
University of Kentucky
UKnowledge

Toxicology and Cancer Biology Faculty
Publications Toxicology and Cancer Biology

3-18-2013

Loss of FBP1 by Snail-Mediated Repression
Provides Metabolic Advantages in Basal-Like Breast
Cancer
Chenfang Dong
University of Kentucky, chenfangdong@uky.edu

Tingting Yuan
University of Kentucky

Yadi Wu
University of Kentucky, yadi.wu@uky.edu

Yifan Wang
University of Kentucky, yifan.wang@uky.edu

Teresa W-M Fan
University of Louisville, teresa.fan@uky.edu

See next page for additional authors

Right click to open a feedback form in a new tab to let us know how this document benefits you.
Follow this and additional works at: https://uknowledge.uky.edu/toxicology_facpub

Part of the Medical Toxicology Commons

This Article is brought to you for free and open access by the Toxicology and Cancer Biology at UKnowledge. It has been accepted for inclusion in
Toxicology and Cancer Biology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Repository Citation
Dong, Chenfang; Yuan, Tingting; Wu, Yadi; Wang, Yifan; Fan, Teresa W-M; Miriyala, Sumitra; Lin, Yiwei; Yao, Jun; Shi, Jian; Kang,
Tiebang; Lorkiewicz, Pawel; St. Clair, Daret; Hung, Mien-Chie; Evers, B. Mark; and Zhou, Binhua P., "Loss of FBP1 by Snail-
Mediated Repression Provides Metabolic Advantages in Basal-Like Breast Cancer" (2013). Toxicology and Cancer Biology Faculty
Publications. 47.
https://uknowledge.uky.edu/toxicology_facpub/47

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/toxicology_facpub?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/toxicology_facpub?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/toxicology?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/toxicology_facpub?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/678?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/toxicology_facpub/47?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors
Chenfang Dong, Tingting Yuan, Yadi Wu, Yifan Wang, Teresa W-M Fan, Sumitra Miriyala, Yiwei Lin, Jun Yao,
Jian Shi, Tiebang Kang, Pawel Lorkiewicz, Daret St. Clair, Mien-Chie Hung, B. Mark Evers, and Binhua P.
Zhou

Loss of FBP1 by Snail-Mediated Repression Provides Metabolic Advantages in Basal-Like Breast Cancer

Notes/Citation Information
Published in Cancer Cell, v. 23, no. 2, p. 316-331.

© 2013 Elsevier Inc. Published by Elsevier Inc.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dr. Teresa W-M Fan was affiliated with the University of Kentucky at the time of publication.

Digital Object Identifier (DOI)
http://dx.doi.org/10.1016/j.ccr.2013.01.022

This article is available at UKnowledge: https://uknowledge.uky.edu/toxicology_facpub/47

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://uknowledge.uky.edu/toxicology_facpub/47?utm_source=uknowledge.uky.edu%2Ftoxicology_facpub%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

© 2013 Elsevier Inc. Published by 

Elsevier Inc. 

 

This manuscript version is made 

available under the CC-BY-NC-ND 4.0 

license 

http://creativecommons.org/licenses/

by-nc-nd/4.0/ 

 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Loss of FBP1 by Snail-mediated Repression Provides Metabolic
Advantages in Basal-like Breast Cancer

Chenfang Dong1,5, Tingting Yuan1,5,‡, Yadi Wu2,5,‡, Yifan Wang1,5,‡, Teresa W.M. Fan6,
Sumitra Miriyala4,5, Yiwei Lin1,5, Jun Yao7, Jian Shi1,5, Tiebang Kang8, Pawel Lorkiewicz6,
Daret St Clair4,5, Mien-Chie Hung9,10, B. Mark Evers1,3,5, and Binhua P. Zhou1,5,*

1Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of
Medicine, Lexington, KY 40506
2Department of Molecular and Biomedical Pharmacology, The University of Kentucky, College of
Medicine, Lexington, KY 40506
3Department of Surgery, The University of Kentucky, College of Medicine, Lexington, KY 40506
4Graduate Center for Toxicology, The University of Kentucky, College of Medicine, Lexington, KY
40506
5Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, KY 40506
6Center for Regulatory and Environmental Analytical Metabolomics, Department of Chemistry and
J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202
7Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center,
Houston, TX 77030
8State Key Laboratory of Oncology in South China, Guangzhou 510060, China
9Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson
Cancer Center, Houston, TX 77030
10Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical
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SUMMARY
Epithelial-mesenchymal transition (EMT) enhances invasiveness and confers tumor cells with
cancer stem cell (CSC)-like characteristics. We showed that the Snail-G9a-Dnmt1 complex, which
is critical for E-cadherin promoter silencing, is also required for the promoter methylation of
fructose-1,6-biphosphatase (FBP1) in basal-like breast cancer (BLBC). Loss of FBP1 induces
glycolysis and results in increased glucose uptake, macromolecules biosynthesis, formation of
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tetrameric PKM2, and maintenance of ATP production under hypoxia. Loss of FBP1 also inhibits
oxygen consumption and ROS production by suppressing mitochondrial complex I activity; this
metabolic reprogramming results in an increased CSC-like property and tumorigenicity by
enhancing the interaction of β-catenin with TCF. Our study indicates that the loss of FBP1 is a
critical oncogenic event in EMT and BLBC.

INTRODUCTION
The increased motility and invasiveness of metastatic tumor cells are reminiscent of the
events that occur at the epithelial-mesenchymal transition (EMT), a characteristic of
embryonic development, tissue remodeling and wound healing (Polyak and Weinberg, 2009;
Thiery et al., 2009). EMT also bestows tumor cells with CSC-like characteristics, providing
them with therapeutic resistance and conferred tumor recurrence. Although metabolism
plays a fundamental role in essentially every function of a cell, little is known about how the
cell's metabolism contributes to the morphological and molecular changes in EMT.
Understanding the causes and consequences of altered metabolism, particularly glucose, in
EMT may permit the identification of drug targets for treating metastatic breast cancer.

Glucose homeostasis is reciprocally controlled by the catabolic glycolysis/oxidative
phosphorylation (OXPHOS) and the anabolic gluconeogenesis pathway. In the catabolic
reaction, glucose is converted to pyruvate in the absence of oxygen, which can be further
metabolized to lactate in the cytoplasm (glycolysis). In the presence of oxygen, pyruvate is
channeled to the tricarboxylic acid (TCA) cycle to fuel OXPHOS for the maximal ATP
production in the mitochondria. Otto Warburg noticed that some tumor cells preferentially
metabolized glucose to lactate in the presence of ample oxygen, a process called aerobic
glycolysis (Koppenol et al., 2011). Activation of several oncogenes contributes to the
Warburg effect in tumor cells. For example, AKT1 stimulates glucose uptake by enhancing
Glu-4 expression and by activating hexokinase (Elstrom et al., 2004; Robey and Hay, 2009).
Activation of Myc also induces glycolysis by inducing LDH-A and PDK1 expression, which
inhibits the conversion of pyruvate to acetyl-CoA and facilitates the production of lactate
(Dang et al., 2008). Tumor cells can increase an embryonic form of pyruvate kinase M2
(PKM2) to trigger glycolysis in lung cancer (Christofk et al., 2008).

Much attention has focused on regulation of the catabolic pathway of glucose.
Gluconeogenesis is less investigated and may play an equally important role in the switch to
aerobic glycolysis in tumor cells. Fructose-1,6-bisphosphatase (FBP1), which catalyzes the
splitting of fructose-1,6-bisphosphate (F-1,6-BP) into fructose 6-phosphate and inorganic
phosphate, is a rate-limiting enzyme in gluconeogenesis. An autosomal recessive inherited
disorder of FBP1 deficiency is characterized by hypoglycemia and lactic acidosis, which
often causes sudden infant death (Emery et al., 1988). This suggests that loss of FBP1
increases glucose uptake and glycolysis, leading to hypoglycemia and lactic acidosis in
patients. Consistent with these observations, inhibition of FBP1 significantly increases
glucose sensitivity and utilization in type 2 diabetic mouse models (van Poelje et al., 2006).
Interestingly, loss of FBP1 expression due to promoter DNA methylation has been observed
in liver, colon and gastric cancers (Chen et al., 2011; Liu et al., 2010), suggesting that
epigenetic regulation of FBP1 plays a critical role in modulating glucose metabolism in
cancer.

Breast cancer can be divided into four subtypes based on gene expression profiling: luminal
A, luminal B, HER2, and basal-like. BLBC is defined by expression of markers
characteristic of basal/myoepithelial cells and is identified as a subgroup of breast cancers
that may originate from undifferentiated stem cells (Polyak, 2011). Consistent with this
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notion, BLBC contains many EMT markers and CSC-like characteristics. We recently
showed that Snail interacted with H3K9 methyltransferase G9a and DNA methyltransferase
Dnmt1 to silence E-cadherin expression in BLBC cells (Dong et al., 2012). We carried out
this study to identify other targets regulated by the Snail-G9a-Dnmt1 complex and
investigate their contributions to BLBC.

RESULTS
FBP1 expression is inversely correlated with Snail in breast cancer

To identify potential targets regulated by the Snail-G9a-Dnmt1 complex, we performed
microarray analysis in MDA-MB231 cells with knockdown of G9a (GSE34925). Similar to
E-cadherin, FBP1 mRNA was greatly elevated after knockdown of G9a. FBP1 has been
identified as a marker to distinguish estrogen receptor (ER)-positive breast cancer from ER-
negative subtype (van 't Veer et al., 2002). To reveal the potential function of FBP1 in breast
cancer, we analyzed FBP1 expression in five gene expression datasets and noticed that
FBP1 expression positively correlated with ERα expression (Figure S1A). In two datasets
(NKI295 and GSE1456) with information on breast cancer subtypes, we found FBP1
expression was high in luminal subtype and significantly lower in BLBC (Figure 1A). Using
immunohistochemistry staining, we also found that FBP1 expression positively correlated
with ERα expression (Figure 1B and Figure S1B). This correlation was further confirmed
using immunoblotting. We found that FBP1 and ERα were highly expressed in luminal
subtype but lowly expressed in triple-negative breast cancer, which are mostly also BLBC
(Figure S1C; six samples from both cases are shown in Figure 1C). Consistent with the
notion that BLBC express EMT molecules, Snail protein level was high in triple-negative
breast cancer, and its level inversely correlated with expression of FBP1, ERα and E-
cadherin (Figure 1C and Figure S1C). Furthermore, we examined the expression of FBP1,
ERα and Snail in breast cancer cell lines. BLBC cells lose expression of luminal epithelial
molecules (ERα and E-cadherin) and contain high levels of mesenchymal markers
(vimentin, N-cadherin and Snail). Similar to E-cadherin and ERα, FBP1 was high in luminal
cell lines and absent in BLBC cell lines (Figure 1D).

FBP1 is a direct target of Snail
To investigate the causal relationship between Snail and FBP1, we expressed Snail in two
luminal breast cancer cell lines. Expression of Snail downregulated E-cadherin expression,
induced EMT, and converted luminal cells into basal-like phenotype (Dhasarathy et al.,
2011) (Figure 2A–2D). This phenotypic conversion is associated with the loss of luminal
markers and gain of basal markers (Figure 2D and Figure S2). Similar to E-cadherin, Snail
almost completely suppressed FBP1 expression in these cells (Figure 2B–2D). To examine
whether FBP1 repression is required for Snail-mediated EMT and basal-like phenotype
conversion, Snail was co-expressed with exogenous FBP1 (under the control of CMV
promoter and thus not repressed by Snail) in luminal cells (Figure 2A). Ectopic FBP1
expression blocked the downregulation of E-cadherin, inhibited morphological changes
indicative of EMT and suppressed the basal-like phenotype conversion in these cells (Figure
2B & 2D; Figure S2), indicating that FBP1 repression is required for this event.

We noticed that the FBP1 promoter contained nine consensus Snail-binding E-boxes
(CAGGTG) (Figure 2E). We cloned FBP1 promoter (FL1 = −1669 to +331 bp) and
generated several deletion mutants of promoter-luciferase constructs based on the location of
these E-boxes. By expressing a full-length FBP1 promoter reporter (FL1) in HEK293, HeLa
and MCF7 cells, we found Snail significantly repressed FBP1 promoter activity (Figure 2F).
When the E-box at −1273 bp was deleted (FL1 vs FL2), we did not notice any changes in
Snail-mediated FBP1 promoter-luciferase repression (Figure 2G), suggesting that the E-box
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at −1273 is not critical for Snail-mediated FBP1 repression. However, two E-boxes
upstream of transcriptional starting site (TSS) (−657 and −358 bp) as well as six consecutive
E-boxes between TSS and ATG sites were important for Snail-mediated FBP1 repression, as
deletion constructs (FL3 and FL4) that removed these two regions separately became less
sensitive to Snail-mediated repression (Figure 2H). Mutation on these E-boxes almost
completely abolished Snail-mediated repression on FBP1 promoter luciferase (Figure 2H).

To examine whether Snail binds to FBP1 promoter, we performed chromatin
immunoprecipitation (ChIP) by using three sets of primers (Figure 3A). Primer set 2, which
covers nucleotides from −369 to −161, worked effectively and thus was used for the
subsequent ChIP experiments. In cells that had undergone Snail-mediated EMT (Figure 2B),
we found that Snail was associated with the FBP1 promoter (Figure 3B). In addition, we
found endogenous Snail bound to FBP1 promoter in BLBC cells but not luminal cell lines
(Figure 3C). These results indicate that FBP1 is a direct target of Snail.

Loss of FBP1 expression is associated with elevated H3K9me2 and DNA methylation at
the FBP1 promoter

We hypothesized that the Snail-G9a-Dnmts complex also binds to the FBP1 promoter and is
responsible for FBP1 repression in BLBC. In three luminal cell lines that had undergone
Snail-mediated EMT, we found that downregulation of FBP1 was associated with an
increased G9a and H3K9me2 and decreased H3K9ac at the FBP1 promoter (Figure 3B). We
also found FBP1 promoter was completely unmethylated in vector control cell lines;
however, de novo DNA methylation occurred at the FBP1 promoter in cells that had
undergone Snail-mediated EMT (Figure 3B). The increased G9a association, H3K9me2 and
DNA methylation on FBP1 promoter correlated well with the downregulation of FBP1 in
these luminal cell lines (Figure 3B).

We also detected a dramatic increase of H3K9me2 and decrease of H3K9ac on the FBP1
promoter in six BLBC cell lines compared to those in five luminal cell lines (Figure 3C).
The increase of H3K9me2 at the FBP1 promoter was likely due to the association of the
Snail-G9a-Dnmts complex because the occupancy of Snail and G9a at the FBP1 promoter
was also significantly higher in BLBC cell lines than in luminal cell lines (Figure 3C).
Consistently, all BLBC cell lines showed significant increase of DNA methylation on the
FBP1 promoter, whereas no detectable FBP1 promoter DNA methylation in luminal cell
lines was observed (Figure 3C). When analyzing 25 cases of luminal and 16 cases of triple-
negative breast tumor tissues (Figure S1C), we found that the association of G9a and the
level of H3K9me2 and DNA methylation on the FBP1 promoter were significantly
increased in triple-negative breast cancer compared with the luminal subtype (Figure 3D).
Knockdown of G9a in MDA-MB231 cells increased the mRNA and protein levels of FBP1
in a way similar to that of E-cadherin (Figure 3E). Knockdown of Snail also increased the
expression of FBP1 and E-cadherin in MDA-MB231 cells (Figure S3). Together, these
results indicate that the association of Snail and G9a and the corresponding increased
H3K9me2 and DNA methylation on FBP1 promoter are critical for the silencing of FBP1
expression in BLBC.

FBP1 inhibits glucose uptake and sensitivity in BLBC cells
To examine the function of FBP1 in breast cancer, we established stable clones with FBP1
expression or knockdown in six BLBC and two luminal breast cancer cell lines, respectively
(Figure 4A). We first measured glucose uptake and found that FBP1 expression significantly
decreased glucose uptake in BLBC cell lines, whereas knockdown of FBP1 enhanced
glucose uptake in luminal cell lines (Figure 4B). Intracellular glucose is sensed by MondoA
and ChREBP (Li et al., 2006). Following increase in intracellular glucose-derived
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metabolites, MondoA and ChREBP shuttle to the nucleus, where they interact with Mlx and
activate transcription of target genes. TXNIP is a major direct target of MondoA-Mlx
complex and is commonly used as an intracellular glucose sensor (Peterson et al., 2010). We
thus examined TXNIP induction by depleting glucose for 12 hr, followed by glucose
stimulation for additional 3 hr. TXNIP was robustly induced in BLBC cell lines; however,
FBP1 suppressed TXNIP induction. In contrast, knockdown of FBP1 stimulated TXNIP
induction in luminal cells (Figure 4C). Since the cells had been glucose-deprived for 12 hr,
the TXNIP levels were re-set to baseline (lane 2 vs lane 1, Figure S4A); the induction of
TXNIP after glucose stimulation reflects glucose uptake and resultant steady-state level of
intracellular glucose. Indeed, following glucose stimulation for different time intervals,
TXNIP induction was greatly delayed in FBP1-expressing MDA-MB231 cells. In contrast,
TXNIP induction was robustly increased in FBP1-knockdown MCF7 cells (Figure S4A). As
insulin is the major hormone regulating glucose uptake, we measured insulin sensitivity by
examining tyrosine phosphorylation of the insulin receptor (IR) after insulin stimulation. We
found that FBP1 expression suppressed the intensity and duration of IR phosphorylation in
BLBC cell lines. Conversely, knockdown of FBP1 increased the intensity and duration of IR
phosphorylation in luminal cell lines (Figure S4B). These results indicate that FBP1 is
critical in inhibiting glucose uptake exemplified by down-regulating glucose and insulin
sensitivities.

FBP1 reduces lactate generation and increases oxygen consumption in BLBC cells
To examine whether FBP1 changes glucose metabolism from aerobic glycolysis to
OXPHOS, we measured lactate production and found that FBP1-expressing BLBC cells
produced less lactate than their vector control cells, whereas FBP1-knockdown luminal cells
had more lactate production (Figure 4D). We then investigated FBP1’s role on cell growth
under different oxygen conditions. At normoxic condition (21% O2), FBP1 expression
induced a minor inhibition in cell growth in BLBC cell lines. Similarly, knockdown of FBP1
did not cause an apparent effect on the growth of luminal cells (Figure S4C). However,
under hypoxic condition (0.1% O2), FBP1 expression induced a drastic growth inhibition in
BLBC cell lines, whereas knockdown of FBP1 significantly reduced hypoxia-mediated
growth inhibition in luminal cell lines (Figure 4E), suggesting that the effect of FBP1 on cell
growth depends on oxygen. We thus examined oxygen consumption rate (OCR). We found
that the basal OCR significantly increased in FBP1-expressing BLBC cells, whereas FBP1-
knockdown luminal cells displayed a decrease in basal OCR (Figure 4F). Similar results
were obtained in the analysis of ATP-linked and maximal OCR (Figure 4F).

FBP1 inhibits glycolysis and increases OXPHOS
For every glucose molecule a cell consumes, aerobic glycolysis produces 2 ATP, whereas
OXPHOS produces 36 ATP. We found that FBP1 expression or knockdown did not alter the
steady-state level of ATP in BLBC or luminal cells under normoxic condition (Figure S5A).
However, under hypoxia, the steady-state level of ATP was significantly decreased in FBP1-
expressing BLBC cells, whereas knockdown of FBP1 greatly reduced hypoxia-mediated
ATP reduction in luminal cells (Figure S5A). Consistent with these observations,
oligomycin treatment resulted in a significant growth inhibition in FBP1-expressing BLBC
cells. Conversely, knockdown of FBP1 provided luminal cells with resistance to this
compound (Figure S5B). Although BLBC cell lines are less sensitive to growth inhibition
mediated by hypoxia or oligomycin compared with their FBP1-expressing clones, they were
extremely sensitive to glucose deprivation, as indicated by massive cell death and
detachment from the cell substratum after 48 hr of glucose depletion (Figure S5C).

We further investigated the metabolic fate of [U-13C]-glucose in vector- and FBP1-
expressing MDA-MB231 cells by using Stable Isotope-Resolved Metabolomic (SIRM) (Fan
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et al., 2009; Fan et al., 2011; Le et al., 2012). NMR analysis of the culture media
demonstrated a reduced 13C6-glucose uptake and 13C3-lactate excretion, leading to an
overall decrease of 13C6-glucose to 13C3-lactate conversion in FBP1-expressing cells
(Figure 5A and Figure S5D). NMR analysis of 13C-labeled metabolites in cell extracts also
indicated a reduced 13C3-lactate in FBP1-expressing cells (Figure 5B), consisting with
reduced 13C3-lactate excretion into the media. Interestingly, FBP1 expression also
reduced 13C abundance in the ribosyl unit of ribonucleotides and derivatives (i.e. AXP,
UXP, NAD+, and UDPG) (Figure 5B), suggesting that the pentose phosphate pathway
(PPP), which is responsible for generating ribose-5-phosphate for the synthesis of
ribonucleotides and NADPH production, is inhibited. In line with this finding, the ratio of
NADP+/NADPH was increased in FBP1-expressing MDA-MB231 cells, whereas this ratio
was decreased in FBP1-knockdown MCF7 cells (Figure S5E). The decreased level of 13C-
UDPG in FBP1-expressing cells suggests that the glycosylation process is reduced. The
same cell extracts were further analyzed by GC-MS to quantify 13C-metabolites involved in
glycolysis and the TCA cycle (Figure 5C). We found that the production of the m3 or 13C3-
isotopologues of glycerol-3-phosphate (G3P) and serine were significantly reduced in FBP1-
expresing cells, which is again consistent with attenuated glycolytic activity. In line with the
observations that FBP1 increased OXPHOS, the production of 13C2 or m2-succinate,
fumarate and malate (markers of the 1st turn of the TCA cycle) as well as the 13C4- or m4-
citrate (markers of the 2nd turn of the TCA cycle) (Fan et al., 2010) were increased in FBP1-
expressing cells (Figure 5C). Together, these results indicate that FBP1 inhibits glycolytic
flux, reduces biosynthesis (nucleotides via PPP, G3P for triacylglycerol synthesis and serine
for protein) and enhances OXPHOS.

FBP1 suppresses PKM2 activation and increases mitochondrial complex I activity and
ROS generation

To explore the underlying mechanisms of increased OXPHOS by FBP1, we first assessed
the level of F-1, 6-BP. FBP1 expression caused a dramatic decrease of F-1, 6-BP level in
BLBC cells, whereas knockdown of FBP1 led to a marked increase of F-1, 6-BP in luminal
cell lines (Figure 6A). We also measured pyruvate kinase (PK) activity and found that FBP1
significantly decreased PK activity in two BLBC cell lines; whereas knockdown of FBP1
increased PK activity in two luminal cells (Figure S6A). The PK activity contained both
PKM1 and PKM2 activities and thus we could not distinguish the activation of PKM2 by
F-1, 6-BP. We next examined the tetrameric form of PKM2 using cross-linking agent.
Surprisingly, PKM2 existed mainly in tetrameric form in two BLBC cell lines, whereas it
appeared in monomer state in two luminal cell lines (Figure 6B). FBP1 expression
significantly decreased the tetrameric PKM2, whereas knockdown of FBP1 increased the
formation of tetrameric PKM2. These data indicate that loss of FBP1 activates PKM2,
which facilitates lactate production and triggers the switch to aerobic glycolysis.

Because FBP1 expression enhanced oxygen consumption, we reasoned that FBP1
expression stimulates activity in the mitochondrial electron transport complexes (I, II, III,
and IV of ETC) (Figure 6C). Complexes I and II use electrons donated from NADH and
FADH2, respectively, to reduce coenzyme Q, which shuttles these electrons to complex III,
where they are transferred to cytochrome c. Complex IV uses electrons from cytochrome c
to reduce molecular oxygen to water. These actions produce a proton electrochemical
potential gradient, and the free energy released is converted to ATP by ATP synthase
(Chatterjee et al., 2011). We first compared the activity of the mitochondrial complexes I
and II in terms of their contribution to the overall oxygen consumption. Complex I and II
activity could be blocked by rotenone and TTFA, respectively, thus the oxygen consumption
relies on the electron transport activity of the remaining active complex. As shown in Figure
6C, although OCR was higher in FBP1-expressing BLBC cell lines, addition of TTFA
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slightly and proportionally decreased OCR in both vector- and FBP1-expressing BLBC
cells. A consistent trend was observed in vector- and FBP1-knockdown luminal cell lines
(Figure 6C). However, treatment with rotenone dramatically reduced OCR in FBP1-
expressing BLBC cells to levels found in vector control cells (Figure 6C). Consistently,
treatment with rotenone also decreased OCR in luminal cells to levels similar to those found
in the FBP1-knockdown luminal cells. We also measured complex I activity using purified
mitochondria from these cells. FBP1-expressing BLBC cell lines had significant higher
complex I activity, whereas FBP1-knockdown luminal cell lines had decreased complex I
activity (Figure 6D). To identify the underlying mechanism, we performed microarray
analysis (GSE41158) and determined that mitochondrial transcription factor B1M (TFB1M)
was significantly higher in FBP1-expressing BLBC cells (Figure S6B). TFB1M is a nuclear
gene encoding mitochondrial transcription factor that is essential for the mitochondrial
biogenesis (Metodiev et al., 2009). Loss of TFB1M causes defects of protein translation in
mitochondrial complex I components, resulting in impaired OXPHOS (Koeck et al., 2011).
We found that TFB1M expression was increased in FBP1-expressing MDA-MB231 cells,
whereas its expression was decreased in FBP1-knockdown MCF7 cells (Figure S6B–6C). In
addition, two targets of TFB1M from mitochondrial complex I, ND1 and ND5, but not
components from complex II–IV were also elevated in FBP1-expressing cells. Together,
these data indicate that the rise of complex I activity is the main factor underlying the
increase of mitochondrial oxygen consumption in FBP1-expressing cells.

In ETC, a small percentage of electrons are prematurely leaked to oxygen, mainly from
complex I and/or complex III, forming the majority of ROS (Chatterjee et al., 2011). To test
whether an increase in mitochondrial OCR and complex I activity by FBP1 would
accompany an increase of ROS, we examined intracellular ROS levels using CellROX deep
red. FBP1-expressing BLBC cells showed a substantial increase in ROS levels, whereas
FBP1-knockdown luminal cell lines induced a significant decrease of ROS (Figure 6E & F).
A similar finding was observed for superoxide production using Mito-Sox Red and DHE
staining (Figure S6D). These data indicate that FBP1 expression contributes to the increase
of cellular ROS.

FBP1 suppresses CSCs and inhibits tumorigenicity of breast cancer
To examine whether FBP1 expression alters CSC characteristics of BLBC, we examined
tumorsphere formation of these cells under normoxic and hypoxic conditions. FBP1
expression greatly suppressed tumorsphere formation in BLBC cell lines (Figure 7A), and
this inhibitory effect was enhanced by hypoxia (Figure S7A). Conversely, knockdown of
FBP1 in luminal cell lines enhanced tumorsphere formation in normoxic condition, and this
effect was also substantiated under hypoxia.

Breast CSCs are enriched in cells with a CD44high/CD24low/EpCAM+ phenotype (Blick et
al., 2010). We found that FBP1 expression significantly reduced the percentage of
CD44high/CD24low/EpCAM+ population in BLBC cell lines (Figure 7B & 7C). Conversely,
knockdown of FBP1 induced a significant increase of CD44high/CD24low/EpCAM+

population in luminal cell lines. Because CD44 is a known target of β-catenin, and because
activation of β-catenin is often found in BLBC (DiMeo et al., 2009; Zeilstra et al., 2008), we
reasoned that the elevated ROS caused by FBP1 expression compromises β-catenin activity.
In the cellular aging process, ROS antagonizes β-catenin activity by shifting the interaction
of β-catenin with TCF4 toward FOXO3a (Figure 7D) (Bowerman, 2005; Essers et al., 2005;
Manolagas and Almeida, 2007). We found that β-catenin interacted with TCF4 in BLBC
cells. However, the interaction of β-catenin with TCF4 was significantly decreased and
substituted with an increased interaction of β-catenin with FOXO3a in FBP1-expressing
cells (Figure 7E). Similarly, knockdown of FBP1 in luminal cells increased the interaction
of β-catenin with TCF4. The differential interactions of β-catenin with TCF4 were
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consistent with the luciferase reporter assays showing that FBP1-expressing cells had lower
TOP-Flash and higher FOXO3a luciferase activities than vector control cells (Figure S7B).
In addition, expression of several target genes of β-catenin (Axin2, CD44 and ID2) and
FOXO3a (CDKN2A and SOD2) were in line with these binding and promoter luciferase
assays (Figure S7C). Consistently, NAC treatment restored the interaction of β-catenin with
TCF4 as well as their luciferase activities and target gene expression (Figure 7E and Figure
S7B–7C). In addition, treatment with NAC and EUK134 restored tumorsphere-formation in
FBP1-expressing BLBC cells (Figure S7D).

We also measured the in vitro tumorigenicity of these cells using soft-agar assay. Although
BT549 and SUM1315 cells could not form colonies, the other FBP1-expressing BLBC cell
lines had significantly fewer colonies than their corresponding vector controls; whereas
knockdown of FBP1 increased colony-formation in luminal cell lines (Figure 8A). NAC
treatment restored colony growth in FBP1-expressing BLBC cells, indicating that the
elevated ROS impairs their tumorigenicity in vitro (Figure S8A). To examine the
tumorigenicity in vivo, we injected mammary fat pads of SCID mice with the following
three pairs of cell lines: (1) vector- and FBP1-expressing MDA-MB231 cells; (2) vector-
and FBP1-expressing MDA-MB435 cells; and (3) vector- and FBP1-knockdown MCF7
cells. As shown in Figure 8B, FBP1-expressing MDA-MB231 cells failed to form tumors in
all six mice. Similarly, tumors derived from FBP1-expressing MDA-MB435 cells had a
significantly reduced tumor size compared with vector control cells. In line with these
findings, FBP1-knockdown MCF7 cells showed significantly enhanced tumor growth
compared with vector control cells (Figure 8B). Strikingly, NAC treatment greatly increased
tumor formation in FBP1-expressing MDA-MB231 and MDA-MB435 cells (Figure S8B–
8C). Together, these data indicate that FBP1 expression increases ROS production, which
compromises CSC properties by shifting the interaction of β-catenin from TCF4 to
FOXO3a, and thus inhibits tumorigenicity in vitro and tumor-formation in vivo.

We then examined the correlation of FBP1 expression with patient survival in NKI295 that
consists of 295 node-negative breast patients (van de Vijver et al., 2002). Expression of
FBP1 can separate patients into two prognostic groups, with high FBP1 expression having a
better survival rate (Figure 8C). This clinical validation supports the finding that FBP1
repression is critical in EMT and BLBC.

DISCUSSION
Our study provides several insights into EMT and breast cancer. First, loss of FBP1 is
essential to trigger glycolytic reprogramming and results in several metabolic benefits in
BLBC: (1) increase glucose uptake and sensitivity as evidenced by elevated TXNIP and IR
phosphorylation after stimulation; (2) increased glycolytic intermediates for biosynthesis
(such as PPP, glycerol-3-phosphat and serine); (3) maintenance of ATP production under
hypoxia; and (4) reduced oxygen dependence and ROS production (Figure 8D). These
observations are consistent with the notion that FBP1 deficiency causes hypoglycemia and
acidosis in patients and that inhibition of FBP1 restores glucose uptake in the type 2 diabetic
model.

The activity of PKM2 oscillates between the activated tetrameric form and inactivated
monomeric state, which constitutes the “metabolic budget system” in tumor metabolism
(Mazurek et al., 2005). F-1, 6-BP increases the formation of tetrameric PKM2. Glucose is
then fueled to lactate along with ATP production until F-1, 6-BP levels drop below a
minimum signal level, which causes the disassembly of the tetrameric PKM2 into
monomeric state. We found that PKM2 mainly existed in tetrameric form in BLBC cells and
existed predominantly in monomeric state in luminal cells. This observation corresponds
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with the findings that BLBC cells contain a high level of F-1, 6-BP, an increased PK activity
and increased lactate production. FBP1 expression significantly decreased the formation of
tetrameric PKM2 in BLBC cells by reducing F-1, 6-BP. As the major function of glycolysis
is to provide high levels of glycolytic intermediates for biomass synthesis, we speculate that
two modes of PKM2 are used in glycolysis. The first mode is the inhibition of PKM2
(economic mode), which blocks glycolytic flux for accumulation of intermediates required
for biosynthesis. The second mode is the overall increase of glycolytic flux with activation
of PKM2 (luxury mode). The rise of intermediates results not from a block of PKM2, but
from an increased load of glycolysis through glucose (Figure 8D). As pointed out by Vander
Heiden and colleagues, although this seems wasteful, it ensures that the glycolytic
intermediates will not be depleted and maintain precursor concentrations at constant and
ample levels for allowing maximum biosynthesis during rapid cell growth (Lunt and Vander
Heiden, 2011). Our study indicates that BLBC cells employ the luxury mode of glycolysis
by suppressing FBP1 for increasing glucose assimilation and rapid channeling of glycolytic
intermediates in biosynthesis at the cost of host.

PKM2 is the main enzyme for ATP production in glycolysis. This inefficient but faster
mode of ATP production may be preferred to meet the cellular demands of BLBC,
particularly under hypoxic condition. Under hypoxia, the steady-state level of ATP in BLBC
cells declined slightly; however, FBP1 expression resulted in a dramatic plunge in ATP
level. This is in line with the observation that BLBC cells are less sensitive to growth
inhibition under hypoxia or by oligomycin. Given that BLBC cells are highly invasive, this
metabolic switch empowers them to absorb glucose and maintain ATP level under dearth
nutrient and hypoxic condition. In addition, the acidic microenvironment created by excreted
lactate facilitates the degradation of extracellular matrix and protects BLBC cells from
inhibition by immune response at the metastatic site (Figure 8D).

The phenomenon during which increased glucose uptake and exacerbated glycolytic activity
often accompany OXPHOS inhibition is known as a Crabtree effect and had been identified
in tumors and other mitotically active tissues (Crabtree, 1929). We found that the inhibition
of complex I activity is mainly responsible for the Crabtree effect in BLBC cells. Expression
of FBP1 significantly increased mitochondrial complex I activity by inducing the expression
of TFB1M, which is required for the translation of ND1 and ND5 of mitochondrial complex
I (Koeck et al., 2011). These data provide mechanistic insights and support our finding that
loss of FBP1 suppresses OXPHOS in BLBC cells.

Second, our results indicate that the glycolytic switch enhances CSC characteristics in
BLBC by reducing ROS. It has been noted that somatic cells primarily utilize OXPHOS for
their energy production, whereas pluripotent cells rely on glycolysis (Facucho-Oliveira and
St John, 2009). Using an iPSC as a model in stem cell reprogramming, mitochondria were
found to change from a mature cristae-rich morphology in somatic cells to more immature
spherical and cristae-poor structures in iPSCs. Intriguingly, the glycolytic change occurs in
cells prior to their acquisition of pluripotent markers, suggesting that the glycolytic switch
plays a causative role in the iPSC reprogramming rather than simply being a consequence of
acquiring pluripotency. The induction of pluripotency with a glycolytic switch is consistent
with the observation that a hypoxic environment maintains the stem cell state and hypoxia
facilitates the reprogramming process (Mohyeldin et al., 2010). In the stem cell niche,
protection from ROS is critical for the maintenance of self-renewal of hematopoietic stem
cell (HSC) and human and mouse breast CSCs (Diehn et al., 2009). These observations
indicate that the self-renewal potential of CSCs is exquisitely sensitive to the level of ROS.
We found that FBP1-expressing BLBC cells increased OXPHOS and ROS production. The
increased ROS was associated with the suppression of tumorsphere and decreased CSC
markers (CD44high/CD24low/EpCAM+). In addition, FBP1 expression in BLBC cells
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inhibited tumorigenicity in vitro and suppressed tumor formation in vivo. Mechanistically,
elevated ROS shifts the interaction of β-catenin from TCF4 to FOXO3a and thus
compromises β-catenin activity, which is essential for the maintenance of pluripotency.
NAC treatment returns the interaction of β-catenin with TCF4 and restores tumorigenicity in
vitro and in vivo. Together, these data indicate that the loss of FBP1 greatly increases CSC
traits by repressing ROS production and by maintenance the interaction of β-catenin with
TCF4 in BLBC.

Third, our study indicates that FBP1 is a major downstream target of Snail in controlling
glycolysis. We identified that the Snail-G9a-Dnmt1 complex, which is required for E-
cadherin silencing, is responsible for FBP1 repression in BLBC. FBP1 silencing is required
for Snail-mediated EMT and the conversion from luminal to basal-like phenotype in breast
cancer. In addition, knockdown of Snail or G9a restores the expression of E-cadherin and
FBP1. Our results indicate that this metabolic reprogramming (resulting from the loss of
FBP1) synergizes with the loss of E-cadherin to sustain CSC-like properties during
dissemination and metastasis. Our study strengthens the notion that metabolic
reprogramming is inextricably intertwined with tumorigenesis and fortifies Warburg’s
historical claim that metabolism is an “actionable” event instead of an “accompanied”
biomarker in oncogenesis (Ward and Thompson, 2012). Our study also reveals that the
Snail-mediated epigenetic regulation may represent the Achilles' heel of BLBC. Thus,
targeting this chromatin modification complex will generate an entirely effective approach
for treating metastatic breast cancer.

EXPERIMENTAL PROCEDURES
Plasmids, siRNA, and Antibodies

FBP1 shRNA was purchased from MISSION shRNA at Sigma-Aldrich (St Louis, MO).
Human FBP1 was amplified from a HeLa cDNA library and subcloned into pLenti6.3.
Information of antibodies used is provided in the Supplemental Experimental Procedures.

Cell Culture
Breast cancer cell lines were cultured as described previously (Dong et al., 2012). For
establishing stable transfectants with expression or knockdown of FBP1, BLBC cells and
luminal cells were transfected with pLenti6.3/FBP1 and FBP1 shRNA, respectively; stable
clones were selected with puromycin (300 ng/ml) for 4 wks.

Immunostaining, Immunoprecipitation, Immunoblotting, Immunohistochemical Staining
(IHC)

All protocols are described in detail in the Supplemental Experimental Procedures.

Human Breast Tumors
The frozen fresh tumor samples were collected from resected breast tumors from patients at
the University of Texas MD Anderson Cancer Center with informed consent and
institutional IRB approval. These frozen samples were “snap-frozen” in liquid nitrogen and
stored at −80°C. Data regarding the stage, grade and expression of ERα, PR and HER2 are
described previously (Dong et al., 2012).

Metabolic Assays
Glucose uptake, lactate production, ATP levels and PK activity were measured by assay kits
from BioVision (San Francisco, CA). Oxygen consumption was determined using the
Seahorse Extracellular Flux (XF-96) analyzer (Seahorse Bioscience, Chicopee, MA). To
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allow comparison between experiments, data are presented as oxygen consumption rate
(OCR) in pMoles/min/104 cells. Basal OCR were measured four times and plotted as a
function of cells with and without treatment under the basal condition followed by the
sequential addition of Oligomycin (1 µg/ml) and FCCP (1 µM) as indicated. The progress
curve is annotated to show the relative contribution of basal, ATP-linked and maximal
oxygen consumption after the addition of FCCP, and the reserve capacity of the cells. The
intracellular concentration of F-1,6-BP was examined by treating cells with 1.25 ml of
perchloric acid; cells were then pelleted by centrifugation at 2500 × g for 10 min. The cell
pellet was resuspended in 0.2 ml of perchloric acid (6%) and 0.2 ml of water. After
centrifugation, the pH of the combined supernatant was adjusted to 3.5 with 1% potassium
carbonate. F-1,6-BP in the supernatant was determined spectrophotometrically by measuring
the decrease of NADH to NAD+ at 340 nm. Complex I specific activity was assayed as
described by Sinthupibulyakit (Sinthupibulyakit et al., 2010) by following the decrease in
absorbance due to the oxidation of NADH at 340 nm. The activity was calculated by the
differences with and without the complex I inhibitor, rotenone.

For [U-13C6]-glucose tracer experiment, Vector- and FBP1-expressing MDA-MB231 cells
were cultured in the DMEM medium with glucose replaced by 0.1% 13C6-glucose for 24 hr.
Polar metabolites were extracted from cells and media using the acetonitrile/water/
chloroform partitioning and 10% trichloracetic acid methods, respectively. The extracts
were subjected to 1D 1H and 1H{13C} HSQC NMR and GC-MS analysis, as previously
described (Fan et al., 2011; Le et al., 2012).

DNA Methylation Analysis, ChIP, Quantitative Real-Time PCR and Luciferase Reporter
Assay

The methods used are described in the Supplemental Experimental Procedures.

Metabolic Assays, Colony Formation Assay, Mammosphere Assay and Flow Cytometry
Analysis

All methods are described in detail in the Supplemental Experimental Procedures.

Xenograft Studies
Female ICR-SCID mice (6–8 weeks old) were purchased from Taconic (Germantown, NY)
and maintained and treated under specific pathogen-free conditions. All procedures were
approved by the Institutional Animal Care and Use Committee at the University of
Kentucky College of Medicine and conformed to the legal mandates and federal guidelines
for the care and maintenance of laboratory animals. The mice were injected with 1×106

FBP1-expressing or knockdown cells on the right MFP and control cells on the left MFP.
The mice were then randomly divided into two groups: standard water supply and water
supplemented with 40 mM NAC. Tumor formation was examined every 2 to 3 days for the
whole duration of the experiment. Tumors were harvested and weighed at the experimental
endpoint, and the tumor mass derived from cells with FBP1 expression or knockdown and
vector control in both flanks of each mouse were compared.

Statistical Analysis
Experiments were repeated at least twice. Results are expressed as mean ± SD or SEM as
indicated. An independent Student’s t-test was performed to analyze the assay results; a two-
tailed Student’s t-test was used to compare the intergroup. p< 0.05 was considered
statistically significant.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

BLBC is associated with an aggressive clinical history, development of recurrence,
distant metastasis and shorter patient survival. BLBC contains abundant EMT markers
and possesses many CSC-like characteristics, but the metabolic program associates with
these changes remain unknown. We showed that the Snail complex repressed FBP1
expression in BLBC; this results in increased CSC-like characteristics and tumorigenicity
by enhancing aerobic glycolysis and by suppressing ROS production. This metabolic
reprogramming is intertwined with the development of BLBC, because loss of FBP1 is
required for EMT induction, the conversion from luminal to basal-like phenotype, and is
associated with poor patient survival. Our study suggests that targeting the Snail complex
may provide effective approach for treating BLBC.
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HIGHLIGHTS

The Snail-G9a-Dnmt1 complex is required for FBP1 silencing in BLBC

Loss of FBP1 enhances glycolytic flux, biomass synthesis, and PKM2 activation

Loss of FBP1 suppresses O2 consumption and ROS production

Loss of FBP1 enhances CSC-like traits and tumorigenicity by activating β-catenin
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Figure 1. FBP1 expression inversely correlates with Snail in breast cancer
(A) Box-plots indicate FBP1 expression in different subtypes of breast cancer.
(B) Statistical analysis of 150 cases of breast tumor samples immuno-stained using
antibodies against FBP1, ERα, and a control serum.
(C) Expression of FBP1, ERα and Snail were analyzed on fresh frozen tumor samples from
six cases of luminal and six cases of triple-negative breast cancer.
(D) Expression of FBP1, ERα, E-cadherin, Snail and other EMT markers was determined
by Western blotting on five luminal and six BLBC cell lines (MDA-MB231, MDA-MB435,
MDA-MB157 and MDA-MB361 are abbreviated to MDA231, MDA435, MDA157 and
MDA361 in all Figures).
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See also Figure S1.
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Figure 2. Snail represses FBP1 expression
(A) Schematic diagram showing that Snail was co-expressed with vector (GFP) or FBP1
(CMV promoter) in luminal-subtype breast tumor cells.
(B) Snail was co-expressed with vector (GFP) or FBP1 in MCF7 and T47D cells for four
days. Morphologic changes indicative of EMT are shown in the phase contrast images;
expression of FBP1 and E-cadherin were analyzed by immunofluorescent staining. Nuclei
were visualized with DAPI (blue).
Scale bar = 20 µm.
(C) The mRNA levels of E-cadherin and FBP1 were quantitated by real-time PCR (mean ±
SD in three separate experiments).
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(D) Expression of E-cadherin, FBP1, Snail, luminal markers (ERα and FoxA1) and basal
markers (EGFR, SPARC and Caveolin-1) for cells in (B) was analyzed by Western blotting.
(E) Schematic diagram showing positions of nine potential Snail-binding E-boxes on the
FBP1 promoter and FBP1 promoter luciferase construct used.
(F) FBP1 promoter luciferase construct (FL1) was co-expressed with Snail or vector in
HEK293, HeLa and MCF7 cells, respectively. After 48 h, luciferase activities were
determined and normalized (mean ± SD in three separate experiments).
(G) FBP1 promoter luciferase constructs (FL1 and FL2) were co-expressed with Snail or
vector in HEK293 cells. Luciferase activities were determined as in (F).
(H) FBP1 promoter luciferase constructs (FL2, FL3 and FL4 as well as their E-box mutants)
were co-expressed with Snail or vector in HEK293 cells. Luciferase activities were
determined as in (F).
See also Figure S2.
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Figure 3. Snail and G9a are required for H3K9me2 and DNA methylation at the FBP1 promoter
(A) Three sets of primers used for FBP1 promoter ChIP are shown.
(B–C) The association of Snail and G9a, and the level of H3K9me2 and H3K9ac at the
FBP1 promoter in cells that have undergone Snail-mediated EMT (B) and cell lines from
Figure 1D (C) were analyzed by ChIP. DNA methylation at the FBP1 promoter was
analyzed by MSP.
(D) The association of G9a, and the level of H3K9me2 and DNA methylation at the FBP1
promoter in luminal (25 cases) and triple-negative (16 cases) breast cancer tissues were
analyzed by ChIP and MSP, respectively. Horizontal lines represent mean values. Statistical
analyses (mean ± SD in three separate experiments) are shown below.
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(E) Expression of FBP1 and E-cadherin was examined in MDA-MB231 cells with
knockdown of G9a expression (top panel). Their mRNA levels were also quantified by real-
time PCR (bottom panel). Data are presented as a percentage of non-target control (NTC)
values (mean ± SD in three separate experiments in duplicates).
See also Figure S3.

Dong et al. Page 22

Cancer Cell. Author manuscript; available in PMC 2014 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. FBP1 inhibits glucose uptake and sensitivity and suppresses cell growth under hypoxia
(A) Stable clones with FBP1 expression or knockdown were established in six BLBC and
two luminal cell lines, respectively.
(B) Glucose uptake was measured.
(C) Cells were deprived for glucose for 12 hr followed by glucose stimulation for additional
3 hr. TXNIP expression was examined by Western blotting.
(D) Lactate excretion was measured.
(E) Cell growth under hypoxic condition was measured by cell-count assay for 2 days. Data
are presented as a percentage of vector control values for BLBC cells, whereas data are
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presented as a percentage of FBP1-knockdown groups for luminal cells (mean ± SD in three
separate experiments in triplicates).
(F) Oxygen consumption was measured (mean ± SD in three separate experiments in
triplicate).
For B and D, data are presented as a percentage of vector control values (mean ± SD in three
separate experiments in triplicates). For B, D and E, * and #p< 0.01 for vector control cells
compared with their FBP1-expressing or FBP1-knockdown clones, respectively.
See also Figure S4.
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Figure 5. FBP1 inhibits glycolysis and increases OXPHOS
(A) 13C6-Glucose uptake, 13C3-lactate production and the conversion of 13C6-Glucose
to 13C3-lactate were measured by 1D 1H NMR analysis of the media of vector- and FBP1-
expressing MDA-MB231 cells grown in 13C6-Glucose (mean ± SEM in duplicate). 1H NMR
spectra from the media is showed in Figure S5D.
(B) A pair of representative 1D 1H{13C} HSQC NMR spectra show the changes in 13C
abundance (represented by the intensity of 13C-attached 1H peaks) of various assigned
metabolites elicited by FBP1 expression in MDA-MB231 cells (black: control vector; red:
FBP1, bottom panel). The relative 13C abundance of indicated metabolites from cell extracts
was quantified from their HSQC peak intensity (Fan and Lane, 2008) (mean ± SEM in
duplicate). Lac: lactate; AXP: adenine nucleotides; UXP: uracil nucleotides; UDPG: UDP-
glucose.
(C) Top left panel shows the expected 13C (●) labeling patterns of glycolytic and TCA
cycle metabolites with 13C6-Glc as tracer. The doubly 13C labeled TCA cycle metabolites
are derived from the 1st turn of the TCA cycle while the quadruply 13C labeled citrate is
produced from the 2nd turn of the cycle. The levels of several indicated 13C isotopologues of
glycolytic and TCA cycle metabolites were obtained from the GC-MS analysis of the same
cell extracts as in (B) (mean ± SEM in duplicate).
See also Figure S5.
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Figure 6. FBP1 suppresses PKM2 activation and increases complex I activity and ROS
production
(A) F-1,6-BP was measured in FBP1-expressing and FBP1-knockdown clones.
(B) Cells were either treated with (+) or without (−) 1% formaldehyde (crosslinker; CL) for
20 min immediately after cell lysis. The states of monomer, dimer and tetramer of PKM2
were analyzed by Western blotting.
(C) Schematic diagram showing the electron transfer from mitochondrial complex I to IV.
Cells were treated with Rotenone and TTFA, respectively. Oxygen consumption was
measured (mean ± SD in three separate experiments in triplicate).
(D) Complex I activity was measured from mitochondria isolated from cells in (C).
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(E) and (F) ROS generation was analyzed by flow cytometry (mean ± SD in three separate
experiments in duplicates). Representative images are shown (F). + and ‡p< 0.05 for vector
control cells compared with their FBP1-expressing or FBP1-knockdown clones,
respectively.
For A and D, Data are presented as a percentage of vector control values (mean ± SD in
three separate experiments in triplicates). * and #p< 0.01 for vector control cells compared
with their FBP1-expressing or FBP1-knockdown clones, respectively.
See also Figure S6.
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Figure 7. FBP1 inhibits tumorsphere-formation and reduces CSC population
(A) Tumorsphere-formation was assessed under normoxic condition.
(B–C) The CSC population (CD44high/CD24low/EpCAM+) was analyzed by flow cytometry.
Representative images for MDA-MB231 and MCF7 cells are shown in (C).
(D) Schematic diagram of the interaction of β-catenin with TCF4 and FOXO3a.
(E) FBP1-expressing BLBC cells (F) as well as in FBP1-knockdown luminal cells (S) were
treated with or without NAC for overnight; the interactions of β-catenin with TCF4 and
FOXO3a were examined by immunoprecipitating β-catenin following immunoblot of TCF4
and FOXO3a.
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For A and B, Data are presented as a percentage of vector control values (mean ± SD in
three separate experiments in duplicates). * and #p< 0.01 for vector control cells compared
with their FBP1-expressing or FBP1-knockdown clones, respectively.
See also Figure S7.
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Figure 8. FBP1 suppresses tumorigenicity in vitro and in vivo
(A) Data of soft-agar assay are presented as a percentage of vector control cell lines (mean ±
SD in three separate experiments with duplicates). ND indicates no colonies detected.
(B) Tumor growth was monitored every three days; tumor size and weight were recorded.
Data are represented as a mean ± SEM from 6 mice. * and #p< 0.01 for vector control cells
compared with their FBP1-expressing or FBP1-knockdown clones, respectively.
(C) Kaplan–Meier overall survival curve separates the tumors into two groups based on
FBP1 expression.
(D) A proposed model to illustrate the transcription repression of FBP1 by Snail in EMT and
BLBC, which results in the switch to aerobic glycolysis and increased β-catenin activity.
See also Figure S8.
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