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ABSTRACT OF THESIS 

DEUTERIUM AND OXYGEN-18 DIFFUSION IN A CONFINED AQUIFER: A 

NUMERICAL MODEL OF STABLE ISOTOPE DIFFUSION ACROSS AQUITARD-

AQUIFER BOUNDARIES 

The stable isotopes 2H and 18O, combined with noble gases and radioisotopes (e.g., 
3H, 14C, 36Cl), are used to infer groundwater age and climate during recharge. Flow regimes 

within low-velocity flowpaths and long residence times could allow an aquitard-aquifer 

diffusive flux to alter isotope abundance. Consequently, the diffusion of isotopes (e.g., 14C, 
2H and 18O) between aquifers and confining layers needs to be considered in such 

conditions. In this study, COMSOL Multiphysics was used to determine if diffusion of 18O 

(and 2H by proxy) from a bounding aquitard could explain observed downgradient 

enrichment of 2H and 18O within a regional aquifer. Using the geologic and hydraulic 

properties of the lower Wilcox aquifer of the Mississippi Embayment aquifer system in 

Missouri and Arkansas, the advection-dispersion equation was solved along a 1-D 

groundwater flow domain, coupled with a cross-contact aquitard-aquifer diffusive flux. 

Although the observed signal within the lower Wilcox was not matched, a sensitivity 

analysis indicated the importance of the isotope composition gradient between the aquifer 

and aquitard. Furthermore, groundwater velocity was suggested as a controlling influence 

on aquitard-aquifer exchange that could alter aquifer isotope composition. 

KEYWORDS: Inferred Paleoclimate, Lower Wilcox, Regional Aquifer, 

Isotope Diffusion, Model 
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 Chapter One 

1. Introduction

Isotopic composition of recharge waters is controlled by a variety of factors, including 

temperature (global and seasonal), proximity to source, altitude, and latitude. 

Precipitation is progressively depleted in heavier isotopes moving towards the poles and 

away from warmer, wetter regions around the tropics (Darling et al. 2005). The stable 

isotopic composition of precipitation can be influenced by kinetic fractionation or mixing 

at the ground surface, but once precipitation enters the soil zone as recharge, fractionation 

by evaporation is not possible and stable isotopic composition is generally considered 

conservative in non-geothermal waters. When combined with isotopic dating techniques 

(3H, 4He, 14C, 36Cl), 2H and 18O abundances can be used to infer the surface temperature 

at the time of groundwater recharge. For example, Plummer et al. (2012; Fig. 1) used 

combined techniques to identify waters recharged during the last glacial maximum within 

the Upper Patapsco aquifer of Maryland, and to demonstrate that these waters were 

isotopically distinct from water up and down-gradient.  

Figure 1 - δ18O vs. flowpath distance in the Patapsco aquifer (Plummer et al. 2012). Note 

the inferred location of the Last Glacial Maximum (LGM) using combined isotope and 

dating methods. 
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In contrast, Haile (2011) documented increasing δ2H and δ18O values down-gradient 

along a regional flow path within the Wilcox aquifer, located in the Mississippi Valley of 

Missouri and Arkansas (Fig. 2). As modeling and solute concentrations indicated no 

significant mixing between the Wilcox and adjoining aquifers, and stable isotopes are 

considered conservative in the subsurface, this trend could only be a product of 

paleoclimate or a mechanism of further enrichment. Furthermore, as mixing acts to 

homogenize concentrations, enrichment or depletion along a flowpath would necessitate 

further fractionation. This is significant, as an unaccounted-for process altering isotopic 

abundance could lead to erroneous inferences about paleoclimate during groundwater 

recharge. 

Figure 2 - δ18O and δ2H vs. distance along flowpath (after Haile [2011]). Vertical line (at 

112 km) denotes inferred fault location. 

LaBolle et al. (2008) provided evidence for diffusion as a mechanism for fractionation in 

the subsurface (Fig. 3). They demonstrated that diffusion of light isotopes from aquifers 

into slow-flow regions (aquitards) can produce apparent down-gradient enrichment in the 

aquifers. Additionally, they noted the importance of the isotopic concentration gradient: 
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diffusion of stable isotopes between newly recharged and older groundwater is unlikely if 

isotopic abundances are similar. However, LaBolle et al. (2008) did not address regional-

scale flowpaths with a long residence time (e.g., 103 to 106 yr). Using an analytical 

model, Hendry and Schwartz (1988) explained down-gradient enrichment of 18O along a 

regional-scale flowpath (~ 100 km) in the Milk River aquifer of southern Alberta by 18O 

diffusion out of a bounding aquitard (Fig. 4).  

Figure 3 - Calculated isotopic enrichment under varying aquifer (La) and aquitard (Lm) 

thickness (LaBolle et al. 2008), where C0 is the initial aquifer isotope composition and 

ΔC is the change in composition. 

Figure 4 – δ18O vs. flow path distance in the Milk River aquifer (Hendry and Schwartz 

1988). 

Given the findings of LaBolle et al. (2008) and Hendry and Schwartz (1988), this study 

addresses the following questions: 
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(1) How can diffusion of 18O, and by proxy 2H, between a confined aquifer and bounding 

aquitard influence stable isotope abundances along a regional flowpath? 

(2) To what degree do residence time, aquifer and aquitard thickness, and isotopic 

gradient between an aquifer and aquitard influence aquifer isotope abundances? 

(3) Is the apparent progressive enrichment of 2H and 18O down-gradient within the lower 

Wilcox aquifer (Fig. 2) the result of diffusion between the aquifer and a bounding 

aquitard? 

To address these questions, a 1-D advection-dispersion transport model was constructed 

using COMSOL Multiphysics software (COMSOL, Inc., Burlington, MA) to calculate 
18O transport down the flowpath and between the aquifer and aquitard. To the extent 

possible, aquifer and aquitard hydraulic parameters were taken from observed values. 

Results were then compared to geologic, hydraulic, and geochemical data sets from the 

Wilcox aquifer for calibration.   
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 Chapter Two 

2. Background

2.1 Hydrostratigraphy and Groundwater Flow 

The Wilcox Group is a Cenozoic sequence of fluviodeltaic sands, silts, and clays that 

underlies much of the Gulf Coastal Plain from Texas to Alabama and as far north as 

Missouri and Kentucky (Hart et al. 2008). It is overlain by the Claiborne Group and 

underlain by the Midway Group. The Wilcox Group is comprised of the Flour Island 

Formation, the Fort Pillow sand, and the Old Breastworks Formation in western 

Tennessee and eastern Arkansas (Hosman 1996). The Flour Island and the overlying 

Carrizo and Meridian sands in the lower Claiborne Group function as a single aquifer 

(lower Claiborne–middle Wilcox), which is overlain by the Cane River Formation and 

Zilpha Clay (the lower Claiborne confining unit). The Fort Pillow sand functions as the 

lower Wilcox aquifer (Hosman 1996). Aquifer stratigraphy varies from massive sands to 

interbedded sands and clays; periodic transgression is represented by flooding surfaces. 

Units generally strike northeast and dip south-southeast towards the Gulf of Mexico (Fig. 

5; Haile 2011), but strike and dip vary spatially along the edge of the Mississippi 

Embayment.   

Recharge of the lower Wilcox aquifer occurs at outcrop along the edge of the Mississippi 

Embayment or where the Wilcox is overlain by a thin cover of alluvium. Along the 

northwest margin of the embayment in Arkansas, recharge occurs along Crowley’s 

Ridge. Groundwater flow is generally north to south parallel to the axis of the 

embayment. However, the potentiometric surface has likely been altered in some regions 

by pumping for municipal use. Modeled groundwater velocity within the confined aquifer 

ranged from 1.3 × 10-8 to 3.01 × 10-8 m/s, with greater velocities up-gradient (Haile 

2011). Aquifer thickness and hydraulic properties vary vertically and areally, with 

thickness increasing predominantly north to south down-dip. Notably, the New Madrid 

Seismic Zone lies within the Mississippi Embayment and the aquifer has likely been 

displaced by faulting (Fig. 6). Haile (2011) indicated a fault perpendicular to flow 

direction ~ 110 km from Crowley's Ridge. The Mississippi Embayment Regional Aquifer 

System (MERAS) model (Clark and Hart 2009) treated cross-fault flow as impeded, 

which suggests that the aquifer transitions from unconfined to confined proximal to this 

fault. However, no prior work appears to have examined cross-formational flow along the 

fault plane identified within Haile's study.



Figure 5 - Wilcox cross-section from north to south (Haile [2011], modified from Williamson and Grubb [2001]). Cross-section 

location shown on Figure 6. 
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Figure 6 - Isopach map of the Wilcox Group (Haile 2011). 

2.2 Paleoclimate 

Chlorine-36 data suggest groundwater ages of ~150 to 700 kyr within the down-gradient 

(confined) lower Wilcox (Haile 2011). For this period in the middle Mississippi Valley, 

studies have addressed relative humidity (via modeling based on stable isotopes within 

sub-fossil wood [Voelker et al. 2015]), modeled precipitation (Bromwich et al. 2005; 

Kim et al. 2006), palynology and ecological succession (Davis and Shaw 2001; Williams 

et al. 2001), sea level (Muhs et al. 2003a), paleopedology and thermoluminescence 

(Markewich et al. 1998; Rovey and Balco 2011; Forman and Pierson 2002), loess 

deposition (Muhs et al. 2003b) and speleothem δ18O (Denniston et al. 2007; Dorale et al. 

1998; Harmon and Schwarcz 1981). However, there is a dearth of data for both 
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precipitation and its isotope abundance, which reflects a lack of proxies (in particular, 

speleothems) within the region older than 75,000 years before present (ybp). 

2.2.1 Isotope signals 

Using paired speleothem calcite δ18O values and inclusion water δ2H values with U/Th 

dating, Harmon and Schwarcz (1981) calculated paleotemperature at six sites across the 

Caribbean and North America. They found that temperatures calculated using the 

temperature dependence of 18O fractionation between calcite and water (from O’Neil et 

al. (1969); 103lnαc-w = 2.78×106 T-2 + 2.89, where α is the fractionation factor) were < 0 

°C (i.e., too low for calcite precipitation). They then suggested that the current GMWL 

does not accurately represent the δ2H-δ18O relationship during the growth of these 

speleothems. Harmon and Schwarcz (1981) argued that speleothem drip waters in 

temperate regions of North America are isotopically similar to precipitation, but 

Wackerbarth (2012) noted that a variety of factors could alter isotopic composition. 

Conversion from paleowater to precipitation δ18O values requires independent data on 

temperature (Friedman and O’Neil 1977) and humidity [Wackerbarth 2012]), which are 

not available for the time period of interest in the current study area. Of the sites sampled 

by Harmon and Schwarcz (1981), a cave in Kentucky was closest to the lower Wilcox 

recharge area. The inferred δ18O values based on the modern GMWL and the authors’ 

inferred paleo-GMWL are shown in Figure 7. 

 

 

Figure 7 - Calculated inclusion-water δ18O (SMOW) using modern δ2H–δ18O relationship 

(blue) and proposed paleorelationship (red) (U/Th dated; Harmon and Schwarcz 1981). 
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Dorale et al. (1998) examined speleothems within several caves in central and eastern 

Missouri. The data include calcite δ18O with U/Th dating and do not include drip water 

δ18O, but they do represent trends in isotope values proximal to the recharge area of the 

lower Wilcox and are coupled with ice volume estimates (Fig. 8).  

 

  

Figure 8 - Speleothem δ18O vs. years before present (Dorale et al. 1998). 

 

2.2.2 Reconstruction 

For the period of interest (from present to ~ 250,000 ybp), the oldest datable unit in the 

middle Mississippi Valley is the Crowley’s Ridge loess, which was deposited between 

274 and 250 ka (Markewich et al. 1998, Forman and Pierson 2002). With the onset of the 

Illinoian glacial period tied by multiple methods to ~ 190 ka, the Crowley’s Ridge loess 

and coeval till deposition further north likely represent the advance of a lobe of the 

Laurentide ice sheet during a pre-Illinoian event (Rovey and Balco 2011). However, no 

isotope data are available within the region prior to 217 ka (the Crowley’s Ridge loess 

was dated by luminescence techniques), and while a negative slope is evident from 217 to 

195 ka (Fig. 7), the δ18O values are only suggestive of glaciation. Sea level was close to 

present for some period between 230 and 220 ka (Muhs et al. 2003), which is consistent 

with interglacial conditions. 

Generation of the Yarmouth paleosol during the Illinoian and interglacial period 

(potentially ≥ 218 to 154 ka [Forman and Pierson 2002]) suggests wetter, warmer 

conditions early in the Illinoian. However, because the Yarmouth paleosol lies within the 
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upper section of the Crowley’s Ridge loess, the variety of dates for Crowley’s Ridge 

deposition confounds estimates of the date and duration of pedogenesis. Forman and 

Pierson (2002) placed deposition of the loess as early as 264 ka, while Markewich et al. 

(1998) placed deposition prior to 200 ka.  Both studies agreed that loess deposition had 

occurred by 200 ka, which is supported by till (Macon Member) deposition north of the 

recharge area around 196 ka (Rovey and Balco 2011). Although a variety of dating 

methods have been used for paleoclimate studies in the region (e.g., 14C, 

thermoluminescence, infrared stimulated luminescence), definite demarcation of climate 

based on loess deposition or pedogenesis alone is difficult. 

Deposition of the Loveland 1 loess (Rodbell et al. 1997), a maximum sea-level low stand 

at 135 ka, and general low sea level from 175 to 130 ka (Dyke and Prest [1987] in 

Forman and Pierson [2002]) all coincide with the Illinoian glacial period from 191 to ~ 

130 ka (Markewich et al. 1998). The onset date (191 ka) is in agreement with marine 

isotope stage 6 (Markewich et al. 1998). The decreasing δ18O composition for speleothem 

inclusion values from Harmon and Schwarcz (1981) also agrees with Illinoian glaciation 

between 175 and 130 ka (Fig. 7).   

Between 138 and 60 ka, silt deposition ceased and the Sangamon paleosol formation 

began (Markewich et al. 1998; Forman and Pierson 2002; Rodbell et al. 1997), suggestive 

of a wetter, warmer climate. This period was interrupted by loess deposition (Loveland 

2–3), associated with drier conditions, from ~ 115 to ~ 70 ka (Rodbell et al. 1997).  

During loess deposition, sea level fluctuated between ~ 10 and 50 m below present (Dyke 

and Prest [1987] in Forman and Pierson [2002]). The boundaries of the Sangamon are 

contentious, with inferred ages as young as 31 ka (based on 14C [Forman and Pierson 

2002]). A period of warmer (and potentially wetter) conditions around 120 ka is further 

supported by a meltwater pulse recorded by δ18O in Gulf of Mexico sediments (Joyce et 

al. 1993) and by near-modern sea levels (Dyke and Prest [1987] in Forman and Pierson 

[2002]). This pulse is likely proximal to the glacial-interglacial transition following the 

Illinoian period. A stark increase in δ18O observed by Harmon and Schwarcz (1981) (Fig. 

7) indicates changing conditions between 130 and 125 ka.   

Coinciding with the onset of the Wisconsinian period, aeolian deposition of the Roxana 

silt within the region occurred between 60 and 26 ka (Markewich et al. 1998). Sea level 

was 5 to 8 m above present by 25 ka (Muhs et al. 2003), but fell to a low stand of ~120 m 

below present around 22 ka. Proximity to the Laurentide ice sheet (Williams et al. 2001; 

Rovey and Balco 2011) and topographic forcing along its southern margin (Bromwich et 

al. 2005) have been suggested to affect both seasonal variation and annual precipitation. 

This is supported by vegetation dissimilarity increasing with distance southward from the 

Laurentide margin (Williams et al. 2001). Palynology indicates peak vegetation 

dissimilarity between 16–14 ka, with spruce becoming common within the region by 11 

ka and a shift towards modern vegetation beginning at 9 ka (Williams et al. 2001). 
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Combined with precipitation and relative humidity reconstruction, this suggests drier 

conditions (0.65–0.95 m/yr annual precipitation) than modern in the study area between 

16 and 11 ka (Voelker et al. 2015). 

Furthermore, modeling suggests that juxtaposition of cold air near the ice sheet and 

warmer, moist air from the Gulf Coast likely caused increased precipitation immediately 

adjacent to the ice sheet (Bromwich et al. 2005) and decreased precipitation further south. 

Bromwich et al. (2005) also found that monsoonal patterns of precipitation during 

summer months were possible during the Last Glacial Maximum (LGM). Bromwich et 

al. (2005) modeled a summer air temperature of 18 °C at the LGM (versus a modern 

value of ~ 24 °C at Malden, MO [Missouri Climate Center 2016]) and annual 

precipitation of 1.02 m/yr. Summer and winter LGM precipitation were calculated to be 

2–4 mm/day and 1–4 mm/day, respectively, a change from modern observed values of 0 

to -0.5 mm/day in the winter and -0.4 to -0.5 mm/day in the summer (Kim et al. 2006). 

Taken together, this could indicate reduced overall precipitation combined with seasonal 

monsoonal rains. However, Kim et al. (2006) noted that the overall change in 

precipitation is roughly zero when lower evaporation rates are accounted for. Current 

average annual precipitation for the region is 0.89–1.32 m/yr, and potential 

evapotranspiration is 0.84–1.14 m/yr (Haile 2011). 
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 Chapter Three 

3. Methods 

3.1 Model Design 

The model domain was limited to the confined section of the lower Wilcox, which was 

suggested by Haile (2011) to span ~ 175 km, beginning immediately downgradient of a 

fault displacing the Wilcox Group near New Madrid, Missouri (Fig. 9). Water mass and 

isotope fluxes were introduced along the upper boundary and the lower boundary was 

open to both. All other boundaries were no-flow. 18O/16O ratio and transport down-

gradient were then calculated using COMSOL's combined advection-dispersion/ 

diffusion function. An additional ordinary differential equation was created along the 

entire length of the domain to represent a diffusive flux between the aquitard and aquifer. 

As the direction of aquifer-aquitard isotope exchange was determined by the 

concentration gradient, diffusion could occur both into and out of the aquifer. The model 

assumes that the aquifer is isotropic and well mixed transverse to flow; the aquitard is 

well mixed in the transverse and longitudinal directions; there is little to no fluid flow 

across the aquitard-aquifer contact; and groundwater flow can be treated as 1-D along the 

longitudinal axis of the aquifer. 
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Figure 9 - Cross-section parallel to flowpath (north - south); note fault (dashed line) at ~ 

110 km (from Haile [2011] after Hart et al. [2008]), sampled well locations, and model 

concept. Model domain spans flowpath from fault to last sampled well within the lower 

Wilcox (#20). Note the diffusive flux is isotope gradient controlled between the aquifer 

(blue dot) and aquitard (hollow dot). 

 

3.1.1 Groundwater Flow and Calibration 

Mass flux at recharge was adjusted to match the head gradient observed by Haile (2011; 

Appendix A) and the order of magnitude of groundwater velocity calculated from 36Cl 

residence times. As a zero-head condition was chosen for the lower boundary, observed 

head in post-fault wells from Haile (2011) was shifted to allow direct comparison 

between observed and model output. Beginning with effective recharge of 0.151 m/yr, 

the recharge flux within the model was adjusted to approximate the shifted, observed 

head gradient (Fig. 10) and agree with residence time-derived groundwater velocity (10-8 

m/s).  A recharge flux of 0.14 m/yr was selected for aquifer porosity of 0.15 and a 

recharge flux of 0.1395 m/yr was selected for aquifer porosity of 0.225. Slope varied 

from observed linear best fit by 0.01 m/km and groundwater velocity varied from average 

modeled lower Wilcox by 1.95 × 10-9 and 8 × 10-9 m/s for the different recharge fluxes. 

 

 

Figure 10 - Head vs. post-fault flowpath distance. 
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3.1.2 Isotope distribution 

Isotope transport is solved within COMSOL using a combined advection-dispersion and 

diffusion equation with an additional cross-contact diffusive flux: 

𝜃𝑠
𝜕𝐶𝑥

𝜕𝑡
= (-𝐷𝐷,𝑥 + 𝜃𝜏𝐿,𝑖𝐷𝐿,𝑥)

𝜕2𝐶𝑖

𝜕𝑥2 − 𝑢 
𝜕𝐶𝑖

𝜕𝑥
± 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑓𝑙𝑢𝑥 ±

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠        

           (1) 

where (-𝐷𝐷,𝑥 + 𝜃𝜏𝐿,𝑥𝐷𝐿,𝑥)
𝜕2𝐶𝑥

𝜕𝑥2  is the dispersion-diffusion term, 𝑢 
𝜕𝐶𝑥

𝜕𝑥
 is the advection 

term and 𝜃𝑠 is aquifer porosity. Within (-𝐷𝐷,𝑥 + 𝜃𝜏𝐿,𝑥𝐷𝐿,𝑥), DD  is the species diffusion 

coefficient, θ is liquid volume fraction (equal to porosity under saturated conditions), τ is 

tortuosity, and DL is longitudinal dispersivity (m2/s); x (m) indicates distance down the 

flowpath. No reaction or sorption terms are anticipated given the species involved. 

Diffusive transport within a porous medium, although small, must also account for 

tortuosity by calculating effective diffusion. Within COMSOL effective diffusion is 

calculated as: 

De = ∅LτLDD,         (2) 

 

where DD is the diffusion coefficient for the species, ϕL is the effective porosity, and τL is 

the tortuosity of the media. For saturated porous media, τL is approximated as θ1/3.  

 

 

3.1.3 Aquifer-aquitard diffusive flux 

The flux (f) between the aquifer and aquitard (Fig. 9) is assumed to follow Fick's law: 

𝑓 = −𝐷
(𝐶𝑓𝑖

− 𝐶𝑡𝑖
)

∆𝑦
,        (3) 

where D is the diffusion coefficient of the species, 𝐶𝑓𝑗
is the isotope concentration within 

the aquifer, 𝐶𝑡𝑖 is the isotope concentration within the aquitard, and ∆𝑦 is the distance 

across the aquifer-aquitard contact; i indicates node. Within COMSOL, the diffusive flux 

with respect to time was calculated as: 

𝜕𝐶𝑡

𝜕𝑡
=  

−𝐷

∆𝑦∅𝑡𝑏𝑡
 (𝐶𝑡𝑖

−  𝐶𝑓𝑖
),       (4) 

where 𝐶𝑡𝑖
 is the aquitard isotope concentration, 𝐶𝑓𝑖

 is the aquifer isotope concentration, 

∅𝑡 is aquitard porosity, 𝑏𝑡 is aquifer thickness, and ∆𝑦 is the aquitard interaction 

thickness (nodal spacing).   
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3.2 Boundary Conditions 

Bounding aquitards were represented by no-flow boundaries. A mass flux was introduced 

at the upper boundary with groundwater flow moving from the upper to lower boundary. 

The lower boundary was open for mass. The upper boundary (herein referred to recharge) 

consisted of a time-dependent function for the isotope flux and a mass flux representing 

recharge across the study period. The initial model concept was intended to simulate 

glacial-interglacial variation in recharge, and couple a solution for transient groundwater 

flow, by varying precipitation to reflect glacial and interglacial local climate. However, 

paleoclimate data were limited and the precipitation reconstruction was insufficient for 

use. Additionally, when precipitation was varied by 25% (the difference between 

reconstructed LGM average and modern average) over 60,000-yr periods, head variation 

was found to be ~1.6 % within the modeled region of the aquifer. Given the lack of 

precipitation data, and the low head variation when using a transient input, a steady-state 

solution was deemed appropriate. Subsequently, recharge flux was matched to maintain 

the observed head gradient and groundwater velocity was uniform along the flow path. 

Mass flux over the modeled period was calculated as: 

 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝑓𝑙𝑢𝑥 =  (
𝑅𝑀

365×86400
) ×  𝜌𝑤,      (5) 

where RM is the mean annual recharge, converted to units of seconds, and 𝜌𝑤 is the 

density of water (1000 kg/m3).  

3.3 Isotopic Input   

Stable isotopes are reported in ‰ deviation from a standard value of 0, referenced to 

Vienna Standard Mean Ocean Water (VSMOW), using the δ notation: 

 

 δ = ((Rsample/Rstandard) – 1) × 1000,      (6) 

 

where R refers to the isotopic ratio (2H/1H or 18O/16O) of the sample and standard 

respectively. Rsample for 18O/16O of recharge was calculated using equation (6). The result 

was then multiplied by a constant equal to the average density of water (1000 kg/m3): 

 𝐼𝑠𝑜𝑡𝑜𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 = (
𝛿 𝑂 

18

1000
+ 1 ) × 1000.     (7) 

This converted value of 𝛿 𝑂 
18  was used within the transport model and isotope-flux 

piecewise function. Calculated values were then converted back into delta notation using: 

 𝛿 𝑂 
18 = (

𝐶𝑎𝑝𝑝𝑟𝑜𝑥.

1000
− 1) × 1000,      (8) 

where C is equal to the calculated isotope ratio along the flowpath. 

 



16 

 

3.4 Model Parameters 

3.4.1 Aquifer  

Where available, aquifer hydraulic parameters were taken from prior studies within the 

lower Wilcox (Brahana and Broshears 2001; Pugh 2009) or representative values for the 

medium lithology (Fetter 2001; Freeze and Cherry 1979).  A variety of values were found 

for hydraulic conductivity k; as no spatial trend was apparent, an arithmetic average was 

calculated. The value of k was the same order of magnitude used in the MERAS model 

(Clark and Hart 2009) and values compiled by Haile (2011), which varied from 1 × 10-3 

cm/s to 4.5 × 10-2 cm/s. 

3.4.2 Aquitard 

No hydraulic characteristics were located for the Midway Group, but none were needed 

because no flow from one unit to the other was modeled. A diffusive coefficient in a 

clay-rich medium (Hendry and Wassenaar 1999) was used to represent 18O diffusion in 

the Midway Group. Table 1 provides a summary of constant model parameters. 

 

Table 1- Model parameters and source. 

Parameter Value Units Source 

Model Mesh 250 m  

Time Tolerance 0.1   

Aquifer Hydraulic Conductivity 0.00003 m/s 

Arithmetic average; 

Brahana and Broshears 

2008; Pugh 2009 

Aquifer Thickness 20–400 m Arbitrary 

Aquifer Porosity 
0.15– 

0.225 
 Castany 1967 

Aquitard Porosity 0.35  Castany 1967 

18O Diffusion Coefficient 2.27 × 10-9 m/s Tanaka 1975 

18O Diffusion Coefficient in Clay 1.7 × 10-10 m/s 
Hendry and Wassenaar 

1999 

Longitudinal Dispersion 0.83×log(L*)2.414 m Xu and Eckstein 1995 

* where L is flowpath length 
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3.4.3 Initial Conditions 

Initial values of head were calculated linearly along the modeled flowpath, assuming a 

hydraulic head of zero at the lower boundary, as: 

ℎ(𝑥)  =  
𝑅𝑀

𝑘𝑓
(𝐿 − 𝑥),                   (9) 

where RM is the mean recharge, kf is the aquifer hydraulic conductivity, L is the flowpath 

length, and x is distance along the flowpath.  

As no information on aquitard porewater δ18O or absolute ages of current lower Wilcox 

groundwater samples from Haile (2011) was available, an initial value for each had to be 

approximated. The initial isotope ratio was based on the calculated meteoric δ18O values 

of Harmon and Schwarcz (1981) under two assumptions: 1) aquifer water would fall 

somewhere within the range of calculated values and 2) aquitard values, assuming fluxes 

both into and out of the aquitard, could approach the mean of prior isotope signals. With 

that in mind, the mean of the modeled isotope signal or speleothem-based values 

(Harmon and Schwarcz 1981) were used for aquitard isotope ratio, and the median was 

used for the aquifer.   

3.4.4 Isotope and mass flux 

Annual effective recharge (= precipitation – evapotranspiration) reported by Haile (2011) 

was used as a starting point for recharge. This was adjusted to match the observed head 

gradient within the lower Wilcox.   

Isotope signals were based on speleothem drip water, trends in speleothem δ18O, and 

inferences based on qualitative proxies (sea level, glaciation, loess and till deposition). 

Additional isotope signals were based on groundwater velocities inferred from 36Cl and 

observed δ18O values within the lower Wilcox (Haile 2011). The 18O flux was calculated 

as a piecewise function of 5000-yr intervals across the study period (Fig. 11; Appendices 

A and B). Dates between speleothem-based values were calculated using linear 

interpolation and qualitative proxies. 
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Figure 11 - High enrichment and low enrichment (Harmon and Schwarcz 1981), and 

Wilcox observed isotope input signals. 
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Chapter Four 

4. Results 

4.1 Sensitivity Analysis 

A sensitivity analysis was conducted to determine the individual influence of varied 

groundwater velocity and isotope abundance gradient on the distribution of δ18O in the 

aquifer. Groundwater velocity was varied from 1.82 × 10-9 to 2.81 × 10-7 m/s. Aquitard 

thickness was tested across a range of values from 40 to 400 m. Aquitard isotope 

abundance was altered from equal to 100× aquifer isotope ratio. Aquifer thickness was 

maintained at 40 m across all tests. Initial aquitard and aquifer δ18O values were -4 ‰ 

and -6 ‰, respectively, except for isotope concentration gradient analysis. 

The δ18O value mid-flowpath is maintained as groundwater velocity increases from the 

minimum to 1.96 × 10-8 m/s, then fell as velocity increases further (Fig. 12). Aquifer δ18O 

is notably higher at lower velocities, with an increase of almost 1 ‰ between the highest 

velocity and velocities ≤ 10-8 m/s. The decrease in δ18O with increasing velocity is likely 

due to advection transporting water through the aquifer faster than aquitard-aquifer 

diffusive exchange can alter the isotope ratio. This supports prior work (Hendry and 

Schwartz 1988; LaBolle et al. 2008) suggesting that diffusive flux from a bounding 

aquitard is capable of influencing aquifer isotope abundances as velocity decreases. 

Regression indicates a non-linear trend as best fit across the range of groundwater 

velocities tested (Fig. 13). 

 
Figure 12 - Aquifer δ18O vs. groundwater velocity mid-flowpath (150 kyr run time) for 

cell-centered interaction (0.5bt). Initial δ18O values for water in the aquifer and aquitard 

are shown with green and black lines, respectively. δ18O calculated from modeled aquifer 

water isotope ratio (Eq. 9). E is equivalent to a factor of 10. 
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Figure 13 - Aquifer δ18O vs. groundwater velocity (150 kyr run time), full aquitard 

thickness interaction, linear and polynomial trends. 

 

 

Figure 14 - Aquifer δ18O vs. ratio of δ18O in the aquifer versus the aquitard. 

 

y = -4E+06x - 5.2338

R² = 0.7486

y = 3E+13x2 - 1E+07x - 5.0676

R² = 0.9353
-6.5

-6.3

-6.1

-5.9

-5.7

-5.5

-5.3

-5.1

-4.9

-4.7

-4.5

0
.0

0
E

+
0

0

5
.0

0
E

-0
8

1
.0

0
E

-0
7

1
.5

0
E

-0
7

2
.0

0
E

-0
7

2
.5

0
E

-0
7

3
.0

0
E

-0
7

δ
1

8
O

 (
‰

 V
S

M
O

W
)

Groundwater Velocity (m/s)

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120

δ
1

8
O

 (
‰

 V
S

M
O

W
)

Aquifer/aquitard abundance ratio 

1 1.2 1.5 2 3 4 10 100



21 

 

Diffusive flux increases with increasing isotope gradient and approaches an asymptotic 

value once aquitard isotope abundance reaches 4 × aquifer abundance (Fig. 14). LaBolle 

et al. (2008) also observed the dependence of the diffusive flux on the isotope 

composition gradient.   

 

4.2 Hypothesis Testing 

The effects of varying aquitard interaction thickness and groundwater velocity were also 

examined for a variable isotope input. The δ18O values inferred by Harmon and Schwarcz 

(1981) for speleothem inclusion waters from Kentucky based on the modern GMWL 

(herein referred to as high enrichment) were input across a 175-kyr runtime. For time 

periods lacking δ18O data, input values were calculated using linear interpolation. A mass 

flux of 0.151 m/yr was maintained unless otherwise noted. 

The diffusive flux is greater for full interaction thickness, as shown by greater variation 

from surface signal isotope values (red vs. orange line; Fig. 15). Increasing the diffusive 

flux by altering interaction thickness increases dispersive mixing (grey and peach; Fig. 

16), while increasing groundwater velocity increases both dispersive mixing and 

penetration of the surface isotope signal (light blue vs. dark blue and green; Fig. 16). 

 

 

Figure 15 - Aquifer δ18O vs. flowpath distance for varying aquitard thickness, full (bt2) 

and cell-centered (0.5bt) interaction thickness, 0.151 m/yr mass flux, high enrichment 

signal with diffusion. 
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Figure 16 - Aquifer δ18O vs. flowpath distance, varied flux, full (bt2) and cell-centered 

(0.5bt) interaction thickness, 40-m aquitard thickness, high enrichment with diffusion. 

 

4.3 Scenario and Wilcox-Specific Testing 

Using observed lower Wilcox δ18O as a surface signal gives a reasonable post-fault 

approximation, assuming 36Cl-derived groundwater travel time to the fault is appropriate 

(Fig. 17). A recharge flux of 0.17 m/yr (groundwater velocity of 3.55 × 10-8 m/s), which 

is slightly greater than both head-calibrated recharge (0.14 m/yr; groundwater velocity of 

2.96 × 10-8 m/s) and effective recharge (0.15 m/yr; groundwater velocity of 3.15 × 10-8 

m/s), provides the best approximation (Fig. 17; light blue).  

 

Figure 17 - Aquifer δ18O vs. flowpath distance, with initial aquifer δ18O equal to -6.06 ‰ 

(median), isotope input equal to observed Wilcox signal without diffusion, and mass 

fluxes of 0.14, 0.15, and 0.17 m/yr. 
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Under the same conditions, with a diffusive flux and a 0.15 m/yr mass flux, the surface 

signal is smoothed and, maintaining the condition of aquitard concentration equal to the 

mean of the aquifer, aquifer isotope ratio is shifted away from observed (Fig. 18).  

 

 

Figure 18 - Aquifer δ18O vs. flowpath distance, with initial aquifer δ18O equal to -6.06 ‰ 

(median), isotope input equal to observed Wilcox signal without diffusion, 0.15 m/yr 

mass flux without (red) and with diffusion (blue). 

 

4.4 Speleothem-Based Isotope Input 

High- and low-enrichment (following the paleo-GMWL of Harmon and Schwarcz 

[1981]) isotope signals were initially tested for head-calibrated, steady-state mass flux. 

Initial conditions and the δ18O surface signal were adjusted based on observed results. A 

low-enrichment isotope signal with varying initial aquifer and aquitard conditions can be 

made to approach the observed lower Wilcox signal with significant aquitard enrichment 

(Fig. 19; light blue). However, fault proximal isotope values are significantly lower than 

observed assuming interpolation between wells is accurate (Fig. 19; green).   
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Figure 19 - Aquifer δ18O vs. flowpath distance, under varied isotope gradient, full (bt2) 

and cell-centered aquitard interaction thickness (0.5bt), 40-m aquitard thickness, 0.14 

m/yr mass flux, using low enrichment signal with diffusion. Advective transport of low 

enrichment signal is shown in black; fault located at 0 m flowpath distance. 

 

The high-enrichment isotope signal with varied initial aquifer and aquitard conditions can 

also be made to approach the observed signal (Fig. 20a, b, c). Modeled δ18O values are 

generally more enriched than observed values unless a diffusive flux into the aquifer is 

created (Fig. 20c; pink and light green curves). Varying the high-enrichment signal brings 

results closer to observed, with the diffusive flux acting to reduce variability within the 

signal. However, the modeled signal, while reproducing the general trend of a significant 

drop in δ18O immediately down-gradient from the fault followed by a gradual down-

gradient increase, cannot closely match the observed signal using selected model 

parameters. 
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Figure 20a 

 

 
 

Figure 20b 
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Figure 20c 

 

Figure 20a, b, c - Aquifer δ18O vs. flowpath distance, high enrichment, full (bt2) and cell-

centered aquitard interaction thickness (0.5bt), 0.14 m/yr mass flux, varied gradient. 

Advective transport of high enrichment signal is shown in black; fault located at 0 m 

flowpath distance. 
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 Chapter Five 

5. Discussion and Conclusions 

Paleoclimate and paleowater δ18O data were difficult to locate for the study area and a 

limited number of data points, with varying degrees of dating precision, were used to 

inform the approximate isotope signal. The model provides a reasonable approximation 

of the observed signal, barring a lack of full surface-signal δ18O penetration, for the 

selected parameters when the observed lower Wilcox signal is used as input. 

Additionally, the added diffusive flux generally behaves as expected, with aquifer isotope 

ratio responding appropriately to variations in isotope concentration gradient. However, 

when using approximated paleoclimate and paleowater isotope ratios, the model does not 

closely match the observed isotope signal. The hydraulic parameters of the aquifer are in 

agreement with prior work, and groundwater velocity has been calculated to the same 

order of magnitude as indicated by Haile (2011). Assumptions regarding upper boundary 

conditions, flow conditions (in particular, the assumption of uniform velocity), and the 1-

D geometry of the model all likely limit the goodness of the match. 

Nonetheless, the general observed trend, a significant drop in δ18O across the fault and 

then a gradual increase to a maximum down the flowpath, is reproduced. Addition of a 

diffusive flux was found both to influence δ18O of groundwater in the aquifer, enriching 

or depleting it depending upon the isotopic gradient, and to smooth the surface signal by 

reducing variability. Sensitivity analyses suggest that as groundwater velocity approaches 

10-8 m/s or less, a diffusive flux into or from a bounding aquitard can influence δ18O of 

groundwater in the aquifer. However, if a diffusive flux is influencing the isotopic 

composition of aquifer waters, then δ18O should increase or decrease with proximity to 

the aquitard. A plot of δ18O vs. distance from the Midway Group contact (Fig. 21) shows 

no clear trend.    
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Figure 21 - δ18O vs. inferred distance from Midway Group contact (from data of Haile 

[2011]). 

 

Another possible explanation for the progressive enrichment in 18O along the lower 

Wilcox post-fault flowpath is cross-formational leakage from an underlying or overlying 

aquifer. The deeper McNairy aquifer, separated from the lower Wilcox by the Midway, is 

not significantly depleted relative to the Wilcox (Brahana and Mesko 1985). Enrichment 

in the lower Wilcox decreases with increasing latitude, which is consistent with Rayleigh 

distillation as air masses originating over the Gulf of Mexico move northward and 

progressively rain out the heavier isotope (18O or 2H) (Haile 2011). Dutton et al. (2005) 

derived the following relationship between latitude (LAT) and δ18O of modern 

precipitation for stations in the conterminous USA at elevations < 200 m above mean sea 

level: 

 𝛿 𝑂 
18 =  −0.0057𝐿𝐴𝑇2 + 0.1078𝐿𝐴𝑇 − 1.6544 (𝑟2 = 0.80)                    (10) 

However, the slope of this empirical relationship is markedly less than the observed 

relationship along the lower Wilcox post-fault flowpath (Fig. 22), and there is not 

independent hydraulic or geochemical evidence for progressive downward leakage along 

the flowpath. 
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Figure 22 - Observed lower Wilcox δ18O (Haile 2011) and inferred δ18O trend of modern 

precipitation (Dutton et al. 2005) vs. latitude. 

 

There is evidence of possible downward, relatively rapid leakage along faults in the New 

Madrid Seismic Zone. Brahana and Mesko (1985) reported the co-occurrence of 

detectable 3H (2 pCi/L) and low 14C (8.1% modern C) for a 398-m-deep lower Wilcox 

well at Hayti, Missouri (~ 30 km SSW of the Reelfoot Thrust and ~10 km WNW of the 

Axial Fault [Guo et al., 2014]). Isotopically depleted groundwater could be attributed to 

infiltration of melt-water pulses moving down the Mississippi River valley from the 

Laurentide Ice Sheet (Clayton et al. 1966), as recorded in Gulf of Mexico sea floor 

sediments at 14, ~120, and 210 ka (Joyce et al. 1993). However, a significant flux would 

be required to attain the observed δ18O minimum of -6.82 ‰. Assuming binary mixing of 

upgradient groundwater with δ18O of -5.8 ‰ and melt water with δ18O of -10 ‰ (Clayton 

et al. 1966), melt water would have to comprise 24% of groundwater downgradient of the 

fault zone, which is improbable. 
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Figure 23 - δ18O (Harmon and Schwarcz 1981; Haile 2011) vs. recharge date using 

speleothem U/Th dates and velocity derived from 36Cl residence time. 

 

It appears that δ18O behavior along flowpaths in regional aquifers falls along a 

continuum, depending upon the isotopic signal and timing of recharge and the hydraulics 

of the aquifer. In the lower Wilcox, diffusion and cross-formational flow may affect the 

isotopic signal, but diffusion does not appear to have caused differential enrichment of O 

and H isotopes, as indicated by the fact that a plot of δ18O vs. δ2H values falls along the 

local meteoric water line (Haile 2011, Fig. 4.7). Enrichment down the flowpath primarily 

appears to reflect temporal variability in paleorecharge, as indicated by the speleothem 

inclusion water data of Harmon and Schwarcz (1981) (Fig. 23). By comparison, Plummer 

et al. (2012) demonstrated a clear divide in δ18O abundance at the end of the LGM within 

the lower Patapsco aquifer in Maryland (Fig. 1), whereas Hendry and Schwartz (1988) 

presented a pattern of down-gradient 18O enrichment in the Milk River aquifer in Alberta. 

These differences in δ18O distributions are not simply a function of groundwater velocity: 

for all three aquifer systems, velocity is on the order of 10-8 to 10-9 m/s (based on 36Cl 

data for the Patapsco and lower Wilcox and on groundwater-flow modeling for the Milk 

River). Nonetheless, the possible interplay between groundwater velocity and the 

diffusive flux is intriguing. This suggests that along flowpaths with residence times on 

the order of 105 years, variation in δ18O paleorecharge signals may be reduced by 

diffusion into and out of bounding low-permeability units, as well as by mechanical 

dispersion. 
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Appendices 

Appendix A: Observed isotope values by well (Haile 2011) 

Well 

ID 
Town 

Distance 

from 

Recharge 

(km) 

Depth to 

Midway 

(m) 

δ18O (‰ 

VSMOW) 

δ2H (‰ 

VSMOW) 

Depth 

Below 

Land 

Surface 

(m) 

2  18  -5.9 -35.94 45.1 

1  23  -6.05 -36.18 19.2 

3 

Sikeston, 

MO 
37  

-6.11 -36.97 
23.4 

4  44  -5.91 -35.15 89.9 

5 

Parma, 

MO 
83  

-5.51 -33.13 
58.5 

28  99  -6.14 -32.45 190.5 

6 Hayti, MO 124 33 -6.79 -41.31 313.3 

7  129 16.5 -6.82 -39.41 333.4 

8  154 8.25 -6.36 -37.82 336.5 

9  173 16.5 -6.24 -36.94 350.5 

10  184 50 -6.34 -35.7 279.8 

13  202 33 -6.29 -35.33 382.5 

12  207 41.25 -5.99 -35.18 372.5 

11  209 50 -6.04 -34.9 356.6 

14  221 33 -5.94 -34.16 378 

15  223 50 -6.06 -35.49 409.4 

16  237 66.5 -5.93 -34.12 393.5 

17  258 100 -5.9 -33.74 452.7 

18  271 50 -5.92 -33.6 422.4 

20  285 8.5 -5.86 -32.74 438 

19  288  -5.71 -33.06 426.1 

21  294  -5.87 -35.15 428 
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Appendix B: High and low isotope enrichment model inputs (Harmon and Schwarcz 

1981) 

 

Years 

Before 

Present 

Input Time 

Step 

High Enrichment 

(δ18O, ‰ VSMOW) 

Low Enrichment 

(δ18O, ‰ VSMOW) 

250000 0 -5.65 -6.95 

245000 5000 -5.8 -6.75 

240000 10000 -5.6 -6.55 

235000 15000 -5.8 -6.75 

230000 20000 -6 -6.95 

225000 25000 -5.8 -6.75 

220000 30000 -5.4 -6.3 

215000 35000 -4.9 -6.1 

210000 40000 -5.17 -6.4 

205000 45000 -5.45 -6.7 

200000 50000 -5.72 -7 

195000 55000 -6 -7.3 

190000 60000 -5.9 -7.22 

185000 65000 -5.82 -7.14 

180000 70000 -5.76 -7.06 

175000 75000 -5.68 -6.98 

170000 80000 -5.6 -6.9 

165000 85000 -5.8 -7.06 

160000 90000 -6 -7.2 

155000 95000 -6.2 -7.4 

150000 100000 -6.45 -7.66 

145000 105000 -6.7 -7.9 

140000 110000 -6.95 -8.18 

135000 115000 -7.2 -8.4 

130000 120000 -7.45 -8.7 

125000 125000 -7.7 -9 

120000 130000 -5.3 -6.5 

115000 135000 -5.5 -6.75 

110000 140000 -5.7 -7 

105000 145000 -5.5 -6.8 

100000 150000 -5.3 -6.6 

95000 155000 -5.5 -6.8 
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