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ABSTRACT OF THESIS 

 

 

UTILIZATION OF A SMALL UNMANNED AIRCRAFT SYSTEM FOR  

DIRECT SAMPLING OF NITROGEN OXIDES PRODUCED BY  

FULL-SCALE SURFACE MINE BLASTING 

 

Emerging health concern for gaseous nitrogen oxides (NOx) emitted during surface mine 

blasting has prompted mining authorities in the United States to pursue new regulations. 

NOx is comprised of various binary compounds of nitrogen and oxygen. Nitric oxide (NO) 

and nitrogen dioxide (NO2) are the most prominent. Modern explosive formulations are 

not designed to produce NOx during properly-sustained detonations, and researchers have 

identified several causes through laboratory experiments; however, direct sampling of NOx 

following full-scale surface mine blasting has not been accomplished.  

The purpose of this thesis was to demonstrate a safe, innovative method of directly 

quantifying NOx concentrations in a full-scale surface mining environment. A small 

unmanned aircraft system was used with a continuous gas monitor to sample concentrated 

fumes. Three flights were completed – two in the Powder River Basin. Results from a 

moderate NOx emission showed peak NO and NO2 concentrations of 257 ppm and 67.2 

ppm, respectively. The estimated NO2 presence following a severe NOx emission was 

137.3 ppm. Dispersion of the gases occurred over short distances, and novel geometric 

models were developed to describe emission characteristics. Overall, the direct sampling 

method was successful, and the data collected are new to the body of scientific knowledge. 

 

KEYWORDS: Nitrogen Oxides, Explosive Gases, Surface Mine Blasting, Small 

Unmanned Aircraft System, Gas Monitoring 
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Chapter One: Introduction 

In February of 2015, the Office of Surface Mining Reclamation and Enforcement (OSM) 

announced its intention to develop regulations limiting certain toxic gases produced during 

surface mine blasting. The decision was stimulated by a petition filed in April of 2014 by 

the environmental group, WildEarth Guardians (WEG). In its appeal, WEG called on OSM 

to promulgate legislation prohibiting visible emissions of nitrogen oxides (NOx), arguing 

that such emissions pose an immediate risk to human health and safety and universally 

exceed the Environmental Protection Agency’s national ambient air quality standards – 

causes relevant to the protection granted by the Surface Mining Control and Reclamation 

Act of 1977 (SMCRA)1,2. WEG identified the current lack of NOx legislation as a 

“regulatory gap” and petitioned for “enforceable standards” (WEG, 2014a). 

Blasting is an integral part of the surface mining process. Explosive products fracture rock 

with rapidly-expanding gases. The volume of gas produced during a blast is typically 1,000 

times that of the original explosives product (QG, 2011). Various non-ideal circumstances 

can degrade an explosive reaction and form unintended, toxic byproducts. Nitrogen-based 

explosives (particularly ANFO) have the potential to generate NOx when an imperfect 

explosive reaction occurs. Of the various nitrogen oxides, nitric oxide (NO) and nitrogen 

dioxide (NO2) are the most prevalent and hazardous in the blasting context. NO2 is of 

greater toxicity than NO and is a skin, eye, and lung irritant. Concentrated doses can lead 

to illness or death, though the relevant histories of such events in the mining and 

                                                           
1 Section 102(a) describes one of SMCRA’s goals as “protecting society and the environment from the 
adverse effects of surface coal mining operations” (95th Congress, 1977). 
2 Section 515(b)(15)(C)(i)-(ii) states that blasting activities should be limited in order to “prevent injury to 
persons [and] damage to public and private property outside the permit area” (95th Congress, 1977). 
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commercial explosives industries are small. Most accidents resulting from blasting 

emissions have been caused by carbon monoxide (CO), which can become a health issue 

following confined blasting – if the gas migrates through strata to nearby surface structures. 

Gases produced during surface blasting are typically concentrated in a “cloud” or “fume.” 

Dispersion of a cloud usually occurs within a short time, as the prevailing wind transports 

it from the blast site; however, it is possible for clouds to be (1) contained within the blast 

site if the explosives are detonated in a confined area (such as a pit) or (2) carried across 

the permit boundary if the blast occurs near the boundary or is of considerable scale.  

Currently, the NOx concentration present in blast-generated clouds is understood 

qualitatively by cloud coloration – yellow, orange, red, and brown. There have been few 

attempts to acquire direct, physical measurements from blast-generated clouds to represent 

the various observed colors. Risk of exposure to concentrated, harmful gases (such as 

NOx), heavy dust, and distance to the shot (typically >1,000 feet for safety from fly 

material) limit effective gas sampling options.  

The purpose of this project is to demonstrate a safe, innovative method of directly 

quantifying NOx concentrations generated by full-scale surface mine blasting. A small 

unmanned aircraft system (sUAS) and continuous gas monitor are used to collect 

measurements. Experimental results contribute to the body of knowledge regarding blast-

generated NOx, advance the scientific understanding of blasting’s immediate impact on the 

local atmosphere, and offer objective insight into the extent of human health risk. 

 

Copyright © Robert Brendan McCray 2016 
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Chapter Two: Review of Literature 

2.1 Assessment of Blast-generated NOx 

Previous studies evaluating explosive-generated NOx have primarily been conducted in 

isolated blasting chambers or controlled-volume facilities. Experiments by Chaiken et al. 

(1974), Mainiero (1997), Rowland and Mainiero (2000), Rowland et al. (2001), and Sapko 

et al. (2002) measured the small-scale NOx output of the most widely-used explosives 

products, including ANFO, emulsion, and ANFO/emulsion blends. These same 

experiments evaluated some of the potential sources of NOx, discussed in Section 2.2. 

Few studies have attempted to measure NOx following full-scale surface mine blasting, 

primarily due to practical difficulties involved with prediction of the cloud path and 

retrieval of representative samples. Attalla et al. (2008) published a paper describing an 

indirect method quantifying NOx inside of blast-generated clouds using ultraviolet 

spectrometry. The data were supplemented by ground-level gas monitor readings collected 

downwind. The evaluation focused on NO2 and concluded that the gas was present in 

observed clouds between 0 and 7 ppm, with a maximum recorded value of 17 ppm. 

At this time, there are no physical data available that can adequately quantify the 

instantaneous peak NOx concentrations within blast-generated clouds. For this reason, NOx 

presence is visually classified in a qualitative manner. It is generally accepted that low NOx 

concentrations are associated with pale yellow, high with dark red or purple, and 

intermediate with various intensities of orange (WEG, 2014a; QG, 2011; and AEISG, 

2011). The color of the cloud is the result of NO2 alone. According to the Queensland State 

Government, 2.5 ppm NO2 is the minimum visible concentration (WEG, 2014b). The 
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Australian Explosives Industry and Safety Group Inc. (AEISG) has developed a 

standardized, qualitative color chart for describing blast-generated NOx (Figure 2.1). The 

chart is one of few published NOx management techniques in the mining and commercial 

explosives industries. 

 

Figure 2.1: Sample Standardized Color Chart (AEISG, 2011) 

Figure 2.2 provides a visual reference to levels one through five of the AEISG color chart. 

The letter code assigned to a particular fume level in Figure 2.2 refers to the extent of NOx 

produced across the blasting pattern. Localized refers to only a few blast holes, Medium 

refers to 50% of the holes, and extensive indicates that all blast holes are responsible for 

the emission (AEISG, 2011). 

Fume Level

Pantone 158C

(RGB 232, 117, 17)

Pantone 1525C

(RGB 181, 84, 0)

Pantone 161C

(RGB 99, 58, 17)

Color Pantone Number

Warm Grey 1C

(RGB 244, 222, 217)

Pantone 155C

(RGB 244, 219, 170)

Pantone 157C

(RGB 237, 160, 79)

Level 5

Red/purple gases

Level 0

No NOx gas
Level 1

Slight NOx gas

Level 2

Minor yellow/orange gas

Level 3

Orange gas

Level 4

Orange/red gas
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Figure 2.2: Sample Fume Reference (AEISG, 2011) 
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2.2 Sources of NOx  

Potential sources of NOx have been identified through laboratory studies. The following 

list represents a thorough (but not necessarily comprehensive) collection of factors that 

affect an explosive’s performance (QG, 2011): 

1) Manufacture and specification of explosive ingredients  

2) Explosive mixture (e.g. under-fueled ANFO)  

3) Density of loaded explosives  

4) Degree of confinement 

5) Water damage 

6) Ground conditions (cracks, voids, etc.) that affect planned loading practices  

7) Borehole loading practices  

ANFO is most commonly associated with NOx production, though past experiments have 

explored the relationships between ANFO, emulsion, and various blends of the two agents.  

Early work by Chaiken et al. (1974) tested ANFO mixtures within the Bureau of Mines 

closed gallery facility. Findings showed that under-fueled ANFO produced increased 

volumes of NOx. Later work by Mainiero (1997) and Rowland and Maniero (2000) 

monitored the detonation of various mixtures of ANFO in the National Institute for 

Occupational Safety and Health’s Pittsburgh Research Laboratory. Results indicated that a 

mixture of 94% ammonium nitrate and 6% fuel oil was close to optimum for minimizing 

the volume of NOx generated. Figure 2.3 displays relevant data collected by Rowland and 

Mainiero (2000) and demonstrates the trend in NOx and NO2 by fuel oil content.  



 

7 
 

 

Figure 2.3: Effect of ANFO Fuel Oil % on NOx (Rowland and Mainiero, 2000) 

Rowland and Mainiero (2000) also evaluated the effect of water content (i.e. water damage) 

on NOx generation. Figure 2.4 identifies a generally-increasing trend in NOx production as 

ANFO (6% fuel oil) is exposed to larger concentrations of water. 

 

Figure 2.4: Effect of ANFO Water Content on NOx (Rowland and Mainiero, 2000) 
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Other notable findings by Rowland and Mainiero (2000) included testing of aluminum and 

rock dust additives in 6% fuel oil ANFO mixtures. The presence of aluminum did not 

increase NOx emissions; however, rock dust did. The results indicated that that drill cutting 

contamination in explosives (i.e. rock dust) influenced the quality of detonation. 

Rowland et al. (2001) assessed the NOx production of emulsion and ANFO/emulsion 

blends at the Pittsburg Research Laboratory. The authors specifically examined the effect 

of relative confinement, using schedule 80 steel pipe and galvanized sheet metal pipe. In 

addition, samples were exposed to various intervals of water exposure to explore 

degradation of explosive mixtures over time. The water component of the experiment was 

tuned to address conclusions presented by Schettler and Brasher (1996), which stated that 

an ANFO/emulsion blend was only water-resistant with 40% or greater emulsion content 

and water-proof with at least 50% emulsion. Results presented by Rowland et al. (2001) 

agreed with the previous evidence, showing that water introduced to a 70/30 

ANFO/emulsion blend for one day prevented detonation and any water exposure of the 

blend within the galvanized sheet metal pipe completely inhibited detonation. Furthermore, 

the 50/50 blends were water resistant for short-term exposures up to one week. Pure 

emulsion detonated even after two months. It was noted that, while there was no substantial 

deviance in detonation velocity, and the physical appearance of the agent appeared normal 

after two months, NOx production was higher than anticipated. 

Sapko et al. (2002) conducted a series of controlled tests designed to evaluate ANFO 

particle size, inexpensive additives, relative confinement, critical diameter, water 

stemming, oil wicking, and detonation within an air-displaced atmosphere. The authors 

compared NOx volumes generated by ANFO, emulsion, and a 50/50 blend in the Pittsburg 
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Research Laboratory. Findings showed that lower relative confinement, fuel oil wicking 

by dry/soft/porous soil during extended sleep times (especially in small boreholes), ANFO 

water damage, and drill cutting contamination in emulsion increased NOx. In addition, the 

various additives (urea, coal dust, aluminum powder, excess fuel oil) reduced NOx. 

The laboratory testing previously described is organized by author in Table 2.1. It lists the 

lowest and highest volumes generated per kilogram of blasting agent. If no range was 

provided by a particular author, point estimates are listed (Chaiken et al., 1974 and EPA, 

1980). The concept for this tabular organization was derived from a report published by 

Lashgari et al. (2013), which evaluated mine-wide environmental NOx emissions from 

equipment and blasting. 

Table 2.1: Laboratory Testing, Volume of NOx per Kilogram of Blasting Agent 

 

AUTHOR AGENT CONDITION
NOx 

(L/kg)

Chaiken et al. (1974) ANFO Under fueled 7.0

Environmental Protection Agency ANFO 1980 Published Estimate 5.8

Low, 94/6 product 2.5

High, under fueled 4.8

Low, 0% Water, 94/6 2.0

High, under fueled, 99/1 9.9

Low, no water 2.7

High, one week water 6.5

Low, steel pipe, one week water 5.0

High, steel pipe, one month water 11.8

Low, steel pipe confinement 11.0

High, galv. steel pipe confinement 36.5

Low, steel pipe confinement 4.2

High, drill cuttings contamination 6.2

Low, steel pipe confinement 19.6

High, galv. steel pipe confinement 31.0

Rowland and Mainiero (2000)

Mainiero (1997) ANFO

Rowland et al. (2001)

Sapko et al. (2002)

50/50

50/50

ANFO

Emulsion

ANFO

Emulsion
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Figure 2.4 provides an improved graphical representation of the various ranges and point 

estimates presented in Table 2.1. 

 

Figure 2.4: Relevant Estimates of Blast-generated NOx 

Based on existing research, it is clear from Figure 2.4 that ANFO and 50/50 

ANFO/emulsion blends are expected to generate elevated volumes of NOx compared to 

pure emulsion. Emulsion naturally has water resistance by its composition, providing some 

explanation for the narrow range of NOx generated per kilogram of the explosive. In 

addition, Sapko et al. (2002) suggested that another specification of emulsion is also 

influential. Specifically, the difference in grain size between ANFO and emulsion. 

According the authors, Ammonium nitrate prills in ANFO are relatively large. 

Alternatively, the nitrate component of emulsion is in solution, allowing for enhanced 

contact with the emulsified fuel. The detonation of emulsion therefore facilitates immediate 

reactions of NOx with hydrocarbons, generating more nitrogen and water instead of NO. 
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2.3 Evaluating Cloud Dispersion 

Cloud Dispersion is the natural dilution of toxic gaseous components to safe or ambient 

atmospheric concentrations. NOx generated by surface blasting typically disperses in 

seconds to minutes, depending on the scale of emissions, local atmospheric conditions, and 

initial toxicity of the cloud (Sapko et al, 2002; AEISG, 2011; and QG, 2011). The cloud 

dispersion rate directly affects human health and safety, since concentrations of NO and/or 

NO2 may remain sufficiently high for a short period after a blast to harm individuals in the 

cloud path (AEISG, 2011). There are few examples of formal cloud dispersion analyses, 

but those available have applied computer-based dispersion modeling techniques.  

Attalla et al. (2008) utilized AFTOX to evaluate whether concentrations of NO2 from 

observed blasting emissions were unhealthy at five kilometers downwind. The findings 

suggested that NO2 levels at this distance and beyond “may be indistinguishable from 

background levels; typically of the order of several parts per billion, in most cases” (Attalla 

et al., 2008). AFTOX is a toxic chemical dispersion model developed by the United Stated 

Air Force. It is a Gaussian dispersion model designed for continuous or instantaneous 

emissions of liquids or gas from a single location (plume emissions). AFTOX can be used 

to calculate a toxic corridor (hazardous concentration by distance from the source), the 

concentration at a specific location, or the maximum concentration and its associated 

location (Kunkel, 1991 and Dungey, 1993).  

The Queensland Government in Australia (QG, 2011) developed a human exclusion zone 

as a guide to protect individuals from NO2 concentrations above 5.0 ppm. The exclusion 

zone was defined using SLAB modelling software. SLAB is an atmospheric dispersion 
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model for denser-than-air plume releases, such as blast-generated NO2. It calculates 

dispersion by solving for conservation of mass, momentum, energy, and species. The 

model was developed at the Lawrence Livermore National Laboratory (Ermak, 1990). 

Table 2.2 is a reconstruction of the human exclusion table produced by QG (2011). 

Exclusion distances downwind and crosswind from blasting are derived from the fume 

level (i.e. a specific initial NO2 concentration) and local atmospheric wind conditions. 

Table 2.2: Guide for Human Exclusion Distance from Blasting (QG, 2011) 

 

Table 2.2 is one of few published dispersion tools and is burdened by limited data and a 

number of critical assumptions, including the following (QG, 2011): 

1. Initial clouds are universally 100 meters by 100 meters in size and extend from the 

ground vertically to 150 meters. 

2. The surface roughness applied in the model is 0.05 meters, representative of a 

grassland landscape 

3. Up to five times NO2 may appear through oxidation of NO to NO2 during 

dispersion. 

A

(very unstable) 

High Temp, 

Windy

B

(unstable)

C

(slightly 

unstable)

D 

(neutral)

Wind Speed 

6.8 - 12.6 kmph 

(4.2 - 7.8 mph)

Wind Speed 

2.9 - 10 kmph 

(1.8 - 6.2 mph)

Wind Speed 

1.4 - 4.32 kmph 

(0.9 - 2.7 mph)

Wind Speed 

1.4 - 2.2 kmph 

(0.9 - 1.4 mph)

0 2 100 100 100 100 1,200 100

1 4 130 140 150 150 3,000 150

2 7 400 500 500 500 4,000 500

3 17 600 1,000 1,200 1,200 8,000 1,000

4 70 900 1,600 3,000 3,000 13,000 1,500

5 500 1,600 3,000 5,000 5,000 20,000 2,000

Crosswind 

Exclusion Distance 

(m) (from blast 

cloud center line)

Downwind Exclusion Distance (m) Required to Maintain NO2 

Below 5.0 ppm

Fume 

Category 

(subjective 

ranking)

Initial 

NO2 

(ppm)

Stability Class and Wind Speed
Potential 

Extent of 0.12 

ppm (m) (odor 

threshold)
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Assumption three is a major uncertainty. Oxidation of NO to NO2 occurs naturally in air, 

since NO is unstable in the presence of oxygen and moisture (Wieland 1998 and Onederra 

2012). Oxidation occurs through the following chemical reaction: 

2𝑁𝑂 + 𝑂2  → 2𝑁𝑂2                                 (1) 

The rate of oxidation depends on the initial NO concentration and time (Sapko et al., 2002). 

Mainiero et al. (2006) examined the kinetics of oxidation for NO as a gaseous detonation 

product, finding a consistent rate constant for concentrations of NO up to 100 ppm 

(Mainiero et al., 2006). As a result of oxidation, the immediate, post-blast NO2 

concentration may be the largest measurable, but more of the gas will form as the cloud is 

in transit and dispersing. 

In addition to Attalla et al. (2008) and QG (2011), The United States Bureau of Land 

Management (BLM, 2010) referenced an unspecified NOx modelling method in its 

comprehensive environmental impact statement for the Wright, Wyoming area coal lease 

applications. According to the publication, air quality permit applications submitted by the 

Black Thunder, Jacobs Ranch, and North Antelope Rochelle mines were evaluated, in order 

to assess the worst-case annual NOx emissions (blasting and other sources). The indirect 

modelling analysis by the BLM found that “impacts from the worst case years fall well 

below the annual NO2 NAAQS of 100 µg/m3” (BLM, 2010). NAAQS refers to the National 

Ambient Air Quality Standards, set forth by the Environmental Protection Agency (EPA, 

2011). The secondary standard requires an average atmospheric NO2 concentration of at 

most 53 ppb over one year, as codified in 40 CFR 50.11 (see Section 2.5 for further 

information). 
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2.4 Relevant Occupational Health Standards and Epidemiology of NO2 

The Occupational Safety and Health Administration (OSHA), American Conference of 

Governmental Industrial Hygienists (ACGIH), and National Institute for Occupational 

Safety and Health (NIOSH) have published standards regarding human exposure to NO 

and NO2. Table 2.3 displays the current OSHA regulatory exposure limits, in addition to 

those suggested by ACGIH and NIOSH (OSHA, n.d.; ACGIH, 2012; NIOSH, 1995). 

Table 2.3: Toxicity Measures of NO2, NO, and CO 

 

(A) PEL: Permissible exposure limit – defined as either (1) an 8-hour time-weighted average, (2) a 15 minute short term exposure  

limit, or (3) a ceiling exposure concentration  
(B) TLV: Threshold limit value – see PEL  
(C) REL: Recommended exposure limit – see PEL  
(D) IDLH: Immediately dangerous to life or health concentration 

NO2 is a more prominent health concern than NO, as demonstrated by Table 2.3. NO2 is a 

corrosive, reactive gas that has a strong odor. According to NIOSH (1979), symptoms of 

acute exposure vary, based on the duration and concentration. Minor exposures can result 

in irritation of the skin, eyes, and nose, in addition to coughing, shortness of breath, and 

headaches. Exposure for extended time periods or to elevated concentrations can cause 

pulmonary edema, a severe and often fatal outcome that congests the lungs with fluid. The 

exact duration and/or concentration of NO2 that produce pulmonary edema are not defined, 

but it is known that a latency period of 3 to 30 hours exists between initial exposure and 

onset of symptoms. 

SUBSTANCE OSHA REGULATORY PEL(A) ACGIH TLV(B) NIOSH REL(C) NIOSH IDLH(D)

Nitrogen Dioxide 5 ppm Ceiling 0.2 ppm TWA 1 ppm STEL 20 ppm

Nitric Oxide 25 ppm TWA 25 ppm TWA 25 ppm TWA 100 ppm

Carbon Monoxide 50 ppm TWA 25 ppm TWA
35 ppm TWA; 

200 ppm Ceiling
1,200 ppm
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OSHA derived its regulatory ceiling limit of 5 ppm from the findings of several 

epidemiologic studies that assessed human exposure to NO2. Douglas et al. (1989) 

examined the medical outcomes of 17 patients exposed to silo gas (NO2 generated during 

natural fermentation of chopped forages) between 1955 and 1987. Of the study group, 11 

suffered from acute lung injury, one of whom perished from pulmonary edema. Helleday 

et al. (1995) assessed the mucociliary activity of 24 healthy individuals in vivo. The 

subjects were divided into three groups and exposed to either 1.5 ppm NO2 for 20 minutes, 

3.5 ppm NO2 for 20 minutes, or 3.5 ppm NO2 for four hours. The authors concluded that 

“short-term exposure to NO2 in man produces a significant reduction in the mucociliary 

activity 45 [minutes] after exposure,” ceasing within 24 hours. Linaker et al. (2000) 

evaluated the relationship between NO2 exposure in asthmatic children and post-

respiratory-infection airway constriction. Results demonstrated that relatively low 

concentrations of NO2 increased the risk of asthmatic exacerbation after respiratory 

infection. Frampton et al. (2002) studied the cause-effect relationship between exposure to 

NO2 and respiratory health. A total of 21 healthy patients were subjected to a range of 0.6 

to 1.5 ppm NO2 for three hours with some exercise. In vitro testing of cells collected via 

phlebotomy and bronchoscopy revealed a weakened immunity of epithelial cells to 

respiratory viruses. 

NIOSH developed its recommended exposure limit for NO2 based on an extensive case 

history of environmental data and epidemiological analyses. Smith (1976) described the 

criteria relative to the development of the NIOSH standard, which was designed for a 10-

hour workday, a 40-hour workweek, and the lifetime of an employee. The report included 

relevant examples of occupational exposure, animal experimentation, and a small number 
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human studies that evaluated only low concentrations of NO2. It also addressed acute and 

chronic exposure to NO2 and provided some discussion of continuous versus intermittent 

exposure. The findings correlating exposure and effect stated that “the acute and usually 

delayed effects of higher concentrations of nitrogen dioxide on man are well established.” 

Eight human case histories demonstrated evidence of delayed onset of pulmonary edema. 

Several of the afflicted individuals also experienced relapse after recovering from the initial 

pulmonary edema. Relapse was attributed to bronchiolitis fibrosa obliterans, a pathologic 

legion of the lung. Conditions relevant to acute pulmonary edema and bronchiolitis fibrosa 

obliterans were described in the context of the relative NO2 concentration at exposure: 

[Pulmonary edema and associated relapse events] have not been reported at 

relatively steady low levels of exposure associated with those few industrial 

processes in which oxides of nitrogen are steadily generated and get into the 

workplace atmosphere. All reported cases have arisen as a result of sudden or 

intermittent emission of oxides of nitrogen from an accidental event such as an 

explosion or combustion of nitroexplosives, the accidental escape or spilling of 

concentrated nitric acid, the intermittent process of arc or gas welding, especially 

in a confined space, or the imprudent entry into an agricultural silo which was not 

ventilated. (Smith, 1976) 

It was observed by NIOSH that the “characteristic delay” between initial exposure and 

onset of pulmonary edema was 12 hours (Smith, 1976). 

Though not referenced by OSHA or NIOSH, a more recent study published by Hesterberg 

et al. (2009) examined fifty experimental studies of short-term human inhalation of NO2. 

The authors did not determine a consistent trend in changing lung function or bronchial 

sensitivity with increasing NO2 concentrations. It was concluded that “a health-protective, 

short-term NO2 guideline level for susceptible (and healthy) populations would reflect a 

policy choice between 0.2 and 0.6 ppm” (Hesterberg et al., 2009). 
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2.5 Relevant Air Quality Standards 

The Environmental Protection Agency (EPA) regulates atmospheric NO2 under the Clean 

Air Act, along with four other air pollutants: ground-level ozone, particulate matter, carbon 

monoxide, and sulfur dioxide (40 CFR § 50-97, 2010). The annual arithmetic average 

concentration of NO2 must not exceed 53 ppb. A revision in 2010 included a 1-hour short-

term arithmetic average restriction of 100 ppb NO2 (40 CFR § 50.11, 2010). These limits 

are referred to as national ambient air quality standards (NAAQS). NAAQS values are 

designed to combat adverse human health effects of the specified pollutants (EPA, 2011).  

The EPA has developed an air quality index (AQI) as a standardized method of reporting 

polluted atmospheres and identifying sensitive groups. Larger index values indicate a 

greater health concern. AQI values of 100 are intended to match the NAAQS. Table 2.4 

shows the NO2 AQI, including cautionary statements (EPA 2006 and EPA 2011). 

Table 2.4: Air Quality Index for Atmospheric NO2 (EPA, 2006 and EPA, 2011) 

 

AQI Range
1-Hour NO2 

Average (ppb)
AIR QUALITY CAUTIONARY STATEMENT

0 - 50 0 - 53 Good None

51 - 100 54 - 100 Moderate
Unusually sensitive people should consider reducing prolonged 

or heavy outdoor exertion.

101 - 150 101 - 360
Unhealthy for 

Sensitive Groups

Active children, the elderly, and people with lung disease, such 

as asthma, should reduce prolonged or heavy outdoor exertion.

151 - 200 361 - 649 Unhealthy

Active children, the elderly, and people with lung disease, such 

as asthma, should avoid prolonged or heavy outdoor exertion; 

everyone else, especially children, should reduce prolonged or 

heavy outdoor exertion.

201 - 300 650 - 1,244 Very Unhealthy

Active children, the elderly, and people with lung disease, such 

as asthma, should avoid all outdoor exertion; everyone else, 

especially children, should avoid prolonged or heavy outdoor 

exertion.

> 301 > 1,245 Hazardous

Children, the elderly, and people with lung disease, such as 

asthma, should remain indoors; everyone else, especially 

children, should avoid outdoor exertion.
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The short-term NAAQS for NO2 is relevant to surface blasting, since clouds have been 

observed propagating beyond permit boundaries in some instances (Sapko et al., 2002; 

BLM, 2010). There are few studies that have directly compared the impact of blast-

generated NOx with public air quality. A thorough search produced only one example. 

Battelle (2012) prepared an extensive report for the West Virginia Department of 

Environmental Protection that demonstrated continuous and passive sampling of air 

pollutants (including NO2) in a community neighboring two active surface coal mines. 

EPA-accepted sampling techniques were applied, in order to evaluate the impact of mine 

blasting on local air quality. Analysis of readings collected during a two-week period 

produced the following conclusion: “The overall finding of this study thus is that the local 

air quality is well within applicable health-based standards and does not appear to be 

affected by emissions from nearby blasting events in surface coal mining” (Battelle, 2012). 

2.6 History of Casualties Caused by Blast-generated Gases 

Carbon monoxide has been proven to be responsible for the overwhelming majority of 

injuries caused by gases generated during surface blasting. An extensive literature base has 

been dedicated to the dangers of carbon monoxide in the mine blasting context. 

Researchers have discovered that confined blasting (esp. trench blasting) can suppress the 

release of gases into the atmosphere, causing gases to migrate through cracks, joints, and 

other geologic discontinuities (Eltschlager et al., 2001; Santis, 2001; Santis, 2003; Harris 

et al., 2004; Harris et al., 2005). Between 1988 and 2005, there were 13 documented cases 

of carbon monoxide propagation through strata into nearby structures (Harris et al., 2005). 
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Casualties of blast-generated NOx have primarily occurred in underground mining. 

Wieland (1998) reported anecdotally on the dangerous nature of NO2, stating: “typical of 

circumstances was a workman who inhaled dynamite fumes for some time, felt well during 

the working day, noticing no ill effects that night, only to die the next day of pulmonary 

edema.” Kennedy (1972) studied 100 underground coal miners over 10 years, all of whom 

had exposure to “nitrous fumes” from conventional blasting techniques. The author 

discovered that low exposures over months to years produced an “emphysema-like” health 

condition, and short-duration exposures to high concentrations caused an acute chest illness 

with a generally full recovery. Many of the miners experienced pulmonary edema at some 

point. Peak NO2 concentrations were measured at 88 ppm and 167 ppm during regular 

blasting and misfires, respectively (Kennedy, 1972).  

Attention has recently shifted to NOx generated during surface blasting, though there are 

few examples of public or mine personnel requiring medical attention because of contact 

with the gases. OSM documented instances of public exposure to NOx from Arch Coal’s 

Black Thunder Coal Mine in the Powder River Basin prior to 2001, which resulted in 

special control measures when large overburden shots are planned (BLM, 2010). Mining 

authorities in Australia reported in 2011 that a two-week period of blasting in intensely 

saturated ground resulted in the formation of four major clouds. Two clouds forced a total 

of twenty four surface miners to report to a hospital for NOx exposure (Madden, 2011). A 

thorough examination of literature revealed only one surface mine blasting fatality to be 

the direct result of post-blast NO2 exposure. The event occurred in the Philippines in 2006. 

According to the Queensland Department of Natural Resources and Mines, a blaster was 

conducting a post-blast inspection at a quarry and fell into a void eight meters deep. 
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Hospital staff treated him for minor injuries, but his trouble breathing was not properly 

addressed. The next day, he succumbed to severe pulmonary edema (Madden, 2011). 

Beyond these examples, blast-generated NOx is an obscure health and safety influence in 

the surface mining context. 

WEG expressed the latest concern for NOx generated during surface blasting, in its petition 

to OSM. The organization’s inquiry was primarily directed at cast blasting operations, such 

as those in the Powder River Basin region of the United States (WEG, 2014a). Cast blasting 

at surface coal mines in the Powder River Basin sometimes detonates up to two million 

pounds of blasting agent in a single event (Sapko et al., 2002 and Mainiero et al., 2006). 

The existing body of knowledge regarding blast-generated NOx must be expanded, in order 

to bridge the current knowledge gap and address unanswered questions regarding the initial 

toxicity of large NOx clouds and the nature of their dispersion. 
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Chapter Three: Summary of Proposed Concept 

Direct sampling during the formation and dispersion of blast-generated NOx clouds has 

historically been considered impractical, due to the inherently violent and hazardous nature 

of mine blasting. Post-blast conditions at mine sites are unsafe because of gas and dust 

contaminants in the local atmosphere, elevated bench heights, and disturbed geologic 

environments. Blasters and observers typically also recognize an observation distance of 

1,000 feet, as a rule of thumb to remain safe from fly material. The application of small 

unmanned aircraft system (sUAS) technology is capable of overcoming perceived safety 

and accessibility challenges.  

The primary value of deploying an sUAS is safety. Most modern radio controllers for sUAS 

permit flight distances up to one mile. For this reason, operators, assistants, and other 

observers should face no exposure to potentially-harmful, post-blast conditions, and flights 

can be conducted from a pre-determined location. Safety risks generated by sUAS 

operations are limited almost exclusively to personnel injury during landing and takeoff; 

however, such events are preventable with proper standard operating procedures. The 

sparse mine setting provides an ideal flight location for remote operated aircraft. 

Rotorcraft sUAS are specifically capable of facilitating accessibility to NOx clouds during 

both formation and dispersion. Many rotorcraft can achieve speeds between 20 and 45 

miles per hour. As a result, intercepting a cloud is possible within seconds. The machines 

can be repositioned dynamically and, through GPS guidance, are capable of hovering at a 

stationary location. Unique flight modes also provide control options that are not available 

with fixed-wing sUAS. Flight modes are described in Sections 4.2, 4.3, and 5.2. 
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Overall, remote operation of rotorcraft sUAS offers an efficient method of evaluating (1) 

the immediate impact of surface mine blasting on the local atmosphere, (2) the dissipation 

of blast-generated clouds, and (3) oxidation of NO to NO2 in a full-scale mining 

environment. The purpose of the following sections is to establish this novel sampling 

method and demonstrate practical results. 
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Chapter Four: Powder River Basin Sampling 

4.1 Overview 

Two flights were completed in the Powder River Basin. These flights are referred to as 

Flight A and Flight B and are summarized below: 

 Flight A occurred at the Black Thunder Coal Mine, operated by Arch Coal. The 

designated takeoff and landing location was approximately 2,000 feet from the 

blast. The challenge of depth perception in the large open space, in addition to poor 

weather conditions (rain with wind gusts exceeding 20 miles per hour), did not 

allow the S1000+ to come into contact with the blast-generated cloud. It is believed 

that NOx was present in one area of the cloud, but no useful data was collected. 

 

 Flight B occurred at the Coal Creek Mine, operated by Arch Coal. The designated 

takeoff and landing location was about 1,000 feet from the nearest row of holes. 

The shot was an overburden blast (not a cast panel), containing approximately 

330,432 pounds of explosives. Informative data regarding instantaneous 

concentrations of NO, NO2, and CO was collected successfully. 

Section 4.2 describes the instrumentation used to capture gas readings, along with relevant 

technical specifications. Section 4.3 describes the individual methodologies applied in the 

field during both Flight A and Flight B, including pre-blast decision-making and in-flight 

sampling strategy. Section 4.4 illustrates the gas sample collected during Flight B. 
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The established qualitative color scale interpretation of NOx (Figure 2.2) is used to assign 

fume levels to the observed blast-generated clouds. The fume level classifications are 

intended to supplement gas monitor readings by addressing the suspected intensity of NOx 

that is assumed from a purely visual observation. 

4.2 Instrumentation 

The sUAS deployed during testing was a DJI S1000+, manufactured by DJI Innovations. 

The S1000+ is a rotorcraft, with eight motors arranged in a circular pattern. The motors are 

positioned at the end of foldable arms. The full diameter of the machine is four feet, when 

the arms are raised and locked into position. Figure 4.1 shows the sUAS carbon fiber frame 

without any of the flight electronics, battery, or attachments. 

 

Figure 4.1: S1000+ (1) Collapsed and (2) Ready for Operation (DJI Innovations) 

The S1000+ was selected because of its flight capabilities and weight capacity. Pre-

programmed flight modes permit either rectangular navigation or radial turning about the 

takeoff location. It is able to cover a large area quickly, achieving a maximum horizontal 

speed of 45 miles per hour. The flight system can be operated manually via radio controller, 

or a predetermined flight path can be uploaded and traversed autonomously with precision. 

In large open spaces, the flight controller self-corrects in response to adverse conditions, 
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such as variable wind speed and direction (recommended maximum of 20 mph). The 

S1000+ can function properly with an all-inclusive takeoff weight of 24 pounds.  

Figure 4.2 shows the experimental S1000+ and its necessary flight electronics. Rotor 

blades and the antenna are collapsed in the image. 

 

Figure 4.2: DJI S1000+ Equipped with Flight Electronics 

Major components of the S1000+ were assembled by third-party sUAS professionals. 

Sensitive electronic components were fastened further using adhesive Velcro strips. A 

Zenmuse H4-3D gimbal with three axes of stabilization was also installed below the battery 

tray, as displayed in Figure 4.3. 
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Figure 4.3: Battery Tray With Gimbal Attachment Below 

A GoPro Hero4 camera was bound to the gimbal. 4K resolution was used exclusively 

during experimentation to capture the highest-resolution video possible. The camera was 

charged during flight by built-in electronics, and a live video feed was provided to a video 

monitor attached to the radio controller, displayed in Figure 4.4. 

 

Figure 4.4: Futaba 14SGA, 2.4 GHz Radio Controller and Video Monitor Attachment 
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The selected Futaba controller is rated for flight operations up to one mile. Basic features 

of the radio controller include the two flight mode options, a failsafe switch, and a flight 

timer. The video monitor provides telemetry and a measured voltage output of the battery.  

During test flights, the live video feed supplemented line of sight operations within a short 

distance, but consistent signal loss was experienced beyond about 500 feet. A second video 

link antenna was installed on the video monitor, in order to improve signal quality. The 

video link functioned reasonably well up to about 1,250 feet with the additional, more 

receptive antenna. 

During all operations, the flight timer was set at 16 minutes - a value determined based on 

the expected battery life. A 22,000 milliamp-hour, Tattu lithium-polymer battery (22.2 

Volts, 25C, 6S) was used as a power source. The battery was purchased specifically for its 

AS150 connectors, which are designed for use with the S1000+. It weighs 5.53 pounds and 

is rated for over 20 minutes of flight time by its manufacturer. The timer was reduced below 

the rated time to compensate for the added weight of the gas monitor and the large 

operational area. The S1000+ was landed before the timer ended, if the battery dropped 

below 20.7 Volts when the machine was not under load. 

The failsafe feature was used effectively as an auto-land feature during test flights but was 

not used during NOx sampling. The failsafe was considered as an emergency safety option 

at the mine sites. It was only to be used in the event that the operator lost sight with the 

S1000+ for an extended period of time, or if adverse conditions required an immediate 

landing. An auto failsafe also came pre-programmed into the S1000+, so that the machine 

would return in the event of a lost link with the radio controller. 
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The gas monitor attachment selected for use was Industrial Scientific’s iBrid MX6 

aspirator model. The MX6 is a complex sampling tool that is relatively simple to operate. 

It is a continuous gas monitor that draws in gas at a nominal rate of 0.3 liters per minute. 

Pump speed is automatically adjusted by the device, based on inflow resistance. Figure 4.5 

shows the MX6. The aspirator inlet protrudes from the upper left corner.  

 

Figure 4.5: iBrid MX6 Gas Monitor, Aspirator Model (Industrial Scientific) 

Up to five sensors can function simultaneously, providing a comprehensive view of the 

local atmosphere. Table 4.1 lists the sensors that were installed during sampling. 

Table 4.1: Sensors Installed During Sampling 

 

SENSOR MEASUREMENT RANGE RESOLUTION SENSOR TYPE

Oxygen (O2) 0 - 30% Vol 0.1% Electrochemical

Carbon Dioxide (CO2) 0 - 5% Vol 0.01% Infrared

Carbon Monoxide (CO) 0 - 1,500 ppm 1.0 Electrochemical

Nitrogen Dioxide (NO2) 0 - 150 ppm 0.1 Electrochemical

Nitric Oxide (NO) 1 - 1,000 ppm 1.0 Electrochemical
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The MX6 is equipped with a data logger, which evaluates gas readings at a user-specified 

sampling interval and stores the information within internal memory. Data logger entries 

include various parameters, such as the gas reading, STEL, TWA, a time stamp, and alarm 

conditions flagged. Throughout this experiment, the interval was set at one second, in order 

to capture immediate changes in gas concentrations. 

Industrial Scientific considers the MX6 to be a lifesaving device. As such, calibration is 

recommended monthly and bump tests are suggested before each use. A bump test is a 

controlled procedure where each sensor’s target gas is introduced at a concentration just 

high enough to activate the alarm. Bump tests are intended to verify the correct response 

of the device before use, so that hazardous atmospheres are properly identified to the user.  

Calibration of the MX6 was completed by Industrial Scientific within seventeen days of 

sampling. The NO sensor was also replaced. Bump tests were not performed in the field 

for two reasons. First and foremost, bump tests are important when an individual must rely 

on the gas monitor for protection. Since no human exposure to harmful atmospheres 

occurred during testing, bump tests were not viewed as a necessity. Secondly, three tanks 

of specific gas mixtures were required for bump testing. Two of these tanks were not in 

stock, and transporting the tanks cross-country would have required excessive effort. 

The MX6 aspirator model was chosen specifically to avoid rotor downwash during flight. 

The S1000+ generates violent thrust, even when hovering. As a result, air from above is 

forced downward, potentially diluting NO2, which is heavier than air and is initially 

expected to be  present in larger concentrations lower to the ground. The aspirator can be 
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used with tubing in order to draw an air sample from an alternate location. Overcoming 

some influence of downwash was possible by suspending tubing below the S1000+. 

Up to 100 feet of 1/8 inch (internal diameter) PVC tubing can be used with the MX6 

aspirator model; however, tubing length was limited for use with the S1000+. Tubing 

naturally coiled and was weighted near the suspended end to maximize length and 

eliminate recoil. Though only a small amount of weight was necessary to properly control 

the tubing, longer segments substantially increased stress on the S1000+ because of the 

moment created. Tubing was taped to the left landing gear leg and foot to prevent it from 

being stripped from the aspirator in flight. The S1000+ self-corrected to the added external 

force, but concern arose for potential damage to the landing gear. As a result, tubing was 

reduced to a reasonable length of 9.33 feet. A 0.75 pound bag of metal weights was taped 

firmly to the tubing about six inches from the suspended end with enough strength to hold 

the bag, but not enough to compromise the integrity of the tubing. The gas monitor was 

placed on the battery tray and secured using a small, 3D-printed mount with one screw. 

The screw was inserted into the back of the MX6 where the belt clip is normally located. 

Zip ties were included as an additional safeguard (see Figure 4.13). 

Figure 4.6 shows the fully equipped S1000+ from the front. The gas monitor is located 

below the collapsed, white antenna in the photo. The battery was repositioned on the tray 

to counter-balance the 1.125 pound gas monitor, so that the center of gravity was located 

at the center of the S1000+. 
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Figure 4.6: Fully Equipped S1000+ (Front View) 

The PVC tubing is visible in the lower right of Figure 4.6. A Pall 0.45 µm acrodisk syringe 

filter was installed at the end of the tubing. Industrial Scientific recommends this filter for 

dust and moisture collection. A second filter is pre-installed at the aspirator/tubing 

connection. Industrial Scientific states that a two-second delay in gas measurement is 

present for every foot of tubing connected to the aspirator. Since 9.33 feet of tubing was 

used, a delay of 19 seconds was assumed present in all samples. 

The GoPro is positioned at an angle in Figure 4.6. The gimbal auto-leveled upon activation, 

and the operator retained complete control over the vertical angle of the camera in flight. 

Blasting was also documented from the ground, using a tripod-mounted HD video camera 

and a handheld, high-resolution Nikon digital camera. Two people were needed to properly 

document the blasts and operate the S1000+. 
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4.3 Methodology, Flight A 

Flight A occurred at Arch Coal’s Black Thunder Coal Mine near Wright, Wyoming. Prior 

to Flight A, gas sampling had not been attempted; however, the S1000+ was previously 

flown with the gas monitor and tubing installed. The observed blast encompassed two 

benches. A total of 12 holes detonated 23,900 pounds of a 50/50 ANFO/emulsion blend in 

the upper bench. A total of 99 holes in the lower bench shot 121,650 pounds of emulsion. 

Figure 4.7 illustrates the outcome. The S1000+ is on approach in the image. 

 

Figure 4.7: Flight A Blast-generated Cloud 

It is evident from Figure 4.7 that the cloud on the upper bench shows signs of NOx (pale 

yellow hue) while the cloud along the lower bench does not. The color difference between 

the two clouds agrees with what researchers have discovered regarding the relative volume 
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of NOx generated by a 50/50 blend versus pure emulsion (Figure 2.4). The upper cloud was 

classified as fume level 1A. Figure 4.8 illustrates a plan view perspective of the flight.  

 

Figure 4.8: Flight A Schematic 

The S1000+ was operated from approximately 2,000 feet away, and the operator viewed 

the flight directly from behind. At this distance, the operator was unable to determine if the 

S1000+ intercepted the cloud. The coordinates provided by the video monitor were unable 

to supplement the operator, since the distance to the shot was only an estimate. 
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Additionally, the wind direction forced the clouds away from the operator. Upon evaluating 

the results two days later, the data logger showed no measureable concentrations of NO, 

NO2, or CO. It was determined that the operator had a clear understanding of the right and 

left movement of the S1000+, while the forward and reverse directions were completely 

indistinguishable. Proposed alterations to the sampling methodology are presented in 

Chapter Nine. 

Prior to takeoff, the control area was selected because of its reasonable view of the blast. 

In addition, rain had saturated the area, and tire tracks in the mud eliminated most level 

launch points. A safe perimeter from people and equipment (e.g. pickup trucks and light 

plants) was established. The wind speed was a steady 13 miles per hour with gusts over 20 

miles per hour. Weather approached mission abort conditions (see Table A1 in the 

Appendix), but the flight was able to be completed safely near the time of the shot. 

Preparation of the equipment was swift. Once the pre-flight checklist was completed, the 

gas monitor was activated and a new data log was initiated using the menu on the MX6. 

The S1000+ was launched six minutes before the blast. 

The operator positioned the S1000+ about halfway between the observation area and the 

lower bench blast. Consistent effort was required to assist the self-correction of the S1000+ 

in the midst of wind gusts. At detonation, the throttle was maximized to intercept and 

pursue the emissions with haste. Figure 4.9 displays the operator’s reaction to the blast. 
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Figure 4.9: Full Throttle Acceleration of S1000+ 

Bringing the S1000+ to a complete stop after achieving peak acceleration required 

discretion. The suspended tubing tended to swing upward near the rotors. With an abrupt 

stop, the tubing may have contacted the blades and impaired or eliminated flight capability 

– potentially knocking the S1000+ out of the sky and destroying it. The S1000+ is capable 

of flight with only seven of its eight rotors functioning, but this advertised feature was 

never tested. The throttle was slowly reduced when nearing the desired hover point 

downrange, allowing the tubing to sway in a relatively calm manner. 

4.4 Methodology, Flight B 

Flight B occurred at Arch Coal’s Coal Creek Mine (CCM), near Wright, Wyoming. A 

moderately orange cloud was observed, which was classified as fume level 3B. The blast 
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consumed 330,232 pounds of bulk blasting agent (both 50/50 and 40/60 ANFO/emulsion; 

ANFO contained 4.167% fuel oil). A total of 328 holes were drilled, but only 267 holes 

were loaded due to an underlying stream channel that created voids and weakened the local 

rock mass. The overall powder factor was 0.32 lbs/BCY. Holes were wet, and the sleep 

time of some loaded explosives was six weeks. Both the poor geologic conditions and 

lengthy exposure of explosives to water likely exacerbated NOx formation. Tables A2, A4, 

and A5, located in the Appendix, provide additional blast design and weather information. 

Figure 4.10 shows the blast-generated cloud, which was a mixture of yellow and orange. 

 

Figure 4.10: Flight B Blast-generated Cloud, 30 Seconds Post-blast 

It was unanimously agreed among the observers that the blast shot well for the given 

conditions. The blast was not designed to cast overburden. As a result, the muck remained 

near its in situ position. Coloration of the air was not visible from the ground observation 

area for 15 seconds, after which cloud formation was rapid.  
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The cloud remained low to the ground along the bench; however, it quickly lifted in the 

direction of the wind. Figure 4.10 displays NOx emissions 30 seconds following the blast. 

The distinct orange color can be seen permeating from the crest of the bench. Figure 4.11 

reveals the continuous secretion of NOx from the bench face nearly two minutes post-blast. 

Coloration in the cloud faded from orange to yellow to pale yellow, dispersing completely 

after about five minutes. 

 

Figure 4.11: Flight B Bench Face Emissions 

The operator and assistant improved the documentation of pre-flight procedures during 

Flight B. Figure 4.12 shows the S1000+ and HD video camera at the launch point, which 

was approximately 1,000 feet from the nearest row of holes in the blasting pattern. 
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Figure 4.12: Flight B Launch Point 

Figure 4.12 was photographed facing due south. The blasting pattern was 82 holes deep 

into the image (2,132 feet) and four rows wide (184 feet). Wind was blowing at a consistent 

11 miles per hour southeast. A flight area of 2,500 feet in all directions was free of 

obstructions. The closest object was a dragline boom, which protruded above the spoil, 

2,500 feet north of the launch point. Conditions were ideal for flying.  

A safe perimeter from people, nearby pickup trucks, and the blaster’s truck was established. 

The S1000+ was set up two hours before the flight and a thorough diagnostic check was 

completed. It was discovered that one of the arms was loose at its connection with the 

S1000+ frame, presumably from the combined abuse during shipment cross-country and 

the heavy forces experienced during Flight A. The arm was repaired before takeoff.  
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At the 10 minute blast warning, the gas monitor was powered on and a new data log was 

started. Figure 4.13 shows the gas monitor attachment on the battery tray. 

 

Figure 4.13: Flight B Gas Monitor Activation 

The time on the gas monitor was announced while the HD video camera was recording, at 

which point the time on the camera was also stated verbally. These times were later used 

in conjunction with file creation times and common events in the photos/videos to correlate 

cloud coloration with gas concentration data points. 

Before the one minute warning, the S1000+ was energized by connecting the battery 

terminals. Energization only activated the GPS – the rotors were not turning. Just after the 

one minute warning, the rotors were activated and takeoff was initiated. Figure 4.14 

displays the S1000+ hovering briefly above the launch point. 
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Figure 4.14: S1000+ Hovering with Suspended Tubing 

Figure 4.14 provides a useful perspective of the PVC tubing. The S1000+ can be seen 

hovering with a slight leftward pitch as the tubing sways toward the right, illustrating the 

effect of the weighted tubing with only minor movement. The bag of weights is visible 

near the suspended end of the tubing. There was not excessive concern for flight failure 

because of the tubing, since the rotors provided such a substantial amount of thrust. The 

operator was proficient at protecting the S1000+, as well. Overall, the observation 

presented in Figure 4.14 indicates that smaller sUAS may not be suitable for use with 

suspended tubing. 

At detonation, the S1000+ was airborne at approximately 500 feet from the closest row of 

holes. The throttle was raised to its maximum position immediately. Limited hesitation was 

required to avoid fly material, and the operator intercepted the cloud in seconds. Figures 

4.15 and 4.16 illustrate the progression of the blast and the flight schematic, respectively. 

Bag of Weights 
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Figure 4.15: Flight B Blast Sequence 

 

Figure 4.16: Flight B Schematic 
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Figure 4.16 reveals the reduced proximity between the operator and the blast (compared to 

Flight A). It was planned to intercept the cloud as it formed and then position the S1000+ 

at a stationary point downwind. 

As previously mentioned, the S1000+ is capable of two flight modes: course lock and home 

lock. With course lock active, the S1000+ flies along a rectangular grid, based on the 

forward position at takeoff and regardless of its rotational orientation. Alternatively, home 

lock forces the S1000+ to move about the launch (home) point, also regardless of its 

orientation. Figures 4.17 and 4.18 illustrate the flight modes. 

 

Figure 4.17: Course Lock Flight Behavior (DJI Wiki, Intelligent Orientation Control) 

 

Figure 4.18: Course Lock Flight Behavior (DJI Wiki, Intelligent Orientation Control) 

The operator experimented with both modes during Flight B. Initially, the S1000+ was 

placed in course lock, since the control area was oriented directly in line with the blasting 

pattern and nearly perpendicular to the wind direction (i.e. a square flight pattern was 

STANDARD 

STANDARD COURSE LOCK 

HOME LOCK 
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expected to function efficiently). The use of course lock on takeoff provided excellent 

control of the S1000+ at close range and at first contact with the blast-generated cloud.  

After sampling the initial toxicity from the cloud, the operator attempted to track the cloud 

using home lock. Home lock’s radial turning control allowed the operator to align the 

S1000+ with the downwind direction and begin pursuing the cloud in a straight line. 

Unfortunately, the operator suffered from depth perception issues, similar to Flight A. The 

most valuable information was collected early near the bench. Downwind toxicities were 

captured inadequately. 

It was determined from the flight mode evaluation that course lock is most useful when the 

operator is aligned perpendicular to the wind direction. In addition, course lock becomes 

difficult to use at long distances, since movements of the S1000+ are directionally 

indistinguishable. Home lock is advantageous downrange, since the operator can move 

toward and away from the launch point with certainty. 

Flight B was six minutes and fifty-five seconds in duration. The S1000+ was landed 

manually approximately 10 feet from the launch point. The operator was cautious on 

descent to prevent the tubing from catching the rotors near the ground. When the S1000+ 

was approximately five feet above the ground, the operator added thrust and nudged it in 

the direction of the right landing gear, so that the tubing spread out gently. Figure 4.19 

shows the S1000+ just after power down with the tubing at its side. 
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Figure 4.19: Flight B Landing 

Once landed, the gas monitor was powered off. A post-flight examination of the S1000+ 

showed no signs of stress, so the arms and antenna were collapsed. Results were evaluated 

once the gas monitor was docked at a computer. 

4.5 Sampling Results, Flight B 

The blast-generated cloud was intercepted by the S1000+ three seconds after coloration 

was observed from the control area, or 18 seconds after detonation. A sample of the cloud 

was collected from the darkest orange region, displayed in Figure 4.10. Using file creation 

times generated by the various devices, common events in the photos and videos, and the 

time stamps provided by the gas monitor, the gas concentration measurements were 

correlated with still frames extracted from the GoPro flight camera. Figures 4.20 and 4.21 

therefore illustrate a relationship between cloud color and NOx concentration. 
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Figure 4.20: Immediate NOx and CO Concentrations 

 

Figure 4.21: GoPro Video Frame Sequence 
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The sequence of images displayed in 4.21 was created using the flight camera. From 0:18 

to 0:22, the S1000+ was accelerating into the cloud. Between 0:22 and 0:34, the S1000+ 

was stationary, hovering over the crest of the bench. After 0:34, the S1000+ was removed 

from the cloud to identify the coloration of the measured sample (the PVC tubing was 

suspended 7.6 feet below the landing gear; therefore, the sampled orange color is not 

visible in images before 0:42). 

The data presented in Figure 4.20 reveal the immediate impact on the local atmosphere. 

The peak NO and NO2 measurements (257 ppm and 67.2 ppm, respectively) are believed 

to be the ceiling concentrations representative of the observed blast. The decline in the 

readings following 0:34 is caused by the movement of the S1000+ out of the cloud and in 

opposition to the wind. Dissipation of the cloud is not a contributing factor. The portion of 

the decline occurring before 0:34 is suspected to be the result of a wind gust undercutting 

the PVC tubing inlet. 

An estimate of the total volume of NOx produced by the blast was calculated from the 

ranges presented in Figure 2.4. Approximately 149,791 kilograms (330,232 lb) of bulk 

agent were detonated. A 50/50 blend was used to represent the outcome, since holes were 

loaded with either a 50/50 or 40/60 ANFO/emulsion blend. A range of 5.0 L/kg to 31.0 

L/kg yielded an estimated total NOx emission between 748,954 liters and 4,643,518 liters. 
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Chapter Five: Additional Sampling 

5.1 Overview 

A third flight was conducted at a surface mine in the United States. The event is referred 

to as Flight C. The circumstances of Flight C were different than the two flights previously 

described. A summary is provided below: 

 A blast-generated cloud was observed from a distance of 15,000 feet. The cloud 

was dark red to brown, indicative of very high NOx concentrations. The S1000+ 

was positioned directly downwind and launched to a ceiling of 400 feet. Gas 

samples were collected, in order to evaluate detectable NO and NO2 concentrations. 

Instrumentation used for sampling was unchanged, though this cloud was not documented 

with the tripod-mounted HD video camera. 

5.2 Methodology, Flight C 

Figure 5.1 shows the immediate aftermath of the blast. The dark red and brown colors 

indicate NOx concentrations in excess of the gas readings collected during Flight B.  

 

Figure 5.1: Flight C Blast-generated Cloud 
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The cloud was classified as fume level 5C, which is the most severe designation and 

describes the worst-case local atmospheric impact. Though no data representative of the 

colors shown in Figure 5.1 were collected, the cloud’s dispersion was closely monitored at 

from a distance of approximately 15,000 feet. Figure 5.2 displays the flight schematic. The 

blasting pattern dimensions and distance to the permit boundary are estimates. 

 

Figure 5.2: Flight C Schematic 
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The wind direction transported the cloud directly toward the control area. As the cloud 

passed directly overhead, the S1000+ was launched to 400 feet (the maximum ceiling 

permitted by the FAA for the University of Kentucky’s sUAS research). Figure 5.3 shows 

the coloration in the sky at launch. 

 

Figure 5.3: Flight C Blast-generated Cloud Overhead 

It was observed during flight that the visible yellow hue overhead, indicative of an NO2 

concentration above 2.5 ppm, was higher than the 400 foot ceiling – though this was 

speculation until the quantitative results were evaluated later. It was not possible to 

determine where the visibly-toxic concentrations began and ended in the vertical direction. 
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5.3 Sampling Results, Flight C 

The graph presented in Figure 5.4 illustrates NO2 readings measured between activation of 

the S1000+ and its descent to the ground.  

 

Figure 5.4: NO2 Measurements 15,000 Feet Downwind 

Concentrations of NO2 up to 0.3 ppm were measured in the space between ground level 

and 400 feet. A pungent scent was noticeable at the observation area, typical of blasting. 

The odor threshold of NO2 is 0.12 ppm, though it is uncertain if NO2 was the cause. Other 

gases not measured by the monitor may have also been present (e.g. ammonia). It was also 

observed from the gas monitor data that NO and CO were absent from the local atmosphere. 

Lack of NO suggests complete oxidation of the unstable gas to NO2. Since the yellow 

coloration in the sky was observed above the flight ceiling (verified by NO2 measurements 

consistently below 2.5 ppm), it is suspected that a substantial amount of the NO originally 
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present inside the cloud was lifted by the wind (since NO is lighter than air) and later 

oxidized to NO2. Overall, these results demonstrate that even the most severe NOx 

emissions from surface blasting are capable of dissipating to minor concentrations at 

ground level less than three miles from their origin, given the appropriate weather 

conditions (Table A3). Cloud dispersion is discussed further in Chapter Six. 
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Chapter Six: Blast-generated Cloud Dispersion 

6.1 Overview 

The instantaneous peak toxicity of blast-generated NOx must be considered in a broader 

context before risk to human health and safety can be fully evaluated. Dispersion of blast-

generated clouds is an additional factor requiring evaluation. Dispersion is affected by an 

assortment of variables. Wind speed, initial cloud toxicity, scale of the emission, and total 

volume of NOx produced are generally considered to be the most important. The following 

two sections review the cloud dispersion during Flights B and C, respectively. 

6.2 Cloud Dispersion Results, Flight B 

Originally, it was planned to position the S1000+ downwind of the blast in a stationary 

location to monitor declining NOx concentrations over time; however, poor depth 

perception at the lengthy operating distance hindered the ability to gather useful readings, 

since the operator was constantly attempting to determine the position of the S1000+ 

relative to the cloud. The video monitor attached to the radio controller was not able to 

supplement the operator, since the transmission was almost entirely diluted by distance. As 

a result, intermittent gas concentration measurements from the periphery of the cloud were 

collected. Figure 6.1 displays the readings captured after the initial 60 second post-

detonation sampling window. An additional 355 seconds were logged before the gas 

monitor was powered off (5.9 minutes), but no gases after registered above zero after 155 

seconds (since the sUAS was removed from the cloud unintentionally and eventually 

returned for landing); therefore, the horizontal axis in Figure 6.1 terminates at this time. 
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Figure 6.1: Sampling Near Cloud Periphery in Downwind Direction 

Figure 6.1 shows four distinct spikes in gas measurements, which resulted from slight 

penetration of the S1000+ into the cloud. It is estimated that the dispersion data presented 

in the graph were collected between 250 and 1,250 feet downwind from the blast origin. 

The gas concentrations appear to follow an inverse relationship with time, but the results 

do not provide a definitive dispersion rate, since the position of the S1000+ was not 

constant. Future dispersion sampling should be conducted at stationary distance intervals. 

While quantitative dispersion sampling was not immediately useful, behavior of the cloud 

was monitored efficiently from the control area. Figure 6.2 illustrates the rapid dispersion 

in a sequence of images, captured with a high-resolution digital camera. The camera zoom 

and photo angle are not consistent, since the camera was held in hand. In addition, images 

later in the sequence place more emphasis downwind. 
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Figure 6.2: Flight B Dispersion Image Sequence 

Figure 6.2 shows fading coloration as the gases and dust lift. The dark orange color 

disappears in a matter of 30 seconds. After approximately five minutes, no visibly-toxic 

concentrations of NO2 are present. A small amount of dust was aroused by the wind several 

minutes after the blast but the air remained free of obvious NO2 presence. 

A simple geometric dispersion model was developed, in order to calculate the unit volume 

of NOx generated (i.e. per kilogram of explosive detonated) for comparison with previous 

lab research (Figure 2.4). Physical observations were used to construct the model. For 

example, the cloud generated by the blast at CCM lifted at 45 degrees in the direction of 
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the wind (Figure 4.11). Additionally, coloration disappeared after about five minutes, 

indicating an NO2 presence of at most 2.5 ppm. Relevant assumptions are listed below, and 

an explanation of the mathematical procedure is provided following Figure 6.3. 

 Gases and air were mixed evenly throughout a right isosceles wedge 

 The distance of the wedge’s base was defined by the wind speed and the time until 

all coloration disappeared (05:12, mm:ss) 

 The total volume of NOx produced was represented by a 50/50 blend of ANFO and 

emulsion, as discussed in Section 4.5 

 All NO in the dispersion zone had fully oxidized into NO2 (thus, the volume range 

of NOx produced is referred to as the volume of NO2) 

 The volume of the blast zone wedge was defined by the pattern dimensions (184 

feet by 2,132 feet) and is included in the dispersion zone volume 

 The volume of NO2 in the blast zone was calculated using the peak toxicity  of 67.2 

ppm and was not the total volume released (see volume range in Figure 6.3) 

 

 

Figure 6.3: Flight B Geometric Dispersion Model 
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The blast zone is largely informational. It is formed using the pattern dimensions, cloud lift 

angle (f), and peak concentration of NO2 measured. The volume of NO2 in the blast zone 

is the instantaneous volume during the peak measurement – if that peak is evenly 

distributed within the blast zone wedge; however, it does not represent the total volume of 

NO2 emitted by the blast, since more of the gas permeates from the muck for a short time.  

The larger dispersion zone wedge includes the blast zone and is the only feature of the 

model that is necessary to calculate the unit volume of NOx generated. Its base is 

constructed using the visible threshold of NO2. In other words, the variable D is the 

maximum distance that the gases in the wedge can be carried by the wind by the time 

coloration fades completely (NO2 ≈ 2.5 ppm). The wedge’s height is defined in the same 

geometric manner as the blast zone, except the value of D is used instead of the selected 

blasting pattern dimension, D1.  

The volume range of NO2 within the dispersion zone is derived from previous lab research 

and is used to validate whether or not the value of D is reasonable. Vlow and Vhigh are the 

smallest and largest unit volumes of NOx produced by a particular explosive product, 

measured in liters per kilogram (Figure 2.4). The variable Mexplosive is the mass in kilograms 

of the blasting agent detonated. Assuming that all NO is oxidized to NO2 during the time 

used to calculate D, the products of Vlow and Vhigh with Mexplosive provide a range of possible 

NO2 volume (V1 – V2) within the dispersion zone wedge. The volume range can be 

converted to a concentration range (C1 – C2) in parts per million, using ratios with the total 

volume of the dispersion zone. If an NO2 concentration of 2.5 ppm falls within the 

concentration range, then the value of D (thus the dispersion zone geometry) is acceptable. 
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The unit volume of NOx is determined by the known NO2 concentration of 2.5 ppm and a 

reorganized version of the ratio used to convert V1 and V2 to C1 and C2. The unit volume 

can be described as NOx instead of NO2, because NO oxidizes to NO2 by a 1:1 molar 

relationship (Equation 1, Section 2.3). Equation 2 below shows the method of unit volume 

calculation. 

                              𝑉𝑢𝑛𝑖𝑡 =
2.5 𝑝𝑝𝑚 𝑁𝑂2

1,000,000 𝑝𝑝𝑚
∗ 𝑉𝑤𝑒𝑑𝑔𝑒                      (2) 

Figure 6.4 illustrates the results of the calculations presented in Figure 6.3. The same model 

schematic is used. 

 

Figure 6.4: Flight B Geometric Dispersion of NOx 
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Calculations suggest that the NO2 concentration in the dispersion zone was 1.0 to 6.1 ppm. 

Since the wedge volume was developed using the distance the cloud traveled until visible 

NO2 disappeared (NO2 ≈ 2.5 ppm), the dispersion zone geometry is valid. Calculation of 

the unit volume indicates that approximately 12.8 L/kg of NOx were generated for every 

kilogram of 50/50 blend detonated. 

Figure 6.5 is an updated version of Figure 2.4 that includes the estimated unit volume of 

NOx generated by the blast at CCM (listed as “McCray, 2016” for a 50/50 blend). 

 

Figure 6.5: Relevant Estimates of Blast-generated NOx Updated 

The simple dispersion model is useful because it is derived from physical observations. 

While a number of assumptions are necessary to develop the model completely, it can be 

validated to some extent by lab data. Judgment of the cloud lift angle and instant when 

coloration disappeared are subjective but can be overcome using a sensitivity analysis (i.e. 

varying D and f to develop a range of unit volumes instead of a point estimate). 
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6.3 Cloud Dispersion Results, Flight C 

A similar geometric modelling technique was applied to the Flight C measurements; 

however, the calculations were carried out with a different purpose. Since no blast zone 

measurements were recorded, the goal of the Flight C model was to back calculate an 

estimate of the initial NO2 concentration using data collected downwind. The following 

assumptions were applied to the model: 

 Nearly identical weather conditions on the Flight B and Flight C observation days 

permitted the use of a right isosceles wedge, even though the true cloud lift angle 

was not visible from the observation area 

 Gases and air were mixed evenly throughout the right isosceles wedge 

 The distance of the wedge’s base was defined by an approximate 15,000 foot 

distance between the blast and the observation area 

 All NO in the dispersion zones had fully oxidized into NO2 (thus, the volume of 

NOx produced is referred to as the volume of NO2) 

 The volume of the blast zone wedge was defined by estimated pattern dimensions, 

since no shot report was obtained (200 feet by 2,500 feet) 

 The volume of NO2 in the blast zone was assumed to be the summation of both 

dispersion zones (a value likely larger than reality) 

 The volume of NO2 in the ground level dispersion zone was calculated using an 

evenly-distributed peak of 0.3 ppm measured below an altitude of 400 feet 

 The volume of NO2 in the above ground level dispersion zone was determined using 

an evenly-distributed 2.5 ppm NO2 (since a pale yellow color was visible in the 

sky) and does not include the volume of the ground level dispersion zone 

 

Figure 6.6 demonstrates the mathematical procedure necessary to fully develop the model.  
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Figure 6.6: Flight C Geometric Dispersion Model 

Samples were collected at a known distance, D, from the blast origin, and below the flight 

ceiling, H1. If it is assumed that the peak NO2 was evenly-distributed within the ground-

level dispersion zone, then a volume of NO2, V1, can be determined. 

The above-ground-level dispersion zone is defined using the same distance, D, and the 

cloud lift angle, f. The volume of the above-ground-level dispersion zone does not include 

the volume of the ground-level dispersion zone. Coloration was observed above 400 feet; 

therefore, an NO2 concentration of 2.5 ppm is assumed to be the average within the above-

ground-level dispersion zone. Calculation of volume V2 provides an estimate of NO2 within 

the above-ground-level dispersion zone. 
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The summation of V1 and V2 is an estimate of the total NO2 generated by the blast. If this 

total volume was present instantaneously within the blast zone (defined by the pattern 

dimensions and cloud lift angle), then the peak concentration of NO2 present within the 

initial blast-generated cloud, C3, can be calculated. Figure 6.7 shows the analysis outcomes. 

 

Figure 6.7: Flight C Geometric Dispersion of NOx 

The results presented in Figure 6.7 provide an estimate of 137.3 ppm NO2 in the blast zone. 

The calculated value is larger than the 67.2 ppm peak measured during Flight B and is 

therefore agreeable with the relative colors of the clouds. It is also more indicative of a 

NO2 emission than total NOx, since the NOx concentration during Flight B peaked at 315.1 
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ppm – much higher than 137.2 ppm. The shot report was not obtained for this blast but 

would have greatly improved the informational value of this model, since a range of NOx 

volume generated at the blast zone could then be calculated. In addition, the wedge 

dimensions could be modified, based on the true blasting pattern dimensions. 

While 137.2 ppm NO2 is a highly toxic concentration of the gas, the dispersion of the cloud 

over a short distance provides useful evidence that even intense emissions of NOx from 

surface mine blasting are only immediately concentrated for a small amount of time. 

Dispersion in varying wind speeds should be evaluated to form a comprehensive 

understanding of fume level 5C toxicity. In addition, the assumption that air is evenly mixed 

is a challenging burden to overcome in this simple model. Realistically, NO2 is heavier 

than air and is likely to reside lower in the dispersion zone; however, the measurement of 

0.3 ppm below 400 feet with coloration in higher regions of the sky (i.e. > 2.5 ppm) 

demonstrates the general lift of the cloud, given the appropriate weather conditions. 
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Chapter Seven: Health Implications 

7.1 Overview 

It is understood that visible concentrations of NO2 are indicative of unhealthy atmospheres; 

however, the human health and safety impact of surface mine blasting emissions requires 

additional context. Risk to mine workers and the public is a function of initial cloud 

toxicity, scale of blasting, and cloud dispersion behavior. Defining these factors 

qualitatively does not adequately identify risk. Direct samples from the two large blasts 

offer an initial, quantitative perspective of blast-generated NOx in a full-scale mining 

environment, which heretofore has remained virtually absent from the body of scientific 

knowledge. The sample size of this experiment is too small to form a comprehensive 

conclusion, but the available data and observations show that there is little concern for 

human exposure to hazardous levels of NO2 if the appropriate precautions are taken. 

Studies cited by OSHA and NIOSH largely focus on exposure to minor concentrations of 

NO2 for extended periods of time; however, abrupt exposures to elevated concentrations 

of NO2 provide the most relevant comparisons to blast-generated NO2. For this reason, the 

NIOSH IDLH value offers the best description of immediate health concern for mine 

employees. Other existing standards, such as the OSHA ceiling PEL and EPA NAAQS, 

are most applicable to the public, which may infrequently come into contact with a diluted 

concentration of the emitted NO2. 
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7.2 Mine Employee Health 

Instantaneous ceiling concentrations of NO and NO2 measured during Flight B were 2.57 

and 3.36 times greater than the associated NIOSH IDLH values, respectively. These levels 

were detected in the blast zone (i.e. in the immediate vicinity of the detonation). 

Additionally, it is estimated that the ceiling concentration of NO2 within the Flight C blast 

zone was 6.87 times greater than the IDLH. Although the initial NO and NO2 exceeded 

life-threatening concentrations, the gases are not likely to cause harm in the normal course 

of mining – if mines prone to regular and/or substantial emissions of NOx consider both 

the sources of NOx and the previously discussed dispersion variables during the 

development of blast(ing) area perimeters. 

According to the Mine Safety and Health Administration (MSHA), blasting area is defined 

for surface coal mines to be “the area near blasting operations in which concussion or flying 

material can reasonably be expected to cause injury” (30 CFR § 77.2, 1999). MSHA 

defines a more comprehensive blast area for surface metal/non-metal mines as “the area 

near the blasting operations in which concussion (shock wave), flying material, or gases 

from an explosion may cause injury to persons.” The blaster in charge is responsible for 

the development of a blast area and must consider the following factors to protect 

individuals from such hazardous blasting outcomes (30 CFR § 56.2, 2004): 

 Geology or material to be blasted 

 Blast pattern 

 Burden, depth, diameter, and angle of the holes 

 Blasting experience of the mine 

 Delay system, powder factor, and pounds per delay 

 Type and amount of explosive material 

 Type and amount of stemming 
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While establishing safeguards against blast-generated gases is mentioned in the definition 

of blast area, this practice is not explicitly stated in the list of factors; however, it can be 

inferred that mines with an emission history of NOx are responsible for developing a blast 

area based on such previous experiences. For this reason, the causes of NOx – particularly 

exposure of explosives to water and sleep time – should be considered during delineation 

of blast area perimeters. In addition, the scale of the blast, wind speed, and wind direction 

are also pertinent factors. 

A common rule of thumb for the blast area perimeter is 1,000 feet from the nearest row of 

holes in all directions. Individuals must not enter the area (and are prevented from doing 

so) before the shot is fired and the blaster in charge approves of the outcome. The rule of 

thumb is based on fly material, which is unlikely to be ejected with enough energy to travel 

beyond a few hundred feet. While the preliminary NOx sampling and dispersion 

observations presented in this document suggest that highly-toxic NOx concentrations are 

short-lived, expanding the blast area perimeter to create a broader blast area exclusion zone 

– with emphasis downwind – is in the best interest of mine employees.  

Table 2.2 (pg. 12) provides an example of a blast area exclusion zone method. Downwind 

distances were defined using dispersion modelling software, which considered initial 

toxicity of NO2, several wind speeds, and a fixed emission volume. Similar tabulated tools 

can be attuned on a site-by-site basis by (1) creating detailed, in-house case histories using 

direct sUAS sampling or (2) drawing from a larger body of knowledge in the near future 

once NO2 concentrations can be further attributed to explosive sleep time, scale of blasting, 

and other relevant sources of the gas. In either case, seasonal weather differences at 

individual mines will be paramount in forecasting the necessary exclusion zone. 
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At this time, mines with regular NOx emissions are generally aware of the gases but may 

not have strategies in place to provide provisional protection for workers. Until the health 

risk is fully quantified by additional sampling studies, mines should (1) withdraw all 

workers, without exception, to a position beyond the current rule of thumb definition of 

blast area, (2) remove workers farther downwind from the blast area, based on the total 

weight of explosives to be detonated and the sleep time of the explosives (i.e. experience 

with previous NOx emissions), and (3) blast with elevated caution in low wind speeds. 

Table 2.2 shows that slower air movement requires an extended exclusion zone; therefore, 

wind speeds below about 5 miles per hour indicate that workers should be removed from 

an extended downwind distance. It has been observed that mines in the United States often 

observe the opposite behavior; they do not wish to blast during elevated wind conditions, 

especially if the direction is not favorable (i.e. toward a nearby town). Greater wind speeds 

are believed to improve dispersion and should be examined during future studies. 

There are two additional NOx hazards that should be noted. The first is defined by weather 

(wind speed and direction) and the second is avoidable with minimal effort.  

1. NO2 is denser than air, and the gas may be retained in the pit below a bench blast. 

For this reason, equipment operators and other mine personnel may come into 

contact with the gas if natural ventilation is unable to effectively dilute it. These 

individuals should take caution when returning to work, even after the blast is 

cleared. In addition, those observing the blast from the pit should also be cautious 

of rapid cloud formation. If the wind does not lift or remove the cloud, hazardous 

levels of NO2 may be confined within the pit and propagate elsewhere. 
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2. Equipment operators are not necessarily removed from the blast area and often 

remain inside their machines within the 1,000 foot rule of thumb blast area 

perimeter. Figure 4.7 shows two manned hydraulic shovels within this perimeter 

after detonation of the blast during Flight A. The shovel beyond the white smoke is 

positioned downwind. If operators remain near overburden blasts in this manner, 

NO2 exposure may occur. Cab filters are not designed to eliminate toxic 

components from the atmosphere, and cabs intended to recirculate clean air are not 

perfectly insulated. As such, removal of operators from the area is prudent. 

By introducing a more detailed delineation of blast area perimeters, it is likely that mine 

workers will remain safe from even minor concentrations of NO2. Mines should begin 

documenting NOx emissions, including photography of cloud formation and dispersion and 

recording of weather data. Applying the proposed direct sampling method will advance the 

development of blast area exclusion zones and solidify the necessary protective measures. 
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7.3 Public Health 

A prominent health concern is the transit of elevated NO2 levels outside of mine permit 

boundaries. The Environmental Protection Agency’s (EPA) has designated 100 ppb (0.1 

ppm) as the short-term national ambient air quality standard (NAAQS) for NO2. Both the 

enormity and remoteness of most mining operations offer substantial protection for the 

public (esp. mines in the Powder River Basin); however, it is possible for large clouds to 

propagate for some distance. The cloud monitored during Flight C demonstrated arguably 

the worst-case scenario for NOx emissions. Its characteristics are summarized below: 

 The cloud was designated as fume level 5C, indicating that the NO2 concentration 

within the cloud was ranked as the most severe (estimated peak of 137.3 ppm). 

 The initial scale of the cloud was immense (estimated to be 2,500 feet across and 

200 feet in height/depth). 

 The cloud crossed the permit boundary and was measured 15,000 feet away from 

the blast origin (2.84 miles). 

 The gas monitor detected NO2 concentrations up to 0.3 ppm between the ground 

and 400 feet, with visibly-toxic concentrations higher in the atmosphere. 

 The average NO2 concentration during the 158 second flight was 0.138 ppm. 

 An additional 10 seconds of data before takeoff showed an NO2 presence between 

0.2 and 0.3 ppm. Including these values increases the average NO2 to 0.147 ppm. 

The measurements taken downwind during Flight C are not directly attributable to the 

hour-long NO2 average concentration, since the total sampling time was short; however, it 

can be inferred that the risk of public exposure to harmful concentrations of NO2 was 

minimal. It is unlikely over the passage of time that any larger concentration of NO2 would 

have been observed, primarily because the measurements were taken at first contact with 

the gases (i.e. the least amount of dispersion time was provided to the cloud). If the true 

hour-long average concentration is regarded as either the measured average of 0.147 ppm 
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or the measured peak of 0.3 ppm, then the applicable EPA AQI designation at 15,000 feet 

from the blast was “unhealthy for sensitive groups” (Table 2.4). It is believed that that the 

hour-long NO2 average was much lower than 0.147 ppm – even within compliance of the 

NAAQS limit. 

Flight C provides useful evidence that the most severe NOx emissions are capable of 

dispersion to low ground-level concentrations over distances of at most 15,000 feet. It is 

uncertain what concentrations were present between the mine permit boundary and the 

control area, though no coloration was observed low in the sky due to consistent lifting of 

the cloud. For these reasons, the preliminary sampling suggests that risk to public health 

and safety is low. 
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Chapter Eight: Challenges of Utilizing an sUAS for NOx Sampling 

8.1 Complicated FAA Restrictions 

The FAA finalized its rules for the registration and operation of sUAS in the national 

airspace on June 21, 2016. Previously, acquiring the necessary documentation to fly for 

commercial or research purposes (i.e. non-hobbyist activities) involved months, and 

various restrictions were imposed on the applicant. Complying with some mandated 

restrictions (such as the need for a licensed pilot) was challenging for many who were 

seeking to take advantage of sUAS technology. The new rules have not been published for 

a long enough duration to establish their challenges, but it is expected that the new 

requirements (e.g. remote pilot certificate with a small UAS rating) will also be 

complicated to obtain. 

Prior to June 21, 2016, commercial sUAS operations required a Certificate of Waiver or 

Authorization (COA) or Exemption to Section 333 to the FAA Modernization and Reform 

Act of 2012 (FMRA). Completion of this project was possible through the University of 

Kentucky (UK), which possessed a blanket area public agency COA for unmanned aerial 

vehicle flight operations. General restrictions under the UKCOA and other similar FAA 

approvals included the following: 

 Airspace ceiling limit (e.g. 400 feet AGL) 

 Daylight operations only 

 No operations within five miles of airports 

 Line of sight operation 

 Notice to airmen (NOTAM) filed with the FAA before each flight 
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Specific safety procedures, such as protocol for lost link events and low battery conditions, 

were also required to be clearly stated and understood.  

The UKCOA also mandated the presence of two people during any flight event. These 

individuals were to be medically approved to fly, and at least one was required to hold a 

valid pilot’s license. The greatest challenge affecting the completion of this project was 

coordination with a licensed pilot. 

8.2 Weather Limitations 

The application of an sUAS for gas monitoring is limited by weather conditions such as 

rain and wind. Most sUAS devices capable of sustaining flight with the weight of the 

suggested gas monitor attachment are large, and sensitive electronic components are often 

exposed. As such, excessive water exposure may cause irreparable damage. Flying in rain 

is also dangerous because it is possible that electronics will cease operation in flight and 

cause the sUAS to fall uncontrollably the ground.  

Most manufacturers rate sUAS devices for a specific, maximum wind speed. In some coal-

mining regions, the wind is comparably low with the Powder River Basin; however, data 

collection with this method is currently most relevant to Powder River Basin blasting, due 

to regularly-visible NOx emissions. Wind exceeding 20 miles per hour is likely to force 

any sUAS to remain grounded. 

8.3 Seasonal Impact on Gas Monitor Usage 

Similar to weather concerns, seasonal temperature ranges will also affect the functionality 

of both sUAS devices and gas monitors. Sampling during the winter months may not be 
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possible. For example, the operating temperature ranges of the S1000+ and MX6 iBrid gas 

monitor are 23˚F to 140˚F and -4˚F to 131˚F, respectively. 

8.4 Gas Monitor Calibration and Upkeep 

The MX6 iBrid and similar gas monitors require regular calibration intervals (e.g. once 

monthly). There are two methods of calibration available (in most cases). First, the owner 

can mail the monitor to the manufacturer and pay a fee. Second, the owner may choose to 

purchase tanks of calibration gases and follow a series of specific steps to calibrate the 

device manually.  

It was elected to mail the MX6 iBrid prior to field sampling in this experiment, since three 

separate tanks of calibration gas were required to complete the process. Two of the 

necessary tanks were also not in stock for purchase. Calibration by mail is less convenient, 

but purchased tanks must be stored properly and are difficult to transport. In addition, the 

gaseous contents of the tanks degrade over time and are only useful for a maximum of 

about two years. 

Sensors within the gas monitors are additional components that require upkeep. Sensors 

(such as those for NO and NO2) generally last for one to three years are relatively expensive 

to replace. Replacement is not permitted by the average gas monitor user, either. The 

selection of gas monitors capable of measuring NOx are considered life-saving devices. For 

this reason, only the manufacturer and certain qualified personnel are permitted to service 

the monitors. 
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8.5 Drone Reliability/Maintenance 

Most sUAS components are complex and sensitive. Careful inspections of the technology 

must occur with regularity in order to preserve functionality. The S1000+ and similar 

models are large and capable of causing serious damage to people and property. As a result, 

detailed understanding about the mechanics, capabilities, and maintenance is necessary for 

proper use. Maintenance may include exchanging rotors, troubleshooting electrical 

systems using software, and testing various flight systems prior to operation. A serious 

time commitment is therefore a requirement for sustaining the reliability of an sUAS. 

8.6 Distraction for Mine Employees 

Individuals are often fascinated by sUAS operations, particularly because of their unique 

applications. As a result, sUAS devices may become a distraction from other important 

tasks. Reducing awareness at mine sites has dangerous implications, especially for 

equipment operators. Maintaining a business-as-usual attitude for those observing is 

crucial, since a key advantage of the technology is safety. Jeopardizing safety in other areas 

of the mining operation strips any value that the sUAS provides for gas monitoring.  

8.7 Encouragement of Poor Decision-making 

Although the application of an sUAS for gas monitoring offers large operating distances – 

and therefore safety for operators – it is likely that some individuals will be encouraged to 

approach blast sites for improved visibility. Challenges with depth perception at 

observation distances of 1,000 feet or greater are certain. Though there are available 

strategies to overcome these challenges (Section 9.1), poor judgment may increase risk of 

injury or death from blasting outcomes. 
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Historically, fly material ejected during detonation has caused many fatalities because of 

poor communication and/or close human proximity to blasting (Bajpayee et al., 2003). 

Operators approaching the bench may either not communicate their intentions or come too 

close. Such behavior is detrimental to the liability of mining companies and security of 

mine personnel that might choose to join the operator. 
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Chapter Nine: Proposed Alterations to Methodology 

9.1 Overcoming Depth Perception Issues 

Depth perception was the single largest issue affecting sUAS-based gas sampling. At long 

distances downrange, directional movements of the S1000+ became indistinguishable to 

the operator (particularly forward and reverse). No data were collected during Flight A, 

since the S1000+ did not intercept the blast-generated cloud. Similarly, dispersion 

monitoring during Flight B was inhibited, because the S1000+ was unknowingly operated 

only at the cloud periphery. It is expected that the addition of a spotter and a laser range 

finder will overcome the negative influence of depth perception on future sampling.  

Flights A, B, and C required a team of two individuals to complete. Ultimately, the team 

concluded that the addition of a third individual would have improved results. Future 

sampling will include a spotter, who will observe from a position perpendicular to the flight 

path. Using a handheld radio, the spotter will provide information on the relative forward 

and reverse movements of the aircraft. It is expected that sampling will receive the greatest 

benefit from this change to the methodology, since positional suggestions can be 

announced from an alternate perspective in real time during flight. 

The addition of a laser range finder will also positively affect sampling but will require 

additional planning by the operator prior to takeoff. Previously, the operating distance 

relative to the blasting pattern was estimated. A laser range finder will be used in the future 

to identify the downrange location of various landmarks (e.g. the highwall(s), equipment, 

or light plants) relative to the control area. Positional information, provided by the 

operator’s video monitor, will be compared with the measured distances during flight, to 
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supplement visual limitations. Range finding will be added to the pre-flight checklist, and 

the operator will need to apply his or her own judgment to capture the most useful 

distances. 

9.2 Improving Sampling 

The samples analyzed by the gas monitor are believed to be accurate and representative of 

the tested atmospheres; however, sampling can be improved by minor adjustments to the 

tubing attachment and modifications to the S1000+ standard operating procedures (SOPs). 

Currently, the sampling tubing’s inlet is suspended 7.60 feet below the landing gear to 

avoid rotor downwash. It is suspected that the impact of downwash is still present, even at 

this length. Doubling the tubing will further eliminate sample dilution. The added tubing 

will also facilitate sampling near the crest of the muck, since the operator will not need to 

position the S1000+ as closely. As a result, the chance of damage or destruction to 

equipment will be reduced. Test flights with additional tubing first need to be conducted to 

evaluate the impact of added tubing on flight characteristics of the S1000+, before 

attempting this strategy in the field. 

In addition to equipment adjustments, data analyses can be enhanced through amendments 

to the S1000+ SOPs. User error was observed in the gas monitor data collected during 

Flight C. Industrial Scientific recommends two seconds per foot of tubing. A total of 19 

seconds were therefore required to completely clear the tubing attachment. The gas monitor 

was deactivated shortly after landing and prior to the 19 second recommendation. 

Consequently, the measured sample was not representative of the full descent from 400 

feet (which ultimately did not negatively impact results in this experiment). In the future, 
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the S1000+ operator must be aware of the sampling delay and should not deactivate the 

gas monitor immediately after landing. The data logger should remain active for at least 

the duration necessary to meet Industrial Scientific’s sampling timeframe. 
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Chapter Ten: Conclusion 

Sampling results reveal that the instantaneous peak concentration of NO2 in moderately-

orange, blast-generated clouds can be as high as 67.2 ppm – a value 3.36 times greater than 

the NIOSH IDLH concentration of 20 ppm. It is estimated that, in extreme cases, the 

instantaneous peak NO2 concentration can be as high as 137.3 ppm, which exceeds the 

IDLH limit by 6.87 times. 

Cloud dispersion observations show that it is possible for large, moderately-orange clouds 

to dissipate in just over five minutes. Severe NOx emissions (dark red to brown/purple 

clouds) require more time to disperse under similar weather conditions. Ground-level NO2 

concentrations (0 to 400 feet vertically) were measured with an sUAS at 15,000 feet 

downwind from a worst-case NOx emission. At this distance, NO2 peaked at 0.3 ppm and 

averaged about 0.147 ppm over a short time period. The Environmental Protection Agency 

requires that the one-hour average concentration of NO2 not exceed 0.1 ppm. It is believed 

that the hour-long average was much lower than 0.1 ppm at 15,000 feet. The dispersion of 

these two blasts indicates that moderate to severe NOx emissions are capable of dispersion 

to relatively safe levels over short distances. As a result, mines that are remote or of 

considerable scale naturally provide an efficient safeguard for the public; however, large-

scale blasting near mine permit boundaries may require special consideration for 

uncontrolled structures or public roads that are within close proximity downwind. 

Risk to the health and safety of both mine employees and the public is believed to be low, 

based on the preliminary sampling and observations presented in this document; however, 

it is prudent to quantify risk using blast area exclusion zones, which are an extension of 
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the blast area, as it is defined by the Mine Safety and Health Administration. Determining 

an exclusion zone requires a forecast of the expected intensity of the NOx emission, which 

can be reasonably predicted once either (1) a case history of NOx emissions is developed 

for an individual mine – including direct samples of gases, sleep time of explosives, 

estimated water exposure of the bulk agent, scale of the blast, and weather conditions – or 

(2) a broader body of knowledge regarding the relationship between of NOx and such 

variables is developed. Mine employees will benefit most from the exclusion zone, due to 

their generally closer proximity to the blast origin. 

Geometric dispersion models developed during this experiment can be used to estimate the 

unit volume of NOx (liters per kilogram of explosive) or predict the instantaneous peak 

concentration of NO2 generated by a full-scale surface blast. The models are valuable 

because of their simplicity and their attunement to real world events. They can be 

constructed individually on a blast-by-blast basis and results can be validated using peer-

reviewed lab data. Future studies should consider adopting the proposed geometric 

modelling method, or a similar technique that reduces the burden of computer modelling 

while preserving a reasonable mathematical interpretation of emission characteristics. 

In conclusion, the direct sampling method demonstrated in this document is suitable for 

future research. It is capable of supplementing the current, qualitative assessment of NOx 

and can be used to develop blast area exclusion zones for individual mines that generate 

regular or substantial NOx emissions. The preliminary sampling data presented are new to 

the body of scientific knowledge and provide a foundation for the quantitative evaluation 

of blast-generated NOx. Additional measurements during diverse wind speeds and 

temperatures are needed to form a comprehensive health and safety conclusion; however, 
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the results of this study suggest that blast-generated clouds with visible concentrations of 

NO2 are generally perceived as more dangerous than actuality. The Office of Surface 

Mining Reclamation and Enforcement should consider sUAS technology as a means of 

quantifying the toxicity and dispersion of blast-generated NOx, during its rulemaking 

period. Although it is understood that visible concentrations of NO2 are hazardous, a 

broader, quantitative context is required in order to fully define risk to human health and 

safety in a mining environment. 
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Appendix 

Table A1: Flight A Weather Data 

 
*Gusts up to 25 mph 

 

Table A2: Flight B Weather Data 

 

 

Table A3: Flight C Weather Data 

 

 

 

 

 

WEATHER VARIABLE VALUE UNITS

Temperature 62 ˚F

Wind Speed 13* mph

Wind Direction E --

Overall Conditions Rain --

Atmospheric Pressure 29.78 inHG

Humidity 90% --

Dew Point 38 ˚F

WEATHER VARIABLE VALUE UNITS

Temperature 58 ˚F

Wind Speed 11 mph

Wind Direction SE --

Overall Conditions P. Cloudy --

Atmospheric Pressure 29.97 inHG

Humidity 50% --

Dew Point 39 ˚F

WEATHER VARIABLE VALUE UNITS

Temperature 53 ˚F

Wind Speed 8 mph

Wind Direction SE --

Overall Conditions P. Cloudy --

Atmospheric Pressure 29.92 inHG

Humidity 65% --

Dew Point 43 ˚F
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Table A4: Flight B Shot Details  

 

 

Table A5: Flight B Shot Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that volume is calculated as 53 feet + 18 feet  

(holes are held off of the coal by 18 feet). 
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SHOT REPORT INFORMATION VALUE UNITS

Total ANFO Weight 148,235 lbs

Total Emulsion Weight 181,997 lbs

Total Bulk Product Weight 330,232 lbs

ANFO Percentage 44.9% --

Emulsion Percentage 55.1% --

Total Explosives Weight 330,431.5

Listed Blend 50/50 or 60/40 --

Ammonium Nitrate 142,306 lbs

Fuel Oil 5,929 lbs

Additives None --

Shot Time 10:22 AM --

Detonator Type Electronic --

SHOT DESIGN PARAMETERS VALUE UNITS

Burden 46 ft

Spacing 26 ft

Average Hole Depth 53 ft

Max Hole Depth 73 ft

Stemming Height 28 ft

Stemming Type Cuttings --

Number of Holes Loaded 267 --

Number of Holes Attempted 328 --

Volume Shot 1,031,572 BCY

Lbs per Loaded Hole 1,237.6 lbs

Lbs per 8 ms 4,503.5 lbs

Powder Factor 0.32 lbs/BCY
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