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RESEARCH Open Access

Gadolinium free cardiovascular magnetic
resonance with 2-point Cine balanced
steady state free precession
Tori A. Stromp1, Steve W. Leung2,3, Kristin N. Andres3, Linyuan Jing3,4, Brandon K. Fornwalt1,3,4,5,
Richard J. Charnigo6, Vincent L. Sorrell2,3 and Moriel H. Vandsburger1,3,5*

Abstract

Background: Cardiovascular magnetic resonance (CMR) of ventricular structure and function is widely performed
using cine balanced steady state free precession (bSSFP) MRI. The bSSFP signal of myocardium is weighted by
magnetization transfer (MT) and T1/T2-relaxation times. In edematous and fibrotic tissues, increased T2 and reduced
MT lead to increased signal intensity on images acquired with high excitation flip angles. We hypothesized that
acquisition of two differentially MT-weighted bSSFP images (termed 2-point bSSFP) can identify tissue that would
enhance with gadolinium similar to standard of care late gadolinium enhancement (LGE).

Methods: Cine bSSFP images (flip angles of 5° and 45°) and native-T1 and T2 maps were acquired in one
mid-ventricular slice in 47 patients referred for CMR and 10 healthy controls. Afterwards, LGE images and
post-contrast T1 maps were acquired and gadolinium partition coefficient (GPC) was calculated. Maps of ΔS/So were
calculated as (S45-S5)/S5*100 (%), where Sflip_angle is the voxel signal intensity.

Results: Twenty three patients demonstrated areas of myocardial hyper-enhancement with LGE. In enhanced
regions, ΔS/So, native-T1, T2, and GPC were heightened (p < 0.05 vs. non-enhanced tissues). ΔS/So, native-T1,
and T2 all demonstrated association with GPC, however the association was strongest for ΔS/So. Bland-Altman
analysis revealed a slight bias towards larger volume of enhancement with ΔS/So compared to LGE, and similar
transmurality. Subjective analysis with 2-blinded expert readers revealed agreement between ΔS/So and LGE of
73.4 %, with false positive detection of 16.7 % and false negative detection of 15.2 %.

Conclusions: Gadolinium free 2-point bSSFP identified tissue that enhances at LGE with strong association to
GPC. Our results suggest that with further development, MT-weighted CMR could be used similar to LGE for
diagnostic imaging.

Keywords: Cardiovascular magnetic resonance, Infarction, Cardiomyopathy, Remodeling, Myocardium

Background
Cardiovascular magnetic resonance (CMR) has become
a reference standard modality to image ventricular
structure, contractile function, and perfusion [1]. Com-
bined with intravenous administration of gadolinium
contrast agents, late gadolinium enhancement (LGE)
CMR has become the standard of care to identify

myocardial edema, necrosis, and focal fibrosis. The
presence of LGE correlates with significantly increased
risk of adverse cardiac events and mortality [2]. Recent
studies that identify diffuse fibrosis through measurement
of gadolinium partition coefficient (GPC) or the extracel-
lular volume fraction (ECV) [3, 4] have similarly demon-
strated a strong correlation between diffuse fibrosis and
increased mortality [5]. However, residual concerns sur-
rounding gadolinium and nephrogenic systemic fibrosis
[6] have spurred the development of gadolinium-free
methods to identify diseased myocardium.
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Both edematous and fibrotic myocardium are charac-
terized by an increased extracellular volume fraction,
which results in lengthened native-T1 and T2-relaxation
times compared to healthy myocardium. These changes
have been used to identify edema in acute MI [7, 8] and
fibrosis in select cardiomyopathies [9–11]. Recent studies
using native T1-mapping to identify fibrosis are highly
promising [12–14]. However, measured myocardial T1-
relaxation times vary between T1-mapping pulse se-
quences [15] and myocardial regions [16], require spe-
cial sequence modifications to reduce arrhythmia
sensitivity [17], and reconstruction of T1-maps requires
motion correction [18] that has limited some prior
measurements to the septum [9, 11, 19, 20]. In contrast,
cine balanced steady state free precession (bSSFP) is
ubiquitously used to image ventricular structure and
function. While weighting of the bSSFP signal by a fac-
tor of √T2/T1 is established, modulation of the bSSFP
signal by magnetization transfer (MT) from extracellu-
lar matrix macromolecules has only recently been
understood [21, 22]. Specifically, myocardium charac-
terized by increased ECV demonstrates reduced MT
compared to healthy myocardium, as demonstrated in a
prior study of acute-MI [21]. However, whether MT-
weighted CMR can be used to identify tissues that
would enhance with gadolinium across a range of car-
diomyopathies similar to LGE has not been examined.
We hypothesized that acquisition of bSSFP cine

image sets with different MT-weighting (termed 2-
point bSSFP) could combine the changes in signal in-
tensity due to both lengthened T1/T2-relaxation and
reduced MT to identify tissue that would enhance with
gadolinium in close agreement to LGE. We compared
tissue characterization with 2-point bSSFP, native-T1
and T2-mapping to LGE in 47 patients referred for
CMR at our institution. Our results demonstrate robust
agreement between gadolinium free 2-point bSSFP im-
aging and standard of care LGE, with a strong associ-
ation between 2-point bSSFP and GPC.

Methods
Patient selection, ethics, consent and permissions
Fifty non-consecutive patients referred for clinically indi-
cated CMR with gadolinium contrast were prospectively
enrolled, however 3 were excluded due to inability to
maintain breath-holds. All patients referred for CMR
with gadolinium contrast at our institution over a six
month period were approached for study participation,
with the forty seven included in the study representing
those that consented to participate. Afterwards, ten
healthy age-matched controls were recruited but did not
receive gadolinium. The research protocol was approved
by our institutional review board (IRB 12-0795-F3R) and
informed consent was obtained from all subjects for

participation and publication of findings. Demographic
characteristics are summarized in Table 1. Clinical CMR
reports were used to obtain ejection fraction (EF), end-
diastolic volume (EDV), and CMR diagnosis.

Cardiac MRI protocol
CMR was performed on a 1.5 T Siemens MAGNE-
TOM Aera scanner (Siemens Medical Imaging Solu-
tions, Erlanger, Germany) using an 18 channel body
coil and 12 channel spine coil. A short-axis stack of
bSSFP cine images were obtained with prospective ECG
triggering to cover the entire heart (TE: 1.2 ms TR: 3.2 ms,
bandwidth: 930Hz, field of view: 260x260mm, slice thick-
ness:8 mm, flip angle: 50°, 256x256matrix, GRAPPA 2),
from which one mid-ventricular slice was identified for
further imaging. The signal intensity of bSSFP images ac-
quired with high excitation flip angles and short repetition
times is heavily weighted by MT, T1 and T2, while identi-
cal images acquired with low flip angles reflect proton
density weighting with minimal contributions from MT.
In the identified slice, pairs of bSSFP cine images were
acquired with excitation flip angles of 5° (proton density
reference) and 45° (MT,T1,T2-weighted) during end-
expiratory breath-holds. Native myocardial T1-relaxation
times were assessed using a modified Look-Locker im-
aging (MOLLI) sequence (5(3)3, TE: 1.1 ms, TR: 2.7 ms,
flip angle: 35°, bandwidth: 1085Hz, field of view: 272x
272 mm, slice thickness: 8 mm, 256 matrix with 66 %
phase resolution, partial Fourier transform 7/8, GRAPPA
2). T2-relaxation times were assessed using a gradient
echo readout (T2 preparations of: 0 ms, 25 ms, 55 ms with
3 heart beat recovery in between, TE:1.1 ms, TR:3.2 ms,
bandwidth: 1184Hz, field of view: 272 × 272 mm, slice
thickness: 8mm, 192 matrix with 75 % phase resolution,
partial Fourier transform 6/8, GRAPPA 2) in the same
short axis slice during diastasis. Afterwards, gadolinium
(0.2 mmol/kg Gd-DTPA) was administered intravenously
as a bolus (rates ranged from 2 ml/s to 5 ml/s) and after
15 min LGE images were obtained using segmented gradi-
ent recalled echo inversion recovery (TE: 3.2 ms, TR:
8.3 ms, flip angle: 25°, Bandwidth:140Hz) with inversion
time set to optimally null the myocardium. Finally,
post-contrast MOLLI (4(1)3(1)2, TE:1.1 ms, TR:2.7 ms,
flip angle: 35°, field of view: 272 x 272 mm, GRAPPA 2)
images were obtained in the same slice position as pre-
contrast images. Normal volunteers only underwent
non-contrast portions of the protocol.

Image analysis
Maps of T1 and T2-relaxation times were automatically re-
constructed after motion correction using non-rigid body
correction. The reproducibility of breath-hold position and
the degree of mis-alignment between 5° and 45° scans was
assessed via calculation of the DICE similarity coefficient
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for both complete images and segmented images in which
only the heart was included. 2-point bSSFP data was ana-
lyzed by calculating the normalized change in signal be-
tween images as (ΔS/So)i = [(S45-S5)/S5]i, where S45 and S5
represent the signal intensity for 45° and 5° excitations
respectively for each cardiac phase (i). For each patient ΔS/
So maps from three diastolic phases without cardiac motion
were averaged together to reduce random noise. Maps of
GPC were calculated as GPC= (ΔR1,myocardium/ΔR1,blood)
from reconstructed T1-maps.
Data from patients receiving gadolinium were divided

and analyzed in a double-blinded manner. An SCMR
level-III reader (SWL) used a custom designed MATLAB
script to segment the myocardium and define a non-
enhanced region of interest (ROI) in each LGE image.
Myocardial voxels with signal intensity greater than 5
standard deviations (SD) above the mean of the defined
ROI were classified as enhanced at LGE. Maps defining
LGE-enhanced and non-enhanced regions were saved,
transmitted to MHV, and used to segment ΔS/So, native-

T1, T2, and GPC maps. To avoid partial volume errors
and account for minor differences in spatial resolution,
endocardial and epicardial borders were slightly adjusted
to remove the blood pool and pleural space. Measure-
ments in healthy controls and patients without LGE-
enhancement were performed over all voxels in the
myocardium.
In data acquired from patients demonstrating enhance-

ment at LGE, the enhanced area was calculated as the per-
centage of all myocardial voxels classified within the
enhanced ROI. To calculate the enhanced area from maps
of ΔS/So, a threshold value of 197 % (representing the
mean + 3 standard deviations of the mean from the
healthy control cohort) was applied and used to calculate
the fraction of myocardial voxels above the threshold.
Transmurality was calculated as the percentage of en-
hancement along the radial direction at the center of the
area of enhancement for LGE and ΔS/So maps.
Figures were prepared using a median filter with a

3x2 kernel (unfiltered maps can be found in the data

Table 1 Participant characteristics

Variable Healthy Control (Group I) CVD without Enhancement (Group II) CVD with Enhancement (Groups III, IV) p-value

(n = 10) (n = 24) (n = 23)

Demographics

Age (yrs) 51.74 ± 4.7 47.7 ± 16.5 51.39 ± 15.4 .406

BMI (kg/m2) 23.32 ± 1.5 29.3 ± 6.7 27.4 ± 3.6 .007

Female 4 (50.0) 8 (33.3) 4 (17.4) .315

White 9 (90.0) 20 (83.3) 18 (78.3) .815

African American 0 3 (12.5) 3 (13.0) 1.00

Hispanic or Other Race 1 (10.0) 1 (4.2) 2 (8.7) .051

CMR Indication

Cardiomyopathy 7 (29.2) 10 (43.5) .371

Hypertrophic Cardiomyopathy 2 (8.3) 1 (4.3) 1.000

Pericarditis, Myocarditis 2 (8.3) 2 (8.7) 1.000

Sarcoidosis 2 (8.3) 2 (8.7) 1.000

Syncope 4 (16.7) 0 .109

Viability 3 (12.5) 5 (21.1) .461

Other 4 (16.7) 3 (17.4) 1.000

Diagnosis

Ischemic Cardiomyopathy 4 (16.7) 10 (43.5) .060

Non-Ischemic Cardiomyopathy 10 (41.7) 7 (30.4) .547

Hypertrophic Cardiomyopathy 0 2 (8.7) .234

No Evidence of
Cardiomyopathy

8 (33.3) 0 .416

Other 2 (8.3) 4 (17.4) .416

Ejection Fraction (%) 50.13 ± 14.4 42.57 ± 14.6 .081

End Diastolic Volume (mL) 190.6 ± 76.0 217.65 ± 81.1 .244

CVD without Enhancement: Patients referred for CMR not demonstrating LGE enhancement in imaged slice
CVD with Enhancement: Patients referred for CMR demonstrating LGE enhancement in imaged slice
BMI: Body Mass Index (kg/m2)
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Additional file 1: Figure S1). The color scheme for
maps of ΔS/So and native-T1 in Figs. 1, 2, 3, and 4 have
been designed to emulate LGE, with non-enhanced tis-
sue appearing dark, enhanced tissue appearing bright,
and tissue that would demonstrate diffuse “gray” en-
hancement appearing red/yellow.

Subjective assessment by blinded readers
Subjective assessment of 2-point bSSFP in comparison
to LGE was performed by two blinded readers with 1
and over 10 years experience. All ΔS/So maps and LGE
images were compiled separately and randomized. The
readers were asked to identify the presence, location,
and type (focal vs. diffuse) of enhancement, and to delin-
eate the extent of enhancement on each image.

Statistics
Numeric data are summarized as mean ± SD. For outcome
variables we used Version 9.3 of SAS software (SAS Insti-
tute, Cary NC) to fit a linear mixed model comparing
mean levels across four groups of heart tissue: healthy
controls (Group I), patients without LGE-enhancement in
the imaged slice (Group II), non-enhanced regions of
interest from patients with LGE-enhancement (Group III),
and enhanced regions of interest from patients with LGE-
enhancement (Group IV). We included random effects for
subjects to account for correlations between measure-
ments on non-enhanced and enhanced tissue from the
same patient with LGE-enhancement. Linear contrasts
were used for pairwise comparisons. Demographic vari-
ables were analyzed using SPSS (IBM Corp., 2013). The
Shapiro-Wilk method was used to test normality of

numeric data. Age, body mass index (BMI), and race
were compared across all participants using the
Kruskal-Wallis method. Fisher’s exact tests were used
to compare gender across all participants and CMR
diagnosis between the two patient groups. Differences
in EF were compared via Mann–Whitney and EDV was
analyzed by student’s t-test. Statistical significance in
pairwise comparisons was defined by a p-value < 0.05
divided by the number of comparisons to control Type
I testing error through Bonferroni adjustment. Other-
wise, a p-value < 0.05 defined statistical significance.

Results
Demographics and ventricular structure and function
Amongst 23 patients who demonstrated LGE-enhancement
in the imaged slice, EDV trended higher and EF trended
lower compared to patients who did not demonstrate LGE-
enhancement (Table 1). There were no significant differ-
ences in age or BMI between patients with and without
LGE enhancement. Control participants differed only in
BMI compared to patients (p < 0.001 for all).

MR tissue characterization
The DICE similarity coefficient measured across all pa-
tients was 0.995 ± 0.004 when comparing entire 5° and
45° images. Comparison of the same images following
segmentation of only the heart revealed a DICE similar-
ity coefficient of 0.991 ± 0.015. Representative bSSFP
images and maps of ΔS/So in a healthy control subject
and a patient without LGE-enhancement revealed uni-
formly low ΔS/So values across both hearts (Fig. 1). In
patients with acute (Fig. 2) and chronic MI (Fig. 3),

Fig. 1 a-c Representative data from a healthy control. End-diastolic reference bSSFP images acquired with (a) 45° and (b) 5° flip angles provide
MT-weighted and proton density reference images, respectively. (c) Maps of ΔS/So that are calculated from A and B demonstrate uniform and
low values throughout the heart. d-f Representative data from a patient without LGE. End-diastolic reference bSSFP images acquired with (d) 45°
and (e) 5° flip angles. This patient demonstrated no myocardial enhancement at LGE. (f) Map of ΔS/So demonstrates uniformly low values similar
to the healthy control. For all maps, the color scale was chosen to emulate LGE imaging, with areas of edema/fibrosis demonstrating signal
enhancement and areas of healthy tissue appearing dark
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CMR tissue characterization with 2-point bSSFP dem-
onstrated heightened ΔS/So values in close spatial
agreement with LGE-CMR enhancement patterns. Rep-
resentative images acquired in two patients with non-
ischemic dilated cardiomyopathy demonstrate the accurate
detection of fibrotic tissue using 2-point bSSFP (Fig. 4). El-
evated native T1-relaxation times were also observed in
agreement with LGE following MI (Figs. 2 and 3).
Average myocardial ΔS/So, native-T1 and T2 relaxation-

times were significantly higher in LGE-enhanced regions
(Group IV) compared to all non-enhanced regions
(Groups II and III) and healthy controls (Group I, Fig. 5).
The mean of the standard deviation of ΔS/So values
amongst healthy controls was 27.1 ± 8.1 (%) in absolute
terms. Segmentation of the heart into twelve equal cir-
cumferentially spaced sectors revealed moderately lower
average ΔS/So values (118.8 ± 14.7 (%)) in the anterior-
lateral wall compared to the rest of the myocardium. Add-
itionally, GPC was significantly elevated in LGE-enhanced
regions (Fig. 5). Native-T1 and T2-relaxation times and
ΔS/So did not differ significantly between non-enhanced
myocardium in patients (Groups II and III) and healthy
controls (Group I, Fig. 5). Native-T1, T2 and ΔS/So all
demonstrated strong association with GPC (Fig. 6).
Quantification of the percent of myocardium classified

as enhanced at 2-point bSSFP demonstrated a strong as-
sociation (R2 = 0.84) with the percent of myocardium
classified as enhanced at LGE (Fig. 7), however a slight
bias towards over-estimation of the enhanced area in pa-
tients with a higher percentage of enhancement was

observed. Bland-Altman analysis (Fig. 7) revealed a
coefficient of variation of 0.204. Measurement of the
transmurality of enhancement was similar between
2-point bSSFP and LGE (R2 = 0.73), and Bland-Altman
analysis revealed a coefficient of variation of 0.0875 (Fig. 7).

Subjective assessment
Analysis of ΔS/So maps and LGE images by 2 blinded
readers revealed an average agreement of 73.4 % be-
tween methods. Among the patients demonstrating en-
hancement at LGE, the extent of enhancement on ΔS/So
maps was identified as the same in an average of 67.2 %
of individuals. The extent of enhancement was identified
as greater in ΔS/So maps in 20.8 % of individuals, and
smaller in ΔS/So maps in 12.0 % of individuals. An aver-
age of 4 out of 24 patients in which enhancement was
not identified in LGE images were classified as demon-
strating enhancement on ΔS/So maps (Fig. 8). Among
the 23 patients demonstrating enhanced tissue at LGE,
an average of 3.5 were classified as normal by readers
interpreting ΔS/So maps (Fig. 9). In all such cases, en-
hancement patterns were consistent with small sub-
endocardial enhancement at LGE.

Discussion
In this study we present a new 2-point bSSFP method
for gadolinium-free CMR. In 47 patients undergoing
clinical LGE examination, 2-point bSSFP demonstrated a
strong association between elevated ΔS/So and enhanced
regions in LGE across a range of cardiomyopathies.

Fig. 2 Identification of edema and necrosis in a patient with acute myocardial infarction. (a) End-diastolic reference image of a midventricular
slice in which 2-point bSSFP, native T1-mapping, and LGE data were acquired. (b) LGE imaging reveals an area of hyper-enhancement along the
septum indicative of edema and/or necrosis (red arrow). The corresponding maps of (c) ΔS/So, and (d) native-T1 both demonstrate similar spatial
patterns of elevated values to LGE (red arrow). The corresponding T2-map and windowed bSSFP image can be found in Additional file 1: Figure S2

Fig. 3 Identification of scar tissue in chronic myocardial infarction. (a) Magnitude reconstructed bSSFP image reveals a thinned wall along the
inferior right ventricular insertion point (red arrow). (b) LGE imaging confirms the presence of primarily sub-endocardial scar tissue as an area of
signal enhancement (red arrow). Mapping of (c) ΔS/So and (d) native-T1 both reveal increased values within the scar tissue (red arrows), and
normal values throughout the remaining myocardium
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Further, 2-point bSSFP demonstrated similar results to
mapping of native-T1 relaxation times. Importantly, in
this study we used a relatively simple method to gener-
ate MT contrast in bSSFP images. However, MT contrast
can be further enhanced through the use of additional
MT-preparation schemes, potentially increasing the sen-
sitivity of CMR tissue characterization with MT contrast.
Heightened steady state signal in edematous cardiac

tissue occurs in bSSFP images acquired with a short
repetition time and high flip angle. In a study by Zhou
et al. [22], edematous myocardium was visualized as
hyper-intense on bSSFP images following ischemia-
reperfusion injury in dogs. By comparison to T2-
prepared SSFP images, the authors concluded that
edema contrast in bSSFP was dominated by changes in

MT and proton density (65 %), with altered relaxation
times having a more modest effect (35 %). Similarly,
Kumar et al. [23] observed a 50 % increase in bSSFP
signal in infarcted tissue in dogs and patients with
acute MI. While we observed increased signal intensity in
edematous areas on bSSFP images, we found that
visualization required significant contrast adjustments and
resulted in noisy images (Additional file 1: Figure S2). In
2-point bSSFP, changes in signal intensity on standard
bSSFP cine images caused by increased T2 and reduced
MT in tissue that enhances at LGE were extracted by
normalization to images acquired with a 5° flip angle (pro-
ton density weighted). Measurement of ΔS/So, which was
elevated in enhanced tissue in patients with acute MI, was
consistent with signal intensity changes seen by Kumar

Fig. 4 Two patients with non-ischemic dilated cardiomyopathy. (a, e) Dilation of the left ventricle is present in both patients on end-diastolic
images. In the first patient, (b) no LGE-enhancement is present, (c) ΔS/So is normal throughout the heart as is (d) native-T1. In the second patient,
(f) mid-wall septal LGE-enhancement is present (red arrows). (g) Heightened ΔS/So is observed in close agreement with the LGE image (red arrows),
however (h) native-T1 values are elevated primarily at the right ventricular insertion-point

Fig. 5 Tissue characterization parameters. (a) ΔS/So was significantly elevated in tissue regions that enhanced on LGE images (Group IV)
compared to non-enhanced regions from the same patients (Group III), patients without any LGE (Group II), and healthy controls (Group I).
Similarly, (b) native-T1 and (c) native-T2 were significantly elevated in tissue that enhanced on LGE images compared to all other groups. (d) GPC was
significantly higher in tissue that enhanced on LGE images compared to non-enhanced tissue regions in patients. (Lines represent p < 0.05)
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et al. [23] and Zhou et al. [22] and demonstrated strong
spatial agreement with LGE (Fig. 2). In addition, patterns
of heightened ΔS/So in patients with acute-MI mirrored
T2-mapping (Additional file 1: Figure S2), which is widely
used to identify edema [7, 8]. Our results further agreed

with Weber et al. [21] who demonstrated altered MT-ratio
in patients with sub-acute MI by acquiring pairs of bSSFP
images with different MT-weighting. In the study by
Weber et al. MT-contrast was generated by altering the
duration of the RF excitation pulse and the repetition time

Fig. 6 Association of tissue characterization parameters with GPC. (a) ΔS/So (R = 0.82), (b) native-T1 (R = 0.55), and (c) T2 (R = 0.75) all associated
strongly with GPC. Data points are shown for all measurements as either enhanced on LGE images (white boxes) or non-enhanced on LGE images
(black diamonds)

Fig. 7 Association of enhanced area and transmurality between 2-point bSSFP and LGE. (a) Comparison of the enhanced myocardial area
(represented as percent of total myocardial area) using 2-pt bSSFP and LGE revealed a strong association between the two methods (R2 = 0.84) with a
slight bias towards larger areas of enhancement with 2-point bSSFP. (b) Bland-Altman plot comparing the difference between enhanced areas by
both methods to the mean between both methods revealed a coefficient of variation of 0.204. (c) Similarly, the comparison of the transmurality
of enhancement by each method revealed a strong association between 2-point bSSFP and LGE (R2 = 0.73) with (d) Bland-Altman analysis
demonstrating a coefficient of variation of 0.0875
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between cardiac phases causing reduced MT-ratio in
edematous tissue in comparison to healthy tissue.
However, elongation of the excitation pulse meant
that differences in cardiac phase were present in
images used to calculate the MT ratio. We chose to
change the excitation flip angle, and not duration, in
order to have a consistent cardiac phase between
MT-weighted and proton density weighted images.
Subsequently, our measure of ΔS/So is heightened in
tissues that would enhance with LGE.
Identification of focal fibrosis with LGE is the estab-

lished clinical standard and in our study heightened ΔS/
So occurred in tissues identified by LGE as replacement
(Fig. 3) and reactive fibrosis (Fig. 4). Emerging tech-
niques to image diffuse fibrosis including mapping of
post-contrast T1-relaxation times and measurement of

GPC or ECV [3, 4] have been correlated to collagen vol-
ume fraction at biopsy [24] and demonstrated predictive
value for clinically relevant outcomes [5, 25, 26]. In our
study we did not have access to hematocrit, however
GPC values measured in non-enhanced myocardium
agreed with prior studies of healthy tissue [16, 27, 28]
and were significantly elevated in regions of interest
identified by LGE (Fig. 5). Comparing ΔS/So to GPC re-
vealed a strong and promising association (Fig. 6). How-
ever, detection of diffuse fibrosis with 2-point bSSFP
requires further study with a larger sample and a con-
sistent phenotype such as hypertrophic cardiomyopathy.
In addition, since bSSFP images are weighted by √T2/
T1, increased T1 relaxation times in fibrotic scar tissue
will have the opposite effect of decreased MT on the
steady state signal in the high flip angle acquisition

Fig. 8 False positive identification of enhancement at ΔS/So. (a-c) Scattered noise on ΔS/So maps led to the false identification of diffuse
enhancement in 3 of the 4 false positive cases. A representative example of a patient without enhancement at LGE (a) that was classified by
blinded readers as demonstrating diffuse enhancement at ΔS/So (b) in the septum with corresponding anatomical reference image (c). d-f In
one patient without enhancement at LGE (d), focal enhancement (arrow) was identified on the corresponding map of ΔS/So, with corresponding
anatomical image shown in (f)

Fig. 9 False negative identification at ΔS/So. All cases in which blinded readers identified individuals with enhancement at LGE as normal at ΔS/
So occurred in cases of sub-endocardial enhancement. (a) Representative LGE image from a patient with 50-75 % sub-endocardial intermediate
signal enhancement (red arrows) in the inferior wall. (b) The corresponding map of ΔS/So demonstrates elevated values in the same region
(red arrows). (c) The corresponding anatomical reference image confirms that the elevated ΔS/So values in (b) occur in myocardial tissue
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(Additional file 1: Figure S3). While this may be partially
mitigated by concomitant increases in T2 relaxation
times (Additional file 1: Figure S3), the balance be-
tween increased T1 and reduced MT, and the potential
limits this imposes upon detection via measurement of
ΔS/So, requires additional examination in a large co-
hort of patients with chronic MI. In addition, given the
contributions of MT, T1, and T2 to ΔS/So, it is unclear
whether measurement of specific ΔS/So values can be
used to differentiate edema from fibrosis. Additional
studies with larger cohorts of acute and chronic MI pa-
tients are necessary to examine this possibility.
Mapping of native myocardial T1-relaxation times is

emerging as a highly promising method for gadolinium-
free imaging of fibrosis [12, 14, 16]. Recently, several
studies demonstrated increased T1-relaxation times in
patients with edema [29], aortic stenosis [9], myocarditis
[10], and hypertrophic and non-ischemic dilated cardio-
myopathies [11]. Native T1-relaxation times measured in
our study using a MOLLI acquisition scheme at 1.5 T
were comparable to those measured under similar set-
tings [15, 30] and were significantly elevated in enhanced
myocardium (Fig. 5). While we observed a strong asso-
ciation between heightened native-T1and GPC, our as-
sociation was weaker than observed in prior studies
[10, 11]. One likely factor contributing to this differ-
ence is that unlike most prior studies that focused on
patient cohorts with a specific and profound pheno-
type, we sampled patients with a range of cardiomyop-
athies and varying degrees of edema or fibrosis. Also,
artifacts introduced by motion correction [18] have led
many prior studies to restrict data analysis to the inter-
ventricular septum [9, 11, 20]. We analyzed myocar-
dium across an entire short-axis slice, defining regions
of interest based on LGE patterns. Results from a re-
cent multi-center T1 mapping study demonstrated
considerable regional variability in segmental native-T1
values at 1.5 T [16]. Thus, our results likely reflect the in-
fluence of both motion correction artifacts on T1-
estimation and regional T1 heterogeneity of healthy tissue
that were not included in prior studies. Additionally, our
scanner was equipped only with a MOLLI acquisition
scheme that has demonstrated sensitivity to MT-effects
[13], and thus the sensitivity of native T1-mapping may
have improved with other mapping methods now available
[15], including recently developed arrhythmia insensitive
T1 mapping protocols [17].
Images acquired with an excitation flip angle of 5°

demonstrate low signal to noise, potentially leading to
artificially elevated measurement of ΔS/So. We sought to
limit the effect of random noise by averaging over three
identical end diastolic phases and applying a median fil-
tering algorithm to reconstructed maps. However, sub-
jective assessment of ΔS/So maps by two blinded expert

readers resulted in the incorrect interpretation of diffuse
enhancement in ΔS/So maps in all but one of the false
positive cases (Fig. 8). We chose to use a 5° excitation
flip angle in order to maximize the potential difference
in MT-weighting between images, however, the acquisi-
tion of such images with slightly higher flip angles may
present a more promising route to maintaining MT-
contrast between image pairs while reducing the pres-
ence of voxels with spuriously high ΔS/So values. Alter-
natively, future studies could examine MT-weighting
without the use of low flip angle acquisitions via various
magnetization preparation schemes that encode greater
MT-weighting directly into the steady state magnetization.
In addition, subjective analysis of ΔS/So maps by expert
readers revealed a propensity to misidentify small sub-
endocardial enhancement patterns as blood instead of en-
hanced tissue (Fig. 9). In future studies, the use of blood
signal suppression should be investigated as a mechanism
to mitigate false negative interpretation of ΔS/So maps.
A limitation to our study was that due to time con-

straints we acquired data in only one slice per patient
without prior knowledge of disease status. In several pa-
tients, the slice chosen for our study did not demon-
strate LGE-enhancement (Group II), however LGE-
enhancement was present in other slices. Additionally,
limitations on T1 and T2-mapping protocols on our
scanner resulted in acquisition of bSSFP images at
slightly higher spatial resolution. Consequently, partial
volume error is more likely to influence T2 maps, and to
a lesser extent T1 maps, than 2-point bSSFP results.
Care was taken to adjust boundaries to exclude border
pixels affected by partial volume artifacts, however regis-
tration of pre and post gadolinium maps was not per-
formed. The sensitivity to B1 inhomogeneity remains a
significant concern in cine bSSFP, particularly at higher
flip angles. We simulated the bSSFP signal using a range
of myocardial relaxation times and excitation flip angles.
Based on the results of our simulation, and prior
evidence that MT is maximal and constant above excita-
tion flip angles of 30° [21], we chose to use a 45° flip
angle in order to minimize the potential effects of B1-
inhomogeneity. Also, changes in through-plane motion
can modulate steady state behavior in the myocardium.
For this reason we chose to focus our analysis on end-
diastolic cardiac phases. In addition, the acquisition of
two separate end expiratory breath-held scans increases
the potential for misalignment between scans. Measure-
ment of the DICE similarity coefficient between image
pairs in our study was high, however we benefited from
placement of our scans at the end of the non-contrast
CMR workup, thus reducing potential misalignment that
could occur if such scans were performed at the initi-
ation of the CMR examination. Importantly, while regis-
tration algorithms can be used to compensate as they
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are in T1 mapping protocols, simple image intensity
based algorithms would not be effective for registration
of images acquired with a 5° excitation flip angle.

Conclusions
2-point bSSFP utilizes endogenous contrast mecha-
nisms for gadolinium-free CMR imaging. In this study,
we demonstrated across a range of patients strong as-
sociation between 2-point bSSFP and standard of care
LGE-CMR. Importantly, since MT-contrast is an en-
dogenous mechanism, the sensitivity to changes in
MT-weighting increases with spatial resolution. In
addition, MT-contrast can be further increased with
MT-preparation schemes not used in this initial study.
In contrast, differences in native-T1 between healthy
and diseased tissue can not be further increased with-
out increasing the magnetic field strength. With further
development, MT-weighted CMR could potentially en-
able diagnostic imaging similar to LGE CMR without
the use of gadolinium.

Additional file

Additional file 1: Supplementary figures.
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