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ABSTRACT OF THESIS 

TOWARDS AN UNDERSTANDING OF THE ROLE OF CATION PACKAGING 
ON DNA PROTECTION FROM OXIDATIVE DAMAGE 

In sperm chromatin, DNA exists in a highly condensed state reaching a 
final volume roughly twenty times that of a somatic nucleus. For the vast majority 
(>90%) of sperm DNA in mammals, somatic-like histones are first replaced by 
transition proteins which in turn are replaced by arginine-rich protamines. This 
near crystalline organization of the DNA in mature sperm is thought crucial for 
both the transport and protection of genetic information since all DNA repair 
mechanisms are shut down. Recent studies show that increased DNA damage is 
linked to dysfunctions in replacing histones with protamines resulting in 
mispackaged DNA. This increased DNA damage correlates not only to infertility but 
also impacts normal embryonic development. This damage is currently poorly 
characterized, but is known to involve oxidative base damage by reactive oxygen 
species (ROS). 

Using a variety of biophysical methods, the effect of DNA condensation by 
polycations on the on free radical access and DNA damage in the packaged state 
was investigated. In Chapter 2, gel electrophoresis was used to quantify the ability of 
free radicals to damage both unpackaged and packaged DNA. DNA condensed by 
polycations shows significantly reduced levels of indirect damage from exposure to 
free radicals. Combining previous work on packaging density, it is also shown that 
differences in the packaged state, even by a few Angstroms, can result in 
significantly different degrees of damage to the DNA. In Chapter 3, we investigate 
the effects of protamine concentration on the ability to condense and protect DNA. 
Insufficient protamination is known to be a potential source of protamine 
dysfunction in mammalian sperm chromatin. Using gel retardation assays and UV-
Vis studies, we examined the ability for DNA to condense with protamine at varying 
nitrogen to phosphate (N:P) charge ratios. Initial results on damage as a function of 
N:P are also discussed. Future work will more quantitatively determine the 
interrelationship between DNA packaging densities and the resulting accessibility 
of DNA to reactive oxygen species (ROS). 

KEYWORDS: Protamine, DNA, oxidative damage, gel electrophoresis 
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CHAPTER 1: INTRODUCTION 

 

 In this study, we are interested in understanding the  effects of DNA packaging by 

polycations on the ability to protect nucleic acids from indirect damage by free radical. In 

this introductory chapter, we will briefly describe the difference between the normal 

somatic packaging of DNA and protamine-packaging of DNA in sperm chromatin. The 

formation of mature sperm during spermatogenesis is also briefly discussed. Lastly, we 

will discuss briefly what is known about reactive oxidative species (ROS) damage of 

DNA and its implications to reproductive function in sperm.  

 

1.1 Chromatin Structure 

 

 Understanding how DNA is packaged in sperm chromatin has important 

consequences for cell biology as well as fertility. To better understand our approach 

towards investigating the protection that DNA packaging offers, we will first discuss the 

DNA packaging differences between a somatic cell and a sperm cell.  

 

1.1.1 Sperm vs Somatic Cells 

 

 One of the most contrasting differences between a typical sperm cell and a 

somatic cell is their size. A sperm cell is much more compact when compared to a 
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somatic cell. Whereas a somatic cell can be full of many different organelles, with the 

exact identity of each organelle varying depending on the cell type, fully developed 

spermatozoa only consists of highly packaged DNA in the head and a tail to give 

motility. A sperm cell nucleus can be as much as forty times smaller than a somatic cell 

nucleus [1]. In order to achieve such high DNA packaging density in sperm chromatin, 

small basic proteins called protamines are used to condense the DNA into nearly 

crystalline arrays. This is compared to the markedly bulkier packaging of DNA in a 

somatic cell as shown in Figure 1.1 [2].  

Figure 1.1 Model for sperm protamine and histone DNA packaging  Reprinted from 
Miller, D., Confrontation, Consolidation, and Recognition: The Oocyte’s Perspective 
on the Incoming Sperm. Cold Spring Harbor Perspectives in Medicine, 2015. 5(8).[3] 
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Complexes of DNA and protein in eukaryotic cells are called chromatin. In the 

somatic cell, DNA is first packaged into nucleosomes, in which the DNA is wrapped 

around an octamer of histones, every two hundred base pairs [4]. These nucleosomes are 

then coiled into a solenoid or “30 nm fiber”. The solenoid loops are associated with the 

nuclear matrix by matrix attachment regions (MAR) [3]. The solenoids are further 

organized to form the large chromatid and ultimately the classic x-shaped structure of the 

metaphase chromosome. Sperm nuclei, however, do not have the volume for this type of 

packaging. Instead of the DNA wrapping around histones, the DNA is condensed by 

arginine-rich protamines. It is thought that protamine is small enough to lie in the major 

or minor grooves of DNA. Here the number of highly positively charged residues on the 

protamine is sufficient to completely neutralize the negative phosphate groups on the 

DNA. The side by side linear packaging of DNA forms a toroid shape, which are better 

able to pack the DNA into the small volume required. The toroids vary in diameter from 

50 to 100 nm and are estimated to contain roughly 50 kbp of DNA per toroid. These 

toroids are further organized inside the sperm head through links by matrix attachment 

regions (MARs) which bind them to the nuclear matrix [5]. While approximately 90% of 

sperm DNA is packaged by protamines, there are still specific regions that retain the 

histone packaging of somatic cells. While not fully understood, it is thought that the 

minor fraction of histone packaged DNA sperm may influence the order that genes are 

repacked or expressed following fertilization. Additionally these protamine and non-

protamine regions in mature sperm may provide insight into the many transcription 

processes occurring in the course of chromatin remodeling during spermatogenesis [6].  
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1.1.2 Histone vs Protamine packaging 

The key difference between a somatic cell and a sperm is the packaging, as 

previously discussed. The proteins that actually condense the DNA are of major interest 

and their differences are the key reason that the packaging volumes are so different. A 

typical histone protein is alkaline and is chiefly found in somatic cells. Core histones are 

conserved proteins. That is to say that there are not many differences in histones of 

different species [7]. Core histones all feature a helix turn helix motif, and long tails. 

These tails are where post-transitional modifications take place, and help signal 

unwinding. Histones alkalinity comes from its number of basic amino acid residues, 

primarily lysine amino acids many of which are found in the tails.  

In contrast, DNA within sperm cell nuclei are packaged by highly basic, arginine-

rich proteins called protamines with the main function of condensing DNA into a near 

crystalline density. While there is evidence that protamines evolved from H1-like 

histones, for most protamines the charge is nearly all from arginine residues with little to 

no lysine residues. [8]  Protamines in eutherian mammals also contain multiple cysteine 

residues capable of forming disulfide bridges that are thought crucial to chromatin 

complex stabilization in the late stages of sperm maturation. Protamines in other animals 

including birds, reptiles and fish lack these cysteines. Comparisons of protamine 

sequence between fish and mammals show that while the arginine-rich regions are highly 

conserved while the remainder of the sequences exhibit considerable variation [8].  
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Another key difference between protamine and histones is their primary structure. As 

mentioned before, histones will commonly have certain defined primary structures in 

common with one another. Protamines, due to the high amount of highly charged basic 

residues, have no such primary structure in solution prior to bonding with DNA.  

1.1.3 DNA Condensation in vitro 

DNA condensation is defined as the collapse of DNA chains into compact, 

orderly particles containing only a few molecules [9]. DNA in vitro will spontaneously 

compress in the presence of counterions with a charge of +3 or higher. Polycation-DNA 

assemblies often form torodial or rod-like particles where DNA helices are set parallel to 

one another in a hexagonal lattice inside the condensate. While there is more to 

condensing DNA than simple electrostatic attractions between cations and DNA, the 

nature of the cation represents a large driving force in DNA condensation. Protamine-

DNA complexes package more similarly to smaller multivalent cations than those of 

histone-DNA complexes [10]. One of the distinguishing characteristics of protamine is 

the presence of several charged basic amino acids, notably arginine. Arginine at 

physiological pH has a positive charge. The high valency of the protamines creates 

attractive forces for the DNA to bind to the protamine and condense. The size of the 

DNA seems to not affect the dimensions after compaction, provided the ratio of DNA to 

compression protein remains similar. There does seem to be a minimum size, if the DNA 

is too short (< 400 bp) it will fail to condense into orderly particles [9]. 



6 

Studies by DeRouchey and others have shown that reconstituted protamine-DNA 

results in hexagonal packaging similar to other polycation-DNA complexes as well as the 

packing found in the toroidal structure of natural sperm chromatin [11-13]. Changes in 

the cation chemistry alter the attractive and repulsive intermolecular forces resulting in 

variations of the packaging density achieved in polycation-DNA complexes.  Upon 

condensation, the resulting compacted structures have well-defined equilibrium surface 

separations of the DNA double helices of typically 7 - 15 Å, depending on the identity of 

the condensing ion. DeRouchey recently showed that the non-charged residues of 

protamine contribute primarily to the repulsive intermolecular forces reducing the 

compaction energies and packaging densities achieved in protamine-DNA compared to 

polyarginine-DNA [12]. It was also shown that protamine-DNA and polyarginine-DNA 

are able to package DNA considerably tighter than polylysine-DNA complexes due 

presumably to hydration differences between arginines and lysines.   

1.2 Formation of spermatozoa 

Spermatogenesis, the formation of sperm, takes place in the testis. The entire 

production cycle can last anywhere from 74 to 120 days and is depicted in Figure 1.2 [14, 

15]. During this time the DNA inside is particularly vulnerable. Due to the close 

packaging of DNA in the sperm, there is not enough space in the major groove of the 

DNA helix for repair proteins to bind and thus normal DNA repair mechanisms are shut 

down. In this state, any damage inflicted on the DNA will accumulate until it reaches the 
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egg. If the sperm fails to reach the egg in this amount of time, the sperm cell is broken 

down and absorbed by the male body.  

The process of spermatogenesis, depicted in Figure 1.2, begins with a standard 

mitosis of a progenitor spermatogonium. The end result of this mitotic division is referred 

to as a primary spermatocyte. Meiosis separates the chromosomes in the primary 

spermatocyte to form a secondary spermatocyte. A second round of meiosis gives way to 

spermatids, haploid precursors to functional sperm. These spermatids are transformed 

into true sperm by way of spermiogenesis. As a result of this process the amount of 

cytoplasm is reduced and the end result is spermatozoa, formed mature sperm. 

1.2.1 Function of protamine in spermatogenesis 

While protamines were discovered a long time ago, their function in sperm is still 

not yet fully understood. Two of the most commonly proposed functions of protamines 

are to facilitate the formation of a compact and hydrodynamic nucleus to enable efficient 

transfer of the spermatozoa and to protect paternal genetic information from potential 

damages by making it inaccessible to nucleases or mutagens during the transit process 

before fertilization. In addition, potential additional functions proposed include (i) 

competition and removal of transcription factors and other proteins to generate a blank 

paternal genetic message (ii) imprinting of the paternal genome to confer an epigenetic 
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mark, (iii) act as a checkpoint molecule during spermiogenesis, (iv) have some role in the 

fertilized ova [16]. For much of the work in this thesis, we will focus on the function of 

protamines to protect DNA from mutagens; namely free radical species. 

Figure 1.2 Spermatogenesis. The cell moves from spermatogonium to 
primary spermatocytes to secondary spermatocytes. From this point the cells 
transform to spermatid where they undergo spermiogenesis to form functional 
spermatozoa [17].  
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1.2.2 Male Infertility 

A recent finding has that up to 15 percent of couples are infertile. This definition 

of infertility means that they have not been able to conceive a child after attempting 

regularly for a year or longer. In half of these couples, male infertility is believed to be 

the cause [18]. There can be a large number of factors that influence male infertility. 

These variables can be low sperm count, low motility, morphology, environmental 

factors, illnesses, or lifestyle choices. Simply put, male fertility relies on the production 

of enough healthy sperm having the functionality to reach and penetrate the egg. By 

better understanding the underlying causes of infertility, further research endeavors can 

be made to treat this underlying problems.  

1.2.3 Common Causes 

One of the most common problems in male fertility is having a low sperm count. 

Should the sperm count be low in the semen, it decreases the odds that one of the sperm 

will fertilize the egg. A low sperm count indicates a lower cell count per mL of seminal 

fluid. Sperm count can be affected by wide number of issues including overheating, 

radiation/x-rays, heavy metal exposure, illness, or injury can all negatively affect the 

ability to produce and maintain a high sperm count. All of the listed reasons can also 

influence the motility of sperm as well. Should enough sperm lose the ability to travel to 
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the egg on their own the number of possible interactions between the sperm and the egg 

will drop to an infertile level. Aberrant sperm are also a common cause. These malformed 

cells can have significant defects in their structure that compromise the sperms ability to 

travel unimpeded through the tubules. Any change to the sperm structure could dampen 

its effectiveness, for example an extra head could lead a rejection of the sperm by the 

egg. Tails can also become “bent” leading to the inability to travel in a straight line and 

not reach the egg.  

Many environmental factors can influence the sperm quality as well. Overheating 

is one of the more common elements that are detrimental to male fertility. Sperm have a 

slightly lower heat tolerance than the rest of the body, so are more affected by such 

temperature increases. Some of the more easily resolved problems are wearing tight 

undergarments, working on a laptop computer for long periods, or sitting for extended 

durations. All of these can possibly increase the temperature in the scrotum and should be 

avoided. Other lifestyle choices that can influence male fertility could be alcohol use and 

tobacco smoking. Men that smoke tobacco have been proven to have abnormal protamine 

levels compared to those that do smoke [19].  
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1.2.4 ROS and Oxidative stress 

Normal male fertility parameters including sperm count, motility and morphology 

are typically examined when looking into infertility causes. In addition, DNA 

fragmentation is gaining more attention as a significant cause of fertility issues in 

unexplained infertility [20, 21].  Sperm DNA damage levels have strong correlations with 

almost all fertility check points, however most conventional semen analysis does not 

assess for sperm damage due to difficulties to perform such analysis in a clinic setting. 

Ideally DNA fragmentation should be reduced as much as possible and thought to 

correlate to proper packaging of the sperm chromatin during spermatogenesis. The 

intensity of DNA fragmentation has a negative correlation with successful pregnancy in 

both natural and assisted conceptions. Furthermore, increased levels of damage are 

correlated with higher levels of spontaneous abortion as well as higher levels of genetic 

disease in the offspring [22-24]. The biggest factors in the level of DNA fragmentation in 

spermatozoa are reactive oxygen species (ROS) and oxidative stress. Typically assisted 

reproductive technologies (ARTs), like in-vitro fertilization, can help bypass infertility 

factors. With oxidative damage, the harm caused to the sperm may lead to rejection by 

the egg, resulting in a failed conception. It has been estimated over 48.5 million couples 

worldwide have used ARTs accounting for approximately 2-4 percent of births in 

developed countries like the US. ART outcomes depends heavily on the quality of the 

input materials (oocytes and sperm) used thus creating a growing need for better methods 

of sperm selection to select the most viable specimens with minimal damage.  
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ROS is the collective term that refers to the chemically reactive molecules 

containing oxygen, including the highly oxidative radicals such as hydroxyl radicals 

(OH·), nonradical species such as the superoxide anion (O2
-) or hydrogen peroxide 

(H2O2). This term can also refer to reactive nitrogen species (RNS), and both species are 

typical products of metabolism [25]. While low concentrations are required for many 

cellular processes, the levels are controlled by antioxidants. Some of these beneficial 

effects involve physiological roles, such as, defense against infectious agents, functions 

in cellular signaling pathways, and inducing a mitogenic response. In fact many ROS-

mediated actions protect against ROS induced oxidative stress, maintaining a redox 

balance. In spermatozoa ROS are a required for a number of such purposes. For this 

reason they produce ROS themselves.  

The principal type of ROS produced in spermatozoa is O2
- which spontaneously 

produces H2O2 [26]. These ROS are typically not harmful to the spermatozoa due to the 

short half-lives and the antioxidant mechanisms present in order to maintain the key 

balance required for the ROS-related functions. These functions play a key role in 

capacitation, the series of events that occurs post ejaculation in the female genital tract to 

allow spermatozoa to fertilize the egg [27]. A fine balance of ROS and antioxidants are 

required for capacitation and ultimately fertilization. For example low levels of H2O2 are 

necessary for capacitation, but higher levels will reduce hyperactivation. This 

hyperactivation is the change in motility once in the female genital tract that allows 

interaction with the oocyte [28].  
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The proper balance of ROS and antioxidants are also required for eutherian 

mammalian chromatin compaction in maturing sperm. During the final stage of 

spermatogenesis histones are replaced by transitional proteins and then protamines, 

which will compact chromatin into toroid structures. Further compaction will take place 

when disulfide bonds are formed by the oxidation of thiol groups [29]. If packaging is 

abnormal then atypical morphology and infertility may occur.  

Oxidative stress occurs when ROS levels become too high, or the antioxidant 

levels become too low. Highly oxidative ROS cause damage to cellular components, 

particularly to the DNA. Oxidative stress is the major source of damage to the DNA in 

spermatozoa. 8-Hydroxy-2-deoxyguanosine (8-OHdG), is an oxidized guanine base 

formed when DNA is damaged by the OH· radical, and is one of the major biomarkers in 

the detection of oxidative damage in DNA. Increased 8-OHdG concentration correlates 

with DNA fragmentation and strand breaks [30].  

DNA repair is limited in spermatozoa, due to the high compaction of DNA in the 

nucleus. While this tight packaging may help protect DNA from further harm, it prevent 

DNA repair mechanisms from activating [31]. Therefore spermatozoa exposed to 

oxidative damage in the epididymis and during transport in the seminal fluid will 

accumulate damage with no opportunity to repair until it reaches the oocyte. DNA 

adducts caused by oxidative stress in sperm are thought to be repairable by the egg is the 
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damage is not extensive. Single and double stranded breaks to DNA not repaired lead to 

significant impacts of fertilization and pregnancy outcomes [32].  

1. 3 Research motivation and introduction to specific projects

The work in this thesis is designed to principally address the potential of 

protamines, and other polycations, to provide protection of DNA in the packaged state 

from free radical damage. Our general hypothesis is that greater separation between DNA 

helices allows increased access to radical species resulting in more damaged nucleic acid 

bases. In Chapter 2, we will examine quantitatively if packaging DNA does provide 

protection from free radical damage. Our results show that not only is packaged DNA 

protected but that small differences in the packaging state can vary the capacity for free 

radical damage. In Chapter 3, we will focus on one proposed source of protamine 

dysfunction; the insufficient protamination in the sperm chromatin leading to defective 

sperm chromatin remodeling. Recent studies has shown that high rates of sperm DNA 

damage is not only related to infertility in men but also linked to higher rates of 

miscarriage as well as abnormal fetal development and higher rates of genetic disease in 

the offspring. Using reconstituted samples, we will examine underprotamination to 

provide quantitative insight into why protamine deficient nuclei are damaged.  
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CHAPTER 2: DNA DAMAGE IN PACKAGED AND UNPACKAGED DNA 

2.1 Introduction 

In this chapter, our focus is on determining quantitatively if packaging by 

polycations is able to protect DNA from damage by free radical species. As mentioned 

before, a major source of free radicals that could interact with the sperm cells are 

generated by the sperm cells themselves, as ·OH, often formed by a Haber-Weiss 

reaction or Fenton reaction. For our studies, we used three different systems to generate 

free radicals: AAPH [2,2’-Azobis(2-Amidinopropane) dihydrochloride], Copper(II) 

phenanthroline [Cu(OP)2], and fenton reagents. The latter system is known to give ROS 

damage to DNA. The methods used to generate free radicals in these systems are 

described in the experimental section. Below, we first give some background into the 

mechanism for these different free radical sources. 

The primary ROS generated in human spermatozoa is the O2•–. This one-electron 

reduction product of oxygen secondarily reacts with itself in a dismutation reaction, 

which is greatly accelerated by superoxide dismutase (SOD), to generate H2O2. In 

addition to H2O2 and O2•–, an array of secondary cytotoxic radicals and oxidants are 

generated by human spermatozoa. In the presence of transition metals, such as iron, 

H2O2 and O2•– can interact in a Haber-Weiss reaction to generate the extremely  

pernicious hydroxyl radical (OH•)  as in Figure 4.5 [16]. 
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In addition, the hydroxyl radical can be produced by the Fenton reaction which requires a 

reducing agent such as ascorbate or ferrous ions 

2.1.1    AAPH [2,2’-Azobis(2-Amidinopropane) Dihydrochloride] 

AAPH [2,2’-Azobis(2-Amidinopropane) Dihydrochloride] is a free radical-

generating azo compound [33]. One of the main advantages of using AAPH is its free 

radical generation can be easily controlled and measured. Although free radical 

generation can be slower compared to the other reagents used in this work, with heating 

AAPH can come to a steady state free radical concentration with heating. This ability of 

AAPH to come to steady state makes it an ideal model system and more reliable in 

producing the same amounts of damage between samples. Another advantage for this 

particular mode of action is that it can be frozen in a -20°C freezer after damaging, since 

the damaging reaction only takes place at 60°C. The combination of the slow reaction 

and high temperature allows for samples to be frozen, if desired, with no noticeable 

difference in the damage states when compared to an unfrozen sample.  
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Figure 2.1 Degradation of AAPH mechanism. 

Figure 2.1 shows the degradation mechanism of AAPH. After heat is applied the 
nitrogen molecule leaves and two R· radicals are formed. Due to their instability, these 
two radicals rapidly combine with oxygen to form the ROO· radical. This can ∆ further 
degrade into RO· and O2

·- which are the primary radicals that damage the DNA [34, 35]. 
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Figure 2.2 AAPH damage products. 

Figure 2.2 depicts possible damage products formed from the AAPH. As one can 

see from the figure, there is no evidence of 8-oxo-dG damage from this system [36]. 

While this system does in fact damage DNA, as evident in our studies, the resulting 

damage is not an ideal model system for ROS damage since AAPH does not produce the 

common biomarker of oxidative stress observed in vivo. While instructive for basic 

studies, other damaging agents were also explored (copper phenanthroline and fenton 

reagent) to find systems more characteristic of ROS damage observed in natural sperm.  
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2.1.2 Copper-phenanthroline 

Copper-phenanthroline, Cu(OP)2, is one of many metal complexes that arbitrate 

DNA oxidation. Cu(OP)2 is an example of a complex that damages DNA by radical 

processes. Due to its structure, as shown in Figure 2.3, Cu(OP)2 is able to intercalate in 

the DNA complex. By intercalating into DNA, this allows the radicals generated by the 

copper to directly damage the DNA. The damage is seen in the way of single strand 

breaks at low concentration, and can fragment the DNA at higher concentration. This 

damage system works better than the other systems in our study at low concentration, and 

requires little time compared to that of AAPH. 

Figure 2.3 Structure of Cu(OP)2 

In the proposed mechanism depicted in Figure 2.4, the reaction starts when 

Cu(OP)2 is mixed with a thiol reducing agent [37]. For our studies, dithiothreitol (DTT) 
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was used as the reducing agent. The reduced copper-phenanthroline is then able to react 

with hydrogen peroxide. The resultant copper-‘oxo’ compounds produce the observed 

DNA damage adducts. 

2  Cu!!(OP)! + 2  RS! → 2  Cu!(OP)! +   RS− SR  

2  Cu!(OP)! + 2O! → 2Cu!!(OP)! + 2O!∙!  

2O!∙! + 2H! → H!O! + O!  

Cu!(OP)! + H!O! → Cu(OP)! − "oxo"  

Cu!(OP)! − "oxo"+ DNA → Cu!!(OP)! + DNA  damage 

Figure 2.4 Mechanism for DNA damage and single strand break by Cu(OP)2. 
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2.1.3 Fenton 

One of the most well known radical generators is the Fenton reaction. The Fenton 

reagent occurs with just Iron(II) and hydrogen peroxide and produces two separate 

oxygen-radical species. 

𝑭𝒆𝟐! +   𝑯𝟐𝑶𝟐 → 𝑭𝒆𝟑! +   𝑯𝑶 ·+𝑶𝑯! 

𝑭𝒆𝟑! +   𝑯𝟐𝑶𝟐   → 𝑭𝒆𝟐! +   𝑯𝑶𝑶 ·   +  𝑯!  

These radical species are able to go on to damage DNA by forming base adducts. 

The damage is similar to that of Cu(OP)2 but less localized on the DNA strands, these 

radicals occur throughout the solutions. Unlike Cu(OP)2 , standard fenton reagents do not 

intercalate within DNA. 

2.2 Methods and materials 

The following methods were used for the studies discussed in this chapter of the 

thesis to investigate oxidative damage in the packaged and unpackaged DNA.  
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2.2.1 Materials 

2,2’Azobis(2-amidinopropane) dihydrochloride (AAPH), Ethidium bromide 

(EtBr), and  Dithiothreitol (DTT) were purchased from Acros organics (Geel, Belgium). 

200 proof Ethanol, puc19 plasmid DNA, EcoR1 restriction enzyme, and 10X NE buffer 

were purchased from New England Biolabs (Ipswich, MA). 10X Phosphate buffer was 

purchased from Fisher Scientific (Waltham, MA). 30% w/w Hydrogen peroxide, Iron(II) 

sulfate heptahydrate [Fe(II)SO4], Protamine chloride from salmon (grade V histone free), 

Sodium azide (NaN3), and Dextran Sulfate (DS) sodium salt were purchased from Sigma-

Aldrich (St. Louis, MO). TAE buffer was purchased from Omega biotek (Norcross, GA). 

3M sodium acetate was purchased from teknova (Hollister, CA). 1M Tris buffer was 

purchased from cellgro (Tewksbury, MA). K6 and R6 were purchased from GeneScript. 

1,10 copper phenanthroline Cu(OP)n2 was received from Dr. Phoebe Glazer. 

2.2.2 AAPH damage treatment 

To treat sample with AAPH [2,2’Azobis(2-amidinopropane) dihydrochloride], the 

following steps were followed. AAPH was dissolved in de-ionized water. The resultant 

AAPH solution was heated to 60°C for 1 hr to help the free radical concentration achieve 

a steady state. While the AAPH solution was heating, DNA, de-ionized water, and 

phosphate buffer were mixed. Phosphate buffer final concentration in the reaction was 
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11.9 mM, pH 7.4. Upon completion of the 1 hr pre-incubation, AAPH was added to the 

DNA buffer solution bringing the total reaction volume up to 15µL. 400 ng of puc 19 

plasmid DNA was used for each sample to provide sufficient DNA for gel 

electrophoresis. The solution of DNA and AAPH was allowed another 1hr to incubate. 

After this time, the damaged DNA samples were frozen in a -20°C freezer. On the 

following day, the samples were thawed and mixed with 2 µL 6X loading buffer. The 17 

µL of solution were then loaded into the appropriate lanes on a 0.8% Agarose gel. Gel 

electrophoresis was conducted with 10 V/cm being applied to the gel. This was allowed 

to run in 600mL of 1x TAE buffer. After 120 minutes, gels were stained for one hour in 

2.5 µg/mL ethidium bromide/1x TAE staining solution on a shaker. Gels were then 

destained in 1x TAE buffer for 30 minutes before imaging.  

2.2.3 AAPH damage treatment with condensing agent 

To treat condensed samples with AAPH, the following steps were followed. 

AAPH was dissolved in de-ionized water. The resultant solution was left to pre-incubate 

for 1 hr at 60°C. While the AAPH solution was left to warm the DNA, de-ionized water, 

condensing agent and phosphate buffer were mixed, and the DNA/condensing agent were 

allowed to condense a minimum of 15 minutes. Phosphate buffer final concentration in 

the reaction was 11.9 mM, pH 7.4. Upon completion of the 1 hr pre-incubation, the 

AAPH was added to the polycation-DNA solution to bring the total reaction volume up to 

15 µL. The DNA used each time was 400 nanograms of puc19 plasmid. The mixed 
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solutions were then allowed to incubate for 1 hr. After this time had passed the samples 

were frozen in a -20°C freezer. On the following day the samples were mixed with 2 µL 

6X loading buffer and 2 µL of 15 µg/µL decondensing agent, dextran sulfate [38]. The 19 

µL of solution were then loaded into the appropriate lanes on a 0.8% Agarose gel. Gel 

electrophoresis was conducted with 10 V/cm being applied to the gel. This was allowed 

to run in 600mL of 1x TAE buffer. After 120 minutes the gel was stained in 2.5 µg/mL 

ethidium bromide/1x TAE for one hour on a shaker. Destain time was ½ hour in 1xTAE. 

Image was then taken under UV light 

2.2.4 Cu(OP)2 damage treatment 

To treat with copper 1,10-phenanthroline Cu(OP)2 the following steps were taken. 

400 nanograms of puc19 plasmid DNA were mixed with phosphate buffer, de-ionized 

water, and Cu(OP)2. Phosphate buffer final concentration in the reaction was 11.9mM, 

pH 7.4. The volume of water and final concentration of Cu(OP)2 were modified to 

achieve the desired free radical concentrations. Along the sides of the reaction vessel, two 

separate volumes of dithiothreitol (DTT)  and hydrogen peroxide (H2O2) were pipetted, 

but not mixed with the DNA solution, so the final concentration of both DTT and H2O2

would be 1mM. The reaction vessels were then centrifuged allowing for simultaneous 

mixing of DTT, H2O2 and the DNA solution in all the tubes. The final volume was 

maintained constant in all samples at 15 µL. Reaction was incubated at room temperature 

for 30 minutes. Immediately following the reaction, 2 µL of 6x loading buffer were 
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mixed in with the sample and the full reaction volume was loaded into a 0.8% Agarose 

gel. Gel electrophoresis was conducted at an applied voltage of  10 V/cm and run for 

approximately 2 hours  in 600 mL of 1x TAE buffer. Gels were then stained in 200 mL 

2.5 µg/mL ethidium bromide/1x TAE staining solution for one hour with shaking then 

destained for 30 mins in an equal volume of 1x TAE destaining solution before imaging. 

2.2.5 Cu(OP)2 damage treatment with condensing agent 

To treat condensed samples with Cu(OP)2 the following steps were taken. 400 

nanograms of puc19 plasmid DNA was mixed with phosphate buffer, de-ionized water, 

condensing agent and Cu(OP)2. The final phosphate buffer concentration in the reaction 

was 11.9mM, pH 7.4. This solution was allowed to remain undisturbed for a minimum of 

15 minutes. The volume of water and the final concentration of Cu(OP)2 was changed to 

achieve the desired concentrations for the experiment. Along the sides of the reaction 

vessel, two separate volumes of DTT and H2O2 were pipetted, but not mixed with the 

DNA solution, so the final concentration of both DTT and H2O2 would be 1mM. The 

reaction vessels were then centrifuged allowing for simultaneous mixing of DTT, H2O2 

and the DNA solution in all the tubes. The final volume was maintained constant in all 

samples at 15 µL. Reaction was incubated at room temperature for 30 minutes. 

Immediately following the reaction, 2 µL of 6x loading buffer and 2 µL of decondensing 

agent (dextran sulfate, DS) were mixed in with the sample and the full reaction volume 

was loaded into a 0.8% Agarose gel. Gel electrophoresis was conducted at an applied 
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voltage of 10 V/cm and run for approximately 2 hours in 600 mL of 1x TAE buffer. Gels 

were then stained in 2.5 µg/mL ethidium bromide/1x TAE staining solution for one hour 

with shaking then destained for 30 mins in an equal volume of 1x TAE destaining 

solution before imaging. 

2.2.6 Fenton damage treatment 

To treat with fenton reagent, the following steps were taken. Iron(II) sulfate, 

phosphate buffer, de-ionized water, and puc19 plasmid DNA were mixed together. Final 

concentration of phosphate was 11.9mM, pH 7.4. The volume of iron and water added 

was varied to achieve the desired concentration. H2O2 was added along the side wall of 

the reaction vessel, so that final concentration would be 1mM. The final reaction volume 

was 15 µL Reaction vessels were subsequently centrifuged allowing the H2O2 solution to 

mix with the DNA solution simultaneously for all reactions. The Fenton reaction was 

incubated for 30 mins at room temperature. Immediately following reaction, 2µL of 6x 

loading buffer was mixed with the sample. The resultant 17µL of solution was loaded on 

to a 0.8% Agarose gel. Gel electrophoresis was conducted at an applied voltage of 10 

V/cm and run for approximately 2 hours in 600 mL of 1x TAE buffer. Gels were then 

stained in 2.5 µg/mL ethidium bromide/1x TAE staining solution for one hour with 

shaking then destained for 30 mins in an equal volume of 1x TAE destaining solution 

before imaging. 
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2.2.7 Fenton damage treatment with condensing agent 

To treat condensed sample with fenton reagent, the following steps were taken. 

Iron(II) sulfate, phosphate buffer, de-ionized water, condensing agent and puc19 plasmid 

DNA were mixed together. The final concentration of phosphate was 11.9mM, pH 7.4. 

The concentration of iron and water were varied to achieve the desired iron 

concentrations. The final reaction volume was 15µL. This solution was allowed to 

condense for a minimum of 15 minutes. Sufficient H2O2 was added along the side wall of 

the reaction vessel to achieve a final H2O2 concentration of 1mM. The final reaction 

volume was 15µL. Reaction vessels were subsequently centrifuged allowing the H2O2 

solution to mix with the DNA solution simultaneously for all reactions. The Fenton 

reaction was incubated for 30 mins at room temperature. Immediately following reaction, 

2µL of 6x loading buffer and 2 µL of decondensing agent, dextran sulfate, were mixed 

with the sample. The resultant 19 µL of solution was loaded on to a 0.8% Agarose gel. 

Gel electrophoresis was conducted at an applied voltage of 10 V/cm and run for 

approximately 2 hours in 600 mL of 1x TAE buffer. Gels were then stained in 2.5 µg/mL 

ethidium bromide/1x TAE staining solution for one hour with shaking then destained for 

30 mins in an equal volume of 1x TAE destaining solution before imaging. 



28 

2.2.8 EcoR1 Digestion 

For determination of linear DNA bands compared to supercoiled and open coiled 

plasmid bands by gel electrophoresis, puc19 plasmid DNA was linearized using EcoR1 

enzyme purchased from New England BioLabs (NEB) following provided protocols. 

Briefly, plasmid DNA, EcoR1, de-ionized water and 10 µL of reaction Buffer were 

mixed together into one solution. The solution was then incubated on a heat block at 

37°C for fifteen minutes. The linearized DNA was purified by ethanol precipitation and 

subsequently stored at -20°C until required. 

2.2.9 Ethanol Precipitation 

To separate our digested DNA plasmid from enzyme, an ethanol precipitation was 

performed. 0.3M sodium acetate and three times the DNA sample volume of cold (-20°C) 

~99% ethanol were mixed and placed overnight at -20°C. The following day the solution 

was spun at 15000 x g for 20 minutes. Supernatant was subsequently removed and 

disposed. 400 µL of 70% cold (-20°C) Ethanol was then added to the pellet and mixed. 

Samples were then centrifuged for 10 mins at 15000 x g and the supernatant was 

removed and the samples dried in a centrivap. The dried DNA pellet was resuspended in 

a TE buffer with 400 µM NaN3 and stored at -20°C.  
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2.3 Characterization Techniques 

The primary investigative technique employed to examine DNA damage in the 

packaged and unpackaged state was gel electrophoresis. The following section will cover 

the details of how this technique was employed. 

2.3.1 Gel Electrophoresis 

All gel images were taken after a staining/destaining procedure. Gels were cast in 

a 9 X 11 cm plastic plate with a comb dividing the gel into ten lanes. Each gel was made 

in a 0.8% agarose solution, buffered with 1x TAE. Running buffer solution was 

composed of 1X TAE solution. Current was applied to the gel with a FB300 power 

supply, purchased from Fischer Scientific. Gels were run for approximately two hours, 

and then stained for one hour in 2.5 µg/mL EtBr for visualization. After gels were 

destained in 1X TAE buffer for 30 minutes gel images were recorded in an image box 

under Ultra-violet light with an ethidium bromide filter.  
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2.3.2 Gel Electrophoresis theory 

Agarose gel electrophoresis is one of the most common ways of separating DNA 

base fragments. In this technique DNA is pulled through an agarose gel by an electric 

field and the resultant fragments are separated by their size and shape [39]. Agarose is 

composed of repeated agarobiose (L- and D-galactose) subunits [40]. In the gelation 

process these agarose polymers will combine non-covalently after subsequent heating and 

cooling. These polymers will form pores through which the DNA will move. The 

concentration of the agarose will determine the overall size of the pores, with a higher 

concentration correlating to a smaller pore [41]. After the agarose gel has set, running 

buffer is poured over the gel to allow conduction of uniform current. Loading buffer if 

mixed with a dye to enable the sample of interest to sink into the gel as well as track how 

far the DNA has traveled.  

Once the gel is prepared, DNA can be successfully separated due to the negatively 

charged phosphate backbone on DNA. When an electric field is applied in the gel, DNA 

will move towards the positively charged anode. The rate at which this takes places is 

contingent on the size of DNA, the agarose concentration, DNA conformation, and 

voltage applied [39]. After the gel has finished running, the gel is stained with EtBr to 

allow visualization of the DNA. When EtBr is exposed to ultraviolet light, electrons in 

the aromatic ring of the ethidium molecule are excited to a higher energy state. After they 

relax to their ground state excess energy is given off in the form of light as they return to 
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their ground state [39]. EtBr is also able to intercalate into the DNA molecule in a 

predictable manner. So by this the intensity of the DNA band can predict its 

concentration [42].  

2.4 Results and Discussion 

Fig 2.5 shows DNA bands observed by gel electrophoresis in the unpackaged 

state, packaged state as well as subsequent release from the packaging state. In the 

leftmost lane in figure 2.5, puc19 plasmid DNA was run as received. Two bands are 

observed, the lower dominant band corresponds to supercoiled DNA. This supercoiled 

(SC) DNA is the result of highly twisted DNA strands [43-45]. In most organisms, such 

as the plasmid used in this study, the DNA is negatively supercoiled [46]. Due to the 

compaction of the DNA in the supercoiled state, the supercoiled DNA is able to move 

through the gel matrix more quickly. Open coil (OC) DNA is the result of DNA being 

nicked, or damage in some way. Once nicked, the tension on the DNA is relieved and the 

DNA reverts back to its relaxed state. Since this is a DNA plasmid, the relaxed state is an 

open coil that moves much slower through the gel matrix. A faint band is observed from 

the untreated puc19 showing a small fraction of open coiled plasmid is present in the 

commercial product as received. Linear DNA would result from a double strand break of 

a plasmid. Linear DNA is able to move faster through the gel than an open coil, but 

slower than the highly packaged supercoiled DNA. Using EcoRI, we have determined 

approximately where the linear band runs and this is indicated in Figure 2.5. 
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The second lane in figure 2.5 shows the result of DNA condensation by 

protamine. No bands are observed in the region of interest. The DNA-protamine complex 

is not able to move through the gel due to the large complex size as well as the charge 

neutralization of the DNA phosphates in the condensed state. With no negative charge, 

the DNA would not be drawn to the positive charge at the opposite end of the gel. 

Typically with fully condensed polycation-DNA complexes, either no fluorescence is 

observed or some sample is observed in the sample wells that were unable to diffuse into 

the gel matrix. Here the protamine-DNA complex was made at a nitrogen to phosphate 

(N:P) charge ratio of 2 resulting in fully condensed DNA. 

Next we wanted to establish that condensed DNA could subsequently be released 

from the complex using a polyanionic competitor, here dextran sulfate (DS), and that the 

packaging/unpackaging process does not damage the DNA. Dextran sulfate was chosen 

as a competing agent for the protamine due to its high number of negative charges in 

which to bind the positively charged residues, encouraging protamine release from DNA. 

Dextran sulfate was also readily available and inexpensive in comparison to heparin, 

another commonly agent used to bind protamine. The right side of Figure 2.5 shows 

protamine-DNA complexes (N:P 2.0) competed against increasing amounts of DS. 10µg 

of dextran sulfate (DS) is sufficient to release the protamine without affecting the motility 

of the bands. At 2µg DS it appears the DNA band is shifted up, indicating that this is not 

enough to fully release the DNA. These studies not only confirmed DNA release by 

competition with DS but also no nicking is observed with the relative ratios of SC to OC 

being constant. 
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Figure 2.5 Protamine induced condensation of DNA and release. (left) Gel 

electrophoresis of unpackaged and protamine packaged puc19 plasmid DNA. The 

location of supercoiled (SC), open coiled (OC) and linear plasmid is indicated (right) 

Release of DNA from protamine-DNA (N:P 2) complexes with increasing dextran 

sulfate (DS) concentration. 

2.4.1 AAPH damage studies 

The first DNA damage studies performed focused on AAPH (2,2’Azobis (2-

amidinopropane) dihydrochloride) as the free radical source. Initial work focused on 

establishing the concentration of AAPH required to damage DNA. Figure 2.6 shows 

puc19 plasmid DNA damage as a function of increasing AAPH concentration. With 

increasing AAPH concentration, a shift is observed with an increase in the observed open 

coil band at the expense of the supercoiled band.  
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Figure 2.6 DNA damage by AAPH. Lane 1 - 400ng of untreated puc19 
plasmid; Lane 2 DNA heated to 60°C without AAPH for 1 hour; Lane 3 to 8 
– DNA treated with increasing AAPH concentration and incubated for 1 hour at 60°C.

This suggests these concentrations of AAPH are sufficient to nick the supercoiled 

plasmid. At still higher AAPH concentrations linear DNA bands or smearing, resulting 

from highly digested DNA of various molecular weights, are observed. At ~2mM AAPH, 

we see the plasmid is nearly fully digested. 

Next we want to simply ask if we can use gel electrophoresis to observe 

quantitatively the protection afforded DNA by packaging by protamine. Figure 2.7 shows 

the effect of packaged DNA vs unpackaged DNA at varying concentrations of AAPH. As 

expected, DNA packaged by protamine is more protected from AAPH induced radicals, 

when compared to the adjacent damaged DNA. In lane 2, we show untreated puc19 

plasmid DNA is nearly completely in the supercoiled state. Lane 3 shows protamine at  



Figure 2.7 Packaged and unpackaged DNA’s susceptibility to damage induced 
by AAPH. Lane 1 – 400 ng of 1kb ladder; Lane 2 - 400ng of puc19 plasmid DNA; 
Lane 3 - DNA condensed with protamine, N:P 2.0; Lane 4 – DNA condensed 
with protamine N:P 2.0, released with 30µg of dextran sulfate; Lane 5 - DNA 
packaged treated with 20µM AAPH Lane 6 - DNA packaged with protamine N:P 
2.0 treated with 20µM AAPH; Lane 7 - DNA treated with 200µM AAPH; Lane 
8 - DNA packaged with protamine N:P 2.0 treated with 200µM AAPH; Lane 9 - 
DNA treated with 2mM AAPH; Lane 10 – DNA packaged with protamine N:P 2.0 
treated with 2mM AAPH. 

N:P 2 is sufficient to complete complex the DNA. Lane 4 shows that the packaged DNA 

can be fully released with sufficient dextran sulfate competitor. Lanes 5 to 10 show side 

by side comparisons of naked DNA and packaged DNA damage at increasing AAPH 

concentrations. At 20µM AAPH, unpackaged DNA appears to be half open coil form and 

half supercoiled form due to single strand breaks occurring with exposure to the free 

radical. Protamine condensed DNA, in contrast, is still about 85% in the supercoiled 

state. 200µM AAPH is sufficient to completely nick the unpackaged DNA (lane 7) 

resulting in no supercoiled band being observed. Once packaged with protamine the 

plasmid is again afforded a good deal of protection. Protamine packaged DNA (lane 8) at 

35 
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the same concentration still maintains about half the DNA in the supercoiled state. At 

very high AAPH concentration (2 mM), naked DNA (lane 9) is completely digested 

while packaged DNA (lane 10) is able to maintain much of the sample in the open coil or 

linear state as evident by discrete bands being observed by gel electrophoresis.  

Next we wanted to examine if subtle changes in the packaging state has an effect 

on the protection of DNA from AAPH damage. Such subtle changes would presumably 

be more consistent with possible mispackaging occurring in vivo during defective sperm 

chromatin remodeling. Here, protamine-DNA was compared to unpackaged DNA as well 

as DNA packaging by R6 and K6 peptides. These two peptides were selected because the 

DNA spacing after packaging by the peptides was published in an earlier study [47]. The 

interaxial DNA-DNA spacing (Dint) observed for the hexagonally packaged DNA 

condensed by K6-DNA was reported as 32.3 Ǻ, salmon protamine-DNA 29.3 Ǻ, and R6-

DNA 28.6 Ǻ. All were reported with a resolution of ± 0.1 Ǻ. Figure 2.8 is included to 

show that hexalysine and hexaarginine condense DNA similarly to protamine. At N:P 1.0 

most of the DNA is bound to the various condensing agents, but at N:P 2.0 all the DNA is 

bound by the condensing agents. The length of the gel is included to show evidence of 

some complex sticking in the wells (lanes 4, 7, & 9). These faint bands are evidence that 

the DNA/protamine complex is not pulled through the matrix. This is likely a 

combination of the complex being too large to move through the matrix, and lacking a 

negative charge therefore not being attracted to the positive electrode at the opposite end 

of the gel.  
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Figure 2.8 Condensation of DNA by K6, protamine, and R6. Lane 1 – 400ng 
of puc19 plasmid. Lane 2 – DNA condensed by K6 (N:P 0.5). Lane 3 – DNA 
condensed by K6 (N:P 1.0). Lane 4 – DNA condensed by K6 (N:P 2.0). Lane 
5 – DNA condensed by Protamine (N:P 0.5). Lane 6 – DNA condensed by 
Protamine (N:P 1.0). Lane 7 – DNA condensed by Protamine (N:P 2.0). Lane 8 – DNA 
condensed by R6 (N:P 0.5). Lane 9 – DNA condensed by R6 (N:P 1.0). Lane 10 – DNA 
condensed by R6 (N:P 2.0). 
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Figure 2.9 Various packaging states susceptibility to AAPH. Lane 1 – 1kb Ladder; Lane 

2 – 400ng Puc19 plasmid DNA; Lane 3 – EcoR1 linearized DNA; Lane 4 – DNA 

treated with 200µM AAPH; Lane 5 – DNA packaged with K6 (N:P 2) treated with 

200µM AAPH; Lane 6 – DNA packaged with protamine (N:P 2) treated with 200µM 

AAPH; Lane 7 – DNA packaged with R6 (N:P 2) treated with 200µM AAPH 

Figure 2.9 shows all these samples treated with 200µM AAPH and the damage 

that accrued was compared to the DNA in variously packaged states. The distinction 

between linearized DNA and open coil can confidently be stated with the inclusion of the 

EcoR1 linearized DNA in lane 3. This inclusion allows differentiation between the linear 

band and open coil band. All packaged DNA samples were made at the same N:P 2 

charge ratio sufficient for complete DNA condensation for all three peptides. 200µM 

AAPH was sufficient to fully damage the DNA resulting in a near complete loss of the 

super coiled band with the entire DNA being observed in either the open coiled or linear 

bands (lane 4, Fig 2.9). The more openly packaged K6-DNA complex resulted in only 

marginal protection at this AAPH concentration. The similar packaging density systems, 

protamine-DNA and R6-DNA provide more protection than K6 as evidenced by the 

increased supercoiled band.  
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2.4.2 Cu(OP)2 Damage Studies 

So as to not rely on only one free radical system, we also looked at DNA damage 

in the packaged and unpackaged state using other free radical systems. The next system 

used to damage DNA was copper (II) 1,10 phenanthroline, Cu(OP)2. A unique feature of 

Cu(OP)2 is its ability to intercalate into the DNA and actively cause DNA damage 

generally attributed to a copper-oxo species as discussed in section 2.1.2 resulting 

primarily in multiple single-strand breaks of DNA. This unique interaction of copper 

phenanthroline with DNA creates copper-oxo species capable of damaging DNA at 

particularly high concentrations directly in the vicinity of the DNA bases. We 

hypothesize therefore that the degree of protection afforded by packaged DNA to 

Cu(OP)2 may be diminished.  

Figure 2.10 shows damage on unpackaged puc19 plasmid DNA as a function of 

Cu(OP)2 concentration. Lane 2 shows untreated puc19 plasmid with nearly all the DNA 

in the supercoiled state. With as low as 10 µM Cu(OP)2, nearly all the supercoiled DNA 

is nicked resulting in a shift in the gel electrophoresis to the open coiled state. With 

increasing Cu(OP)2 concentration, we see more damage accruing resulting in all the DNA 

being in the open coiled state (lane 4) and even possibly double strand breaks of the DNA 

by 50 µM. At this concentration, initial signs of fragmentation appear with the presence 

of smearing in the gel. For comparison, lane 8 contains 400ng of EcoR1 linearized DNA. 

By 75 µM Cu(OP)2 the plasmid is completely fragmented resulting in no observed bands 

by gel electrophoresis. We have observed some variance from gel to gel on the damage 
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observed for a given Cu(OP)2 concentration; however the general trend of more damage 

with increasing Cu(OP)2 concentration holds. Interestingly, at 50µM Cu(OP)2, we often 

observed a linearization of the plasmid DNA comparable to that achieved with EcoRI 

enzyme. 

Figure 2.10 Cu(OP)2 damage assay. Lane 1 – 400ng of 1kb ladder; Lane 2 – 400ng of 
puc19 plasmid DNA; Lane 3 – DNA treated with 10µM Cu(OP)2; Lane 4 – DNA 
treated with 25µM Cu(OP)2; Lane 5 – DNA treated with 50µM Cu(OP)2; Lane 6 – DNA 
treated with 75µM Cu(OP)2;Lane 7 – DNA treated with 100µM Cu(OP)2; Lane 8 – 
EcoR1 linearized DNA. 

Next we examined the ability of protamine to protect DNA from Cu(OP)2

initiated damage at different concentrations. As shown in figure 2.11, similar to its ability 

to protect DNA from AAPH, protamine-DNA is sufficiently packaged to protect it from 

Cu(OP)2. At 10µM Cu(OP)2 unpackaged DNA is approximately 50% supercoiled and 
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50% open coil DNA. Once packaged at N:P 2.0 with protamine, the majority of the DNA 

remains in the supercoiled phase. At 50µM Cu(OP)2, unpackaged DNA appears to be  

Figure 2.11 Packaged and unpackaged DNA’s susceptibility to damage induced 
by Cu(OP)2. Lane 1 – 400ng of 1kb ladder; Lane 2 - 400ng of puc19 plasmid DNA; Lane 
3 DNA condensed with protamine (N:P 2.0); Lane 4 - DNA treated with 10µM 
Cu(OP)2; Lane 5 - DNA packaged with protamine treated with 10µM Cu(OP)2; Lane 
6 - DNA treated with 50µM Cu(OP)2; Lane 7 - DNA packaged with protamine treated 
with 50µM Cu(OP)2; Lane 8 - DNA treated with 75µM Cu(OP)2; Lane 9 – DNA 
packaged with protamine treated with75µM Cu(OP)2; Lane 10 - EcoR1 linearized DNA. 

linearized with some fragmentation. Protamine condensed DNA, however shows a slight 

supercoiled band with the remainder of the DNA in the open coiled state. At high 

Cu(OP)2 concentration, the packaged state is only slight more protected than the 

unpackaged state.  

Next we examined the effects of different packaging densities on the ability of the 

polycation-DNA complex to protect DNA from Cu(OP)2. As discussed earlier, arginines 
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can condense DNA to much tighter packaging densities compared to comparable lysine 

condensing agents. Hexapeptides of arginine and lysine have a difference of ~ 3.7 Ǻ in 

the resulting DNA-DNA spacings observed in the condensed state. Protamine-DNA 

packaging is slightly less than R6-DNA. Figure 2.12 shows the results of various 

packaging states susceptibility to Cu(OP)2. At 50µM Cu(OP)2, the DNA is linearized 

with a sizeable portion fragmented as evident by the observed smearing in the gel. EcoRI  

Figure 2.12 Various packaging states susceptibility to Cu(OP)2. Lane 1 – 400ng of 
1kb Ladder; Lane 2 – 400ng Puc19 plasmid DNA; Lane 3 – EcoR1 linearized DNA; 
Lane 4 – DNA treated with 50µM Cu(OP)2; Lane 5 – DNA packaged with K6 (N:P 
2.0) treated with 50µM Cu(OP)2; Lane 6 – DNA packaged with protamine (N:P 2.0) 
treated with 50µM Cu(OP)2; Lane 7 – DNA packaged with R6 (N:P 2.0) treated with 
50µM Cu(OP)2. 

linearized DNA is shown in lane 3 for comparison with the unpackaged DNA treated 

with Cu(OP)2 (lane 4). When packaged with K6 at N:P 2, the DNA does not seem to be 

significantly protected beyond unpackaged DNA. Changing the DNA packaging by just a 

few angstroms however improves the protection from 50µM Cu(OP)2 as evidenced by 
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salmon protamine and R6 packaged DNA both condensed at N:P 2. Lane 6 and lane 7 

show the elimination of the DNA fragmentation and bands consistent with DNA in the 

open coiled state. Interestingly while R6 is slightly more tightly packaged compared to 

protamine there seems to be some evidence for double strand breaks in this sample. In 

theory the smaller the space between the DNA, the less access damaging agents will have 

to the DNA.  This may be the result of the variation between samples in the free radical 

concentration or indicative that other factors may be at play for the protective capacity of 

protamine over pure arginine peptides. More advanced methods may need to be 

performed in order to more accurately define what role the spacing of DNA has to play.  

2.4.3 Fenton damage studies 

The last free radical system studied was Fenton reagent; a solution of hydrogen 

peroxide with ferrous (Fe2+) iron as a catalyst. Fenton reagent is often used for biological 

studies and believed to create damage comparable to ROS in vivo. While AAPH and 

Cu(OP)2 don’t damage by directly producing biological like ROS, the fenton reaction 

does. In this way, fenton reagent could give us a better approximation to damage 

occurring in vivo. Figure 2.13 shows unpackaged puc19 plasmid DNA damage as a 

function of increasing fenton concentration. Consistent with all the previous gels, all 

samples consist of 400 ng plasmid DNA per well. DNA is observed to damage in a 

systematic way with increasing iron concentration and fixed H2O2 concentration. At the 

lowest concentration shown, 0.5mM Fe(II), about half of the DNA present was damaged 
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to an open coil state and the remaining half was undamaged in the supercoiled state. By 

1mM Fe(II), the DNA is primarily open coil with small amount damaged enough to the 

linear band. Increasing to 2mM Fe(II) concentration, shows a systematic rise in the linear  

Figure 2.13 DNA damage by induced Fenton reaction. Lane 1 – 400ng of 1kb 
ladder; Lane 2 – 400ng of puc19 plasmid DNA; Lane 3 – EcoR1 linearized DNA; 
Lane 4 – DNA treated with 0.5mM fenton reagent; Lane 5 – DNA treated with 
0.6mM fenton reagent; Lane 6 – DNA treated with 1mM fenton reagent; Lane 7 – 
DNA treated with 1.25mM fenton reagent; Lane 8 – DNA treated with 1.5 mM 
fenton reagent; Lane 9 – DNA treated with 2mM fenton reagent. 

DNA band at the expense of the open coil band as well as increased smearing 

representing DNA fragmentation. For reference, EcoRI linearized DNA is shown in lane 

3. 

Next we examined the ability of protamine-DNA (N:P 2) to protect DNA from 

damage by Fenton reagent. Figure 2.14 shows that significant protection from oxidative 
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damage occurs for protamine-DNA compared to unpackaged DNA consistent with the 

previous damage studies using AAPH and Cu(OP)2. Lane 1-4 show various controls of a 

1kbp ladder, untreated puc19 plasmid DNA primarily in the supercoiled state, fully 

packaged protamine-DNA (N:P 2), and EcoRI linearized DNA respectively; similarly to 

the gel studies discussed previously in this chapter. Similar to the protection observed 

with AAPH and Cu(OP)2, lanes 5-10 show that significant protection of the plasmid 

DNA from oxidative damage by Fenton reagent is also observed by condensing the 

plasmid with salmon protamine. At 0.5mM Fe(II), unpackaged DNA is sufficiently 

nicked to result in approximately 80% of the sample being in the open coiled state. 

Packaged DNA at the same iron concentration maintains ~80% in the supercoiled state. 

At 1mM Fe(II) unprotected DNA is primarily open coil with a small portion forming a  
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Figure 2.14 Packaged and unpackaged DNA’s susceptibility to damage induced 
by fenton reactions. Lane 1 – 400ng of 1kb ladder; Lane 2 - 400ng of puc19 plasmid 
DNA; Lane 3 DNA condensed with protamine (N:P 2.0); Lane 4 - EcoR1 linearized 
DNA; Lane 5 - DNA treated with 0.5mM fenton reagent; Lane 6 – DNA 
packaged with protamine treated with 0.5mM fenton reagent; Lane 7 - DNA 
treated with 1.0mM fenton reagent; Lane 8 - DNA packaged with protamine 
treated with 1.0mM fenton reagent; Lane 9 – DNA treated with 2mM fenton 
reagent; Lane 10 – DNA packaged with protamine treated with 2mM fenton reagent. 

linearized band. Protamine-DNA however shows no double strand breaks and still only a 

minor fraction nicked resulting in open coiled plasmid. Finally at 2mM Fe(II), 

unpackaged DNA appears to be linearized with a small amount remaining in the open 

coil band. Packaged DNA, in contrast, is primarily in the open coiled state with a small 

amount of supercoiled plasmid remaining. Similar to Cu(OP)2, some variation gel to gel 

for the exact amount of observed damage was seen with Fenton reagent. However, 
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undoubtedly packaged DNA offers more protection from oxidative damage than 

uncondensed DNA for all three free radical systems studied 

Lastly, we examined Fenton reagents for K6, protamine, and R6 packaged DNA. 

These results are shown in figure 2.15. The degree of protection observed in figure 2.15 

against 1 mM Fe(II) was less than in previous gels; which we attribute to the variation in 

free radical concentrations from gel to gel. In particular in this gel, the protection by 

protamine-DNA is less than observed in figure 2.14 above. However, when comparing 

protamine-DNA and R6-DNA to the more loosely packaged K6-DNA system, we again 

see improved protection arising from only a few angstroms of difference in the DNA-

DNA spacings. Observing such differences in a low resolution method such as gel 

electrophoresis is still surprising and strongly suggests small changes in the packaging 

state may have dramatic effects on accrued mutagent damage in vivo in samples such as 

sperm chromatin. More experiments are needed to better resolve these sample to sample 

variations. In addition, we are exploring new means to better quantify ROS-like DNA 

damage then looking at supercoiled, open coiled and linear bands by gel electrophoresis. 
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Figure 2.15 Various packaging states susceptibility to fenton reaction. Lane 1 – 
400ng of 1kb Ladder; Lane 2 – 400ng Puc19 plasmid DNA; Lane 3 – EcoR1 
linearized DNA; Lane 4 – DNA treated with 1.0mM fenton reagent; Lane 5 – DNA 
packaged with K6 (N:P 2.0) treated with 1.0mM fenton reagent Lane 6 – DNA 
packaged with protamine (N:P 2.0) treated with 1.0mM fenton reagent; Lane 7 – DNA 
packaged with R6 (N:P 2.0) treated with 1.0mM fenton reagent. 
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CHAPTER 3: EFFECTS OF UNDERPROTAMINATION ON DNA 

CONDENSATION AND DAMAGE 

3.1 Introduction 

As discussed in Chapter 1, to achieve the unique condensation state of sperm 

DNA must go through spermatogenesis; a dramatic cascade of events that include 

chromosome rearrangement through the replacement of histones with protamines [31]. In 

humans, sperm quality differs considerably between males as well as within a single 

ejaculate. Differences include not only sperm number, motility and morphology but also 

the manner in which chromatin is packaged [48]. We propose that one source of 

protamine dysfunction is the insufficient protamination in the sperm chromatin leading to 

defective sperm chromatin remodeling. Such mispackaging would then render the DNA 

more accessible to chemical agents that contribute significantly to DNA damage. Some 

experiments have established correlations between abnormal chromatin packaging and 

increased levels of DNA damage and higher percentage of underprotaminated sperm in 

some subjects Quantitative studies are hampered by the inherent difficulties of accurate 

protamine and DNA determinations in mammalian sperm cells. We propose that 

insufficient protamination in the sperm chromatin leads to defective sperm chromatin 

remodeling rendering the DNA more accessible to chemical agents that contribute 

significantly to DNA damage [49, 50]. To begin to test this hypothesis, this chapter will 

describe early experiments designed to examine DNA condensation by protamines at 

various nitrogen to phosphate (N:P) charge ratios. We show that even at low N:P ratios, 
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DNA can be at least partially condensed by protamine. Lastly, we show the effect of 

underprotamination on the protective capabilities of protamine to shield DNA from free 

radical damage. These experiments begin to provide insight into why protamine deficient 

nuclei are damaged.  

3.1.1 N:P charge ratio 

One of the key concepts for this Chapter is the nitrogen to phosphate (N:P) charge 

ratio. This concept is useful for concepts such as underprotamination and represents the 

balance of the negative charged phosphate residues of the DNA to the positively charged 

nitrogen resides on the various peptides used in this study. N:P ratios are also used in 

other fields, such as non-viral gene therapy, to describe the ratio of polycation to DNA 

phosphates in their gene vector formulations. N:P ratios below 1 indicate there is 

undercharging with more negative charged DNA residues than positively charged amino 

acids. N:P greater than 1 indicates an excess of positively charged amino acids in the 

mixing solution. This number is calculated by comparing the number of DNA base pairs 

(1 bp has two phosphates with an average bp molecular weight of ~ 660 g/mol) to the 

number of positively charged amino acids per sequence in solution. The number of 

positively charged amino acids was found by using a mass of 5125 g/mol for protamine 

chloride, with 21 positively charged residues 

All cationic residues on salmon protamine used to neutralize DNA in protamine-

DNA complexes are arginines. It has been previously shown by DeRouchey that arginine 
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peptides condense DNA to significantly higher packaging densities than comparably 

charged lysine peptides consist with the almost exclusive use of arginines in protamines 

[47]. In this Chapter, we will show gel retardation assays and UV/Vis results to examine 

DNA condensation at N:P ratios between 0 and 2. Early gel electrophoresis results on 

DNA damage as a function of N:P are also shown.  

3.2 Methods and Materials 

3.2.1 Materials 

Ethidium bromide (EtBr) was purchased from Acros organics (Geel, Belgium). 

DNA puc19 plasmid was purchased from New England BioLabs (Ipswich, MA). 10X 

Phosphate buffer and Polyethlene Glycol 8K were purchased from Fisher Scientific. 

Protamine chloride from salmon (grade V histone free), Sodium azide (NaN3), and 

Dextran Sulfate (DS) sodium salt, Calf Thymus were purchased from Sigma-Aldrich (St. 

Louis, MO). TAE buffer was purchased from Omega biotek (Norcross, GA). 3M sodium 

acetate was purchased from teknova (Hollister, CA). 1M tris buffer was purchased from 

cellgro (Tewksbury, MA).  
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3.2.2 Gel Preparation 

Gels for the N:P retardation assay and DNA damage assessment were prepared in 

the same manner. Gels were cast in a 9 x 11 cm plastic plate with a ten lane comb. Each 

gel was made with 0.8% agarose solution, buffered with 1x TAE. Running Buffer 

solution was composed of 1X TAE solution. Current was applied to the gel with a FB300 

power supply, purchased from Fischer Scientific. After electrophoresis, gel are stained in 

2.5 µg/mL EtBr for 1 hour to allow visualization followed by a 30 min destain in 1x 

TAE. Gels were then imaged using a Fotodyne FOTO/Analyst Investigator/FX 

Workstation.  

3.2.3 N:P gel retardation Assay 

For the N:P gel retardation assay, agarose gels were prepared usually the 

following protocol. 400 nanograms of puc19 plasmid DNA was used per lane for all 

samples. Various amounts of protamine were added in order achieve the desired nitrogen 

to phosphate ratios. Buffer was added to maintain a total reaction volume of 10 µL per 

sample. Solutions were vortex to thoroughly mix and then spun down using a table-top 

centrifuge. Polycation-DNA mixtures were then incubated for 1 hour at room temperature 

to condense then samples. Following incubation, samples were centrifuged at 11000 x g 

for ten minutes. 1.5 µL of 6x loading buffer was then added to the resultant solution and 
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the solution was loaded onto a 0.8% agarose gel. Gel electrophoresis was conducted at 10 

V/cm applied to the gel and run in 600mL of 1x TAE buffer. After 120 minutes, the gel 

was stained in 2.5 µg/mL ethidium bromide/1x TAE for one hour with shaking followed 

by a 30 min destain in 1x TAE before imaging.  

3.2.4 N:P UV-Vis sample preparation 

DNA concentration was checked by UV absorbance at 260 nm. It is known that 

for double stranded DNA, A260 = 1 corresponds to a DNA concentration 50 µg/L. We 

used grade V, histone free protamine chloride from salmon (Sigma Chemicals) and Type 

1 calf-thymus DNA (Sigma Chemicals) was used for each UV absorbance experiment. 

The appropriate amount of protamine was added to DNA stock (850 mg/mL) to achieve 

the desired N:P ratio for 100µg and 75µg of DNA to a total volume of 250 µL and then 

incubated at room temperature for 1 hour. After incubation, samples were centrifuged at 

11000 x g. 250 µL of the supernatant was then removed and placed in an Evolution UV-

Visible Spectrometer from ThermoScientific to determine the A260 value from 

uncondensed DNA.  
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3.2.5 Sample Preparation for damage assays 

To treat condensed sample with their respective damaging agent, the following 

steps were taken. Phosphate buffer, de-ionized water, protamine and puc19 plasmid DNA 

were mixed together. The amount of DNA was a constant 400 ng per sample, with 

varying levels of protamine added to achieve desired N:P ratio. The final concentration of 

phosphate buffer was 11.9mM, pH 7.4. Solutions were left to condense for a minimum of 

15 minutes before being treated with their respective damaging agents (as outlined in 

2.2.3 and 2.2.7).  

Before loading, samples were mixed with 2 µL 6X loading buffer and 2 µL DS 

(15µg/µL). The 19 µL of solution were then loaded into the appropriate lanes on a 0.8% 

Agarose gel. Gel electrophoresis was conducted with 10 V/cm being applied to the gel. 

This was allowed to run in 600mL of 1x TAE buffer. After 120 minutes, gels were 

stained for one hour in 2.5 µg/mL ethidium bromide/1x TAE staining solution on a 

shaker. Gels were then destained in 1x TAE buffer for 30 minutes before imaging. 

3.3 Results and Discussion 

3.3.1 Resolution of agarose gels stained with ethidium bromide 

We first wanted to establish the resolution of our ethidium bromide gel protocols. 

To do this, we electrophoresed various different amounts of puc19 plasmid DNA, stained 
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using our established protocol and imaged. The results are shown in Figure 3.1 with DNA 

concentrations ranging from 0 to 800 ng of plasmid DNA. The brightness of bands 

Figure 3.1 Depiction of DNA resolution detectable by UV light using 
Ethidium Bromide and Image Box to capture image. 400 ng of 1kb ladder loaded into gel 
lane one. Moving left to right puc19 plasmid was loaded in decreasing amounts; lane 2 
– 800 ng of DNA, lane 3 – 400 ng of DNA, lane 4 – 200 ng of DNA, lane 5 – 100 ng of 
DNA, lane 6 – 80 ng of DNA, lane 7 – 60 ng of DNA, lane 8 – 40 ng of DNA, lane 9 
– 20 ng of DNA, lane 10 – 0 ng of DNA. 

directly correlates to the amount of DNA within the band. All DNA concentrations tested 

gave rise to at least one band corresponding to the supercoiled plasmid state. A very faint 

band is detected at the lowest DNA concentration (20 ng) roughly establishing the 

resolving power of our gel protocol. For the following experiments, a constant amount of 
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400 ng of DNA was used per well. Figure 3.1 suggests that we can resolve approximately 

5% changes in the total DNA concentration. Lane 10 had no DNA loaded and no bands 

are observed. This is shown to establish that no contamination was present. 

3.3.2 Gel retardation assay of protamine-DNA at varying N:P charge ratios 

Next we wanted to examine the DNA condensation at various N:P charge ratios 

using a gel retardation assay. Such assays are commonly used for polycation-DNA, or 

polyplex, formulations used in non-viral gene therapy to establish full condensation of 

the plasmid DNA of interest. Results for salmon protamine-DNA are shown in Figure 3.2 

as a function of increasing N:P charge ratio. Here protamine-DNA was mixed at the 

desired N:P charge ratio, incubated for 1 hour, then loaded onto the gel. Complexed DNA 

is both charge neutralized and thought to form nanoparticles too large to penetrate into 

the gel resulting in a decrease of DNA observed as a function of the degree of 

condensation. Figure 3.2 shows clear evidence of the disappearance of the supercoiled 

DNA band with increasing protamine concentration. Some smearing is observed 

presumably arising due to weak interactions between the protamine and DNA in  
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Figure 3.2 N:P gel Assay. The amount of protamine is increased from left to right across 
the gel while DNA amount remains the same; lane 1 – Ladder, lane 2 – 400ng 
of puc19 plasmid, lane 3 – N:P 0.25, lane 4 – N:P 0.5, lane 5 – N:P 0.7, lane 6 – N:P 
0.8, lane 7 – N:P 0.9, lane 8 – N:P 1.0, lane 9 – N:P 1.1, lane 10 – N:P 1.2 

undercharged systems. A faint band is observed at N:P 1.0 but by N:P 1.1 all DNA is 

observed to be fully condensed (or at least less than 20 ng of DNA is unbound). This is 

consistent with the arginines of protamine being fully charged at neutral pH and the 

strong interactions of the peptide with DNA.  
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3.3.3 UV-Vis experiments of DNA condensation by salmon protamine 

We also examined DNA condensation by salmon protamine using UV-Vis 

experiments. Figure 3.3 shows the normalized A260 plotted as a function of increasing 

N:P ratio. Even at very high degrees of underprotamination (e.g. N:P 0.25), we see a 

significant decrease in the A260 corresponding to some fraction of the DNA being 

condensed. With increasing N:P ratio, the A260 continues to decrease reaching ~ 0 at N:P 

Figure 3.3 UV-Vis Studies of DNA condensation at Multiple N:P ratios 
*The work contained in this chapter is being prepared for publication as:

Characterization of Protamine-DNA packaging, influence of N:P ratio 

Daniel Kirchhoff, Cody Gay, Ehigbai Oikeh and Dr. Jason DeRouchey 

Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055 
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1.0 for both DNA in distilled water as well as 10 mM TrisCl (pH 7.5) buffer. These 

results are in agreement with our gel retardation assays in Figure 3.2 showing a 1:1 

charge ratio is sufficient to fully condense the DNA. Interestingly, a small fraction of 

DNA appears to be free at higher N:P ratios in pure water. It is not clear why this would 

happen and this is not observed in the presence of Tris buffer. 

3.3.4 DNA Damage assays for underprotaminated DNA 

In this section, we have utilized the DNA damage gel assays discussed in Chapter 

2 to investigate DNA damage as a function of N:P charge ratios using both AAPH and 

Fenton reagent as our free radical damaging source. Figures 3.4 & 3.5 show initial 

damage gel results at 200µM and 1 mM AAPH, respectively, as a function of increasing 

protamine concentration. These concentrations represent a “low” and “high” degree of 

damage to unpackaged DNA as observed in Chapter 2. 400 ng per well was maintained 

for all samples. After condensation, all samples were exposed to AAPH for 1 hour. Then 

a decondensing agent (dextran sulfate) was added and the samples immediately loaded 

onto the gels for analysis. Both gels show increased protection afforded by the presence 

of higher amounts of protamine. Unpackaged DNA is seen to be almost entirely nicked at 

200µM AAPH with only the open coiled DNA band observed in Figure 3.4. By 1.0 mM 

AAPH, unpackaged DNA is approximately 50% open coil and 50% linearized as seen in 

lane 4 of Figure 3.5. Once above N:P 1.0, the protection appears to be maximized and is 

similar to the protection observed at N:P 2.0 observed in previous gels discussed in 
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Chapter 2. This increased protection is most evident at N:P 1.1 where significant amounts 

of supercoiled DNA is regained in Figure 3.4 and open coiled DNA in Figure 3.5. The 

conversion from a more damaged band to a less damaged band indicates that the more 

packaged the DNA the more protected the DNA is from oxidative damage. This 

packaging protection is maximized at N:P 1.0. More gel work needs to be done to 

establish the reproducibility of these results. In addition, currently SAXS experiments are 

underway to examine the DNA-DNA interaxial spacings as a function of increasing 

salmon protamine concentration. We hypothesize that DNA-DNA spacings are minimal 

at N:P 1.0 and no further packaging will commence with the addition of excess 

protamine. 
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Figure 3.4 Various N:P ratios susceptibility to lower concentrations of AAPH. Lane 1 – 
1kb Ladder, Lane 2 – 400ng puc19 plasmid DNA; Lane 3 – EcoR1 linearized DNA, 
Lane 4 DNA treated with 200µM AAPH; Lane 5 – DNA packaged with protamine, 
N:P 0.6, treated with 200µM AAPH; Lane 6 - DNA packaged with protamine, N:P 
0.7, treated with 200µM AAPH; Lane 7 - DNA packaged with protamine, N:P 0.8, 
treated with 200µM AAPH; Lane 8 - DNA packaged with protamine, N:P 0.9 treated 
with 200µM AAPH; Lane 9 - DNA packaged with protamine, N:P 1.0 treated with 
200µM AAPH; Lane 10 - DNA packaged with protamine, N:P 1.1 treated with 200µM 
AAPH. 
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Figure 3.5 Various N:P ratios susceptibility to higher levels of AAPH. Lane 1 – 1kb 
Ladder; Lane 2 – 400ng puc19 plasmid DNA; Lane 3 – EcoR1 linearized DNA; Lane 
4 DNA treated with 1mM AAPH; Lane 5 – DNA packaged with protamine, N:P 0.6 
treated with 1mM AAPH; Lane 6 - DNA packaged with protamine, N:P 0.7 treated with 
1mM AAPH; Lane 7 - DNA packaged with protamine, N:P 0.8 treated with 1mM 
AAPH; Lane 8 - DNA packaged with protamine, N:P 0.9 treated with 1mM 
AAPH; Lane 9 - DNA packaged with protamine, N:P 1.0 treated with 1mM AAPH; 
Lane 10 - DNA packaged with protamine, N:P 1.1 treated with 1mM AAPH. 

Lastly, we examined the susceptibility of DNA to be damaged as a function of the 

N:P charge ratio using Fenton reagent. Shown in Figure 3.6 is gel electrophoresis results 

of puc19 plasmid with increasing salmon protamine chloride concentration exposed to 1 

mM Fe(II) concentration. Lanes 1, 2, and 3 are included as control lanes including a 1kbp 

ladder, unmodified puc19 plasmid and EcoRI linearized puc19 respectively. Lane 4 

shows that unpackaged DNA exposed to 1mM Fenton shows considerable damage with 

nearly all the sample being in the open coiled state and small amounts of linearized DNA 

also observed. Clearly the Fenton reagent at this concentration is efficient in generating 

single strand nicks and even double strand breaks. Salmon protamine was added to 
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generate protamine-DNA samples with N:P between 0.6 and 1.1. Only mild protection, at 

best, is observed in this experiment with increasing protamine concentration. From lane 5 

to lane 10, there is a small increase in the fraction of supercoiled DNA observed at the 

bottom of the gel. We note that the protection observed at N:P 1.1 is not as great to that 

observed at N:P 2 shown in figures 2.7, 2.8, 2.13, and 2.14 in Chapter 2. More work 

needs to be done to better establish the protective capacity of salmon protamine to Fenton 

reagent as a function of increasing N:P ratio. In particular if this protection varies 

between AAPH and Fenton chemistries. 

Figure 3.6 Various N:P ratios susceptibility to damage induced by fenton reaction. Lane 
1 – 1kb Ladder; Lane 2 – 400ng puc19 plasmid DNA; Lane 3 – EcoR1 linearized 
DNA; Lane 4 DNA treated with 1mM fenton reagent; Lane 5 – DNA packaged with 
protamine, N:P 0.6 treated with 1mM fenton reagent; Lane 6 - DNA packaged with 
protamine, N:P 0.7 treated with 1mM fenton reagent; Lane 7 - DNA packaged with 
protamine, N:P 0.8 treated with 1mM fenton reagent; Lane 8 - DNA packaged with 
protamine, N:P 0.9 treated with 1mM fenton reagent; Lane 9 - DNA packaged with 
protamine, N:P 1.0 treated with 1mM fenton reagent; Lane 10 - DNA packaged with 
protamine, N:P 1.1 treated with 1mM fenton reagent. 
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CHAPTER FOUR: CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Conclusion 

The search for infertility causes and treatments is still lacking in answers. While 

the majority of infertility caused by males can be traced back to low sperm count or 

motility issues; it is known that a significant fraction is associated with abnormal sperm 

chromatin packaging. Routine clinical examinations do not identify subtle defects in 

sperm chromatin architecture. Better understanding of effective sperm chromatin 

remodeling is especially important with the vast increases of assisted reproductive 

techniques (ART) in recent years where the quality of the selected sperm is of utmost 

importance. ART in the US has more doubled over the last ten years. While assays such 

as COMET and TUNEL have been developed to qualitatively assess DNA fragmentation 

within sperm cells; there is still a need for a more quantitative understanding of the link 

between DNA packaging and DNA damage. In this thesis, we have used biophysical and 

biochemical methods to better understand the link between cation packaging of DNA and 

the protective capabilities of packaging from oxidative damage.  

4.1.1 DNA Damage in packaged and unpackaged DNA 

In Chapter 2, we focused on three main questions: (1) Does condensed DNA 

protect DNA from oxidative damage from free radicals (2) Can we quantify this 
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protection? and (3) do small changes in the packaging density affect the capacity to 

protect nucleic acids in condensates? In answering these questions, we primarily used gel 

electrophoresis to visualize differences in the supercoiled, open coiled and linear bands 

observed when running puc19 plasmid DNA. DNA was damaged using one of three 

possible free radical sources; AAPH, Copper phenanthroline (Cu(OP)2) or Fenton 

reagent.  

 

 Figures 2.6, 2.10, and 2.13 show the concentration dependence of damaged to 

unpackaged DNA using AAPH, Cu(OP)2 or Fenton reagent, respectively. All three free 

radical systems show a systematic increase in the amount of damage as a function of 

increasing free radical concentration. This increased damage was assessed by increasing 

amounts of nicked, linearized, or degraded DNA, as a function observed in the gel. Once 

we had established the free radical concentration range of interest to achieve low to high 

amounts of damage to naked DNA, we then examined if condensed DNA did enable 

protection of the nucleic acid bases from oxidative damage. Figure 2.7, 2.11, and 2.14 

show side-by-side comparisons of naked DNA and DNA fully condensed by salmon 

protamine exposed to various concentrations of AAPH, Cu(OP)2 or Fenton reagent, 

respectively. For all three systems, significant differences were observed between the free 

and packaged state at all free radical concentrations examined. As expected, protamine 

condensed DNA shows significant improved stability when compared to unpackaged 

DNA. We attribute this improved stability to the reduced accessibility of the bases to the 

free radical species in the condensed state. Lastly, we investigated how different 

condensed states affect the ability of free radicals to damage DNA. Building on prior 
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knowledge from the DeRouchey lab, we used hexalysine and hexaarginine peptides to 

compare to protamine DNA. R6-DNA and salmon protamine-DNA result in similar 

packaging with an interaxial DNA-DNA spacing of 28.6 Å and 29.3 Å, respectively. K6-

DNA is known to have a significantly reduced packaging density with an equilibrium 

DNA-DNA spacing of 32.3 Å. Figure 2.9, 2.12, and 2.15 show a side by side comparison 

of these packaged states exposed to a constant concentration of AAPH, Cu(OP)2 or 

Fenton reagent. In all three damaging systems, the K6-DNA is observed to have 

significantly less protective capacity when compared to R6 and protamine condensed 

DNA. Interestingly, although the R6-DNA is known to condense to slightly smaller 

DNA-DNA spacings, the protamine-DNA system seems to consistently show better DNA 

stability. This may be due to kinetic issues arising from the higher charge, and greater 

length, of the protamine and thus higher affinity for DNA.  

 

4.1.2 Characterization of Underprotamination on condensation and damage of DNA 

 

 It is known that in some humans, higher abnormal chromatin packaging is 

associated with observed higher rates of DNA damage and higher percentages of 

underprotamination. We propose, therefore, that insufficient protamination in the sperm 

chromatin leads to defective sperm chromatin remodeling rendering the DNA more 

accessible to chemical agents that contribute significantly to DNA damage. Chapter 3 

describes early experiments to better elucidate the role of underprotamination on both the 

ability of DNA to condense and package DNA as well as protect it from free radical 
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attack. Chapter 3 shows DNA condensation by gel retardation assays and UV-Vis 

absorption experiments as a function of increasing protamine concentration. The ratio of 

DNA to protamine is given as a nitrogen to phosphate (N:P) charge ratio of the number of 

positively charged amino groups from the arginines of salmon protamine to the number 

of negatively charged phosphate groups on the DNA. Both gel retardation and UV-Vis 

clearly shows that protamine is capable of condensing DNA even at low N:P ratios. This 

condensation continues to proceed to a greater extent with the addition of more protamine 

reaching full condensation at charge ratios of 1. As expected, at N:P > 1, all the DNA is 

fully condensed due to a complete charge compensation between the protamine and DNA 

polymers. DNA damage gel assays were also performed to examine the extent of damage 

as a function of the N:P ratio. AAPH and Fenton reagent were both examined as the free 

radical source. Our early results show increased protection in both systems as the N:P 

ratio reaches 1. The observed protection is much higher in the AAPH system as 

compared to the Fenton reagent but more work needs to be done to assess the 

reproducibility of these gels. From previous work, we anticipate that the DNA-DNA 

spacings will change greatly for underprotaminated samples but then reach a minimum at 

N:P 1.0. Currently small-angle x-ray (SAXS) experiments are being performed in the 

DeRouchey lab to examine this hypothesis and quantify the effects of underprotamination 

on the DNA-DNA spacings in the condensates. We believe these experiments may begin 

to provide direct insight into why protamine deficient nuclei are damaged. 
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4.2 Future Directions 

 

 The gel methods used in our study are relatively simplistic methods. We quantify 

DNA damage by comparing how much plasmid is left in the supercoiled state compared 

to DNA with single strand breaks, double strand breaks, and fragmented DNA. The free 

radical concentrations required to induce double strand breaks are very high and well 

above expected ROS levels in vivo. Images produced by gel electrophoresis cannot 

provide information about oxidized sample. For example, the amount of oxidized bases, 

or abasic sites is not known. It is known in vivo that damage to DNA in this way can lead 

to mispairing, deletions, and genetic mutations. Long-term, we would like to find means 

to examine ROS damage and quantify the amount of oxidized bases for DNA in various 

packaged states. 

 One possible approach to investigate this problem would be selecting a damage 

biomarker and the rates of its appearance after damaging. 8-hydroxy-2' -deoxyguanosine 

(8-OHdG) is one of the more predominant biomarkers that arise from oxidative damage 

with free radicals. The base 8-OHdG is derived from, Guanine, is very susceptible to 

oxidative damage because of its relatively high oxidation potential [51]. For this reason, 

8-OHdG is known to be an important marker for analyzing quantitatively the amount of 

damage to ROS exposed DNA. Testing the amount of 8-OHdG present in a sample on a 

mass spectrometer (MS) would be an excellent way to determine the amount of 

protection offered in a DNA sample. Work on this approach has been started by our lab 

in the past. Trouble arose with the timing of the sample damage to when samples could 
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be processed by the MS facility as well as with the sample optimization for MS studies. 

Future studies will have to develop a protocol to systematically quench a sample in a way 

that doesn’t interfere with the operations of a MS. Future work will also have to develop 

a protocol to remove metals from the damaging process before the samples are tested.  
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