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Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host
Response in the Mouse Model of Lyme Disease

Rebecca Byram,a Robert A. Gaultney,b Angela M. Floden,b Christopher Hellekson,b Brandee L. Stone,b Amy Bowman,c

Brian Stevenson,c Barbara J. B. Johnson,a Catherine A. Brissetteb

Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USAa; Department of Basic Sciences, University of North Dakota
School of Medicine and Health Sciences, Grand Forks, North Dakota, USAb; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky
School of Medicine, Lexington, Kentucky, USAc

The Lyme disease spirochete, Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian
infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular
matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to pro-
duce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Comple-
mentation of the mutant with a wild-type revA gene restored heart infectivity to wild-type levels. Additionally, revA mutants led
to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced in-
creased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the comple-
mented strain. Therefore, while revA is not absolutely essential for infection, deletion of revA had distinct effects on dissemina-
tion, arthritis severity, and host response.

Borrelia burgdorferi, the causative agent of Lyme disease, is a
vector-borne pathogen that successfully colonizes both ticks

and a variety of vertebrate hosts. In mammals, B. burgdorferi is
frequently found associated with connective tissues (1–13), and
the bacterium is often detected in cartilaginous or collagen-rich
tissues, such as skin and joints (6, 7, 9, 11–18). Adhesins expressed
by B. burgdorferi facilitate interactions with these tissues. B. burg-
dorferi expresses a plethora of outer surface proteins that interact
with numerous components of the extracellular matrix (ECM),
such as fibronectin, decorin, and integrins (19–23). The attach-
ment of B. burgdorferi to the host ECM is likely critical for patho-
genesis and persistence in mammals. Indeed, for many of these
adhesins, deletion mutants have significant defects in infectivity,
fail to disseminate widely in the host, or have other effects on
disease, such as alterations in the severity of arthritis (24–27).

The interactions of B. burgdorferi with fibronectin are facili-
tated by several distinct bacterial surface proteins, including
BBK32, RevA, BB0347, and CspA (BbCRASP-1) (28–31). The re-
dundancy in adhesins makes it difficult to dissect the role of each
B. burgdorferi fibronectin binding protein in the pathogenesis of
Lyme disease. For example, real-time microscopic imaging in live
mice revealed a significant role for BBK32 in interactions with
host vasculature, yet bbk32 mutants are still able to infect mam-
mals (32).

RevA is a 19-kDa surface protein encoded on the circular plas-
mid 32 (cp32) family of plasmids (33). RevA expression is elevated
during mammalian infection over its expression in the tick vector,
suggesting a role in pathogenesis (30, 34–36). RevA binds to fi-
bronectin, and anti-RevA antibodies block the binding of whole B.
burgdorferi bacteria to fibronectin (30). RevA is antigenic, as evi-
denced by the fact that both mice and human Lyme disease pa-
tients produce antibodies against RevA (36, 37). Antibodies
against RevA are bactericidal in vitro, and passive immunization
with anti-RevA antibodies prevents infection (38). However, mice
vaccinated with recombinant RevA protein were not protected
when challenged with B. burgdorferi by needle or tick bite (38).

Analysis of RevA has been complicated by the fact that two
separate revA genes are present in the B31 type strain, revA1 on
cp32-1 and revA6 on cp32-6. The mature amino acid sequences of
the two encoded RevA proteins are identical, however. Intrigu-
ingly, a revA1 mutant uncovered in a transposon mutagenesis
study demonstrated an infectivity deficit in dissemination (39).
To further elucidate the function of RevA and its role in the patho-
genesis of B. burgdorferi, we created a double revA deletion mutant
and characterized its infectious properties.

MATERIALS AND METHODS
Bacteria. B. burgdorferi strain B31-A3 is an infectious clone of the se-
quenced type strain (40, 41) that contains all parental plasmids except cp9
(42). Bacteria were grown at 34°C to densities of approximately 1 � 107

cells/ml in modified Barbour-Stoenner-Kelly (BSK-II) medium supple-
mented with 6% rabbit serum (43). Total DNA (genomic and plasmid
DNA) was isolated using a DNeasy blood and tissue kit (Qiagen, Valencia,
CA). Plasmid contents were determined by multiplex PCR as described by
Bunikis et al. (44).

Generation of revA deletion mutant and complemented mutant
clones. B. burgdorferi strain B31-A3 has 2 copies of the revA gene: revA1 on
plasmid cp32-1 (open reading frame [ORF] bbp27) and revA6 (ORF
bbm27) on plasmid cp32-6. To create a doubly deleted mutant, the revA1
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region was first PCR amplified with the primers listed in Table 1 and then
cloned into the TOPO XL vector (Fig. 1A). Restriction enzyme sites (SalI)
were created, and the revA open reading frame was deleted, by inverse
PCR. A streptomycin resistance cassette was first ligated into the SalI site
and then introduced into B. burgdorferi B31-A3 by electroporation (45).
The revA6 locus was deleted in a similar matter (using a kanamycin cas-
sette), and the final construct was introduced into the �revA1 mutant.
Deletion of both revA loci was confirmed by PCR (primers listed in Table
1) and bidirectional Sanger sequencing, and the double deletion mutant
was designated B31-A3�revA1�revA6.

For complementation, the wild-type revA1 gene was cloned into a B.
burgdorferi-Escherichia coli shuttle plasmid under the control of the con-
stitutive promoter PflgB. Briefly, pBSV2-G (46) was modified by overlap
extension PCR mutagenesis to delete the existing multiple cloning site and
then add a ribosome-binding site and BamHI, PstI, and KpnI cleavage
sites (Fig. 1C). The revA1 gene, without its native promoter, was PCR ampli-
fied using primers with added BamHI and PstI sites and was then cloned into
pBLS715. This insertion was verified by PCR and bidirectional Sanger se-
quencing (Davis Sequencing). The new construct, pBLS715revA, was intro-
duced into B31-A3�revA1�revA6 (the revA double deletion mutant) by elec-
troporation (45). Several individual clones were isolated by pour plating in
the presence of gentamicin. The presence of pBLS715revA was verified by
PCR (primers listed in Table 1) and sequencing. The plasmid content of the
resulting complemented strain, B31-A3�revA1�revA6/pBLS715revA, was as-
sessed by multiplex PCR (44).

Immunoblot analysis. Whole-cell lysates were separated on 12.5%
SDS-PAGE gels and were transferred to nitrocellulose membranes. The
membranes were blocked overnight at 4°C with 5% (wt/vol) bovine se-
rum albumin (BSA) in Tris-buffered saline–Tween 20 (TBS-T), consist-
ing of 20 mM Tris (pH 7.5), 150 mM NaCl, and 0.05% (vol/vol) Tween 20.
The membranes were washed with TBS-T and were incubated for 2 h at

room temperature with purified anti-RevA or anti-OspC (loading con-
trol) diluted 1:500 in TBS-T (30). After 3 washes with TBS-T for 5 min
each time, the membranes were incubated for 1 h at room temperature
with a horseradish peroxidase-conjugated donkey anti-rabbit IgG anti-
body (GE Healthcare) diluted 1:5,000 in TBS-T. After 5 washes with
TBS-T for 10 min each time, bound antibodies were detected using the
SuperSignal West Pico enhanced chemiluminescence substrate (Pierce).
Blots were visualized on a Li-Cor bioimaging system by using the associ-
ated imaging software.

Infection of mice and ticks. For studies of 50% infective doses (ID50)
and tissue dissemination, female C3H/HeN mice (4 to 6 weeks old) were
infected by subcutaneous injection with 1 � 105, 1 � 104, 1 � 103, or 1 �
102 bacteria of strain B31-A3, the B31-A3�revA1�revA6 mutant, or the
complemented strain, B31-A3�revA1�revA6/pBLS715revA, from mid-
exponential-phase cultures grown at 34°C. Cultures were harvested at 1 �
107 bacteria/ml. Infection of mice was confirmed by analysis of serum
samples by enzyme-linked immunosorbent assays (ELISAs) for antibod-
ies directed against B. burgdorferi whole-cell lysates as described previ-
ously (30, 38). Two weeks after infection, ear pinnae, hearts, bladders, skin
from the inoculation site, and tibiotarsal joints were collected and were
either frozen for DNA extraction and quantitative PCR (qPCR) or cul-
tured in BSK-II medium plus 6% rabbit serum and 50 �g/ml rifampin.

To initiate tick infection studies, female C3H/HeN mice (4 to 6 weeks
old) were infected by subcutaneous injection of 1 � 106 bacteria of strain
B31-A3 or the revA-deficient mutant from mid-exponential-phase cul-
tures grown at 34°C. These mice then served to infect Ixodes scapularis
larvae as follows. Egg masses laid by pathogen-free I. scapularis ticks were
obtained from the Department of Entomology, Oklahoma State Univer-
sity—Stillwater, Stillwater, OK, and were held in a humidified chamber
until they hatched. For B. burgdorferi acquisition studies, approximately
200 naïve larvae were placed on each of the B. burgdorferi-infected mice.

TABLE 1 Oligonucleotides used in this study

Primer name Sequence (5=¡ 3=) Purpose
Source or
reference

BBP27flkF TATTTAGTAGTAGTAAAAATAAACAAAATAATATG Cloning of revA � flank This study
BBP27flkR CTAATTTATGATCAAATCGGCTTTTGC Cloning of revA � flank This study
Pflg_aadAF GTCGACTACCCGAGCTTCAAGGAAG Cloning; addition of SalI sites; PCR confirmationa This study
Pflg_aadAR CAGCTGTTATTTGCCGACTACCTTGGTGATC Cloning; addition of SalI sites; PCR confirmationa This study
Inv_PCR_BBP27F TAATGGCTTGTAAAGCATATGTAGAAGCAAAATTAGGTCGAC Overlap PCR for revA disruption This study
Inv_PCR_BBP27R CAGCTGCAGTTACTCCAACTAATTTTGCTTCTACATATG Overlap PCR This study
BBM27flkF GGGTTAAATCACGCTTTCCCCTGC Cloning of revA � flank; PCR confirmationa This study
BBM27flkR CATTGTCTACTAATTGCTTTGCTGCTAT Cloning of revA � flank; PCR confirmationa This study
Pflg_kanF CTCGAGTACCCGAGCTTCAAGGAAG Cloning; addition of XhoI sites This study
Pflg_kanR GAGCTCTTAGAAAAACTCATCGAGCATC Cloning; addition of XhoI sites This study
Inv_PCR_BBM27F AGCAGCGTTAAAAGCAGCTAAAAATACTTAATTGGGCTCGAG Overlap PCR This study
Inv_PCR_BBM27R GAGCTCATAATAAATATTCCCAATTAAGTATTTTTAGCT Overlap PCR This study
AadF TACCCGAGCTTCAAGGAAG Confirmation of aad This study
AadR TTATTTGCCGACTACCTTGGTGATC Confirmation of aad This study
KanF TACCCGAGCTTCAAGGAAG Confirmation of kan; Southern blotting This study
KanR TTAGAAAAACTCATCGAGCATC Confirmation of kan This study
BamHIRevF GGATCCATGAGAAATAAAAACATATTTAAATTATTTTTTG Cloning of revA for complementation This study
PstIRevR CTGCAGTTAATTAGTGCCCTCTCC Cloning of revA for complementation This study
RevAF ATGAGAAATAAAAACATATTTAAATTATTTTTTG Confirmation of revA for complementation This study
RevAR TTAATTAGTGCCCTCTCC Confirmation of revA for complementation This study
nTM17F GTGGATCTATTGTATTAGATGAGGCTCTCG qPCR 49
nTM17R GCCAAAGTTCTGCAACATTAACACCTAAAG qPCR 49
nidoF CCAGCCACAGAATACCATCC qPCR 38
nidoR GGACATACTCTGCTGCCATC qPCR 38
Fla3 GGGTCTCAAGCGTCTTGG qPCR 48
Fla4 GAACCGGTGCAGCCTGAG qPCR 48
Iscap16sF CGGTCTGAACTCAGATCAAG qPCR 48
Iscap16sR GGGACAAGAAGACCCTATG qPCR 48
a See Fig. 1B.
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After 96 h, the ticks had fully engorged and naturally dropped off the mice.
Immediately after the completion of feeding, cohorts of approximately 30
engorged larvae from each mouse were analyzed by qPCR (primers are
given in Table 1) for the acquisition of B. burgdorferi. The remainder of the
ticks were returned to the humidified chamber and were allowed to molt
to the nymphal stage. Approximately 3 weeks after ecdysis, the infected
nymphs were allowed to feed on naïve female C3H/HeN mice. Mice in-
fected through feeding by infected nymphs were killed 2 weeks after the
completion of tick feeding. Ear pinnae, hearts, bladders, and tibiotarsal
joints were processed for DNA extraction and culture. For arthritis devel-
opment, female C3H/HeN mice (3 to 4 weeks old) were infected by injec-
tion into the left footpad of 1 � 103 or 1 � 104 bacteria of strain B31-A3,
the B31-A3�revA1�revA6 mutant, or the complemented strain from
mid-exponential-phase cultures grown at 34°C.

Measurement of tibiotarsal joints. Joint measurements were taken
for both ankles with a digital metric caliper (General Tools, Montreal, QC,
Canada) at 0, 2, and 4 weeks postinfection. Measurements were taken in
the anterior-to-posterior position with the knee extended, through the

thickest portion of the ankle (47). Three measurements were taken per
time point and were averaged. A researcher blinded to the strain of B.
burgdorferi took the measurements, while a second researcher recorded
the results. The percentage of change in ankle diameter was determined by
subtracting the preinfection joint diameter from the measurements taken
at weeks 2 and 4 [e.g., (individual ankle measurement at 2 weeks � ankle
measurement at baseline) �100].

Histology of tibiotarsal joints. At 4 weeks postinfection, mice were
sacrificed and the tibiotarsal joints collected for histopathology. The joints
were first decalcified and then fixed in 10% neutral buffered formalin.
Sections from the decalcified joints were embedded in paraffin and were
stained with hematoxylin and eosin (H&E; AML Laboratories, Baltimore,
MD). Sections were scored blindly by a veterinary pathologist (North
Dakota State University [NDSU], Fargo, ND) from 0 to 5, as follows: 0, no
inflammation; 1, minimal change; 2, mild change (1 to 25% of the area
infiltrated with leukocytes); 3, moderate change (25 to 50% of the area
infiltrated with leukocytes, often with synovial hyperplasia and/or fibro-
sis); 4, severe change (including more than 50% infiltrating leukocytes,

FIG 1 Construction of the revA-deficient mutant. (A) Schematic of mutant construction. See Materials and Methods for details of cloning. (B) PCR confirma-
tion of revA deletions by use of flanking primers for the revA6 locus (lanes 1 to 4) and primers for aad (lanes 5 to 7). Lanes 1 and 5, B31-A3�revA1�revA6; lanes
2 and 6, the parental strain, B31-A3; lane 3, cloning plasmid control (with the whole flanking region plus revA and the kan cassette); lane 4, no template; lane 7,
cloning plasmid control (with the whole flanking region plus revA and the aad cassette). L, ladder. (C) Schematic of construction of the revA complement vector.
MCS, multiple cloning site; RBS, ribosome-binding site. (D) Immunoblotting for RevA protein in whole-cell lysates. Lane 1, B31-A3 (wild type [WT]); lane 2,
overloaded B31-A3�revA1�revA6 (knockout [KO]); lane 3, complemented strain. OspC serves as a loading control.

B. burgdorferi revA Mutant
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synovial hyperplasia, and fibrosis); 5, most severe change (characteristics
of score 4 plus exudates within the joint or tendon sheath). For collagen
staining, paraffin-embedded H&E-stained slides were deparaffinized and
placed in phosphate-buffered saline (PBS). The slides were then stained
with Masson’s trichrome stains (Sigma-Aldrich) according to the manu-
facturer’s standard procedure. Slides were first dehydrated with increasing
concentrations of ethanol-water solutions and then equilibrated in a xy-
lene-ethanol solution (1:1, by volume) followed by 100% xylene. Cover-
slips were then placed on the slides by using Permount (Thermo Fisher).
Sections from at least 3 mice per infection strain were examined.

ELISA. Mouse blood was drawn from the saphenous vein and was
collected in heparin-coated tubes. Blood samples were centrifuged
(6,000 � g) to remove red blood cells, and the serum was stored at �20°C.
To measure mouse IgM or IgG against B. burgdorferi, 96-well plates were
coated overnight with 100 �l/well of 10 �g/ml B. burgdorferi lysate (mid-
log-phase B. burgdorferi cultures, pelleted and washed 3 times in PBS) in
carbonate coating buffer (0.32 g Na2CO3 and 0.586 g NaHCO3 per 200 ml
[pH 9.6]) at 4°C. Room temperature plates were washed three times with
PBS containing 0.05% Tween 20 (by volume) (PBS-T). Wells were first
blocked for 2 h at room temperature with PBS containing 10% fetal bo-
vine serum and then washed three times with PBS-T. At the time of the
assay, a 1:100 dilution of serum was placed on the plate and was incu-
bated for 2 h at 37°C. Wells were first washed three times with PBS-T
and then incubated for 1 h at room temperature with a horseradish
peroxidase (HRP)-conjugated goat antiserum against mouse IgM
(Pierce) or IgG (GE Healthcare, Piscataway, NJ) diluted to 1:5,000 in
PBS. Color development was performed by adding a tetramethylben-
zidine substrate (TMB; Thermo Fisher Scientific, Waltham, MA) for
15 min and was stopped by the addition of an equal volume of 2 N
sulfuric acid. Commercial ELISA kits were used to measure mouse
chemokines according to the manufacturer’s instructions (R&D Sys-
tems, Minneapolis, MN).

Analysis of B. burgdorferi loads in mouse tissues. Total DNA was
extracted from tissue samples by using a DNeasy kit according to the
manufacturer’s instructions (Qiagen). Frozen mouse tissue samples (20
mg) were first minced with sterile single-use razor blades on a DNA/
DNase-free glass surface and were resuspended in Buffer ATL with pro-
teinase K for overnight digestion at 56°C as recommended by the manu-
facturer (Qiagen). For ticks, cohorts of 30 fed larvae were processed
according to the method of Jutras et al. (48). qPCR was performed using a
Bio-Rad MyiQ2 thermal cycler and Bio-Rad SYBR green Supermix. All
DNA samples were analyzed in triplicate. Each run included a sample that
lacked a template in order to test for DNA contamination of reagents. The
oligonucleotide primers used for amplification of B. burgdorferi recA
(nTM17F and nTM17R) (49), Ixodes scapularis 16S rRNA, B. burgdorferi
flaB (48), and mouse nidogen are given in Table 1. Reaction conditions
consisted of a 10-min initial denaturation step at 95°C; 40 cycles of 95°C
for 15 s and 55°C (for recA) or 60°C (for nidogen) for 1 min; 95°C for 1
min; 60°C for 1 min; and melting analysis starting at 60°C and increasing
by increments of 0.5°C, with a hold at each temperature for 10 s. Tenfold
serial dilutions of B. burgdorferi genomic DNA, mouse genomic DNA, or
Ixodes genomic DNA were included in every assay for each primer set.
This enabled the generation of standard curves from which the amount of
DNA present in each sample could be calculated by using Bio-Rad MyiQ2
software. The same software package was also used for melting-curve
analyses. To verify amplicon sizes and purities, all products were sepa-
rated by agarose gel electrophoresis, and DNA was visualized with
ethidium bromide. Average values obtained from triplicate runs of each
DNA sample for B. burgdorferi recA copies or flaB copies were calculated
relative to the average triplicate value for the mouse nidogen or I. scapu-
laris 16S rRNA housekeeping gene from the same DNA preparation. Sta-
tistical analyses of data were performed using Student’s t test and assum-
ing unequal variances.

RESULTS
Generation of B. burgdorferi revA double deletion and comple-
mented strains. The B. burgdorferi type strain, B31, naturally car-
ries 2 nearly identical copies of the revA gene: revA1 on plasmid
cp32-1 and revA6 on plasmid cp32-6. The amino acid sequences of
the mature RevA1 and RevA6 proteins are identical. The revA loci
were sequentially deleted by allelic exchange, as diagramed in Fig.
1A, creating strain B31-A3�revA1�revA6. A schematic of the con-
struction of the mutant is shown in Fig. 1A. The deletion of both
copies of revA through allelic exchange was confirmed by PCR
(Fig. 1B).

To demonstrate that any observed phenotypes of the mutant
strain were due to revA deletion only, a revA trans-complemented
strain was also constructed (B31-A3�revA1�revA6/pBLS715revA).
The relevant sequences of both strains were confirmed by PCR and
sequencing. The inability of the mutant to produce RevA and the
production of RevA by the complemented strain were confirmed by
immunoblotting (Fig. 1D).

Effect of RevA deletion on infectivity. To assess the contribu-
tion of RevA to the pathogenic process, we tested the ability of the
mutant bacterium to complete each stage of the natural infection
cycle. B31-A3�revA1�revA6 mutant bacteria were first assessed
for their ability to infect mammals. Cohorts of mice were inocu-
lated with serially diluted bacteria, ranging from 10 to 105 spiro-
chetes per animal (50). Wild-type B. burgdorferi generally exhibits
ID50 of 10 to 100 bacteria in mice (51–53). We found no differ-
ences in the ID50 between the wild-type and revA-deficient B.
burgdorferi strains (Table 2).

Experience with other B. burgdorferi mutants has demon-
strated subtle defects in infectivity, such as impaired dissemina-
tion or differences in tissue pathology (see, e.g., references 25 and
54). Therefore, we also determined the ability of revA-deficient
bacteria to disseminate to distal organs. We found that the B31-
A3�revA1�revA6 mutant was significantly less able to colonize
heart tissues (P � 0.003) than the wild-type strain (Fig. 2A). This
defect was restored upon complementation. No significant defects
were observed for tibiotarsal joint colonization (Fig. 2B).

Noting that other borrelial adhesins have been found to have
an impact on tissue-specific pathology, we tested the effects of
RevA deficiency on arthritis severity. Cohorts of C3H/HeN mice

TABLE 2 ID50 of wild-type and revA-deficient B. burgdorferi strainsa

Strain and inoculum

No. culture positive/total no.

Mice Organsb

B31-A3
105 6/6 18/18
104 10/10 29/34
103 10/10 20/34
102 0/6 0/24

B31-A3�revA1�revA6
105 6/6 15/15
104 8/10 26/34
103 8/10 17/34
102 0/6 0/24

a Mice were infected subcutaneously with increasing inocula of the B. burgdorferi
parental strain B31-A3 or the B31-A3�revA1�revA6 mutant. Mice were sacrificed 2
weeks postinfection, and organs were cultured.
b Including bladders, hearts, ears, and tibiotarsal joints.
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were injected subcutaneously or in the left footpad with 103 or 104

B. burgdorferi B31-A3 or B31-A3�revA1�revA6 mutant bacteria.
Tibiotarsal joint (ankle) thickness was measured before and after
infection. Mice that were injected in the footpad with 103 B31-
A3�revA1�revA6 bacteria showed significantly greater ankle thick-
ness at 4 weeks postinfection (P � 0.001) (Fig. 3A). No significant
differences were apparent following inoculation with the higher dose
(104 bacteria) (Fig. 3B). No significant swelling of the right ankle was
noted for the footpad-injected mice (data not shown). For all mice
injected subcutaneously, ankle thickness increased over time, but
there were no differences between B31-A3, the revA-deficient mu-
tant, and the complemented strain (data not shown).

Histological examination of tibiotarsal joints was then per-
formed, for more precise evaluation of arthritis. Tibiotarsal joints
were collected after 4 weeks of infection, sectioned, and stained
with hematoxylin and eosin. Each section was blindly examined
by a veterinary pathologist and was given a score ranging from 0 to
5, with 0 indicating normal tissue and 5 representing the most
severe lesions. In mice infected with either the parental strain or
the revA-deficient mutant, all sections showed chronic active in-
flammation with infiltration of plasma cells, lymphocytes, and

macrophages, as well as a proliferative response in the periarticu-
lar connective tissue (Table 3). However, joints from mice in-
fected with the revA-deficient mutant had lower average histopa-
thology scores than joints from mice infected with the parental
strain, B31-A3 (Table 3). Yet Masson’s trichome stain for collagen

FIG 2 revA-deficient mutants are impaired in colonization of the heart but
not the joint. One month after infection, hearts (A) and joints (B) from mice
infected with either B31-A3�revA1�revA6 (revA mut), the parental strain,
B31-A3 (A3), or the complemented strain (revA comp) were collected, DNA
was extracted, and levels of B. burgdorferi DNA were determined by qPCR.
Data are expressed as copies of B. burgdorferi recA per femtogram of mouse
nidogen DNA. Samples were analyzed in triplicate, and each data point repre-
sents an individual animal. Two-way analysis of variance was used to calculate
statistical differences between the groups infected with the parental strain or
the B31-A3�revA1�revA6 mutant. The difference in the ability to colonize
heart tissues (A) was statistically significant (P � 0.003).

FIG 3 Effects of RevA deficiency on ankle thickness. Three- to 4-week-old female
C3H/HeN mice were injected in the left footpad with 103 (A) or 104 (B) bacteria of
strain B31-A3, the B31-A3�revA1�revA6 mutant, or the complemented strain.
Ankle thickness was measured with calipers (triplicate measurements) at baseline
and at 2 and 4 weeks postinfection. Two-way analysis of variance was used to
calculate statistical differences between the groups injected with the parental strain
or the B31-A3�revA1�revA6 mutant. For mice injected with 103 bacteria (A), the
difference was significant (P � 0.0001) at 4 weeks postinfection.

TABLE 3 Histology scores for tibiotarsal joints

Strain and inoculuma No. of mice
Histopathology
scoreb

PBS 8 0.57 	 0.27

B31-A3
103 8 4.50 	 0.26
104 4 4.00 	 0.58

revA mutant
103 5 3.10 	 0.50
104 7 3.30 	 0.42

revA-complemented strain
103 3 0.33 	 0.10
104 3 0.33 	 0.10

a The left footpad of each mouse was injected with B. burgdorferi or the control (PBS).
b Each section was given a score ranging from 0 to 5, with 0 indicating normal tissue
and 5 representing the most severe lesions. Each data point represents the average score
per section 	 the standard error of the mean.

B. burgdorferi revA Mutant

September 2015 Volume 83 Number 9 iai.asm.org 3679Infection and Immunity

 on A
ugust 25, 2016 by guest

http://iai.asm
.org/

D
ow

nloaded from
 

http://iai.asm.org
http://iai.asm.org/


revealed more fibrotic connective tissue deposition in the joints of
mice infected with the revA-deficient mutant, extending into and
obliterating the entire joint space (Fig. 4B). In contrast, collagen
staining was dense and regular, with little fibrosis inside the joint
space, in mice infected with either B31-A3 or the revA-comple-
mented strain (Fig. 4A and C). Mice infected with the comple-
mented strain had no demonstrable pathology in the ankle joint.
These data suggest that revA deletion results in increased levels of
edema and remodeling in the affected joint.

Effect of RevA deletion on systemic chemokine production.
To determine whether the systemic levels of cytokines or chemo-
kines elicited in revA-deficient mutant- and B31-A3-infected mice
differed, serum was collected from all revA-deficient mutant- and
B31-A3 infected mice at the time of euthanasia. An initial multi-
analyte screen for cytokines and chemokines suggested differences
between the levels of tumor necrosis factor alpha (TNF-
), inter-
leukin 17 (IL-17), and CCL-2 in the sera of animals infected with
the RevA-deficient strain and those infected with the wild-type
strain (data not shown). ELISAs indicated that the revA-deficient
mutant induced significantly higher systemic CCL-2 levels at all
inocula than did either the wild-type B31-A3 or the comple-
mented mutant (P � 0.014) (Fig. 5). There were no significant
differences in TNF-
 or IL-17 induction for any strain.

Acquisition and transmission by ticks. The potential impacts
of RevA deficiency throughout the remainder of the mouse-tick
infectious cycle were also examined. First, mice infected with ei-
ther B31-A3 or B31-A3�revA1�revA6 were fed upon by I. scapu-
laris tick larvae. Immediately after the completion of feeding, co-
horts of approximately 30 engorged larvae from each mouse were
analyzed by qPCR, according to established procedures (30, 42,
55, 56), for the acquisition of B. burgdorferi. No significant differ-
ences in acquisition were detected (Table 4). We then tested the
ability of those bacteria to colonize ticks and to be transmitted to
mice. Three weeks after molting, ticks were allowed to feed on
naïve mice. All naïve mice (6 each for the wild-type strain and
B31-A3�revA1�revA6) became infected, as determined by detec-
tion of anti-B. burgdorferi IgG by ELISA and by positive culture of
hearts, ears, and joints (Table 4). Taken together, these data dem-

FIG 4 Proliferative response in periarticular connective tissue. Tibiotarsal sec-
tions from infected mice were stained for collagen. (A) Section from a B31-A3-
infected mouse with patent synovial spaces and clear demarcations of bone and
dense, regular connective tissue. (B) Section from a B31-A3�revA1�revA6 mu-
tant-infected mouse with apparent degeneration of bone and infiltration of con-
nective tissue into the joint space. (C) Section from a mouse infected with the
complemented strain. Three individual sections from 3 infected animals were
observed per infection strain; representative slides are shown. Arrows indicate
collagen staining at the edge of the joint space.

FIG 5 The revA-deficient mutant induces higher systemic CCL-2 levels than
the wild-type strain. Blood was collected at the time of sacrifice from mice
infected with B. burgdorferi (B31-A3, the B31-A3�revA1�revA6 mutant, or the
complemented strain; subcutaneous dose of 103, 104, or 105 bacteria). Red
blood cells were pelleted, and serum was frozen at �80°C. A commercial
sandwich ELISA was used to assay CCL-2 levels according to the manufactur-
er’s instructions (R&D Systems). Samples from 6 to 8 animals per inoculum
were analyzed in triplicate. Two-way analysis of variance was used to calculate
statistical differences between the groups infected with the parental strain or
the B31-A3�revA1�revA6 mutant (P � 0.014).
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onstrate that revA is not required for the acquisition or transmis-
sion of B. burgdorferi by ticks.

DISCUSSION

RevA was initially identified as a surface-exposed, immunogenic
protein with differential expression patterns that indicated a po-
tential role in mammalian infection (34–36, 55, 57). Indeed, the
Rrp2-RpoN-RpoS pathway, involved in the modulation of many
mammalian infection-associated genes, may play a role in the up-
regulation of revA, since both copies in strain B31 were upregu-
lated 16-fold in wild-type B. burgdorferi over expression in an
isogenic rrp2 mutant, and the orthologous gene of B. burgdorferi
strain 297 was upregulated in wild-type B. burgdorferi over expres-
sion in an isogenic rpoS mutant within dialysis membrane cham-
bers (58, 59). Although the function of RevA was unknown, Car-
roll et al. suggested the possibility that RevA functions as an
adhesin (34). We subsequently determined that RevA is a rela-
tively strong fibronectin-binding protein with a calculated Kd

(dissociation constant) of 12.5 nM, which also exhibits weak bind-
ing affinity for other ECM substrates, including laminin (30).
Taken together, the evidence suggests that RevA is poised to inter-
act with the mammalian host and facilitate infection.

The present study determined that the RevA-deficient mutant
was less able to colonize heart tissues than was the wild type or the
complemented mutant. In fact, complementation of revA, under
the control of a strong constitutive promoter, enhanced coloniza-
tion of the heart. In contrast, no differences were detected in bac-
terial loads in tibiotarsal joints. These results suggest that interac-
tions between RevA and components of cardiac tissue are
beneficial to bacterial infection. Moreover, this apparently tissue-
specific effect of RevA echoes the subtle phenotypes seen with
mutants of other borrelial adhesins, such as DbpA and BBK32 (22,
24, 25, 60).

There was a pronounced difference in ankle swelling between
mice infected with the parental strain and mice infected with the
revA-deficient mutant at the lower inoculum. Perhaps paradoxi-
cally, the revA-deficient mutant led to lower average histopathol-
ogy scores for the ankle joint but more collagen deposition. An
intriguing possibility is that lack of RevA alters the expression of
other adhesins, thus altering the bacterium’s tropism to and inter-
action with the joint tissues. Histopathology scores were based on

the numbers of infiltrating cells and the degree of tissue damage.
There may be differences in the types of infiltrating cells; indeed,
the blinded histology reports indicated the presence of purulent
exudates in the joints of revA-deficient mutant-infected mice but
not in those of mice infected with the parental strain (data not
shown). The composition of the cellular infiltrate and its effect on
swelling and collagen deposition remain to be determined.

We also detected differences in the levels of the chemokine
CCL-2 in serum, which were higher in mice infected with the
revA-deficient mutant than in those infected with the parental
strain. This increase was resolved by trans-complementation of
revA. CCL-2 (also known as monocyte chemoattractant protein 1
[MCP-1]) is a chemokine that recruits monocytes and dendritic
cells to sites of infection or tissue damage, and several studies have
demonstrated a role for CCL-2 in Lyme arthritis (61–64). We did
not examine chemokine levels in specific tissues, but increased
monocyte attraction to joints could account for the differences
observed in swelling and fibrosis.

The relative subtlety of the effect of RevA deficiency on infec-
tion may be due to the redundancy in adhesins. To date, at least
five fibronectin-binding proteins have been identified in B. burg-
dorferi (28–31), and different adhesins are likely involved in dif-
ferent aspects of the infection process, such as initial attachment
or dissemination. For example, overexpression of BBK32 in a
nonadherent B. burgdorferi strain enhanced bacterial binding to
vascular endothelium in vivo, whereas similar expression of RevA
did not measurably alter vascular adhesion, yet BBK32-deficient
B. burgdorferi strains exhibit only a slight impairment in mamma-
lian infection (24, 25, 54). The borrelial model is one of redun-
dancy in its host-interacting proteins (e.g., adhesins and comple-
ment-regulator binding proteins [19, 65]). Only a few adhesins
have been identified as absolutely essential for B. burgdorferi in-
fectivity (66, 67).

It is possible that RevA has additional/other functions in vivo,
such as immune evasion. Indeed, the increased CCL-2 levels and
the defect in heart colonization seen in B31-A3�revA1�revA6-
infected mice could point to differential clearance of the mutant
from certain tissues early in the infection process. In contrast,
there were no differences in bacterial loads in the tibiotarsal joints
of mice infected with the parental strain or the revA-deficient
strain. However, the revA-deficient mutant caused increased
edema and fibrotic connective tissue deposition in the joint space.
Here again, immune evasion could be key; the revA-deficient mu-
tant may be inducing a more pronounced, but tissue-specific, in-
flammatory response that causes damage to the host while failing
to clear the bacteria. Studies of the establishment and early dis-
semination of bacteria deficient in other adhesins, such as DbpA
and BBK32, have hinted at roles in avoiding immune clearance
(24, 68). Further research employing bioluminescent whole-body
imaging, combined with comprehensive examination of tissue-
specific pathology and immune responses, could provide insights
into the role of RevA in both dissemination and colonization in
the early stages of infection.
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TABLE 4 Acquisition and transmission of revA-deficient mutant B.
burgdorferi by tick feedinga

Strain

Acquisition by
larvaeb as
determined by:

Transmission from nymphs
(no. of culture-positive
mouse organs/total no. of
organs)PCR ELISA

B31-A3 � 6/6 16/18
revA-deficient mutant � 6/6 15/18
a B31-A3 and revA-deficient mutants were assessed for their abilities to be transmitted
from infected mice to feeding tick larvae. Immediately after the completion of feeding,
cohorts of approximately 30 engorged larvae from each mouse were analyzed by qPCR
for acquisition of B. burgdorferi. Cohorts of larvae from B31-A3- and B31-
A3�revA1�revA6 mutant-infected mice were allowed to molt. Three weeks after the
molt, those ticks were allowed to feed on naïve mice. Infection was determined by
detection of anti-B. burgdorferi IgG by ELISA and by positive culture of hearts, ears, and
joints.
b PCR results are shown as positive (�) or negative (�). ELISA results are shown as the
number of infected mice/total number of mice.
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