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ABSTRACT OF DISSERTATION

TOPICS IN LOGISTIC REGRESSION ANALYSIS

Discrete-time Markov chains have been used to analyze the transition of subjects
from intact cognition to dementia with mild cognitive impairment and global impair-
ment as intervening transient states, and death as competing risk. A multinomial
logistic regression model is used to estimate the probability distribution in each row
of the one step transition matrix that correspond to the transient states. We investi-
gate some goodness of fit tests for a multinomial distribution with covariates to assess
the fit of this model to the data. We propose a modified chi-square test statistic and
a score test statistic for the multinomial assumption in each row of the transition
probability matrix.

Multinomial logistic regression with categorical covariates can be analyzed by
contingency tables. Exact p-value of goodness of fit test can be calculated based on
MCMC samples. We show a hybrid scheme of the sequential importance sampling
(SIS) procedure and the MCMC procedure for two-way contingency tables. We apply
the SIS-MCMC procedure to the Nun Study data, a cohort of 461 participants on
aging disease. The presence of the APOE-4 allele, levels of education are included as
covariates in the application. Different grouping methods on age are also discussed.
Separating data into four groups based on quantiles of age is recommended in the
Nun Study.

The traditional logistic regression model restricts the analysis on observations
with complete covariate data, and ignores the incomplete observations due to missing
or censored covariates. However, much information is lost in this approach. We
introduce a maximum likelihood estimation based on the joint distribution of binary
response variable, complete covariate and a right censored covariate. Simulation
results show that the estimates with the new method are more accurate than those
with the traditional complete case method when the sample size is relatively small
or medium, across different censoring pattern. The proposed method is also applied
to a model to analyze the relationship between the presence of arteriolosclerosis and
the stay time in mild cognitive impairment of patients from SMART Study.
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Chapter 1 Introduction

1.1 Multinomial Logistic Regression Model

Assume Yi is an outcome variable for the ith observation, which can take c+1 possible

values denoted by (0, 1, 2, ..., c), with corresponding probability πi when

πi = (πi0, πi1, · · · , πic). (1.1)

Let xi be the independent predictor variable or covariate vector for ith observa-

tion, xi = (x1, x2, ..., xp)
′. Under multinomial logistic regression structure with Yi = 0

as the reference category, the model is:

log
πij
πi0

= x′iβj (1.2)

for any j 6= 0 and the coefficient vector βj = (βj1, βj2, · · · , βjp)′ where j = 1, 2, ..., c.

To calculate the probabilities, we have:

πij =
exp (x′iβj)

1 +
∑

k 6=0 exp (x′iβk)
(1.3)

for the non-reference categories j 6= 0 while for the reference category probability is

πi0 =
1

1 +
∑

k 6=0 exp (x′iβk)
. (1.4)

We can also define yij to be the indicator of j if the outcome of the ith observation

is j or not, which means yij = 1 if Yi = j and yij = 0 otherwise.
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1.2 Grouped Pearson’s Chi-square Test statistics

In general, a goodness-of-fit test compares the observed binary variable yij with the

estimated probability π̂ij. A convenient way is to show the observations in a contin-

gency table with n rows and c columns, where n is the sample size of the dataset.

The observed frequency in cell (i, j) is denoted by ŷij and the estimated probability

is denoted by π̂ij. Then, based on that table, the Pearson chi-square test statistic

can be calculated as:

X2 =
n∑

i=1

c∑
j=0

(ŷij − π̂ij)2

π̂ij
(1.5)

When c = 1, this expression reduces to the test statistic for a binomial logistic

regression model. In the binomial logistic scenario, the p-value can be calculated

using the χ2 distribution with n− 1 degrees of freedom(Fagerland et al (2008)). The

Pearson’s chi-square test is used generally for the goodness-of-fit test for the binomial

logistic regression model originally, but we can extend it to the multinomial regression

model.

An important assumption for the Pearson’s chi-square test is that the expected

cell counts should not be too small. That assumption is legitimate when there are

a few discrete covariates. However, when we have more covariates or a continuous

covariate is included in the model, this assumption is clearly violated.

Hosmer and Lemeshow (1980) proposed an extension of the Pearson’s chi-square

test for logistic regression model with continuous covariates to avoid the violation of

that assumption of traditional Pearson’s chi-square test based on contingency tables.

Their method groups the observations based on the estimated probabilities. For the

n×c contingency table, instead of considering each observation as a row, they set the

rows into a fixed number, g, so that the expected cell counts increase as n increases.

One possible problem is the grouping strategy, which is clear for the binomial

logistic model, but less clear for the multinomial setting due to numerous grouping

2



strategies. Fagerland et al (2008) suggested using the ’deciles’ of risk formed from

the reference group, π̂i0. For g groups, group 1 will contain n/g observation with

the lowest estimated probability in the reference group. The quantity n/g may not

be a integer value, and all groups may not have the same number of observations.

When we have continuous covariates in model, the tied estimated probability will be

rare and small imbalance in the group size will not affect the value of statistic greatly.

Let Okj and Ekj denote the observed frequencies and estimated probabilities in

kth group and jth outcome, where k in 1, 2, · · · , g and j in 0, 1, · · · , c.

Okj =
∑

l in group k

ŷlj (1.6)

Ekj =
∑

l in group k

π̂lj. (1.7)

The Grouped Pearson’s chi-square statistic is:

C =

g∑
k=1

c∑
j=0

(Okj − Ekj)
2

Ekj

. (1.8)

Fagerland et al (2008) suggested that the statistic C under the null hypothesis

has an approximate χ2 distribution with degree of freedom (g − 2)× (c− 1).

1.3 Likelihood Ratio Test Statistic for Goodness-of-fit Test

To test the goodness-of-fit for multinomial logistic regression model, we can also use

a likelihood ratio test. The likelihood ratio test statistic is two times of the difference

between the likelihood of logistic regression model and saturated model.

3



The log-likelihood of multinomial logistic regression model is

l1 = log
n∏

i=1

[
c∏

j=0

π
yij
ij ] (1.9)

=
n∑

i=1

{ c−1∑
j=0

yij log πij + (1−
c−1∑
j=0

yij) log[1−
c−1∑
j=0

πij]} (1.10)

=
n∑

i=1

{ c−1∑
j=0

yij(βj0 + x′iβj)− log[1 +
c−1∑
j=0

exp (βj0 + x′iβj)]} (1.11)

=
c−1∑
j=0

[βj0(
n∑

i=1

yij) +
P∑

k=1

βjk(
n∑

i=1

xikyij)] (1.12)

−
n∑

i=1

log[1 +
c−1∑
j=0

exp (βj0 + x′iβj)]

For the saturated model, the estimated probability is

π̂ij =

∑n
i=1 yij
n

(1.13)

and the corresponding log-likelihood is

l2 = log
n∏

i=1

[
c∏

j=0

π̂
yij
ij ] (1.14)

=
n∑

i=1

{ c−1∑
j=0

yij log π̂ij + (1−
c−1∑
j=0

yij) log[1−
c−1∑
j=0

π̂ij]} (1.15)

=
n∑

i=1

{ c−1∑
j=0

yij log

∑n
i=1 yij
n

(1.16)

+ (1−
c−1∑
j=0

yij) log[1−
c−1∑
j=0

∑n
i=1 yij
n

]}

Then we have the likelihood ratio test statistic is

−2(l1 − l2) ∼ χ2
nc−p

where n is the number of combinations of different values of covariates, c + 1 is the

4



number of possible response values and p is the number of covariates.

1.4 Sequential Importance Sampling (SIS)

For a K-choice multinomial logistic regression model with 2 discrete covariates, the

dataset can be described as a K × I × J contingency tables (X), as shown in Table

1.1. In this table, each element Xijk is the count of observations where the response

variable equals k, the first covariate equals i, and the second covariate equals j. If

we add all cell counts in X, then it becomes the sample size of a given data.

For a contingency tables X, from Hara et al. (2010), the sufficient statistics for

parameters in a multinomial logistic regression model are:

Xk++,
I∑

i=1

iXki+,
J∑

j=1

jXk+j, X+ij, (1.17)

where i = 1, 2, ..., I, j = 1, 2, ..., J, k = 1, 2, ..., K − 1.

In this section, we will introduce an algorithm to sample K × I × J contingency

tables with the same sufficient statistics for the multinomial logistic regression model

by the sequential importance sampling (SIS).

Generally, an importance sampling method is a statistical technique to get a

sample from a targeted distribution by using a sample from the proposal distribution.

A proposal distribution can be any distribution that is easy to implement. Assume

that FT is the set of all K×I×J contingency tables (X) satisfying marginal conditions

(for example, the sufficient statistics shown in (1.17)). Let p(n), for any n in FT ,

be the uniform distribution over FT , then p(n) = 1/|FT |. Let q() be a proposal

5



Table 1.1: K×I×J contingency tables for the K-choice multinomial logistic regression
model with 2 discrete covariates.

Choice Two-way table

1
X111 . . . X1J1

...
. . .

...
XI11 . . . XIJ1

2
X112 . . . X1J2

...
. . .

...
XI12 . . . XIJ2

. . . . . . . . . . . .

K
X11K . . . X1JK

...
. . .

...
XI1K . . . XIJK

distribution such that q(n) > 0 for all n in FT . Then we have:

Eq[
1

q(n)
] =

∑
n∈FT

1

q(n)
q(n) = |FT |, (1.18)

and we can estimate the count of FT as:

ˆ|FT | =
1

N

N∑
i=1

1

q(ni)
(1.19)

from N iid tables sampled from q(n). This is an example of how we use ab importance

sampling method to estimate a property of a target space FT .

An important problem in an importance sampling is constructing a good proposal

distribution q(), as the target space FT can be complicated. Chen et al. (2005a)

noticed that if we vectorize the table n = (n1,n2, ...,nJ), then by the multiplication

rule, we have:

q(n) = q(n1)q(n2|n1) · · · q(nJ |nJ−1, ...,n1). (1.20)

This factorization suggests that we can generate the table sequentially, a column

by a column. This recursive property gives rise to the name Sequential Importance

Sampling (SIS). Chen et al. (2005b) noticed that one can sample a cell count from the

6



interval at each step to produce a table satisfied with the marginal constraints. Here,

we are using Integer Programming (IP) to obtain the tight bounds sequentially. By

this method, we can generate a K × I × J contingency table with the same marginal

constraint.

Sequential importance sampling (SIS) is an importance sampler with a proposal

distribution constructed iteratively via conditional univariate distributions. It pro-

ceeds by simply sampling cell entries of a contingency table sequentially such that

the final distribution approximates the target distribution. It was first applied to

two-way contingency tables in Chen et al. (2005a). The SIS procedure overcomes

some disadvantages in the traditional Monte Carlo Markov Chain (MCMC) proce-

dure. Compared to the MCMC method, the SIS procedure does not need expensive

pre-computation. Also, the SIS procedure is guaranteed to sample a table from the

distribution independently, whereas the MCMC approach needs a long time to run a

chain to satisfy the independent condition. Typically, an interval based on the sup-

port of the marginal distribution is calculated through Integer Programming (IP),

Linear Programming (LP), or Shuttle Algorithm (Dobra and Fienberg (2010)). Un-

der the independence model, the SIS procedure will always produce tables with the

marginal constraints (Chen et al. (2005c)), i.e. the SIS procedure does not reject a

table. However, in general, the SIS procedure might reject a sampled table. Chen

et al. (2006a) showed an algorithm to check the necessary condition of a given model,

so that the SIS procedure does not reject a table under the model.

To apply the SIS procedure to a K × I × J contingency table in the multinomial

logistic regression model, the first step is to construct a design matrix, named as

Λ(A ⊗ B), which comes from the linear constrains of the sufficient statistics for the

set of contingency tables as described in (1.17).

Assume two matrices A0 = (a1, ...,aI) and B0 = (b1, ..., bJ), where ai and bj are

column vectors. The configuration A0 ⊗ B0, i.e. the Segre product of A0 and B0 is

7



defined as:

A0 ⊗B0 = (ai ⊕ bj , i = 1, . . . , I, j = 1, . . . , J), (1.21)

ai ⊕ bj =

ai

bj

 . (1.22)

The Lawrence Lifting of a matrix Z with I columns is defined as:

Λ(Z) =

Z 0

EI EI

 , (1.23)

where EI is a I × I identity matrix.

Now we consider two matrices A and B as:

A =

1 1 1 . . . 1

1 2 3 . . . I

 (1.24)

B =

1 1 1 . . . 1

1 2 3 . . . J

 . (1.25)

The design matrix for the a bivariate regression model can be constructed as

Λ(A⊗B):

Λ(A⊗B) =



A⊗B 0 . . . 0 0

0 A⊗B . . . 0 0
...

...
. . .

...
...

0 0 . . . A⊗B 0

EIJ EIJ . . . EIJ EIJ


, (1.26)

which is a [4(K − 1) + IJ ] × IJK matrix. Note that there are K A ⊗ Bs in the

diagonal of the matrix.

If X is a K× I×J contingency table for a bivariate logistic regression model, and

8



x is a IJK-dimensional vector by stacking each column of in X, then we have

Λ(A⊗B)x = b, (1.27)

where

b = (X1++,
I∑

i=1

iX1i+, X1++,

J∑
j=1

jX1+j, ..., XK++,

I∑
i=1

iXKi+, XK++,

J∑
j=1

jXK+j, X+11, X+12, ..., X+1J , X+21, ..., X+IJ), (1.28)

which is a (4(K − 1) + IJ) dimensional vector. Also b is the sufficient statistics of

the K-choice bivariate multinomial logistic regression model as described in Equation

(1.17).

If a table Xc and its corresponding vector xc has the property

Λ(A⊗B)xc = Λ(A⊗B)x = b, (1.29)

then, Xc is a contingency table that has the same sufficient statistics with X. The

following SIS algorithm can generate tables that are independent of the original data

X while maintaining the sufficient statistics.

Below is the algorithm for applying the SIS to a K-choice multinomial logistic

regression model with two discrete covariates.

1. Assume a multinomial logistic regression model with K choices in response

variable, two discrete covariates are included, one with I levels and the other

with J levels. In this circumstance, each dataset can constitute a K×I×J tables

X. X can also be transformed to a IJK-dimensional vector (x) by stacking each

column of itself.

2. Under above assumptions, construct a d1 × d2 design matrix Λ(A ⊗ B) as de-
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scribed in Equation (1.26), and calculate the d1-dimensional marginal vector b,

which is also the sufficient statistics in the model. We have the relationship

Λ(A⊗B)x = b, (1.30)

d1 = 4(K − 1) + IJ d2 = IJK.

3. With observed vector x and the index i from 1 to IJ . Set a vector c = 0 and

the ith element ci = 1. Run linear programming function (package lpsolve in R

Berkelaar et al. (2004)) with Λ(A⊗B), b, c for

min c · x such that Λ(A⊗B)x = b,x ≥ 0.

Return L = c · x∗ where x∗ is the output of lpsolve. L is the lower bound for

the ith element xi.

4. Rerun the linear programming function for

max c · x such that Λ(A⊗B)x = b,x ≥ 0.

Return U = c · x∗ where x∗ is the output of lpsolve. U is the upper bound for

the ith element xi.

5. Sample an integer xc uniformly from L and U as the ith element in x.

6. Let A1 be the first column of Λ(A⊗B) and let A′ be the d1 × (d2 − 1) matrix

after removing the first column from Λ(A⊗B). Set

b′ = b− xc · A1. (1.31)

7. Using the updated A′ and b′ to repeat steps 3 to 6, until the completion of a

new sampled point x.

10



It should be noted that with the above algorithm, it is possible that the lower

bound or upper bound might not give an interval at some step. In these cases, we

can just run the algorithm from the very beginning again.

1.5 MCMC

For two-way and multiway contingency tables, a MCMC sampling method has a wide

range of applications, such as computing the exact p-values of goodness-of-fit tests

and estimating the number of contingency tables with certain margins (Besag and

Clifford (1989)). In order to apply the MCMC approach to contingency tables, all

tables must be connected via a Markov basis. A Markov basis is a set of moves to con-

nect all contingency tables via Markov chain (Diaconis and Sturmfels (1998)). When

a Markov basis is known and fairly small, the MCMC method is not memory inten-

sive and easy to implement. However, for three-way contingency tables with fixed

margins, the number of elements in a Markov basis can be arbitrary (De Loera and

Onn (2005)). Also, to sample a table independently from the distribution and sat-

isfy the independence assumption, a Markov Chain may take a long time to converge.

Here, we use a binomial logistic regression model as an example of the MCMC

algorithm. In this part, we use Metropolis Hastings algorithm to obtain a sam-

ple of two-way contingency tables based on bivariate logistic regression model. For

Metropolis Hastings algorithm, we add a move to the previous table to get the pro-

posal table. A K×I×J contingency table can be described as K layers of I×J tables.

For a binomial logistic regression, we want to know a Markov basis of the con-

tingency tables. In general, it is very complicated. However, when the marginal of

contingency tables are fixed and positive, Chen et al. (2006b) showed that a simple

subset of Markov basis can contain the connectivity of all sets of two-way contingency

tables with a fixed positive marginal.

Let eijk be an integer array with 1 at the cell (1jk), -1 at cell (2jk) and 0 elsewhere.
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Define BΛ(A⊗B) as a set of moves z = (zijk) with the conditions,

z = ej1k1 − ej2k2 − ej3k3 + ej4k4 (1.32)

(j1, k1)− (j2, k2) = (j3, k3)− (j4, k4). (1.33)

Hara et al. (2010) proved that BΛ(A⊗B) connect every two-way contingency table sat-

isfying X+jk > 0.

Below is the MCMC (Metropolis-Hastings) algorithm on a set of contingency tables:

1. Set sample S as empty set, starting point as x0.

2. Compute a Markov sub-basis BΛ(A⊗B) for two-way contingency tables as de-

scribed in (1.32).

3. Pick a move z from BΛ(A⊗B) uniformly.

4. Calculate a candidate table xc = xi−1 + z.

5. If xc ≥ 0, compute the acceptance ratio

r =
Pr(xc|m)

Pr(xi−1|m)
. (1.34)

where m is the set of marginals. For a two-way contingency table,

r =
Πall cell counts k in xi−1

k!

Πall cell counts j in xcj!
. (1.35)

With probability min(r, 1) and xc ≥ 0, accept xi = xc. If the candidate is

rejected, xi = xi−1.

6. If xc < 0, xi = xi−1.

7. Repeat steps 2 to 6 n times.

8. return sample S.
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1.6 Nun Study Data

The Nun Study began in 1991. All participants from the School Sisters of Notre

Dame born before 1917 and living in communities in the mid-western, eastern, and

southern United States were recruited to the cohort during 1991-1993. 672 partici-

pants agreed to join the cohort out of 1031 eligible Catholic sisters aged 75 years or

elder (A Mortimer (2012)). Each participant agreed to share their collection of med-

ical and archival records, undergo annual physical and cognitive examinations, and

brain donation after death. There is no significant difference between participants

and nonparticipants in age, race, or mortality rate. Follow-up assessments took place

with unequally spaced periods varying from 0.421 to 3.911 years in a span of 15 years.

The cognitive status of each participant at each assessment was summarized as: 1

= intact cognition, 2 = mild cognitive impairments (M.C.I.), 3 = global impairment

(G.I.), 4 = dementia, and 5 = death. In those five states, dementia and death are

treated as absorbing states, and the other three are treated as transient states. The

starting status for one participant could be any one of the 3 transient states. Back-

ward transitions between transient states are allowed. The risk factors of interest in

the Nun Study include presence of APOE-4 allele (APOE4, binary variable), educa-

tion level (no college, college degree and post graduate degree) and age (continuous

variable). Figure 1.1 shows the multi-state structure and possible transitions in the

Nun Study data.

Several models have been applied in Nun Study, including Markov chain model

(Tyas et al (2007)) and Semi-Markov model (Wei and Kryscio(2014)). In both above
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models, we can construct a one-step transition probability matrix as:

P11 P12 P13 P14 P15

P21 P22 P23 P24 P25

P31 P32 P33 P34 P35

0 0 0 1 0

0 0 0 0 1


(1.36)

Both the Markov model and Semi-Markov model treat probabilities within each

row of the transition matrix as outcomes of a multinomial regression model. For

example, Salazar et al.(2007) formed a multinomial logistic parameterization that

linked these transition probabilities to the vector of covariates as follows:

log(
Psv

Ps1

) = αv +X ′βv (1.37)

where s = 1, 2, 3 and v = 1, 2, 3, 4, 5

1.7 SMART Data

The Statistical Modeling of Aging and Risk of Transition study (SMART) is an ag-

gregation of 11 different high-quality longitudinal cohorts of elder adults with high

autopsy rates. It enrolled 11,541 participants, of which 3,001 died and came to au-

topsy (Abner et al. (2015)). SMART is an important resource for the field of mixed

dementia epidemiology and neuropathology. In SMART, participants were primarily

cognitively intact at baseline and were subsequently assessed for transition to mild

cognitive impairment (MCI) and dementia over years of follow-up. We are interested

in those participants who died while in the MCI state, since they had neither normal

cognition at time of death nor were they demented.

Cerebrovascular disease affecting the small arteries and arterioles of the brain

is often seen in brains of persons with dementia (Esiri et al. (1997), Pantoni et al.
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(1996)). Arteriolosclerosis is a form of vascular disease that associated with vessel

wall thickening and luminal narrowing that may cause downstream ischemic injury

(Kumar et al. (2012)). Risk factors and cognitive sequelae of brain arteriolosclerosis

pathology are not fully understood. Ighodaro et al. (2016) provide results to show

brain arteriolosclerosis is associated with altered cognitive status. Of specific interest

in this dissertation (chapter 4) is the relationship between time spent in the MCI state

and the presence of arteriolosclerosis in the brain upon autopsy. Since some of the

participants were in MCI at baseline, this time variable is subject to right censoring.

1.8 Outline of Dissertation

The remainder of this dissertation is organized as follows:

In Chapter 2, we introduce the grouped chi-square test for a goodness-of-fit test

of the multinomial logistic regression model. We show the traditional chi-square test

inflates the type I error due to a clustering effect within each subject. We modify

the traditional chi-square statistic and show our new test statistic will preserve type

I error better with similar power when the alternative model has a squared term of

the covariate. We apply our new test to a multinomial logistic regression model to

estimate the transition probability matrix in Nun Study data.

In Chapter 3, we introduce a hybrid method of sequential importance sampling

and MCMC based on subset of Markov bases to sample two-way contingency ta-

bles for multinomial logistic regression model with two categorical covariates. This

new method combines the advantages of both methods. We apply the new sampling

method to Nun Study data with discussion of different grouping methods on age.

In Chapter 4, we propose a maximum likelihood estimate based on joint probabil-

ity to deal with logistic regression model with censored covariates. Simulation results

show that the new method estimates the coefficients better than traditional methods
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based on complete cases for small or medium sized datasets. We also apply the new

method to a study of the relationship between the presence of arteriolosclerosis and

time in mild cognitive impairment which is sometimes right censored.

In Chapter 5, we introduce some potential future work based on each chapter’s

model.

Copyright c© Zhiheng Xie, 2016.
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Chapter 2 Goodness-of-fit Test for Multinomial Logistic Regression

Model with Nun Study Data

2.1 Introduction

The Markov model and Semi-Markov model are widely used in multi-state data in

clinical trials and observational studies. For example, Salazar et al. (2007) and Wei et

al. (2014) applied Markov Chain model while Wei and Kryscio (2014) applied Semi-

Markov model ito the Nun Study data. Both models assume a multinomial logistic

regression model to calculate the one-step transition probabilities. It is important to

have a goodness-of-fit test to verify the validity of these models. An important feature

for the Nun Study data is that the clustering effect is strong within subjects. To our

knowledge, there is not a test that can deal with the clustering effect in multinomial

regression model. Our motivation for the goodness-of-fit test here is to test the ap-

propriateness of calculating the one-step transition probabilities from each state by

the multinomial logistic regression model in the Nun Study data.

Most of the goodness-of-fit tests for the logistic regression are designed for a bi-

nary outcome. Some of these are widely used. Hosmer and Lemeshow (1980,1989)

proposed an extension to Pearson’s chi-square test using a grouping method based

on estimated probabilities. Another test based on smoothed residuals was proposed

by Cessie and van Houwelingen (1991); this test has a clear alternative that residuals

of samples close in covariates space tend to in the same direction. It also can be

structured as a score test.

The goodness-of-fit test for a multinomial logistic regression model is less devel-

oped. As the multinomial logistic model can be considered a generalization of the

binomial logistic regression with multiple possible outcomes, many authors extended

their test statistic from the binary case. Hosmer and Lemeshow (2000) suggest first
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using a series of individual binomial logistic model tests, such as Hosmer-Lemeshow

statistic, and then integrating the results. This method is easy to calculate but need

a further consideration. Bull (1994) and Fagerland et al. (2008) extend the Hosmer-

Lemeshow statistic to the multinomial case, and provide a type I error analysis using

simulations. Pigeon (1999) made an improvement on those tests by modification to

deal with an underdispersion problem when estimated probability in each cell are

largely different. Goeman and Cessie (2006) proposed a smoothed residuals test

statistic.

All the above tests have a simple random sampling design assumption and can-

not handle data from complex survey designs. However, complex survey designs are

common in many areas, especially in clinical trials with longitudinal data, which has

non-zero correlation between observations. When a clustering effect is present, the

chi-square statistic uses groups based on estimated probabilities, which may inflate

the type I error (Rao and Scott (1992)), and the modified statistic can control it

better. Rao and Scott (1979,1981) proposed an adjustment based on design-effect

matrix to deal with the complex design survey. We followed this spirit to propose a

new statistic that can deal with the underdispersion and cluster effect together, and

apply it to the Nun Study data.

2.2 Method

Modification for Underdispersion of Chi-square Test

The multinomial logistic model and corresponding grouped chi-square goodness-of-

fit test are introduced in chapter 1. We can also construct a contingency table for

the grouped Pearson’s chi-square statistic, which include g rows for each group and

c + 1 columns for each value of outcome. The Pearson’s chi-square test statistic X2

assumed the estimated probability in each cell are the same for all observations. In

other words, the estimated probability for each observation in the same group and
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same outcome should not be largely different. It can be violated in multinomial re-

gression models. Pigeon and Heyse (1999) proposed a modification for the Pearson’s

chi-square test statistic for both binomial and multinomial settings.

Since ∑
l in group k

π̂lj(1− π̂lj) ≤ nkjπ̄lj(1− π̄lj) (2.1)

which means the estimated variance of Okj is less than the variance of Okj assuming

the observations in each cell have same expected probabilities, and here

π̄lj =
∑

l in group k

π̂lj/nk (2.2)

Then in classical Pearson’s chi-square statistic, the Okj are underdispersed relative

to a multinomial situation where each subject has the same value of π̄lj in cell (k, j).

To correct the underdispersion, Pigeon and Heyse (1999) proposed a modification by

adjusting the J statistic using

J =

g∑
k=1

c∑
j=0

(Okj − Ekj)
2

φkjEkj

(2.3)

where

φkj =

∑
l in group k π̂lj(1− π̂lj)
nkjπ̄lj(1− π̄lj)

(2.4)

The modification parameter φkj is the ratio of real variance of Okj to variance

with the same expected probabilities within the same cell. Also we can show that

φkj = 1− (n− 1)S2
kj/nkjπ̄lj(1− π̄lj) (2.5)

where

S2
kj =

∑
l in group k

(π̂lj − π̄lj)2/(nkj − 1) (2.6)

When all π̂lj = π̄lj, S
2
kj = 0 and J = C. In a more general case, φkj < 1 and J > C.
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We also noticed that Hosmer-Lemeshow statistic C can alleviate this violation

by grouping based on the decile of the estimated probabilities, which makes the π̂ij

closer to each other in the same cell. The modification of J is suggested based on the

simulation results below.

Modification for Clustering Effect

An important assumption in both Hosmer-Lemeshow test statistic C and Pigeon’s

modification J is that all observations are independent of each other. This assump-

tions can be violated in some data when the observations are not from a simple

random sampling survey. For example, in some medical data, several observations

may come from the same patient since it is a longitudinal study.

Rao and Scott (1979,1981) showed the effects that complex sampling procedures,

such as clusters, have on the use of standard Pearson chi-square test. Their study

showed the type I error would be inflated if the standard method is used regardless

of clustering effects.

Rao and Scott (1979,1981) also proved that under a complex design, standard

Pearson’s chi-square statisticX2 with I cells is distributed asymptotically as a weighted

sum

δ1W1 + δ2W2 + · · ·+ δI−1WI−1 (2.7)

where Wi ∼ χ2
1 and δi are the eigenvalues of the design effect matrix P−1

0 V . P0 is the

multinomial covariance matrix, and V is the covariance matrix of the actual design.

Under the circumstance of Pearson’s chi-square statistic for K cells, they proposed

a first-order correction for the standard X2 statistic:

X2

δ.
∼ χ2

df (2.8)
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where

δ̂. =
n

K − 1

K∑
i=1

v̂i
p0i

(2.9)

v̂i is the estimated variance of pi. pi is the probability of success in cell i and p0i is

that probability under null hypothesis.

Although we have some information about the design effect matrix, in most cases,

we only have the variance of the actual design, which is the variance of each cell in

Pearson’s type test statistic. The good thing about Rao-Scott first-order corrections

is that this correction does not require full information about the design effect matrix.

But instead, we only need the diagonal of that matrix.

We can calculate v̂i using the results from Rao and Scott (1992) in the multinomial

regression model with clustering effect:

v̂i =
mi

(mi − 1)n2
i

mi∑
j=1

(xij − nij p̂i)
2 (2.10)

where nij is the number of observations from the jth cluster in the ith cell; xij is the

number of successes in the ith cell and mi is the number of clusters in the ith cell.

Combine the modification of clustering effect to the Hosmer-Lemeshow statistic

and the Pigeon statistic, we have the new test statistic for goodness-of-fit test of the

multinomial logistic regression model as:

Cc = C/δ̂. =

g∑
k=1

c∑
j=0

(Okj − Ekj)
2

Ekj δ̂.
(2.11)

Jc = J/δ̂. =

g∑
k=1

c∑
j=0

(Okj − Ekj)
2

φkjEkj δ̂.
(2.12)
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2.3 Simulations for Type I error

Construction of Simulation Data

The goal in this section is to determine if these four test statistics can retain the type

I error in different situations.

In the simulation study, we will assume there are m clusters in the dataset, and

observations within each cluster share some same covariates to make them correlated

with each other. This situation is also common in longitudinal data when each pa-

tients have specific baseline information such as age, gender, etc.

The predictor variables and response variable we are using like below:

• Y: the response variable, which can be 0, 1 or 2. State 0 is treated as reference

status.

• X1: a random continuous variable, independent between clusters but may not

be independent among observations in the same cluster.

• X2: a discrete variable, unique for each cluster.

• X3 always equal to 1, and is the intercept covariate.

The corresponding coefficients

β =


β01 β02 β03

β11 β12 β13

β21 β22 β23


As state 0 is the reference state, we have β01 = β02 = β03 = 0.
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Here are the steps to generate the data from null distribution with given set of

coefficients β:

1. We assume there are C clusters in the data. C is 50 here.

2. Each cluster contains k observations, where k is randomly chosen from 1-5.

3. Within each cluster:

X1 ∼ Multivariate Normal(µ,Σ)

Σ =


v ρ · · · ρ

ρ v · · · ρ
...

...
. . .

...

ρ ρ · · · v


X2 is a given value unique for each cluster.

X3 = 1 represents for the intercept.

4. Calculate the multinomial logistic probabilities (π0, π1, π2) for each observation

with given coefficients β.

5. Generate an independent U(0,1) variable. Then generate simulated Y using the

rule: (i) Y = 0 if u < π0, (ii) Y = 1 if u < π0 + π1, (iii) Y = 3 otherwise.

6. Fit a multinomial logistic regression model based on simulated data and obtain

the estimated probabilities (π̂0, π̂1, π̂2).

7. Calculate different statistics based on simulated beta and estimated probabili-

ties.

24



8. Repeat steps all above for B times (here B = 10000) . Calculate the rejection

proportion of different nominal α levels.

Simulation Results

Table 2.1: Multinomial regression coefficients and tuning parameter for different
model settings

Model µ v ρ β11 β12 β13 β21 β22 β23

1 1 1 0.5 0.1 0.5 0.1 0.2 1.2 0.2
2 2 1 0.5 0.1 0.5 0.1 0.2 1.2 0.2
3 2 4 0.5 0.1 0.5 0.1 0.2 1.2 0.2
4 1 2 0.5 0.1 0.5 0.1 0.2 1.2 0.2
5 3 8 0 0.1 1.5 0.1 0.2 1.2 0.15
6 2 6 0 1 1.5 0.1 2 1.2 0.15

Referring to Table 2.2, all tests performed poorly at alpha level of 0.01; When

alpha level is 0.05 or 0.1, the Hosmer-Lemeshow statistic (C) and Pigeon’s statistic

(J) both inflated the type I error, while the two statistics modified for the cluster

effect (Cc and Jc) both control the type I error well. This result shows that the

modification for the cluster effect is important. We can also see in these two models,

Cc has a better control than Jc, which shows the modification for underdispersion is

not necessary here.

For Model 3 and 4, we make the variance of X1 larger (2 times mean), hence,

the linear predictor between observations within the same cluster varies more. The

type I error in Model 3 shows that the performance of Jc (0.0501) is better than Cc

(0.0411) when nominal α = 0.05 and Jc (0.09520) comparing to Cc (0.0872) when

nominal α = 0.10. These simulation results shows some advantage in modification

for underdispersion.

In Model 5, we set the correlation of X1 to be independent within each cluster,

also we set X2 to be independent for each observation. There is no cluster effect but

large difference in estimated probabilities. As a result, the φ is 0.73 now comparing
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Table 2.3: Modification Parameter

Model φ ∆
1 0.93 1.22
2 0.96 1.21
3 0.94 1.21
4 0.96 1.22
5 0.73 1.01
6 0.49 1.00

to close to 1 in previous models, and ∆ is almost 1 now. The type I error for J and

Jc are close to the nominal α level. In model 6, we set β11 and β21 to be large to

enlarge the difference of linear predictor. The φ decreased to 0.49, and we can also

see effect of the modification for underdispersion.

2.4 Simulation for Power

Construction of Simulation Data

• Y: the response variable, which can be 0, 1 or 2. State 0 is treated as reference

status.

• X1: a random continuous variable, independent between clusters and may not

be independent between observations in the same cluster.

• X2: a discrete variable, unique for each cluster.

• X3 = 1 all the time, intercept covariate.

• X2
1 : square of X1
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The corresponding coefficients

β =


β01 β02 β03 β0s

β11 β12 β13 β1s

β21 β22 β23 β2s


As state 0 is the reference state, we have β01 = β02 = β03 = β0s = 0.

Now we have the model:

log
πij
πi0

= βj1 ·Xi1 + βj2 ·Xi2 + βj3 ·Xi3 + βjs ·X2
i1 (2.13)

where j = 0, 1, 2. Under the null hypothesis βjs = 0. And under alternative hypoth-

esis βjs 6= 0.

Simulation Results

Table 2.6 are the results of power analysis based on 40 clusters and 1000 simulations.

Table 2.4: Multinomial regression coefficients and tuning parameter for different sim-
ulation settings

Model µ v ρ β11 β12 β13 β1s β21 β22 β23 β2s

1 1 1 0.5 0.2 0.4 0.2 0 0.1 1 0.1 0
2 1 1 0.5 0.2 0.4 0.2 1 0.1 1 0.1 -1
3 1 1 0.5 0.2 0.4 0.2 2 0.1 1 0.1 -2
4 1 1 0.5 0.2 0.4 0.2 5 0.1 1 0.1 -5
5 1 1 0.5 0.2 0.4 0.2 8 0.1 1 0.1 -8

Table 2.5: Modification Parameter

Model φ ∆
1 0.99 1.22
2 0.86 1.36
3 0.86 1.32
4 0.94 1.21
5 0.97 1.06
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Table 2.6: Percentage of null hypothesis rejections for different simulation settings

Model Result (0.05) Result (0.1)
C J Cc Jc C J Cc Jc

1 0.098 0.101 0.041 0.041 0.206 0.213 0.086 0.089
2 0.115 0.155 0.075 0.100 0.171 0.237 0.125 0.161
3 0.144 0.187 0.123 0.136 0.210 0.249 0.165 0.201
4 0.224 0.245 0.206 0.235 0.283 0.299 0.274 0.302
5 0.285 0.428 0.285 0.428 0.428 0.528 0.428 0.528

Table 2.5 shows the modification parameters in each model. φ is the parameter

to modify the underdispersion, suggested by Pigeon’s paper. ∆ is the parameter of

Rao’s first order correction, which can adjust for clustering effect.

Table 2.6 shows the percentage of times a test reject the null hypothesis for dif-

ferent simulation settings. In this table, column C lists the percentage using the

traditional chi-square statistic (Hosmer-Lemeshow statistic); column J lists the per-

centage using the Hosmer-Lemeshow statistic modified for underdispersion by Pigeon,

and columns Cc and Jc are using the new statistics considering the clustering effects,

correspondingly based on C and J . We include the results for α size is 0.05 or 0.1 in

the table.

The null hypothesis is that the square term should not be in the model, which

means both β1s and β2s are 0. Model 1 represents this scenario, so that model 1 shows

the type I error of four statistics with clustering effect presents. From the results, we

can see the traditional chi-square statistic C (0.098)and J (0.101) have inflated type

I errors, and the modified statistics Cc (0.041) and Jc (0.041) can preserve the type

I error better, when clustering exists.

Model 2 to Model 5, as the coefficients of square term (β1s and β2s) are not 0, im-

plying the percentage of rejection of the null hypothesis represents the power of each

test. As traditional statistics C and J cannot preserve type I error with clustering

effect exists, I use the 95 percent quantile in model 1 as the new critical value, instead
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Figure 2.1: Power with Change of Coefficient of Squared Term

of using the quantile of chi-square distribution. In model 2, β1s is 0.,1 and β2s is -0.1,

all four tests have low power around the α level. As the simulation model departs

from the null hypothesis (β1s from 0.1 to 8 and β2s from -0.1 to -8), the power of all

four tests are increasing as shown in the Figure 2.1.

From Figure 2.1, we realize in our setting, all those 4 tests have relatively low

power. We can see as the coefficients are further from 0, the power of C and Cc (or

J and Jc) are closer to each other. The Power of J is larger than the power of C for

all settings.

2.5 Application

Here the goodness-of-fit test for multinomial regression is applied to the Nun Study

data described in chapter 1. We note that the Nun Study data have clustering effects

as each participant contributes four observations on average. For each row of the one-

step transition matrix, a multinomial logistic regression model is fitted to calculate

the transition probabilities. For each, we have 3 different estimated probabilities to
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group the observations: probability to state 1, probability to state 2, probability to

state 3. As state 4 (dementia) and state 5 (death) are both absorbing states, we do

not consider the grouping strategy based on them.

Table 2.7 shows the p-values of the Nun Study data with different goodness-of-fit

test statistics. As the p-values are different based on different grouping methods, it

is still unclear about how to group the observations better, we list all results here.

No p-values are significant. The p-value of transition from state 3 sorted by p2 are

marginally significant for statistic C and J (0.117 and 0.112) correspondingly, but not

significant when modified by the clustering effect.

These results basically showed the we cannot reject the multinomial regression

model used to calculate each row of the one-step transition matrix. As we don’t have

a good strategy to group the data in multinomial case, we list all results together to

make a decision.

2.6 Conclusion and Future work

In this chapter, we introduced several goodness-of-fit tests for the multinomial logistic

regression model, and proposed a new statistic to deal with clustered data. We also

examined the type I error control under null distributions for these statistic by sim-

ulations. The results showed that the standard or grouped Pearson’s chi-square test

have poor type I error control when clustering is present. The test statistic we pro-

posed using a Rao-Scott first-order correction performed well. We also showed that

when expected probabilities within cells varies much, a modification for the under-

dispersion is necessary, so we suggested to use the statistic modified by Pigeon (1999).

We applied those test statistics to the Nun Study to verify the multinomial re-

gression model that has been used to calculate one-step transition matrix in some

models. Our results showed that we failed to reject the multinomial regression model
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as a poor fit to the data.

There are still some problems to be answered here. One issue is we have dif-

ferent grouping strategy in multinomial regression model considering the estimated

probabilities. Fagerland (2008) suggested to use the reference state to group the ob-

servations. Pigeon (1999) did not make a suggestion, and just listed all results based

on different grouping strategies. This problem can be more serious when there is no

obvious reference state in the data.

Another problem here for these goodness-of-fit tests is that there is no specific

alternative making it difficult to estimate the power for these tests. The smoothed

residuals test proposed by Goeman and Cessie (2006) has a specific alternative. Their

method is based on the distance in covariates space instead of estimated probabilities

so that it can avoid the choice of grouping strategy. We applied their method to the

Nun Study, but the issue is that we cannot handle the cluster effect well, which seems

to be serious in the Nun Study data.

Copyright c© Zhiheng Xie, 2016.
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Chapter 3 SIS-MCMC for Bivariate Multinomial Logistic Regression

Model

3.1 Introduction

In this chapter, we apply the hybrid scheme of the SIS procedure and MCMC pro-

cedure proposed by D. Kahle and Garcia-Puente (2015) to the multinomial logistic

regression model with two discrete covariates. This hybrid scheme of the SIS and

MCMC procedures takes advantages of both methods to sample contingency tables

from the conditional sample space. The hybrid scheme first runs the SIS procedure

to sample tables independently from the conditional sample space with the uniform

distribution, then it uses these sampled tables as initial tables to run multiple chains

via the MCMC to sample tables from the conditional sample space with hypergeo-

metric distribution.

With sample from SIS-MCMC procedure, we apply chi-square test and likelihood

ratio test (as described in Chapter 1) to the multinomial logistic regression model

for Nun study. We include the presence of apolipoprotein E-4 allele (Apoe4) and

different levels of education as the covariates. We also consider age as a factor in

the model with three different grouping method: ignore age, separate into 2 groups

based on age and separate into four groups based on age. Based on the p-value from

the SIS-MCMC samples, we recommend to use the model with four age groups to

estimate the transition probability matrix.

This chapter is organized as follows: In Section 2, we use the multinomial logistic

model to estimate the transition probability matrix, and we show its corresponding

chi-square test statistic, and likelihood ratio statistic. In Section 3, we show algo-

rithms to apply the SIS procedure and MCMC procedure to the multinomial logistic

regression model. The goodness-of-fit test results of Nun Study based on the SIS-
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MCMC procedure are summarized in Section 4.

3.2 SIS initialized MCMC

In order to sample contingency tables with marginal constraints by the MCMC

method, one problem is that one may never be able to compute a Markov basis.

For three-way contingency tables with fixed 2-margin constraints, the number of el-

ements in a Markov basis can be too large to compute (De Loera and Onn (2005)).

Even if we have a Markov Basis, with the standard MCMC, it can take a long time to

converge to a stationary distribution in order to satisfy the independent assumption

through a Markov Chain.

In order to solve the feasibility problem of computing a Markov basis and connec-

tivity of a chain, D. Kahle and Garcia-Puente (2015) suggested the hybrid scheme of

the SIS and MCMC procedures. The sampling scheme is outlined as follows:

1. Compute the sufficient statistics from the observed table X0.

2. Uniformly sample the tables X1, . . . , Xn from the conditional state space given

the sufficient statistics of table X0 by the SIS procedure.

3. Use sampled tables X1, . . . , Xn in Step 2 as initials to run n many Markov

chains to sample tables from the conditional state space according to the hy-

pergeometric distribution given the sufficient statistics.

3.3 SIS-MCMC with Nun study

In this section, we apply SIS-MCMC algorithm to the Nun study data as described

in chapter 1. To estimate the transition probability matrix (1.36), a multinomial

logistic regression model can be constructed as:

log(
Psv

Ps1

) = αsv + β1svX1 + β2svX2 (3.1)
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where s = 1, 2, 3 and v = 1, 2, 3, 4, 5.

In the above model, X1 is the presence of apolipoprotein E-4 allele (APOE-4) with

two levels (present and absent) and X2 is the education with three levels (non-college

degree, college level degree and post graduate degree). Psv is the probability that a

patient transfers from state s to state v, which is also the elements of the one-step

transition probability matrix.

In studies of aging and Alzheimer disease, not only the presence of apolipopro-

tein e-4 allele and education level should be considered, but age is also an important

factor that affects the transition probability among cognitive states. In this paper,

we deal with age by three strategies: ignore age and treat participants in different

ages the same; set a cutoff point 85 for age and analyze the transitions probability

matrix with patients with age larger than 85 or not larger than 85 separately; or

separate the data by quantiles of age, with the corresponding cutoff as 83.61, 87.12

and 90.54. Under these three different settings, we analyze the Nun Study data by

two-way contingency table within each age group separately. Table 3.1 is the fre-

quency table of transitions in Nun Study data without age seperation. Table 3.2 is

the frequency table of transitions in Nun Study data separated at age equals 85. Table

3.3 is the frequency table of transitions in Nun Study data separated by age quantiles.

Table 3.1: Frequency Table of Transitions in Nun Data Ignore Age

Prior State Current State
1 2 3 4 5

1 593 197 54 5 48
2 177 697 136 82 83
3 16 39 184 75 94

In the analysis of Nun Study data, as the prior state in each transition can be state

1, 2, or 3, we need to estimate the first 3 rows in the one-step transition probability

matrix. Probabilities in each row can be estimated by the logistic regression model
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Table 3.2: Frequency Table of Transitions in Nun Data by Age 85

Age Prior State Current State
1 2 3 4 5

≤85
1 259 89 14 0 9
2 91 256 31 23 16
3 3 9 25 16 11

> 85
1 334 108 40 5 39
2 86 441 105 59 67
3 13 30 159 59 83

Table 3.3: Frequency Table of Transitions in Nun Data by Age Quantiles

Age Prior State Current State
1 2 3 4 5

First Quantile
1 187 73 10 0 8
2 73 186 18 13 9
3 2 5 18 12 7

Second Quantile
1 182 44 15 3 10
2 49 182 26 21 14
3 5 9 32 8 19

Third Quantile
1 145 46 17 2 16
2 32 169 43 16 20
3 6 12 54 16 24

Fourth Quantile
1 79 34 12 0 14
2 23 160 49 32 40
3 3 13 80 39 44

in Equation (3.1). Thus, when we stratify the data into two sets by age equals to 85,

we have six models in total to estimate the all the transition probabilities, and twelve

models will be estimated if we separate data into four groups by quantile of patients’

age. Here, we use the transitions from intact cognition (state 1) with participants

older than 85 as an example. The other cases can be analyzed similarly.

As patients can transfer to five different states at each transition, the dataset of

first model can be described as five two-way contingency tables. We can call it as a

”point” here for simplicity. Each table contains two rows corresponding the presence

of APOE-4 (X1) and three columns corresponding to three levels of education (X2).

For example, the contingency table of the transitions from state 1 (intact cognition)
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with age larger than 85 is as Table 3.4. Table 3.4 corresponds to a more detailed look

at the first row in Table 3.2. The six values in Table 3.4 with current state equals 1

sum up to 334, which is the first number in Table 3.2 when age is larger than 85.

Table 3.4: Contingency Table From State 1 With Age> 85

Current state Contingency table
Apoe4 non-college college post graduate

1 absence 5 113 185
presence 0 4 27

2
absence 5 33 60
presence 0 6 4

3
absence 0 14 22
presence 0 1 3

4
absence 2 1 0
presence 0 1 1

5 absence 2 9 24
presence 0 1 3

Table 3.5: SIS sample based on Table 3.4

Current state Contingency table
Apoe4 non-college college post graduate

1 absence 6 111 185
presence 0 7 25

2
absence 8 30 59
presence 0 6 5

3
absence 0 15 21
presence 0 0 4

4
absence 0 3 1
presence 0 0 1

5 absence 0 11 25
presence 0 0 3

To apply the SIS-MCMC algorithm to each model in the Nun Study data, the

first step is to generate 50 starting contingency tables by the SIS. Those 50 starting
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points are independent with each other, while preserving the same sufficient statistics

with the real data. Table 3.5 is one SIS sample based on Table 3.4.

Secondly, apply MCMC procedure to each starting point. Here, we set burn-in to

100, sample size 1000, and select one sample point each 20 steps.

Thirdly, for each sample point from MCMC, calculate the goodness-of-fit test

statistic. Figure 3.1 shows the histogram of those test statistics. Based on Table

3.4, we can calculate the Chi-square test statistic 9.476. The p-value is the percent-

age of how many test statistics are larger than the statistic of real data (9.476). The

result is 0.046 for the Nun Study data with prior state equals 1 and age larger than 85.

Above steps can be repeated for all other models. We also calculate the likelihood

ratio test for the SIS-MCMC samples here. As we can see in Table 3.4, the Nun data

is pretty sparse when we use contingency tables to describe it. This problem is even

worse when we have more separations by age. As the chi-square test usually requires

the expected cell number larger than 5, the results of chi-square test might be skewed.

We include the results of likelihood ratio test in Table 3.7, and we include both the

p-value based on exact distribution and asymptotic chi-square distribution.

Results

The results of chi-square test and likelihood ratio test are shown in Table 3.6 and

Table 3.7. We may use 0.05 as the cutoff of p-value for each model. The models

with a p-value less than 0.05 may imply some important covariates are missing in the

model, or the multinomial logistic regression model assumption is not valid in this

scenario.

For the model ignoring the age, all p-values of likelihood ratio test are not signifi-

cant but relatively small. The p-value of chi-square test from state 1 (intact cognition)
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Table 3.6: Test Statistic and P-value of Chi-Square test

SIS-MCMC Chi-square results

No Age

Prior State Test Statistic P-value
1 9.115 0.049
2 14.127 0.096
3 14.755 0.070

SIS-MCMC for NUN with 2 Age Groups
Age Prior State Test Statistic P-value

≤ 85
1 2.514 0.510
2 17.550 0.038
3 29.491 0.009

> 85
1 9.476 0.046
2 8.408 0.202
3 12.045 0.146

SIS-MCMC for NUN with 4 Age Groups
Age group Prior State Statistic P-value

First Quantile
1 1.180 0.744
2 15.363 0.072
3 13.366 0.031

Second Quantile
1 8.179 0.060
2 8.000 0.369
3 14.333 0.080

Third Quantile
1 8.951 0.116
2 6.133 0.471
3 9.477 0.192

Fourth Quantile
1 6.490 0.095
2 11.373 0.379
3 7.217 0.810

is marginally significant (0.049). For this transition probability from state 1, if we use

the model with two age groups, the p-value of younger participants (younger than 85)

is not significant (0.510), but the p-value of the elder participants is significant (0.046).

If we check the p-values with 4 age groups, all p-values from chi-square test with prior

state 1 are not significant. Also, all p-values with prior state 1 from likelihood ratio

tests are not significant. Thus, we can conclude the significance of chi-square test

from the model with prior state 1 and no age separation may mainly from the elder

participants and is doubtable as the results of likelihood ratio tests are not significant.
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Table 3.7: Test Statistic and P-value of Likelihood Ratio Test

SIS-MCMC LRT results

No Age

Prior State Test Statistic P-value P-value(Asymptotic)
1 9.254 0.061 0.321
2 15.285 0.057 0.054
3 15.285 0.057 0.054

SIS-MCMC for NUN with 2 Age Groups
Age Prior State Test Statistic P-value P-value(Asymptotic)

≤ 85
1 2.772 0.569 0.948
2 15.199 0.061 0.055
3 17.934 0.010 0.022

> 85
1 9.093 0.074 0.335
2 9.377 0.289 0.312
3 11.986 0.182 0.152

SIS-MCMC for NUN with 4 Age Groups
Age group Prior State Statistic P-value P-value(Asymptotic)

First Quantile
1 1.597 0.692 0.991
2 12.117 0.171 0.146
3 14.077 0.016 0.080

Second Quantile
1 8.267 0.073 0.408
2 9.108 0.328 0.333
3 10.336 0.141 0.242

Third Quantile
1 8.730 0.103 0.366
2 6.186 0.548 0.626
3 8.272 0.325 0.407

Fourth Quantile
1 6.991 0.058 0.538
2 9.913 0.184 0.271
3 6.357 0.637 0.607

All p-values are not significant for models with older participants (older than 83)

no matter the prior cognitive state, in both chi-square test and likelihood ratio test.

The results show that a multinomial logistic regression model is legitimate to esti-

mate the transition probability matrix between cognitive states for older participants.

As shown in Table 3.7, in the results of likelihood ratio test, when we separate

data into four groups by quantile of age, the only significant p-value (0.016) appears

in the model with participants younger than 83 (group 1 in 4 age groups part) and

from state 3 (global impairment). It suggests we may not use a multinomial logistic
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Table 3.8: Contingency table of age group 1 from state 3

Current state Contingency table
Apoe4 no college college post college

1 absence 0 1 1
presence 0 0 0

2
absence 1 1 1
presence 1 1 0

3
absence 3 3 5
presence 0 7 0

4
absence 2 2 2
presence 0 1 5

5 absence 0 1 4
presence 0 2 0

regression model to calculate the transition probabilities with younger participants

(younger than 83) from a global impairment state, or some key covariates or interac-

tions are missing in the model. The results of chi-square test also support this result,

which has a p-value of 0.031. However, when we look into this situation, the con-

tingency table in this model is like Table 3.8. The contingency table for transitions

from state 3 (global impairment) with participants younger than 83 is so sparse that

we may ignore its significance. Regardless of this special case, we can conclude that

when we separate all the Nun Study data into four groups based on age quantiles, all

test statistics of goodness of fit tests are not significant. The logistic regression model

with presence of APOE-4 and education level as covariates can be used to estimate

the transition probability matrices.

Based on all these test results, we recommend using multinomial logistic regres-

sion with presence of APOE-4 and education level as covariates and separate the Nun

Study data into four groups by age quantile.
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3.4 Conclusion

In this chapter, we considered a multinomial logistic regression model with two cat-

egorical covariates. Two-way contingency tables are used to describe this type of

data. We applied a hybrid scheme of sequential importance sampling (SIS) method

and Monte Carlo Markov Chain (MCMC) to sample the sets of two-way contingency

tables for multinomial logistic regression model. Based on the SIS-MCMC samples,

we generated the exact distribution of chi-square goodness-of-fit test statistics and

likelihood ratio test statistics. From the exact distribution, we can calculate more

accurate p-value of a given dataset.

To apply the SIS-MCMC procedure to the Nun Study data, we considered three

different grouping methods for age and fit the data with 3, 6, or 12 models based on

the prior cognitive states and grouping methods of age. As the sampling method is

based on two-way contingency tables here, when we need a third variable that affects

the response variable, we recommend using the stratification of the third variable for

the contingency tables. A problem is that the standard of the stratification method

is not clear. It should be determined by the dataset and related previous research.

As for the Nun Study data, we encountered severe sparse table since we separated

data into four groups by age, which results to 12 models to estimate. Considering

the sample size and sparseness of the contingency tables, we decided not to separate

Nun Study data into more groups. After considering the p-value of both chi-square

test and likelihood ratio test in all different cases, we recommend the model with four

age groups for transition probability matrix in Nun Study.

In this chapter, we analyzed the multinomial logistic regression model by de-

scribing the data as contingency tables. We extended the MCMC method based on

Markov basis of binomial logistic regression to multinomial logistic regression models.

By now, as this sampling method can only deal with two-way contingency tables, we

applied this method to a bivariate logistic regression models. However, in some cases,
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more than two factors are believed to affect the response variable. We tried to include

a third covariate by stratification ,which is also limited by the sparseness of dataset.

More work is needed to deal with the situation with more than two covariates. Also,

we are considering categorical covariates in this paper, we can also use two way con-

tingency tables to describe data with continuous covariates by appropriate grouping

method.

Copyright c© Zhiheng Xie, 2016.
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Chapter 4 Logistic Regression with Right Censored Ordinal Covariate

4.1 Introduction

The traditional logistic regression model restricts the analysis to observations with

complete data ignoring all the observations with incomplete data, such as missing

or censored values. However, in many datasets with heavy censoring, much informa-

tion will be lost when incomplete observations are simply deleted. Right censored

data commonly arise in many epidemiology or medical studies. For example, in the

study of Alzheimer’s disease, the length of time in mild cognitive impairment is right

censored whenever a patient is already in that cognitive state at the start of the study.

There are different general approaches for estimating the regression parameters

in a model with censored covariates. First, we can just use the censored covariates

without adjustment, which is well known to lead to bias in estimates (Atem et al.

(2015)). Second, all observations with censored values could be excluded from the

analysis. This is the most commonly used method, which is referred as a ”complete-

case” analysis. By this method, the analysis is only based on those observations with

complete covariates, and could yield biased estimates if data are not missing com-

pletely at random. Even if the assumption that the censoring is missing completely at

random, which is usually violated in observed data, a problem on the complete-case

analysis is the loss of efficiency especially when the percentage of censoring gets large.

The third way is to use maximum likelihood estimates under the assumption of

censored covariates. Atem et al. (2015) and Austin and Hoch (2004) considered a

linear regression model with censored independent variables. For a generalized linear

model, there is some literature on the treatment of missing value covariates (Vach and

Schumacher (1993), Vach and Blettner (1995)). However, there are limited studies

focused on dealing with censored covariates.

46



This chapter is devoted to the scenario where a logistic regression model would

be appropriate if no censored data would have occurred. We also assume that the

percentage of a censored covariate is independent of the exact value of that covariate.

For simplicity, we only consider the case with one completely observed ordinal covari-

ate and another right censored ordinal covariate. This approach can be extended to

more complex cases.

In this chapter, we will introduce the likelihood function based on joint proba-

bility and a method to estimate nuisance parameters in the first section. Secondly,

we show the performance of our new method comparing with the logistic regression

model with only complete cases and logistic regression with penalized likelihood func-

tion method with different censoring percentages and sample sizes. Then, we applied

our new method to a study of relationship between arteriolosclerosis and patient’s

length of time in mild cognitive impairment. Lastly, we discuss the new method, and

propose some potential future work.

4.2 Method

We assume a logistic regression model for a binary outcome Y (values 0 or 1) given

two categorical predictors: X1 with J possible values and X2 with K possible values,

where X2 might be right censored for some observations. We assume

µkj(β) := P (Y = 1|X1 = j,X2 = k) =
exp (β0 + β1j + β2k)

1 + exp (β0 + β1j + β2k)
(4.1)

with restrictions β11 = 0 and β21 = 0, here j = 2, 3, · · · , J and k = 2, 3, · · · , K. We

denote the vector (β0, β1j, β2k) as β.

As the value of X2 might be right censored, C2 is the indicator variable of whether
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X2 is observed or not

C2 :=

1 if X2 is observed

0 if X2 is censored

(4.2)

Due to the right censoring of X2, we define a random variable Z2 with 2K possible

values

Z2 :=

X2 if X2 is observed

K +X2 if X2 is censored

(4.3)

As suggested by Vach and Schumacher (1993), the conditional probability of oc-

currence of right censoring is assumed to be:

P (C2 = 1|Y = i,X1 = j,X2 = k) = P (C2 = 1|Y = i,X1 = j) = qij (4.4)

Hence, we assume that the occurrence of right censored value does not depend on

the true value of X2.

To describe the likelihood of the distribution of X1 and X2, we define:

πkj := P (X2 = k|X1 = j) τj := P (X1 = j) (4.5)

The joint distribution of (Y,X1, Z2) is given by:

P (Y = i,X1 = j, Z2 = k) =

qijP (Y = i,X1 = j,X2 = k) if k ≤ K

(1− qij)P (Y = i,X1 = j,X2 ≥ k −K) if k > K

(4.6)

When k ≤ K, we have

P (Y = i,X1 = j,X2 = k) (4.7)

= P (Y = i|X1 = j,X2 = k)P (X2 = k|X1 = j)P (X1 = j) (4.8)

= {µkj(β)}i{1− µkj(β)}1−iπkjτj (4.9)
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When k > K, we set k = K + k∗

P (Y = i,X1 = j, Z2 = K + k∗) (4.10)

=
K∑

k=k∗

P (Y = i,X1 = j,X2 = k) (4.11)

=
K∑

k=k∗

P (Y = i|X1 = j,X2 = k)P (X2 = k|X1 = j)P (X1 = j) (4.12)

=
K∑

k=k∗

{µkj(β)}i{1− µkj(β)}1−iπkjτj (4.13)

To summarize, we have the likelihood based on joint distribution as:

P (Y = i,X1 = j, Z2 = k) =

qij{µkj(β)}i{1− µkj(β)}1−iπkjτj if k ≤ K

(1− qij)
∑K

k=k∗{µkj(β)}i{1− µkj(β)}1−iπkjτj if k > K and k = K + k∗

(4.14)

Given n independent observations (yr, x1r, z2r), the maximum likelihood estima-

tion of (β, π) and τ, q can be estimated independently. The (β̂ML, π̂ML) result from

maximizing:

L =
∏
k<K

qij{µkj(β)}i{1− µkj(β)}1−iπkjτj (4.15)

×
∏

k≥K,k=K+k∗

(1− qij)
K∑

k=k∗

{µkj(β)}i{1− µkj(β)}1−iπkjτj (4.16)

To estimate the parameters, we can use the estimated conditional probabilities

based on frequency of contingency table as the initial values of the nuisance param-

eter π. Then we can calculate the estimated value of (β̂, π̂) by Newton-Raphson

algorithm.
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If we define the contingency table as nijk = #{Y = i,X1 = j, Z2 = k}

n.jk =
1∑

i=0

nijk (4.17)

nij+ =
K∑
k=1

nijk (4.18)

nij. =
2K∑
k=1

nijk (4.19)

Then the initial π̂0 can be estimated by:

π̂0 =
n0j.n0jk/n0j+ + n1j.n1jk/n1j+

n0j. + n1j.

(4.20)

4.3 Simulation Study

Construction of Simulation Data

The goal of this section is to study the performance of estimates from new method

based on joint distribution. We include two independent covariates, X1 and X2 where

X1 is a binary variable completely observed and X2 is a censored ordinal variable with

three possible values 1, 2 and 3. We have:

• X1 ∼ Binomial(p = 0.5)

• P (X2|X1) =

p11 p12 p13

p21 p22 p23


• pi1 = P (X2 = 1|X1 = i) is chosen from uniform (0,1); pi2 is chosen from uniform

(0,1-pi1); pi3 = 1− pi1 − pi2.

The response variable Y is a binomial variable with probability

P (Y = 1|X1 = j,X2 = k) =
exp (β0 + β1j + β2k)

1 + exp (β0 + β1j + β2k)
(4.21)
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where j = 1, 2 and k = 1, 2 and 3. We also set β0 = −1 β12 = 1 β22 = 1 and β23 = 2

for given coefficients.

The censoring percentage of X2 is set as a constant number 30%, 50% or 70%.

The sample size of each replicate is from 100 to 1000 and we replicate each scenario

500 times. We also tried simulations with more replicates, the results did not change

much.

In logistic regression model with ordinal covariates, maximum likelihood estimates

are often inconsistent or fail to converge in the cases of separation or quasi-separation.

In logistic regression model with binary response variable, the separation occurs when

all the response variables are the same in all observations with a certain value of a

covariate. For example, this occurs if all observations with patients age 85 and older

all have presence of arteriolosclerosis in a study of relationship between arterioloscle-

rosis and age, using the logistic regression model. This case is commonly seen in rare

variants studies. Firth (1993) introduced a more effective way to deal with the above

situation based on penalized likelihood. We also include Firth’s model in addition to

complete-case logistic model for comparison.

In this simulation part, we calculate the Firth’s penalized likelihood by PROC

LOGISTIC with option firth in SAS.

Simulation Results

With the same censoring percentage, the mean squared error of the estimates of all

coefficients decrease when the sample size increases from 100 to 1000 across all three

methods. With the same sample size, the mean squared error of estimates of all

coefficients increase as the censoring percentage increases from 30 percent to 70 per-

cent across all three methods, which make sense as we have more information and

observations to estimate the model when the data suffering from censoring less.
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When we compare the performance of the new method (Table 4.1) with logistic

regression using only complete cases (Table 4.2), in general, the estimates of the new

method have lower mean squared error. When the sample size is between 100 to 500,

the mean squared error of the new method performs a lot better than the logistic

regression model with complete cases. When the sample size is large (800 or 1000),

complete case logistic regression model can give a better the estimate of β0 in our

simulation results. In these cases, the logistic regression model has relatively large

sample size. For example, if the sample size is 1000, with 50% censoring, there are

still 500 observations can be used in logistic regression model.

We also compare the new method with the Firth logistic regression model (4.3),

which reduces the bias of the estimates. When the sample size is small, 100 through

500, the new method has better estimates comparing to Firth logistic model, but

the Firth model performs better than the complete-case logistic regression. As the

sample size increases, the Firth model outperformed in some estimations but the new

method is not far behind.

To test the robustness of the assumption that the percentage of censoring is in-

dependent with the exact value of the covariate (equation 4.4), we also consider the

situation that

P (censoring|X2 = 0) = 30% (4.22)

P (censoring|X2 = 1) = 50% (4.23)

P (censoring|X2 = 2) = 70% (4.24)

The corresponding simulation results are in Table 4.5. With different sample size

from 100 to 800, the estimates of new methods are more accurate than the estimates

of complete-case logistic model or Firth logistic model. It shows that our new method

is quite robust to the censoring mechanism.
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To conclude, we showed our new method can estimate the coefficients with smaller

mean squared error in most cases when the sample size is from 100 to 800 comparing

to complete-case logistic regression model and logistic regression model with penal-

ized likelihood. Our new method has similar performance with other methods when

the sample size is relatively large, in which case the logistic regression model only

based on complete cases has relatively large sample size and enough information.

Table 4.1: Mean Squared Error of Estimated Coefficients with New Method

Censor Sample Size Mean Squared Error

β0 β12 β22 β23

30%

100 0.337 0.375 0.666 0.592
200 0.166 0.177 0.360 0.386
300 0.120 0.134 0.242 0.302
500 0.072 0.078 0.152 0.193
800 0.054 0.050 0.124 0.177
1000 0.047 0.047 0.098 0.161

50%

100 0.412 0.451 0.712 0.589
200 0.215 0.205 0.422 0.380
300 0.143 0.147 0.306 0.252
500 0.118 0.082 0.225 0.200
800 0.072 0.062 0.153 0.141
1000 0.065 0.053 0.123 0.140

70%

100 0.463 0.374 0.943 0.705
200 0.331 0.228 0.521 0.488
300 0.255 0.200 0.532 0.364
500 0.192 0.133 0.317 0.220
800 0.160 0.118 0.261 0.177
1000 0.146 0.098 0.245 0.165
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Table 4.2: Mean Squared Error of Estimated Coefficients with Logistic Regression
(Complete Cases)

Censor Sample Size Mean Squared Error

β0 β12 β22 β23

30%

100 0.419 0.534 0.795 0.733
200 0.191 0.230 0.411 0.496
300 0.138 0.163 0.275 0.395
500 0.086 0.101 0.165 0.220
800 0.049 0.054 0.119 0.127
1000 0.041 0.051 0.088 0.120

50%

100 0.546 0.784 0.817 0.912
200 0.284 0.384 0.542 0.684
300 0.148 0.223 0.366 0.427
500 0.123 0.134 0.244 0.316
800 0.055 0.076 0.166 0.189
1000 0.052 0.061 0.116 0.158

70%

100 0.769 1.004 1.259 1.231
200 0.449 0.571 0.709 0.911
300 0.314 0.448 0.641 0.634
500 0.200 0.239 0.408 0.388
800 0.117 0.161 0.236 0.319
1000 0.091 0.102 0.184 0.242

4.4 Application and Results

The above method is applied to a study of the relationship between the presence

of arteriolosclerosis and time a patient remains in mild cognitive impairment (MCI)

status. The data were drawn from the SMART database. In this application, the

response variable (Y ) is the presence of arteriolosclerosis. The predictor of interest

(X2) is the time of a patient in MCI, which is a right censored variable as some of

the patients were already in the MCI state when entered in this study. The variable

time of a patient in MCI status is discretized as a ordinal variable with three levels:

0 − 4 years, 4 − 8 years and more than 8 years. Several choices are available for

the control variable (X1), we select whether the death age is larger than 85 or not

(npdage85) and whether the patient is a female or not (female) here. Both of them

are binary variables. In our dataset, we have a thousand observations with observed
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Table 4.3: Mean Squared Error of Estimated Coefficients with Firth Logistic Regres-
sion

Censor Sample Size Mean Squared Error

β0 β12 β22 β23

30%

100 0.365 0.452 0.750 0.770
200 0.184 0.230 0.415 0.462
300 0.123 0.150 0.288 0.373
500 0.091 0.102 0.165 0.223
800 0.045 0.050 0.116 0.120
1000 0.040 0.050 0.084 0.117

50%

100 0.511 0.723 0.988 1.079
200 0.249 0.356 0.530 0.661
300 0.142 0.203 0.361 0.477
500 0.109 0.118 0.227 0.290
800 0.056 0.075 0.159 0.192
1000 0.050 0.059 0.116 0.162

70%

100 0.773 1.061 1.448 1.482
200 0.416 0.581 0.777 0.985
300 0.273 0.367 0.562 0.662
500 0.170 0.213 0.387 0.383
800 0.107 0.144 0.235 0.304
1000 0.083 0.095 0.183 0.238

survive time in MCI and 384 observations with right censored stay time in MCI.

Table 4.6 is a summary table of the dataset used here. From that table, we can

see that the proportion of censored time of a patient in MCI status is relatively large

in this dataset, which is 358/1358 = 26.3% of all observations. If traditional methods

of logistic regression is applied, 26.3% of the data will be ignored.

As the control variable is a binary variable and the right censored variable time

in MCI has three levels, we have J = 2 and K = 3 here. With the constraints

β11 = β21 = 0, the estimated parameter and corresponding confidence intervals from

Proc NLP are shown in Table 4.7.

The obvious advantage of fitting a logistic regression model with right censored
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Table 4.4: Estimated Variance of Coefficients Based on New Method

Censor Sample Size Estimated Variance

β0 β12 β22 β23

30%

100 0.319 0.417 0.879 0.973
200 0.171 0.207 0.447 0.408
300 0.114 0.131 0.285 0.329
500 0.070 0.077 0.143 0.191
800 0.053 0.050 0.115 0.169
1000 0.046 0.047 0.088 0.137

50%

100 0.463 0.546 1.387 0.936
200 0.184 0.211 0.501 0.421
300 0.122 0.145 0.340 0.287
500 0.100 0.084 0.211 0.195
800 0.058 0.061 0.136 0.112
1000 0.053 0.053 0.103 0.116

70%

100 0.532 0.579 1.720 1.149
200 0.275 0.266 0.735 0.514
300 0.199 0.187 0.493 0.381
500 0.136 0.129 0.269 0.168
800 0.111 0.119 0.174 0.131
1000 0.096 0.096 0.143 0.103

covariate is that all data can be used here. By allowing right censored in time of

patients in MCI, we can use 358 more observations, which is 35.8% compared to the

complete dataset.

From Table 4.6, it can be shown that as the survive time of patients in MCI

increases, the percentage of arteriolosclerosis increases both in non-censored cases

(78%, 96%, 99%) and censored cases (82%, 95%, 100%). We want to use a logis-

tic regression model to verify this statement. The estimated parameters reflect that

trend too. With the death age indicator (npdage85) as the control variable, the odds

ratio between time in MCI between 4 to 8 years and time in MCI less than 4 years is

exp(1.578) = 4.84 and the odds ratio between time in MCI longer than 8 years and

time in MCI between 4 to 8 years is exp(2.232 − 1.578) = 1.92. With gender as the

control variable, the odds ratio between time in MCI between 4 to 8 years and time
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in MCI less than 4 years is exp(1.71) = 5.53 and the odds ratio between time in MCI

longer than 8 years and time in MCI between 4 to 8 years is exp(2.559−1.71) = 2.34.

It also can be shown that all parameters are statistically significant. From this point

of view, we can conclude that after controlling by gender and death age, the longer a

patient stays in MCI, the more likely that the patient has arteriolosclerosis.

Also if we consider the conditional probabilities π, which are nuisance parameters

in this model, the initial values of conditional probabilities based on equation 4.20

are:

π̂0 =

0.855 0.083 0.062

0.837 0.158 0.144


The estimated conditional probabilities for the model are:

π̂ML =

0.792 0.119 0.089

0.636 0.191 0.173


We can conclude that comparing to π̂ML, the initial probability is a good starting

estimation of the conditional probabilities.

In the Newton-Raphson method calculated by Proc NLP, there are different

choices to estimate variance of coefficients. In this application, we are calculating

the variance of coefficients by the equations below:

Cov =
nobs

d
JJ(f)−1 (4.25)

JJ(f) = J(f)TJ(f) (4.26)

J(f) = (∇f1, · · · ,∇fm) = (
∂fi
∂xj

) (4.27)

d = nobs− df (4.28)

where fi is the joint likelihood function for each observation. df is the number of

parameters and nobs is set to the number of observations in the data set times the

number of functions estimated.
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To validate the calculation of the estimated variance of coefficients, we also esti-

mate the variance by using the bootstrap algorithm, which relies on random sampling

with replacement from the real dataset. The bootstrap gives us similar results com-

pared to the variance estimated by Newton-Raphson algorithm through equations

above. The comparison of those two methods are summarized in Table 4.8.

Table 4.8: Estimated Variance by Bootstrap

Estimated variance with death age as control

Parameter Bootstrap Algorithm Newton-Raphson method

β0 0.0967 0.0944
β12 0.1214 0.1206
β22 0.2551 0.2565
β23 0.2949 0.4714

Estimated variance with gender as control

Parameter Bootstrap Algorithm Newton-Raphson method

β0 0.0802 0.0812
β12 0.1300 0.1313
β22 0.2621 0.2600
β23 0.3599 0.4946
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4.5 Conclusion and Discussion

In this chapter, we introduced a new method to fit the logistic regression model with

right censored covariate based on joint probability. The calculation is based on max-

imum likelihood estimates and Newton-Raphson method. We also showed a good

estimate of initial value of nuisance parameter.

We set up different simulation scenarios to show the accuracy of the new method

compared to traditional logistic regression model with complete cases and logistic

regression with penalized likelihood function(Firth). Simulation results showed our

new method outperformed both existing methods when sample size is relatively small

or medium (100-500) with different censoring percentages. When sample size is rel-

atively large, for example 800 or 1000, the traditional logistic regression model with

complete cases can capture enough information to converge to the real value of pa-

rameters. In such cases, the new method had similar performance comparing to tra-

ditional or penalized method. In the simulation part, we also tested the robustness of

the new method to the assumption of the censoring mechanism that the probability

of censoring is independent with the value of censored variable, the results showed

that the new method is more accurate for estimating coefficients when the censoring

probability depend on the value of censored variable.

Another important advantage of our new method is that it can deal with sparse

datasets better. In the case of sample size is relatively small comparing to the to-

tal number of combination of two covariates, sparse table happened frequently in

simulation datasets. For example, in our simulation with sample size 100 and cen-

soring probability 30%, almost 20% of the replicates contain rare observations for

some certain combination of complete and censored covariates, in which case that the

traditional logistic regression model had non-convergence in estimates of coefficients.

While with the new methods, the rate of non-convergence is similar to the rate with

penalized likelihood method (Firth), which has been showed performed well in sparse

62



dataset by Heinze and Schemper (2002).

In the application part, we applied our new method to a study of relationship

between the presence of arteriolosclerosis and time in MCI. Our results showed that

it is more likely a patient had presence arteriolosclerosis with longer time stay in MCI.
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Chapter 5 Future Research

In this dissertation, we proposed a modified goodness-of-fit test for multinomial lo-

gistic regression model with clustering effect. We showed the modified test statistic

can preserve the type-I error better than traditional statistic for longitudinal data.

We also studied the power of the new statistic by simulation. Different alternative

hypothesis can be used in power analysis, and we studied the case of missing squared

term in this dissertation. Missing of interaction and other more complex alternatives

can also be tested in the future.

In the second chapter, we applied SIS-MCMC algorithm to multinomial logistic

regression model with two categorical covariates. This method combined the advan-

tages of both sequential importance sampling and MCMC. However, we can only deal

with the two-way contingency table as the Markov bases is large and infeasible for

three-way tables. Also, it is not clear how to involve the third covariate, especially

when that variable is continuous as the age in Nun study. We found a satisfactory

solution by stratifying the data using age intervals.

Some extensions and generalizations can be applied on our new method of logistic

regression model with censored covariate. Firstly, our method is aimed at logistic

regression model with right censored covariates. A obvious extension would be deal-

ing with logistic regression model with left censored covariates or interval censored

covariates. Different setting of Z2 (as defined in equation 4.3) should be applied based

on different censoring types.

Another potential generalization is that our likelihood function based joint distri-

bution can only deal with one censored covariate in this chapter. It can be extended

to datasets with more than one censored covariates or even mixture of censoring and

missing covariates. We also only include one complete categorical covariate here, it
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is of interest to have more than one complete covariate in the problem.

Copyright c© Zhiheng Xie, 2016.

65



Appendix

R Code for Goodness-of-fit Test

1 l i b r a r y ( ResourceSe l e c t i on )
2 l i b r a r y (MASS)
3 l i b r a r y ( mnlogit )
4 #### Multinomial Case
5 MultiGOF = func t i on (B, pat , df , X2tu ,X1v ,mu, rho ,K, beta1 , beta2 , beta3 , betas ) {
6 Result = matrix (NA,B, 7 )
7 f o r (b in 1 :B) {
8 X3 = rep (1 , pat ) # f o r the i n t e r c e p t
9 #X2 = c ( 1 : pat ) /X2tu # c l u s t e r cov

10 X2 = sample ( c ( 1 : 9 ) , pat , r ep l a c e=TRUE)/X2tu
11 X = NA
12 ID = 0
13 f o r ( i in 1 : pat ) {
14 k = sample ( c ( 1 , 2 , 3 , 4 , 5 ) ,1 ) # number o f obs in each pa t i en t
15 sigma = matrix ( rho , k , k )
16 diag ( sigma ) = X1v
17 X1 = mvrnorm(1 , rep (mu, k ) , sigma )
18 temp = cbind (X1 ,X2 [ i ] ,X3 [ i ] )
19 ID = c (ID , rep ( i , k ) )
20 X = rbind (X, temp)
21 }
22 X = X[−1 , ]
23 ID = ID[−1]
24

25 beta1s = c ( beta1 , betas [ 1 ] )
26 beta2s = c ( beta2 , betas [ 2 ] )
27 beta3s = c ( beta3 , betas [ 3 ] )
28 X sq = cbind (X, (X[ , 1 ] ) ˆ2)
29

30 # Generate Y
31 eta = cbind (X sq%∗%beta1s ,X sq%∗%beta2s ,X sq%∗%beta3s )
32 eeta = exp ( eta )
33 P = eeta /apply ( eeta , 1 , sum)
34

35 Y = P[ , 1 ]
36 f o r ( i in 1 : nrow (P) ) {
37 r = run i f (1 )
38 i f ( r<P[ i , 1 ] ) {Y[ i ] = 1}
39 e l s e i f ( r<P[ i ,1 ]+P[ i , 2 ] ) {Y[ i ]=2}
40 e l s e {Y[ i ]=3}
41 }
42 #tab l e (Y)
43 Y = as . matrix (Y)
44 X0 = X
45 X = X sq

66



46 # f i t the model
47 simu = cbind (Y,X)
48 simu = cbind ( simu , c ( 1 : nrow ( simu ) ) )
49 s s1 = as . matrix ( rep (1 ,K) )
50 s1 = kronecker ( simu , s s1 )
51 s s = as . matrix ( rep ( c ( 1 :K) , nrow (X) ) )
52 s1 = cbind ( s1 , s s )
53 s11 = as . matrix ( s1 [ , 1 ] == s1 [ , nco l ( s1 ) ] )
54 simu = cbind ( s1 , s11 )
55 colnames ( simu ) = c ( ”Y” , ”X1” , ”X2” , ”X3” , ”X1s” , ” index ” , ” cho i c e ” , ”mode” )
56 simu = as . data . frame ( simu )
57 simuraw = as . data . frame ( cbind (Y,X) )
58 colnames ( simuraw ) = c ( ”Y” , ”X1” , ”X2” , ”X3” , ”X1s” )
59 simuraw = cbind ( simuraw , c ( 1 : nrow ( simuraw ) ) )
60 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” index ”
61 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
62 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
63 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
64 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
65 ### Test s t a t i s t i c ###
66 ## Ordered by p1
67 yhat=subset ( simu , cho i c e==1)$ f i t # grouped by p1
68 G = 10
69 cutyhat = cut ( yhat , breaks = quan t i l e ( yhat , probs=seq (0 , 1 , 1/G) ) , i n c lude

. lowest=TRUE)
70 Egroup = l i s t ( )
71 Ogroup = s p l i t ( subset ( simu ,mode==1) , cutyhat )
72 O=E=ph=array (NA, dim=c (G,K) )
73 f o r ( k in ( 1 :K) ) {
74 Egroup [ [ k ] ] = s p l i t ( subset ( simu , cho i c e==k) , cutyhat )
75 f o r ( j in ( 1 :G) ) {
76 O[ j , k ] = sum( subset (Ogroup [ [ j ] ] , cho i c e==k) $mode)
77 E[ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t )
78 ph [ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t −( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $

f i t ) ˆ2)
79 ng = nrow (Ogroup [ [ j ] ] )
80 pbargk = E[ j , k ] /ng
81 ph [ j , k ] = ph [ j , k ] / ( ng∗pbargk∗(1−pbargk ) )
82 }
83 }
84 C1 = sum( (O−E) ˆ2/E)
85 J1 = sum( (O−E) ˆ2/E/ph)
86 pc1 = 1−pch i sq (C1 , df )
87 pj1 = 1−pch i sq ( J1 , df )
88 ##### Inc lude the c l u s t e r e f f e c t here ####
89 # vi from simple method
90 simuraw = cbind ( simuraw , ID)
91 colnames ( simuraw ) [ nco l ( simuraw ) ] = ”ID”
92 m = rep (NA,K)
93 p = m
94 n = m
95 x = m
96 r = rep (0 ,K)
97 f o r ( i in 1 :K) {
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98 gg = subset ( simuraw ,Y==i )
99 m[ i ] = length ( unique ( simuraw$ID) )

100 n [ i ] = nrow ( simuraw )
101 x [ i ] = nrow ( gg )
102 p [ i ] = x [ i ] /n [ i ]
103 f o r ( c l in unique ( simuraw$ID) ) {
104 temp = subset ( simuraw , ID==c l )
105 n i j = nrow ( temp)
106 tempx = subset ( temp ,Y==i )
107 x i j = nrow ( tempx )
108 r [ i ] = r [ i ] + ( x i j−n i j ∗p [ i ] ) ˆ2
109 }
110 }
111 v = m/ (m−1)∗ r /n/n
112 po = rep (0 ,K)
113 f o r ( i in 1 :K) {
114 temp = subset ( simu , cho i c e==i )
115 po [ i ] = mean( temp$ f i t )
116 }
117

118 de l ta1 = sum(v/po ) ∗n [ 1 ] / (K−1)
119 Cc1 = C1/ de l ta1
120 Jc1 = J1/ de l t a1
121 pcc1 = 1−pch i sq (Cc1 , df )
122 pjc1 = 1−pch i sq ( Jc1 , df )
123 Result [ b , ] = c ( pc1 , pj1 , pcc1 , pjc1 , de l ta1 ,C1 , J1 )
124 }

R Code SIS-MCMC algorithm

1 l i b r a r y ( i t e r p c )
2 l i b r a r y ( p ly r )
3 l i b r a r y ( ggp lot2 )
4 l i b r a r y ( p a r a l l e l )
5 ################### Move ########################
6 # moveAB in s e c t i o n 4
7 moveAB = func t i on (J ,K) {
8 check = 0 # to make sure not re turn a l l 0 s
9 whi le ( check==0){

10 move1 = matrix (0 , J ,K)
11 j = rep (0 , 4 )
12 whi le ( j [ 4 ] <1 | | j [4]>J ) {
13 j = sample (J , 3 , r ep l a c e=T)
14 j = c ( j , ( j [3 ]+ j [2]− j [ 1 ] ) )
15 }
16 k = rep (0 , 4 )
17 whi le ( k [ 4 ] <1 | | k [4]>K) {
18 k = sample (K, 3 , r ep l a c e=T)
19 k = c (k , ( k [3 ]+k [2]−k [ 1 ] ) )
20 }
21 e1 = move1
22 e1 [ j [ 1 ] , k [ 1 ] ] = 1
23 e2 = move1
24 e2 [ j [ 2 ] , k [ 2 ] ] = 1
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25 e3 = move1
26 e3 [ j [ 3 ] , k [ 3 ] ] = 1
27 e4 = move1
28 e4 [ j [ 4 ] , k [ 4 ] ] = 1
29 move1 = e1−e2−e3+e4
30 move2 = −move1
31 move = l i s t (move1 , move2 )
32 check = sum( ( u n l i s t (move) ) ˆ2)
33 }
34 re turn (move)
35 }
36 # move0 in s e c t i o n 2
37 move0 = func t i on ( J ) {
38 move = matrix (0 , 2 , J )
39 j = so r t ( sample ( c ( 2 : ( J−1) ) ,2 ) )
40 j = c ( j [1 ]−1 , j [ 1 ] , j [ 2 ] , j [ 2 ]+1)
41 s i g = sample ( c (1 ,−1) ,1 )
42 move [ , j [ 1 ] ] = c (1 ,−1)
43 move [ , j [ 2 ] ] = −c (1 ,−1)
44 move [ , j [ 3 ] ] = −c (1 ,−1)
45 move [ , j [ 4 ] ] = c (1 ,−1)
46 move = s i g ∗move
47 re turn (move)
48 }
49 # moveA in s e c t i o n 2
50 moveA = func t i on ( J ) {
51 move = matrix (0 , 2 , J )
52 j = c (1 , 2 )
53 whi le ( j [2]− j [1]==1){
54 j = so r t ( sample ( c ( 1 : J ) , 2 ) )
55 }
56 j 2 = sample ( c ( c ( ( j [ 1 ]+1) : ( j [2 ]−1) ) , c ( ( j [ 1 ]+1) : ( j [2 ]−1) ) ) , 1 )
57 j 3 = j [1 ]+ j [2]− j 2
58 j = c ( j [ 1 ] , min ( j2 , j 3 ) ,max( j2 , j 3 ) , j [ 2 ] )
59 s i g = sample ( c (1 ,−1) ,1 )
60 move [ , j [ 1 ] ] = c (1 ,−1)
61 move [ , j [ 2 ] ] = −c (1 ,−1)
62 move [ , j [ 3 ] ] = −c (1 ,−1)
63 move [ , j [ 4 ] ] = c (1 ,−1)
64 move = s i g ∗move
65 re turn (move)
66 }
67

68 #########MCMC Part ##############
69 # Hypergeometric p r obab i l i t y
70 Prob2 = func t i on (X) { # X i s a l i s t with 2 matrix
71 p = 1
72 J = nrow (X [ [ 1 ] ] )
73 K = nco l (X [ [ 1 ] ] )
74 f o r ( i in 1 : J ) { # Seperate by row??
75 Xt = rbind (X [ [ 1 ] ] [ i , ] ,X [ [ 2 ] ] [ i , ] )
76 c = apply (Xt , 2 , sum)
77 temp = 1
78 f o r ( j in 1 :K) {
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79 temp = temp∗ choose ( c [ j ] , Xt [ 1 , j ] )
80 }
81 p = p∗ ( temp/ choose (sum( c ) ,sum(Xt [ 1 , ] ) ) )
82 }
83 re turn ( as . numeric (p) )
84 }
85

86 Problog2 = func t i on (X) {
87 #X i s a l i s t with 2 matrix
88 J = nrow (X [ [ 1 ] ] )
89 K = nco l (X [ [ 1 ] ] )
90 x i = c (sum(X [ [ 1 ] ] ) , sum(X [ [ 2 ] ] ) )
91 xj = rep (0 , J )
92 xk = rep (0 ,K)
93 f o r ( i in 1 : 2 ) {
94 xj = xj + apply (X [ [ i ] ] , 1 , sum)
95 xk = xk + apply (X [ [ i ] ] , 2 , sum)
96 }
97 l ogv = −2∗sum( log ( c ( 1 : sum( x i ) ) ) )
98 X2 = X
99 f o r ( i in 1 : 2 ) {

100 X2 [ [ i ] ] [ X2 [ [ i ] ]==0] = 1
101 l ogv = logv + sum( log ( c ( 1 : x i [ i ] ) ) )
102 }
103 f o r ( j in 1 : J ) {
104 l ogv = logv + sum( log ( c ( 1 : x j [ j ] ) ) )
105 }
106 f o r ( k in 1 :K) {
107 l ogv = logv + sum( log ( c ( 1 : xk [ k ] ) ) )
108 }
109 f o r ( i in 1 : 2 ) {
110 f o r ( j in 1 : J ) {
111 f o r ( k in 1 :K) {
112 l ogv = logv − sum( log ( c ( 1 :X2 [ [ i ] ] [ j , k ] ) ) )
113 }
114 }
115 }
116 re turn ( logv )
117 }
118

119 Problog25 = func t i on (X) {
120 #X i s a l i s t with 2 matrix
121 J = nrow (X [ [ 1 ] ] )
122 K = nco l (X [ [ 1 ] ] )
123 l ogv=0
124 f o r ( i in 1 : 2 ) {
125 f o r ( j in 1 : J ) {
126 f o r ( k in 1 :K) {
127 i f (X [ [ i ] ] [ j , k]==0){ l ogv = logv
128 } e l s e { l ogv = logv + sum( log ( c ( 1 :X [ [ i ] ] [ j , k ] ) ) ) }
129 }
130 }
131 }
132 re turn ( logv )
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133 }
134

135 # Hypergeometric p r obab i l i t y
136 Prob = func t i on (X) {
137 c o l = apply (X, 2 , sum)
138 row = apply (X, 1 , sum)
139 re turn ( prod ( f a c t o r i a l ( c o l ) ) ∗prod ( f a c t o r i a l ( row ) ) / f a c t o r i a l (sum(X) ) /prod (

f a c t o r i a l (X) ) )
140 }
141

142 Problog = func t i on (X) {
143 c o l = apply (X, 2 , sum)
144 X2 = rbind (X, c o l )
145 row = apply (X2 , 1 , sum)
146 X2 = cbind (X2 , row )
147 X2 [X2 == 0 ] = 1
148 l ogv = −sum( log ( c ( 1 : sum(X) ) ) )
149 f o r ( i in 1 : nrow (X) ) {
150 f o r ( j in 1 : nco l (X) ) {
151 l ogv = logv−sum( log ( c ( 1 :X2 [ i , j ] ) ) )
152 }
153 }
154 f o r ( i in 1 : nrow (X) ) { l ogv = logv + sum( log ( c ( 1 :X2 [ i , nco l (X2) ] ) ) ) }
155 f o r ( j in 1 : nco l (X) ) { l ogv = logv + sum( log ( c ( 1 :X2 [ nrow (X2) , j ] ) ) ) }
156 re turn ( logv )
157 }
158

159 # Metrop l i s Hast ings a lgor i thm f o r 2 cova r i a t e
160 MH2 = func t i on (X0 , Burn=1000 ,S=1000 , b lock=100){
161 J = nrow (X0 [ [ 1 ] ] )
162 K = nco l (X0 [ [ 1 ] ] )
163 X = X0
164 Xc = X
165 # Burn in
166 f o r ( i in 1 : Burn ) {
167 movem = moveAB(J ,K)
168 Xc [ [ 1 ] ] = X [ [ 1 ] ] + movem [ [ 1 ] ]
169 Xc [ [ 2 ] ] = X [ [ 2 ] ] + movem [ [ 2 ] ]
170 u = run i f ( 1 , 0 , 1 )
171 i f ( (max( abs (Xc [ [ 1 ] ] )−Xc [ [ 1 ] ] ) >0) | | ( max( abs (Xc [ [ 2 ] ] )−Xc [ [ 2 ] ] ) >0) ) {X = X}
172 e l s e i f (u<exp ( Problog2 (Xc)−Problog2 (X) ) ) {X = Xc}
173 }
174 # Sample
175 Sample = l i s t ( )
176 f o r ( j in c ( 1 : ( S∗block ) ) ) {
177 movem = moveAB(J ,K)
178 Xc [ [ 1 ] ] = X [ [ 1 ] ] + movem [ [ 1 ] ]
179 Xc [ [ 2 ] ] = X [ [ 2 ] ] + movem [ [ 2 ] ]
180 u = run i f ( 1 , 0 , 1 )
181 i f ( (max( abs (Xc [ [ 1 ] ] )−Xc [ [ 1 ] ] ) >0) | | ( max( abs (Xc [ [ 2 ] ] )−Xc [ [ 2 ] ] ) >0) ) {X = X}
182 e l s e i f (u<exp ( Problog2 (Xc)−Problog2 (X) ) ) {X = Xc}
183 Sample [ [ j ] ] = X
184 #i f ( i s . i n t e g e r ( j / block ) ) {Sample [ [ j / b lock ] ] = X}
185 }
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186 Result = Sample [ seq ( from=block , to=S∗block , by=block ) ]
187 re turn ( Result )
188 }
189

190 # Metrop l i s Hast ings a lgor i thm f o r 1 cova r i a t e
191 MH = func t i on (X0 , Burn=1000 ,S=1000 , b lock=100){
192 J = nco l (X0)
193 X = X0
194 # Burn in
195 f o r ( i in 1 : Burn ) {
196 movem = move( J )
197 Xc = X + movem
198 u = run i f ( 1 , 0 , 1 )
199 #pr in t ( l i s t (X,Xc , u , i ) )
200 i f (max( abs (Xc)−Xc)>0){X = X}
201 e l s e i f (u<exp ( Problog (Xc)−Problog (X) ) ) {X = Xc}
202 }
203 Sample = l i s t ( )
204 f o r ( j in c ( 1 : ( S∗block ) ) ) {
205 movem = move( J )
206 Xc = X + movem
207 u = run i f ( 1 , 0 , 1 )
208 i f (max( abs (Xc)−Xc)>0){X = X}
209 e l s e i f (u<exp ( Problog (Xc)−Problog (X) ) ) {X = Xc}
210 Sample [ [ j ] ] = X
211 #i f ( i s . i n t e g e r ( j / block ) ) {Sample [ [ j / b lock ] ] = X}
212 }
213 Result = Sample [ seq ( from=block , to=S∗block , by=block ) ]
214 re turn ( Result )
215 }
216

217 MH5 = func t i on (X, Burn , S , block ,N=5){
218 ## Function that generate MCMC r e s u l t s f o r 5 cho i c e cont ingency tab l e 2

c ova r i a t e s
219 ## Need use func t i on Problog25
220 Problog25 = func t i on (X) {
221 #X i s a l i s t with 2 matrix
222 J = nrow (X [ [ 1 ] ] )
223 K = nco l (X [ [ 1 ] ] )
224 l ogv=0
225 f o r ( i in 1 : 2 ) {
226 f o r ( j in 1 : J ) {
227 f o r ( k in 1 :K) {
228 i f (X [ [ i ] ] [ j , k]==0){ l ogv = logv
229 } e l s e { l ogv = logv + sum( log ( c ( 1 :X [ [ i ] ] [ j , k ] ) ) ) }
230 }
231 }
232 }
233 re turn ( logv )
234 }
235

236 # Burn in
237 f o r ( i in 1 : Burn ) {
238 Xn = sample (N, 2 )
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239 Xs2 = l i s t (X [ [ Xn [ 1 ] ] ] ,X [ [ Xn [ [ 2 ] ] ] ] )
240 J = nrow (Xs2 [ [ 1 ] ] )
241 K = nco l (Xs2 [ [ 1 ] ] )
242 movem = moveAB(J ,K)
243 Xc = l i s t (X [ [ 1 ] ] ,X [ [ 2 ] ] )
244 Xc [ [ 1 ] ] = Xs2 [ [ 1 ] ] + movem [ [ 1 ] ]
245 Xc [ [ 2 ] ] = Xs2 [ [ 2 ] ] + movem [ [ 2 ] ]
246 u = run i f ( 1 , 0 , 1 )
247 i f ( (max( abs (Xc [ [ 1 ] ] )−Xc [ [ 1 ] ] ) >0) | | ( max( abs (Xc [ [ 2 ] ] )−Xc [ [ 2 ] ] ) >0) ) {X = X
248 } e l s e i f (u<exp ( Problog25 (Xs2 )−Problog25 (Xc) ) ) {
249 X[ [ Xn [ 1 ] ] ] = Xc [ [ 1 ] ]
250 X[ [ Xn [ 2 ] ] ] = Xc [ [ 2 ] ]
251 #pr in t ( c ( i , exp ( Problog25 (Xs2 )−Problog25 (Xc) ) ) )
252 }
253 }
254 # Sample
255 Sample = l i s t ( )
256 f o r ( j in c ( 1 : ( S∗block ) ) ) {
257 Xn = sample (N, 2 )
258 Xs2 = l i s t (X [ [ Xn [ 1 ] ] ] ,X [ [ Xn [ [ 2 ] ] ] ] )
259 J = nrow (Xs2 [ [ 1 ] ] )
260 K = nco l (Xs2 [ [ 1 ] ] )
261 movem = moveAB(J ,K)
262 Xc = l i s t (X [ [ 1 ] ] ,X [ [ 2 ] ] )
263 Xc [ [ 1 ] ] = Xs2 [ [ 1 ] ] + movem [ [ 1 ] ]
264 Xc [ [ 2 ] ] = Xs2 [ [ 2 ] ] + movem [ [ 2 ] ]
265 u = run i f ( 1 , 0 , 1 )
266 i f ( (max( abs (Xc [ [ 1 ] ] )−Xc [ [ 1 ] ] ) >0) | | ( max( abs (Xc [ [ 2 ] ] )−Xc [ [ 2 ] ] ) >0) ) {X = X
267 } e l s e i f (u<exp ( Problog25 (Xs2 )−Problog25 (Xc) ) ) {
268 X[ [ Xn [ 1 ] ] ] = Xc [ [ 1 ] ]
269 X[ [ Xn [ 2 ] ] ] = Xc [ [ 2 ] ]
270 #pr in t ( c ( i , exp ( Problog25 (Xs2 )−Problog25 (Xc) ) ) )
271 }
272 Sample [ [ j ] ] = X
273 }
274 Result = Sample [ seq ( from=block , to=S∗block , by=block ) ]
275 re turn ( Result )
276 }
277

278 ########## From Sample A, c a l c u l a t e La Lb ################
279 LaLb = func t i on (A, J=8,K=7)
280 La = rep (0 , l ength (A) )
281 Lb=La
282 Lanova = La
283 f o r ( i in 1 : l ength (A) ) {
284 datat = A[ [ i ] ]
285 s = datat [ [ 1 ] ]
286 a = datat [ [ 1 ] ] + datat [ [ 2 ] ]
287 coro = c (0 , 0 , 0 )
288 f o r ( j in 1 : J ) {
289 f o r ( k in 1 :K) {
290 temp = matrix ( c (0 , j , k ) , a [ j , k ] , 3 , byrow=T)
291 i f ( s [ j , k ]>0) {temp [ 1 : s [ j , k ] ,1 ]=1}
292 coro = rbind ( coro , temp)

73



293 }
294 }
295 #pr in t ( i )
296 colnames ( coro ) = c ( ” case ” , ”J” , ”K” )
297 coro2 = as . data . frame ( coro )
298 l og i tJK <− glm ( case ˜ J + K, data = coro2 , fami ly = ”binomial ” )
299 l o g i t J <− glm ( case ˜ J , data = coro2 , fami ly = ”binomial ” )
300 l og i tK <− glm ( case ˜ K , data = coro2 , fami ly = ”binomial ” )
301 l o g i t anova <− glm ( case ˜ f a c t o r ( J ) + f a c t o r (K) , data = coro2 , fami ly =

”binomial ” )
302

303 Lb [ i ] = as . numeric(−2∗ ( l ogL ik ( l o g i t J )−l ogL ik ( log i tJK ) ) )
304 La [ i ] = as . numeric(−2∗ ( l ogL ik ( log i tK )−l ogL ik ( log i tJK ) ) )
305 Lanova [ i ] = as . numeric(−2∗ ( l ogL ik ( log i tJK )−l ogL ik ( l og i t anova ) ) )
306 }
307 re turn ( l i s t (La , Lb , Lanova ) )
308 }
309

310 # From one cova r i a t e marginal to get two cova r i a t e
311 # func t i on f o r n b a l l s k b ins choose
312 l i b r a r y ( p ly r )
313 nkba l l s <− f unc t i on (n , k ) {
314 tmp <− sample (k , n , r ep l a c e=TRUE)
315 nka = tabu la t e (tmp)
316 i f ( l ength ( nka )<k ) {nka = c (nka , rep (0 , k−l ength ( nka ) ) ) }
317 re turn ( nka )
318 }
319 # th i s one can make sure at l e a s t 1 in each category
320 nkba l l s 2 <− f unc t i on (n , k ) {
321 tmp <− sample (k , n−k , r ep l a c e=TRUE)
322 nka = tabu la t e (tmp)
323 i f ( l ength ( nka )<k ) {nka = c (nka , rep (0 , k−l ength ( nka ) ) ) }
324 re turn ( nka+1)
325 }
326

327 # one ques t i on i s i f each attempts > 0 , i f so
328 # the f a i l u r e matrix should use nkba l l s 2
329 marg2table = func t i on ( aa , kk ) {
330 # kk i s 7 f o r beta , 8 f o r alpha
331 A = l i s t ( )
332 t t = l i s t ( )
333 f o r ( i in 1 : l ength ( aa ) ) {
334 i f ( kk == 7) {
335 t t [ [ 1 ] ] = t ( sapply ( aa [ [ i ] ] [ 1 , ] , nkba l l s , k=kk ) )
336 t t [ [ 2 ] ] = t ( sapply ( aa [ [ i ] ] [ 2 , ] , nkba l l s2 , k=kk ) )
337 A[ [ i ] ] = t t
338 } e l s e {
339 t t [ [ 1 ] ] = sapply ( aa [ [ i ] ] [ 1 , ] , nkba l l s , k=kk )
340 t t [ [ 2 ] ] = sapply ( aa [ [ i ] ] [ 2 , ] , nkba l l s2 , k=kk )
341 A[ [ i ] ] = t t
342 }
343 }
344 re turn (A)
345 }
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346 ######### NUN Part ##############
347 NUN MCMC = func t i on (X0 ,A0 , b0 , sn , I0=2,J0=3,N0=5,Burn=2,S=100 , b lock=1000){
348 source ( ” SIS funct ion . r ” )
349 source ( ”MCMCfunction . r ” )
350 #sn number o f s t a r t i n g po in t s
351 # X0 A0 b0 are g iven data
352 # I0 J0 N0 are g iven dimension
353 startm = matrix (NA, nrow (X0) , sn )
354 i = 1
355 whi le ( i <= sn ) {
356 startm [ , i ] = SIS (X0 ,A0 , b0 )
357 i f (sum( (A0%∗%startm [ , i ]−b0 ) ˆ2)==0) {
358 i=i+1
359 }
360 }
361 MCout = l i s t ( )
362 f o r ( c in 1 : sn ) {
363 C0 = startm [ , c ] #s t a r t i n g column
364 Xstart = l i s t ( )
365 ind = 1
366 f o r ( k in 1 :N0) {
367 Xstart [ [ k ] ] = matrix (NA, I0 , J0 )
368 f o r ( i in 1 : I0 ) {
369 f o r ( j in 1 : J0 ) {
370 Xstart [ [ k ] ] [ i , j ]=C0 [ ind ]
371 ind = ind+1
372 }
373 }
374 }
375 MCout [ [ c ] ] = MH5(X=Xstart , Burn=Burn , S=S , block=block ,N=N0)
376 }
377 re turn (MCout)
378 }
379

380 #Trans fer matrix to r e a l data
381 t rans = func t i on ( temp , sn , sp ,N0 , I0=2,J0=3){
382 # sn i s the index o f s t a r t i n g po int
383 # S i s the index o f sample
384 # Trans fer a l i s t o f 5 matrix to long format l o g i s t i c data
385 t = c (NA,NA,NA)
386 t rans0 = temp [ [ sn ] ] [ [ sp ] ]
387 f o r (n in 1 :N0) {
388 f o r ( i in 1 : I0 ) {
389 f o r ( j in 1 : J0 ) {
390 i f ( t rans0 [ [ n ] ] [ i , j ]>0){
391 t t = matrix ( c (n , i , j ) , t rans0 [ [ n ] ] [ i , j ] , 3 , byrow=T)
392 t = rbind ( t , t t )
393 }
394 }
395 }
396 }
397 mcmc sample=t [−1 , ]
398

399 a = as . matrix ( rep (1 ,N0) )
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400 n1 = kronecker ( as . matrix (mcmc sample ) , a )
401 aa = as . matrix ( rep ( c ( 1 :N0) , nrow (n1 ) /N0) )
402 n1 = cbind (n1 , aa )
403 n11 = as . matrix ( n1 [ , 1 ] == n1 [ , 4 ] )
404 n1 = cbind (n1 , n11 )
405 colnames ( n1 ) = c ( ” case ” , ”J” , ”K” , ” cho i c e ” , ”mode” )
406 mcmc sample2 = as . data . frame ( n1 )
407 re turn (mcmc sample2 )
408 }
409

410 HLfunction = func t i on ( temp , sn , S , I , J ,K) {
411 fmjk <− formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
412 HL=matrix (NA, sn , S)
413 f o r (p in 1 : sn ) {
414 f o r ( q in 1 : S) {
415 simu = trans ( temp , p , q ,N0=K) ### ! ! Changed f o r N0=4 ! ! ! ! ! ! ! !
416 simuraw = subset ( simu ,mode==1)
417 fm1 = formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
418 m1 = mnlogit ( fm1 , simu , ” cho i c e ” )
419

420 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
421 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
422 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
423 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
424 G = J∗ I
425 Egroup = l i s t ( )
426 simuraw$ fa c =with ( simuraw , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
427 Ogroup = s p l i t ( simuraw , simuraw$ fa c )
428 O=E=ph=array (NA, dim=c (G,K) )
429 f o r ( k in ( 1 :K) ) {
430 simuk = subset ( simu , cho i c e==k)
431 simuk$ f a c =with ( simuk , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
432 Egroup [ [ k ] ] = s p l i t ( simuk , simuk$ f a c )
433 f o r ( j in ( 1 :G) ) {
434 O[ j , k ] = sum( subset (Ogroup [ [ j ] ] , cho i c e==k) $mode)
435 E[ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t )
436 ph [ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t −( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $

f i t ) ˆ2)
437 ng = nrow (Ogroup [ [ j ] ] )
438 pbargk = E[ j , k ] /ng
439 ph [ j , k ] = ph [ j , k ] / ( ng∗pbargk∗(1−pbargk ) )
440 }
441 }
442 C1 = sum( (O−E) ˆ2/ (E+1e−8) )
443 HL[ p , q ] = C1
444 }
445 }
446 re turn (HL)
447 }
448

449 HLPfunction = func t i on ( temp , sn , S , I , J ,K) {
450 # Calcu la te Pigeon ’ s s t a t i s t i c
451 fmjk <− formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
452 Sys . time ( )
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453 HL=matrix (NA, sn , S)
454 f o r (p in 1 : sn ) {
455 f o r ( q in 1 : S) {
456 simu = trans ( temp , p , q ,N0=K) ### ! ! Changed f o r N0=4 ! ! ! ! ! ! ! !
457 simuraw = subset ( simu ,mode==1)
458 fm1 = formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
459 m1 = mnlogit ( fm1 , simu , ” cho i c e ” )
460

461 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
462 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
463 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
464 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
465 G = J∗ I
466 Egroup = l i s t ( )
467 simuraw$ fa c =with ( simuraw , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
468 Ogroup = s p l i t ( simuraw , simuraw$ fa c )
469 O=E=ph=array (NA, dim=c (G,K) )
470 f o r ( k in ( 1 :K) ) {
471 simuk = subset ( simu , cho i c e==k)
472 simuk$ f a c =with ( simuk , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
473 Egroup [ [ k ] ] = s p l i t ( simuk , simuk$ f a c )
474 f o r ( j in ( 1 :G) ) {
475 O[ j , k ] = sum( subset (Ogroup [ [ j ] ] , cho i c e==k) $mode)
476 E[ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t )
477 ph [ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t −( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $

f i t ) ˆ2)
478 ng = nrow (Ogroup [ [ j ] ] )
479 pbargk = E[ j , k ] /ng
480 ph [ j , k ] = ph [ j , k ] / ( ng∗pbargk∗(1−pbargk ) )
481 }
482 }
483 C1 = sum( (O−E) ˆ2/ (E+1e−8) )
484 J1 = sum( (O−E) ˆ2/ (E+1e−8)/ (ph+1e−8) )
485 HL[ p , q ] = J1
486 }
487 }
488 re turn (HL)
489 }
490

491 Pvalue funct ion = func t i on (HL, temp , I , J ,K, sn , S) {
492 # Pvalue f o r HL’ s s t a t i s t i c
493 l i b r a r y ( mnlogit )
494 simuraw = l i s t ( )
495 f o r ( i in 1 :K) {simuraw [ [ i ] ] = t ( x1 [ [ i ] ] ) }
496 # make sure x1 i s the o r i g i n a l data
497 temp2 = temp
498 temp2 [ [ 1 ] ] [ [ 1 ] ] = simuraw
499 simu = trans ( temp2 , 1 , 1 ,N0=K)
500 simuraw = subset ( simu ,mode==1)
501 fm1 = formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
502 m1 = mnlogit ( fm1 , simu , ” cho i c e ” )
503 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
504 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
505 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
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506 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
507 G = J∗ I
508 Egroup = l i s t ( )
509 simuraw$ fa c =with ( simuraw , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
510 Ogroup = s p l i t ( simuraw , simuraw$ fa c )
511 O=E=ph=array (NA, dim=c (G,K) )
512 f o r ( k in ( 1 :K) ) {
513 simuk = subset ( simu , cho i c e==k)
514 simuk$ f a c =with ( simuk , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
515 Egroup [ [ k ] ] = s p l i t ( simuk , simuk$ f a c )
516 f o r ( j in ( 1 :G) ) {
517 O[ j , k ] = sum( subset (Ogroup [ [ j ] ] , cho i c e==k) $mode)
518 E[ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t )
519 ph [ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t −( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $

f i t ) ˆ2)
520 ng = nrow (Ogroup [ [ j ] ] )
521 pbargk = E[ j , k ] /ng
522 ph [ j , k ] = ph [ j , k ] / ( ng∗pbargk∗(1−pbargk ) )
523 }
524 }
525 C1 = sum( (O−E) ˆ2/ (E+1e−8) )
526 Pvalue = sum(HL>=C1) /sn/S
527 #Cc1 = sum( (O−E) ˆ2/ (E+1e−8)/ph)
528 re turn ( c ( Pvalue ,C1) )
529 }
530

531 PvaluePfunct ion = func t i on (HLP, temp , I , J ,K, sn , S) {
532 # Pvalue f o r Pigeon ’ s s t a t i s t i c
533 l i b r a r y ( mnlogit )
534 simuraw = l i s t ( )
535 f o r ( i in 1 :K) {simuraw [ [ i ] ] = t ( x1 [ [ i ] ] ) }
536 temp2 = temp
537 temp2 [ [ 1 ] ] [ [ 1 ] ] = simuraw
538 simu = trans ( temp2 , 1 , 1 ,N0=K)
539 simuraw = subset ( simu ,mode==1)
540 fm1 = formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
541 m1 = mnlogit ( fm1 , simu , ” cho i c e ” )
542 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
543 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
544 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
545 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
546 G = J∗ I
547 Egroup = l i s t ( )
548 simuraw$ fa c =with ( simuraw , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
549 Ogroup = s p l i t ( simuraw , simuraw$ fa c )
550 O=E=ph=array (NA, dim=c (G,K) )
551 f o r ( k in ( 1 :K) ) {
552 simuk = subset ( simu , cho i c e==k)
553 simuk$ f a c =with ( simuk , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
554 Egroup [ [ k ] ] = s p l i t ( simuk , simuk$ f a c )
555 f o r ( j in ( 1 :G) ) {
556 O[ j , k ] = sum( subset (Ogroup [ [ j ] ] , cho i c e==k) $mode)
557 E[ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t )
558 ph [ j , k ] = sum( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $ f i t −( subset ( Egroup [ [ k ] ] [ [ j ] ] ) $
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f i t ) ˆ2)
559 ng = nrow (Ogroup [ [ j ] ] )
560 pbargk = E[ j , k ] /ng
561 ph [ j , k ] = ph [ j , k ] / ( ng∗pbargk∗(1−pbargk ) )
562 }
563 }
564 C1 = sum( (O−E) ˆ2/ (E+1e−8) )
565 J1 = sum( (O−E) ˆ2/ (E+1e−8)/ (ph+1e−8) )
566 Pvalue = sum(HLP>=J1 ) / sn/S
567 re turn ( c ( Pvalue , J1 ) )
568 }
569

570 LRTfunction = func t i on ( temp , sn , S , I , J ,K) {
571 fmjk <− formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
572 LRT=matrix (NA, sn , S)
573 f o r (p in 1 : sn ) {
574 f o r ( q in 1 : S) {
575 simu = trans ( temp , p , q ,N0=K) ### ! ! Changed f o r N0=4 ! ! ! ! ! ! ! !
576 simuraw = subset ( simu ,mode==1)
577 fm1 = formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
578 m1 = mnlogit ( fm1 , simu , ” cho i c e ” )
579

580 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
581 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
582 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
583 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
584

585 simuraw$ fa c =with ( simuraw , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
586 Ogroup = s p l i t ( simuraw , simuraw$ fa c )
587 N = matrix (NA, l ength (Ogroup ) ,1 )
588 NY = matrix (NA, l ength (Ogroup ) ,K)
589 f o r ( i in 1 : l ength (Ogroup ) ) {
590 f o r ( j in 1 :K) {
591 N[ i ] = nrow (Ogroup [ [ i ] ] )
592 NY[ i , j ] = sum(Ogroup [ [ i ] ] $ cho i c e==j )
593 }
594 }
595 l 2 = 0
596 f o r ( i in 1 : l ength (Ogroup ) ) {
597 f o r ( j in 1 :K) {
598 i f (NY[ i , j ] !=0) {
599 l 2 = l 2+NY[ i , j ] ∗ l og (NY[ i , j ] /N[ i ] )
600 }
601 }
602 }
603 l 1 = m1$ logL ik
604 LRT[ p , q ] = −2∗ ( l1−l 2 )
605 }
606 }
607 re turn (LRT)
608 }
609

610 PLRTfunction = func t i on (LRT, temp , I , J ,K, sn , S) {
611 # Pvalue f o r LRT’ s s t a t i s t i c
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612 l i b r a r y ( mnlogit )
613 simuraw = l i s t ( )
614 f o r ( i in 1 :K) {simuraw [ [ i ] ] = t ( x1 [ [ i ] ] ) }
615 temp2 = temp
616 temp2 [ [ 1 ] ] [ [ 1 ] ] = simuraw
617 simu = trans ( temp2 , 1 , 1 ,N0=K)
618 simuraw = subset ( simu ,mode==1)
619 fm1 = formula (mode ˜ 1 | f a c t o r ( J )+f a c t o r (K) )
620 m1 = mnlogit ( fm1 , simu , ” cho i c e ” )
621 simuraw = cbind ( simuraw ,m1$ f i t t e d . va lue s )
622 colnames ( simuraw ) [ nco l ( simuraw ) ] = ” f i t ”
623 simu = cbind ( simu , as . vec to r ( t (m1$ p r o b a b i l i t i e s ) ) )
624 colnames ( simu ) [ nco l ( simu ) ] = ” f i t ”
625 simuraw$ fa c =with ( simuraw , i n t e r a c t i o n ( f a c t o r ( J ) , f a c t o r (K) ) , drop=TRUE)
626 Ogroup = s p l i t ( simuraw , simuraw$ fa c )
627 N = matrix (NA, l ength (Ogroup ) ,1 )
628 NY = matrix (NA, l ength (Ogroup ) ,K)
629 f o r ( i in 1 : l ength (Ogroup ) ) {
630 f o r ( j in 1 :K) {
631 N[ i ] = nrow (Ogroup [ [ i ] ] )
632 NY[ i , j ] = sum(Ogroup [ [ i ] ] $ cho i c e==j )
633 }
634 }
635 l 2 = 0
636 f o r ( i in 1 : l ength (Ogroup ) ) {
637 f o r ( j in 1 :K) {
638 i f (NY[ i , j ] !=0) {
639 l 2 = l 2+NY[ i , j ] ∗ l og (NY[ i , j ] /N[ i ] )
640 }
641 }
642 }
643 l 1 = m1$ logL ik
644 LRT0 = −2∗ ( l1−l 2 )
645 Pvalue = sum(LRT>=LRT0) /sn/S
646 re turn ( c ( Pvalue ,LRT0) )
647 }

SAS Code for Logistic Regression with Censored Covariate

1 %macro l l n l p s imu (num, x1=,x2=,y=, covtype=,ww11=,ww21=,ww12=,ww22= ,) ;
2 proc nlp data=simu&num varde f=df phes cov=&covtype out=simures&num;
3 max l l ;
4 parms beta0=0, beta12=0, beta22=0, beta23=0,w11=&ww11 , w21=&ww21 , w12=&

ww12 , w22=&ww22 ;
5 /∗p11=0.9 , p21=0.73 , p12=0.06 , p22=0.14 ∗/
6 ∗bounds p11 > 1e−12, p12 > 1e−12, p21 > 1e−12, p22 > 1e−12, p11<1, p12

<1, p21<1, p22<1;
7 /∗ p11=0.9; p21=0.73; p12=0.06; p22=0.14; ∗/
8 p11=exp (w11) /(1+exp (w11) ) ;
9 p12=exp (w12) /(1+exp (w12) ) ;

10 p21=exp (w21) /(1+exp (w21) ) ;
11 p22=exp (w22) /(1+exp (w22) ) ;
12 i f &x2<4 then
13 do ;
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14 i f &x1=0 and &x2=1 then
15 do ;
16 mu=1/(1+exp(−beta0−0−0)) ;
17 y = mu∗∗&Y∗(1−mu)∗∗(1−&Y) ∗p11 ;
18 end ;
19 e l s e i f &x1=1 and &x2=1 then
20 do ;
21 mu=1/(1+exp(−beta0−beta12−0) ) ;
22 y = mu∗∗&Y∗(1−mu)∗∗(1−&Y) ∗p21 ;
23 end ;
24 e l s e i f &x1=0 and &x2=2 then
25 do ;
26 mu=1/(1+exp(−beta0−0−beta22 ) ) ;
27 y = mu∗∗&Y∗(1−mu)∗∗(1−&Y) ∗p12 ;
28 end ;
29 e l s e i f &x1=1 and &x2=2 then
30 do ;
31 mu=1/(1+exp(−beta0−beta12−beta22 ) ) ;
32 y = mu∗∗&Y∗(1−mu)∗∗(1−&Y) ∗p22 ;
33 end ;
34 e l s e i f &x1=0 and &x2=3 then
35 do ;
36 mu=1/(1+exp(−beta0−0−beta23 ) ) ;
37 y = mu∗∗&Y∗(1−mu)∗∗(1−&Y)∗(1−p11−p12 ) ;
38 end ;
39 e l s e i f &x1=1 and &x2=3 then
40 do ;
41 mu=1/(1+exp(−beta0−beta12−beta23 ) ) ;
42 y = mu∗∗&Y∗(1−mu)∗∗(1−&Y)∗(1−p21−p22 ) ;
43 end ;
44 end ;
45 e l s e i f &x2=4 then
46 do ;
47 i f &x1=0 then
48 do ;
49 mu1=1/(1+exp(−beta0−0−0)) ;
50 mu2=1/(1+exp(−beta0−0−beta22 ) ) ;
51 mu3=1/(1+exp(−beta0−0−beta23 ) ) ;
52 y = mu1∗∗&Y∗(1−mu1)∗∗(1−&Y) ∗p11+mu2∗∗&Y∗(1−mu2)∗∗(1−&Y) ∗p12+mu3∗∗&Y∗(1−

mu3)∗∗(1−&Y)∗(1−p11−p12 ) ;
53 end ;
54 e l s e i f &x1=1 then
55 do ;
56 mu1=1/(1+exp(−beta0−beta12−0) ) ;
57 mu2=1/(1+exp(−beta0−beta12−beta22 ) ) ;
58 mu3=1/(1+exp(−beta0−beta12−beta23 ) ) ;
59 y = mu1∗∗&Y∗(1−mu1)∗∗(1−&Y) ∗p21+mu2∗∗&Y∗(1−mu2)∗∗(1−&Y) ∗p22+mu3∗∗&Y∗(1−

mu3)∗∗(1−&Y)∗(1−p21−p22 ) ;
60 end ;
61 end ;
62 e l s e i f &x2=5 then
63 do ;
64 i f &x1=0 then
65 do ;
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66 mu1=1/(1+exp(−beta0−0−0)) ;
67 mu2=1/(1+exp(−beta0−0−beta22 ) ) ;
68 mu3=1/(1+exp(−beta0−0−beta23 ) ) ;
69 y = mu2∗∗&Y∗(1−mu2)∗∗(1−&Y) ∗p12+mu3∗∗&Y∗(1−mu3)∗∗(1−&Y)∗(1−p11−p12 ) ;
70 end ;
71 e l s e i f &x1=1 then
72 do ;
73 mu1=1/(1+exp(−beta0−beta12−0) ) ;
74 mu2=1/(1+exp(−beta0−beta12−beta22 ) ) ;
75 mu3=1/(1+exp(−beta0−beta12−beta23 ) ) ;
76 y = mu2∗∗&Y∗(1−mu2)∗∗(1−&Y) ∗p22+mu3∗∗&Y∗(1−mu3)∗∗(1−&Y)∗(1−p21−p22 ) ;
77 end ;
78 end ;
79 ;
80 l l=log (y ) ;
81 run ;
82 %mend l l n l p s imu ;
83 /∗ Import data ∗/
84 %macro c r e a t e (n) ;
85 %do i = 1 %to &n ;
86 data simu&i ;
87 s e t simu ;
88 where rep = &i ;
89 run ;
90 data n u l l ;
91 s e t simu&i ;
92 c a l l symput ( ” lps11 ” , lp11 ) ;
93 c a l l symput ( ” lps21 ” , lp21 ) ;
94 c a l l symput ( ” lps12 ” , lp12 ) ;
95 c a l l symput ( ” lps22 ” , lp22 ) ;
96 run ;
97 %put mean o f x i s &lps11 &lps21 &lps12 &lps22 ;
98 %l ln lp s imu (&i , x1=x1 , x2=z2 , y=y , covtype=5,ww11=&lps11 ,ww21=&lps21 ,ww12=&

lps12 ,ww22=&lps22 ) ;
99 data out&i ; s e t s imures&i ; i f ob s =1; run ;

100 proc l o g i s t i c data=simu&i descending oute s t=log&i ;
101 c l a s s x2 ( r e f=”1” ) x1 ( r e f=”0” ) / param=r e f ;
102 model y = x2 x1 ;
103 where C=0;
104 run ;
105 proc l o g i s t i c data=simu&i descending oute s t=l o g f&i ;
106 c l a s s x2 ( r e f=”1” ) x1 ( r e f=”0” ) / param=r e f ;
107 model y = x2 x1/ f i r t h ;
108 where C=0;
109 run ;
110 data out&i ; s e t out&i ; rep=&i ; run ;
111 data log&i ; s e t l og&i ; rep=&i ; run ;
112 data l o g f&i ; s e t l o g f&i ; rep=&i ; run ;
113 %end ;
114 %mend c r ea t e ;
115 %crea t e (500)

82



Bibliography

A Mortimer, J. (2012). The nun study: risk factors for pathology and clinical-
pathologic correlations. Current Alzheimer Research, 9(6):621–627.

Abner, E. L., Schmitt, F., Nelson, P., Lou, W., Wan, L., Gauriglia, R., Dodge, H.,
Woltjer, R., Yu, L., Bennet, D., et al. (2015). The statistical modeling of aging and
risk of transition project: Data collection and harmonization across 11 longitudinal
cohort studies of aging, cognition, and dementia. Observational studies, 1(2015):56.

Atem, F., Qian, J., Maye, J. E., Johnson, K. A., and Betensky, R. A. (2015). Linear
regression with a randomly censored covariate: application to an alzheimer’s study.
Technical report, Technical report.

Austin, P. C. and Hoch, J. S. (2004). Estimating linear regression models in the
presence of a censored independent variable. Statistics in medicine, 23(3):411–429.

Berkelaar, M., Eikland, K., Notebaert, P., et al. (2004). lpsolve: Open source (mixed-
integer) linear programming system. Eindhoven U. of Technology.

Besag, J. and Clifford, P. (1989). Generalized monte carlo significance tests.
Biometrika, 76:633–642.

Chen, Y., Diaconis, P., Holmes, S., and Liu, J. (2005a). Sequential monte
carlo methods for statistical analysis of tables. American Statistical Association,
100(469):109–120.

Chen, Y., Diaconis, P., Holmes, S. P., and Liu, J. S. (2005b). Sequential monte
carlo methods for statistical analysis of tables. Journal of the American Statistical
Association, 100(469):109–120.

Chen, Y., Dinwoodie, I., Dobra, A., and Huber, M. (2005c). Lattice points, con-
tingency tables, and sampling. In Integer points in polyhedra—geometry, number
theory, algebra, optimization, volume 374 of Contemp. Math., pages 65–78. Amer.
Math. Soc., Providence, RI.

Chen, Y., Dinwoodie, I., and Sullivant, S. (2006a). Sequential importance sampling
for multiway tables. Ann. Statist., 34(1):523–545.

Chen, Y., Dinwoodie, I. H., and Sullivant, S. (2006b). Sequential importance sampling
for multiway tables. The Annals of Statistics, 34:523–545.

D. Kahle, R. Y. and Garcia-Puente, L. (2015). Hybrid schemes for exact condi-
tional inference in discrete exponential families. Submitted to Annals of Institute
of Statistical Mathematics.

De Loera, J. and Onn, S. (2005). Markov bases of three-way tables are arbitrarily
complicated. J. Symb. Comput., 41(2):173–181.

83



De Loera, J. and Onn, S. (2005). Markov bases of three-way tables are arbitrarily
complicated. Journal of Symbolic Computation, 41:173–181.

Diaconis, P. and Sturmfels, B. (1998). Algebraic algorithms for sampling from con-
ditional distributions. The Annals of Statistics, 26(1):363–397.

Dobra, A. and Fienberg, S. (2010). The generalized shuttle algorithm. In Gibilisco,
P., Riccomagno, E., Rogantin, M., and Wynn, H., editors, Algebraic and geometric
methods in statistics, pages 135–156. Cambridge University Press.

Esiri, M., Wilcock, G., and Morris, J. (1997). Neuropathological assessment of the
lesions of significance in vascular dementia. Journal of Neurology, Neurosurgery &
Psychiatry, 63(6):749–753.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika,
80(1):27–38.

Hara, H., Takemura, A., and Yoshida, R. (2010). On connectivity of fibers with
positive marginals in multiple logistic regression. Journal of Multivariate Analysis,
101(4):909–925.

Heinze, G. and Schemper, M. (2002). A solution to the problem of separation in
logistic regression. Statistics in medicine, 21(16):2409–2419.

Ighodaro, E. T., Abner, E. L., Fardo, D. W., Lin, A.-L., Katsumata, Y., Schmitt,
F. A., Kryscio, R. J., Jicha, G. A., Neltner, J. H., Monsell, S. E., et al. (2016). Risk
factors and global cognitive status related to brain arteriolosclerosis in elderly in-
dividuals. Journal of Cerebral Blood Flow & Metabolism, page 0271678X15621574.

Kumar, V., Abbas, A. K., and Aster, J. C. (2012). Robbins basic pathology. Elsevier
Health Sciences.

Pantoni, L., Garcia, J. H., and Brown, G. G. (1996). Vascular pathology in three
cases of progressive cognitive deterioration. Journal of the neurological sciences,
135(2):131–139.

Vach, W. and Blettner, M. (1995). Logistic regression with incompletely observed
categorical covariatesinvestigating the sensitivity against violation of the missing
at random assumption. Statistics in Medicine, 14(12):1315–1329.

Vach, W. and Schumacher, M. (1993). Logistic regression with incompletely observed
categorical covariates: a comparison of three approaches. Biometrika, 80(2):353–
362.

84



Vita

Education

• Ph.D., Statistics, University of Kentucky, Lexington, KY 2011-present

• M.S., Statistics, University of Kentucky, Lexington, KY 2011-2014

• B.S., Statistics, Shandong University, Jinan, China 2007-2011

Experience

• Research Assistant University of Kentucky, 2014-present

• Teaching Assistant University of Kentucky, 2011-2014

• Internship Kentucky Department for Energy Development and Independence,

2012

85


	TOPICS IN LOGISTIC REGRESSION ANALYSIS
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Multinomial Logistic Regression Model
	1.2 Grouped Pearson's Chi-square Test statistics
	1.3 Likelihood Ratio Test Statistic for Goodness-of-fit Test
	1.4 Sequential Importance Sampling (SIS)
	1.5 MCMC
	1.6 Nun Study Data
	1.7 SMART Data
	1.8 Outline of Dissertation

	2 Goodness-of-fit Test for Multinomial Logistic Regression Model with Nun Study Data
	2.1 Introduction
	2.2 Method
	2.3 Simulations for Type I error
	2.4 Simulation for Power
	2.5 Application
	2.6 Conclusion and Future work

	3 SIS-MCMC for Bivariate Multinomial Logistic Regression Model
	3.1 Introduction
	3.2 SIS initialized MCMC
	3.3 SIS-MCMC with Nun study
	3.4 Conclusion

	4 Logistic Regression with Right Censored Ordinal Covariate
	4.1 Introduction
	4.2 Method
	4.3 Simulation Study
	4.4 Application and Results
	4.5 Conclusion and Discussion

	5 Future Research
	Appendix
	R Code for Goodness-of-fit Test
	R Code SIS-MCMC algorithm
	SAS Code for Logistic Regression with Censored Covariate

	Bibliography
	Vita
	Education
	Experience


