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RESEARCH ARTICLE
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Abstract

Background

Leishmania major infection induces robust interleukin-12 (IL12) production in human den-

dritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The

surface of Leishmania parasites is covered in a dense glycocalyx consisting of primarily lipo-

phosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these

glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible

for IL12 induction.

Methodology/Principal Findings

Here we explored the role of parasite glycoconjugates on the hDC IL12 response by gener-

ating L.major Friedlin V1 mutants defective in LPG alone, (FV1 lpg1-), or generally deficient
for all PGs, (FV1 lpg2-). Infection with metacyclic, infective stage, L.major or purified LPG

induced high levels of IL12B subunit gene transcripts in hDCs, which was abrogated with

FV1 lpg1- infections. In contrast, hDC infections with FV1 lpg2- displayed increased IL12B
expression, suggesting other PG-related/LPG2 dependent molecules may act to dampen

the immune response. Global transcriptional profiling comparing WT, FV1 lpg1-, FV1 lpg2-
infections revealed that FV1 lpg1-mutants entered hDCs in a silent fashion as indicated by

repression of gene expression. Transcription factor binding site analysis suggests that LPG

recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B

(NFκB) and Interferon Regulatory Factor (IRF) mediated transcription.

Conclusions/Significance

These data suggest that L.major LPG is a major PAMP recognized by hDC to induce IL12-

mediated protective immunity and that there is a complex interplay between PG-baring

Leishmania surface glycoconjugates that result in modulation of host cellular IL12.
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Author Summary

Leishmaniasis is a group of parasitic diseases caused by intracellular protozoa belonging to
the genus Leishmania, pathological manifestations ranging from self-healing cutaneous
forms to severe visceral infections that result in death. These clinical outcomes are dictated
by the Leishmania species initiating the infection and are influenced by early responses of
host immune cells, which ultimately initiate an IL12 mediated immune response in resolv-
ing infections. Like the diseases themselves, the magnitude of IL12 induction in hDCs is
Leishmania-species and strain specific, where species that elicit visceral disease do not
induce IL12, while most cutaneous disease-causing L.major strains induce robust IL12
responses and confer life-long immunity. The molecular mechanisms that mediate the
ability of these innate immune cells to discriminate between pathogens remain elusive and
have been primarily investigated in murine model systems. Here we identified L.major
LPG as a major PAMP that induces IL12 in hDCs. Elucidation of this critical component
of human immunity to L.major has ramifications for leishmaniasis vaccine development.

Introduction
Leishmaniasis constitutes a group of vector-borne parasitic diseases that affects approximately
12 million people worldwide and results in diverse clinical pathologies [1]. The causative intra-
cellular protozoa belonging to the genus Leishmania, generally dictate disease outcome in a dis-
tinct species-specific manner. Visceral leishmaniasis may result from infection with
Leishmania donovani parasites that disseminate throughout the body, manifesting into fatal
systemic disease if left untreated. In contrast, Leishmania major, which is a causative agent for
cutaneous leishmaniasis, produces ulcerative lesions localized at the site of sand fly vector inoc-
ulation. In the majority of L.major patients, lesions heal within several months, conferring life-
long acquired immunity [2]. Recovery of cutaneous leishmaniasis with a strong immune
response can be attributed to early cellular activities that occur following initial entry of the
parasites into host cells.

Leishmania parasites have evolved mechanisms to survive within host cells and mediate
infectivity in sand fly vectors through the interaction of their cellular surface coat molecules.
The Leishmania surface coat is densely packed with glycosylphosphatidylinositol (GPI)-
anchored glycoconjugates, including lipophosphoglycan (LPG), proteophosphoglycans
(PPGs), glycosylinositolphospholipids (GIPLs), and glycoprotein 63 (GP63) [3–5]. Together
these molecules provide a protective barrier for parasites to persist within the host environment
[6]. LPG is one of the most intensely studied Leishmania surface molecules, in both the sand
fly vector and vertebrate hosts, playing a distinct role in modulating host immune function [7]
and even vectorial capacity of various sand fly species [8]. LPG is polymorphic among Leish-
mania species and developmentally regulated [6]. One dominant feature of LPG, the phospho-
glycan repeating unit [Gal-Man-P] (PG), contains species-, strain-, and stage-specific
modifications usually on the Gal residues [9–13]. The number of PG repeat units almost dou-
bles during metacyclogenesis [14] and LPG is dramatically down regulated in the amastigote
stage [15]. Thus, the role of LPG in mammalian infections is limited to the initial period of
invasion and establishment of infection by metacyclic promastigotes.

Protective immunity to cutaneous leishmaniasis requires a robust IL12 driven type 1 helper
T-cell (Th1) mediated response that produces high levels of interferon-gamma (IFNG), which
ultimately promotes anti-microbicidal production of nitric oxide (NO) and reactive oxygen
species (ROS) that destroy invading pathogens [16,17]. Dendritic cells (DCs) and macrophages
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are among the major cell sources of IL12, whose bioactive secretion is dependent upon the
covalent linkage between the p40 (IL12B) and p35 (IL12A) subunits [18]. The ability of Leish-
mania to selectively suppress IL12 production, as first established by using murine macro-
phages [19,20], occurs through the transcriptional inhibition of the IL12B promoter [21] and is
one immune evasion strategy employed by parasites to establish infection. Phagocytosis of
Leishmania parasites by murine DCs induces IL12, driving the differentiation of Th1 cells to
elicit their effector function [22–27]. The precise role of different DC subsets during murine
infection in vivo is discordant depending on the Leishmania strain utilized, the infection route,
and the timing of analysis [28,29]. A role for DCs early in infection has been identified in vivo,
however, as DCs carrying Leishmania antigen produce IL12 within 8 hours following infection
[30]. The murine DC IL12 response can be altered depending on the biochemical composition
of the parasite surface, as evidenced by a study demonstrating that infection with L.major
LV39c5 lpg2−, a mutant that lacks phosphoglycan (PG)-containing molecules and other
LPG2-dependent metabolites [31], induced IL12B in bone marrow derived mouse DCs
(BMDCs) co-stimulated with anti-CD40 and IFNG [32]. This effect along with the long-term
persistence of these parasites likely account for why vaccination with these LV39c5 lpg2− para-
sites protects mice against L.major wild type (WT) challenge [33].

Remarkably, hDCs exhibit a dynamic range in IL12 production in response to Leishmania
infection that is largely dependent upon the nature of the infecting species or strain. L. dono-
vani fails to elicit IL12, whereas a general induction of IL12 is observed during L.major infec-
tions [34]. However, IL12 production also varies across L.major strains. Strains LV39 and SD
do not induce IL12, whereas Friedlin V1 (FV1), IR173, IR176, and CC-1 strains elicit high lev-
els of IL12 [34,35]. These differences are not well-correlated with LPG structural polymor-
phisms, as L.major LV39cl5 bears a highly poly-galactosylated LPG [36], while L.major SD
synthesizes an unsubstituted LPG similar to that of L. donovani [37]. Several groups have
reported differences in lesion pathology following in vivo infection with these same L.major
strains. For example, L.major FV1 infected C57BL/6 mice develop lesions that eventually heal
over time, whereas mice infected with L.major SD produce non-healing lesions [38]. BALB/C
IL4RA knockout mice are resistant to L.major IR173 strain but susceptible to L.major LV39
strain [39]. Moreover, while L.major FV1 strain infected BALB/C mice quickly develop lesions,
L.major LV39c5, a clonal derivative of the LV39 strain, elicits slower lesion development.
Hybrid crosses of L.major FV1 x LV39c5 segregate at a 1:1 ratio into “fast” or “slow” virulence
progeny [40]. These differential host responses to variant intra-species strains of L.major have
important implications for the parasite strain-specific factors that could dictate disease persis-
tence versus healing and induction of immunity.

In this study, we focus on elucidating whether parasite surface molecules are associated with
the robust cytokine response observed in hDCs using the ‘high-IL12 inducing’ L.major FV1
strain. We generated parasite mutants lacking LPG alone, as done previously with the ‘low-IL12
inducing’ L.major LV39c5, through inactivation of the LPG1 galactofuranosyl transferases
required for LPG core synthesis. Mutants generally lacking in all PG-containing structures were
generated through inactivation of the Golgi GDP-mannose nucleotide sugar transporter gene,
LPG2 [31]. This approach is powerful for probing the role of LPG as it allowed us to assess the
impact of LPG deficiency in the context of the parasite, rather than through exogenous and rela-
tively artificial routes. A second advantage is that multiple mutants provided a means to dis-
criminate between LPG effects and those of molecules that bear structures related to or shared
with those found in LPG. Notably, the PG repeating units present on LPG also are abundant on
secreted molecules, such as acid phosphatases and other PPGs, which can be anchored to the
parasite surface through glycosylphosphatidylinositol (GPI). Inactivation of LPG1 results in a
parasite lacking LPG alone but otherwise normal in GIPL and PPGs levels [41].

L.major FV1 Phosphoglycans Affect DC Elicited IL12
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Our results demonstrate that hDC infection with the LPG-null L.major FV1 lpg1−mutant
resulted in significantly diminished IL12BmRNA, relative to FV1WT parasites, indicating
that LPG is essential for stimulating host IL12 production. However, the PG-null L.major FV1
lpg2− mutant infected DCs exhibited an increase in IL12B expression, suggesting that PGs and/
or other LPG2-dependent metabolites may suppress IL12 induction. These results suggest that
L.major parasites balance stimulatory and inhibitory effects on the host cells to establish
infection.

Materials and Methods

Ethics statement
The study protocol was approved by the University of Notre Dame Institutional Review Board
in compliance with all applicable Federal regulations governing the protection of human sub-
jects (Human Subjects Assurance #M1262). The research was deemed exempt under exemp-
tion #4. The samples were purchased from Central Indiana Regional Blood Center,
Indianapolis, IN and no identifying information was provided.

Dendritic cell generation and infection
Monocytes were isolated from healthy human donor buffy coats (Central Indiana Regional
Blood Center, Indianapolis, IN) by enriching for CD14+ cells using a magnetic bead separator
(AutoMACs, Miltenyi Biotech systems, Germany). Monocytes from each donor were cultured
in 6-well plates at a concentration of 106 cells/2ml of RPMI-complete media (10% heat-inacti-
vated FBS, 2mM l-glutamine 100U/ml, 1% penicillin/streptomycin) and supplemented with
recombinant human IL4 (40U/ml, Peprotech, NJ) and granulocyte-macrophage colony-stimu-
lating factor, GMSCF (1000U/ml, Peprotech, NJ) on days 0, 3, and 6 to allow differentiation
into immature DCs. Cells were harvested, washed one day before infection to remove any
residual cytokines, and assessed for DC marker CD1A to confirm a homogenous population of
immature DCs. All parasite strains were cultured at 26°C without CO2 in M199 medium con-
taining 10% heat-inactivated FBS [42]. Metacyclic promastigotes were isolated according to
previously described methods [43] and opsonized by treatment with 5% human serum for 30
min at 37°C. DCs were then infected at a concentration of 10 parasites per 1 DC in RPMI-com-
plete media. As we previously demonstrated that the peak of IL12B expression occurs at 8
hours post L.major infection [44] and to avoid the complication that mutant parasites might
be degraded at later time points as previously observed [31,41], samples were typically har-
vested at 8 hours post-infection. For kinetic analyses we focused on the early time points fol-
lowing infection (2, 4, 8, or 24 hours). Cytospins were prepared at the conclusion of each
experiment and Diff-quick stained (Fischer Scientific, Pittsburgh, PA) for visual analysis by
light microscopy. Uninfected and infected DCs (100 total) were counted to calculate the infec-
tion rate (% infected DCs) and the parasite indices (# parasites per 100 cells) for each infection
sample. All parasite and human cell cultures tested negative for mycoplasma (PCR detection,
Takara) and tested below the limits of detection for endotoxin (<0.25U/ml) (Limulus Amoe-
boctye Assay, Endosafe, Charleston, NC).

Generation of L.major FV1 lpg1− and L.major FV1 lpg2− mutants and
complemented lines
Leishmania major strain Friedlin clone V1 (MHOM/IL/81/Friedlin) and L. donovani strain 1S
(MHOM/SD/62/1S) were grown in M199 medium containing 10% heat-inactivated FBS [45].

L.major FV1 Phosphoglycans Affect DC Elicited IL12
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Methods for electroporation of logarithmic phase promastigotes and plating on semisolid
media to obtain clonal lines were as described previously [46].

L.major FV1 lpg1−mutants were obtained by a gene disruption strategy, in which autono-
mous drug resistance cassettes were inserted within the LPG1 coding region [41]. The methods
and constructs used were the same as in the prior study generating the L.major LV39c5 lpg1−

mutants [41]. In the first round, plasmid B2947 DNA was digested with restriction enzymes
XhoI and HindIII to yield the LPG1::HYG targeting construct, conferring selective resistance
gene to hygromycin B (hygromycin phosphotransferase). 10μg of DNA was used for electropo-
ration and parasites were plated on semisolid medium containing 50μg/ml of hygromycin B.
Clonal parasite lines were obtained at typical frequencies and screened for the presence of the
expected heterozygous LPG1 and LPG1::HYG insertion by PCR (S1 Fig, S1 Table). Several
clones were inoculated into susceptible BALB/C mice (107 stationary phase, footpad) and
recovered after 1 month; such mouse passaged lines are designated as ‘M1’. These heterozy-
gotes underwent a second round of transfection; electroporating 10μg of LPG1::PAC, confer-
ring a selective resistance gene to puromycin (puromycin acetyltransferase), derived from
BamHI digestion of plasmid B2949, and followed by plating parasites on semisolid media con-
taining 50μg/ml hygromycin B and 30μg/ml puromycin. Clonal lines bearing disruptions in
both LPG1 alleles, and lacking unmodified LPG1 (^LPG1::HYG/^LPG1::PAC), were identified
by PCR analysis and confirmed by Western blot analysis and agglutination tests. Several clones
were inoculated into susceptible BALB/C mice (107 stationary phase, footpad) and recovered
after 1 month (M1). For simplicity, these lines are referred to as FV1 lpg1−. To generate com-
plemented ‘add back’ lines, several FV1 lpg1− clonal lines were electroporated with the LPG1
expression plasmid pSNBR-LPG1::NEO (B3340), conferring an episomal selective resistance
gene to the aminoglycoside antibiotic G418 via expression of the neomycin phosphotransferase
gene NEO, and clonal lines were recovered by plating on semisolid media containing 50μg/ml
HYG, 30μg puromycin, and 12μg/ml of G418. Successful transfection was established by PCR
tests and restoration of LPG expression by western blot, and agglutination tests. Formally, the
genotype of such lines is (^LPG1::HYG/^LPG1::PAC/+pSNBR-LPG1), which for simplicity is
referred to as FV1 lpg1−/+LPG1. Sibling clonal lines displayed similar phenotypes and one rep-
resentative FV1 lpg1− line (cl2.10, M1), and its complemented offspring (cl2.10 AB3, M1), des-
ignated FV1 lpg1−/+LPG1 were used in the experiments.

L.major FV1 lpg2−mutants were obtained by a gene replacement strategy; where the drug
resistance gene ORFS replaced the LPG2 coding region. In the first round, plasmid B3950 was
digested with XhoI I, yielding the LPG2::HYG targeting construct; 10μg was used for electropo-
ration and cells were plated on semisolid medium containing 50μg/ml of hygromycin B. Clonal
lines were obtained at typical frequencies and screened for the presence of the expected hetero-
zygous LPG2 and LPG2::HYG insertion by PCR (S2 Fig, S1 Table). Several clones were inocu-
lated into susceptible BALB/C mice (107 stationary phase, footpad, M1). These heterozygotes
underwent a second round of transfection, electroporating 10μg of LPG2::SAT, conferring a
selective resistance gene to nourseothricin (streptothricin acetyltransferase), derived from
XhoI, HindIII digestion of plasmid B6598, followed by plating on semisolid media containing
50μg/ml hygromycin B and 100μg/ml nourseothricin. Clonal lines bearing disruptions in both
LPG2 alleles and lacking unmodified LPG2 (ΔLPG2::HYG/ ΔLPG LPG2::SAT) were identified
by PCR analysis, and confirmed by Western blot analysis and agglutination tests. For simplic-
ity, these lines will be referred to as FV1 lpg2−. To generate complemented ‘add back’ lines, sev-
eral FV1 lpg2− clonal lines were electroporated with the LPG2 expression plasmid pXG-LPG2::
NEO (B4296) and clonal lines recovered by plating on semisolid media containing 50μg/ml
HYG, 100μg/ml SAT, and 15μg/ml of G418. Successful transfection was established by PCR
tests and restoration of LPG and the PPGs region expression by western blot, and agglutination
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tests. Formally, the genotype of such lines is (ΔLPG2::HYG/ ΔLPG LPG2::SAT/+pXG-LPG2),
which for simplicity is referred to as FV1 lpg2−/+LPG2. Sibling clonal lines displayed similar
phenotypes and one representative FV1 lpg2− line (cl6.1A, M1), and its complemented off-
spring (cl6.1A AB15, M1), designated FV1 lpg2−/+LPG2 were used in the experiments.

Gene replacement plasmid generation
Plasmid B6598 was generated by a fusion PCR strategy. Briefly, the 5’LPG2 flanking sequence,
3’LPG2 flanking sequence, LPG2 ORF, and selected drug marker, SATORF were amplified by
PCR and inserted into the pGEM-T-Easy vector by TA cloning according to manufacturer’s
instruction (Promega, Madison, WI) and transformed into E. coli. Its structure was confirmed
by DNA sequencing. The primers used for constructing B6598 are provided in S1 Table.

Western blot
For Western blot analysis of PG-containing molecules, parasites were grown to logarithmic
phase and harvested for cell lysate preparation in 4X Lamelli buffer (50 mM Tris-HCl pH 6.8,
2% SDS, 10% Glycerol, 1% 2-mercaptoethanol, 12.5 mM EDTA, and 0.02% Bromophenol
Blue). Samples were separated on 10–12% SDS-PAGE gels at a concentration of (3.5x106 cells/
well) and transferred onto methanol activated nitrocellulose membrane for 3 hrs at 60V, 4°C.
Ponceau staining was performed to assure macromolecule transfer prior to blocking in 5%
milk overnight. Membranes were stained with primary mouse monoclonal anti-sera WIC79.3
antibody (1:1000), recognizing galactosylated Gal-Man-P repeats on LPG, and detected using a
goat anti-mouse HRP conjugated secondary antibody (1:5000) (Invitrogen, Carlsbad, CA).
Membranes were developed using West-Pico detection solution assay (Thermo Scientific,
Rockford, IL) and an X-ray film developer.

LPG purification
LPG was isolated from 109 L.major FV1 metacyclic promastigotes as previously described,
with minor modification [47,48]. Cellular membranes were disrupted by sonicating pelleted
cells suspended in a cold chlorform:methanol:water (1:2:0.8) solution, centrifuged (5000rpm,
10min, 4°C), and the top de-lipidated layer containing the majority of GIPLs and phospholip-
ids was removed. The remaining insoluble material was quick-dried under stream of N2 and
further extracted with two rounds of 9% 1-butanol extraction to release LPG molecules into
the top aqueous layer. Hydrophobic interaction chromatography was performed to purify LPG
molecules from the Leishmania surface coat. Briefly, LPG-containing butanol extracts were
pooled and added to a 20% Octyl-Sepharose column that was pre-equilibrated with (5% propo-
nal, 1M ammonium acetate). A desalting gradient (5%-60%) was applied to the column to
elute LPG fractions utilizing the fraction collector, (BioRad Fraction Collector, Model 2128).
LPG was detected by thin layer chromatography (TLC) and quantified by phenol sulfuric
assay. Sample fractions were spotted on silica containing TLC plate. Glycan determinants were
visualized by spraying the plate with orcinol (0.5mg/ml in 95% ethanol), dried, and sprayed
with 75% sulfuric acid. All LPG containing fractions were pooled and dried in speed-vacuum
at room temperature. Lyophilized LPG was resuspended in water and quantified by a colori-
metric phenol-sulfuric assay [49]. Purification of LPG molecules was confirmed by a standard
Stains-All protocol. Briefly, 5–10μg of LPG was boiled in 2X Loading Dye and loaded onto 10%
SDS PAGE gel, running at 140V (room temperature). Gels were fixed in 25% 2-propanol and
stained with stains-all solution (Fluka Analytical, Switzerland) containing 10% formamide, fol-
lowed by destaining with 40% ethanol. Bands were visualized under white light, based on the
observation that LPG molecules give rise to a blue colored complex (wavelength– 649nm) [50].
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WIC79.3 western blot analysis was utilized to confirm LPG purification. Lyophilized purified
LPG was resuspended in serum free RPMI and a titration of LPG (0.5μg, 1μg, and 10μg) was
used for the hDC infection assay.

Quantitative real-time polymerase chain reactions
Relative levels of human gene transcripts were determined by qRT-PCR. Total RNA from
uninfected or Leishmania-infected DCs was isolated using an RNeasy kit (Qiagen, Valencia,
CA) and 1μg of RNA per infection sample was used to generate cDNA using SuperScript III
Synthesis (Invitrogen, Carlsbad, CA) according to manufacturer’s instructions. For analysis of
IL12B, IL12A, IRF1, IRF8, TNF, IL10, IL1B, SOCS3, TNFAIP3, andHPRT (hypoxanthine-gua-
nine phosphoribosyltransferase) mRNA expressions, qRT-PCRs were conducted utilizing
SYBR Green PCR Master Mix (Applied Biosystems by Life Technologies, Carlsbad, CA)
according to manufacturer’s protocol and detected with an ABI 7900HT Fast Real-Time PCR
System (Applied Biosystems by Life Technologies, Carlsbad, CA). All human primer sequences
were designed by Integrated Design Tools (IDT) and used at a concentration of 5μM per reac-
tion (S2 Table). For select analysis of IL12B, IL12A, and GAPDH (glyceraldehydes 3-phospho-
ate dehydrogenase) mRNA expressions, PCR reactions were setup employing TaqMan pre-
developed assay kits (Life Technologies, Foster City, CA) and determined using an ABI 7500
Real Time PCR System (Applied Biosystems, Foster City, CA). For each gene, relative numbers
of mRNA copies were determined by the ΔΔCT method [42].

Microarray expression profiling
Total RNA was isolated 8 hours post-infection from four additional donors’ uninfected mono-
cyte-derived DCs and DCs infected with L.major FV1WT, FV1 lpg1−, FV1 lpg1−/+LPG1, FV1
lpg2−, and FV1 lpg2−/+LPG2 using RNeasy kits (Qiagen, Valencia, CA). RNA 6000 Nano kits
(Agilent Technologies, Santa Clara, CA) were used to determine total RNA integrity on a Bioa-
nalyzer 2100 instrument (Agilent Technologies, Santa Clara, CA). 25ng of high quality RNA
was converted to double stranded cDNA using a TransPlex Complete Whole Transcriptome
Amplification kit (Sigma-Aldrich, Saint Louis, MO). RNA degradation, double stranded cDNA
purification, and cDNA precipitation was conducted following NimbleGen Gene Expression
Array user’s guide protocols (Roche-NimbleGen, Madison, WI). A Nanodrop ND-2000
(Thermo Fisher Scientific, Waltham, MA) was used to determine total RNA and double
stranded cDNA concentrations. Sample cDNAs were Cy3-labeled using NimbleGen Single
Color Labeling Kit (Roche-NimbleGen, Madison, WI) per manufacturer's recommendations.
Labeled cDNAs were hybridized to 12-plex NimbleGenHomo sapiens Expression Arrays (plat-
form GPL16025), featuring 140,096 probes, representing 21,269 genes and transcripts, using
Hybridization LS andWash Buffer Kits (Roche-NimbleGen, Madison, WI) per manufacturer's
recommendations. Image acquisition of arrays was performed using a NimbleGen MS 200
Microarray Scanner (Roche-NimbleGen, Madison, WI), at a 2 micron resolution. NimbleGen
array image data were processed using NimbleScan version 2.5 (Roche-NimbleGen, Madison,
WI) to extract intensity values for each gene. NimbleScan software automates the pre-process-
ing of NimbleGen microarray image data, including identifying the location of each probe,
extraction of intensity data from the image, background correction, and obtaining expression
summary values for each gene using a probe-level summarization robust multi-array average
method (RMA). Probes with intensity values greater than twice that of background were
retained for downstream analysis. Log2 normalized expression ratios for each gene were calcu-
lated between infected samples and paired uninfected samples. Z-scores were calculated
between infected and uninfected samples as previously described [51]. Briefly, Z-score =
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(log2(infected intensity value/inter-quartile mean of uninfected intensity values)Gi−average
(log2(infected intensity value/ inter-quartile mean of uninfected intensity values)Gi. . .Gn) / stan-
dard deviation(log2(infected intensity value/ inter-quartile mean of uninfected intensity
values)Gi. . .Gn). An absolute Z-score value of 1.96 may be inferred as significant (p<0.05) [51].
Complete array data generated in this study are accessible at the NCBI Gene Expression Omni-
bus database (accession GSE59766). Gene expression data of RMA normalized raw microarray
probe hybridization fluorescence values, where at least one sample value was twice that of back-
ground resulted in 12,911 genes.

Functional enrichment analyses
Genes that displayed significant differential expression from FV1WT, FV1 lpg1−, or FV1 lpg2−

samples compared to uninfected samples on NimbleGen microarrays were fed into the Short
Time-series Expression Miner (STEM) program [52,53]. Briefly, log2 ratio values for each of
four donors were loaded into the program as repeated data, where FV1WT data represented a
“time point 1”, FV1 lpg1− data represented “time point 2”, and FV1 lpg2− data represented
“time point 3”. The datasets were clustered using the STEM clustering method with minimum
correlation values of 0.6. The genes from the resultant model expression profile containing
IL12B were used for downstream enrichment analysis in the Web-based Gene Set Analysis
Toolkit (WEBGESTALT) [54,55] with a simple list of 233 official gene symbols as input.
KEGG Pathway enrichment was conducted on that list of genes with similar expression profiles
to that of IL12B using the following parameters: protein-coding EntrezGene database as a refer-
ence set and a hypergeometric test with Benjamini and Hochberg multiple test adjustments.
Pathways with an adjusted p-value< 0.01 and a minimum of three genes found were consid-
ered significant. The same list of gene symbols was input to The Database for Annotation,
Visualization and Integrated Discovery (DAVID) v6.7 Functional Annotation Tool [56] and
transcription factor binding sites for each gene were identified using protein interaction enrich-
ment. The annotations were cross-referenced to report the most common transcription factor
binding sites found in the IL12B gene and genes with IL12B-like expression between DC sam-
ples infected with L.major FV1 LPG mutants.

Statistical analysis
All statistical tests were performed using Graph Pad Prism version 5.0 (Graph Pad Software,
San Diego, CA). Statistical analysis was performed using Log2 transformed ΔΔCT values using
a paired Student’s T-test. Differences were considered significant at p<0.05.

Results

Differential IL12 response in hDCs is L.major strain and developmental
stage specific
First, we confirmed that the IL12BmRNA expression in hDCs infected with L.major strains
FV1WT was greater than DCs infected with LV39c5 WT. We demonstrated that L.major FV1
induced approximately 15-fold greater amounts of IL12B than L.major LV39c5 (Fig 1A) at 8
hours post infection, the optimal time for peak IL12BmRNA expression following L.major
infection [44]. These data support previous work that illustrated that the hDC IL12 response is
strain-specific, and also that infection with L.major FV1 promotes a high induction of IL12
and that LV39c5 is similar to the LV39 strain tested previously [34]. We also confirmed that
the increased IL12B expression observed during L.major FV1WT infections were significantly
associated with the infective metacyclic promastigote stage, whereas smaller effect was
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Fig 1. L.major strain FV1metacyclic promastigotes and LPG stimulate IL12B expression. (A) Human
DCs were infected with L.major FV1 or L.major LV39c5 parasite strains (n = 4 donors). After 8 hours, RNA
was extracted from infected hDCs for cDNA generation and analyzed for IL12B expression by qRT-PCR. All
values were significantly greater than uninfected. (B) Human DCs were infected with L.major FV1 metacyclic
promastigotes (metacyclic), procyclic promastigotes (procyclic) or amastigotes (n = 3 donors). After 8 hours,
RNA was extracted from infected hDCs for cDNA generation and analyzed for IL12B expression by
qRT-PCR. All values were significantly greater than uninfected, except for amastigote infections. (C) Human
DCs were exposed to different concentrations of LPG (0.5, 1, and 10 μg), derived from L.major FV1
metacyclic promastigotes (n = 4 donors). After 8 hours, RNA was extracted from infected hDCs for cDNA
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observed with the non-infective procyclic promastigote stage, and no response was elicited by
amastigotes (Fig 1B). These data are consistent with prior studies indicating that IL12 induc-
tion depends on the life cycle stage of Leishmania parasites [57,58].

Purified LPG induces IL12B expression
To determine whether the enhanced IL12B production observed following infection with L.
major FV1 metacyclic promastigotes was an LPG-dependent response, we first assessed the
role of purified LPG on the hDC IL12B response. Human DCs were cultured in the presence of
varying amounts of purified metacyclic L.major FV1 LPG for 8 hour and then assessed for
IL12B expression. At lower concentrations (0.5, 1 μg), LPG induced a slight increase over unin-
fected samples, while at a higher concentration (10 μg) a significant 15-fold induction of IL12B
mRNA was observed (Fig 1C), indicating that LPG alone is capable of stimulating IL12B pro-
duction. Albeit to a lower level than what is observed with L.major LPG, purified L. donovani
LPG induced a significant increase in IL-12B expression in 2 out of 3 donors (S5 Fig). Due to
variation amongst the human donors, however, this difference was not statistically significant.

Generation of L.major FV1 LPG- and PG-null mutants and
complemented lines
To probe the role of LPG and related PGs in host cell IL12 responses in the context of a Leish-
mania infection, we generated parasites lacking LPG alone (FV1 lpg1−) or all PGs (FV1 lpg2−)
(Table 1). As L.major strain FV1 is disomic for chromosomes 25 and 34 bearing LPG1 and
LPG2 respectively, two rounds of gene targeting were required to generate null mutants (S3A
and S3B Fig). PCR tests confirmed the loss of LPG1 (S1B Fig) and LPG2 (S2B Fig) ORFs in the
FV1 lpg1− and FV1 lpg2−mutants, respectively. Similarly, PCR tests confirmed the generation
of the planned genetic alterations for the LPG1 disruption (FV1 lpg1−) (S1C Fig) and the LPG2
replacement (FV1 lpg2−) (S2C Fig). Complemented ‘add back’ lines were generated by intro-
ducing episomal constructs expressing the LPG1 or LPG2 genes into their respective null
mutants (S3A and S3B Fig, bottom), which were confirmed by PCR and drug sensitivity tests.
Western blot analysis with an anti-PG anti-sera (WIC79.3) showed that LPG expression alone
was lost in the FV1 lpg1− mutant (S3C Fig, lane 6) and restored in the complemented FV1
lpg1−/+LPG1 line (S3C Fig, lanes 4 and 5). Similarly, Western blot analysis with WIC79.3

generation and analyzed for IL12B expression by qRT-PCR. Fold change was calculated utilizing the ΔΔCT

method and depicted as fold change over uninfected samples. Box plots display the median value (line), the
interquartile range (box), and Tukey whiskers encompassing data within 1.5 fold of the interquartile range.
*Statistical significance as compared to uninfected control, (p<0.05). All values were significantly greater
than uninfected.

doi:10.1371/journal.pntd.0004238.g001

Table 1. Formal names for L.major FV1 LPG and PG null mutants and add back lines.

L. major strain aAlleles Loss of function

FV1 WT LPG1/LPG1; LPG2/LPG2

FV1 lpg1− ^LPG1::HYG/^LPG1::PAC LPG biosynthesis

FV1 lpg1−/+LPG1 ^LPG1::HYG/^LPG1::PAC + LPG1::NEO

FV1 lpg2− ΔLPG2::HYG/ΔLPG2::SAT PG biosynthesis

FV1 lpg2−/+LPG2 ΔLPG2::HYG/ΔLPG2::SAT+LPG2::NEO

aA ^ denotes gene disruption and a Δ denotes gene replacement

doi:10.1371/journal.pntd.0004238.t001
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verified the absence of both PPGs and LPG in the FV1 lpg2− mutant (S3C Fig, lane 2), and
their restoration in the complemented FV1 lpg2−/+LPG2 line (S3C Fig, lane 3).

L.major FV1 LPG required for robust IL12 responses in hDCs
To explore the role of LPG on the IL12 response elicited from L.major infected hDCs, we
quantified the relative amount of IL12BmRNA in hDCs after 8 hours of infection with FV1
WT, FV1 lpg1−, and FV1 lpg1−/+LPG1 parasites. Compared to FV1 WT, FV1 lpg1− infected
hDCs displayed a substantial decrease in IL12 expression (3.2 fold; Fig 2A) that was restored to
levels approximately twice more thanWT in the complemented FV1 lpg1−/+LPG1 line, per-
haps consistent with a slight elevation of LPG in this line (S3C Fig, lanes 4 and 5). Our results
indicate LPG plays a key role in IL12 induction in hDCs, consistent with the stimulatory effect
seen with purified LPG (Fig 1B).

Conversely, FV1 lpg2− infected hDCs, relative to FV1WT, displayed a significant increase
in IL12B expression, that returned to comparable FV1 WT levels in the complemented FV1
lpg2−/+LPG2 line (Fig 2A). This observation was unexpected as FV1 lpg2− lacks LPG as well as
other PGs, including PPGs (Fig 2C, lane 2). We considered the possibility that differences in
infectivity between the WT and lpg2− could contribute to this result as L.major Lv39c5 lpg1−

and lpg2−mutants exhibit reduced survival in peritoneal macrophages [41,59]. While parasite
survival was slightly elevated in FV1 lpg2− infections, a comparable fraction of DCs were
infected (Fig 2B and 2C), indicating, the differences observed in IL12 induction are likely not
related to parasite survival in hDC under the conditions tested.

Thus, our studies showed that LPG is associated with increased IL12 production when
tested biochemically (purified) or genetically (FV1 lpg1−), while paradoxically lpg2- which also
lacks LPG showed increased production. These data invoke the possibility LPG2-dependent
molecules, such as phophoglycans including PPGs or other metabolites [60] may play a sup-
pressive role on IL12 production. Alternatively, the loss of all LPG2-dependent structures may
reveal another PAMP on the parasite surface that is able to induce IL12. Either scenario indi-
cates a complex balance and interplay between parasite glycoconjugates and host cells.

A kinetic analysis of these phenomena was conducted in DCs across four time points: 2, 4,
8, and 24 hours post-infection with FV1 WT and knockout mutants (Fig 3A). By 2 hours post-
infection, FV1 lpg2− mutant infected hDCs induced slightly more IL12B compared with FV1
WT infected DCs. Albeit at higher expression levels than FV1WT, FV1 lpg2− induced a similar
kinetic IL12BmRNA response that declined by 24 hrs post infection. FV1 lpg1−, on the other
hand, induced little to no IL12BmRNA (Fig 3A). Similarly, FV1 lpg2− induced a quicker and
more robust IL12A response compared to FV1 lpg1− and FV1WT infections (Fig 3B). There
were no differences between the WT and mutant strains for expression of the IL12 homolog
IL23A (Fig 3C), suggesting that LPG and PGs regulate IL-12 production rather than IL-23.

Human DC TNF expression is reduced during L.major FV1 lpg1−

infections
In addition to IL12, DCs are strong producers of other Th1 proinflammatory cytokines. TNF,
for example, is significantly up-regulated in L.major infected hDCs [61]. We determined the
relative fold induction of TNF in hDCs following infection with FV1 lpg1− and FV1 lpg2−

mutants. We demonstrated that FV1 lpg1− induces significantly less TNFmRNA compared to
WT or FV1 lpg1−/+LPG1 add back infections (Fig 4A), similar to the pattern of IL12B expres-
sion (Fig 2A). Infection with FV1 lpg2−, however, was not statistically different compared to
WT infection. The effect LPG has on both IL12 and TNF may contribute to the overall skewing
of L.major towards a predominant Th1 response during cutaneous leishmaniasis.
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Down-regulation of IL12B in L.major FV1 lpg1− infection is not
dependent upon IL10 induction
IL10 is generally implicated as a powerful inhibitor of IL12 production [62], and neutralizing
IL10 promotes the ability of L.major parasites to establish IL12 production [63]. Here we

Fig 2. L.major FV1 lpg1− and FV1 lpg2− modulate the IL12B response in hDCs.Human DCs (n = 9 donors) were infected with L.major FV1 parasites: L.
major FV1 (WT), LPG null mutant (FV1 lpg1−), LPG add back (FV1 lpg1−/+LPG1), PG null mutant (FV1 lpg2−), or PG add back (FV1 lpg2−/+LPG2). (A) At 8
hours post infection, IL12B expression was measured by qRT-PCR. Fold changes were calculated using the ΔΔCT method and are represented as fold
change over uninfected samples. Box plots display the median value (line), the interquartile range (box), and Tukey whiskers encompassing data within 1.5
fold of the interquartile range. All values were significantly greater than uninfected. Aliquots from the infected hDC samples were prepared by Diff-Quick
staining and visualized by light microscopy. (B) The parasite index (#parasites/100 cells) and (C) the percentage of infected cells (%DC infected) is
displayed. Mean values of individual donors ± SD are presented. *Statistical significance (p<0.05).

doi:10.1371/journal.pntd.0004238.g002

L.major FV1 Phosphoglycans Affect DC Elicited IL12

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004238 December 2, 2015 12 / 28



Fig 3. Kinetic analysis of IL12 and IL23 expressionmodulation by L.major LPG and PG null mutants.
Human DCs (n = 3 donors) were infected with L.major FV1 parasites: L.major FV1 (WT), LPG null mutant
(FV1 lpg1−), LPG add back (FV1 lpg1−/+LPG1), PG null mutant (FV1 lpg2−), or PG add back (FV1
lpg2−/+LPG2). At 2, 4, 8, and 24 hours post infection, IL12B (A), IL12A (B), and IL23A (C) expression was
measured by qRT-PCR. Fold changes were calculated using the ΔΔCT method and are represented as fold
change over uninfected samples. Mean values of individual donors ± SD are presented. Statistical
significance p<0.05, ANOVA with Bonferroni multiple comparisons test.

doi:10.1371/journal.pntd.0004238.g003
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quantified the IL10mRNA levels in hDCs infected with our mutant parasites to determine
whether the failure of FV1 lpg1− to elicit sustained host IL12 induction relative to FV1WT is
due to the over-expression of IL10. The IL10 expression elicited from hDCs infected with FV1
lpg1− or FV1 lpg2− did not differ fromWT induced expression levels (Fig 4B), suggesting the
mechanism by which these mutant parasites modulate IL12B expression is not dependent
upon IL10.

Human microarray analysis reveals broader gene expression effects of
LPG and PPGs
To further assess the influence of LPG and PPGs on host immunological responses, we infected
additional DCs with L.major FV1WT, mutants, and complemented strains, collecting mRNA
at 8 hours post-infection. cDNA generated from these samples was hybridized to NimbleGen
Homo sapiens Expression Microarrays. Expression of ten genes (IL12B, IL1B, IL8, TLR4, TLR2,

Fig 4. Relative TNF and IL10 levels in L.major Friedlin V1 infected DCs.Human DCs were infected with
L.major FV1 parasites: L.major FV1 (WT), LPG null mutant (FV1 lpg1−), LPG add back (FV1 lpg1−/+LPG1),
PG null mutant (FV1 lpg2−), or PG add back (FV1 lpg2−/+LPG2). At 8 hrs post infection, (A) TNF (n = 5
donors) and (B) IL10 (n = 5 donors) expression was measured by qRT-PCR. Fold changes were calculated
using the ΔΔCT method and are represented as fold change over uninfected samples. Box plots display the
median value (line), the interquartile range (box), and Tukey whiskers encompassing data within 1.5 fold of
the interquartile range; data outside this range are presented as individual data points (open circles).
*Statistical significance (p<0.05). All values were significantly greater than uninfected.

doi:10.1371/journal.pntd.0004238.g004

L.major FV1 Phosphoglycans Affect DC Elicited IL12

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004238 December 2, 2015 14 / 28



FKBP4, SOCS3, SMOX, FCGR1A, and TNFAIP3) correlated significantly using qRT-PCR
(p<0.000001, Spearman correlation coefficient = 0.784), validating the array values (S4 Fig).
Gene transcript expression values were transformed to Z-scores and those genes that were sig-
nificantly differentially expressed compared to uninfected cells (Z-score� 1.96) were retained
for downstream analysis. Hierarchical clustering of 730 genes that were expressed differently
than FV1WT infections in at least one mutant infection revealed that the complemented
strains clustered more closely to the WT strains than their respective mutant strains (Fig 5A).
Compared to uninfected cells, similar numbers of genes were regulated by infection with FV1
WT (771), FV1 lpg1−(717) and FV1 lpg2− (740) (Fig 5B). Infection with FV1 WT resulted in
more genes being up-regulated than either mutant strain (FV1 WT—524; FV1 lpg1-—444; and
FV1 lpg2−—449). Notably, the magnitude of regulation (either up or down) was less during
infection with FV1 lpg1− compared to either FV1 WT or lpg2− (Fig 5A and 5C), suggesting that
this strain enters hDC in a silent fashion.

LPG regulates immune response and infectious disease pathways
To assess the pathways involved in the regulation of IL12 by LPG, we utilized STEM and iden-
tified 233 genes that exhibited expression patterns similar to IL12B in response to infection
with FV1 WT, FV1 lpg1−, and FV1 lpg2−. Overall lpg2− resembled WT while lpg1−differed (Fig
6). Pathway enrichment revealed 22 significantly enriched pathways, mostly belonging to the
immune response or infectious disease categories (Table 2). The most striking observation was
the enrichment of three pathways: Cytokine-Cytokine Receptor Interactions, JAK-STAT Sig-
naling and Toll-like Signaling, in which all the genes were down-regulated by infection with
FV1 lpg1− compared to FV1WT and FV1 lpg2− (Fig 6). Although the lpg2- pathway genes did
not reflect any significance in this initial analysis compared to WT, future analysis of enriched
pathways by criteria other than IL12 expression could reveal significant pathways enriched by
lpg2- infection.

The most common transcription factor binding sites present in the promoters of genes regu-
lated similarly to IL12B were identified using the DAVID functional annotation tool [56]. Not
surprisingly, binding sites for transcription factor families known to regulate IL12B were iden-
tified, including, Octomer-binding transcription factor (OCT), Nuclear Factor Kappa B
(NFκB), Interferon Regulatory Factor (IRF), cAMP Response Element Binding protein
(CREB), and CCAAT/Enhancer Binding Protein families [64–68] (Table 3).

Human DC IRF8 expression is reduced during L.major FV1 lpg1−

infection
Production of IL12 relies on the nuclear translocation and cooperative binding of IRF-1 and
IRF8 to IFNG-activated sequences (GAS) found within the IL12B promoter [18]. We previ-
ously demonstrated that L.major infection of hDC results in the early activation of NFκB tran-
scription factors resulting in the transcriptional induction and nuclear translocation of IRF-1
and IRF-8 and, ultimately, IL12 production [42]. To delineate the effect of FV1 lpg1− and/or
FV1 lpg2− on the upstream transcriptional features that regulate IL12B expression, we assessed
IRF1 expression in hDCs and observed that infection with FV1 mutants up-regulated IRF1, but
not significantly more compared to WT induced levels (Fig 7A). This result suggests that the
different IL12B responses displayed during FV1 lpg1− and FV1 lpg2−DC infections are not
influenced by IRF1 expression. IRF8mRNA levels, however, were regulated by LPG. Infection
with FV1 lpg1− resulted in a reduction of IRF8 that is restored following infection with the FV1
lpg1− add back strain (Fig 7B). Infection with FV1 lpg2− did not significantly affect IRF8
expression.

L.major FV1 Phosphoglycans Affect DC Elicited IL12

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004238 December 2, 2015 15 / 28



Fig 5. Leishmania major human host dendritic cells gene expression profiles. (A) Gene transcript expression heat map of in vitro infected monocyte-
derived hDCs. The color scale is based on average log2 ratios of RMA-normalized microarray gene probe set values for variably infected host cells over
uninfected cells. Only the genes that displayed significant differential expression by z-ratios, from both uninfected samples and between infections with FV1
WT and FV1 lpg1− or FV1 lpg2− mutants or their respective add back strains, were included in the map. Genes and sample types were clustered by city block
distance metric using average linkage in GENE-E. (B) Venn diagrams with the number of host DC genes significantly differentially expressed from uninfected
samples in FV1WT, FV1 lpg1−, and FV1 lpg2− mutants as quantified by microarrays. Values below the horizontal line indicate the number of genes from the
above total that were up- (") or down-regulated (#) compared to uninfected samples. (C) Total average log2 ratios of up- and down-regulated genes
significantly differentially expressed from uninfected samples in FV1WT, FV1 lpg1−, and FV1 lpg2−mutants as quantified by microarrays, plus or minus
standard deviation. *Significant difference of log2 ratio values (p<0.05) between FV1 lpg1− infected DCs compared to FV1WT and FV1 lpg2− infected DCs
by ANOVA with Bonferroni multiple comparisons test.

doi:10.1371/journal.pntd.0004238.g005
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Fig 6. Enriched immunologically relevant pathways for genes expressed in IL12B-like patterns.Gene
transcripts lists from L.major FV1WT, FV1 lpg1−, and FV1 lpg2− mutant in vitro infected monocyte-derived
hDCs microarray analysis, with log2 ratio over uninfected value patterns between samples that clustered with
the IL12B, were analyzed to identify significantly enriched (Benjamini and Hochberg adjusted p<0.01) KEGG
pathways. Three immunologically relevant pathways, which also contained IL12B, were enriched among that
gene list: cytokine-cytokine receptor interactions (A), Jak-STAT signaling pathway (B), and toll-like receptor
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Discussion
The major focus of this study was to investigate whether the enhanced IL12 immune response
observed in L.major FV1WT infected hDCs is dependent upon parasite LPG; as previous
studies have implicated LPG plays a major role in modulating immune function in murine
cells [31,69,70], as well as in human mononuclear cells [71–73]. First, we showed that, for this
strain, infection with metacyclic promastigotes induces a high IL12B response (Fig 1B), com-
pared to procyclic promastigotes and amastigotes, consistent with prior studies [57,58]. Addi-
tionally, we demonstrated that purified LPG stimulates an IL12B response in hDCs (Fig 1C).
Similar studies utilizing purified L.major LPG from another strain have also highlighted the
stimulatory effect LPG has on IL12 in human PBMCs [72].

To assess the role of surface molecules in situ, we employed genetic strategies to generate
parasite mutants devoid of LPG (FV1 lpg1−) or PG molecules and other LPG2-dependent
metabolites (FV1 lpg2−) in the L.major strain FV1 background (S3A Fig). Previous studies on
the ‘low hDC IL12, L.major strain LV39c5 mutant parasites established several roles for LPG
and PGs in regulating immune function [31–33,41,60]. For example, LV39c5 lpg2− induces
IL12 in mouse BMDCs co-stimulated with anti-CD40 or IFNG [32,33]. In the absence of co-
stimulation, however, there was no significant difference between IL12 elicited from LV39c5
WT or LV39c5 lpg2− parasites. We observed a similar result in our hDC assay where there was

signaling pathway (C). All graphs display average log2 ratio over uninfected values for genes present in the
expression datasets of FV1WT, FV1 lpg1−, and FV1 lpg2− mutant infected samples which were members of
the corresponding enriched pathways.

doi:10.1371/journal.pntd.0004238.g006

Table 2. Significantly enriched pathways for genes regulated similarly to IL12B by LPG.

Pathway Name # Genes p value

Cytokine-cytokine receptor interaction 29 2.31E-21

Rheumatoid arthritis 11 1.52E-08

Toll-like receptor signaling pathway 9 5.96E-06

Chagas disease (American trypanosomiasis) 8 5.22E-05

Amoebiasis 8 5.22E-05

Jak-STAT signaling pathway 9 8.16E-05

Cytosolic DNA-sensing pathway 6 8.16E-05

NOD-like receptor signaling pathway 6 8.16E-05

Chemokine signaling pathway 9 0.0003

Focal adhesion 9 0.0004

ECM-receptor interaction 6 0.0004

Allograft rejection 4 0.0011

Type I diabetes mellitus 4 0.0021

Intestinal immune network for IgA production 4 0.0032

Toxoplasmosis 6 0.0033

Hematopoietic cell lineage 5 0.0033

Malaria 4 0.0033

Small cell lung cancer 5 0.0033

Pathogenic Escherichia coli infection 4 0.0038

Phagosome 6 0.0061

African trypanosomiasis 3 0.0082

RIG-I-like receptor signaling pathway 4 0.0082

doi:10.1371/journal.pntd.0004238.t002
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little difference in IL-12 induction between LV39c5 WT, LV39c5 lpg2−, and LV39c5 lpg2−/+-
LPG2 infections (S6 Fig). Compared to FV1WT, LV39c5 WT does not induce the same robust
levels of IL12B (Fig 1A, S6 Fig).

Here, we generated LPG1 and LPG2 knockout mutants in the ‘high hDC IL12’ L.major FV1
background strain, in order to directly assess the parasite-derived molecular factors that con-
tribute to the robust hDC IL12 response elicited by this strain of L.major. Our data demon-
strated that the FV1 lpg1−mutant does not induce a high amount of IL12B transcript in hDCs
as compared to FV1WT (Figs 2A and 3A). Consistent with this observation, we showed that
application of purified LPG was able to induce significant IL12 expression (S5 Fig), with both

Table 3. Enriched Transcription Factor Binding sites in IL12B-like gene promoters.

Transcription Factor # IL12B-like Genes % IL12B-like Genes

AREB6 130 75.14

OCT1 128 73.99

AML1 123 71.10

CEBP 122 70.52

MEF2 113 65.32

NKX25 95 54.91

CDPCR3 80 46.24

GR 79 45.66

NFκB 78 45.09

RSRFC4 75 43.35

FOXO4 73 42.20

HMX1 72 41.62

ARNT 71 41.04

SOX9 71 41.04

COMP1 70 40.46

IRF7 70 40.46

MEIS1 70 40.46

CART1 68 39.31

NRSF 68 39.31

ELK1 67 38.73

RORA2 65 37.57

ARP1 64 36.99

CREBP1 63 36.42

NFKAPPAB 63 36.42

MEIS1BHOXA9 62 35.84

OCT 62 35.84

GFI1 61 35.26

IRF2 61 35.26

RORA1 61 35.26

HNF3B 60 34.68

NKX22 60 34.68

FOXO1 59 34.10

HAND1E47 59 34.10

HLF 59 34.10

P300 57 32.95

POU6F1 47 27.17

STAT5B 44 25.43

doi:10.1371/journal.pntd.0004238.t003
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metacyclic L.major LPG which bears abundant PG side chain modifications, and L. donovani
LPG, which is unmodified.

In contrast, and somewhat surprisingly given its similar lack of LPG, FV1 lpg2− up-regulates
the IL12B response (Figs 2A and 3A) relative to FV1WT.While in macrophage and animal
infections the lpg1- and lpg2- mutants are typically attenuated [41,59], in our studies the survival
of theWT and two mutant parasites did not differ significantly in DC survival over the course
of these studies (Fig 2B and 2C). One explanation for this finding is that in L.major strain FV1,
LPG and other LPG2-dependent glycoconjugates play inverse roles in stimulating the IL12
response in human DCs. One candidate for such an inhibitory LPG2-dependent molecule are
the proteophosphoglycans (PPGs), which remain intact in the lpg1−mutant. Compared to LPG,
little is known about the function of PPGs on host cell immune response, with evidence sup-
porting roles as both an inhibitor or enhancer depending on the species and study [74–77].
PPGs vary structurally across species both in their PG and protein composition, and their large
size and tendency to form polymeric aggregates renders their study more challenging [78].

Fig 7. The lpg1− mutant affects IL12 associated gene regulator IRF8, and not IRF1. Human DCs were
infected with L.major FV1 parasites: L.major FV1 (WT), LPG null mutant (FV1 lpg1−), LPG add back (FV1
lpg1−/+LPG1), PG null mutant (FV1 lpg2−), or PG add back (FV1 lpg2−/+LPG2). At 8 hrs post infection, (A)
IRF8 (n = 3 donors) and (B) IRF1 (n = 5 donors) expression was measured by qRT-PCR. Fold changes were
calculated using the ΔΔCT method and are represented as fold change over uninfected samples. Box plots
display the median value (line), the interquartile range (box), and Tukey whiskers encompassing data within
1.5 fold of the interquartile range. *Statistical significance (p<0.05). All values were significantly greater than
uninfected.

doi:10.1371/journal.pntd.0004238.g007
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Clearly, the development of mutants lacking only PPGs would be beneficial for future studies to
directly assess the role these molecules have on the host cell response. Interestingly, amastigotes
do not express significant amounts of the ‘pro-IL12’ LPG but do express high levels of PPG,
which may further contribute to their inability to stimulate IL12 expression in hDCs. Impor-
tantly, the LPG2-dependent effect was also observed in the ‘low hDC IL12’ LV39 line, where
ablation of LPG2 similarly resulted in increased IL12 production (S6 Fig)

Thus our data cause us to infer the presence of other LPG2-dependent PAMPs beyond
LPG, with PPG as a possible candidate, and acting in an inhibitory fashion. The potential dom-
inance of these inhibitory LPG2-dependent PAMPs provides an explanation for the conun-
drum that while all Leishmania species express LPG, despite that many do not induce IL12
[79]. Potentially, the strength of these suppressive LPG2-dependent PAMPs/processes may
vary in different species and/or strains.

As it has been established that IRF1 and IRF8 are up-regulated in L.major infected hDCs
and positively regulate IL12B gene expression [42], we assessed whether FV1 lpg1− or FV1
lpg2− affected the expression of IRF1 and IRF8. Interestingly, FV1 lpg1− parasites caused a sig-
nificant decrease in IRF8 expression compared to WT (Fig 5A), indicating that LPG may influ-
ence the induction of IL12B by targeting upstream IL12B associated transcription factors that
mediate its expression. Although IRF1 and IRF8 are known to cooperatively regulate IL12B
gene transcription [42,80], we report that the FV1 lpg1−mutant does not affect IRF1 expression
compared to WT at 8 hours post-infection (Fig 4B). The distinct expression phenotypes exhib-
ited by IRF1 and IRF8 following infection with FV1 lpg1− may be due to the difference in regu-
lation of these two transcription factors. IRF1 is ubiquitously expressed, whereas IRF8 is
preferentially expressed in immune cells and in response to activating signals. Furthermore,
IRF1 and IRF8 can be differentially expressed in hDCs [81]. To bind target DNA sequences,
IRF8 must bind to another transcription factor, compared to other IRF family members that
can bind DNA sequences alone [82]. It is possible that infection with FV1 lpg1− reduces the
amount of IRF8, which in turn inhibits the capacity of other transcription factors, such as
IRF1, to form heterodimeric complexes that bind the IL12B promoter. These data suggest that
LPG and not other PGs, enhance the IL12B response by a common mechanism involving IRF8.

Like IL12, L.major induces TNF in both human macrophages and DCs [61]. We therefore
evaluated the relationship between parasite derived PG-bearing molecules on TNF using our
LPG and PG null mutants. Our results demonstrate that the lpg1−mutant exhibits a significant
decrease of TNF expression, similar to the reduction observed for IL12B (Fig 5A). Interestingly,
the promoter regions for IL12B and TNF have similar transcription factor binding sequences,
namely NFκB and ETS sites; the latter containing ISRE sequences that promote gene transcrip-
tion upon IRF8 complex binding [83]. Therefore, it is possible that the reduction in TNF
expression observed during FV1 lpg1− infection (Fig 5A) may also be IRF8-specific. A murine
study demonstrated that cholera toxin (CT) inhibits plasmacytoid dendritic cellular IL12 by
blocking the ability of IRF8 to bind to the ISRE sequence within the IL12B promoter, while
IRF1 phosphorylation and subsequent binding to its DNA target sequence remained unaf-
fected [84]. It is feasible that a similar mechanism exists in L.major infected cells, whereby
IRF8 is specifically targeted for induction downstream of parasite LPG binding, subsequently
leading to the induction of IL12B and TNF. Altogether, our data indicates that L.major FV1
skews the hDC response in an LPG-dependent manner towards a Th1-like polarization charac-
terized by an increase in IL12 and TNF production which may be regulated by a common
mechanism involving IRF8. A recent study demonstrated that macrophage induction of IL12B
is controlled at the level of IRF8, which is specifically targeted for activation downstream of
TLR4 in concert with Notch signaling pathways [85]. Interestingly, TLR4 [86] and other TLRs
[87–91] have been implicated in recognition of parasite LPG.
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An alternative explanation for the lack of an IL12 signal observed in the FV1 lpg1− infec-
tions may be a consequence of other functionally active PG-containing molecules, such as the
PPGs which remain intact in the lpg1− mutant. These PPGs could provide an inhibitory IL12
signal. This theory is supported by our results demonstrating that FV1 lpg2−, which lacks both
LPG and PPGs, induces higher levels of IL12 compared to WT (Fig 2A), suggesting that some
PG-containing molecules actually inhibit IL12 responses. In addition, amastigotes, on which
LPG expression is drastically down-regulated and high levels of other PG containing glycocon-
jugates are highly expressed [15], do not induce IL12 (Fig 1B). Compared to LPG, little is
known about the function of PPGs on host cell immune response. Previous work illustrating
the ability of PPGs to induce complement activation by triggering the mannose binding protein
pathway [76] and their inability to elicit CD4+ T-cell response in murine bone marrow derived
macrophages [74], concludes that PPGs may contribute to the chronic infections observed dur-
ing L.mexicana infections. However, it has been demonstrated that L.major PPGs require
IFNG priming to induce TNF and NO production in murine macrophages [77]. In human
PBMCs, PPGs cause an induction of IL10 and to a lesser extent NO and IL12 [75]. Although
these studies provide conflicting implications for PPGs role as either inhibitor or enhancer of
immune response, it is difficult to compare studies because the repertoire of PPGs structure
varies across species [78]. Additionally, the use of purified PPGs can be problematic because
the amount of purified PPGs added is often higher than what is biologically present during an
actual infection, therefore the development of mutants lacking only PPGs would be beneficial
for future studies to directly assess the role these molecules have on the host cell response. We
measured IL-10mRNA levels in our mutant-infected DCs, because of the generally inhibitory
effects of IL-10 on IL12 [62]. However, IL10 expression exhibited between FV1 lpg1−, FV1
lpg2−, and WT infected hDCs did not differ (Fig 5B), ruling out one theory that the decrease in
IL12B expression observed during FV1 lpg1− could be consequence IL10 overproduction.
Another explanation for the induction of IL12 by FV1 lpg2−, is the possibility that the absence
of all surface and secreted PGs reveals a molecular pattern or some other molecule that induces
IL12.

Our microarray analyses of FV1WT, FV1 lpg1−, and FV1 lpg2− infected hDCs revealed that
FV1 lpg1− enter hDC in a relatively silent fashion as indicated by the overall down-regulation
of significantly expressed transcripts, (Fig 6), and the overall reduction in genes belonging to
cytokine and TLR related gene pathways, (Fig 7). Altogether these data suggest that a lack of
LPG molecules results in silent entry and that LPG is a major pattern recognized by pattern
recognition receptors on DCs. As with the IL12 response, the absence of all PGs appears to
either release some sort of repression or reveals a molecular pattern that compensates for the
lack of LPG, highlighting the complexity of DC pattern recognition receptor interactions in
controlling host responses to Leishmania infection. Future analyses focusing on FV1 lpg2-
mutant infections may reveal pathways uniquely regulated by PGs.

This work adds to the growing set of genetically modified parasites (lpg1−, lpg2− in the L.
major FV1 background) providing biologically relevant tools for assessing the role of para-
site surface glycoconjugates on cellular function in human and mouse model systems, as well
as, provides insight into the complex interplay of LPG and other PG molecules on the cellu-
lar immune response elicited following L. major infections by global gene expression
analyses.

Supporting Information
S1 Fig. Confirmation of L.major FV1 lpg1−mutant. (A) Schematic representation of WT
(top) and lpg1− alleles (bottom). Numbers represent primers used for PCR amplification. PCR
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analysis for one representative FV1 WT, FV1 lpg1− (cl 2.10) and FV1 lpg1−/+LPG1 (cl 2.10
AB3) is depicted. (B) Primers 1/2 (SMB1023/SMB1626) confirmed LPG1 disruption: WT
(420bp), FV1 lpg1− (3200bp) and FV1 lpg1−/+LPG1 (420bp & 3200bp). (C) Primers 3/11
(SMB4183/SMB2566), and 12/6 (SMB4185/SMB4184) established the integration of the 5’
flanking (3300bp) and 3’ flanking (2600bp) sequences of the LPG1::HYG disruption cassette,
respectively. Primers 3/7 (SMB4183/SMB2889), and 8/6 (SMB2888/SMB4184) established the
integration of the 5’ flanking (3400bp) and 3’ flanking (2800bp) sequences, of the LPG1::PAC
disruption cassette, respectively. Primers 9/10 (SMB2891/SMB2892) and 4/5 (SMB1568/
SMB1569) confirmed the presence of the HYG (1080bp) and PAC (600bp) ORFs, respectively.
(EPS)

S2 Fig. Confirmation of L.major FV1 lpg2−mutant. (A) Schematic representation of WT
(top) and lpg2− alleles (bottom). Numbers represent primers used for PCR amplification. PCR
analysis for one representative FV1 WT, FV1 lpg2− (cl 6.1A) and FV1 lpg2−/+LPG2 (cl 6.1A
AB15) is depicted. (B) Primers 13/14 (SMB1023/SMB1626) confirmed replacement of LPG2:
WT (1000bp), FV1 lpg2− (absent) and FV1 lpg2− /+LPG2 (1000bp). (C) Primers 15/11
(SMB4124/SMB2566), and 19/20 (SMB2565/SMB4125) established the integration of the 5’
flanking (1300bp) and 3’ flanking (2200bp) sequences of the LPG2::HYG replacement cassette,
respectively. Primers 15/17 (SMB4124/SMB3507), and 16/18 (SMB3506/SMB4417) established
the integration of the 5’ flanking (1700bp) and 3’ flanking (2400bp) sequences, of the LPG2::
SAT replacement cassette, respectively. Primers 9/10 (SMB2891/SMB2892) and 16/17
(SMB3506/SMB3507) confirmed the presence of theHYG (1080bp) and SAT (600bp) ORFs,
respectively.
(EPS)

S3 Fig. Generation of L.major FV1 LPG null mutant (FV1 lpg1−) and PG null mutant (FV1
lpg2−) mutant.WT parasites underwent two rounds of electroporation as described in the
methods to generate the FV null mutants. (A) For FV1 lpg1−, WT parasites were transfected
with ^LPG1::HYG and screened heterozygotes underwent a 2nd round of transfection with
^LPG1::PAC to yield FV1 lpg1− null mutant. A third round of transfection with add back vector
pXG-LPG1::NEO restored LPG1. (B) The FV1 lpg2− was created utilizing a similar transfection
strategy with targeting constructs, ΔLPG2::HYG, and ΔLPG2::SAT. The LPG2 was restored by
electroporation with add back vector pSNBR-LPG2::NEO. (C) Western blot analysis with anti
sera WIC79.3 indicated a loss of LPG in the FV1 lpg1− mutant (lane 6) and loss of both PPGs
and LPG in the FV1 lpg2− mutant (lane 2). The FV1 lpg1−/+LPG1 add backs (two clones are
shown, lane 4,5) and the FV1 lpg2−/+LPG2 add back (lane 3) exhibit restored levels of LPG and
PPGs, comparable to WT parasites (lane 1).
(EPS)

S4 Fig. Validation of microarray expression by qRT-PCR. Ten genes were selected for valida-
tion by qRT-PCR analysis (A)IL12B, (B) SOCS3, (C) TNFAIP3, (D) IL1B, (E) IL8, (F) TLR4,
(G) TLR2, (H) FKBP4, (I) SMOX, and (J) FCGR1A. For each gene, fold change was calculated
using fold changes were calculated using the ΔΔCT. Log2 ratios of RMA-normalized microarray
gene probe set values for infected host cells over uninfected cells from the microarray (black
bars) and fold changes from the qRT-PCR analysis (gray bars) are plotted and subjected to
Pearson Correlation test (R value). Mean ± SEM is presented.
(EPS)

S5 Fig. Purified LPG stimulates IL12B expression in hDCs.Human DCs were exposed to
1 μg LPG derived from L.major or L. donovani promastigotes (n = 3 donors). After 8 hours,
RNA was extracted from infected hDCs for cDNA generation and analyzed for IL12B
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expression by qRT-PCR. Fold change was calculated utilizing the ΔΔCT method and depicted
as fold change over uninfected samples. Mean ± SEM is presented.
(EPS)

S6 Fig. L.major LV39c5 induced hDC IL12 responses do not differ between LV39c5
mutants.Human DCs (n = 4 donors) were infected with L.major parasites: L.major FV1WT
(FV1), L.major LV39c5 WT (LV39c5), LV39c5 PG null (LV39c5 lpg2−), and LV39c5 PG add
back (LV39c5 lpg2−/+LPG2). At 8 hrs post infection, IL12B expression was measured by
qRT-PCR. Fold change was calculated utilizing the ΔΔCT method and depicted as fold change
over uninfected samples. Box plots display the median value (line), the interquartile range
(box), and Tukey whiskers encompassing data within 1.5 fold of the interquartile range.
�Statistical significance as compared to uninfected control, (p<0.05). All values were signifi-
cantly greater than uninfected.
(EPS)

S1 Table. Primers used for molecular generation of L.major FV1 mutants.
(DOCX)

S2 Table. Human Primer Sequences for qRT-PCR analysis.
(DOCX)
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