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Topological data analysis for discovery in preclinical
spinal cord injury and traumatic brain injury
Jessica L. Nielson1, Jesse Paquette2, Aiwen W. Liu1, Cristian F. Guandique1, C. Amy Tovar3, Tomoo Inoue4,

Karen-Amanda Irvine5, John C. Gensel6, Jennifer Kloke7, Tanya C. Petrossian8, Pek Y. Lum9,

Gunnar E. Carlsson7,10, Geoffrey T. Manley1, Wise Young11, Michael S. Beattie1, Jacqueline C. Bresnahan1

& Adam R. Ferguson1,12

Data-driven discovery in complex neurological disorders has potential to extract meaningful

syndromic knowledge from large, heterogeneous data sets to enhance potential for precision

medicine. Here we describe the application of topological data analysis (TDA) for data-driven

discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets

mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI

(VISION-SCI) repository. Through direct visualization of inter-related histopathological,

functional and health outcomes, TDA detected novel patterns across the syndromic network,

uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects

in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that

perioperative hypertension predicted long-term recovery better than any tested drug after

thoracic SCI in rats. TDA-based data-driven discovery has great potential application for

decision-support for basic research and clinical problems such as outcome assessment,

neurocritical care, treatment planning and rapid, precision-diagnosis.
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B
ioinformatics approaches for precision medicine are
gaining momentum as biomedical researchers grapple with
overwhelming amounts of data generated by all areas of

science in the era of ‘big-data’1,2. The central nervous system
(CNS) injury literature seeks to understand the multifaceted
effects of injuries to the brain and spinal cord by collecting high-
volumes of detailed information on individual subjects, ranging
from histological, physiological and bio-behavioral outcomes to
health records from therapeutic trials. The sheer volume of data
presents a problem for managing and interpreting therapeutic
findings without computational assistance3–5. Informatics
tools are currently being developed in preclinical and clinical
CNS injury studies6,7, and resources such as the Neuroscience
Information Framework (NIF, http://www.neuinfo.org/),
ClinicalTrials.gov (www.clinicaltrials.gov) and PubMed (http://
www.ncbi.nlm.nih.gov/pubmed/) offer user-friendly query
interfaces to bridge knowledge that exists in biomedical
research. However, there remains a lack of user-friendly
statistical integration and visualization tools that can be applied
to primary research data from multifaceted CNS disorders.

In this sense, translation of basic research into clinical
therapeutics can be conceptualized as a big-data integration
issue. Thousands of studies have been published aiming to
characterize spinal cord injury (SCI) and traumatic brain injury
(TBI) from a basic scientific view point, yet we still do not fully
understand these complicated disorders. In addition, few
therapies have navigated successfully through clinical trials into
standards for patient care8–10. The emerging field of precision
medicine seeks to apply analytics and data-visualization tools3,4

to improve understanding and treatment of complex disorders
such as SCI and TBI11.

The present study applies a data-analytic approach, topological
data analysis (TDA)12, for improved discovery of fundamental
syndromic injury patterns and assessment of precision
therapeutic targeting from preclinical drug trials in SCI and
TBI. TDA couples unsupervised pattern detection13 and network
visualization12 to rapidly extract the full syndromic injury disease
taxonomy from the full set of inter-correlated biological,
behavioral and health outcomes in diverse SCI14 and TBI15

animal research data. Harnessing a TDA framework, data-driven
navigation of the syndromic space is performed by rapid colour-
based re-mapping of individual outcomes onto the network to
improve interpretation of histopathology, functional recovery and
experimental therapeutic effects. TDA helps facilitate the
identification of novel relationships in complex, heterogeneous
data sets, allowing for data-driven hypothesis generation that may
uncover mechanisms for increased morbidity following SCI and
TBI. TDA uncovered location-specific impact of SCI and TBI
polytrauma on recovery of forelimb function, and differential
sensitivity of forelimb measures and locomotion measures in
cervical SCI. Application of TDA to preclinical therapeutic trials
revealed irreproducible efficacy of methylprednisolone (MP) and
minocycline treatment between cervical and thoracic SCI, yet
uncovered the novel discovery that perioperative hypertension
predicts worse neurological recovery following thoracic SCI.

Results
Initial attempts to visualize the syndromic space following CNS
injury in rodents and nonhuman primates have revealed proof-
of-concept multivariate relationships of tissue pathology and
functional recovery, with each dimension showing specific
sensitivity to different injury models13,14,16. Visualizing the
syndromic space through traditional methods such as principal
components analysis (PCA) requires database querying, statistical
coding and graphical programming. These requirements

disempower basic researchers and clinicians by limiting
rapid and actionable access to syndromic findings (Fig. 1a,b).
In contrast, TDA can apply PCA through singular value
decomposition (SVD) to reveal the complex multivariate
relationship of all predictor and outcome variables
simultaneously as a network diagram, where similar individuals
are clustered into nodes, and clusters that share one or more
individuals are joined by an edge (Fig. 1c). The full syndromic
topological map provides a platform for rapid and intuitive
exploration of the data set in an unbiased, data-driven manner
(Fig. 1d). Once the network is generated, the shape of the data
set can be investigated to understand the relationship of each
variable across the topological syndromic space to identify
groups of clustered individuals that can be further probed for
specific relationships among outcomes, validation and targeted
hypothesis testing.

TDA uncovers complex SCI and TBI outcome by injury location.
To test the application of TDA to CNS injury research, we assessed
the syndromic network topology of a recently developed
rodent model of combined SCI and TBI. The results of the
functional and histopathological deficits of this model have been
described at the univariate level15, with only a subset of endpoints
reaching significance (Fig. 2, bar graphs), leading to potentially
unclear conclusions about outcome. TDA combined with
SVD rapidly re-evaluated the findings across all endpoints
simultaneously. Subjects were mapped into the network based on
functional (Fig. 2a,b; Supplementary Software 1, dropdown) and
histopathological outcomes (Fig. 2c,d; Supplementary Software 1,
dropdown), showing a distinct separation of each injury model into
sub-networks (Fig. 2e; Supplementary Software 1, dropdown).
Sham and TBI-only subjects clustered into distinct regions in the
network. SCI-only subjects and SCIþTBI contralateral to each
other clustered together into a separate sub-network in the
topology, demonstrating worse outcome than the other injury
groups (Supplementary Software 1, dropdown). In contrast,
subjects with SCIþTBI on the ipsilateral side (Fig. 2, circled)
clustered near the sham condition in a sub-network that mapped to
better performance on measures of forelimb function (Fig. 2a;
Supplementary Software 1, dropdown). This multidimensional
difference between ipsilateral and contralateral TBI occurred
despite equally-sized lesions (Fig. 2b; Supplementary Software 1,
dropdown). Although the univariate effects of lesion location were
subtle and varied in their statistical significance across endpoints,
(Fig. 2a,c), TDA uncovered a dramatic multidimensional effect
when the full ensemble of endpoints was used to render the full
syndromic space. Together, these TDA findings reveal the clear
separation of syndromic features of compound injuries according
to location, providing a proof-of-concept for application of
TDA in poly-traumatic CNS injury.

TDA reveals forelimb outcomes most sensitive to cervical SCI.
To test the application of TDA combined with SVD to SCI, we
assembled raw data from several common SCI models, including
hemisections, weight-drop and force-driven hemi-contusion
injuries to the cervical spinal cord (Fig. 3; Supplementary
Software 2, dropdown). Grooming behaviour and paw pre-
ference in a cylinder reveal graded levels of recovery (Fig. 3a), that
map to lesion size, tissue sparing and deformation (Fig. 3b;
Supplementary Software 2, dropdown). However, measures of
open-field locomotion for both forelimb (Fig. 3a; Supplementary
Software 2, dropdown) and hindlimb (Supplementary Software 2,
dropdown) do not show much variability in recovery of function.
In the syndromic topology, grooming function has the strongest
visual mapping to lesion size (Fig. 3b; Supplementary Software 2,
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dropdown), whereas recovery of paw preference in the cylinder
shows a stronger visual mapping with white matter sparing. Little
to no variability is seen in the hindlimb open field
(Supplementary Software 2, dropdown), most likely because it
was designed to measure hindlimb coordination following bilat-
eral thoracic injuries17, whereas these subjects received various
grades of unilateral cervical injuries. There was some variance in
the measure of forelimb open field for the most severe injuries
(Fig. 3a, circle), however, it did not map to the full range of lesion
pathology. TDA enabled rapid multivariate visualization of group
differences with a quicker turn-around for interpretation.

Differential mapping of injuries in the syndromic network. To
understand how injury models map onto the SCI syndromic
space, we recoloured the network using categorical experimental
SCI groups (Fig. 3c; Supplementary Software 2, dropdown: sham,
hemisection, contusion and so on), and observed biomechanical
tissue deformation (mm) measured at the time of injury by servo-
feedback position detectors on the SCI contusion devices (Fig. 3b;
Supplementary Software 2, dropdown). Each injury group occu-
pies a distinct section of the network (Supplementary Software 2,
sham, hemisection, 75 kdyn and 100 kdyn force-driven contu-
sions18; 6.25 mm and 12.5 mm weight-drop contusions19; red
nodes), validating TDA syndromic comparisons of pathology and
function across multiple injury models. Mapping tissue changes
onto the network (Fig. 3b; Supplementary Software 2, dropdown)
confirmed that tissue changes vary as a function of injury group
(Fig. 3c; Supplementary Software 2, dropdown) and predict

subject positions within the full syndromic network space
(Supplementary Software 2). Lesion size shows less variability
between the different injury models, with the exception of the
most severe 12.5 mm contusions (Supplementary Software 2,
dropdown). These larger lesions are confirmed visually in the
network, where larger lesion pathology corresponds to 12.5 mm
weight-drop injuries and 100 kdyn force-driven injuries. White
matter sparing (Fig. 3b; Supplementary Software 2) shows a wide
range of graded severities for the contusion injuries (weight drop
and force driven), and hemisection injuries show a substantial
loss in white matter (Supplementary Software 2, dropdown). This
pattern is confirmed in the network, with the distribution of
nodes with the most white matter sparing appearing on the
perimeter of the bottom flare. Motor neuron (MN) sparing
along the rostro-caudal axis of the lesion (Supplementary
Software 2, dropdown) is the histological feature most sensitive
to injury in this data set; nearly all of the contusion subjects
had large-scale loss of MNs, even with the mildest of injuries.
This sensitivity of MN loss is visually reflected in the network
topology where only the shams and hemisection regions of the
flares show MN sparing (Supplementary Software 2, dropdown),
illustrating the vulnerability of this cell type to contusive spinal
cord damage.

Visually guided data exploration uncovers drug effects. We
identified the nodes within the topology that stood out as having
poor functional recovery on grooming and forelimb open field
(Fig. 3a, circles), despite nodes in this region showing less-severe
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injuries based on the degree biomechanical tissue deformation
(Fig. 3b, circle). This sub-network was also significantly enriched
for 12.5 mm weight-drop contusions, yet we noticed that not all
injuries of this type performed so poorly. To probe factors that
might contribute to abnormally bad function, we drilled into this
effect. We compared subjects in these nodes with 12.5 mm con-
tusions that performed well on forelimb open field using a ranked
Kolmogorov–Smirnov (KS) test. The ranked KS test is analogous
to a gene-set enrichment analysis here applied to identify pre-
dictor and outcome metric sets (rather than gene sets) that are
most sensitive to group conditions (hypothesis testing)20. KS tests
between nodes within the high and low functioning groups
uncovered an external predictor (not included in the generation
of the network) that could account for functional differences:

subjects were part of a preclinical trial of two anti-inflammatory
drugs: minocycline and MP and no-drug controls. The network
was then recoloured based on treatment condition to highlight
nodes enriched for drugs and 12.5 mm weight-drop contusions
(Fig. 3d, red nodes, ‘no-drug’ control (n¼ 11 original subjects;
pure nodes¼ 7, n¼ 8), minocycline (n¼ 11 original subjects;
pure nodes¼ 4, n¼ 6) and MP (n¼ 10 original subjects; pure
nodes¼ 2, n¼ 4)). KS test results comparing treatment groups
enriched in the network suggested significant differences on
several outcomes based on t-test and KS test P values between
groups (Po0.05; Fig. 3e) in the TDA-identified ‘responder’
subjects. To independently confirm this, we performed a one-way
analysis of variance (ANOVA) on the TDA-identified subject
subsets, confirming significant drug effects on MN sparing
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(P¼ 0.02) and tissue area at the epicentre (P¼ 0.002), with other
outcomes approaching significance, including grooming at 28
days post lesion (DPL) (P¼ 0.07). The effect size (Z2) and power
calculation (1�b) values (detailed in Fig. 3e legend) suggest that
the TDA-identified subset of subjects and outcome metrics for
each group had ‘large’ effect sizes21, yielding high power, despite
the limited n in the subpopulations of interest. Post hoc means
testing was performed on significant main effects of treatment
using pairwise comparisons between all treatment conditions
with multiple-comparison correction. MP-treated subjects had
significantly less MN sparing compared with both no-drug
controls (P¼ 0.03) and minocycline-treated subjects (P¼ 0.006),
but no difference in MN sparing was found between no-drug and
minocycline treatment groups (P¼ 0.33). For total tissue area at
epicentre, control subjects showed significantly greater tissue
compared with both MP (P¼ 0.001) and minocycline (P¼ 0.006)
subjects, but no difference in tissue area was found between MP
and minocycline (P¼ 0.24). These statistical results suggest that

MP significantly reduced MN sparing, and both MP and
minocycline impacted total tissue area at the epicentre. After
interviewing the original data donors, we discovered that data
from this drug trial was not previously published because
treatments were thought not to show functional benefits (the
‘file-drawer phenomenon’).

The TDA-identified subpopulation analysis suggested that
minocycline and MP had effects on a subset of endpoints, in a
subset of the individuals. To confirm the generality of these
effects, we next tested for the effects of minocycline and MP on
MN sparing, total tissue area and grooming function on the full
data set (‘superset cross-validation’) from this drug trial (Fig. 3f).
One-way ANOVA and post hoc testing of individual treatment
groups was performed with the same criteria as the comparisons
in Fig. 3e. Results confirmed a significant main treatment effect
for MN sparing (P¼ 0.006), with the MP group showing
significantly less MN sparing than either minocycline
(P¼ 0.002) or no-drug controls (P¼ 0.04), but not between
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Figure 3 | Data-driven discovery of deficits in rats in cervical SCI drug trials. (a) Behavioural deficits in forelimb function were identified in the syndromic

network (circled area). (b) Visual mapping of histopathology patterns in the network did not identify similar patterns to explain behavioral deficits, despite

less tissue deformation in this portion of the network. (c) Enrichment for injury condition revealed these subjects were given the same type injury (weight-
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minocycline and methylprednisolone (MP). (d) Nodes containing subjects significantly enriched for respective drug condition, and 12.5 mm weight-drop

injuries were isolated (red nodes) for group comparisons using the Kolmogorov–Smirnov test (KS test). (e) The three outcomes with the smallest P values

from the KS test results were identified in the sub-selection of subjects identified for each treatment condition. Results revealed significant MN loss in

subjects receiving MP (n¼ 2 nodes, 4 subjects) compared with minocycline (n¼4 nodes, 6 subjects) and no-drug controls (n¼ 7 nodes, 8 subjects)

(P¼0.02, F(2,15)¼ 5.21, Z2¼0.41, 1�b¼0.74), and significantly less tissue area at the injury epicentre in both minocycline and MP-treated subjects,

compared with no-drug controls (P¼0.002, F(2,15)¼ 10.02, Z2¼0.57, 1�b¼0.96). Non-significant functional deficits in grooming were observed 28

days post lesion (DPL) (P¼0.07, F(2,15)¼ 3.18, Z2¼0.30, 1�b¼0.52). (f) Validation of these significant detrimental treatment effects were found in the

entire superset of subjects for both MN sparing (P¼0.006, F(2,29)¼6.08, Z2¼0.30, 1�b¼0.85) and total tissue area at epicentre (Po0.0001,

F(2,29)¼ 19.94, Z2¼0.60, 1� b¼ 1.0), and grooming at 28 DPL was also significant (P¼0.04, F(2,29)¼ 3.68, Z2¼0.20, 1�b¼0.63). Box and whisker

plots show mean and minimum/maximum range of values. P values represent overall treatment effect using one-way ANOVA. Post hoc pairwise

comparisons between each drug condition identified significant decreases in MN sparing in MP-treated subjects, and more tissue area in no-drug controls

(‘#’,significantly different from both groups; *Po0.05). All outcomes at each time point, location of injury conditions and treatment groups are mapped

onto the HTML network Supplementary Software 2.
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no-drug and minocycline (P¼ 0.21). Total tissue area at the
epicentre also had a main treatment effect (Po0.0001), with no-
drug controls showing significantly more total tissue compared
with both minocycline (Po0.0001) and MP (Po0.0001) groups,
but not between minocycline and MP (P¼ 0.79) groups. Last,
grooming function at 28 DPL had a significant main treatment
effect (P¼ 0.04), with the MP group showing significant
functional deficits compared with no-drug controls only
(P¼ 0.02), with non-significant grooming deficits found in
minocycline compared with no-drug controls (P¼ 0.06) or MP
(P¼ 0.49). Together this suggests that MN sparing and tissue
area at the epicentre were the major drivers of the network-
detected effects, with more modest contributions by other
variables.

Conflicting cross-validation and irreproducible drug effects.
TDA-based data-driven discovery revealed a hidden finding in
legacy data that MP was potentially detrimental in cervical SCI.
To test whether the same might be true in thoracic SCI, we pooled
data from the VISION-SCI database14 containing other subjects
that were part of controlled MP drug trials. A previously
conducted trial from the Multicenter Animal Spinal Cord Injury
Study (MASCIS)19 was identified, which contained a larger
cohort of subjects (1996, N¼ 72). TDA was performed using the
same PCA/SVD lens and norm correlation metric used on the
cervical data set (Fig. 3; Supplementary Software 2, dropdown) to
cross-validate the detrimental effects of MP on this independent

thoracic data set. Identification of nodes in the thoracic
network receiving either vehicle control or different doses of
MP (coded as MP1, MCP in Supplementary Software 3,
dropdown) did not show the same detrimental effects in either
functional recovery measured by locomotion with the BBB or
tissue sparing at the injury epicentre (Supplementary Software 3,
dropdown). A separate analysis on the same data set using
TDA was performed with the L-infinity centrality lens, which
attempts to cluster subjects in the network based on maximal
distance between subjects and how far they are from the
group norm12. TDA revealed that subjects were distributed
along three main flares in the network. Identification of nodes
enriched for either vehicle (Fig. 4a) or MP-treated subjects
(Fig. 4b) revealed that a maximum of 50% group membership
was represented in the red nodes in the network. Location of
these nodes for each treatment condition within the network
was visually mapped to functional recovery of BBB (Fig. 4c) and
tissue sparing at the injury epicentre (Fig. 4d). Querying all
subjects within this trial that received either vehicle control
(N¼ 10) or MP (N¼ 12) did not show significant group
difference on either BBB locomotor recovery (Fig. 4e, P¼ 0.73)
or tissue sparing at the epicentre (Fig. 4f, P¼ 0.15). The results
suggest that MP treatment had no significant effect in the thoracic
SCI, in contrast to the deleterious effect observed in the cervical
SCI trial (Fig. 3; Supplementary Software 2, dropdown). On
the whole, these previously unpublished preclinical findings seem
to confirm the lack of definitive data from preclinical trials of
MP in SCI.
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Figure 4 | Cross-validation attempt of MP in thoracic SCI L-infinity centrality network. TDA was performed on data mined from the VISION-SCI

repository, queried based on subjects that were part of treatment trials testing MP (MP1 and MCP) following SCI (N¼ 72). Location of treatment groups

within the network for either (a) vehicle-treated control or (b) MP-treated subjects are shown, however, no nodes were 100% pure for either treatment

condition, suggesting treatment was not a significant predictor of placement of subjects within this network. (c) BBB recovery and (d) total tissue sparing at

the injury epicentre were mapped into the network to identify the range of recovery in this data set (red¼ better recovery, blue¼worse recovery).

Grouping subjects in the data set based on treatment condition did not reveal the same significant deficits observed in the cervical trial for MP for either (e)

recovery of locomotor recovery measured by the BBB (P¼0.73), or (f) the total tissue sparing at the epicentre (P¼0.15). However, there was a trend

towards less tissue sparing in subjects that received MP, similar to histopathology observed in cervical SCI (Fig. 3). The most striking difference in the

network were subjects who had very large differences in tissue sparing along the top arm of the network, yet showed similar ranges of BBB functional

recovery, which are explored further in Fig. 5. Histograms plotted as mean±s.e. Student t-test used for significance testing between treatment groups.
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Data-driven discovery that hypertension predicts dysfunction.
Application of TDA in the context of cross-validation testing of
MP treatment following thoracic SCI revealed an unexpected and
much stronger predictor of neurological recovery than any of the
drug conditions. Visually guided exploration of TDA sub-net-
works uncovered unusually large differences in functional
recovery on the BBB locomotor scale in putatively identical injury
severities. We isolated these disparate subject populations and
categorized them into groups for further comparisons (Fig. 5a,
circles). Nodes containing subjects that received identical 25 mm
weight-drop contusions were grouped and compared with a KS
test to identify measures that significantly differed between these
two groups and also mapped to significant functional differences
on the BBB (P¼ 0.0002). This data-drill down revealed that blood
pressure spikes at the time of SCI significantly differed between
high and low locomotor recovery subgroups (KS¼ 0.7, P¼ 0.03),
suggesting that subjects with poorer outcome may have had
hypertensive mean arterial pressure (MAP) at the time of injury.

Cross-validation and confirmation of hypertension hypothesis.
The data-driven discovery of hypertension as a major predictor of
SCI recovery from semi-structured big-data could potentially
represent a ‘capitalization on chance’22. To explicitly rule this out, we
performed two waves of additional analyses. First, we independently
cross-validated the TDA-based data-driven discovery, by curating an
additional data set from subjects with less-severe injuries (12.5 mm)
from a separate round of the MASCIS trial (1994–1995, N¼ 154)
(Fig. 5b) queried from the VISION-SCI repository. Nodes within the
network that received thoracic 12.5 mm weight-drop injuries showed
distinct subpopulations with significant differences in BBB
locomotor recovery (Fig. 5b, circles, P¼ 0.01). KS testing of the
good versus bad recovery subgroups within this network confirmed

that hypertensive events (maximum MAP) during surgery predicted
lower locomotor recovery in the chronic phase (KS¼ 0.6,
P¼ 0.0009).

Second, we explicitly tested the formal hypothesis that
perioperative hypertension predicts long-term outcome using a
repeated measures general linear model (GLM) on the 1996 and
the 1994–1995 data sets. Explicit hypothesis testing separately
confirmed the hypothesis that perioperative MAP (covariate)
predicted poorer functional recovery of BBB (dependent) between
1 and 6 weeks post injury (repeated measure). In both data sets,
post-injury MAP (15 min after SCI) significantly predicted the
main effect of recovery of BBB locomotion following injury (1996,
F(5,20)¼ 3.701, P¼ 0.02; 1994–1995, F(5,110)¼ 2.671, P¼ 0.03).

TDA-based data-driven discovery versus traditional tools. The
fact that TDA-guided discovery uncovered a novel finding that
was hiding in plain sight in 20-year-old data, provides strong
potential support for this approach. However, we wondered
whether a similar set of results could have been revealed using
traditional analytics. To test this, we pooled all data from MAS-
CIS (N¼ 334) in the VISION-SCI repository and performed side-
by-side bivariate correlational analysis and TDA (Fig. 6). Pearson
correlation confirmation of the significant inverse correlation
between elevated perioperative blood pressure and BBB func-
tional recovery was performed by plotting a bivariate correlation
matrix for MASCIS OSU trial subjects (N¼ 334) for all measures
of survival, histology, perioperative vitals and blood gases, func-
tional recovery, bladder health and weight over 1–6 weeks post
SCI (Fig. 6a). Blood pressure measures showing the most sig-
nificant inverse correlations to BBB recovery were confirmed,
with elevated diastolic blood pressure at the time of injury,
showing the most significant negative correlations at multiple
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Figure 5 | Perioperative hypertension predicts worse recovery after thoracic SCI. (a) Exploration of the TDA network from the MASCIS OSU 1996

methylprednisolone trial (N¼ 72) revealed a cluster of subjects in the network given the same targeted injury (circled bottom and outer flares) that showed

very significant differences in BBB function (P¼0.0002). A query of variables with significant differences based on KS test results between these two

groups uncovered subjects with significant hypertension during SCI surgery (P¼0.03) clustering in the groups with poorer functional recovery. (b) Cross-

validation of these relationships between perioperative blood pressure and functional recovery was performed in a separate group of test subjects from the

same 3-year drug trial (MASCIS 1994–1995, N¼ 154) with matching outcome measures and subject grouping. Visually guided identification of subjects in

the network given the same injury condition (circled upper and lower groups) but showing poorer functional recovery on the BBB scale (P¼0.01)

uncovered the same significant detrimental effect of hypertension during SCI surgery on recovery (P¼0.06), specifically when assessing peak MAP values

recorded during surgery (P¼0.0009). Box and whisker plots show mean and minimum/maximum range of values. P values obtained using student t-test

for significant differences between groups.
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time points (3–6 weeks), with MAP and systolic blood pressure
only showing a significant correlation to BBB deficits at 5 weeks
post injury. Additional measures also showed significant corre-
lations to BBB recovery in this large correlation matrix, including
expected ones such as tissue pathology, bladder care complica-
tions and weight gain, with additional measures of body
temperature and several blood gas measures during surgery
(bicarbonate; blood pH; total carbon dioxide; and partial pressure
of carbon dioxide) also showing significant correlations to BBB.
Taken together, we found that the major changes in MAP pre-
dicting long-term motor impairment, typically occurring in the
range between 100 and 143 mm Hg for upwards of 5 min at a
time, occurred immediately post injury, during surgery and in the
recovery phase in the animal neuroICU.

Although visualization and interpretation of the complex
interactions between all the variables in this data set can, in
theory, be achieved by simple correlation, this approach does not
identify clusters of subjects that are most sensitive to these
interactions across the full spectrum of variables. Navigating the
same data set with TDA creates a syndromic map of all subjects
based on the full network of correlations, enabling rapid
comparative hypothesis testing about factors such as injury
condition, recovery rate, autonomic factors or even gender
differences (Fig. 6b, Supplementary Software 4, dropdown). All

outcomes measured over time, including BBB locomotion,
bladder function, weight, and perioperative blood pressure and
blood gases were mapped onto the network for each time point
(Supplementary Software 4, dropdown). Additional mapping of
enrichment for gender differences in the network revealed that
subjects within the nodes that showed the strongest relationship
between perioperative hypertension and BBB recovery were
mostly males. Due to bladder complications being more
pronounced in males following SCI14, and the strong
correlation between bladder function and health and recovery
of locomotion, males may be more sensitive to the complications
of hypertension during surgery, potentially contributing to more
autonomic complications post injury, leading to increased
morbidity. This TDA-based hypothesis discovery has served to
accelerate ongoing interests in our centre in linked preclinical
experimental and prospective clinical observational trials of
critical care variables including MAP and the use of
pressors23,24 to assess the impact of hypertension, as well as
hypotension on recovery of function after SCI.

Discussion
We report the novel application of TDA to extract the
fundamental shape of the multidimensional syndromic space
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Figure 6 | Comparing traditional tools to TDA in MASCIS data set. (a) A bivariate correlation matrix was generated for every outcome measured over

time along with measures of heart rate, blood pressure and blood gases before, during and after surgery. Each variable is correlated to every other variable,

with clusters of similar measures represented with larger text, with specifics about each measure and collected as the same times post injury (1–6 weeks

post injury). Histology includes tissue deformation and tissue sparing. Blood pressure includes diastolic pressure, mean arterial pressure and systolic

pressure at time of hit, 15 min after hit (PostHit) and 15 min before hit (PreOP). Similar time bins were collected for heart rate and body temperature. Blood

gases were measured only either before (PreOP) or after (PostOP) injury. Locomotion was measured between 1 and 6 weeks using the BBB scale. Bladder

function was monitored daily and binned across each week post injury for bladder voiding/expression, firmness, size and urine content was recorded for

colour and pH. Weight change between each week post injury was also recorded to assess health. Numbers along the y-axis are reflected in the x-axis to

line up variable comparisons. The heat map represents either negative (blue) or positive correlations between each variable within the matrix, with

significant correlations (Po0.05) highlighted with black boxes. Although this method of visualizing correlations is useful for understanding how different

measures all relate to each other within the context of all other comparisons, it does not allow for mapping of each test subjects placement within the

network based on all these complex relationships. (b) TDA of the same data set reveals the distribution of every subject within the network, from all

subjects in the entire OSU MASCIS trial (1994–1996, N¼ 334). TDA revealed the same visually guided relationships between perioperative blood pressure

and autonomic and locomotor dysfunction following SCI identified in Fig. 5. Complete mapping of all outcomes and perioperative measures of vitals and

blood gases over time were exported into an HTML viewer (Supplementary Software 4).
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after CNS damage, using preclinical TBI and SCI data as
illustrating examples. TDA-based data-driven analyses revealed a
set of important findings, some of which dramatically confirmed
existing ‘hunches’ in the published literature, whereas others
represented novel findings that were not previously identified,
even in legacy data sets (for example, 20-year-old MASCIS
studies). As an illustration of value for confirmatory analysis,
TDA revealed a dramatic interaction between SCI and concurrent
TBI that depended on anatomical location of brain lesions.
Although this effect has previously been reported, it only reached
significance on a subset of univariate endpoints15, whereas TDA
revealed this effect to be very large and robust at the network
level. As an illustration of value for exploratory hypothesis
generation, TDA identified potential detrimental consequences of
MP treatment on tissue pathology in cervical SCI, and to a lesser
extent in thoracic SCI. In attempting to cross-validate this
observation, we discovered a novel previously unrecognized
relationship between perioperative hypertension and poorer long-
term functional recovery. The relationship between perioperative
hypotension (o85 mm Hg MAP) and poorer neurological
recovery was recently reported in humans with SCI23,
providing a basis for clinical relevance in early neurocritical
care on outcomes. However the relationship between acute
hypertension has not been reported. Further investigation in
humans with SCI needs to be conducted to determine if the
findings presented in the current study translate into humans.
While the practice guidelines for treatment of acute SCI include
avoidance of hypotension, there is little experimental data to
support this, and the role of hypertension in outcomes has
received less attention23,25,26. The findings presented here suggest
that both extremes in MAP may contribute to increased
morbidity following injury. Additional prospective experiments
are currently underway in rats to test the mechanism by which
hypertension exacerbates functional deficits following SCI. Based
on the literature, the leading mechanistic candidates include
increased oedema cord27, increased hemorrhage28, blood–brain-
barrier breakdown and influx of inflammatory cells and cytokines
around the injury. Such effects may promote a more cytotoxic
spinal cord micro-environment contributing to increased
morbidity25,29–35. Taken together with the increased autonomic
complications that exist in patients following SCI36 (for example,
autonomic dysreflexia), which may be triggered by
haemodynamic events, hypertension during acute management
of SCI may pose a significant risk for patients. This suggests that
careful monitoring of blood pressure in acute patients may need
to be considered for both the upper (hypertension) and lower
limits (hypotension), as both extremes may impact neurological
recovery.

The present application of a big-data-analytic tool for novel
discovery has broad implications for translational SCI research.
Previous work has demonstrated both the univariate and
multivariate impact of graded cervical SCI13 in rats and
primates14,16, as well as a univariate assessment of a combined
SCI and TBI preclinical model in rats15. The results of prior
studies show that information about impairment of function and
tissue pathology can be understood at the univariate level, and to
a greater degree at the multivariate level, providing powerful
opportunities for therapeutic discovery that harnesses CNS
trauma big-data in ensemble. However, progress is hampered
by the intensive data pre-processing typically required before and
after analysis to generate a full view of the multidimensional
syndromic state in CNS injury37. The difficulty of sophisticated
analytics may partially account for the slow progress to both
understand and successfully treat these complicated CNS injury
syndromes. Typical CNS injury studies generate enormous
quantities of data, yet only a few of these measures are assessed

at a time. The ability to interpret the full pattern of disease
pathology and recovery is further confounded by basic
visualization attempts using bar graphs and/or recovery curves
combined with potentially inappropriate statistical techniques to
detect significant effects38 in a manner that is at once both prone
to false-positives (familywise type-1 error) and wasteful of
information (multivariate type-2 error)39. Taken together, these
factors may hinder progress to rapidly translate promising
preclinical studies into clinical trials, and may point researchers
in the wrong direction regarding the conclusions that can be
drawn from their studies.

TDA applies the mathematical concepts from geometric
topology to unlock relationships in data that would be considered
as noise by traditional parametric approaches such as regression
and GLMs40. By extracting the fundamental shape from the entire
multidimensional data set, TDA ascribes meaning to an otherwise
unforeseen pattern of relationships among individuals. The TDA
algorithm achieves this goal by iterating through multiple views
of lower dimensional shape of the data to extract the persistent
shape of the syndromic space across these multiple views using
ensemble machine learning. Through this process, TDA can
resolve meaningful signal from ‘noise’ by identifying its true
source, improving our understanding of the whole data set. TDA
has been used previously to navigate complicated, high-
dimensional biological data sets including functional brain
connectivity41,42 and biomolecular folding pathways43. Novel
applications for TDA in precision medicine are also beginning to
appear in the literature. For example, TDA has been used to
uncover novel relationships in immune cell reactivity between
patients with type-1 and type-2 diabetes44, and in identifying
novel subgroups of patients with asthma and the unique
relationships of specific T-cell mediated interleukins with these
patient subgroups45. Another prominent example of TDA’s
application towards precision medicine was found in breast
cancer data regarding genetic influences on patient survival that
had not been previously identified, even-though the data sets
containing this information had been publically available for over
10 years46. Similar methods can now be applied for neurotrauma
data sets at both the preclinical and clinical level, given the
emergence of large-scale multicentre repositories targeting
precision medicine for the CNS11,37.

In the present paper, we expand the concepts of precision
medicine to the application of TDA for preclinical translational
discovery, using CNS injury data sets containing diverse
information from multiple preclinical treatment trials with
histopathological, functional and health outcomes. TDA allows
for both rapid analysis and rapid visualization of all measures
collected in a particular study to increase efficiency of recovery
testing following injury, and allows drill down into subpopulation
clusters for targeted hypothesis testing regarding treatment
efficacy across the complex variability that exists in SCI. Due to
the high dimensionality of many SCI and TBI data sets, it can be
difficult to interpret which measures are sensitive to improved
recovery in therapeutic trials, and whether particular subgroups
are selectively responsive. As shown in the present paper, the
network generated from TDA can then be harnessed to test the
generality of therapies—that is, whether treatments are effective
within the full syndromic space—as well as specific therapeutic
features such as determining whether particular outcome
measures are more sensitive to therapeutic targeting.

It should be noted that the current work does have limitations.
Perhaps the most translationally significant finding was the
identification of a detrimental relationship between perioperative
hypertension and long-term locomotor recovery following SCI. It
is unclear from mining the animal hospital records what specific
mechanisms may lead to animals having hypertensive episodes
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during SCI operation and recovery. One potential confounder is
that variability in anesthesia may impact blood pressure.
Although it is difficult to completely discount this possibility in
a retrospective study, there is no evidence of systematic variability
in anesthesia reflected in the detailed perioperative animal care
records. In addition, the MASCIS pilot study tested multiple
anesthetics and developed a rigid protocol of pentobarbital
anesthesia, with the contusion injury delivered at a standardized
time point of 1 h, with surgical plane confirmed by areflexia for
the multicentre study data presented here. However, further
experimental studies are needed to assess the impact of
anesthetics as a potential mediator of the perioperative
hypertension–locomotion relationship47. Regarding the
potential for TDA as a precision medicine tool applied to SCI
and TBI research, the current study was performed in inbred
animals with consistent graded injuries living in optimal
conditions that were tightly controlled within a given study
(but highly variable across centres and strain). This intrinsic
multicentre variability is useful for providing a proof-of-concept
validation of TDA for neurotrauma in the face of potential cross-
laboratory variance. However, it remains an open question
whether TDA could overcome high variability seen in human
clinical data for SCI and TBI, though previous studies using TDA
in other diseases demonstrate its value for clinical decision
support44–46.

In conclusion, rapid visualization and analysis of CNS injury
big-data may facilitate rapid, accurate big-data analysis of
preclinical and clinical studies, allowing for quicker validation
of hypotheses tested. By exploring a large preclinical data set with
multiple injury models, outcome measures and study designs,
TDA discovered unique features of TBIþ SCI determined by
injury location, and detrimental influences of perioperative
hypertension on locomotor recovery and bladder function that
were previously unpublished. In this sense, TDA presents a
powerful and novel bioinformatics tool for the field of
neurotrauma research for testing large, heterogeneous data sets.
By mapping all data collected across an entire test subject
population as a multidimensional topology, TDA helps extract
new knowledge about neurotrauma populations and their
associated states of disease and recovery. This may expedite the
translational pipeline for therapeutic discovery in neurological
disease research.

Methods
Proof-of-concept application of TDA to neurotrauma data sets. TDA was used
to rapidly analyse and visualize clustering of individuals based on their similarity
across hundreds of variables simultaneously (Fig. 1). TDA is an adaptation of the
methods of topology, the mathematical discipline which studies robust methods of
measuring and representing shape, to create compact visual representations of
high-dimensional data sets40,48. This is performed automatically within the
software, by deploying an ensemble machine learning algorithm that iterates
through overlapping subject bins of different sizes that resample the metric space
(with replacement), thereby using a combination of the metric location and
similarity of subjects in the network topology. After performing millions of
iterations, the algorithm returns the most stable, consensus vote for the resulting
‘golden network’ (Reeb graph), representing the multidimensional data shape12,40.
The application of this method to our data sets creates clusters of subjects which
appear as nodes (points) and relations among clusters are represented as
interconnections (‘edges’ or lines) between the nodes (Fig. 1d). Once the
topological network is developed, rapid exploration of the full neurotrauma
syndrome and its various manifestations across different measures can be
performed (Supplementary Software 1–4). Although the application of a licensed
version of TDA software was used for the present study through the Ayasdi cloud-
based platform (www.ayasdi.com, v 2.0), open source versions of the program code
are available in either Python48 or R49,50.

TDA applied to combined TBI and cervical SCI in rats. We applied TDA to a
data set containing several controlled models for combined TBI and SCI in 2–3-
month-old female Long Evans rats (n¼ 49, P¼ 94) from a previously published
study15. Data were analysed using the variance-normalized Euclidean metric

(VNE), which finds the mean and s.d., and rescales the value of the coordinate
around its mean by dividing by the s.d. of the set of values taken by the coordinate.
This metric calculates the distance between two points, taking into account that
each column in the data set could have significantly different variance. VNE
distance between two points X and Y is given by:

VNE X; Yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðXi �YiÞ2

Vi

vuut ð1Þ

Where Vi is the variance associated with each column i and is given by:

Vi ¼
1

M

XM

j¼1

Zj;i� �Zi
� �2 ð2Þ

And �Zi is the mean of column i and is given by:

�Zi ¼
1

M

XM

j

Zj;i ð3Þ

VNE was combined with the principal and secondary metric SVD lenses, which are
analogous to PCA. The network was set at a resolution of 30 and a gain of � 4.0
(equalized) from which subjects with shared syndromic features were clustered
together and distributed into a syndromic network topology (Fig. 2). Adjusting the
resolution and gain alters the number of bins and the degree of overlap of these
bins. Once the network is extracted, resolution and gain are used to ‘focus’ the
network similar to focusing a microscope on an image. We begin with a standard
resolution of 30 and gain of 4.0 and then adjust these parameters to ensure that the
majority of subjects are included in a connected node (as opposed to isolated from
the network), and that all nodes are connected as a single network (if possible).
Changing the resolution and gain alters the number of bins and the degree of
overlap of these bins respectively, spreading subjects out across more nodes (high
resolution) or forcing more subjects into each node (high gain). Network
extraction, ‘focusing’ and face validation of the syndromic space is based solely on
primary outcomes of interest (for example, locomotion), while remaining blind to
experimental conditions/predictors. In this sense we begin with the full outcome
pattern and then reverse engineer the largest predictors in a data-driven manner.

Variables that were analysed included all available endpoint data, excluding
predictor data such as categorical injury condition, gender or treatment. For
networks in Figs 1–3, these endpoint data included injury biomechanics of brain
and spinal cord tissue displacement, force and velocity, terminal tissue sparing,
weight change, and 6-week time-course data points for measures of grooming, paw
preference in the cylinder13,51, the Basso Beattie Bresnahan (BBB) hindlimb
locomotor scale13,17, the Martinez scale of forelimb locomotion52 and the Irvine
Beattie’s Bresnahan (IBB) scale for object manipulation53,54. The majority of these
variables are conceptualized and listed in Fig. 2a,c, and in the drop-down menu in
the living figure Supplementary Software 1. Topologies were colour coded for each
injury group,PC1 and PC2 distributions, histopathology and a few key examples of
averages over time of functional outcomes (grooming, paw preference, object
manipulation, forelimb and hindlimb open field). These were exported from the
cloud into an HTML viewer to rapidly visualize and interpret the relationship
of functional recovery to injury group and tissue pathology (Supplementary
Software 1). For visualized distribution of injury models (Fig. 2c), red nodes
indicated a pure population for each particular category, which included uninjured
sham controls (n¼ 9), mild TBI (n¼ 10), unilateral 75 kdyn force-driven
contusions (n¼ 10), mild TBI contralateral to 75 kdyn force-driven contusion
(n¼ 10, SCIþTBI Contra) and mild TBI ipsilateral to 75 kdyn force-driven
contusion (n¼ 10, SCIþTBI Ipsi). Schematic diagrams of each injury model
illustrate the placement of each injury (black ellipses) or sham controls (open
ellipses) to demonstrate the laterality of each injury model that was tested.

Schematic diagrams for measures of functional recovery (Fig. 2a) and
histopathology (Fig. 2b) were created for animal model visualization. Terminal
outcomes were then visualized at the univariate level (Fig. 2a,b), which is the
current standard in the SCI preclinical literature, showing the distribution of
subjects for each injury group (Fig. 2c) for grooming, preference for the uninjured
forepaw during vertical exploration in a Plexiglas cylinder, and forelimb and
hindlimb locomotion in the open field (Fig. 2a). Histological measures of tissue in
the brain and spinal cord, and MN sparing along the rostro-caudal extent of the
injury were also plotted in the same manner (Fig. 2b).

TDA applied to graded unilateral cervical SCI in rats. We applied TDA to
graded unilateral cervical SCI in 2–3-month-old female Long Evans rats (n¼ 132
subjects, P¼ 119 variables, Fig. 3; Supplementary Software 2) from previously
published studies13,51. Data were analysed using the norm correlation metric
equation—equation (4). This metric normalizes the columns to become
comparable. This metric is used when the data columns have ranges and means
that vary significantly. The norm correlation (Corr) distance between two points is
given by the Pearson correlation and is given by Corr (X, Y)¼ 1� r(X0 , Y0), where
X0 , Y0 are the column-wise, mean-centred and variance-normalized versions of X
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This was combined with the principal and secondary metric SVD lenses. These
lenses generate a factorization of the data matrix into linearly uncorrelated
components. The principal SVD lens is the highest variance component and the
secondary SVD is the second highest variance component. These lenses assume
that your data is using the Euclidean metric.

f Xð Þ ¼ min
Z

X
i;j

d Xi;Xj
� �

� L2 Zi;Zj
� �� �2 ð5Þ

The analysis was set at a resolution of 50 and a gain of 5.0� (equalized) from
which subjects with shared syndromic features were clustered together and
distributed into the syndromic network topology (Fig. 3; Supplementary
Software 2, dropdown).

Variables that were analysed included all endpoint data, excluding predictor
information about categorical injury condition, gender or treatment. Endpoint data
used for Figs 3–5 include a standardized measure of tissue compression for injury
biomechanics across different contusion devices, terminal tissue pathology
measured by lesion size and white/grey matter and MN sparing, and 6-week time-
course data points for measures of daily or weekly weight change, CatWalk55,
grooming, paw preference in the cylinder13,51, BBB hindlimb locomotion17,56,
a 4-point measure of forelimb locomotion13 and the IBB scale for object
manipulation53,54. Topologies were colour coded for each injury model, PC1 and
PC2 distributions, histopathology and a few key examples of functional outcomes
(grooming, paw preference, forelimb and hindlimb open field) at 7, 21 and 42 DPL.
These were exported from the cloud into an HTML viewer to monitor recovery of
each outcome over time in relation to injury model and tissue pathology
(Supplementary Software 2, dropdown). Heat maps for the colour schemes of the
flares represent the range of highest values (red) to lowest values (blue) for each
respective outcome being visualized (for example, lesion size; blue¼ 0%,
red¼ 100% lesion, Fig. 3b). For visualized distribution of injury models, red nodes
indicated a pure population for each particular category of graded SCI, which
included uninjured sham controls (n¼ 16), hemisections (n¼ 9), 75 kdyn (n¼ 31)
and 100 kdyn (n¼ 34) unilateral contusions with the force-driven impactor, and
6.25 mm (n¼ 10) and 12.5 mm (n¼ 32) unilateral contusions with the weight-drop
impactor (Fig. 3; Supplementary Software 2, dropdown).

A detailed interpretation of the syndromic space for graded unilateral cervical
SCI has been reported previously13, however, those analyses were performed in
SPSS v. 19, and do not allow for rapid analysis and visualization of the syndromic
SCI space that is presented here.

Data-driven exploration of preclinical drug trial efficacy. Comparison of
continuous variables was performed by two tests: KS test and t-test. The KS test was
used to investigate the non-parametric probabilistic distributions of samples across
each (one-dimensional) variable, while the t-test explores whether the null
hypothesis (mean value of both samples) is supported. Comparison of categorical
variables was performed by Fisher exact test. These methods were used to identify
group differences from the graded cervical SCI data set between selected nodes that
were classified based on a combination of purity for both injury condition (for
example, 12 mm weight-drop) and treatment condition (for example, MP, mino-
cycline, No drug; Fig. 3d, red nodes). Nodes satisfying both these criteria were
designated as groups and analysed for measures that differentiated the groups from
each other. Significant differences between these groups were based on KS scores
with the largest absolute values (0.75–1.0) and KS P values.

Data-driven exploration of MASCIS as a cross-validation test. Data mined
from the VISION-SCI repository14 for previous trials of MP in SCI resulted in
identification of the MASCIS preclinical trial from the OSU testing site. This was
an NIH-sponsored multicentre trial (1994–1997) to validate the contusion model
for SCI using the weight-drop contusion device19, and to test the efficacy of
pharmacological treatments for SCI. Only subjects from year 3 (1996, N¼ 72) had
un-blinded treatment codes in the current version of the database. A norm
correlation metric and L-infinity Centrality lens (resolution 30, Gain 4.0� ,
equalized) was used to generate the network from 2–3-month-old rats receiving
graded thoracic (T9) bilateral contusions (12.5 and 25 mm injuries, in both males
and females, across 6 MP combination treatment conditions) with 49 separate
outcome measures. Only endpoint data were used in the analysis, excluding
predictor information about categorical injury condition, gender or treatment.
Endpoint data used in the analysis included tissue deformation injury
biomechanics and vitals measured during the SCI operation, including body
temperature, heart rate and blood pressure (systolic, diastolic, mean). Vitals, along
with blood gases, were measured using an intra-arterial tail catheter, and averages
and maximum values were taken from 15 min before injury (PreOP), at the time of
injury and 15 min post injury (PostOP). Post injury functional outcomes included
averages for recovery of bladder function, urine content, weight gain and
locomotor recovery on the BBB scale during the 6-week time period prior to
sacrifice and terminal total tissue sparing. The full list of these variables is provided

in Fig. 6b and the drop-down menu of Supplementary Software 4. These data were
analysed using L-infinity centrality, which groups subjects into nodes in the
network using the maximal distance of each subject from all other subjects.

f xð Þ ¼ max
Y

d X;Yð Þ ð6Þ

Only subjects in the vehicle (N¼ 10) and MP (N¼ 12) treated groups had
complete data for BBB locomotion and tissue sparing for hypothesis testing about
treatment effects (Fig. 4).

Testing perioperative hypertension-recovery association. KS tests were used to
compare group differences in the networks generated for the MASCIS OSU trial
year 3 data set (N¼ 72) to identify significant group differences between BBB
functional recovery that were predicted by MAP levels at the time of injury
(Fig. 5a). Rats with an age range of 2–5 months from years 1–2 of the MASCIS trial
(1994–1995, N¼ 154) with the same 49 outcome measures were analysed using the
same TDA parameters as the 1996 data set to validate the hypothesis that elevated
MAP during SCI surgery significantly predicted poorer functional recovery
(Fig. 5b). Confirmation of perioperative MAP levels predicting poorer neurological
recovery was performed in SPSS v. 19 using a GLM repeated measures ANOVA.
The dependent variable was BBB locomotor score, time points of 1–6 weeks post
injury were the repeated measures, and MAP values at either PreOP, PostOP, or at
the time of injury were each used separately as covariates within the GLM and
tested on each data set separately (1996 and 1994–1995). The bivariate correlation
matrix comparing all variables measured over time in the entire MASCIS OSU trial
(N¼ 334) was generated in SPSS v.19, and two versions were overlaid to depict
both Pearson correlation values and valence (Fig. 6a, red–blue heat map for
positive or negative correlations, respectively), and the significance of each corre-
lation (outlined boxes). Comparison of the bivariate correlation matrix to TDA on
the same data set and set of variables measured over 6 weeks post SCI (N¼ 334,
P¼ 150; TDA metric¼ norm correlation, L-infinity centrality lens, resolution 50,
Gain 4.0� , equalized) was plotted together to assess the greater efficacy of TDA to
perform visually guided comparisons of the networked interactions between all test
subjects based on correlations of outcome variables for a more comprehensive,
holistic view and exploration of the SCI syndrome (Fig. 6b, Supplementary
Software 4, dropdown).

Statistical analysis. Statistical analysis testing between groups for the
identified measures were performed in Ayasdi v2.0 for group differences in the
network, and plotted for box plots or histograms in GraphPad Prism 5 and
analysed for significance using two-tailed t-tests and one-way ANOVAs in
SPSS v19 (Figs 3–5).
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