

University of Kentucky UKnowledge

Agronomy Notes

Plant and Soil Sciences

6-1977

Alfalfa Response to Varying Rates of Phosphorus and Potassium Fertilization on Deep, Red, Limestone - Derived Soils of the Pennyroyal Area In Kentucky

H. C. Vaught University of Kentucky

Kenneth L. Wells *University of Kentucky*

K. L. Driskill University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/pss_notes Part of the <u>Agronomy and Crop Sciences Commons</u>

Repository Citation

Vaught, H. C.; Wells, Kenneth L.; and Driskill, K. L., "Alfalfa Response to Varying Rates of Phosphorus and Potassium Fertilization on Deep, Red, Limestone - Derived Soils of the Pennyroyal Area In Kentucky" (1977). *Agronomy Notes*. 113. https://uknowledge.uky.edu/pss_notes/113

This Report is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Agronomy Notes by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE Lexington, Kentucky 40506

AGRONOMY NOTES

Vol. 10. No. 6

June, 1977

ALFALFA RESPONSE TO VARYING RATES OF PHOSPHORUS AND POTASSIUM FERTILIZATION

ON DEEP, RED, LIMESTONE - DERIVED SOILS OF THE PENNYROYAL AREA IN KENTUCKY.

by

H.C. Vaught, K.L. Wells, and K.L. Driskill

The Western Pennyroyal area of Kentucky consists largely of deep, well-drained limestone-derived soils occurring on an undulating to rolling landscape. A thin loess mantle overlies the limestone residuum in many areas. Soils on these landscapes are capable of good crop production, providing the basis of the rather intensive grainhay-tobacco-livestock farming systems common to the Pennyroyal area. Because of the well-suited physical characteristics of these soils, alfalfa is a very important hay crop to this area.

In recent years, there has been some concern about fertilizer recommendations for growing alfalfa on these deep, red soils. Because of this, we set up a field experiment to test the crop response to fertilizer recommendations made by UK agronomists for growing alfalfa.

Procedure

A site was selected in Warren County, Kentucky, on the farm of Mr. Phillip Simon. The field contained a one-year old stand of alfalfa (var. Buffalo) and orchardgrass. The soil was Pembroke silt loam testing pH 7.0; P (Bray No. 1) 55 pp2m; K (neutral <u>N</u> NH4OAc) 240 pp2m. Based on this soil test, a recommendation of 90 lbs P₂O₅, 100 lbs K_2O , and 2 lbs B per acre per year for a 5-ton alfalfa yield was made. A fertility study was designed to test phosphorus and potassium rates at 0, 1, 1.5, and 2 times the recommended rate. These treatments (0, 90, 135, and 180 lbs/A P205 and 0, 100, 150, and 200 lbs/A K₂O per year) were laid out in a completely randomized block design with 3 replications. All phosphate test plots were uniformly treated with 200 lbs K₂O/A/yr; all potash test plots uniformly received 180 lbs P₂O₅/A/yr; and all test plots received 2 lbs B/A/yr. All fertilizer was topdressed in late March or early April of each year. Soil samples were taken to a 36-inch depth in 6-inch increments before and after the experiment, with some 0-6 inch samples being taken during the study. Plots were harvested on a rigid clipping schedule, beginning with first harvest at early bloom, and three subsequent harvests were made on 5-week intervals. An aftermath harvest was made after growth stopped, usually in early November (Table 1). Plots were harvested with a sickle-bar mower, with grab samples being taken for determination

of moisture and mineral content, and nutritive value index $(NVI)^{\frac{1}{2}}$. The study began in 1970 and was conducted for 6 years.

Cutting	Average Cutting Date	Average Days between Harvests	Pounds Dry Matter Per Cut (Av. of all treatments)
1			· · · · · · · · · · · · · · · · · · ·
1	May 10	-	2,638
2	June 17	38	2,989
3	July 23	36	2,386
4	Sept. 1	39	2,191
5	Nov. 8	68	801

Table 1. CUTTING SCHEDULE FOLLOWED (6-YR AV)

Yield Results

High yields were obtained over the six year period (Tables 2-3). These were nearly twice Kentucky's state average yield of approximately three tons per acre. Our experience leads us to believe such prolonged yield levels are due in large part to four factors: (1) A good initial stand, and maintenance of that stand; (2) growing season moisture; (3) adequate supplies of nutrients in the soil; and (4) a rigid cutting management started in early May and maintained on a five week schedule thru the summer, with a longer period of regrowth allowed for buildup of carbohydrate root reserves prior to cold weather in the fall. As shown (Table 1) there was very uniform distribution of total yield among the first four cuttings with this cutting schedule. This contrasts to less rigid cutting schedules which often produce two-thirds to three-fourths of the total yield in the first two cuttings.

With the exception of K rates in 1973, applied rates of P and K did not increase yields over unfertilized plots at the five percent probability level. However, there was a strong trend for the first applied rate of P and K to increase yields --- more so for P than K. The higher applied rates rarely gave further yield increases and in some years decreased them. The reason for such decreases is unknown.

1/ N.V.I., or nutritive value index, is an empirical laboratory evaluation of forage nutritive value which has been correlated with animal performance.

		LBS P2	05/A/YR	•	- L.S.D. (.05)
Year	0	90	135	180	
1970	9541	10004	10132	10172	N.S.
1971	11673 /	12623	11670	12546	N.S.
1972	്റ് 96	9824	9448	9304	N.S.
1973	11313	12990	11865	12690	N.S.
1974	10759	11786	11547	11087	N.S.
1975	7669	8629	8434	8043	N.S.
AV.	9942	10976	10516	10640	N.S.

Table 2. EFFECT OF PHOSPHATE RATES ON DRY MATTER (LBS/A) REMOVAL

Table 3. EFFECT OF POTASH RATES ON DRY MATTER (LBS/A) REMOVAL

_	LDS K2U	/A/IR		
0	100	150	200	L.S.D. (.05)
10714	10167	9772	10284	N.S.
				N.S.
9341				N.S.
11747	12183	13245	11805	983
11192	12005	12145	11832	N.S.
8451	9135	10373	8902	N.S.
10688	11140	11425	10791	N.S.
	11747 11192 8451	0 100 10714 10167 12686 13153 9341 10198 11747 12183 11192 12005 8451 9135	1071410167977212686131531315593411019898611174712183132451119212005121458451913510373	0 100 150 200 10714 10167 9772 10284 12686 13153 13155 12735 9341 10198 9861 9186 11747 12183 13245 11805 11192 12005 12145 11832 8451 9135 10373 8902

Effect of Fertilizer Rates on Phosphate and Potash Removal

Amounts of phosphate and potash removed in dry matter tended to increase as rate applied was increased (Tables 4-5). Even without additions of fertilizer, yields and removal rates of phosphate and potash were high, indicating (1) a long-term effect of the initial level of P and K availability; (2) a high P and K supplying capacity in this soil; or (3) a combination of both.

 Table 4.
 EFFECT OF PHOSPHATE RATES ON ALFALFA PRODUCTION AND PHOSPHATE REMOVAL ON

 _______A
 A PEMBROKE SOIL

Pounds P	205 Used	Tons Hay	Removed*	Pounds P20s	Removed
Per Year	6-Yr. <u>Total</u>	Av. Per Yr.	6-Yr. Total	Av. Per Yr.	6-Yr. Total
0	0	5.65	33,9	64	385
90	540	6.23	37.4	82	495
135	810	5,98	35.9	82	495
180	1080	6.05	36.3	85	508

rounds	K ₂ O Used	Tons Hay	Removed*	Pounds K ₂	0 Removed
er Year	6-Yr. Total	Av. Per Yr.	6-Yr. Total	Av. Per Yr.	6-Yr, Total
0	0	6.07	36.4	318	1908
100	600	6.33	38.0	368	2208
150	900	6,48	38.9	379	2275
200	1200	6.13	36.8	382	2292

Table 5. EFFECT OF POTASH RATES ON ALFALFA PRODUCTION AND POTASH REMOVAL ON A PEMBROKE SOIL.

Effect of P - K Rates and Removal on Soil Test Levels

Effects of P - K rates on P-K soil test levels as shown in Figures 1-2 and Tables 6-7 show there was little influence of K rates on subsoil content of K. However, the 200 K₂O/A/Yr rate did result in higher soil test readings in the 0-12 inch soil depth. The high (200 lb K₂O/A/Yr) rate supplied 1200 lbs K₂O during the 6 years, with plant removal of 2290 lbs K₂O during that time. During the same period, soil test level was increased from 240 to 363. With no potash applied, plant removal was about 1900 pounds of potash during the 6 years, with the soil test level dropping to 145. The two highest rates of P₂O₅ applied also resulted in large increases of soil test P levels in the 0-3 inch layer and somewhat lesser increases in the 6-18 inch depth. The two highest rates of P₂O₅ applied were considerably in excess of crop removal (Table 4).

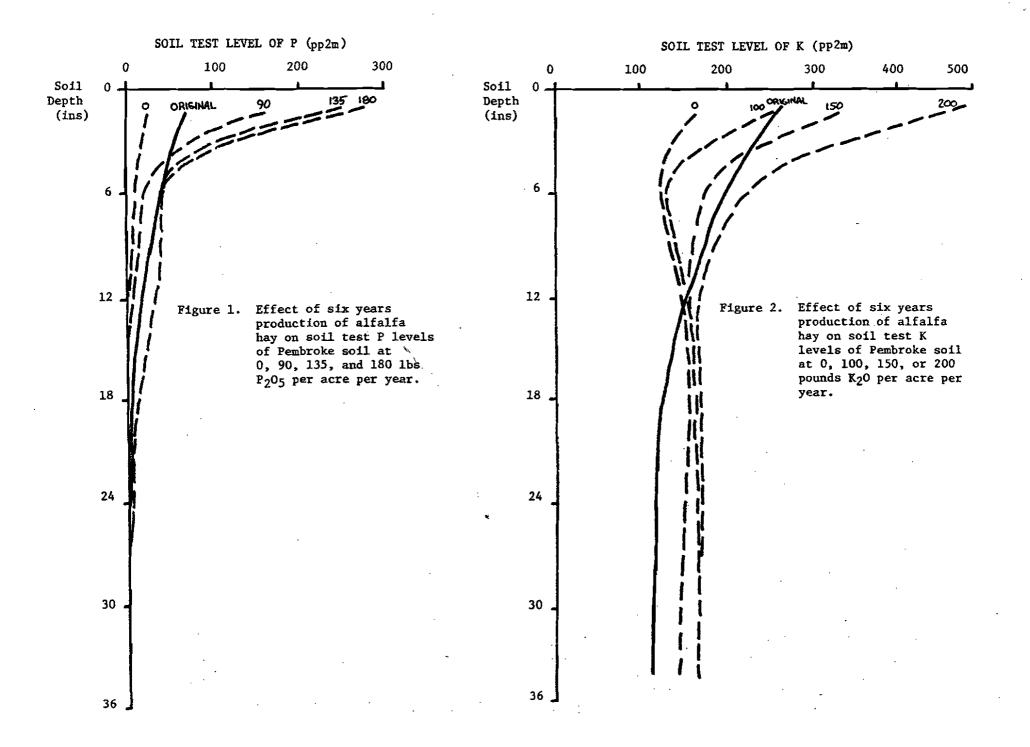

	pp2m Soil Test L	<u>evels of P ir</u>	<u>n Surface Soil</u>	<u>(0-6 inches)</u>	
P205	Before Study		During Study	<u>y</u>	After Study
(1bs/A/Yr)	March 1970	March 1974	Nov. 1974	March 1975	March 1976
0	55	34	32	38	21
90	55	72	· · · · 93	76 ·	97
135	55			·	145
180	55			· .	155

Table 6. CHANGES IN SOIL TEST P LEVELS IN THE SURFACE 6-INCHES OF A PEMBROKE SOIL BEFORE, DURING AND AFTER 6-YEARS ALFALFA PRODUCTION.

 Table 7.
 CHANGES IN SOIL TEST K LEVELS IN THE SURFACE 6-INCHES OF A PEMBROKE SOIL

 BEFORE, DURING, AND AFTER 6-YEARS ALFALFA PRODUCTION.

к ₂ 0	Before Study		Duri	ng Study		After Study
(1bs/A/Yr)	March 1970	March 1973	March 1974	Nov. 1974	March 1975	March 1976
0	240	177	172	108	99	145
100	240 "	200	199	117	129	195
150	240	232				260
200	240	228		~ -		363

Dry Matter Production, Mineral Removal, and Quality (6-Yr Av)

As shown in Tables 8-9 there was little difference (p = 0.05) among the treatments tested for their effect on dry matter production, content of P, K, Ca, Mg and feed quality (N.V.I.). The recommended rate of phosphate (90 lb/A/Yr) did result in a greater removal of P than the check (0) plot, but no more so than the higher rates. Magnesium removal at the 90 lb/A/Yr P205 rate was also greater than the check plot. Although not shown to be significantly different (p = .05), the 90 lb P₂O₅ rate consistently yielded higher than the check plot both within years and among years.

With the exception of greater potash removal from the potash treated plots, the potash rates tested also had no statistically significant effect (p = .05) on yield, mineral removal, and quality of hay. But as with phosphate, the 100 pound K20/A/Yr rate consistently yielded higher than the check plot within and among years.

Quality (N.V.I.) is closely correlated to animal intake and performance. According to Donefer, et al. (1966) good alfalfa has an N.V.I. of approximately 70. All our N.V.I. values are very close to 70 indicating that alfalfa-orchardgrass harvested for hay at bud to early bloom at first harvest and then cut at five week intervals will result in a high quality hay.

Table 8.	EFFECT OF RATES OF PHOSPHATE ON DRY MATTER PRODUCTION, UPTAKE OF P, I	К,
	CA, MG AND N.V.I. $\frac{1}{2}$ BY ALFALFA GROWN ON PEMBROKE SOIL.	

P ₂ O ₅			1 (1bs/A/Y			·· -· -
(lbs/A/Yr)	Dry Matter	P	K	Ca	Mg	<u>N.V.I.</u>
0	9942	28	240	105	28	67.2
90	10976	36	290	120	31	68.6
135	10516	36	288	115	31	68.6
180	10640	37	272	114	* 31	67.4
S.D. (.05)	N.S.	6	N.S.	N.S.	2	N.S.

Nutritive Value Index

Table 9. EFFECT OF RATES OF POTASH ON DRY MATTER PRODUCTION. UPTAKE OF P. K. CA. MG. AND N.V.I.1 BY ALFALFA GROWN ON PEMBROKE SOIL.

K ₂ 0	Rei	moval (1bs	/A/Yr)-6	Yr.Av.		_
<u>(1bs7A/Yr)</u>	Dry Matter	P	K	Ca	Mg	<u>N.V.I.</u>
0	10688	37	- 265	129	31	70.0
100	11140	37	307	130	30	69.4
150	11425	37	316	128	30	69.4
200	10791	35	318	126	28	70.7
L.S.D. (.05)			28	N.S.	N.S.	N.S.

Nutritive Value Index

and a subscription of the second field of the

CONCLUSIONS

- High yields of alfalfa hay are possible on deep, red soils of the Kentucky Pennyroyal which are fertilized to high medium (50-60 Bray 1 soil test extractable P or 225-250 neutral <u>N</u> NH₄OAc extractable K) fertility levels and the first harvest is made in early May and subsequent cuttings made on five week intervals, with adequate time for building up root reserves in the fall.
- 2. The recommended rates of P_{205} and K_{20} based on initial soil test (90 P_{205} and 100 K_{20}) for a five ton yield goal were sufficient for obtaining the higher (but statistically non-significant) yield increase over the check and yet maintaining residual soil test levels. Even though such increases were not significant at the five percent probability level, they were consistently higher than check yields. Soil test levels of both P and K dropped to below original levels on check plots after six years where no additional P or K had been applied. The 90 P_{205} and 100 K_{20} annual fertility rate increased the P level in soil from 55 at the beginning of the study to 95 at the end while K levels dropped slightly (from 240 to 195) at the end of the study.

Results of this study on a deep, red soil (Pembroke) of the Pennyroyal already at a good level of fertility (nearly high for both P and K) show no need for higher rates of P and K than those currently being recommended in order to obtain high yields over a period of 6 years.

ACKNOWLEDGEMENTS

ł

Appreciation is expressed to Phillip Simon, The Potash Institute, and Glasgow Fertilizer Company, for support in conducting this study.

LITERATURE CITED

 Donefer, E., E.W. Crampton, and L.E. Lloyd. 1966. The prediction of digestible energy intake potential (N.V.I.) of forages using a simple in-vitro technique: 10th International Grassland Congress Proceedings. (Helsinki) 442-444.

> The Federal Penalty Mailing Privileges law requires that you notify us once a year that you wish to continue receiving this newsletter. If we do not receive your notification, your name must be removed from our mailing list. Be sure to return the enclosed post card so that we may continue to send you your copy of the Agronomy Notes.