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Introduction

Swine production has restructured considerably in recent years with increased production on
fewer farms (Key et al., 2011). Most swine production facilities manage manure in liquid form
either in deep pits underneath production facilities or in lagoons adjacent to the production
facilities (Key et al., 2011). This management uses water to rinse manure from the facilities,
which dilutes the nutrient concentration and value of the manure. The liquid forms are applied
to land through irrigation systems or by liquid manure spreaders. Liquid manure management
can have some operational constraints that composting eliminates (Bernal et al., 2009). The
most common issue with handling liquid manure is that the manure has diluted nutrients and it
is often not economical to transport large volumes of lagoon effluent to off-site locations.
Surface spreading through an irrigator is commonly used, but wet environments can delay
application. Odor can be a concern if liquid manure is surface applied and not incorporated; and
although soil incorporation does reduce manure odors, they can still be a concern.

Composting is a controlled biological process that is managed to enhance natural
decomposition to result in a stable end product (i.e. compost). Composting reduces volume,
weight, odors, and pathogen numbers compared to the initial product. The goal in compost
management is to provide an ideal environment for growth of microorganisms (bacteria, fungi,
and actinomycetes) responsible for decomposition. The microorganisms responsible for
composting get their energy from decomposing organic carbon (C). Carbon and nitrogen (N) are
both to build new cells. Oxygen (O) is used for respiration. Heat is produced as a by-product of
these reactions. The heat generated from composting can reach temperatures exceeding 150
°F. It is this heat that is responsible for killing weed seeds, pathogens, and microorganisms
contained in the compost mixture. This C, N, and oxygen requirement is balanced by choice of



bulking materials, turning frequency, and environmental conditions during composting that
optimize proper moisture, gas exchange, and nutrient ratios (Miller, 1992).

The restructuring of swine production has resulted in the accumulation of large amounts of
swine manure being concentrated in localized areas. Application of manure in close proximity
to production facilities and can lead to elevated concentrations of plant nutrients, particularly
phosphorus (P), which can be associated with degraded water quality in nearby waterways
(USEPA, 2013). Composting swine manure is an alternative manure management strategy with
several advantages over conventional manure handling procedures. Composting swine manure
reduces manure weight and volume, produces a stable product, reduces pathogens, and allows
for transportation to greater distances from production facilities. This method of manure
management utilizes high-rise finishing production facilities (HRFF) where the swine production
area is approximately 12 feet above the ground level used for manure management (Stowell,
2002). The ground level is “bedded” with woodchips or other material that absorbs the manure
(urine and feces) that falls through the slatted floor of the production area above. This material
is turned multiple times a week to uniformly mix the material and to distribute moisture
throughout the bedding. Turning the material under the barn extends the “life” of the bedding
material and results in a partially composted material. The partially composted material is
removed from the facilities when it ceases to absorb moisture and the compost process is
completed outside in windrows.

Objectives

This research investigated how the physical and chemical properties of finished compost were
influenced by turning frequency and environmental conditions of partially decomposed swine
manure-woodchip mixtures from a swine HRFF. Further, recommendations are provided to
maximize composting efficiency based on the results of this research.

Materials and Methods

Wood chips were used as the carbon source and bulking agent. Hardwood was chipped and
sized to pass a 2 inch screen prior to bedding the barn. A mixture of partially decomposed
swine manure and woodchips was removed from under the HRFF and delivered to the Western
Kentucky Agricultural complex in Fall 2011 (FT) and Spring 2012 (ST). The FT contained 76 cubic
yards of material that weighed 108,800 Ibs and the ST contained 81.4 cubic yards of material
that weighed 106,840 |b. The material was divided into three triangular shaped windrows each
season (Figure 1). The FT piles were approximately 34 ft x 7 ft x 3 ft (L x W x H) and the ST piles
were approximately 15 ft x 9 ft x 4 ft (L x W x H) plus one conical shaped 6 ft tall pile with a 10.5
ft base that was not turned (0X). All managed piles were turned using a windrow compost
turner (Model CT-10, HCI Machine Works, Dos Palos, CA) either once per week (1X), three times



per week (3X), or when internal temperatures at 24 inches reached 150° F with a compost
temperature probe (150F). The ST 150F treatment did not reach the desired temperature and
after 63 days the pile was turned on a weekly schedule for the remainder of the experiment.

Compost was collected at three locations within each compost windrow and the ST. Within
each location, five samples were combined and analyzed as a composite sample. Samples were
collected on day O (initial), day three, weekly for the first 12 weeks, and bi-weekly until
composting was terminated. Compost temperatures were monitored at one hour intervals by
HOBO Pro V2 temperature sensors (Onset Computer Corp., Bourne, MA) at three different
locations in each pile. Turning frequency in 150F was determined by a different set of
temperature measurements. Ambient temperature and precipitation were collected from the
Kentucky Mesonet weather station located within 50 ft of the compost site
(http://www.kymesonet.org). Compost moisture (%) was determined on a dry matter basis

(wet weight-dry weight/dry weight)*100. Dry weight was determined after drying at 221°F for
24 hours. Compost samples were extracted with 2 M KCl and analyzed for ammonium and
nitrate nitrogen by flow injection analysis (QuickChem FIA+, Lachat Instruments, Milwaukee,
WI). Total carbon (TC) and total nitrogen (TN) were determined with a Vario Max CN analyzer
(Elementar Americas, Mt. Laurel, NJ). The remaining elements were subjected to microwave
digestion with HNO3 and HCl and measured with inductively coupled plasma-optical emission
spectroscopy (Agilent Technologies, Santa Clara, CA). Compost pH was determined ina 1:1
(w/v) compost to water solution by a combination electrode (Accuphast electrode, Fisher
Scientific, Pittsburg, PA). Compost data was presented as treatment means. The mixed-model
procedure was used to determine significant differences at p < 0.10 (SAS version 9.3, SAS
Institute, 2013, Cary, NC). A more detailed description of the methods used can be found in
Cook et al. (2015).

Results and Discussion

Compost characteristics varied between seasons (Table 1). Compost pH for FT decreased with
the 1X and 3X treatment but not in the 150F treatment nor any of the ST treatments. Total N
did not change from the initial to the final product in the FT, but decreased for all managed
piles in the ST (Table 1). The reduction in TN for the ST and not the FT could be due to the
longer duration of the ST composting (31 days longer) which allowed for greater loss of
ammonia by volatilization (Fukumoto and Kazuyuki, 2009) and nitrate via denitrification and
leaching of different forms of mineral N (Parkinson et al., 2004). A reduction in TC was observed
with the 1X and 150F treatments, but not in the 3X treatment in the FT. This was not expected
or the same trend that occurred in the ST where the 3X treatment resulted in the greatest
reduction of TC (Table 1). It is reasonable that the more often a pile is turned the more CO, is
released to the atmosphere and this treatment was turned three times more often than the 1X



and the 150F treatment (Tiqui et al., 2002). The ST TC results were typical of the expected
outcome, CO, evolution increased (TC decreased) as turning frequency increased.

No significant differences in percent P,0s, K;0, or S were observed for the FT but did occur in ST
(Table 1). The ST concentrated percent P,0s5, K,0, and S in the 1X and OX treatments and K,O in
the 150F treatments, but no others. The concentrating of these elements is not unexpected
because leaching and volatilization losses are not typical with P,0Os and K,0, and S would only
show volatile losses in highly anaerobic conditions. It is unclear why the 3X treatment failed to
concentrate P,Os, K,0, and S because this treatment in ST resulted in the greatest reduction of
TC. One possible explanation is that limited leaching of these nutrients from the crust (outside
of pile) occurred (Tiquia et al., 2002). Because this treatment was turned the most often, there
was more opportunity for newly exposed crust to be subjected to precipitation and greater
potential for leaching within the pile below the sample collection point. Parkinson and
associates (2004) observed some increases in molybdate-reactive phosphorus concentrations
during turning of compost piles. The same mechanism may help to explain why the 0X
treatment resulted in the greatest P,0s, K,0, and S concentrations in ST, less total exposure of
compost led to less leaching. There is no way to confirm this based on the data collected.

Compost moisture varied across treatment for both trials although total precipitation and
average temperatures were similar. There were 12.77 inches of precipitation and average
ambient temperature of 65.9° F for FT and 13.5 inches of precipitation and an average ambient
temperature of 65.8° F for ST. Although similar when averaged across the 112 and 143 days of
the experiment, the distribution of temperature and precipitation varied (Figures 2 and 3). The
initial compost moisture level in ST was 7.7% wetter than the initial compost moisture level in
FT (Table 1). The ideal moisture range for composting is between 40 to 60% and both initial
products were in the ideal range. Although the compost moisture content for ST was in the
ideal range, the higher moisture content and precipitation at the beginning of composting
coupled with cooler initial ambient temperatures (<60° F) contributed to slow initial heating in
ST (Figure 3).

The FT temperature profiles were typical of expected outcomes: initially the piles would heat,
then cool when turned, then reheat until turned again (Zucconi and de Bertoldi, 1987) (Figure
2). All piles maintained this pattern as temperatures started to decrease after 3-4 weeks, until
day 60 when turning did not provide an increase in compost temperature. Although the
temperature profiles varied across treatment, they all were very similar at the end of
composting at 112 days and were very similar to the ambient temperature (Figure 2). All
treatments were regarded as finished at this time. None of the treatments appeared to
produce a superior product (based on nutrient profiles or physical appearance) at the end of
composting or benefit by reducing composting completion time (Table 1 and Figure 2). The



results of the FT indicate that reducing compost turn frequency is not detrimental to compost
completion, end product, and would reduce management and energy inputs.

The ST temperature profiles differed from FT profiles (Figure 3). All treatments were slow to
initially heat, but the 1X was the first pile to exceed 140° F for any of the treatments (day 32).
The 3X treatment was the next pile to exceed 140° F (day 53). The OX pile never exceeded 95° F
during the time temperature was measured (84 d); the maximum temperature was achieved at
day 38. The @150F ST treatment never heated to 150° F during the first 63 days and weekly
turning was initiated at this time. It is interesting, but not unexpected, that the temperature
profile mimicked the OX pile when the pile was not being turned and performed like the 1X
temperature profile within one week of being turned the first time (Figure 3). There appeared
to be no detrimental effects of not turning for 63 days prior to initiating weekly turning on the
temperature profile (Figure 3). For ST, conservation of moisture, TN, TC, P,0s, K,0, and S were
generally less than the 0X and similar to the 1X treatment (Table 1).

The 3X ST treatment was the only spring treatment that appeared to be finished (reached
ambient temperature) when the project was terminated at day 143. However, compost
moisture levels dropped to 25.7% in the 3X ST and were below the ideal range for composting.
Treatments turned once per week still had moisture sufficient for composting and were still
showing evidence of cyclic heating/cooling with turning at day 143 when the project was
terminated. This suggests that either low moisture in the 3X ST treatment limited composting
or that lower turning frequency delayed composting in 1X ST. Additional moisture in the 3X ST
or greater duration for the 1X ST may have allowed composting to continue in this season,
although all final products had acceptable appearance and nutrient profiles.

Initial ammonium-N concentration was about 7 Ib/ton (~¥15% of TN) in FT and 11.5 Ib/ton (~19%
of TN) in ST and very little inorganic-N remained at the end of either trial (Figures 4 and 5).
Ammonium-N in the 1X and 3X FT treatments and all ST treatments continuously decreased
until the concentration was below 1 Ib/ton (Figures 4 and 5). Nitrate-N was relatively low until
day 50 in the 1X and 3X FT treatments and day 100 is all ST treatments, than began to increase
with time, to a maximum of 2-3 Ib/ton. Warmer and drier conditions were present early in FT
where ST was cooler and wetter which supports these results (Figures 4 and 5). It also appeared
that the nitrification process in the 1X and 3X FT treatments generated acidity sufficient to
lower compost pH in these treatments, but this did not occur in the ST treatments (Table 1).
The 150F FT treatment never completely consumed all the ammonium-N, nitrate-N
concentrations remained lower, and compost pH did not decrease. Further, the 0X ST
treatment was not turned, but nitrification proceeded after day 60 (Figure 5D). Although gas
exchange promotes the composting process, sufficient temperature and moisture was present
in this treatment and anaerobic conditions were not sufficient to hinder nitrification.



Conclusions

Based on the results over the two seasons of this experiment, some general observations can
be made to aid in compost management. Moisture management can be challenging when
utilizing outside composting facilities. Turning frequency does not appear to greatly influence
compost duration or final product if composting is initiated when weather is warm and
moisture is adequate (e.g. FT). Lower turning frequency resulted in similar final products with
less energy expenditures. Lower ambient temperatures coupled with early rainfall are much
more challenging when trying to start the composting process. Turning frequently is more
influential when initiating composting in cooler, wetter environments (e.g. ST). Turning will
actually diminish evaporation and hinder compost heating within wet environmental
conditions. When drier environmental conditions persist, turning will expose the pile to
conditions that enhance drying, sometimes with detrimental effects. Environmental and
compost conditions should be considered when determining turning frequency and timing
rather than maintaining a set schedule. Covering an outdoor compost operation may not be
feasible for controlling excess moisture; however adding supplemental moisture may be
desirable to manage compost moisture content.
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Table 1. Chemical characteristics of initial and final compost as calculated on a % dry matter basis.

Treatment pH Moisture % Total N % Total C% C/N ratio P,05 % K,0 % S%
Fall Trial

Initial 7.7 c 494 c 2.3a 279b 12.1c 39a 2.6a 0.8a
1X (12)* 6.9 b 42.0b 2.2a 249 a 11.1ab 46a 2.4a 0.8a
3X (36) 6.6a 441 b 2.3a 26.3ab 11.4b 4.4 3 242 0.5a
150F (11) 7.6cC 32.2a 2.3a 24.3 a 10.5a 4.4a 2.4a 0.5a
Spring Trial

Initial 8.0a 57.1d 3.1c 33.2c 10.7 a 49a 3.2a 1.0a
1X (18) 7.8a 30.6b 2.5b 273D 10.8 a 5.6b 39cd 13b
3X (54) 7.8a 25.7 a 19a 22.0a 114a 4.6 a 3.3ab 09a
150F (10) 7.8a 37.2c 24b 26.1b 109 a 5.1ab 3.6 bc 1.0a
0X (0) 7.7 a 58.1d 3.2¢ 33.0c 10.4 a 6.6C 4.0d 1.3b

Y humbers in (parenthesis) indicate the number of times each pile was turned for individual treatments. Means within a column with
no common letter differ at P<0.10 for individual trials.



Figure 1. Compost piles for the fall trial (FT).The final product should result in a friable, easily spreadable, non noxious material.
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differ at P<0.1.
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