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ABSTRACT

Neurotensin (NTS), localized predominantly to the small bowel, stimulates the 
growth of a variety of cancers, including neuroendocrine tumors (NETs), mainly 
through its interaction with the high-affinity NTS receptor 1 (NTSR1). Here, we 
observed increased expression of NTSR1 in almost all tested clinical NET samples, 
but not in normal tissues. Through RT-PCR analysis, we found that the expression 
of NTSR1 and NTSR2 was either variable (NTSR1) or absent (NTSR2) in human NET 
cell lines. In contrast, NTSR3 and NTS were expressed in all NET cells. Treatment 
with 5-aza-2′-deoxycytidine, a demethylating agent, increased levels of NTSR1 and 
NTSR2 suggesting that DNA methylation contributes to NTSR1/2 expression patterns, 
which was confirmed by methylation analyses. In addition, we found that knockdown 
of NTSR1 decreased proliferation, expression levels of growth-related proteins, and 
anchorage-independent growth of BON human carcinoid cells. Moreover, stable 
silencing of NTSR1 suppressed BON cell growth, adhesion, migration and invasion. Our 
results show that high expression of NTSR1 is found in clinical NETs and that promoter 
methylation is an important mechanism controlling the differential expression of 
NTSR1 and silencing of NTSR2 in NET cells. Furthermore, knockdown of NTSR1 in 
BON cells suppressed oncogenic functions suggesting that NTSR1 contributes to NET 
tumorigenesis.

INTRODUCTION

Neurotensin (NTS), a 13-amino acid peptide, 
functions as a primary neurotransmitter as well as a 
neuromodulator in the central nervous system (CNS) and 
as a hormone in the periphery [1–3]. NTS contributes to 
numerous physiologic functions in the gastrointestinal 
(GI) tract including GI secretion, gut motility, and 
growth of various normal tissues [1, 2]. Moreover, NTS 
stimulates the growth of several cancer types including 
neuroendocrine tumors (NETs) that, compared to other 
cancers, are increasing in incidence [1, 3, 4].

The actions of NTS are mediated through three 
receptors (i.e., NTSR1, NTSR2 and NTSR3/sortilin), 
named according to the order in which they were 

cloned [2, 3]. In particular, high-affinity NTSR1, which is 
found in various regions of the CNS, in the small and large 
intestine, and in a variety of solid tumors, is considered 
a predominant mediator of the effects of NTS on cell 
proliferation, migration, and invasion [3, 5]. In contrast, 
the low-affinity NTSR2, which shares 60% homology 
with NTSR1, demonstrates a more localized distribution; 
the expression of NTSR2 has been recently reported in 
prostate cancers and B cell lymphomas [6, 7]. Different 
from NTSR1 and NTSR2, which are G protein-coupled 
receptors, NTSR3/sortilin is a single transmembrane 
receptor, which binds various neurotrophic factors and 
neuropeptides and is not specific for NTS [3, 8].

Epigenetic alterations involving DNA methylation 
or histone modifications can vary the expression patterns 
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of genes that are important for cancer development and 
progression [9–11]. For example, it is well known that 
hypermethylation of CpG islands in the promoter region 
of tumor suppressor genes results in gene silencing, which 
can lead to the facilitation of tumor progression in certain 
tissues [9, 12]. In addition, DNA hypomethylation, which 
is also observed in many cancers, induces transcriptional 
activation of oncogenes and contributes to cancer 
progression [9, 13, 14].

Diverse expression levels of the NTSRs, especially 
increased expression of NTSR1, have been reported in 
various types of cancers (e.g., colon, pancreas, breast, 
lung and prostate) [15–21]; however, the molecular 
mechanisms for this altered expression pattern are not 
entirely known. Although NTS can stimulate the growth 
of NET cells [4], the expression profiles and cellular 
functions of the NTSRs have not been well-delineated in 
NETs. In our present study, we analyzed the expression 
of NTSR1 protein in normal and NET tissues for GI, 
lung and thymus, and endogenous expression of NTSRs 
and transcriptional repression of NTSR1 and NTSR2 
genes in NET cell lines. We demonstrate the epigenetic 
alteration of NTSR1 and NTSR2 by methylation analyses 

of their promoters in NET cells and in clinical tissues. 
Furthermore, we show that NTSR1 knockdown suppresses 
cell proliferation, anchorage-independent growth, 
attachment, migration and invasion of NET cells.

RESULTS

Expression of NTSR1 in normal and NET tissues 
by immunohistochemistry

NTS and NTSR1 complexes have been frequently 
observed in progression of several types of tumors. 
Although the expression of NTS which is mainly 
released by endocrine cells in the small bowel is broadly 
known in NETs, NTSR1 expression has not been 
well-studied in NETs. To evaluate the expression of 
NTSR1,  immunohistochemical analysis was performed 
in clinical NET patient samples (i.e., 12 GI, 2 thymus 
and 6 lung NET tissues) used in our previous study [22]. 
Compared to normal tissues (5 GI, 2 thymus and 5 lung 
tissues) in which NTSR1 was not or barely detected, 
increased expression of NTSR1 was observed in all tested 
GI (12 of 12 NETs, Fig. 1A), and thymus (2 out of 2 NETs, 

Figure 1: Expression of NTSR1 in normal and clinical NET tissues. Immunohistochemical analysis of NTSR1 was performed 
in human normal and NET tissues. Representative images for NTSR1 protein expression in GI A. thymus B. and lung C. were shown 
at 200 × magnification. While the staining of NTSR1 was absent or barely detected in normal tissues (left), strong NTSR1 labeling was 
observed in clinical NET tissues (right).
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Fig. 1B), and a majority of lung (5 out of 6 NETs, Fig. 1C) 
NET samples. These data suggest that NTSR1 is highly 
expressed in NETs but not in normal tissues.

Endogenous expression of NTS and NTSRs, and 
induction of NTSR1 and NTSR2 by 5-aza-CdR 
treatment in NET cells

To elucidate expression profiles of NTS signaling 
components in NET cells, we first analyzed the expression 
of NTS and NTSRs in four human NET cell lines (BON, 
QGP-1, NCI-H727 and UMC-11) by RT-PCR. Expression 
of NTS and NTSR3 mRNA was noted in all four cell lines 
(Fig. 2A); in contrast, NTSR2 expression was not detected 
(data not shown). Variable expression of NTSR1 was noted 
with the greatest expression in NCI-H727 cells and moderate 
expression in BON; very little or no NTSR1 transcripts were 
demonstrated in QGP-1 and UMC-11 cells (Fig. 2A).

Previously, we found that repression of Wnt 
inhibitory genes (SFRP-1, Axin-2, DKK-1, DKK-3 and 

WIF-1) results from promoter methylation or histone 
modification in NET cells [22]. To determine whether 
alterations in expression levels of NTSR1 and NTSR2 
were due to epigenetic mechanisms (e.g., promoter 
methylation), we treated BON and QGP-1 cells with a 
demethylating agent, 5-aza-2’-deoxycytidine (5-aza-
CdR), and examined the expression of NTSRs using 
RT-PCR (Fig. 2B). Treatment with 5-aza-CdR increased 
the expression of NTSR1 and NTSR2 in BON and the 
expression of NTSR1 in QGP-1 cells. To confirm these 
results, mRNA expression levels were also investigated 
by qRT-PCR (Fig. 2C). Treatment of the cells with 5-aza-
CdR resulted in an approximate 57-fold induction of 
NTSR1 expression in BON and an approximate 5-fold 
induction in QGP-1 cells. Western blot analysis confirmed 
that the level of NTSR1 protein was augmented in BON 
cells treated with 5-aza-CdR (Fig. 2D). Collectively, our 
findings of mRNA and protein expression suggest that 
NTSR1 and NTSR2 are targets of epigenetic modulation 
through methylation in NET cells.

Figure 2: Expression analysis of NTSRs in endogenous and 5-aza-CdR treated NET cell lines. A. RT-PCR analysis of NTS, 
NTSR1, NTSR2, NTSR3 and β-actin expression in NET cells. B. RT-PCR analysis of NTSRs and β-actin expression in BON and QGP-1 
cells treated with 0 (DMSO) or 10 μM 5-aza-CdR. The media containing 5-aza-CdR were replaced every 24 h for 4 d. C. Quantitative 
RT-PCR (qRT-PCR) analysis confirmed that treatment with 5-aza-CdR increased the expression of NTSR1 gene in BON and QGP-1 cells. 
The reaction was performed using a TaqMan Gene Expression Master Mix and TaqMan probes for human NTSR1 and GAPDH as internal 
control (Applied Biosystems). Expression levels were assessed by evaluating threshold cycle (Ct) values. The relative amount of mRNA 
expression was calculated by the comparative ∆∆Ct method (*p < 0.05 vs. DMSO). D. Western blot analysis showing induction of NTSR1 
by 5-aza-CdR treatment for 96 h in BON cells. The protein extracts for cell lysates were analyzed with the indicated antibodies. β-actin 
was used as a loading control.
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Methylation status of NTSR1 and NTSR2 
promoters in NETs

To test whether the induction of NTSR1 and NTSR2 by 
5-aza-CdR was due to promoter methylation, we examined 
the methylation status of the 5’ regions of these genes using 
methylation-specific PCR (MSP) and bisulfite sequencing in 
three NET cell lines. Using two primer pairs, MSP analysis 
showed partial methylation of the NTSR1 promoter in all 
tested cell lines (Fig. 3A). The methylation profile of the 
5’ region of NTSR1 was further analyzed by the direct 
sequencing of the MSP products (Supplementary Fig. 1A) 

and bisulfite sequencing (Fig.  3B). The CpG sites of the 
NTSR1 promoter were partially methylated in tested NET 
cells. Moreover, promoter methylation of NTSR2 was also 
noted by MSP analysis (Fig. 3A). Similar sequencing analyses 
for the NTSR2 promoter confirmed hypermethylation of 
the CpG islands consistent with the MSP data (Fig. 3C and 
Supplementary Fig. 1B).

CpG island methylation of NTSR1 and NTSR2 
was further investigated in the above clinical specimens 
used in immunohistochemical analyses. By MSP 
analysis, methylation of the NTSR1 promoter was not 
noted in any of the NET specimens, and methylation 

Figure 3: DNA methylation analysis of the NTSR1 and NTSR2 promoters in NETs. A. MSP analysis of NTSR1 and NTSR2 
promoters with respective two primer pairs (NTSR1A and NTSR1B) and primers (NTSR2) specific for the methylated (M) and unmethylated 
(U) DNA in three NET cell lines. The PCR products were visualized by 2% agarose gel. B. Bisulfite genomic sequencing analysis of NTSR1 
promoters in BON, QGP-1 and NCI-H727 cells. Each row of circles represents the DNA sequence of an individual clone; closed and open 
circles indicate methylated and unmethylated CpG sites, respectively. Bold grey lines are candidate CpG islands searched by the software 
of Applied Biosystems. The thicker and upper, and thinner and lower arrows below the CpG islands represent the primers for bisulfite 
sequencing and MSP, respectively. C. Bisulfite genomic sequencing analysis of NTSR2 CpG islands in the NET cells. D. MSP analysis of 
NTSR1 and NTSR2 promoters with the same primers described above in clinical NET samples.
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of NTSR2 was observed in 12 out of 19 NET samples 
(Fig. 3D). Surprisingly, promoter methylation of NTSR1 
was shown in 11 out of 12 normal tissues samples 
(Supplementary  Fig.  2). These data demonstrate that 
reduction or silencing of NTSR gene expression was 
strongly associated with DNA methylation of the respective 
gene promoters in NET cell lines and patient samples. In 
particular, the absence of NTSR1 promoter methylation is 
in line with NTSR1 protein expression (Fig. 1) and leads 
to a strong expression of the protein in tested clinical 
NET samples. In addition, Dong et al. [25, 26] in our 
laboratory reported that DNA methylation contributes to 
NTS expression in human liver and colon cancer cells. 
Therefore, based on our current study and previous 
reports, it is clear that DNA methylation can control NTS 
signaling by regulation of expression levels for the agonist  
(i.e., NTS) and its receptors (NTSR1 and NTSR2).

NTSR1 knockdown inhibits NET cell growth  
and migration

Recently, we showed that expression and secretion 
of NTS are directly regulated by the Wnt/β-catenin 
pathway in NET cells [4]. We also found that inhibition 
of NTS signaling suppressed cell proliferation and 

anchorage-independent growth in these cells [4]. To 
further delineate the possible proliferative effect of 
NTSR1, we used small interfering RNA (siRNA) against 
NTSR1 in BON cells, which express NTSR1 mRNA 
and have been widely utilized as a novel carcinoid cell 
model [27]. Compared with cells transfected with non-
targeting control, siRNA-mediated knockdown of NTSR1 
suppressed cell proliferation (Fig. 4A). In addition, 
NTSR1 knockdown significantly inhibited the expression 
of c-Myc and Cyclin D1 which play integral roles in cell 
proliferation (Fig. 4B) [4, 28, 29]. Next, we performed soft 
agar assays to determine the effect of NTSR1 knockdown 
on anchorage-independent growth. The number of 
BON cell colonies transfected with NTSR1 siRNA was 
significantly lower than those of control cells (Fig. 4C). 
These findings suggest that a growth-stimulating function 
of NTS may be mediated mainly by NTSR1 in NET cells.

In addition to cell growth, activation of NTSR1 
induces cell migration, invasion, and metastasis in head 
and neck squamous cell carcinomas, glioblastomas and 
breast cancer cells [19, 30, 31]. Based on these studies, 
we evaluated the migration of BON cells transfected with 
NTSR1 siRNA using a Boyden chamber migration assay 
with type I collagen-coated Transwells. Knockdown of 
NTSR1 decreased the migratory potential of BON cells at 

Figure 4: Knockdown of NTSR1 affects NET cell growth and migration. A. Equal numbers of BON cells transfected with 
siRNA against non-targeting control or NTSR1 were plated in 24 well plates. The cell numbers were counted after 48 h incubation using 
a cell counter (*p < 0.05 vs. control siRNA). B. RT-PCR (left) and western blot (right) analyses showing expression of NTSR1, c-Myc 
and Cyclin D1 in BON cells transfected with control or NTSR1 siRNA. β-actin was used as a loading control. C. The number of colonies 
compared with the control siRNA in soft agar assay. Colony formation of representative control or NTSR1 knockdown BON cells was 
assessed over a period of 4 wks (*p < 0.05 vs. control siRNA). D. Boyden chamber migration assay with type I collagen-coated Transwells 
was carried out with control or NTSR1 knockdown BON cells over 24 h. Phase-contrast microscopic images (left) and quantification of 
migrated cells (right), which were counted in four different fields with an inverted microscope (*p < 0.05 vs. control siRNA), are shown.  
E. Transwell migration assay performed with respective siRNA-transfected BON cells over 48 h as described above.
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24 (Fig. 4D) and 48 h (Fig. 4E), respectively. Additionally, 
the effect of pharmacologic blockade of NTSR1 using  
SR-48692 on NET cell migration was assessed by 
Transwell migration assays. Treatment with SR-48692, 
which represses NET cell growth [4], significantly 
decreased BON cell migration in a dose-dependent 
manner (Supplementary Fig. 3A). Taken together, these 
findings show that knockdown of NTSR1 through siRNA 
or treatment with a selective NTSR1 antagonist inhibits 
cell growth and migration of NET cells.

Stable silencing of NTSR1 suppresses 
proliferation, adhesion, migration and  
invasion in NET cells

To further investigate the contribution of NTSR1 
on NET cell proliferation, adhesion, migration and 
invasion, we utilized NTSR1 small hairpin RNA (shRNA) 
to establish stable BON cell clones (N-2 and N-3) with 

low levels of NTSR1 expression following puromycin 
selection (Fig. 5A). The stable shRNA-mediated 
knockdown of NTSR1 decreased mRNA levels and 
promoter activity of interleukin-8 (IL-8), which can be 
induced by NTS signaling (Fig. 5A and Supplementary 
Fig. 4A) [32]. Treatment with SR-48692 also inhibited 
the promoter activity of IL-8 (Supplementary Fig. 4B). 
Consistent with results obtained from the above 
experiments using siRNA, the inhibition of cell growth 
and suppression of anchorage-independent growth was 
also noted in the cell lines expressing NTSR1 shRNA 
compared with control cells (Fig. 5B and 5C). In addition, 
an adhesion assay was performed to assess cell binding 
ability to the extracellular matrix which is crucial for 
maintaining cell viability and migration [33]. The stably-
silenced NTSR1 clones demonstrated lower numbers of 
attached cells on type I collagen-coated plates compared 
with control cells (Fig. 5D and Supplementary Fig. 3B). 
Furthermore, BON cell clones expressing shRNA targeting 

Figure 5: Stable silencing of NTSR1 suppresses cell growth, adhesion, migration and invasion of NET cells. A. RT-PCR 
(upper) and western blot (bottom) analyses showing NTSR1 expression in stable non-targeting control or two NTSR1 knockdown BON cell 
clones (N-2 and N-3). B. The stable BON cell clones were incubated for 48 h; cell numbers were counted using a cell counter (*p < 0.05 
vs. control shRNA). C. The number of colonies compared with control shRNA in soft agar assay. Colony formation of representative BON 
stable cell clones was assessed over a period of 4 wks (*p < 0.05 vs. control shRNA). D. The same number of stable BON cells was added 
onto type I collagen-coated plate for 15 min. The attached cells were fixed, and then stained with crystal violet. The number of attached cells 
was counted and the mean values were determined (*p < 0.05 vs. control shRNA). E. Phase-contrast microscopic images showing stable 
BON cell clones 2 h (upper) and 22 h (bottom) after removing the Culture-Insert (Ibidi, Munich, Germany). Wounding migration assay 
performed with control and the two BON cell clones expressing NTSR1 shRNA over 22 h. Quantification was carried out by measuring the 
migrated distance (right, *p < 0.05 vs. control shRNA). F. Reduction of invasive activity by stable silencing of NTSR1 in BON cells. To 
determine the invasive effect of NTSR1, human Alu sequence PCR-based assay was performed. Genomic DNA isolated from lower CAMs 
was used as a template of PCR amplification. PBS was used as negative control. The PCR product was electrophoresed on a 2% agarose gel.
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NTSR1 showed significantly decreased cell migration 
compared to control cells (Fig. 5E). Finally, to examine the 
intravasation effect of NTSR1, the human Alu sequence 
PCR-based chick chorioallantoic membrane (CAM) assay 
was performed as described previously [34]. Compared to 
that of control, amplified bands of lower CAM inoculated 
with NTSR1-transfected BON cells were significantly 
decreased indicating that the invasive capacity of BON 
cells was diminished in NTSR1 knockdown clones 
(Fig. 5F). Collectively, these findings confirm that stable 
silencing of NTSR1 markedly inhibits cell proliferation, 
anchorage-independent growth, cell adhesion, migration 
and invasion suggesting an oncogenic function for NTSR1 
in NET cells.

DISCUSSION

There is emerging evidence that either NTS or 
NTSR1 can be utilized as a prognostic marker for various 
cancers due to aberrant expression noted in tumors and 
not detected in normal tissues, and that silencing of the 
genes can inhibit the tumorigenic activities in some cancer 
cells [15–21]. In particular, NTSR1 expression is strongly 
associated with a worse survival and a higher incidence 
of distant metastases in lung and breast cancers [17, 20]. 
However, the mechanisms for the expression of NTSR1 in 
cancer tissues including NETs, have not been well-defined. 
Here, we showed that NTSR1 protein is not or barely 
detected in 12 normal tissues but is strongly expressed in 
95% of clinical NET samples (19 of 20 NETs). Similar to 
the above described cancers, high expression of NTSR1, 
noted in this study, and NTS are associated with NET 
progression indicating that NTSR1 may be a useful 
prognostic marker for NETs.

We also found that differential expression of 
NTSR1 and silencing of NTSR2 in NET cells is a result 
of promoter methylation. Previously, it was reported 
that DNA methylation plays an important role in the 
regulation of NTS expression in human cancer cells 
[25,  26]. Similar to the Wnt/β-catenin pathway which 
regulates the expression of both NTS and NTSR1 [4, 35], 
promoter methylation demonstrates a complicated 
regulatory process for NTS signaling at the level of the 
agonist as well as the simultaneous regulation of its 
receptors. In addition to hypermethylation, which is 
commonly found with tumor initiation and progression, 
hypomethylation of certain genes (e.g., urokinase 
plasminogen activator) is a common mechanism for the 
aberrant gene expression patterns in tumors, and plays 
a central role in human tumor progression [14, 36–38]. 
Similarly, the lack of NTSR1 promoter methylation is 
observed in all NET tissues and the promoter methylation 
was shown in most normal tissues in this study. These data 
represent that the absence of promoter methylation closely 
correlates with overexpression of NTSR1 in NET clinical 
samples. Histone modification could also be related to its 

transcriptional regulation similar to epigenetic repression 
of DKK-1, DKK-3 and WIF-1 noted in our previous study 
showing that silencing of these genes occurs through 
histone modification in NET cells, although the Wnt 
inhibitors are silenced by methylation of their promoters in 
most tumors [22]. Further work is required to elucidate the 
detailed mechanisms for epigenetic silencing of NTSR1 
and NTSR2 in diverse tumor types.

NTS and NTSR1 are neuropeptide-receptor 
complexes which are frequently deregulated during tumor 
progression [3, 5]. In particular, NTSR1 activation induces 
cell proliferation, survival, migration and invasion through 
multiple oncogenic pathways in various cancers [3, 5]. 
Recently, we proposed that NTS is a mediator for NET 
cell growth through inhibition of NTS signaling [4]. In 
our current study, we confirmed the high expression of 
NTSR1 protein in clinical NET tissues as described above 
and analyzed the effect of NTSR1 on NET cell growth, 
adhesion, migration and invasion to better delineate the 
significance of NTSR1 in NET progression. In addition 
to cell proliferation and anchorage-independent growth, 
which were suppressed by NTS knockdown, NTSR1 
silencing resulted in reduction of NET cell migration and 
invasion indicating that NTSR1 is mainly engaged in NET 
progression.

In summary, we have identified promoter 
methylation as an important molecular mechanism for 
the regulation of NTSR1 and NTSR2 expression. In 
addition, we also demonstrate high expression of NTSR1 
protein in clinical NETs, and the oncogenic function of 
NTSR1 in NET cells. Our findings identify a potential role 
for NTSR1 in the growth and progression of NETs and 
provide a rationale for further exploration of NTSR1 as a 
therapeutic target for NET treatment.

MATERIALS AND METHODS

Immunohistochemistry

Immunostaining with NTSR1 antibody, obtained 
from Abcam (ab117592, Cambridge, MA), was performed 
as described previously [22]. The slides for paraffin-
embedded tissue blocks of NETs from GI (n = 12), lung 
(n = 6) and thymus (n = 2) and normal tissues from GI 
(n = 5), lung (n = 5) and thymus (n = 2) were provided from 
Department of Pathology and Markey Biospecimen and 
Tissue Procurement Shared Resource Facility, University of 
Kentucky. Assessment of the stained slides was performed 
blindly by an experienced pathologist (EYL).

Cell culture and treatment, siRNA transfections 
and lentiviral transductions

Four human NET cell lines, BON (pancreatic 
carcinoid), QGP-1, (pancreatic somatostatinoma), 
NCI-H727 (bronchial carcinoid) and UMC-11 (bronchial 
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carcinoid) were used in this study. The cell lines were 
authenticated with 17 autosomal short tandem repeat loci 
and the sex identity locus in May 2012 at Genetica DNA 
Laboratories (Cincinnati, OH). BON cells were maintained 
in a 1:1 ratio of DMEM and F12K, supplemented with 
5%  FBS. QGP-1, NCI-H727 and UMC-11 cells were 
cultured in RPMI1640 medium with 10% FBS. Cells 
were grown at 37°C in a humidified 5% CO2 incubator. 
Reagents for cell treatment, a demethylating agent, 
5-aza-2’-deoxycytidine and an NTSR1 antagonist,  
SR-48692 were purchased from Sigma (St Louis, MO) 
and dissolved in dimethyl sulfoxide (DMSO). Transfection 
with nontargeting control and SMARTPool NTSR1 
siRNA (Dharmacon, Lafayette, CO) was performed using 
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA) 
as previously described [4]. For generation of NTSR1-
silenced BON cells, the shRNA lentiviruses were produced 
using shRNA vectors (SHGLY-NM_002531, Sigma). 
Cells were transduced with each virus and then selected 
with puromycin (2 μg/mL) as previously reported [4, 39].

RNA isolation, reverse transcription-PCR  
(RT-PCR) and quantitative reverse 
transcription-PCR (qRT-PCR) analysis

Total RNA was isolated from the cultured NET 
cells using RNeasy kits according to the manufacturer’s 
instructions (Qiagen, Valencia, CA). Each cDNA 
was synthesized using High-Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, Foster City, 
CA) and total RNA for NET cells. RT-PCR analysis 
was performed using synthesized cDNA, HotStarTaq 
DNA Polymerase (Qiagen) and the primers described 
in Supplementary Table S1. The PCR products were 
analyzed on a 2% agarose gel. β-actin was used as an 
internal control. qRT-PCR reaction was performed using 
a TaqMan Gene Expression Master Mix and TaqMan 
probes for human NTSR1 and GAPDH according to the 
manufacturer’s protocol (Applied Biosystems). Expression 
levels were assessed by evaluating threshold cycle (Ct) 
values. The relative amount of mRNA expression was 
calculated by the comparative ∆∆Ct method.

Western blot analysis

The protein extracts for cell lysates were prepared 
in a Cell Lysis Buffer (Cell Signaling, Danvers, MA) 
containing 1 mM PMSF. Total cell lysates containing 
equivalent amounts of protein were separated on NuPAGE 
4–12% Bis-Tris gels (Invitrogen) and transferred to 
PVDF membranes. The membranes were incubated with 
specific primary antibodies and subsequently horseradish 
peroxidase-conjugated secondary antibody. Following 
incubation with the antibody, proteins were visualized 
using ECL detection system (Buckinghamshire, UK). 
The anti-NTSR1 antibody was purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA). The antibodies 
for c-Myc and Cyclin D1 were obtained from Epitomics 
(Burlingame, CA). The antibody for β-actin used as a 
loading control was from Cell Signaling.

Methylation analysis

Methylation of 5’ regions of NTSR1 and NTSR2 
was analyzed using MSP (methylation-specific PCR) 
and bisulfite sequencing analyses. Briefly, PCR was 
performed using bisulfite-modified genomic DNA by 
MethylCode Bisulfite Conversion Kit (Invitrogen) and 
the primers which were designed using Methyl Primer 
Express Software v1.0 (Applied Biosystems) and shown in 
Supplementary Table S1. The PCR products for MSP were 
visualized by 2% agarose gel. For bisulfite-sequencing, 
PCR products were cloned into the TOPO TA cloning 
vector (Invitrogen) and the plasmids from individual 
bacterial colonies were sequenced.

Cell proliferation

Equal numbers of BON cells transfected with 
siRNA or shRNA were plated in 24-well plates. Cell 
proliferation was assessed at 48 h after seeding directly 
by cell counting using a Beckman Coulter Cell Viability 
Analyzer (Beckman-Coulter, Fullerton, CA).

Soft agar assay

To measure anchorage-independent growth, BON 
cells were plated in growth medium containing 0.4% 
agarose in six-well plates onto a bottom layer of solidified 
0.8% agarose. After incubation for 4 weeks, colonies were 
stained with crystal violet solution, washed repeatedly 
with distilled water and quantified using AlphaEaseFC 
software (Alpha Innotech Corporation, San Leandro, CA).

Transwell migration assay

A Boyden chamber migration assay with type I 
collagen-coated Transwells was carried out with control 
and NTSR1 knockdown BON cells or BON cells treated 
with different concentration of SR-48692. The chambers 
were incubated at 37°C for 24 or 48 h, respectively, and 
the cells were fixed with methanol and stained with 0.5% 
crystal violet in 20% methanol. Activity of cell migration 
was quantified by counting cell numbers in four different 
fields under an inverted microscope.

Luciferase reporter assays

BON cells were plated in 24-well plates and 
transiently transfected with the IL-8 reporter (0.4 μg) 
and the Renilla luciferase reporter (0.05 μg) using 
Lipofectamine 2000 according to the manufacturer’s 
instructions (Invitrogen). For SR-48692 treatment, 
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0 (DMSO) or 5 μM SR-48692 were treated into BON cells 
one day after transfection. The cells were harvested and 
luciferase activity was measured using a Dual-Luciferase 
Reporter Assay System (Promega, Madison, WI).

Adhesion assay

A cell adhesion assay was performed to assess cell 
binding ability to the extracellular matrix. Briefly, 48-well 
plates were coated with type I collagen and washed with 
PBS. Equal numbers of detached BON cell clones were 
plated to each coated well and incubated for 15 min. 
After 37°C incubation, unattached cells were removed by 
washing with PBS, and the adherent cells were fixed, and 
then stained with crystal violet. The plate was washed and 
dried completely. Quantification was performed through 
counting the number of attached cells or measuring 
absorbance for crystal violet-stained cells at 550 nm by 
adding and solubilizing with 2% SDS.

Wounding migration assay

To compare the migratory activity of stable 
knockdown of NTSR1, a wounding migration assay was 
performed with control and the two BON cell clones 
expressing NTSR1 shRNA. The wounded monolayers 
using the Culture-Insert (Ibidi, Munich, Germany) were 
incubated for 22 h. The cells were fixed with ice-cold 
methanol and stained with crystal violet. Quantification 
was carried out by measuring the migrated distance.

Human Alu sequence PCR-based assay

To determine the invasive effect of NTSR1, human 
Alu sequence PCR-based assay was performed as described 
previously [34]. Stable BON cells in PBS were inoculated 
on artificially-generated air sacs at 1 × 107 cells per chick 
chorioallantoic membrane (CAM) of 9 day chick embryos. 
After 3 d, genomic DNA was isolated from lower CAMs 
and then used as a template of PCR amplification. The 
primer sequences are shown in Supplementary Table S1. 
The PCR product was electrophoresed on a 2% agarose gel.

Statistical analysis

Descriptive statistics including mean and standard 
deviation (SD) were calculated to summarize mRNA 
levels, number of cells, colony formation, migrated and 
attached cell number, luciferase activity and migration 
distance for each experiment. Bar graphs were generated 
to represent mean (± SD) fold changes of increase or 
decrease in experimental groups relative to control. 
Within respective experiments, comparisons between two 
groups were performed using two-sample t-tests, whereas 
comparisons across groups were accomplished using 
one-way analysis of variance models and test for linear 
trend of increasing dose levels or pairwise comparisons 

with control group were subsequently performed using 
contrast statements. Normality assumptions of the analysis 
of variance and two-sample t-tests for each outcome were 
assessed. p-values < 0.05 were considered statistically 
significant.
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