
Follow this and additional works at: https://uknowledge.uky.edu/ps_facpub 

 Part of the Pharmacy and Pharmaceutical Sciences Commons 

University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Pharmaceutical Sciences Faculty Publications Pharmaceutical Sciences 

10-2016 

Physicochemical Properties of Engineered Nanomaterials that Physicochemical Properties of Engineered Nanomaterials that 

Influence Their Nervous System Distribution and Effects Influence Their Nervous System Distribution and Effects 

Robert A. Yokel 
University of Kentucky, ryokel@email.uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232574704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ps_facpub
https://uknowledge.uky.edu/ps
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/ps_facpub?utm_source=uknowledge.uky.edu%2Fps_facpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=uknowledge.uky.edu%2Fps_facpub%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages


Physicochemical Properties of Engineered Nanomaterials that Influence Their Nervous 
System Distribution and Effects 
Notes/Citation Information 
Published in Nanomedicine, v. 12, no. 7, p. 2081-2093. 

© 2016 Elsevier Inc. Published by Elsevier Inc. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

The document available for download is the authors' post-peer-review final draft of the article. 

Digital Object Identifier (DOI) 
http://dx.doi.org/10.1016/j.nano.2016.05.007 

This article is available at UKnowledge: https://uknowledge.uky.edu/ps_facpub/60 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/ps_facpub/60


 
 
 
 
 
© 2016 Elsevier Inc. Published by Elsevier Inc. All 
rights reserved. 

This manuscript version is made available under 
the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-
nd/4.0/ 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 
 

Physicochemical properties of engineered nanomaterials that influence their 
nervous system distribution and effects  

 
Robert A. Yokel, PhD 

 
Pharmaceutical Sciences and Graduate Center for Toxicology, University of Kentucky, 
Lexington, KY 
 
Corresponding author  
Robert A. Yokel, Ph.D. 
Department of Pharmaceutical Sciences 
University of Kentucky Academic Medical Center 
335 Biopharmaceutical Complex (College of Pharmacy) Building 
789 S. Limestone 
Lexington, KY 40536-0596 
phone: 859-257-4855 
fax: 859-257-7564 
e-mail: ryokel@uky.edu 
 
 
Conflict of interest 
The author has no conflict of or competing interest. 
 
Abstract word count: 133 
Manuscript word count: 5060 
Number of references: 224 
Number of figures: 0 
Number of tables: 4 
 
 
 
 
 
 
 
 
  



2 
 

Abstract  

 

This critical review examines in vitro and in vivo evidence for the influence of 

engineered nanomaterial (ENM) physicochemical properties on their distribution into, 

and effects on, the nervous system. Nervous system applications of ENMs; exposure 

routes and potential for uptake; the nervous system and its barriers to ENM uptake; and 

the mechanisms of uptake into the nervous system and overcoming those barriers are 

summarized. The findings of English-language publications of studies that included at 

least two variations of an ENM physicochemical property and reported results of their 

pharmacokinetic and/or pharmacodynamic interaction with the nervous system that 

differed as a function of ENM physicochemical property(ies) are summarized in the 

Supporting Materials. A summary conclusion is drawn for each of the physicochemical 

properties on the strength of the evidence that it influences ENM-nervous system 

interaction.  

 

Keywords 

Chemical composition; shape; size; surface charge; surface coating 

 

Abbreviations 
 
BBB  blood-brain barrier  
BMEC  brain microvascular (capillary) endothelial cell 
CNS  central nervous system 
ENM  engineered nanomaterial 
NS  nervous system  
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I. Nervous system applications of engineered nanomaterials (ENMs)  

There are reviews of the impact of the physicochemical nature of engineered 

nanomaterials (ENMs) on biological systems 1; their circulation, biodistribution, cellular 

internalization, and trafficking 2; the contribution of the biological corona to their effects 

3; and their impact on biological activity related to the brain and retinal diseases 4.  

However, there has not been a critical review of the significance of the physicochemical 

properties of ENMs on the distribution into, and effect on, the nervous system (NS). This 

review addresses that information gap. It focuses on the influence of ENM 

physicochemical properties on their distribution/translocation to the NS and resultant 

effects. There is extensive interest in ENM use as drug and diagnostic agent delivery 

systems to the NS for pharmaco- and thermotherapy, as contrast agents for MRI 

visualization, as photosensitizers for diagnosis, and for cell labeling and cell 

replacement (e.g., for neurodegenerative disorders), including labeling mesenchymal 

stem cells to follow their fate. Much of the work has focused on cancer 5 and much 

research has investigated polymer-based ENMs. Most of the ENMs that have been 

studied are first generation, passive nanostructures, and second generation ENMs 

(active, such as targeted drugs). Third generation ENMs (nanosystems) such as neuro-

electronic interfaces and fourth generation ENMs (molecular nanosystems), have not 

yet been studied in the NS. 
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II. ENM exposure routes and their potential to result in nervous system uptake  

Due to the low bioavailability from inhalation, oral, and dermal exposure (below), ENM 

administration to achieve a medical goal usually requires systemic or local 

administration. Inhalation is the route of greatest concern for unintentional ENM 

exposure and uptake, most often from the lungs into systemic circulation and then to the 

NS from the blood. ENM translocation from the lungs to systemic circulation is < 5%, 

and to the NS very much less 6, 7. Translocation from the lung to the brain after 

inhalation of 15 or 80 nm 192iridium was 0.003 and 0.0003%, and for 12, 29, or 213 nm 

ceria was 0.01 to 0.4% of the dose 8, 9, whereas brain had 0.0001% of a 7 nm ceria after 

its intratracheal instillation 10. Another route of uptake from inhalation exposure is via 

sensory nerve endings embedded in airway epithelia in the roof of the nasal cavity (the 

olfactory nerve and maxillary branch of the trigeminal nerve), followed by axonal 

translocation in unmyelinated neurons (fila olfactoria, which have a diameter of ~100 to 

330 nm) to ganglionic and central nervous system (CNS) structures 11. Uptake directly 

into the brain by this route bypasses systemic circulation and first pass intestinal and 

hepatic metabolism. Drug administration into the nasal cavity is quite easy to achieve. It 

is most amenable to potent agents. However, there are concerns about nasal cavity 

mucosal irritation, damage, and alteration of olfaction 12. Numerous transporters are 

expressed by the olfactory and trigeminal cranial nerves that have terminations in the 

nasal epithelium, which might inhibit or facilitate ENM uptake 13, 14. The olfactory nerve 

has been demonstrated to mediate uptake of viruses (30 nm polio 15) and some ENMs 

(50 nm silver-coated gold colloid 16; 36 nm 13C 17; 30 nm manganese oxide 18; and 95 

nm quantum dot loaded particles 19). Other examples are in Tables S3 and S4. This 
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uptake appears to be mediated by endocytotic uptake into the neurons (rather than via 

transporters), retrograde axonal transport once they enter these sensory neurons, and 

interneuron translocation into the brain 20. 

 

Non-inhalation routes of ENM uptake include the oral and dermal routes. Uptake into 

the brain after oral/gastric administration of 1 to 200 nm gold, 25 and 80 nm titania, and 

7 and 30 nm ceria ENMs was ≤ 0.002% of the dose 10, 21-25. Although ENMs have been 

shown to penetrate into skin, most studies have not shown transdermal penetration 

through intact skin. Disrupting this barrier with organics, abrasion, or flexing may enable 

ENM absorption into the hypodermis to reach blood and lymph vessels 26, 27. It has been 

suggested that retrograde transport from nerve endings in the skin could take up ENMs 

into the dorsal root ganglia, although it does not appear that this has been 

demonstrated 28. The only report suggesting translocation to the NS of ENMs applied 

topically was an increase of titanium in brain after application of Degussa P25, but not a 

10, 25 or 60 nm titania, to the interscapular skin of hairless mice for 60 consecutive 

days 29. Intradermal injection of quantum dots, bypassing the formidable barrier 

provided by the stratum corneum, resulted in translocation to the liver, lymph nodes, 

and kidney, but not the brain 30.   

 

Intraperitoneal injection of scrapie virus (~25 nm) was thought to result in its uptake by 

sympathetic fibers into the NS by retrograde axonal transport. Prions (~10 nm) are 

thought to translocate in both directions between the periphery and the NS 31, 32. These 

observations suggest ENMs might be similarly taken up. Daily intraperitoneal injection 
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of 5 nm anatase titania resulted in more titanium in the brain and greater effects than a 

comparable dose of bulk titania. Given the insolubility of titania ENMs, these results 

might indicate brain uptake, but verification of titania ENM in brain extravascular space 

was not reported 33. Intraperitoneal injection of nanoscale aluminum, copper, gold, and 

silver increased levels of these metals in the brain. Changes in brain function were 

reported after intraperitoneal injection of these metal ENMs as well as after IL-13-coated 

liposomes (Tables S3 and S4), suggesting uptake from the peritoneal cavity. They may 

have been taken up directly to the brain via neuronal input or through the recently 

described lymphatic system of the brain 34, given the uptake of ENMs by the lymphatic 

system 35. The presence of some 500 nm fluorescent latex particles in the brain after 

intramuscular injection to mice was attributed to their uptake and translocate by the 

lymphatic system 36.  

 

Intravenous injection avoids the above barriers, providing 100% bioavailability. This 

route has been extensively investigated for ENM drug delivery and visualization. It is the 

best route to determine the potential for ENM entry into the brain’s vasculature and 

parenchyma, and resultant effects. 

  

III. The nervous system and its barriers to ENM uptake – The blood-brain barrier, 

blood-cerebrospinal fluid barrier, blood-spinal cord barrier, blood-retinal 

barrier, and blood-nerve barrier 

The NS has two anatomical divisions, the CNS comprised of the brain and spinal cord, 

and the peripheral NS comprised of 12 pairs of cranial and 31 pairs of spinal nerves that 
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connect the CNS to organs, muscles and glands. The somatic NS includes afferent 

neurons that convey information from sensory organs to the brain, primarily to the 

cerebral cortex, and includes the olfactory nerve and maxillary branch of the trigeminal 

nerve mentioned above. Afferent neurons pass through the spinal nerve dorsal root 

ganglia, comprised of neuronal cell bodies that lie along the back of the vertebral 

column (spine). Dorsal root ganglia cells and rat PC12 cells are often used as models of 

neurons, as frequently cited in the Supporting Materials. The motor component of the 

somatic NS conveys efferent messages from the cerebral cortex via neurons to the 

skeletal muscles to enable voluntary movements. The autonomic nervous system 

afferent component conveys sensory impulses from the blood vessels and internal 

organs to brain regions, including the medulla, pons, and hypothalamus that elicit reflex 

responses through efferent autonomic nerves to the heart, blood vessels, and all the 

body’s organs. The autonomic nervous system has two major components, the 

sympathetic and the parasympathetic systems, that often have opposite effects on end 

organs, such as the heart, thereby maintaining homeostasis. The healthy brain has 

neurons and glial cells (astrocytes, oligodendrocytes, and microglia). The nervous 

system has neurons and Schwann cells. The latter, like oligodendrocytes in the CNS, 

wrap neuronal axons in a myelin sheath.   

 

Barriers for a material to reach an intracellular target in the NS include the blood-brain, 

blood-cerebrospinal fluid, blood-spinal, blood-retinal, and blood-nerve barriers, followed 

by the cell’s plasma membrane, and then, depending on the target, perhaps an 

organelle membrane such as the nuclear envelope. To reach an intracellular target, a 
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multi-functional nanoconstruct, sequentially presenting different surface properties, may 

be required.  

 

The anatomical basis of the blood-brain barrier (BBB) includes the brain microvascular 

(capillary) endothelial cells (BMECs) that line the ~5 to 10 µm diameter vessels that 

perfuse the brain. Adjoining cells have tight junctions, maintained by several proteins. 

The lack of 1 to 1.2 nm lanthanum flux through BBB endothelial cell tight junctions 

attests to this barrier’s integrity 37. ENMs are likely to pass through the endothelial cell 

membrane (transcellular) rather than between endothelial cells (pericellular) unless this 

space is enlarged. Serum proteins penetrated leaky cerebral vessels supplying blood to 

the subarachnoid space and pial surface as well as circumventricular organs (which 

lack a BBB so they can chemically communicate with blood) 38, suggesting the 

penetration of lipid ENMs into the brain through circumventricular organs is possible 39. 

However, we did not see nanoceria in the median eminence or pituitary gland, which 

lack a BBB 40, 41.   

 

The luminal surface of the BBB is coated with a carbohydrate rich glycocalyx layer 

bound to the endothelial cells by glycoproteins and proteoglycans, which contain sialic 

acid moieties. This provides a negative charge that is important to maintain BBB 

integrity and function. Cations that neutralize this charge can increase BBB permeability 

42. Heparan sulfate containing proteoglycans which constitute ~50 to 90 of the 

proteoglycans, such as the extracellular matrix proteoglycan perlecan and the 

transmembrane syndecan family, help to maintain and protect the BBB. These 



9 
 

proteoglycans can immobilize molecules, such as lipoproteins and chemokines, and 

HIV-1, and can mediate cellular uptake of apolipoprotein E (apoE)-containing 

lipoproteins and an apoE mimetic peptide Angiopep. 

 

In addition to the barriers to ENM flux across the BBB presented by its physical 

components, the BBB expresses many components that protect it and the brain 

metabolically and enzymatically. The BMECs have numerous carrier-mediated influx 

and efflux transporters, including P-glycoprotein, multidrug resistance protein, and 

breast cancer resistance protein that transport lipophilic and other agents out of the 

BMECs into blood 43. Most substrates of these transporters are small molecules. The 

BMECs also express enzymes, including monoamine oxidase, DOPA decarboxylase, 

cholinesterases, GABA transaminases, aminopeptidase, and endopeptidases, that 

metabolize neurotransmitters and many xenobiotics. A few cytochrome P 450 drug-

metabolizing phase 1 enzymes, CYP1B1 (that metabolizes flavonoids and estradiol) 

and CYP2U1 (that metabolizes arachidonic acid, docosahexaenoic acid, and other long 

chain fatty acids), and some phase 2 enzymes, GSTP1, COMT, GSTM3, GSTO1 and 

GSTM2, are expressed 44. Superoxide dismutase attenuates ROS-induced BBB 

disruption, protecting the brain from injury produced by ischemia, methamphetamine, 

and other insults 45, 46.  Further description can be found in 47-50. 

 

The kinetics of ENM penetration of the blood-brain and blood-retinal barriers has been 

described in studies using methods that confirm distribution across the membranes, 

including imaging of ENMs in NS cells and use of the capillary depletion method that 
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separates brain parenchyma from brain endothelial cells. MWCNTs were seen in the 

parenchymal fraction 5 minutes after their intravenous administration 51.  One % 

polysorbate-coated PBCA and cationic-albumin PEG-poly(ε-caprolactone) ENMs were 

seen in the brain parenchymal fraction 30 minutes after their intravenous injection 52, 53. 

Using in vivo multiphoton imaging of mice with a cranial window, stained nuclei were 

seen beginning 30 min after intravenous injection of nuclear stain-PS80 coated-PBCA 

ENM, amyloid plaque staining was seen beginning 15 minutes after intravenous 

injection PBCA-ENM coated with Alexa-488–conjugated anti-Aβ antibody, and PBCA-

ENM loaded with a Trypan blue showed a time constant of brain entry of 18 minutes, 

corresponding to the BBB crossing time 54. Imaging of rhodamine-labelled PBCA in 

retina showed blood-retinal barrier crossing in 20 to 25 minutes 55. In the only found 

study of metal-based ENMs that showed short-term NS entry, transferrin-conjugated 

fluorescein-loaded Fe3O4 nanoparticles were seen 1 hour after their intravenous 

injection into rats, the only time studied 56. 

 

IV. The mechanisms of substance uptake into the NS and overcoming barriers to 

ENM uptake 

The mechanisms of substance uptake into cells include diffusion (adsorptive 

transcytosis), carrier-mediated transport, and receptor-mediated processes 57. The 

receptor-mediated processes include facilitated diffusion, active transport, and 

endocytosis (the engulfing of particles and uptake in small vesicles into a cell) 58. 

Diffusion across the BBB favors molecules < 500 Da (~1 nm) and lipophilic substances 

59, 60. Endocytotic processes are believed to be the major mechanism of ENM cell 
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uptake 61.  Endocytotic processes involve phagocytosis and pinocytosis 

(macropinocytosis, caveolae, clathrin-coated pits, and clathrin- and caveolae-

independent uptake). Phagocytosis can engulf spherical particles from ~200 to 3000 nm 

into a vacuole. Caveolar uptake occurs in non-fenestrated endothelial cells, involving an 

invagination of the cell membrane surrounded by the protein caveolin on the 

cytoplasmic surface, receptor proteins, and invagination into the cell. The caveolae-

mediated uptake pit diameter is ~50 to 80 nm. Although endothelial cells in the 

mammalian brain have fewer pinocytotic vesicles than most other tissues 62, this route 

was shown to mediate uptake of neutral and cationic ENMs across a co-culture of 

bovine brain microvascular endothelial cells and mixed glial cells 63. The clathrin coated- 

and clathrin/caveoli-independent pit diameters are ~120 and ~90 nm, respectively. 

However, one should not think that these diameters limit the size of ENMs that can be 

taken up by these processes 64. 

 

Several approaches to enhance brain ENM uptake have been investigated; molecular 

Trojan horse approaches to enable hitchhiking through the BBB. These include surface 

functionalization/conjugation to transferrin (to be recognized by the transferrin receptor 

subtype-1 for receptor-mediated endocytosis), transferrin receptor antibodies, lactoferrin 

(to be recognized by the lactoferrin receptor for receptor-mediated endocytosis), 

apolipoprotein E (apoE) and the peptide Angiopep (an apoE-mimetic peptide ligand) 

that are recognized by the low density lipoprotein receptor, insulin-like growth factor 

binding protein (for recognition by the insulin-like growth factor receptor), and a rabies 

virus-derived peptide 65-67. The BBB can be intentionally compromised to enhance 
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distribution into the CNS. Focused ultrasound that creates microbubbles has been 

shown to open targeted BBB regions for a few hours to enhance local brain uptake 68, 

and has been used to transiently increase BBB permeability to enhance brain gold ENM 

delivery as well as doxorubicin and gadolinium in polymers 69-72. The BBB tight junctions 

can be temporarily opened by intra-carotid infusion of hyper-osmotic (~25%) mannitol, 

which has been used for brain cancer chemotherapy 73. No reports were found that 

investigated the interaction of physicochemically-different ENMs with the brain when 

these methods were used to open the BBB.  

 

V. Addressing the knowledge base of this review 

This review is based on English-language publications of ENM studies which had at 

least 2 variations of a physicochemical property that resulted in different ENM 

interaction (pharmacokinetic and/or pharmacodynamic) with the NS or its components. 

The physicochemical properties of both the synthetic identity (the ENM as made) and 

the bioidentity (biological identity, transformed from the synthetic identity by protein 

coating, aging, etc.) were considered. It is assumed that the response to a transformed 

ENM will not be the same as to its synthetic identity 74. For example, aging (oxidation) of 

zero valent iron decreased its toxicity 75 and MWCNT oxidation altered cell response 

and ENM distribution and degradation 76-78.  Publications were reviewed for results 

related to five ENM physicochemical properties (chemical composition, size, shape, 

surface charge, and surface coating). For in vitro studies, reports were reviewed for 

comparative results of the five physicochemical properties on eleven NS cell types (or 

mixtures thereof); stem, blood-brain barrier, blood-peripheral nerve barrier, blood-retinal 
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barrier, microglia, astrocytes, oligodendroglia, neural, peripheral NS cells, mixtures of 

NS cells, and tumor cells. For in vivo studies, reports were reviewed for comparative 

results of the five physicochemical properties studied in healthy vs. disease model 

animals.  

 

The strategy to identify the literature examined for this review included PubMed, Web of 

Science, and SciFinder searches, followed by searches and examination of references 

cited by the identified reports and reviews. Five PubMed database searches were 

conducted between November 2012 and January 2016. The cumulative yield of 1344 

English-language citations produced ~ 550 unique citations. The PubMed search 

strategy used a combination of relevant controlled vocabulary terms from Medical 

Subject Headings [Mesh] and Text Words (words or phrases found in either an article 

title or abstract).  Core anatomic and disease MeSH terms included Nervous System 

OR Nervous System Diseases, which yields more specific terms indexed below the 

main terms in the PubMed tree structure.  To increase initial yield, text words were also 

searched, including Neuro* OR Nerv* OR Brain OR Astrocyte* OR Retinal OR 

Microglia* OR Apoptosis OR Cerebrospin* OR Mening* OR Encephal* OR Alzheimer* 

OR Parkinson* OR Dementia.  Asterisks (*) were used to force truncation and find 

variable endings to root terms. Nanotoxicology search criteria primarily relied on 

"Nanostructures"[Mesh], plus text words. Core terms included Nanotox* OR Nanotech* 

OR Namomolec* OR Nanomaterial* OR Nanotech* OR Nanoparticl* OR Nanodot* OR 

Nanotub* OR Biotransform* OR Ultra fine OR Quantum Dot. Additionally, Title Word 

searches for terms such as Genotox* OR Cytotox* OR Neurotox* OR Toxic* were used, 



14 
 

then combined with the neurotoxicology search terms. Additionally, the PubMed “Similar 

Articles” algorithm was used for articles that appeared to be of high relevance. 

 

The PubMed keywords were used to devise the Web of Science search strategy.  Three 

separate searches were conducted during the same timeframe as the PubMed 

searches. The strategy was filtered, focusing on title words and research design.  This 

returned 325 citations. 

 

Ten targeted SciFinder searches were conducted in October, 2015 to look for 

publications to fill in ENM physicochemical property pharmacokinetic and/or 

pharmacodynamic interaction cells lacking entries. Search terms were: stem cells nano 

nervous system, blood-peripheral nerve barrier nano, peripheral nerve barrier nano, 

peripheral nerve nanomaterial, peripheral nerve nano, blood-retinal barrier nano, blood-

nerve barrier nano, oligodendroglia nano, astrocyte nano, and astrocyte nanoparticle 

nanomaterial. 

 

The author read the abstract of all returned citations to select the reports that appeared 

to report studies that included at least two variations of an ENM physicochemical 

property. Those reports were read to extract the relevant details, resulting in the ~ 235 

reports summarized in the Supporting Materials and > 230 reports that did not include at 

least two variations of an ENM physicochemical property that resulted in ENM 

physicochemical property-dependent different responses.  
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Introduction to Sections VI to IX 

Summaries of the influence of the physicochemical properties of ENMs on their 

interaction with the NS, organized according to the five physicochemical properties and 

study material (in vitro by cell type or in vivo) have been summarized in 4 tables in the 

Supporting Materials. Tables S1 and S2 report in vitro results, Tables S3 and S4 report 

in vivo results. Tables S1 and S3 contain summaries of reports of studies that 

determined pharmacokinetic endpoints, and Tables S2 and S4 contain summaries of 

reports of studies that determined pharmacodynamic (effect) results. Tables S1 and S2 

include the eleven cell types searched. Tables S3 and S4 distinguish between studies 

conducted in healthy vs. disease model animals, noting the NS region or cell type 

studied, animal species, and route of ENM administration. Entries under a 

physicochemical property and study material are chronological; the oldest listed first. 

The absence of an entry under a physicochemical property for a cell type (Tables S1 

and S2) or animal status (Tables S3 and S4) indicates no information was found.  

 

The level of evidence that a differentiating ENM physicochemical property influences 

NS interaction, based on the reports summarized in Tables S1 to S4, is presented in 

Tables 1 to 4. An entry of No indicates no evidence. N/S indicates the evidence is not 

strong, often because only one report addressed this condition. An entry of S indicates 

strong evidence, based on more than one well-conducted and interpreted study and/or 

multiple supporting studies in the absence of multiple studies with conflicting results. For 

many studies, it is difficult to attribute a different response to two or more ENMs to a 

single physicochemical property because the structural/chemical difference(s) among 
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the ENMs represent more than one physicochemical property, the entanglement of their 

physicochemical properties 79. This is particularly relevant when trying to attribute a 

difference to surface charge which is often confounded by the functional groups that 

provide the different charges. For N/S and S entries, reports that provide the strongest 

evidence are cited. 

 

VI. In vitro studies reporting the influence of ENM physicochemical properties on 

their pharmacokinetic responses (uptake, distribution, and persistence) 

Table 1 indicates the level of evidence (based on studies summarized in Table S1) that 

each of the five physicochemical properties has on the pharmacokinetics of ENM cell 

type/cell mixture interaction. Only 4 reports with stem cells, 1 with oligodendrocytes, and 

4 with normal astrocytes studied alone were found, preventing very many conclusions 

that physicochemical properties influence ENM pharmacokinetic interaction with these 

cells. Although ENMs have been studied as scaffolds for regeneration of peripheral 

nerve cells, no reports were found of ENM pharmacokinetic interaction with peripheral 

NS cells (other than dorsal route ganglia cells that are included with neurons) or the 

blood-nerve barrier, accounting for the absence of entries for these targets in Table 1. 

Some conclusions can be drawn from the studies cited in Table 1. More than half of the 

studies summarized in Table S1 were of BBB models. Of these, nine used hCMEC/D3 

cells. Reports using these human-derived cells were given more credence than reports 

using other cells when summarizing the strength of evidence in Table 1. The literature 

consistently shows an inverse relationship between ENM size and extent of distribution 

across in vitro models of the BBB. Results with tumor-derived cells suggest greater cell 
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association or uptake of 40 to 50 nm ENMs than larger or smaller ones, consistent with 

the conclusion that ~ 50 nm in the optimum size for uptake by non-phagocytic 

eukaryotic cells 80.  There is insufficient information to know if this is true for non-tumor 

NS cells.  Permeation through the BBB appears to be favored for ENMs with closer to, 

or with, neutral surface charge. Cell membrane surfaces, including brain 

microvasculature endothelial cells, are negatively charged, so ENMs with a net negative 

surface potential would be expected to have difficulty approaching the cell membrane. 

However, this is not consistent with the conclusion that increasing surface charge, either 

positive or negative, favors particle uptake by non-phagocytic eukaryotic cells 80. The 

evidence that surface coating influences the pharmacokinetics of ENMs on NS cells 

comes from the many studies that investigated methods to deliver ENMs across the 

BBB to the brain, and some studies that assessed the risk of brain parenchyma ENM 

entry. Two of the four studies that compared non-tumor- and tumor-derived cells show 

different response, suggesting more work is warranted to selectively target ENMs to NS 

tumor cells.  

 

VII. In vitro studies describing the influence of ENM physicochemical 

properties on their pharmacodynamic responses (effects/responses of the cell 

type) 

Table 2 indicates the level of evidence (based on studies summarized in Table S2) that 

each of the five physicochemical properties has on the effects produced by ENMs on 

NS cell types or cell mixtures. As with pharmacokinetic endpoints, the lack of sufficient 

studies (none were found for blood-peripheral nerve barrier or peripheral cells, only one 



18 
 

was found for the blood-retinal barrier and for oligodendrocytes, and three with normal 

astrocytes studied alone) prevents conclusions of the influence of physicochemical 

properties on the effects of ENMs on these barriers and cells. Generally, from a few to a 

few hundred nm, effects on cells decreased as size increased. This trend was seen with 

stem, blood-brain barrier (which represented < 20% of the entries in Table S2), neuronal 

(which represented 35% of the entries in Table S2), and tumor cells. Only 1 study 

compared surface coating in non-tumor and tumor cells 81, providing insufficient 

information to conclude if they respond similarly.  

 

VIII. In vivo studies reporting effects of the influence of ENM physicochemical 

properties on their pharmacokinetic responses (uptake, distribution, and 

persistence) 

Table S3 contains summaries of reports of studies that determined pharmacokinetic 

endpoints in the NS of the mouse, rat, and rabbit (1 study) of more than one ENM. 

There are many reports concluding that ENMs enter the brain. For ENMs from < 2 to 

500 nm, there was generally an inverse relationship between size and brain association 

after intravenous administration; supported by studies cited in Table 3. For most studies 

concluding that ENMs enter the brain, the methods employed were not able to 

determine ENM distribution into brain parenchyma. Most studies used methods that do 

not account for the ENM in the blood within the vasculature of the brain. Blood occupies 

~2% of brain volume in the cortex and a greater space in some other brain regions 82, 83. 

Rats perfused to remove blood 4 h after intravenous injection of gold glyconanoparticles 

had only ~4% as much ENM in their brain as rats that had not been perfused 84. 
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Similarly, perfusion reduced gold in three brain regions to 7 to 18% of that seen on non-

perfused rats after intra-abdominal nanogold injection 85. These results, and the rapid 

ENM decline over time in the whole brain or brain regions, e.g., 85-89, which are 

interpreted as not reflecting parenchymal entry, and the decrease in ENM in brain 

capillaries but not parenchyma over 24 hours 90, suggest many studies that reported 

brain ENM in the absence of removal of blood in the brain significantly over-estimated 

the amount of ENM that entered brain parenchyma. Some studies accounted for the 

contribution of blood to brain ENM 23, 83, 91, however this does not fully remove the 

contribution of ENM in sites other than brain parenchyma, such as adsorption to the 

luminal wall of brain vasculature and ENM presence in cellular and membrane 

components of the BBB 41, 92. In several studies differences seen in short-term time 

points did not persist to later times. None of these studies verified ENM distribution into 

brain parenchyma. These results suggest that not all of the ENM penetrated into brain 

parenchyma, but that the temporal difference might be due to ENM in blood within the 

brain or adherent to the luminal wall of brain vasculature that subsequently distributed 

away from these sites 93-98. A few reports verified ENM brain parenchyma entry 99, 100, 

but one cannot conclude from one of these 99 that size influenced brain levels of gold 

because this ENM was given by intraperitoneal injection. The difference in brain gold 

ENM could be due to differences in uptake from the peritoneal cavity. Because the 

distinction between ENM in the brain vs. brain parenchyma has seldom been made, 

reports that claimed brain ENM entry were assessed for evidence that the ENM entered 

brain parenchyma. The findings are noted in Table S3.  
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As noted above, it is difficult to isolate surface charge without confounding factors from 

other variables. Several studies, although all from the same group, found less 

distribution through brain for negative than near neutral ENMs when introduced into ex 

vivo brain 72, 101. In vivo results addressing the relationship between surface charge and 

brain association are not consistent, preventing a conclusion 102-106. A large number of 

studies showed evidence that surface coating affected brain association, reflecting the 

extensive efforts to overcome the restrictions to brain entry presented by the BBB. No 

attempt was made to relate results from in vitro studies of brain-derived cells (Table S1) 

to the in vivo situation (Table S3) due to the great restriction of the BBB to brain entry. 

 

IX. In vivo studies describing how ENM physicochemical properties affect their 

pharmacodynamic responses (effects/organism responses)  

Table S4 contains summaries of reports of studies that determined response/effect 

endpoints in the mouse, rat, guinea pig, and rabbit NS of more than one ENM. One 

would expect greater response when a greater amount of ENM associates with the 

brain. This was seen in a study that determined both endpoints 107. Smaller ENMs 

produced greater responses than larger ENMs 99, 108, 109 but a firm conclusion that size 

correlates with NS response is prevented by the entanglement of their physicochemical 

properties. Although ENM size affects its NS response, the relationship is not as simple 

as its influence on brain association. No studies investigating the influence of size were 

identified using ENM intravenous administration to the studied animal where more than 

one ENM was investigated. Uptake from the exposure site (oral, intraperitoneal, 

intranasal) may influence the NS response, preventing attribution of NS response to 
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size when these routes were employed. Only one study employing the intravenous 

route suggests cationic surface charge was associated with greater response, as might 

be predicted by neutralization of the negative charge on the BBB 102. A firm conclusion 

that surface charge correlates with NS response is again prevented by the 

entanglement of their physicochemical properties.     

 

X. The ENMs that have been studied for their physicochemical properties that 

influence pharmacokinetic and/or pharmacodynamic interaction with the 

nervous system  

A minority of the studies cited in the Supporting Materials investigated polymer-based 

ENMs, primarily focused on targeting or permeating the blood-brain barrier, entering the 

brain, or targeting cancer or cancel cells. The polymer-based studies were generally 

published sooner (median 2007, range 1990 to 2015) than the metal- and carbon-based 

ENM studies (median 2012, range 2001 to 2016). A contributor to the difference may be 

the concern about adverse and persistent effects of the generally insoluble carbon-, 

silica-, metal-, and metal oxide-based ENMs.   

 

XI. Conclusions  

It is well established that ENM physicochemical properties can affect their 

pharmacokinetics (uptake, distribution, and persistence) and resulting responses. This 

has been demonstrated in organ systems other than the NS, evidenced by the 

extensive clearance of ENMs into the liver and spleen, and ENM modifications that 

reduce this to target other sites. It has been less well demonstrated for the NS and not 
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previously reviewed. Of the ENM physicochemical properties that have been 

investigated for their influence on NS distribution and effects (chemical composition, 

size, shape, surface charge, and surface coating) the greatest emphasis has been on 

surface coating, particularly studies attempting to preferentially target ENM delivery to, 

and effects on, the brain.  Studies with stem cells, blood-brain barrier cells, neurons and 

neuron-like cells, and tumor cells, as well as whole animals, have shown the influence 

of ENM surface coating on distribution and effects. Size has been shown to influence 

ENM distribution, as an inverse relationship for distribution across in vitro BBB models, 

into the brain of whole animals, and effect on neurons and neuron-like cells; and greater 

tumor cell association or uptake of 40 to 50 nm ENMs than larger or smaller ones. 

Strong evidence for the influence of chemical composition, shape, and surface charge 

on NS pharmacokinetics and effects is generally lacking.  
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