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ABSTRACT OF DISSERTATION

In Search of a Class of Representatives for SU -Cobordism Using the Witten Genus

In algebraic topology, we work to classify objects. My research aims to build a better
understanding of one important notion of classification of differentiable manifolds
called cobordism. Cobordism is an equivalence relation, and the equivalence classes in
cobordism form a graded ring, with operations disjoint union and Cartesian product.
My dissertation studies this graded ring in two ways:

1. by attempting to find preferred class representatives for each class in the ring.

2. by computing the image of the ring under an interesting ring homomorphism
called the Witten Genus.
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1 Introduction

1.1 Overview and History

In the beginning, (that is, as far as topology is concerned, so around the turn of
the 20th century) Henri Poincaré and some others hoped to classify all topological
spaces up to homeomorphism. This problem was quickly found to be intractable, so
they loosened the notion of equivalence, and some really beautiful mathematics was
introduced. Around a quarter of a century after Poincaré’s Analysis Situs founded
the study of algebraic topology, René Thom introduced a method of classifying man-
ifolds called (co)bordism. This particular notion of equivalence has been important
to topologists since its introduction, and is the central object of my research.

Cobordism is a notion of equivalence that says two closed n-dimensional manifolds
are the same if together they form the boundary of an (n+ 1)-dimensional manifold.
That is, the two manifolds are part of the same whole, and are, therefore, the same
object. All the manifolds that are cobordant to one another form a cobordism class.
If we take all of the cobordism classes in a particular dimension, say n, we have a
cobordism group, which we will denote ΩO

n , with the addition operation of disjoint
union and [0] the class of objects that are themselves boundaries. Taking the direct
sum over non-negative dimensions, and with the multiplication operation of cross
product, we have a graded ring, denoted ΩO

∗ .

Now, as we’ve described it so far, the ring ΩO
∗ , which we can call unoriented cobor-

dism, is a fairly simple object. It’s a graded ring such that in each dimension the sum
of any two objects in the same class is [0]. Thom showed in [38] that ΩO

∗ is in fact a
polynomial ring over Z/2 with i-dimensional generators xi (i 6= 2k − 1). Two years
later Albrecht Dold [10] finished describing the manifolds we can take for the xi’s, and
this is a very nice result. Just like when you think of fractions, you’d prefer to think
of 1

2
as opposed to, say, 37

74
, when we’re thinking about unoriented cobordism classes,

we have a preferred class representative, Dold manifolds. The situation becomes a
little less straightforward when we require that our manifolds and the cobordisms
between them have more structure.

One particularly nice choice is to require that each manifold have a complex struc-
ture on its stable tangent bundle. The resultant ring, ΩU

∗ , the ring of (stably almost)
complex cobordism, is beautiful and well-studied. The ring of complex cobordism
is a polynomial ring over Z with one variable in each even dimension, and Daniel
Quillen showed that ΩU

∗ is the coefficient ring for Michel Lazard’s universal formal
group law [21].

Friedrich Hirzebruch asked whether, as with ΩO
∗ , ΩU

∗ should have a preferred class
representative, and in particular, if every class in ΩU

∗ should contain a connected non-

1



singular algebraic variety. While the issue of connectivity is still unanswered, John
Milnor showed that every class does contain a non-singular algebraic variety. This is
a beautiful theorem because it gives us a class of preferred representatives for classes
in ΩU

∗ .

This dissertation focuses mainly on the the ring of special unitary cobordism,
denoted ΩSU

∗ , which is closely related to the ring of complex cobordism. We will
observe the following:

Theorem. Every element in ΩSU
2 can be represented by a non-singular algebraic va-

riety.

On the other, hand we will see that:

Theorem. There exist classes in ΩSU
4 that are not representable by any non-singular

algebraic variety.

In fact, we will even show that

Theorem. There exist classes in ΩSU
4 that are not representable by any complex,

compact surface.

We may conclude then, that despite what is, as we will see, the very close rela-
tionship between ΩU

∗ and ΩSU
∗ , the direct analog of Milnor’s theorem for ΩU

∗ is not
true for ΩSU

∗ .

Since we may not always choose a non-singular algebraic variety as a class repre-
sentative in ΩSU

∗ , a natural line of inquiry is to determine what types of manifolds can
be chosen as a class of preferred representatives for classes in ΩSU

∗ , and what classes
in ΩSU

∗ can be represented by a given class of manifolds. In [12], the image of an
interesting ring homomorphism, the Witten genus, is computed for Calabi-Yau mani-
folds, a certain class of manifolds in ΩSU

∗ that are well-studied in physics. Comparing
the images of ΩSU

∗ and the subring of Calabi-Yau manifolds may provide evidence
towards what classes in ΩSU

∗ can be represented by Calabi-Yau manifolds.

Pursuing this line of investigation, for manifolds whose cobordism class we label
x4i, and defining Wi to be the image of x4i under the Witten genus, we have the
following:

Theorem. The image of SU-cobordism under the Witten genus is given by the span
of Z[2Wi] and Z[W 2

i ].

1.2 Preliminaries in Cobordism Theory

We begin with this definition. More details may be found in [6] or [37].

2



Definition Two smooth, compact n-dimensional manifoldsM1 andM2 are cobordant
if their disjoint union forms the boundary of a smooth, compact (n+ 1)-dimensional
manifold, N . That is, ∂N = M1 qM2.

The classical example of cobordism is the so-called “pair of pants” due to John
Milnor:

Suppose M1 = S1 and M2 = S1 q S1.

Figure 1.1: M1 and M2

A surface that has M1 q M2 as its boundary is a cobordism between the two
manifolds:

Figure 1.2: A cobordism between M1 and M2

Throughout this thesis we will study several structures on manifolds, and the
cobordism rings associated to these manifolds with additional structure. Cobordisms
of manifolds-with-structure were introduced in [20], and chapter II of [37] contains an
excellent exposition on this topic. Generally speaking a cobordism class of a manifold-
with-structure will be the manifold M with a choice of lift, ν, over the classifying
space BO to the classifying space of the structure group, B:

B

M BO

λ
ν

χ

3



where λ is a fibration of B over BO, and χ is the map classifying the stable normal
bundle of M .

The notion of cobordism considered will, in all cases, respect the additional struc-
ture on the manifolds. For instance in the case of oriented cobordism, ΩSO

∗ , we have:

BSO

M BO

λ
ν

χ

where λ is a fibration of BSO over BO induced by the inclusion SO(n) ↪→ O(n), and
cobordism will be defined as follows:

Definition Two smooth, compact, oriented n-dimensional manifolds [M1, ν1] and
[M2, ν2] are oriented cobordant if their disjoint union forms the boundary of a smooth,
compact, oriented (n + 1)-dimensional manifold, [N, ζ], when the orientation of M2

is reversed. That is, ∂[N, ζ] = [M1 qM2, ν1 q ν̄2].

Here, ν̄2 is the orientation opposite of ν2. Typically, we will write [M ] for [M, ν] and
−[M ] for [M, ν̄].

At this point, there may not seem any apparent way of determining when two n-
manifolds are cobordant apart from finding some (n+1)-manifold which their disjoint
union bounds. In fact, we can accomplish this by comparing certain characteristic
numbers of the manifolds. We will now recall three related characteristic classes of
manifolds and their respective characteristic numbers. Further elaboration on char-
acteristic classes and numbers can be found in [26], [15].

The Stiefel-Whitney class,

w(ξ) = w0(ξ) + w1(ξ) + · · ·+ wn(ξ),

of a real vector bundle ξ = (E, π,B) of dimension n is a cohomology class satisfying
the following properties:

1. w0(ξ) = 1 and wk(ξ) ∈ Hk(B;Z/2) for all k.

2. (Naturality) If f : ξ → ζ is a bundle map, w(ξ) = f ∗w(ζ), with f ∗ the induced
homomorphism in cohomology.

3. (Whitney Sum) w(ξ ⊕ ζ) = w(ξ) · w(ζ), where ⊕ is the Whitney sum.

4. (Normalization) If ζ is the tautological line bundle over RP 1, then w(ζ) =
1 + w1(ζ) and w1(ζ) ∈ H1(RP 1;Z/2) is non-zero.

4



Similarly, we have the Chern class,

c(ξ) = c0(ξ) + c1(ξ) + · · ·+ cn(ξ),

of a complex vector bundle ξ = (E, π,B) of complex dimension n is an integral
cohomology class satisfying the following properties:

1. c0(ξ) = 1 and ck(ξ) ∈ H2k(B;Z) for all k.

2. (Naturality) If f : ξ → ζ is a bundle map, c(ξ) = f ∗c(ζ).

3. (Whitney Sum) c(ξ ⊕ ζ) = c(ξ) · c(ζ).

4. (Normalization) If ζ is the tautological line bundle over CP 1, then w(ζ) =
1 + c1(ζ) where c1(ζ) is the canonical generator of H2(CP 1;Z).

Finally, the Pontryagin class of a vector bundle,

p(ξ) = p0(ξ) + p1(ξ) + · · ·+ pn(ξ),

is an integral cohomology class defined in terms of the Chern classes by

pk(ξ) = (−1)kc2k(ξ ⊗R C) ∈ H4k(B;Z).

Here, ξ ⊗R C is the complexification of ξ. In the case that ξ is a complex bundle, we
have that

pk(ξ) = (−1)kc2k(ξ ⊕ ξ̄)

where ξ̄ is the conjugate bundle. In this case, we can then compute the Pontryagin
class in terms of the Chern class by

p0(ξ)−p1(ξ)+· · ·±pn(ξ) = (c0(ξ)+c1(ξ)+· · ·+cn(ξ))(c0(ξ)−c1(ξ)+· · ·+(−1)ncn(ξ)).

If M is a manifold with stable tangent bundle τM , we denote by w(M) (respec-
tively c(M), p(M)) the Stiefel-Whitney class (Chern class, Pontryagin class) of the
tangent bundle, w(τM) (c(τM), p(τM)).

Suppose that I = {i1, . . . , ik} is a partition of a non-negative integer m ≤ n. We
can associate an integer modulo 2 to the Stiefel-Whitney class

wi1 . . . wik(M) ∈ Hm(M,Z/2)

by evaluating the Stiefel-Whitney class on the fundamental class µM of M . Similarly,
we can associate integers to the Chern and Pontryagin classes

ci1 . . . cik(M) ∈ H2m(M,Z)

and
pi1 . . . pik(M) ∈ H4m(M,Z).

5



We call these integers Stiefel-Whitney, Chern, and Pontryagin numbers, respectively,
and denote them as

< wi1 . . . wik(M), µM >= wi1 . . . wik [M ] or wI [M ],

< ci1 . . . cik(M), µM >= ci1 . . . cik [M ] or cI [M ],

and
< pi1 . . . pik(M), µM >= pi1 . . . pik [M ] or pI [M ].

For each of these characteristic numbers, unless I partitions n, the characteristic
number evaluates to 0. Note that n represents a different value in each case. For the
Stiefel-Whitney numbers, n is the real dimension of M ; for Chern numbers, n is the
complex dimension of M ; and for Pontryagin numbers, 4n is the real dimension of M .

We may also recall now that for an almost complex manifold, M , the top Chern
class is the Euler class of M , i.e.

cn(M) = χ(M)

and that the evaluation of this class

cn[M ] = χ[M ]

gives the Euler characteristic.

These characteristic numbers can help us determine when two manifolds are cobor-
dant. For instance,

Theorem 1.2.1. (Thom, [38]) Suppose Suppose M1 and M2 are manifolds. M1

and M2 are cobordant if and only if all of their Stiefel-Whitney numbers agree, i.e.,
wI [M1] = wI [M2] for all I.

Theorem 1.2.2. (Wall, [40]) Suppose M1 and M2 are oriented manifolds. M1 and
M2 are (oriented) cobordant if and only if all of their Stiefel-Whitney and Pontryagin
numbers agree.

A stably complex manifold, i.e. an object that can be studied with (stably)
complex cobordism, is a smooth, compact manifold M , a complex vector bundle ξ,
and a choice of real vector bundle isomorphism

cM : τM ⊕ Rk → ξ,

where Rk is the k-dimensional trivial bundle. We have a similar theorem for deter-
mining complex cobordism classes.

Theorem 1.2.3. (Milnor and Novikov (Separately), [24] and [28]) Suppose M1 and
M2 are stably complex manifolds. M1 and M2 are complex cobordant if and only if
all of their Chern numbers agree.

6



It will also be useful to mention another characteristic class that can be derived
from either the Stiefel-Whitney, Chern, or Pontryagin classes. Consider again the par-
tition I = {i1, . . . , ik} of m ≤ n. Let σ1, . . . , σm be the first m elementary symmetric
polynomials in formal variables t1, . . . , tn. Call sI = si1,...,ik the unique polynomial
satisfying

sI(σ1, . . . , σm) =
∑

ti11 · · · t
ik
k .

We then have, e.g.,

s1(σ1) = σ1

s2(σ1, σ2) = σ2
1 − σ2

s1,1(σ1, σ2) = σ2

s3(σ1, σ2, σ3) = σ3
1 −3σ1σ2 +3σ3

s1,2(σ1, σ2, σ3) = σ1σ2 −3σ3

s1,1,1(σ1, σ2, σ3) = σ3.

Table 1.1: Table of s-classes for small n.

By identifying with σi the Chern class ci (similarly, Stiefel-Whitney or Pontryagin
class, wi or pi) we obtain a characteristic class we will call the s-class1. Evaluating
this class on the fundamental class of M , we obtain the s-number sn[M ]. We also
have the following theorem, regarding the s-number:

Theorem 1.2.4. ( [26, pg. 192]) For any product Km × Ln of complex manifolds of
dimension m,n 6= 0,

sn+m[Km × Ln] = 0.

So, the s number of M is non-zero only if M is indecomposable, i.e. M cannot be
written as a (non-trivial) product of complex manifolds.

Finally, we will make use of some characteristic numbers in the ring of real K-
theory of a space X, KO(X). For our purposes, it is enough to observe that the
characteristic numbers we use are obtained by evaluating certain rational combina-
tions of Pontryagin classes. A thorough treatment of K-theory can be found in [3]
or [7]. The KO-theory Pontryagin numbers, πI , which we use in §4.3, are explicitly
described in [1].

Copyright c© John E. Mosley, 2016.

1This characteristic class is discussed in several places in the literature, but does not have an
accepted name (see Appendix A for further digression on this characteristic class). Since we define
this class in terms of elementary symmetric polynomials – and the fact that it is denoted with s –
the symmetric class or s-class seems to be a reasonable choice.

7



2 Representation of Cobordism Classes

2.1 Preferred Cobordism Class Representatives

In this chapter, we will expand on the history of preferred representation of cobor-
dism classes discussed in §1.1. Interest in the question of preferred class representa-
tives has existed since Thom properly introduced and began the study of cobordism.
Indeed he showed that,

Theorem 2.1.1. (Thom, [38]) ΩO
∗ is isomorphic to a polynomial ring over Z/2 with

generators in dimensions not equal to 2k − 1, i.e. ΩO
∗
∼= (Z/2) [xi], i 6= 2k − 1.

These generators xi, are required to be indecomposable, i.e. xi can be chosen as a
generator if and only if si[xi] is non-zero. Immediately following this, we are presented
with choices for generators x2, x4, x5, x6, and x8, and for all even dimensions1. In
particular,

Theorem 2.1.2. (Thom, [38]) For n even, one may take xn := [RP n].

For x5 Thom suggests the so-called Wu space, which is obtained by identifying the
points (x0, x1, x2)× 0 and (x̄0, x̄1, x̄2)× 1 in the product of CP 2 × [0, 1], but laments
that he knows no constructions for generators in other odd dimensions.

Two years later, Dold provided such a construction. Define

P (m,n) := Sm × CP n/τ

with m > 0 and identifying points with respect to the involution

τ : Sm × CP n → Sm × CP n,

(x, [y]) 7→ (−x, [ȳ]).

Dold showed that the cohomology of these manifolds is generated by two classes,

c ∈ H1(P (m,n);Z/2)

and
d ∈ H2(P (m,n);Z/2),

under the relations
cm+1 = 0,

dn+1 = 0,

and no others. We then have that

1There are, of course, no generators in dimension 1 = 21 − 1, 3 = 22 − 1, or 7 = 23 − 1.

8



Theorem 2.1.3. (Dold, [10]) The Stiefel-Whitney class of P (m,n) are given by

w(P (m,n)) = (1 + c)m(1 + c+ d)n+1.

Using this, Dold was able to show

Theorem 2.1.4. (Dold, [10]) For i ∈ N not of the form i = 2l − 1, and for integers
r and s such that i+ 1 = 2r(2s+ 1) we have that

xi =

{
P (i, 0) = RP i i even

P (2r − 1, s2r) i odd.

With the complete and explicit description of generators given by Dold, we are
equipped with a preferred class representative for any generator in unoriented cobor-
dism. We are given a similarly complete description of generators of the oriented
cobordism ring by C.T.C. Wall in [40], however it is not as explicit. Despite Wall’s
claims of its simplicity2, the ring ΩSO

∗ is somewhat more complicated than unoriented
cobordism.

One may choose to work around the complication of torsion, and still arrive at
nice results. Indeed, we have

Theorem 2.1.5. (Thom, [38]) ΩSO
∗ ⊗ Q is a polynomial ring with generators in

dimensions divisible by 4, i.e. ΩSO
∗ ⊗Q ∼= Q[y4i], i ≥ 0.

Thom went on to show

Theorem 2.1.6. (Thom, [38]) One may take y4i := [CP 2i].

Independent of this work, we have

Theorem 2.1.7. (S. P. Novikov, [28]) The ring ΩSO
∗ modulo torsion is an integral

polynomial ring with generators in dimensions divisible by 4, i.e. ΩSO
∗ /Tor ∼= Z[z4i].

If, on the other hand, one chooses not to ignore the torsion elements of ΩSO
∗ , we

have, for example in [26]:

Theorem 2.1.8. (Wall, [40])
ΩSO

0
∼= Z and is generated by a signed point.

ΩSO
1
∼= ΩSO

2
∼= ΩSO

3
∼= 0.

ΩSO
4
∼= Z and is generated by CP 2.

ΩSO
5
∼= Z/2 and is generated by the Wu space.

ΩSO
6
∼= ΩSO

7
∼= 0.

ΩSO
8
∼= Z⊕ Z and is generated by CP 4 and CP 2 × CP 2.

ΩSO
9
∼= Z/2⊕ Z/2 and is generated by the Milnor hypersurface H2,8 and H2,4 ×CP 2.

2Wall claims in [40, pg. 294] that if anyone thinks what he’s done is hard, they should try to

give a description of ΩSpin
∗ .
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The Milnor hypersurface Hi,j ⊂ CP i × CP j is the smooth hypersurface given by

x0y0 + x1y1 + · · ·+ xkyk = 0,

where k = min(i, j), and
(x0 : x1 : · · · : xi)

and
(y0 : y1 : · · · : yj)

are the homogeneous coordinates on CP i and CP j respectively.

2.2 Class of Preferred Representatives for Complex Cobordism

We will now consider a famous result of Milnor that is the inspiration for the
remaining work in this thesis. Milnor answers the question of class representation
for (stably almost) complex cobordism in a less explicit way than it has been an-
swered for unoriented or oriented cobordism. Instead of providing explicit manifolds
that can be taken as generators in each dimension, Milnor gives a class of manifolds
that can be chosen as a representative for each class. That is, instead of providing
a preferred class representative for each class, Milnor’s theorem provides a class of
preferred representatives.

The proof of this theorem requires the following:

Theorem 2.2.1. (Milnor, Novikov, Stong, [24, 28, 37]) ΩU
∗ is an integral polynomial

ring with generators in each even dimension. The cobordism class of a stably complex
manifold M2i may be taken as the 2i−dimensional generator if and only if

si[M
2i] =

{
±1 if i+ 1 6= ps for any prime p

±p if i+ 1 = ps for some prime p.

Theorem 2.2.2. (Milnor, [14, 37, 39]) Every class, x ∈ ΩU
n contains a non-singular

algebraic variety (not necessarily connected) if n > 0.

Proof. We follow the proof given in [37, pg. 130].

Call U∗ ⊂ ΩU
∗ the set of cobordism classes that contain a non-singular algebraic

variety. It is easy to see that U∗ is closed under addition and multiplication (disjoint
union, and Cartesian product).

We will show that there are classes xi, x
′
i ∈ U2i which satisfy the requirements of

theorem 2.2.1. That is, call

mi =

{
1 if i+ 1 6= ps for any prime p

p if i+ 1 = ps for some prime p,

10



we will have
si[xi] = mi

and
si[x

′
i] = −mi.

We will then be able to make the argument by induction. Suppose U2j = ΩU
2j if j < k.

If x ∈ ΩU
2k, then

sk[x] = tmk, t ∈ Z.
If t > 0, we have that [x] = [txk + v], and if t < 0, we have that [x] = [|t|x′i + v] where
v is a sum of decomposable elements of dimension 2k. So, v ∈ U2k by induction, and
therefore x ∈ U2k.

Call A2k := {l ∈ Z|sk[x] = l for some x ∈ U2k}. Note that A2k is closed under
sums. Also, since

sk[CP k] = k + 1 > 0

and

sk[Hr,k−r+1] = −
(
k + 1

r

)
< 0, for 1 < r < k − 1

we have that A2k contains both positive and negative elements.

Call p the smallest positive element in A2k and n the largest negative element in
A2k. We then have that p + n = 0, since if it is positive, we have p > p + n > 0,
and if it is negative we have n < p+n < 0, which are both contradictions. So, n = −p.

For any element q ∈ A2k, we can write q = tp + s with 0 ≥ s < p. But then
s = q + tn ∈ A2k. Since s < p, we have that s = 0. So, A2k is the set of multiples of
p. Since

gcd
0≤i≤k+1

(
k + 1

i

)
= mk,

the greatest common divisor of elements of A2k is mk, and p = mk and n = −mk.
Therefore, there are manifolds in U2k which satisfy theorem 2.2.1 for every k.

The question of how to explicitly represent generators in complex cobordism is
still being considered. In [14], Hirzebruch asked which classes in ΩU

∗ can be repre-
sented by connected non-singular algebraic varieties.

Andrew Wilfong gave a partial answer to this question by showing that many
generators can be represented by toric varieties. In particular,

Theorem 2.2.3. (Wilfong, [42]) If n < 100001, odd, or one less than a power of a
prime, the cobordism class of a smooth projective toric variety can be taken as the
generator of dimension 2n of ΩU

∗ .

Copyright c© John E. Mosley, 2016.
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3 Special Unitary Cobordism

The remaining work of this thesis is in pursuit of an analog for special unitary
cobordism to Milnor’s theorem for complex cobordism. That is, we would like to
determine a class of manifolds that may be taken as a representative for each class
in ΩSU

∗ . In this chapter we will describe the additive structure of ΩSU
∗ , which is

determined by the close relationship between ΩSU
∗ and ΩU

∗ . Finally we will show that
the direct analog of Milnor’s theorem is not true. That is,

Theorem. There exist classes in ΩSU
4 that are not representable by non-singular

algebraic varieties.

3.1 The Ring of Special Unitary Cobordism and its Connection to Com-
plex Cobordism

Some partial results on the structure of ΩSU
∗ were given by Milnor [24] and

Novikov [28], but the complete description was given by Conner and Floyd in [8], [9].
A very succinct treatment of their work is given in [37, Ch. X]. The work in this
section mainly follows their presentations.

Definition A special unitary (SU-)manifold is a smooth, compact manifold, M , to-
gether with a choice of lift ν:

BSU

M BO

λ
ν

χ

We may also observe that SU -manifolds have the property that c1cω[M ] = 0 for
all ω. Similar to the characterizations of cobordism classes given in §1.2, we may
observe the following:

Theorem 3.1.1. ( [1]) Two SU-manifolds are cobordant if and only if they have the
same Chern numbers and KO-characteristic numbers.

Since we have that

BSU

BU

M BO

ι

λ

ν

χ
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where ι is the map induced by the inclusion SU(n) ↪→ U(n), we can observe that
an SU -manifold is necessarily a stably almost complex manifold. For these reasons,
we may think of SU -cobordism as complex cobordism with “orientation”, and the
work done by Conner and Floyd relating SU -cobordism to complex cobordism can
be compared to the work done in [40] and by Atiyah [2] relating oriented cobordism
to unoriented cobordism.

We may now define a useful homomorphism

α : ΩSU
∗ → ΩU

∗

called the forgetful homomorphism, which replaces the given SU -structure with the
underlying stably complex structure.

A homomorphism from ΩU
∗ to ΩSU

∗ may also be defined. Suppose M2n is a stably
complex manifold with orientation σ2n. Define

δ[M2n] := V 2n−2

to be a stably complex submanifold of M2n with orientation σ2n−2 so that if

j : V 2n−2 ↪→M2n

is the natural inclusion,
j∗(σ2n−2) = c1(M2n) a σ2n.

That is, V 2n−2 the submanifold representing the homology class Poincaré dual to
c1(M2n). Observe that since c1(V 2n−2) is trivial, V 2n−2 admits an SU -structure. So,
δ is a homomorphism of degree −2:

δ : ΩU
∗ → ΩSU

∗ .

We may similarly define a homomorphism of degree −4. Define

∆[M2n] := V 2n−4

to be a stably complex submanifold of M2n with orientation σ2n−4 so that

j∗(V
2n−4) = −c2

1(M2n) a σ2n.

Then,
∆ : ΩU

∗ → ΩU
∗ .

Defining W2n to be the kernel of the homomorphism

∆ : ΩU
2n → ΩU

2n−4,

we have the following:

13



Theorem 3.1.2. ( [8, pg. 31]) W2n consists of cobordism classes [M2n] ∈ ΩU
2n such

that every Chern number of M2n of which c2
1 is a factor vanishes. The homomorphism

αδ : ΩU
2n → ΩU

2n−2 has αδΩU
2n ⊂ W2n−2. If [M2n] ∈ W2n, then δ[M2n] = 0 if and only

if every Chern number of which c1 is a factor vanishes.

We may also observe that the image α is contained in W∗. That is,

α : ΩSU
∗ →W∗ ⊂ ΩU

∗ .

With these observations in hand, we may state the following:

Theorem 3.1.3. (Conner and Floyd, [37, pg. 242]) We have the following exact
sequences:

ΩSU
∗ ΩSU

∗

W∗

t

αδ

and

0 W∗ ΩU
∗ ΩU

∗ 0
F∗ ∆

Here F∗ :W∗ → ΩU
∗ is the inclusion, and t is given by multiplication by the class

of S1 with a non-trivial SU -structure, which we label [Ŝ].

Recall from theorem 2.2.1 that ΩU
2n+1 is trivial. So, sinceW2n+1 ⊂ ΩU

2n+1, the long
exact sequence reduces to the exact sequence

0 ΩSU
2n−1 ΩSU

2n W2n ΩSU
2n−2 ΩSU

2n−1 0t α δ t

Using these exact sequences, one may show the following:

Theorem 3.1.4. (Conner and Floyd, [37, pg. 243]) ΩSU
0
∼= Z,ΩSU

1
∼= Z/2, and

ΩSU
2
∼= Z/2.

We also have from [20]:

Theorem 3.1.5. (Lashoff and Rothenburg) t3 = 0, and so ΩSU
3
∼= 0.

We may consider the long exact sequence in theorem 3.1.3 as an exact couple. In
doing so, we have the derived couple:

Im(t) Im(t)

H(W)

t

α′δ′
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with H(W) the homology group of {W∗, ∂ := αδ}. Note that ∂ is a boundary
operator. For M2n ∈ W2n we have that c1(∂M2n) = c1(αδM2n) is trivial. So,
∂2M2n = 0. The homology of {W∗, ∂} is studied in [8, Ch. II], and is given by the
following theorem:

Theorem 3.1.6. ( [8, pg. 47]) H∗(W) is a polynomial algebra over Z/2 with gener-
ators in dimension 4 and 8k, for k ≥ 2. Moreover, multiplication by the dimension 4
generator gives an isomorphism W8k →W8k+4.

Using this derived couple and theorem 3.1.5, we have the exact sequence

0 t(ΩSU
2n ) ∼= ΩSU

2n+1 H2n(W) t(ΩSU
2n−3) ∼= ΩSU

2n−3 0.

Since all elements of H(W) are of order 2, the sequence splits, and we have the
following:

Theorem 3.1.7. ( [8, pg. 68]) For each n we have that

H2n(W) ∼= ΩSU
2n+1 ⊕ ΩSU

2n−3.

Applying this theorem tells us a great deal about the cobordism groups in ΩSU
∗ .

In particular, since
H8n+2(W) ∼= H8n+6(W) ∼= 0,

we have immediately that
ΩSU

2n+3
∼= 0

and
ΩSU

2n+7
∼= 0.

The isomorphism in theorem 3.1.6 gives us that

H8n(W) ∼= ΩSU
8n+1 ⊕ ΩSU

8n−3
∼= ΩSU

8n+5 ⊕ ΩSU
8n+1

∼= H8n+4(W),

or
ΩSU

8n−3
∼= ΩSU

8n+5.

Since ΩSU
−3
∼= 0, induction on n gives that ΩSU

8n+5
∼= 0.

We may now state a special case of theorem 3.1.7:

Theorem 3.1.8.
H8n(W) ∼= ΩSU

8n+1.

This theorem, together with the structure of the homology ofW∗ given in theorem
3.1.6 gives the following theorem, which completely describes the structure of torsion
in ΩSU

∗ :

Theorem 3.1.9. [8, pg. 68])) The torsion of ΩSU
∗ is given as follows:

Tor
(
ΩSU
n

)
= 0 unless n = 8k+ 1 or 8k+ 2, in which case Tor

(
ΩSU
n

)
is a vector space

over Z/2 whose dimension is the number of partitions of k.

This completes the description of the additive structure of ΩSU
∗ . Since this struc-

ture depends completely on the relationship between ΩSU
∗ and ΩU

∗ , one may hope for
an analog of 2.2.2 for SU -cobordism.
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3.2 Representing SU -Cobordism Classes by Non-Singular Algebraic Va-
rieties in Small Dimensions

In this section we will study the question of class representability by non-singular
algebraic varieties for ΩSU

2 and ΩSU
4 . Recall from theorem 3.1.4 that

ΩSU
2
∼= Z/2.

We therefore need only find an example of an algebraic manifold of dimension 2 with
a non-trivial SU -structure. Such an example is given, for instance, in [33, §2.1]. In
particular, such a manifold is given by a non-singular cubic polynomial in CP 2. We
have as an immediate corollary:

Corollary 3.2.1. Every element in ΩSU
2 can be represented by a non-singular alge-

braic variety.

Consider now the cobordism group ΩSU
4
∼= Z. Observe that the manifolds in ΩSU

4

are smooth, compact manifolds of 2 complex dimensions. Since every Chern number
with a factor of c1 vanishes for SU -manifolds, we may determine the cobordism class
of a manifold M ∈ ΩSU

4 by its signature:

σ[M ] :=
c2

1[M ]− 2c2[M ]

3
= −2

3
c2[M ].

Ochanine showed in [29] that the signature of a (8k+ 4)-dimensional SU -manifold is
divisible by 16. Therefore, we may take a class [M ] ∈ ΩSU

4 to be an additive generator
if σ[M ] = ±16. We will observe, in particular, that while we may take an algebraic
generator with σ[M ] = −16, the opposite is not true. That is, the class −[M ] ∈ ΩSU

4

with signature −σ[M ] = 16 does not contain an algebraic variety.

We now recall the classical result of Federigo Enriques and Kunihiko Kodaira,
which classifies up to bi-rational equivalence all complex compact surfaces. To un-
derstand this notion of equivalence, we define the operation of a blow-up. Suppose M
is a complex manifold with complex coordinates (z1, . . . zn), and consider CP n−1 with
homogeneous coordinates [X0 : · · · : Xn−1]. Let D be a unit disc about the origin.

Definition The blow-up of D at 0 is given by

Bl0D = {(z,X) ∈ D × CP n−1|ziXj = zjXi∀i, j}.

Applying this process to a neighborhood of a point x ∈M gives the blow-up of M at
the point x, BlxM . The projection

π : BlxM →M

is an isomorphism away from x, and we have that

π−1(x) ∼= CP n−1.

It follows from the factorization lemma [4, pg. 98] that every bi-rational map may
be written as a sequence of blow-ups and (the inverse of this operation) blow-downs.
So, we will define bi-rational equivalence as follows:
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Definition Two complex surfaces are bi-rationally equivalent if one may be obtained
from the other by a sequence of blow-ups and blow-downs.

It should be noted that, in general, bi-rational equivalence and cobordism do
not produce the same equivalence classes. However, the operations of blow-up and
blow-down have very a specific effect on the Chern numbers of surfaces. We have
from [17, 2.5.8] that BlxM is diffeomorphic to M#CP n

∗ , where CP n
∗ is CP n with

reversed orientation. We also have from [35] that [M#N ] = [M ] + [N ]. So, for a
surface S, we have that

c2
1[BlxS] = c2

1[S#CP 2
∗ ] = c2

1[S] + c2
1[CP 2

∗ ] = c2
1[S] + 1,

and
c2[BlxS] = c2[S#CP 2

∗ ] = c2[S] + c2[CP 2
∗ ] = c2[S]− 1.

Therefore, by studying its Chern numbers, we can determine if a class in the fol-
lowing classification is bi-rationally equivalent to a surface that meets the necessary
conditions of an additive generator of ΩSU

4 , namely:

1. c2
1[M ] = 0 (since c1(M) = 0).

2. The signature of M is ±16.

Recall the classification of complex compact surfaces:

Theorem 3.2.2. (Enriques and Kodaira, [4, pg. 243], [11, pg. 590]) Every complex
compact surface has a minimal model in exactly one class in table 3.1.

Class c2
1 c2 = χ Signature Algebraicity

Rational Surfaces 8 or 9 4 or 3 Always Algebraic
Surfaces of Class V II0 ≤ 0 ≥ 0 Not Algebraic
Ruled Surfaces (g ≥ 1) 8(1− g) 4(1− g) Always Algebraic

Enriques Surfaces 0 12 −8 Always Algebraic
Bi-Elliptic Surfaces 0 0 0 Not Algebraic
Kodaira Surfaces 0 0 0 Not Algebraic

K3 Surfaces 0 24 −16 Sometimes Algebraic
2-tori 0 0 0

Properly Elliptic Surfaces 0 ≥ 0
Surfaces of General Type > 0 > 0

Table 3.1: The Enriques-Kodaira Classification of Complex, Compact Surfaces

A surface M is a minimal model, if it admits no line bundle ξ with c2
1(ξ)[M ] = −1.

We can observe from the table that a K3-surface can be taken as one of our
additive generators. A K3-surface is, in particular, a Calabi-Yau manifold, i.e. a
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complex manifold with an SU -structure, and therefore an SU -manifold. Since a K3-
surface has signature −16, we now need to find an SU -surface with signature 16. In
particular, we need to find a surface S bi-rationally equivalent to one given in the
classification with c2

1[S] = 0 and c2[S] = −24. Since

c2
1[BlxS] = c2

1[S] + 1

and
c2[BlxS] = c2[S]− 1,

we need to check to see if any of the classes in the table are algebraic and have Chern
numbers satisfying

c2[S] + 24 = −(c2
1[S]− 0).

That is,
c2

1[S] + c2[S] = −24.

By inspection, the only classes that don’t fail this criteria are ruled surfaces.

The ruled surfaces, in fact, may give a solution to this problem. In particular,

8(1− g) + 4(1− g) = −24

precisely when g = 3. In this case, we have a ruled surfaces of genus 3, which we
denote SR3 . Applying the blow-up operation 16 times to SR3 , we have a surface Bl16S

R
3

with
c2

1[Bl16S
R
3 ] = 0

and σ[Bl16S
R
3 ] = 16. These are the necessary (but not sufficient) conditions to be

the desired additive generator. If, in fact, Bl16S
R
3 admits an SU -structure, we may

take Bl16S
R
3 as the other additive generator for ΩSU

4 . If not, we have that if such a
generator exists, it is bi-rationally equivalent to SR3 . So, we can state the following:

Theorem 3.2.3. If every class in ΩSU
4 can be represented by a non-singular algebraic

variety, we may take as additive generators a K3-surface, and an SU-surface bi-
rationally equivalent to a ruled surface of genus 3.

To determine whether or not Bl16S
R
3 is an SU -manifold it is sufficient to study

its first Chern class. Recall from [11, Ch 4.6 §2] that the first Class of a blow-up is
given by

c1(BlxM) = π∗c1(M)− E
where

π : BlxM →M

is the projection and E = π−1(x) ∼= CP 1 is the exceptional divisor. Since

H∗(BlxM ;Z) = π∗H∗(M ;Z)⊕H∗(E;Z)/π∗H∗(x),

we have that
c1(Bl16S

R
3 ) = π∗c1(M)− 16E 6= 0.
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So, Bl16S
R
3 is not an SU -manifold.

Therefore, we have the following:

Theorem 3.2.4. There exist classes in ΩSU
4 that are not representable by any non-

singular algebraic variety.

So, we see that the direct analog of theorem 2.2.2 is not true for ΩSU
∗ . Since

theorem 3.2.2 is a classification of all complex surfaces, we may easily relax our criteria
from algebraic manifolds to complex manifolds, and ask the following question:

Question 3.2.1. Is there a complex SU-surface with signature 16?

We will see that this question can also be answered in the negative.

Relaxing our criteria to include any complex manifold we see that the only addi-
tional class we need now consider is that of Surfaces of Class V II0. However, it is
easy to see that any SU -surface of class V II0 is trivial. Let SV II be an SU -surface of
class V II0. We have from [4, I.7.2] that the geometric genus, pg(SV II) = 0. We also
have from [4, pg. 245] that the difference in the geometric genus and the arithmetic
genus, i.e. the irregularity

q(SV II) = pg(SV II)− pa(SV II) = 1.

We have then, by Noether’s Formula, for the Todd genus of SV II :

Td[SV II ] =
c2

1 + c2

12
[SV II ] = pa(SV II) + 1 = 0.

In particular,
c2

1[SV II ] = −c2[SV II ].

Therefore, since SV II is an SU -surface, c2[SV II ] = 0 and SV II is trivial in ΩSU
4 . We

may then conclude:

Theorem 3.2.5. There exist classes in ΩSU
4 that are not representable by any com-

plex, compact surface.

We may conclude, then, that the search for the class of preferred representatives
for ΩSU

∗ may be restricted to classes of stably complex manifolds.

We may also consider the following questions:

Question 3.2.2. What classes of ΩSU
∗ can be represented by a non-singular algebraic

variety?

and

Question 3.2.3. What classes of ΩSU
∗ can be represented by a complex manifold?

In the next chapter we will refocus our attention to questions of this type.

Copyright c© John E. Mosley, 2016.
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4 Multiplicative Genera

4.1 Introduction

The image of a certain class of SU -manifolds, Calabi-Yau manifolds, under a ring ho-
momorphism called the Witten genus is studied in [12]. Calabi-Yau manifolds were
introduced by Shing-Tung Yau in [45], and can be defined as complex manifolds for
which every Chern number with a factor of c1 vanishes. That is, manifolds that are
both complex and have an SU -structure are Calabi-Yau manifolds. By studying the
image of ΩSU

∗ under the Witten genus, and comparing it to the results in [12], we may
be able to determine what classes are not, or perhaps are representable by Calabi-Yau
manifolds.

In this chapter we will give some background in the theory of multiplicative genera.
We will then study the results of D. & G. Chudnovsky, Peter Landweber, Ochanine,
and Robert Stong regarding the image of ΩSU

∗ under Ochanine’s elliptic genus, and
apply their methods to obtain the image of ΩSU

∗ under the Witten genus. We will
then give some partial results regarding the explicit values in this image.

4.2 Background for Multiplicative Genera

In this section we will properly introduce multiplicative genera, and give some
useful results regarding the image of a given genus. Background on genera may be
found in [32], [15], [16].

Definition A (multiplicative) genus, ϕ, is a ring homomorphism

ϕ : ΩSO
∗ → Λ,

where Λ is a Q−algebra.

As a ring homomorphism, a genus satisfies the obvious properties for manifolds
[M ], [N ] ∈ ΩSO

∗ , i.e.:

1. ϕ(∂M) = 0.

2. ϕ(M qN) = ϕ(M) + ϕ(N).

3. ϕ(M ×N) = ϕ(M)ϕ(N).

If we consider the commutative diagram

ΩSO
∗ ⊗Q

ΩSO
∗ Λϕ

20



along with theorems 2.1.5 and 2.1.6, we see that the value of any genus is com-
pletely determined by its values on the even-dimensional complex projective spaces.
Therefore, a genus is completely determined by the following formal power series:

Definition The logarithm of ϕ is the odd formal power series in u given by

g(u) =
∞∑
n=0

ϕ(CP 2n)
u2n+1

2n+ 1
.

Genera can also be defined by a related power series called the characteristic series
by Hirzebruch in [15]. This series is defined by

Q(x) =
x

g−1(x)

where g−1(x) is the formal inverse of the power series g(x).

It is sometimes convenient to associate to this characteristic series a sequence of
polynomials

Kϕ = 1 +K1 +K2 + . . .

with
Kϕ(σ1, σ2, . . . ) = Q(t1)Q(t2) · ··

where σi is the ith elementary symmetric polynomial in the formal variables tj.
{K1, K2, . . . } is called the multiplicative sequence of ϕ.

Replacing σi with the Pontryagin class pi (as in the definition of the s-numbers),
we have

ϕ(M) = Kϕ(p1, p2, . . . )[M ].

Since for a 4n-dimensional manifold M , the Pontryagin classes pj(M) = 0 for j > n,
in practice, we need only the polynomial Kn(p1, . . . , pn) to compute the image of M
under a given genus.

Examples

Suppose we want to define a genus L such that L(CP 2n) = 1 for each n. In this
case, we get a logarithm of

g(u) =
∞∑
n=0

u2n+1

2n+ 1
= arctanh(u).

In this case, the inverse of the logarithm is easy to identify, and we have a character-
istic series

Q(x) =
x

tanh(x)
.
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Hirzebruch’s Signature Theorem, [15, pg. 86], shows that the signature of a smooth,
compact 4k-dimensional manifold is given by evaluation of this genus, and so we may
call this genus the signature, though it sometimes appears in the literature (as Hirze-
bruch described it) as the L-genus. Note that this is the same signature mentioned
in §3.2.

Setting

L(p1, p2, · · · ) := KL(p1, p2, · · · ) =
∞∏
i=1

ti
tanh(ti)

,

we have for the first few polynomials:

L1(p1) =
p1

3

L2(p1, p2) =
7p2 − p2

1

45

L3(p1, p2, p3) = −62p3 − 13p2p1 + 2p3
1

945

Suppose instead we want to define a genus such that

Q(x) =
x/2

sinh(x/2)
.

We call this genus the Â-genus, and setting

Â(p1, p2, · · · ) := KÂ(p1, p2, · · · ) =
∞∏
i=1

ti/2

sinh(ti/2)

we have for the first few polynomials:

Â1(p1) = −p1

24

Â2(p1, p2) =
7p2

1 − 4p2

5760

Â3(p1, p2, p3) = −31p3
1 − 44p1p2 + 16p3

967680

The Â-genus has the property that it takes integer values for manifolds in ΩSpin
∗ [15,

pg. 197].
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The Elliptic Genus

We will now focus on the results of D. and G. Chudnovsky, Landweber, Ochanine,
and Stong from their unpublished manuscript [5]. In the manuscript they compute
the image of ΩSU

∗ under Ochanine’s elliptic genus. Moreover, they give a useful
method by which the image of this cobordism ring may be computed for a given
genus. Though [5] was unpublished, many of the ingredients necessary for their work
may be found in [19] and elsewhere.

An elliptic genus is a genus, ϕδ,ε, with logarithm

g(u) =

∫ u

0

dt√
1− 2δt2 + εt4

.

The genus ϕδ,εtakes values in Λ = Q[δ, ε], and δ and ε are algebraically independent.
This class of genera was introduced by Ochanine in [30], and have since been widely
studied. We may observe that the elliptic genus generalizes our previous examples.
In particular,

ϕ1,1 = σ,

and
ϕ− 1

8
,0 = Â.

Computing the coefficient of u in g(u) we see that

ϕδ,ε(CP 2) = δ,

and from [16, pg. 17] we have that

ϕδ,ε(HP n) =

{
0, n odd,

ε
n
2 , n even.

Computing the Image of Special Unitary Cobordism

Consider again the commutative diagram

ΩSO
∗ ⊗Q

ΩSO
∗ Λϕ

and observe that

Theorem 4.2.1. ( [37, pg. 336])

ΩSpin
∗ ⊗ Z

[
1

2

]
∼= ΩSO

∗ ⊗ Z
[

1

2

]
.
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In particular,
ΩSpin
∗ ⊗Q ∼= ΩSO

∗ ⊗Q.

So, we may extend the commutative diagram to

ΩSpin
∗ ⊗Q ΩSO

∗ ⊗Q

ΩSO
∗ Λ

∼=

ϕ

Following [37], define the the ring B∗ ⊂ ΩSpin
∗ ⊗ Q to be the ring of elements in

ΩSpin
∗ ⊗Q having all integral KO-characteristic numbers. We then have

Theorem 4.2.2. (Stong, [36], [37, pg. 280])

i)
B8k
∼= ΩSpin

8k /Tor

and
2B8k+4

∼= ΩSpin
8k+4/Tor.

ii)
B∗ ∼= Z[x4, x8, x12, . . . ].

To characterize the classes x4i it is sufficient to consider their characteristic num-
bers modulo 2 by theorem 4.2.1. In this case, we have

Theorem 4.2.3. (Stong, [5], [37, pg. 280]) The generators of B∗ at the prime 2 may
be characterized by:

1. Â(x4) is odd.

2. sn(p1, p2, . . . , pn)[x4n] is odd for n 6= 2s.

3. sn
2
,n
2
(p1, p2, . . . , pn)[x4n] is odd for n a power of 2.

We can now define a homomorphism

ϕ : B∗ → Λ

via the commutative diagram

B∗ ⊂ ΩSpin
∗ ⊗Q ΩSO

∗ ⊗Q

ΩSO
∗ Λ.

∼=

ϕ

Since we are interested in computing the image of ΩSU
∗ , we now must consider

the image of the forgetful homomorphism ΩSU
∗ → ΩSpin

∗ /Tor, which is given in the
following theorem:
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Theorem 4.2.4. (Stong, [37, pg. 282]) The image of the ΩSU
∗ in ΩSpin

∗ /Tor is given
by the integral span of Z[2x4n] and Z[x2

4n].

Finally, we may now define a homomorphism

ϕ : ΩSU
∗ → Λ

via the commutative diagram

ΩSU
∗ ΩSpin

∗ /Tor ⊂ B∗ ⊂ ΩSpin
∗ ⊗Q ΩSO

∗ ⊗Q

ΩSO
∗ Λ.

∼=

ϕ

In particular,

Theorem 4.2.5. (D.& G. Chudnovsky, Landweber, Ochanine, and Stong, [5])

ϕ
(
ΩSU
∗
)

= 2Z[ϕ(x4n)] + Z[ϕ(x4n)2].

So, the problem of computing the image of ΩSU
∗ under a given genus, is reduced

to computing the image of B∗. We may wish now to determine specific manifolds
whose class we may take for each of the x4n. In [5] Stong suggests manifolds which
satisfy the conditions in theorem 4.2.3.

First, note that

Â[CP 2] = −1

8
.

So,

Â(8[CP 2]) = −8

8
= −1.

Therefore, 8[CP 2] is an appropriate choice for x4.

Secondly, we can easily check that

s1,1[HP 2] = p2[HP 2] = 7.

So, we may choose x8 = [HP 2].

If n = 2j, we may take

x4·n = [HP n −
(
HP 2

)n
2 ],

since modulo 2,

sn
2
,n
2
(p1, p2, . . . , pn)[HP n] ≡

(
2n+ 2

2

)
≡ 1,
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and
sn

2
,n
2
(p1, p2, . . . , pn)[

(
HP 2

)n
2 ] ≡ 0.

If n 6= 2j, we can write 2n = 1 + 2t + k and consider the complex (4n + 2)-
dimensional manifold N given by the total space of the fibration

CP (ξ−2
1 ⊗ ξ

−(2t+1)
2 ⊕ (k + 1))

over
CP 1 × CP 2t

where (k + 1) indicates k + 1 copies of the trivial line bundle. Recall the map

δ : ΩU
∗ → ΩSU

∗

from chapter 3, and consider the manifold

M4n = δN = CP (ξ−2
1 ⊗ ξ

−(2t+1)
2 ⊕ (k)).

We have from [37, pg. 281] that

Im(δ) ⊂ 2B∗,

so
1

2
[M4n] ∈ B∗.

Following [5], if we choose t so that(
2n− 2

2t

)
≡ 0 mod 2,

we have that

sn(p1, p2, . . . , pn)[
1

2
M4n] ≡ 1 mod 2.

So, we may take

x4n = [
1

2
M4n].

Returning to the example of the elliptic genus, ϕδ,εwe have the following:

ϕδ,ε(x4) = ϕδ,ε
(
8CP 2

)
= 8ϕδ,ε

(
CP 2

)
= 8δ,

and
ϕδ,ε(x8) = ϕδ,ε

(
HP 2

)
= ε.

For n = 2j we have

ϕδ,ε(x4n) = ϕδ,ε

(
HP n −

(
HP 2

)n
2

)
= ϕδ,ε (HP n)− ϕδ,ε

(
HP 2

)n
2 = ε

n
2 − (ε)

n
2 = 0.

For n 6= 2j, we have that x4n is the projectivization of an even-dimensional complex
vector bundle. That such projectivizations vanish under the elliptic genus is the main
result of [30].

So, we have that ϕδ,ε (B∗) = Z[8δ, ε]. Applying theorem 4.2.5 we have

Theorem 4.2.6. (D.& G. Chudnovsky, Landweber, Ochanine, and Stong, [5])

ϕδ,ε
(
ΩSU
∗
)

= Z[16δ, (8δ)2, 2ε, 16δε, ε2].
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4.3 The Image of Special Unitary Cobordism Under the Witten Genus

In this section, we will discuss the image of ΩSU
∗ under the Witten genus.

The Witten Genus

The Witten genus, ϕw was introduced by Edward Witten in [43], [44], and is defined
by the characteristic series

Q(x) =
x

σ(x)
= exp

(∑
k≥1

2

(2k)!
G2kx

2k

)
.

Here, σ(x) is the Weierstrass σ function [41, pg. 447], and

Gk = −Bk

2k
+
∞∑
n=1

∑
d|n

dk−1

 qn,

where Bk is the kth Bernoulli number. Note that Gk is an Eisenstein series, as de-
scribed in [13].

For manifolds equipped with a string structure, i.e. a lift

BO〈8〉

M BO,

λ
ν

χ

where BO〈8〉 is the 7-connected cover of BO, we have that

ϕw[M ] ∈ Z[G4, G6],

where Z[G4, G6] is the ring of modular forms with integral Fourier expansion [46].
There is a famous conjecture of Stolz regarding the vanishing of certain manifolds of
this type. In particular:

Conjecture (Stolz, [34]). Suppose [X] ∈ ΩString
∗ admits a Riemannian metric with

positive Ricci curvature. Then
ϕw(X) = 0.

In general, we have
ϕw : ΩSO

∗ → Λ

where, as we see in [46],
Λ = Q[G2, G4, G6],

the ring of quasimodular forms, which is described in [18].

27



Definition A modular form of weight k is a holomorphic function, f , on the upper
half-plane

H = {z ∈ C|=(z) > 0}

such that for for any τ ∈ H and(
a b
d c

)
∈ SL(2,Z)

we have that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).

We have that G2 instead satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ)− c(cτ + d)

4πi
.

Since G2 satisfies this “modular-like” equation is called almost modular, or quasimod-
ular in the literature. Elements in the ring Q[G2, G4, G6] are then called quasimodular forms.

Defining
Wi := ϕw(x4i),

and applying the results of the previous sections, we have

Theorem 4.3.1.
ϕw

(
ΩSU
∗
)

= Z[2Wi] + Z[W 2
i ].

Computations

We will now give some partial results regarding the explicit values of the Wi’s.

Proposition 4.3.2. W1 = ϕw(x4) = 24G2.

Proof. Since the Witten genus is the power series associated to the characteristic
series

Q(x) = exp

(
∞∑
k=1

2

(2k)!
G2k · x2k

)
we can compute

g(x) =

(
x

Q(x)

)−1

= x+
∞∑
n=1

ϕw(CP n)

n+ 1
xn+1 = x+G2x

2 +

(
5

2
G2

2 +
1

12
G4

)
x5 + ...

We then observe that

W1 = ϕw(x4) = 8ϕw[CP 2] = 24G2.
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Proposition 4.3.3. W2 = ϕw(x8) = 2G2
2 − 5

6
G4.

Proof. To determine ϕw(x8), we decompose (as a manifold in ΩSO
∗ )

[HP 2] = 3[CP 2]2 − 2[CP 4].

Standard computations then give us that

W2 = ϕw(x8) = 2G2
2 −

5

6
G4.

Proposition 4.3.4. We may choose x12 = 1
8
[HP 3], and W3 = ϕw(x12) = −4

3
G3

2 +
1
3
G4G2 + 7

360
G6.

Proof. First, we need to show that 1
8
[HP 3] ∈ B∗. Since HP 3 is spin, we just need

to show that 1
8
[HP 3] has all integral KO-characteristic numbers. For this we recall

from [1,31] that we may compute the KO-theory Pontryagin numbers, πI , of [HP 3].
One can compute that:

π1[HP 3] = 0

π2
1[HP 3] = −8

π2[HP 3] = 0

π3
1[HP 3] = p3

1[HP 3] = 64

π1π2[HP 3] = p1p2[HP 3] = 48

π3[HP 3] = p3[HP 3] = 8

Since each of these is divisible by 8, the KO-Pontryagin numbers for 1
8
[HP 3] are

all integral. Therefore, its KO-characteristic numbers are all integral.
Next, we need to show that s3[1

8
HP 3] is odd. Now,

s3(M) = p3
1 − 3p1p2 + 3p3.

Since [16],

p(HP 3) =
(1 + u)8

1 + 4u
= 1 + 4u+ 12u2 + 8u3,

we have that
s3[HP 3] = −56.

So,

s3[
1

8
HP 3] = −7.

So, 1
8
[HP 3] is an appropriate choice for x12.

Finally, we just need to determine the image of 1
8
HP 3 under the Witten genus.

To do this, we decompose

1

8
[HP 3] = [CP 6]− 3[CP 4]× [CP 2] + 2[CP 2]3

29



and compute

W3 = ϕw(x12) = ϕw(
1

8
HP 3) = −4

3
G2

2 +
1

3
G4G2 +

7

360
G6.

We have that
W1 = 24G2,

W2 = 2G2
2 −

5

6
G4,

and

W3 = −4

3
G3

2 +
1

3
G4G2 +

7

360
G6.

For x4i with i ≥ 4, we refer to [5] and use manifolds similar to those suggested by
Landweber. If i = 2j for some j, we may take

x4·2s = [HP 2s ].

If i 6= 2j, we may take

x4i =
1

2
[M4i]

where M4i. It is clear from the previous section that these are valid choices for the
classes x4i.

We have from [18, pg. 3] that every quasimodular form can be expressed as a
polynomial in G2 with coefficients that are modular forms, i.e. rational polynomials
in G4 and G6. So one may hope that Wi for i > 3 is expressible as a polynomial in
W1,W2, and W3. The question of whether or not this is true is, as yet open. In the
final chapter, we will discuss this, and other open questions.

Copyright c© John E. Mosley, 2016.
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5 The Open Road Ahead

The results presented in this thesis lead to several questions. In fact, it could
rightly be stated that the author, at the end of this work, is left with more questions
than answers. In this final chapter, we will discuss and state several such questions.

In Chapter 3, we showed that neither non-singular algebraic varieties nor com-
plex manifolds can be taken as representatives for every class in ΩSU

∗ . So, we may
conclude that whatever class of manifold is the class of preferred representatives for
SU -manifolds, it must be a class of stably almost complex SU -manifolds. So, the
first question is this:

Question 5.0.1. What class of stably almost complex SU-manifolds is the class of
preferred representatives for SU-cobordism?

Immediately following question 5.0.1, and in light of the results of Chapter 4, we
may ask the following:

Question 5.0.2. Can one choose a more convenient set of generators for B∗?

Aside from its application to the work of this thesis, the image of the Witten genus
is of general interest. In particular, refining the results of Chapter 4 may lead to new
classes of manifolds which vanish under the Witten genus.

With respect to our interest in the Witten genus, this “more convenient” set of
generators may help to make answering the following question more straightforward:

Question 5.0.3. is the image of ΩSU
∗ under the Witten genus finitely generated?

The ring of quasimodular forms is finitely generated by G2, G4, and G6, and one may
express G2, G4, and G6 rationally in terms of W1,W2, and W3. However, since the
image of ΩSU

∗ is in the integral span of the Wi’s it is unclear whether or not we can
express Wi with i ≥ 4 in terms of W1,W2, and W3. If we could choose manifolds
in the classes x4i that vanish under the Witten genus, as in theorem 4.2.5, then the
question would be answered. However, recalling the conjecture of Stolz mentioned in
§4.3, finding manifolds whose image vanishes on the Witten genus is not an entirely
trivial matter.

Returning to questions like question 5.0.1, there are classes in ΩSU
∗ that deserve

some special attention. In [8], Conner and Floyd completely determined the torsion
of ΩSU

∗ . They also describe, quite explicitly, the torsion elements themselves:
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Theorem 5.0.4. (Conner and Floyd, [8, pg. 69]) Consider the forgetful homomor-
phism

α : ΩSU
∗ → ΩU

∗ ,

and also
∂ := αδ : ΩU

∗ → ΩU
∗ .

The image of α contains the image of ∂. There exist closed SU-manifolds, W 8k with
k ≥ 1, such that

Im(α)/Im(δ) ∼= Z/2[W 8k].

Every torsion element of ΩSU
∗ is of the form

[V 8k × Ŝ]

or
[V 8k × Ŝ × Ŝ]

where V 8k is a polynomial in the W 8k with coefficients 0 or 1.

Furthermore, they provide a characterization of the W 8k:

Theorem 5.0.5. The W 8k in theorem 5.0.4 are characterized by:

1. W 8 has odd Todd genus.

2. If k 6= 2j, then s2k,2k(c1, ..., c4k)[M
8k] is odd.

3. If k = 2j for some j, then sk,k,k,k(c1, ..., c4k)[M
8k] is odd.

As we noted in §3.2, the non-trivial element in ΩSU
2 can be represented by a

non-singular algebraic variety. So, if we could find algebraic representatives for the
W 8k, we would be able to represent every torsion element in ΩSU

∗ by a non-singular
algebraic variety. Therefore, we can consider the following question:

Question 5.0.6. Can we represent torsion elements in ΩSU
8k+2 with non-singular al-

gebraic varieties?

Finally, it would be nice to see an answer to the following:

Question 5.0.7. What obstruction to algebraicity is obtained by putting an SU-
structure on a stably complex manifold?

Since, as we observed in §3.1, every SU -manifold is also a stably complex manifold,
we have from theorem [24] that every SU -manifold is complex cobordant to a non-
singular algebraic variety. The author would very much like to understand what
aspect of the SU -structure prevents extending this property to SU -cobordism.

Copyright c© John E. Mosley, 2016.
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A The s-class

A.1 What’s in a name?

One of the most frequently used characteristic classes in the study of cobordism
theory is what we’ve called the s-class. This class, which detects when a manifold
is indecomposable, appears in virtually every reference given in this thesis, and in
many others. However, perplexingly, it does not seem to have an accepted name in
the literature.

Wilfong, in [42], calls these numbers ‘Milnor numbers’, due to the frequency of
their use in his work. Milnor has attributed this number to Thom [25]. Thom, on the
other hand, attributes the numbers to Pontryagin [39]. Wall in [40] also attributes
these numbers to Pontryagin. Stong, chooses different naming conventions, and calls
them both ‘Chern numbers’ [37, pg. 259] and, as we do here, s-numbers [37, pg. 263].

In [26, pg. 189], the s-number is not named explicitly, but Milnor says more in-
formation is available in Percy Macmahon’s Combinatory Analysis . In that volume,
Macmahon credits the polynomials that define the s-numbers to Albert Girard, and
gives reference to his 1629 paper Invention Nouvelle en L’Algebre.

A.2 Results on the s-number of Certain Special Unitary Manifolds

While working to directly emulate the proof of theorem 2.2.2 using SU -manifolds
we discovered an interesting number-theoretic problem. The minimal value of the
s-number for SU -manifolds is given in [37, pg. 262]. We wondered if the greatest
common divisor of the s-numbers of manifolds

V 2n−2 = δ[CP i1 × CP i2 × · · · × CP ik ],

where δ is the homomorphism given in §3.1 and I = {i1, . . . , ik} is a partition of n
other than {1, (n − 1)}, would match this value. It is easy to see that s-numbers
of the V 2n−2’s is a multiple of a multinomial coefficient. So, we were left with this
number-theoretic problem regarding the greatest common divisors of certain multino-
mial coefficients, which, although eventually unnecessary for the work of this thesis,
turned out to provide some interesting results in and of itself1.

We will denote the set of all partitions of n by P (n), and the set of all partitions
with parts of size at most n− 2 as P̂ (n). A generic partition contained in P̂ (n) will
be denoted σ ∈ P̂ (n).

1This section of the appendix appears in [27].
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Definition The multinomial coefficient
(

n
σ1,σ2,...,σt

)
is defined by

(x1 + x2 + ...+ xt)
n =

∑
(σ1,σ2,...,σt)∈P (n)

(
n

σ1, σ2, ..., σt

)
xσ11 x

σ2
2 ...x

σt
t .

It will occasionally be convenient to denote the multinomial coefficient
(

n
σ1,σ2,...,σt

)
associated to the partition σ = (σ1, σ2, ..., σt) of n by

(
n
σ

)
.

Definition The p-adic expansion of n is the unique expansion n =
∞∑
i=0

aip
i with

0 ≤ ai ≤ p− 1.

Definition The p-adic order of n, denoted νp(n), is the largest power k of p such

that pk|n.

Main Result of the Appendix

The goal of this section of the appendix is to prove the following:

Proposition A.2.1.

gcd
σ∈P̂ (n)

(
n

σ

)
=


p if n = ps

q if n = qt + 1

p · q if n = ps and n = qt + 1

1 else

Now, recall that (
n

σ

)
=

(
n

σ1, σ2, ..., σt

)
=

n!

σ1!σ2!...σt!
.

So, our goal will be to determine when we can find, for each fixed prime p < n, a
partition σ ∈ P̂ (n) with

νp(σ) := νp(σ1!) + νp(σ2!) + ...+ νp(σt!) = νp(n!).

First, let’s recall from [22], the value of νp(n!).

Theorem (Legendre, 1808). νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
.

We will also use the following two corollaries of this theorem:

Corollary A.2.1. Let n = a0 + a1p+ a2p
2 + ...+ asp

s be the p-adic expansion of n.
Then,

νp(n!) = a1 · νp(p!) + a2 · νp(p2!) + ...+ as · νp(ps!).
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Proof. We begin with the formula in Legendre’s theorem, and replace n by its p-adic
expansion.

νp(n!) =
∞∑
i=1

⌊
n

pi

⌋
=
∞∑
i=1

⌊
a0 + a1p+ a2p

2 + ...+ asp
s

pi

⌋
.

Expanding the sum, we get

(a1 + a2p+ ...+ asp
s−1) + (a2 + a3p+ ...+ asp

s−2) + ...+ (as−1 + asp) + (as)

= a1 + a2(1 + p) + a3(1 + p+ p2) + ...+ as(1 + p+ ...+ ps−1)

=
s∑
i=1

ai

i−1∑
j=0

pj

=
s∑
i=1

ai

i∑
j=1

⌊
pi

pj

⌋
= a1 · νp(p!) + a2 · νp(p2!) + ...+ as · νp(ps!).

Corollary A.2.2. νp(p
m!) = 1 + p · νp(pm−1!) for all m ≥ 1.

Proof. Again, we begin with the formula in Legendre’s theorem, apply a few elemen-
tary algebraic operations, and mathematical induction.

νp(p
m!) =

∞∑
i=1

⌊
pm

pi

⌋
=

m∑
i=1

⌊
pm

pi

⌋

= 1 +
m−1∑
i=1

⌊
pm

pi

⌋

= 1 + p ·
m−1∑
i=1

⌊
pm−1

pi

⌋
= 1 + p · νp(pm−1!).

We will also make use of the following proposition:

Proposition A.2.2. Suppose n = ps or n = qt + 1, then p (respectively, q) divides(
n
σ

)
for every σ ∈ P̂ (n).
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Proof. For brevity, we prove only the case that n = ps. The case that n = qt + 1 is
proved similarly.

Suppose that n = ps, and let σ ∈ P̂ (n). For each part σi of σ we can consider its
p-adic expansion:

σi = ai,0 + ai,1p+ ...+ ai,(s−1)p
s−1.

Note that since n = ps, no p-adic expansion of any part of σ ∈ P̂ (n) has non-zero
coefficient on the ps term. Also, since

n = ps = σ1 + σ2 + ...+ σf

= (a1,0+a1,1p+...+a1,(s−1)p
s−1)+(a2,0+a2,1p+...+a2,(s−1)p

s−1)+...+(af,0+af,1p+...+af,(s−1)p
s−1)

= (a1,0 + ...+ af,0) + (a1,1 + ...+ af,1)p+ ...+ (a1,(s−1) + ...+ af,(s−1))p
s−1

we can observe that a1,(s−1) + ...+ af,(s−1) is at most p.

Now we observe the following two cases. If a1,(s−1) + ...+ af,(s−1) = p, then we are
in the case presented in Corollary A.2.2, and we have that

p · νp(ps−1!) < νp(p
s!).

So, p|
(
n
σ

)
.

On the other hand, if a1,(s−1) + ...+ af,(s−1) < p, then there is some 0 < j < s− 1
for which the sum a1,j + ...+ af,j > 1, and it follows from Corollary 2 that

νp(σ) ≤ p · νp(ps−2!) + (p− 1) · νp(ps−1!) < p · νp(ps−1!) < νp(p
s!).

So, pk|
(
n
σ

)
for some k ≥ 2.

Therefore, p divides
(
n
σ

)
for every σ ∈ P̂ (n).

Finally, define for each p the p-adic partition of n to be

σp(n) :=

 ps, ..., ps︸ ︷︷ ︸
as entries

, ps−1, ..., ps−1︸ ︷︷ ︸
as−1 entries

, ..., p, ..., p︸ ︷︷ ︸
a1 entries

, 1, ..., 1︸ ︷︷ ︸
a0 entries

 .

Proof of Proposition A.2.1. We are now ready to prove the main result of the ap-
pendix. The goal, again, is to determine when we can find, for each prime p < n, a
partition of n whose associated multinomial coefficient is not divisible by p.

First, suppose that n is neither a prime power nor one more than a prime power.
It follows from Corollary A.2.1 that for each prime p < n, p -

(
n

σp(n)

)
. Since, for

each prime p < n, we have a multinomial coefficient not divisible by p, the greatest
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common divisor of multinomial coefficients over all partitions in P̂ (n) is 1.

On the other hand, suppose that n = ps or n = qt + 1. Then, we have that
σp = (ps) or σq = (qt, 1). Note that these partitions are not in P̂ (n). Let’s define
instead

σ̂p(n) :=

ps−1, ..., ps−1︸ ︷︷ ︸
p entries

 ,

and

σ̂q(n) :=

qt−1, ..., qt−1︸ ︷︷ ︸
q entries

, 1

 .

It follows from Corollary A.2.2 that p|
(

n
σ̂p(n)

)
, but p2 -

(
n

σ̂p(n)

)
, and from Propo-

sition A.2.2 that p|
(
n
σ

)
for every σ ∈ P̂ (n). Similarly, q|

(
n

σ̂q(n)

)
, but q2 -

(
n

σ̂q(n)

)
, and

q|
(
n
σ

)
for every σ ∈ P̂ (n). So, if n = ps or n = qt + 1 we can consider the multino-

mial coefficient associated to the r-adic partition for any prime, r, less than n − 1,
and σ̂p(n) (respectively, σ̂q(n)). Then, the greatest common divisor of multinomial

coefficients over all partitions in P̂ (n) is p (respectively, q).

Finally, if n = ps and n = qt + 1, we can consider the multinomial coefficient
associated to the r-adic partition for any prime, r, less than n− 1, σ̂p, and σ̂q. This
gives that the greatest common divisor of multinomial coefficients over all partitions
in P̂ (n) is p · q.

Further Refinement and Interesting Connections

The penultimate case stated in Proposition A.2.1, when n = ps = qt + 1, is of
particular interest. Of course, if ps = qt + 1, then ps − qt = 1. Solutions to this
equation are the subject of Eugène Catalan’s famous conjecture from 1844 that was
proved by Preda Mihăilescu in 2004 [23]:

Theorem (Mihăilescu, 2004, conj. Catalan, 1844). For p, q prime, and s, t >
1, the Diophantine equation ps − qt = 1 admits only one solution. In particular,
32 − 23 = 9− 8 = 1.

We note, however, that there are other solutions when either s or t is 1. In
particular, if s = t = 1, we have that

31 − 21 = 1.

If s = 1 with t > 1, we have that p1 = qt + 1 must be odd, since if p = 2, qt ≤ 1.
So, p must be an odd prime, and q = 2. Primes of this form, p = 2t + 1, are called
Fermat primes . Some examples of Fermat primes are

5 = 22 + 1,
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17 = 24 + 1,

257 = 28 + 1,

and
65537 = 216 + 1.

In fact, this list, together with the case 3 = 21 + 1 is the complete list of known
Fermat primes.

Conversely, if t = 1 with s > 1, we have that ps = q1 + 1 must be even, since if
q = 2, ps = 3, so p = 3 and s = 1. So, q must be an odd prime, and p = 2. Primes
of this form, q = 2s − 1, are called Mersenne primes . Some examples of Mersenne
primes are

7 = 23 − 1,

31 = 25 − 1,

and
127 = 27 − 1.

There are currently 48 known Mersenne primes, the largest of which is 257885161 − 1.

Now we can observe the following refinement of Proposition A.2.1. It is interesting
to note that it is currently unknown if there are infinitely many examples satisfying
cases 3 and 4 of this corollary.

Corollary A.2.3.

gcd
σ∈P̂ (n)

(
n

σ

)
=



p if n = ps

q if n = qt + 1

2 · q if n = ps = qt + 1 and n even

2 · p if n = ps = qt + 1 and n odd

1 else

Copyright c© John E. Mosley, 2016.
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