that were 

promoted with Pd stored more NOx in the absence of CO2 and water.  However, 

comparing NSE for PtCe20Pr in the presence and absence of CO2 and water, roughly 

88% of NOx was stored at 120 °C after one minute in the presence of CO2 and H2O, 

while in their absence ~75% NSE was achieved after 1 minute. Previously it had been 

found that water competitively adsorbs with NOx on CeO2, reducing the number of 

absorption sites available for NOx storage [45]. Comparing storage of NOx in the 

presence and absence of CO2 and water, the addition of 20 mol% Pr only increased 

storage by ~13% when storing NOx in the absence of CO2 and H2O. The addition of Pr 
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appears to give CeO2 the ability to tolerate water and carbon dioxide better compared to 

previously studied undoped CeO2 catalysts [29]. Additionally, it was noted that NDE 

below 350 °C after storage without CO2 and water in the feed was low  (< 20%) 

suggesting that stored nitrites and nitrates possess enhanced stability when CO2 and water 

are absent. 

 

 

 
Figure 5.18. Comparison of NSE for Ce20Pr series measured without CO2 and water in 

the feed. 

 

 
Figure 5.19. Comparison of NDE for Ce20Pr series without CO2 and water in the feed. 
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5.3.7. DRIFTS Studies. 

5.3.7.1. NO/O2 Storage and Desorption. 

From the information above it is evident that doping CeO2 with Pr increases 

storage at 120 °C and desorption below 350 °C, while promotion with Pd increases low 

temperature NOx release (<350 °C) compared to promotion with Pt. To understand these 

results DRIFT spectra of the Ce20Pr series were obtained during NO/O2 storage at 100 

°C (Figure 5.20). For PtCe20Pr, Figure 5.20a shows NOx storage early on in the form of 

nitrates, evidenced by a band at 1606 cm-1 corresponding to a bridging nitrate. 

Additionally, a band assigned to molecularly adsorbed NO2 appeared at 1637 cm-1 early 

on in the experiment, but disappeared after 10 minutes [42-44]. A chelating nitrite band 

was also observed after two minutes at 1166 cm-1 [45-47]. Doping CeO2 with Pr results in 

nitrite storage earlier than for undoped CeO2 as previously reported [6]. Nitrate bands 

appeared after two minutes at 1564, 1275, 1212, 1060, and 1011 cm-1 [42-47]. Moreover, 

a weak band assigned to NO storage on Pt was observed at 1747 cm-1 and a nitrito nitrite 

band at 1415 cm-1 grew in after 2 minutes [42].  

Slightly different results were observed for PdCe20Pr. During the early stages of 

NOx storage a strong chelating nitrite band was observed at 1167 cm-1, together with a 

weaker nitrate band at 1583 cm-1.  Consistent with the lower NO oxidation activity of Pd 

compared to Pt, the presence of molecularly adsorbed NO2 at 1637 cm-1 wasn’t observed 

for PdCe20Pr. Additionally the formation of a nitrito nitrite species was indicated by a 

band at 1417 cm-1 after 30 seconds had elapsed (earlier than for PtCe20Pr). After 2 

minutes nitrate bands grew in at 1567, 1269, and 1230 cm-1. Subsequently, NO storage 

was observed on Pd (after ~10 min), evidenced by a band at 1745 cm-1. In the case of 

PtPdCe20Pr, DRIFT spectra were similar to those of PtCe20Pr with the early formation 

of nitrates at 1562 and 1272 cm-1, followed by nitrite formation after two minutes at 1155 

cm-1. An additional nitrate band associated with the band at 1562 cm-1 grew in after two 

minutes at 1238 cm-1, along with a nitrito nitrite band at 1415 cm-1. Bands indicating 

storage on Pt and Pd were also present at 1798, 1744, and 1707 cm-1 after 10 minutes. 
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Figure 5.20. DRIFT spectra acquired during NO storage at 100 °C for (a) PtCe20Pr (b) 

PdCe20Pr and (c) PtPdCe20Pr. Feed: 300 ppm NO, 5% O2, Ar balance. 

 

During subsequent TPD, Figure 5.21a, increase of the temperature to 300 °C for 

PtCe20Pr resulted in the disappearance of the chelating nitrite at 1158 cm-1. 

Simultaneously, bridging and monodendate nitrate bands appeared at 1607 and 1553 cm-

1, respectively, reaching their maximum values in the range 300-400 °C. The nitrito 

nitrite band at 1410 cm-1 and Pt-NO band at 1741 cm-1 decreased in intensity above 300 

°C, disappearing by 500 °C. At 500 °C, the main bands remaining were the nitrate bands 

at 1235 and 1553 cm-1.  In the case of PdCe20Pr (Figure 5.21b), the evolution of the 

DRIFT spectra with temperature was very similar to the Pt analog, although NO stored 

on Pd (1743 cm-1) was removed at slightly lower temperatures. Results for PtPdCe20Pr 

(Figure 5.21c) were similar to PtCe20Pr and PdCe20Pr. Again, nitrites at 1415 and 1155 

cm-1 were removed by 300 °C, with a continual increase in nitrate band intensity (1548 

cm-1), maximum intensity being reached at 300-400 °C. Above 400 °C the nitrate bands 

decreased in intensity, although monodentate nitrates still remained at 500 °C. From the 

obtained DRIFT spectra, it is concluded that Pd promotion results in storage of NO 

principally as nitrites that can be removed at low temperatures (< 300 °C). Promotion 

with Pt and equal mol % of Pt and Pd result in NO storage mostly as nitrates, which 

remain on the surface to at least 400 °C during TPD.  
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Figure 5.21. DRIFT spectra acquired during TPD after NO storage at 100 °C for (a) 

PtCe20Pr (b) PdCe20Pr and (c) PtPdCe20Pr. Feed: 300 ppm NO, 5% O2, Ar balance. 

 

5.4. Conclusions. 

NOx storage and desorption properties of CeO2 doped with Pr, Y, Nd, Sm, and La 

at different concentrations were evaluated using microreactor and DRIFTS 

measurements. For Pt-promoted samples, doping CeO2 with 5% Nd, Sm, and Pr resulted 

in an improvement of NSE, while doping with La and Y failed to improve NOx storage. 

Pr proved to be the most promising dopant for increased NOx storage at low 

temperatures, as indicated by the superior NSE obtained. With regard to catalyst 

regeneration, Pr-doped CeO2 also proved to be the most promising material as confirmed 

by increased NOx release below 350 °C. XPS analysis indicated that Pr4+ is reduced more 

readily than Ce4+, as evidenced by the higher concentration of Ce3+ present in undoped 

CeO2 compared to that doped with Pr. Generation of lattice vacancies in Pr-doped CeO2 

appears to be particularly facile, as confirmed by Raman data, resulting in excellent NOx 

storage properties. CeO2 doped with 20 mol% Pr (the highest Pr loading examined) 

proved to be the most promising catalyst examined, although NSE was greatly decreased 

after hydrothermal aging. To a limited degree, the decreased NSE was countered by a 

large increase in NDE below 350 °C. Notably, NOx storage on Pt- and Pd-promoted 

Ce20Pr was less affected by the presence of water and carbon dioxide than previously 

studied Pt/CeO2 and Pd/CeO2. Overall, doping with Pr was found to be promising for low 

temperature NOx storage due to the ease of catalyst regeneration through NOx release 

below 350 °C and the ability to store large quantities of NOx at temperatures observed 

during cold starts.  
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Chapter 6. Doped CZO Catalysts for Passive NOx Adsorber Applications. 
 

6.1. Introduction. 

Reducing NOx emissions at low temperatures is challenging to automotive 

manufacturers due to the slow kinetics of NOx reduction in this temperature regime (e.g., 

<200 °C). Manufacturers have the option of using either Lean NOx trap (LNT) or 

Selective Catalytic Reduction (SCR) catalysts in current lean burn diesel aftertreatment 

systems, however they do not become operational until ~200 °C. Moreover, using urea-

SCR catalysts at low temperatures has its own drawbacks due to the slow decomposition 

rates of urea. The decomposition of urea occurs through two steps: urea first decomposes 

to NH3 and isocyanic acid (HNCO), which is followed by the hydrolysis of HNCO to 

NH3 and CO2 [1-2]. Lower operation temperatures (below 200 °C) can lead to 

accumulation of deposits of undecomposed urea on the catalyst surface, as well as side-

products such as melamine which result from the reaction of HNCO with NH3 [3]. These 

deposits on the SCR catalyst surface can cause catalyst deactivation. To prevent this from 

occurring manufacturers ramp urea injection at ~150-200 °C, but in doing so sub-

stoichiometric amounts of urea are injected to minimize catalyst poisoning at the expense 

of unconverted NOx (stoichiometric injection begins at 200 °C) [4]. This limits the 

amount of achievable NOx conversion. 

 A 1998 patent suggested the use of Passive NOx adsorbers (PNAs) to reduce NOx 

emissions below 200 °C for stoichiometric gasoline vehicles [5]. A 2001 patent by Ford 

Motor Company first mentioned a PNA, Pt-promoted γ-Al2O3, coupled with a urea-SCR 

catalyst [6]. Ji et al. subsequently further researched the use of Pt/Al2O3 as a PNA 

catalyst [7]. They looked at the addition of 1 wt% La to Pt/Al2O3 and observed that the 

addition of La generated new NOx storage sites. While the addition of La increased the 

amount of NOx the catalyst was able to store, it did not benefit the amount of NOx 

released below 250 °C when compared to the non-La containing counterpart which 

actually exhibited higher NOx release below 250 °C. To further investigate this 

phenomenon, DRIFTS measurements were obtained. During NOx-TPD, spectra indicated 

the presence of nitrites and weakly bound nitrate species that were removed from the 
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catalyst surface at low temperatures. Desorption above 250 °C was found to be mainly 

associated with the removal of nitrates.  

General Motors researchers have also researched the use of an Al2O3 support 

without the use of precious metals. Studying Ag on Al2O3, they found that the use of Ag 

requires H2 to be present for NO oxidation and adsorption below 200 °C [8-9]. Toyota 

reported the use of Ag/Al2O3-TiO2 as a NOx Storage Reduction (NSR) catalyst, finding 

that the addition of TiO2 improved NOx storage at 150 °C, while lowering necessary 

desulfation temperatures to 600 °C or lower [10]. Pd/ZSM-5 has been reported as a NOx 

trap three way catalyst (N-TWC) by Honda [11]. The N-TWC catalyst was reported to 

have the ability to reduce NOx and hydrocarbon (HC) emissions during cold starts, which 

have proven to be a problem in TWC catalysts. 

 Ceria is also a candidate material for PNA applications due to anionic vacancies 

in the crystal lattice [12-15] that have been found to facilitate NOx adsorption [16-18]. 

Cordatos et al. observed that oxygen and NO were able to move freely between supported 

Pd and the CeO2 support [19]. Moreover, doping ceria has been found to increase the 

number of vacancies in the crystal lattice [20-21]. Ceria doped with Pr, La, or Nd was 

used in place of the Ba phase in traditional LNT catalysts by Rohart et al. It was found 

that doping ceria greatly benefited NOx storage at low temperatures compared to the Ba-

containing LNT catalysts tested. Doping CeO2 with Pr proved to result in the best storage 

at 250 °C after NOx storage for one minute, resulting in a storage efficiency of 90%. In 

comparison, Ce-La stored ~70% of the NOx fed, with the Ce-Nd catalyst storing less than 

40%. The same trend was paralleled in catalyst ability to oxidize NO to NO2 at 250 °C 

[22]. Wang et al. also explored the addition of Nd, La, and Y to Pt/Ba/Ce0.6Zr0.4O2-Al2O3 

LNT catalyst. They found that the addition of La to Ce-Zr improved NOx storage at 200 

°C, while the addition of Y and Nd did not improve storage [23]. 

Alternatively, several studies have been performed to evaluate the use of CeO2 for 

low temperature NOx storage without rare earth doping. Sun et al. recently studied Sn-Mn 

materials for their NOx storage ability at 100 °C. Upon the addition of CeO2, it was noted 

that NOx storage increased. It was concluded that the addition of CeO2 increased NOx 

storage due to the ability of ceria to oxidize NO to NO2. The presence of Sn-Ce 

interactions and increased concentrations of defect oxygen species on the catalyst surface 
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were also considered to be significant factors [24]. In a study by Cao et al. [25], it was 

observed that storage was dependent on the Co3+ concentration in Ce-Co-Cr-O catalysts. 

To achieve better dispersions of Co, high concentrations of Ce were needed which 

increased Co/Cr interactions. Increased Co/Cr interactions enhanced NO oxidation, thus 

increasing NOx storage. Cu-Mn based catalysts were evaluated for NOx reduction by non-

thermal plasma (NTP) and temperature swing adsorption (TSA) utilizing waste heat from 

an engine [26]. A mixture of N2 and NOx is produced though TSA followed by reduction 

by NTP. Upon incorporation of the Cu-Mn catalyst a higher NTP energy efficiency was 

observed as well as increased NOx conversion. 

Recently, researchers at Ford have studied the use of Low Temperature NOx 

Adsorbers (LTNAs). Theis et al. studied the effects of different ratios of Pt and Pd 

present on a catalyst support obtained from a commercial supplier [27]. All catalysts were 

aged prior to use. Catalysts that were Pt-only and Pt-rich had poor NOx storage and NO 

oxidation activity during cold starts, whereas Pd-rich samples had superior ethene and 

NOx storage. Stored NOx was released predominantly as NO from Pd-rich samples, 

suggesting storage occurred in the form of nitrites. This improved the catalysts’ ability to 

withstand SO2 poisoning by reducing the amount of NOx stored as nitrates, which 

strongly bind to SO2. Ford has also studied Pt and Pd on Al2O3 and ceria-zirconia (CZO) 

washcoats for low temperature NOx storage and desorption under lean conditions [28]. 

Ethene was found to benefit NOx storage below 100 °C for Pd/CZO after aging at 700 °C 

under lean conditions due to beneficial interactions between ethene and NO during 

simulated cold starts (not HC-SCR reactions—which were observed at higher 

temperatures). Pd/CZO was found to exhibit the best performance for NOx storage, most 

NOx being released below 400 °C, while minimal amounts of NO2 and N2O were formed. 

 Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) has been 

frequently applied by researchers to understand how NOx is stored and released on ceria-

based catalysts. When storing NO and O2 on CeO2 at 50 °C, Philipp et al. noticed that 

NO initially stores as nitrites, which is followed by their oxidation to nitrates [29]. A 

study focusing on the affects of temperature on the adsorption of NO + O2 on Pt/CeO2 

found that at room temperature NO is stored at nitrites and is stored as nitrates at 

temperatures in excess of 200 °C [30]. Other researchers have observed the same 
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phenomenon, namely, that NO/O2 initially adsorbs on Pt/CeO2 as nitrites which are then 

oxidized to nitrates [31]. Researchers at Johnson Matthey have claimed that Pd/CeO2 can 

store NO directly as nitrites, such that NO does not have to be oxidized to NO2 during 

storage [32]. The diesel Cold Start Catalyst (dCSCTM), which incorporates the 

aforementioned PNA with a hydrocarbon trap, has been reported to store NO as nitrites 

making it easier to regenerate the catalyst. In a study of model catalysts by Jones et al. 

[33], it was found that Pd preferentially stores NO as nitrites, although Pt preferentially 

stores NO as nitrates due to Pt’s superior oxidation activity over Pd. Pd/CeO2-ZrO2-Pr2O3 

was studied by Yang et al. who observed the NOx species present after exposure to 

stoichiometric amounts of CO + HC + NOx + O2 [34]. Ceria -rich catalysts formed nitrites 

at 50 °C, while zirconia-rich catalysts favored the formation of nitrates. They also found 

that higher Zr concentrations favored higher concentrations of surface oxygen species. 

This observation explains why Zr-rich catalysts favoring nitrate storage at 50 °C.  

 Herein, we report the comparison of 1 wt% Pd on ceria-zirconia doped with Pr 

(obtained from MEL Chemicals) for low temperature NOx storage. Catalysts were 

evaluated for NOx storage and NOx desorption efficiencies at 120 °C, both in the 

presence and absence of CO2 and H2O. The catalysts’ ability to store and release NOx 

upon repeated adsorption-desorption cycling was also evaluated. DRIFTS measurements 

were obtained to understand the specific NOx species present on the catalyst surface 

during NOx storage and desorption.  

  

6.2. Experimental Methods. 

6.2.1. Catalyst preparation. 

Mixed oxides, namely, CeO2-ZrO2 (CZO) doped with Pr and Pr2O3-ZrO2 were 

obtained from MEL Chemicals. 1 wt.% Pd was loaded onto the mixed oxides by means 

of incipient wetness impregnation using aqueous solutions of Pd(NO3)2*xH2O. The 

resulting samples were dried in a vacuum oven at 160 °C overnight and calcined at 500 

°C for 3 h in a muffle furnace.  
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6.2.2 Catalyst Characterization. 

X-ray powder diffraction analysis was conducted on a Phillips X’Pert 

diffractometer using Cu-Ka radiation (λ=1.540598 Å). Diffractograms were recorded 

between 5° and 90° (2θ) with a step size of 0.02°. Brunauer-Emmett-Teller (BET) 

surface area and pore volume measurements were performed by nitrogen physisorption at 

-196 °C using a Micromeritics Tri-Star 3000 system. Catalyst samples were outgassed 

overnight at 160 °C under vacuum prior to measurements.  

Pd dispersions were determined by means of pulsed CO chemisorption at -78 °C 

using a Micromeritics AutoChem II Analyzer. Samples (250 mg) were loaded into the 

reactor and reduced in 10% H2/Ar at 300 °C for 10 min. In each case the sample was then 

purged with Ar for 20 min at the same temperature to remove residual H2 and then cooled 

to -78 °C prior to CO chemisorption. During the measurements 10 ml of CO was pulsed 

into the reactor every 2 min, the CO signal being monitored with a thermal conductivity 

detector (TCD). CO pulsing was terminated when the TCD signal reached a constant 

value, i.e., the precious metal sites were saturated with CO. Assuming a 1:1 ratio of CO 

to surface Pd, the metal dispersion was calculated based on the amount of CO adsorbed.  

Temperature-programmed reduction (TPR) was performed using Micromeritics 

AutoChem II Analyzer. Ca. 150 mg of catalyst was loaded in the reactor and pretreated in 

10% O2/Ar at 500 °C for 30 min. After cooling the sample to room temperature (RT) the 

cold trap was submerged in a dry ice and isopropanol bath at -78 °C. Followed by TPR 

being carried out in a 10% H2/Ar flow with a ramp of 10 °C/min from RT to 900 °C.  The 

H2 signal during TPR was monitored using a TCD. 

Raman spectra of the catalysts were recorded using a Jobin Yvon Horiba Raman 

dispersive spectrometer with a variable-power He–Ne laser source (632.8 nm), equipped 

with a confocal microscope with a 10x objective of long focal length. The spectrum of 

each sample was obtained as the average signal of two individual spectra of different 

areas of the sample. The acquisition time for each individual spectrum was 20 s. The 

detector was of the CCD cooled Peltier type.  

X-ray photoelectron spectroscopy (XPS, K-ALPHA, Thermo Scientific) was used 

to analyze the surfaces of the catalysts. All spectra were collected using Al-Kα radiation 

(1486.6 eV), monochromatized by a twin crystal monochromator, yielding a focused X-
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ray spot with a diameter of 400 µm, at 3 mA × 12 kV. The alpha hemi- spherical analyser 

was operated in the constant energy mode with a pass energy of 50 eV. Charge 

compensation was achieved with a low energy electron flood gun and low energy argon 

ions from a single source. 

 

6.2.3. NOx storage and desorption measurements. 

NOx storage and desorption efficiencies of the catalysts were determined in a 

quartz microreactor with a Pfeiffer Thermostar GSD301 mass spectrometer as the 

detector. Prior to measurements samples (170 mg) were pretreated at 550 °C for 10 min 

under a flow of 5% O2 in He (120 sccm) and then cooled to room temperature under 

flowing Ar. Samples were then equilibrated under a flow of 3.5% H2O, 5.0% CO2 and 

5% O2 (bal. He, 120 sccm) at the designated storage temperature; typically, this took 15 

min, at which point the feed and effluent H2O and CO2 concentrations were equivalent. 

NOx storage was initiated by adding 300 ppm NO to the feed. Storage experiments were 

conducted at 120 °C using a 5 min storage time. In all cases, a total flow rate of 120 sccm 

was used, corresponding to a gas hourly space velocity (GHSV) of ca. 30,000 h-1. At the 

completion of the storage period the feed gas was switched to bypass mode and the NO 

flow was switched off. When the NO concentration had dropped to zero, the gas was re-

directed to the reactor and temperature programmed desorption (TPD) was carried out to 

study NOx desorption behavior using a ramp rate at 10 °C/min from the storage 

temperature up to 500 °C.  

To understand the effect of multiple storage-desorption cycles, cycling 

experiments were also performed. Catalyst pretreatment and NOx storage were performed 

as described above (using a storage temperature of 120 °C), after which TPD was 

performed up to 350 °C at a ramp of 10 °C/min under the same lean feed gas with the 

exclusion of NO. Subsequently, the temperature was lowered to 120 °C for the next NOx 

adsorption-desorption cycle. A total of five cycles were performed for both Pt/CeO2 and 

Pd/CeO2.  

NOx storage efficiency (hereafter denoted as NSE) is defined as the percentage of 

NOx passed over the catalyst that is stored, while NOx desorption efficiency (hereafter 

denoted as NDE) is defined as the percentage of stored NOx desorbed during TPD, i.e.:  
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in which t is the NOx storage time; [NO]in is the inlet NOx concentration during NOx 

storage; [NOx]out is the outlet NOx concentration during either NOx storage or the 

subsequent NOx desorption period; t(To) is the start time of NOx-TPD corresponding to 

the NOx storage temperature before the temperature is raised; t(T) is the end time of NOx-

TPD corresponding to the desired NOx desorption temperature.  

 

6.2.4. DRIFTS Measurements. 

DRIFTS measurements were performed to monitor the surface species involved in 

NOx adsorption and desorption. Measurements were performed using a Nicolet 6700 IR 

spectrometer equipped with a Harrick Praying Mantis accessory and MCT detector. The 

reaction cell was sealed with a dome equipped with two ZnSe windows and one SiO2 

observation window. The temperature of the reactor cell was controlled and monitored by 

a K-type thermocouple placed beneath the reaction chamber. For each DRIFT spectrum 

an average of 115 scans was collected (requiring ca. 1 min) with a resolution of 4 cm-1. 

The spectrometer as well as the outside of the reaction cell were continuously purged 

with dry nitrogen to avoid diffusion of air into the system. Catalyst samples (~50 mg) 

were pretreated in situ in 300 ppm NOx for 1 h then reduced at 450 °C for 15 min under 

10% H2 in order to remove carbonates, after which background spectra were collected 

(under Ar) in the range of 500-100 °C at intervals of 50 °C. NOx storage was carried out 

at 100 °C for 30 min using a feed consisting of 5% O2/Ar and 300 ppm NO (120 sccm). 

During NOx storage, spectra were collected as a function of time. After 30 min of NOx 

storage, TPD was performed in flowing 5% O2/Ar flow (120 sccm), the temperature 

being raised from 100 °C to 500 °C at a rate of 10 °C/min. DRIFT spectra were recorded 
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during TPD at intervals of 50 °C. Absorbance spectra were obtained by subtracting 

background spectra from the spectra collected during NOx storage and desorption.  

 

6.3. Results and Discussion. 

6.3.1. Sample Characterization. 

Analytical data for CZO-Pr promoted with 1 wt.% Pd are collected in Table 1. 

Henceforth, all samples will be referred to as PdACeBZrCPr, where A is the 

concentration of Ce present, B is the concentration of Zr, and C is the concentration of Pr 

present in the catalyst. For previously studied CeO2 doped with Pr2O3, it was found that a 

Ce/Pr mole ratio of 4 exhibited the best performance, thus supports with the same Ce/Pr 

ratio with Zr-rich or Zr-light concentrations were prepared. Additionally, mixed oxides 

containing differing concentrations of Pr and equal concentrations of Ce-Pr with ZrO2 

were prepared in order to show the effect of lowering the Ce/Pr mole ratio to 1. As shown 

in Figure 6.1, powder X-ray diffractograms of the doped CeO2 supports display broad 

diffraction peaks. The Pd64Ce16Pr20Zr sample showed typical diffraction peaks for the 

CeO2 [35-36] fluorite structure with no evidence of separate ZrO2 phases. The main two 

peaks characteristic of the fluorite structure, corresponding to the (111) and (220) planes, 

were observed at 28.5° and 32.6° respectively. However, the Pd20Pr80Zr, Pd40Pr60Zr, 

and Pd16Ce4Pr80Zr samples showed typical diffraction peaks associated with the 

monoclinic crystal structure of ZrO2 at 29.6° (111) and 34.0° (200) [37]. 

Pd20Ce20Pr60Zr was the only sample with diffraction peaks associated with both CeO2 

fluorite structure and the ZrO2 monoclinic structure. The average crystallite diameters of 

the supports calculated using the Scherrer equation ranged from 5.2 to 11.9 nm.  

From N2 physisorption data, BET surface areas as large as 112.5 m2/g 

(Pd20Ce20Pr60Zr) and as small as 74.9 m2/g (Pd20Ce80Pr) were obtained, all of the 

samples displaying larger surface areas than PdCe20Pr (discussed in Chapter 5). Doping 

Ce-Pr with Zr also increased pore radius (rpore) and pore volumes (Vpore). Aging of 

Pd64Ce16Pr20Zr resulted in a 50% loss in surface area, as summarized in Table 6.1. CO 

chemisorption indicates that Pd particle sizes were as small as 2.18 nm for 

Pd16Ce3Pr80Zr and as large as 4.45 nm for Pd20Ce20Pr60Zr. Pd particle sizes were 

similar to those obtained for CeO2 mixed oxides, discussed in the previous chapter. 
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However, increasing the Pr content for samples without CeO2 resulted in an increase in 

Pd size (3.43-3.95 nm). The same trend is observed when increasing CeO2 content in 

samples that maintain a Ce/Pr of 4, while equal concentrations of Ce and Pr gave the 

largest Pd particle size. This suggests that increasing the content of Ce and Pr weakens 

interactions with Pd, resulting in the increased Pd particle size. As expected the lattice 

parameter (a) is significantly smaller for all Zr-containing samples due to the smaller 

diameter of Zr4+ (84 nm—ionic radii of Ce and Pr are greater than 100 nm). Additionally, 

a increases from 0.302 nm (Pd20Pr80Zr) to 0.305 nm (Pd40Pr60Zr) when increasing the 

content of Pr in Zr, indicating that the lattice is expanding to accommodate the additional 

Pr. The same finding was observed for other samples containing Ce, Pr, and Zr, i.e. a 

became larger as Zr content decreased. Consistent with the highly dispersed nature of Pd 

in these samples, diffraction lines for Pd was not observed in their X-ray diffractograms.  

 

 

Table 6.1. Physical properties of fresh Pr-doped CeO2 and CeO2-ZrO2 catalysts used in 

this work. 

Catalyst dsupport 

(nm) 

BET SA  

(m2/g) 

dpore 

(nm) 

Vpore 

(cm3/

g) 

rmetal (nm) a 

(nm) 

Fresh Aged Fresh Aged Fresh Aged 

PdCe20Pr 10.0 14.9 66.2 18.9 3.4 0.24 3.99 8.30 0.546 

Pd20Pr80Zr 11.9 -- 74.9 -- 9.6 0.36 3.43 -- 0.302 

Pd40Pr60Zr 8.0 -- 88.4 -- 8.1 0.37 3.95 -- 0.305 

Pd16Ce4Pr80Zr 7.8 -- 77.3 -- 8.9 0.34 2.18 -- 0.299 

Pd20Ce20Pr60Zr 5.2 -- 112.5 -- 7.4 0.42 4.45 -- 0.304 

Pd64Ce16Pr20Zr 7.2 13.2 88.0 44.6 5.2 0.23 2.85 4.63 0.312 
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Figure 6.1. X-ray diffraction patterns of Pr-doped CeO2 and CeO2-ZrO2 catalysts. 

 

 

Raman spectroscopic analysis of fresh samples (PdCe, PdCe20Pr, 

Pd64Ce16Pr20Zr) indicates a decrease in the intensity of the bands associated with the 

ceria F2g mode and the presence of oxygen vacancies when Pd-promoted CeO2 is doped 

with Pr and/or Zr. This is attributed to the effects associated with the doping of CeO2 

previously discussed in Chapter 5. The presence of surface oxygen species/peroxides at 

1151 cm-1, was also detected through Raman spectroscopy [38-39]. A shift in ceria’s F2g 

mode towards lower wavenumber was observed upon doping with Zr and/or Pr (see 

Figure 6.2). This is attributed to the expansion of the unit cell to accommodate Pr3+ 

(larger than Ce4+). The expected change of the F2g band position upon Zr4+ doping 

(smaller than Ce4+) would be towards higher Raman shifts, but this was not observed, 

indicating that the effect of Pr doping prevails with regard to that of Zr doping. Through 

XPS analysis, summarized in Table 6.2, it was concluded that doped samples were 

somewhat enriched in Zr and Pr due to Ce/Zr and Ce/Pr ratios being lower than the 

nominal values.  
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Figure 6.2. Raman analysis of Pr-doped CeO2 and CeO2-ZrO2 catalysts. 
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Figure 6.3. Effect of Pr doping on the Raman shift of the CeO2 F2g band. 

 

Table 6.2. Atomic concentrations determined by XPS for fresh samples (*denotes 

nominal values). 

Species Pd64Ce16Pr20Zr PdCe20Pr PdCe 

C 27.48 49.02 35.29 

O 47.41 36.69 45.39 

Pd 0.75 0.43 0.62 

Ce 13.1 14.04 18.71 

Pr 6.3 5.33 -- 

Zr 4.94 -- -- 

Ce3+ (%) 30.1 25.9 33.2 

Ce/Pr 2.1 (4) 2.6 (4) -- 

Ce/Zr 2.7 (3.2) -- -- 
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Figure 6.4 compares TPR profiles of 64Ce16Pr20Zr to Ce20Pr. In both instances 

it is evident that PdO and the surface in close contact with Pd reduce at lower 

temperatures that the bulk support [40]. However, the PdO of Pd64Cr16Pr20Zr is appears 

to undergo reduction at room temperature, which is significantly lower than PdO on 

PdCe20Pr (103 °C). Additionally, a small reduction peak is observed at ~70 °C for 

Pd64Ce16Pr20Zr, possibly due to the reduction of PdO on ZrO2 domains. PdCe20Pr also 

exhibits two reduction peaks in the ranges of 300-600 °C and 600-900 °C attributed to the 

bulk support. Most likely these correspond to Pr-rich and Ce-rich areas respectively as it 

has been shown that Pr4+ reduces more readily that Ce4+ [41]. Pd64Ce16Pr20Zr shows 

bulk reduction peaks at slightly different temperatures than those observed for PdCe20Pr: 

235-630 °C and 630-900 °C. Unpromoted Ce20Pr has two reduction bands at ~400 and 

500 °C which can be attributed to surface reduction, while those of unpromoted 

64Cr16Pr20Zr are shifted to slightly higher temperatures at 430 °C and 540 °C. It should 

also be noted that reduction bands observed in the region 300-600 °C for all samples can 

also be attributed to carbonates or hydroxides [42-45]. 

 
Figure 6.4. H2-TPR profiles of fresh catalysts from the Ce20Pr and 64Ce16Pr20Zr series. 
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6.3.2. Effect of CeO2 content on NSE. 

Preventing NOx slip at temperatures below 180 °C has become the major focus of 

emission control for automotive companies. It was reported by Ford Motor Company 

[46] that the exhaust temperature of a 4.4 L diesel engine reaches 60 °C within ~10 s 

during cold starts. However, to reach temperatures greater than 180 °C, ~180 seconds are 

required. For this reason, NOx Storage Efficiency (NSE) was evaluated at 120 °C for all 

samples. Supports were promoted with 1 wt% Pd due to the benefit of low temperature 

(<350 °C) desorption as previously discussed. Figure 6.5 summarizes the NSE of the 

samples at 120 °C for 5 minutes of NOx storage. For CeO2-M2O3 mixed oxides, the best 

NSE was achieved by a catalyst with a molar Ce:Pr ratio of 4, as discussed in Chapter 5. 

Therefore, in order to assess the effect of doping with Zr, Pd64Ce16Pr20Zr was prepared, 

which had an NSE of ~53% after 1 minute of storage under lean conditions, although this 

was lower than that achieved by PdCe20Pr (~58%) at one minute. Lowering the 

concentration of CeO2 and Pr2O3, while maintaining a Ce:Pr ratio of 4 to create 

Pd16Ce4Pr80Zr, lowered NSE by ~10% at one minute. To evaluate the effects of equal 

concentrations of CeO2 and Pr2O3 on NOx storage, Pd20Ce20Pr60Zr was utilized. 

Pd20Ce20Pr60Zr exhibited the worst NSE of all the CeO2 containing catalysts, indicating 

that an excess of CeO2 needs to be present relative to Pr2O3 to obtain good NOx storage 

efficiency. To evaluate the affects of Pr2O3 without the presence of CeO2, Pd20Pr80Zr 

and Pd40Pr60Zr were prepared. Doping ZrO2 with small amounts of Pr2O3 without CeO2 

present afforded an NSE comparable to that of Pd16Ce4Pr80Zr. However, increasing the 

Pr2O3 concentration from 20 mol% to 40 mol% severely hindered NSE, making it the 

least appealing catalyst for NOx storage. While increasing the concentration of Pr2O3 in 

CeO2 benefited NSE as previously discussed in Chapter 5, it did not perform well without 

the presence of CeO2. In summary, adding CeO2 to Pr and Zr benefited NSE when the 

ternary oxide catalysts were Ce-rich, indicating that CeO2 is necessary for NOx storage 

and that doping CeO2 with small quantities of Pr and potentially Zr can further increase 

storage efficiency.  
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Figure 6.5. Comparison of NOx storage efficiency at 120 °C for Pr-doped CeO2 and 

CeO2-ZrO2 catalysts. Feed: 300 ppm NO, 5% O2, 5% CO2, 3.5% H2O and He balance. 

 

6.3.3. NOx-TPD and NDE results. 

As shown in Figure 6.6, the addition of Zr to Ce-Pr supports shifted desorption 

peaks above 350 °C to slightly lower temperatures compared to PdCe20Pr. However, in 

comparison Pr-Zr supports exhibited slightly higher desorption temperatures. Notably, 

Ce-rich catalysts released less NOx below 350 °C compared to high temperature release, 

while Zr- and Pr-rich samples release relatively more NOx at lower temperatures (Figure 

6.7). The same trend is observed when evaluating NOx Desorption Efficiencies (NDE) 

below 350 °C and 350-500 °C. Pd20P80Z and Pd40P60Z release the majority of stored 

NOx below 350 °C, while the addition of Ce (Pd16C4P80Z) slightly increased release 

above 350 °C (in relative and absolute terms—see Figure 6.8) which continued to 

increase with CeO2 content. Thus, as previously observed, Pr is beneficial to low 

temperature NOx desorption, while the interaction of CeO2 with Pr benefits NSE. 

However, when the CeO2 content was increased to a high level (64 mol%), high 

temperature NOx release increased. (See Figures A.2.5. and A.2.6. for triplicates of 

samples with initially more than 100% total NDE). 
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Figure 6.6. NOx-TPD profiles of Pr-doped CeO2 and CeO2-ZrO2 after NOx storage at 120 

°C for 5 minutes. 

 

 

 
Figure 6.7. Comparison of NOx desorption efficiency after storage at 120 °C for two 

different temperature ranges: < 350 °C and 350-500 °C. 
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Figure 6.8. Comparison of amount of NOx desorbed after storage at 120 °C for two 

different temperature ranges: < 350 °C and 350-500 °C. 

 

 

6.3.4. Cycling Studies.  

Actual use of PNA catalysts in exhaust aftertreatment systems would require that 

the catalyst be cycled between ambient temperatures (cold start) and standard operating 

temperatures (~180-350 °C for a light duty diesel engine) [47]. At normal operating 

temperatures some degree of NOx desorption would occur. To test PdCe20Pr and 

Pd64Ce16Pr20Zr under these conditions, cycling experiments were performed involving 

NOx adsorption at 120 °C for 5 minutes, followed by heating to 350 °C to induce thermal 

release of stored NOx. This was repeated 5 times. During cycling of Pd64Ce16Pr20Zr, 

the NSE of the second cycle was higher than the first, indicating that one cycle is needed 

to stabilize the support with respect to NOx storage (Figure 6.9). Little change in NSE 

was observed after the 3rd cycle for Pd64Ce16Pr20Zr. In contrast, PdCe20Pr requires 

longer to reach quasi-steady state conditions and doesn’t reach a stable NSE until the 4th 
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cycle. Minimal differences are observed in NDE below 250 °C and 350 °C for both 

samples as shown in Figure 6.10. In both instances desorption below 250 °C reaches a 

near constant value after the 3rd cycle, while release below 350 °C continues to increase 

with each cycle due to incomplete desorption of stored NOx from the previous cycle. 

Comparatively, Figure 6.11, displays a comparison of NOx stored with NOx desorbed 

with each cycle for Pd64Ce16Pr20Zr and PdCe20Pr. More NOx is stored than released 

below 250 °C and 350 °C. With each cycle the total amount of NOx released below 350 

°C becomes closer to the amount stored, further suggesting that stored NOx from 

previous cycles is being released with each cycle (i.e., approaching “steady-state” the 

surface is becoming saturate with NOx). 

 
Figure 6.9. Comparison of NOx storage efficiency at 120 °C for 5 minutes for five 

consecutive adsorption cycles for Pd64Ce16Pr20Zr and PdCe20Pr. 

 

 
Figure 6.10. Comparison of NOx desorption efficiency below 250 °C and 350 °C for five 

consecutive desorption cycles for Pd64Ce16Pr20Zr and PdCe20Pr. 
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Figure 6.11. Comparison of NOx storage and desorption with each cycle for 

Pd64Ce16Pr20Zr and PdCe20Pr. 

 

6.3.5. Effect of Zr on Content Aging. 

Aside from continued use, catalysts in aftertreatment systems need to be able to 

withstand high temperatures. Ford researchers found that exhaust temperatures can be as 

high as 800 °C during a DOC clean up [27]. Therefore, Pd64Ce16Pr20Zr was aged at 750 

°C for 16 hours under lean conditions (5% O2, 5% CO2, 3.5% H2O with He balance) and 

compared to PdCe20Pr after aging to gauge the effect of Zr doping on catalyst ability to 

withstand high temperatures. After aging, catalysts were cooled to room temperature and 

NOx stored at 120 °C for 5 minutes followed by TPD. Figure 6.12 displays the NSE 

comparison of PdCe20Pr and Pd64C16P20Z before and after aging. It is evident that NOx 

storage is severely hindered by aging for both catalysts. However, Pd64Ce16Pr20Zr 

stores almost 10% more NOx after aging than PdCe20Pr (at all storage times), thus 

suggesting that the addition of Zr improves the catalyst’s ability to withstand deactivation 

at high temperatures. NOx desorption after aging significantly increases below 350 °C in 

both cases (see Figure 6.13). Overall, Pd64Ce16Pr20Zr maintains better storage after 

aging than PdCe20Pr, while the NDE below 350 °C is similar for the two aged catalysts. 

Cumulatively Pd64Ce16Pr20Zr releases more NOx than PdCe20Pr after aging (Figure 

6.14). This is consistent with the fact that Zr stabilizes the lattice, as confirmed by the 

lower decrease in surface area after aging for Pd64Ce16Pr20Zr. Indeed, Pd64Ce16Pr20Zr 

lost roughly half of its surface area after aging, while PdCe20Pr lost more than 3 times its 

original surface area (summarized in Table 6.1).   
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Figure 6.12. NSE comparison of PdCe20Pr and Pd64Ce16Pr20Zr after aging for 16 hours 

under lean conditions (5% CO2, 5% O2, and 3.5% H2O with He balance). 
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Figure 6.13. Comparison of NDE for PdCe20Pr and Pd64Ce16Pr20Zr after aging for 16 

hours. 

 

 
Figure 6.14. Cumulative NOx release of fresh and aged PdCe20Pr and Pd64Ce16Pr20Zr. 

 

116



117	
	

 

6.3.6. Affects of CO2 and H2O on NSE and NDE. 

It has been previously reported that CO2 and water competitively adsorb with NOx 

on CeO2 [29]. Therefore, the effects of CO2 and water on NOx storage were evaluated for 

fresh Pd64Ce16Pr20Zr and PdCe20Pr (Figure 6.15). The same conditions were used for 

NOx storage as previously described in section 6.2.3 without CO2 and water in the feed. 

In the previous chapter it was reported that the addition of Pr to PdCe improved ceria’s 

ability to withstand deactivation by water and CO2. Comparing PdCe20Pr and 

Pd64Ce16Pr20Zr without water and carbon dioxide present, it was found that unlike 

PdCe20Pr, Pd64Ce16Pr20Zr exhibited a much higher NSE. For both catalysts, NDE for 

NO storage without water and CO2 in the feed was significantly lower below 350 °C than 

that observed in the presence of CO2 and water (Figure 6.16). This further confirms that 

water and CO2 can adsorb on strong adsorption sites in the catalysts. 

 

 
Figure 6.15. Comparison of NSE for PdCe20Pr and Pd64Ce16Pr20Zr measured with and 

without CO2 and water in the feed. 
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Figure 6.16. Comparison of NDE for PdCe20Pr and Pd64Ce16Pr20Zr with and without 

CO2 and water in the feed. 

 

6.3.7. DRIFTS Studies. 

6.3.7.1. NO/O2 Storage and Desorption. 

The above indicates that Pd64Ce16Pr20Zr yields the best NSE at low 

temperatures, although lower than PdCe20Pr. To understand which NOx species are 

present during adsorption and desorption, DRIFT spectra for Pd64Ce16Pr20Zr were 

obtained for NO/O2 storage at 100 °C for 30 minutes, Figure 6.17. After 30 seconds of 

NOx storage a strong chelating nitrite band [29-31] and nitrito nitrite band [48] are 

observed at 1174 cm-1 and 1424 cm-1 respectively. Little to no nitrates are detected after 

30 seconds of storage. In contrast, PdCe20Pr displays a weak band associated with 

molecularly adsorbed NO2 at 1637 cm-1 that is absent in Pd64Ce16Pr20Zr (previously 

discussed in Chapter 5). Several nitrate bands appear after two minutes at 1609, 1565, 

1252, and 1018 cm-1 [29-31, 49-50]. The nitrate band at 1609 cm-1 was absent in storage 

spectra for PdCe20Pr. NOx storage on Pd (~1747 cm-1) was not observed for 

Pd64Ce16Pr20Zr as for PdCe20Pr. All bands continue to grow in intensity as time 

advances. 
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Figure 6.17. DRIFT spectra acquired during NO storage at 100 °C for Pd64Ce16Pr20Zr. 

Feed: 300 ppm NO, 5% O2, Ar balance. 

 

DRIFT spectra obtained during TPD for Pd64Ce16Pr20Zr are shown in Figure 

6.18. Like PdCe20Pr, the chelating nitrite band at 1164 cm-1 disappears by 300 °C. The 

nitrito nitrite band at 1421 cm-1 decreases in intensity with ramping of the temperature to 

500 °C. Nitrate bands at 1032 and 1009 cm-1 reach a maximum intensity at 300 °C and 

begin to diminish above 300 °C. While nitrites disappear by 500 °C, nitrates remain at 

1611, 1556, 1535, 1266, 1243, and 1009 cm-1. Desorption behavior of Pd64Ce16Pr20Zr 

is very similar to that observed for PdCe20Pr, only adsorption spectra display significant 

differences.  
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Figure 6.18. DRIFT spectra acquired during TPD after NO storage at 100 °C for 

Pd64Ce16Pr20Zr. Feed: 300 ppm NO, 5% O2, Ar balance. 

 

 

6.4. Conclusions. 

NOx storage was not benefited by the addition of Zr compared to previously 

studied binary systems (in the fresh state). Increasing CeO2 content in the ternary systems 

was found to increase high temperature NOx desorption due to increased oxygen mobility 

with increased CeO2 concentration. Additionally, the reduction of PdO at room 

temperature for Pd64Ce16Pr20Zr and increased NOx desorption above 350 °C further 

confirm that increased CeO2 content of the ternary mixed oxides increases oxygen 

mobility. Pr-Zr supports had low NSE, but the low NSE was partially compensated by 

greatly increased NOx release below 350 °C. Equal concentrations of Pr and CeO2 in the 

Ce-Pr-Zr system resulted in nearly the lowest NSE amongst all supports evaluated, thus 

indicating that the optimal Ce/Pr mole ratio is 4. Pd64Ce16Pr20Zr was found to be the 

best catalyst among those provided by MEL chemicals. Although NSE was lower than 

that observed for PdCe20Pr, the addition of Zr increased catalysts ability to withstand 
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high temperatures as observed when tested after hydrothermal aging at 750 °C for 16 

hours under lean conditions. As previously observed, a large portion of stored NOx on 

aged catalysts was released below 350 °C. With increased stability after hydrothermal 

aging and enhanced low temperature desorption below 350 °C, Pd64Ce16Pr20Zr proved 

to be the most promising catalyst evaluated for PNA applications.  
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Chapter 7. Significant Findings and Recommendations. 
 

The primary goal of this dissertation was to evaluate and improve ceria-based catalysts 

for low temperature NOx storage to mitigate cold start NOx slip. The drive for research 

focused on reducing NOx emissions during cold starts for diesel engines is due to 

evolving and more stringent emission regulations set forth in the United States by the 

EPA. A second objective was to study structural changes in aged LNT and SCR catalysts 

using electron microscopy. The methodology for achieving these goals was as follows: 

• Investigation of morphology changes between fresh and aged LNT and SCR 

catalysts after simulated road aging utilizing TEM, STEM, and EDS. 

• Study of model ceria catalysts for NOx storage and desorption behavior at 

selected storage temperatures (80 °C, 120 °C, and 160 °C) for 5 minutes.  

• Evaluation of the role of Pt and Pd in NOx storage and desorption behavior as 

well as the role of ceria dopants in both the fresh and aged state. 

• Study of NOx storage and desorption mechanisms of PNA catalysts utilizing 

DRIFTS.  

 

7.1. Significant Findings. 

7.1.1. Electron Microscopy of LNT and SCR Catalysts. 

• Simulated road aging led to the accumulation of sulfur on Pt in the LNT catalyst 

as well as sintering of Pt particles.  

• Aging of Cu-CHA SCR catalyst led to the migration of Cu2+ (originally present 

on the ion exchange sites in the zeolite) to the surface to form CuO nanoparticles.  

• Zr-rich areas observed in both the fresh and aged SCR catalyst did not display 

structural changes after aging. 

 

7.1.2. NOx Storage and Desorption Behavior of Model Ceria Catalysts. 

• Promotion with Pt increased NOx storage, however, the majority of NOx is 

released at temperatures above 350 °C making it harder to regenerate the catalyst 

during normal operation. 
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• Promotion with Pd decreased NOx storage, however, the loss of storage with the 

use of Pd is to some degree compensated by the increase in low temperature (< 

350 °C) NOx release.  

• Evaluation of NOx storage at three temperatures revealed that increasing storage 

temperature increased NOx storage. For NOx stored at 80 and 120 °C, Pd/CeO2 

gave higher low temperature NOx desorption in absolute terms compared to 

Pt/CeO2.  

• Adsorption-desorption cycling studies revealed that NSE stabilized after the third 

cycle and NDE continued to increase below 350 °C with continued cycling. This 

indicates that with each cycle weak storage sites are increasingly used for which 

NOx readily desorbs. 

• DRIFT spectra indicate that NOx is preferentially stored as thermally stable 

nitrates for platinum-promoted materials while palladium promotes NOx storage 

as thermally labile nitrites. Platinum, being a better oxidation catalyst than 

palladium, tends to store NOx as nitrates.  

 

7.1.3. Effects of NOx Storage Behavior upon Doping CeO2 with Rare Earth Oxides. 

• Doping ceria with Pr generates oxygen vacancies as well as surface oxygen 

species according to Raman analysis.  

• Doping with Pr, Sm, and Nd benefited NSE compared to undoped CeO2, while 

doping with Y, and La did not.  

• Pr proved to be the most promising dopant for increased NOx storage at low 

temperatures as indicated by the superior NSE obtained. This is attributed to the 

fact that Pr4+ reducing more easily than Ce4+ as indicated by XPS data. 

•  Doping with Pr increased NOx release below 350 °C (making it easier to 

regenerate the catalyst).  

• Pt- and Pd-promoted Ce20Pr were found to have a lower change in NSE when 

NOx is stored in the presence and absence of CO2 and H2O compared to model 

catalysts described in Chapter 4. Thus doping CeO2 with Pr makes the support 

more resilient to the effects of CO2 and H2O, which has been shown to 

competitively adsorb on CeO2 with NOx.  
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• Overall, doping with Pr was found to be promising due to increased NSE at low 

temperatures, ease of catalyst regeneration, and resistance to deactivation in the 

presence of water and CO2.  

 

7.1.4. Doping Ce-Pr mixed oxides with ZrO2.  

• Zirconia-rich supports had lower NSE compared to ceria-rich supports.  

• Binary systems, Pr-Zr, exhibit lower NSE than the ternary systems, Ce-Pr-Zr, 

indicating that CeO2 is necessary to achieve high NSE at low temperatures. 

• Increasing CeO2 content increased high temperature NOx release due to increased 

NO oxidation activity with increasing CeO2 content (i.e., oxygen mobility 

increases with CeO2 content.)  

• The addition of ZrO2 benefited catalyst storage by stabilizing the support, with the 

consequence that Pd64Ce16Pr20Zr showed a smaller decrease in NSE after aging 

compared to PdCe20Pr. 

 

7.2. Suggestions for Future Work. 

 

 Although the work presented here suggests ceria doped with praseodymium to be 

promising for PNA applications, more research is needed if this is to become a 

commercially viable technology. Ceria doped with 20% Pr was identified as the most 

promising material for PNA applications, however, after aging the catalyst displayed 

significantly lower NOx storage activity than in the fresh state. Current diesel 

aftertreatment systems must be able to withstand high temperatures that may be 

experienced during a DPF clean up. Due to these high temperature demands on the 

catalyst, further development is needed to improve the stability of these materials without 

compromising NOx storage and catalyst regeneration abilities. 

 

 In depth reactor studies are needed to understand catalyst activity after exposure 

to sulfur as well as hydrocarbons. Exposure to sulfur is inevitable in diesel aftertreatment 

systems, therefore it is imperative for PNA catalysts to withstand sulfur poisoning.  
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A reactor system with the ability to measure N2O evolution during NOx 

desorption would be beneficial, as N2O has a larger contribution to the greenhouse effect 

than CO2. Hence, it is important to ensure that N2O is not generated over the PNA during 

NOx storage or desorption. 

 

 With regard to the study of NOx storage and desorption mechanisms, the ability 

to acquire DRIFT spectra with water present in the feed gas would be beneficial for 

identifying the NOx species present during NOx storage and desorption under realistic 

conditions.  

 

Lastly, studies of a PNA coupled to a urea-SCR catalyst, operating with feed gas 

from a diesel engine, would lend significant insight as to the performance of the PNA in a 

vehicle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix – List of Abbreviations. 
 

A-DOC: advanced-diesel oxidation catalyst. 
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BET: Brunnauer-Emmett-Teller. 

CAA: clean air act.  

CO: carbon monoxide. 

CZO: ceria-zirconia oxide. 

dCSCTM: diesel Cold Start Catalyst. 

DOC: diesel oxidation catalyst. 

DPF: diesel particulate filter. 

DRIFTS: diffuse reflectance infrared Fourier transform spectroscopy. 

EPA: Environmental Protection Agency. 

FTP-75: federal test procedure mimicking urban driving. 

GHSV: gas hourly space velocity. 

GM: General Motors. 

GVWR: gross vehicle weight ratio. 

HC: hydrocarbon. 

HC-SCR: selective catalytic reduction catalyst utilizing hydrocarbons as the reductant. 

HNO3: nitric acid. 

HT: high temperature. 

ICP: inductively coupled plasma. 

LDV: light duty vehicle. 

LNT: lean NOx trap. 

LT: low temperature. 

LTNA: low temperature NOx adsorber. 

MS: mass spectrometry. 

N2: nitrogen gas. 

NDE: NOx desorption efficiency.  

N2O: nitrous oxide. 

NH3-SCR: selective catalytic reduction of NOx with ammonia reductants. 

NMOG: non-methane organic gases.  

NOx: nitrogen oxides (NO and NO2). 

NSE: NOx storage efficiency. 

NTP-TSW: Non-thermal plasma-temperature swing adsorption. 
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N-TWC: NOx-trap three way catalyst.  

O3: atmospheric gas ozone. 

PBA: platinum promoted barium-alumina. 

PBAC: platinum promoted barium-alumina-ceria. 

PdACeBPrCZr: palladium promoted ceria-zirconia-praseodymium with A being the mol 

% of Ce, B the mol % of Pr, and C the mol % of Zr present.  

PdCe[X]M: paladium promoted ceria doped with [X] quantity (X = 5, 10, or 20 mol.%) 

of dopant M (M=La, Y, Sm, Nd, or Pr). 

PGMs: platinum group metals (Ru, Rh, Pd, Os, Ir, Pt). 

PM: particulate matter. 

PNA: passive NOx adsorber. 

PtCe[X]M: platinum promoted ceria doped with [X] quantity (X = 5, 10, or 20 mol.%) of 

dopant M (M=La, Y, Sm, Nd, or Pr). 

SC03: supplemental federal test procedure mimicking urban driving with the use of air 

conditioning. 

SCR: selective catalytic reduction. 

TCD: thermal conductivity detector. 

TPD: temperature programmed desorption. 

TPR: temperature programmed reduction. 

TWC: three-way catalyst. 

US06: supplemental federal test procedure simulating high speed driving. 

VOC: volatile organic compounds. 

XPS: X-ray photoelectron spectroscopy. 

XRF: X-ray fluorescence. 
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Appendix A.2. Supplemental Figures and Graphs. 
 

 
Figure A.2.1. NOx emissions are stored on the PNA until the downstream SCR catalyst 

has reached operational temperatures (>180 ⁰C). 

 

 

 
Figure A.2.2. STEM image of aged LNT catalyst displaying Pt particle with a size of 27 

nm. 
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Figure A.2.3. Co-precipitation procedure utilized to make CeO2-M2O3 supports. Nitrate 

precursors were combined with Ammonium hydroxide (NH4OH) and allowed to stir over 

night to precipitate. Followed by vacuum filtration and heating of the catalyst in air for 1 

hour at 80 °C after which the catalyst is placed in a vacuum oven to completely drive 

over night at 80 °C. Once the catalyst is completely dry it is calcined in a muffler furnace 

at 500 °C for 3 hours to remove nitrates. 

  
Table A.2.1. BET surface area (SA) of catalyst supports prepared at the University of 

Kentucky Center for Applied Energy Research and support diameters as determined by x-

ray diffraction. 

Support BET SA (m2/g) Support diameter (nm) 

CeO2 76.6 13.2 

Ce5Pr 66.5 11.7 
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Ce20Pr 83.7 10.1 

Ce5La 59.2 11.7 

Ce20La 66.5 11.7 

Ce5Y 67.8 11.9 

Ce20Y 64.2 11.7 

Ce5Sm 61.7 13.2 

Ce20Sm 54.9 11.4 

Ce5Nd 61.2 13.9 

Ce20Nd 80.9 8.9 

 

 

 
Figure A.2.4. Total amount of NOx released (mmol) per gram of catalysts follows the 

same trend as NSE data for PtCeXM. Increasing Pr content increases NOx storage, but 

decreases storage when increasing the content of Y, La, Nd, and Sm.  
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Figure A.2.5. NSE at 120 °C for 5 minutes were performed in triplicates for catalysts that 

had initial NDE greater than 100%. Percent error was found to be largest for Pd/20Pr-

80Zr at 1 minute with a percent error of 7.70% and smallest for Pd/16Ce-4Pr-80Zr at one 

minute with a percent error of 5.00%. 
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Figure A.2.6. NDE of storage performed in triplicates at 120 °C for 5 minutes indicated 

that Pd/16Ce-4Pr-80Ze had the largest total NDE percent error of 8.07% and Pd/80Ce-

20Pr had the smallest total NDE percent error of 5.00%. 
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Figure A.2.7. Nitrite species that may appear on the catalyst surface during NOx storage 

and the band ranges. 
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Figure A.2.8. Nitrate species that may appear on the catalyst surface during NOx storage 

and the band ranges. 
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