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ABSTRACT OF THESIS

 

 

EFFECTS OF MOUNTAINTOP REMOVAL MINING ON POPULATION 
DYNAMICS OF STREAM SALAMANDERS 

Mountaintop removal mining (MTR) is a notorious stressor of stream ecosystems 
in the Central Appalachians. Valley fills (VF) lead to reduced occupancy, abundance, and 
species richness of stream salamanders. Multiple factors may be responsible for these 
reductions, but specifically habitat fragmentation and degradation may reduce 
colonization rates and increase local extinction rates. From 2013-2015, repeated counts of 
salamanders were conducted in stream reaches impacted by MTR/VF and compared to 
counts in reference reaches to answer the question: do stream salamander population 
dynamics differ between stream reaches impacted by MTR/VF and reference stream 
reaches? I also investigated dynamics of stream habitat using measures relevant to stream 
salamander persistence. Accordingly, I examined number of cover objects, percent 
detritus, hydroperiod, and specific conductance. From the salamander capture data, 
colonization and survival probabilities were lower in MTR/VF reaches than reference 
reaches. MTR/VF reaches also had fewer cover objects, higher percent detritus, constant 
stream flow, and elevated specific conductance. Although specific conductance was 
increased in MTR/VF reaches, it was not strongly correlated with colonization and 
survival. I suggest reduced rates of colonization and survival in MTR/VF stream reaches 
are driven by inhibited dispersal and reduced individual survival due to degraded 
terrestrial and aquatic environments. 
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salamander 
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CHAPTER 1: INTRODUCTION 

Species’ distributions and abundances vary spatially and temporally, and the 

demographic processes responsible for this variation include colonization and extinction. 

Colonization, which quantifies the probability than an unoccupied area becomes 

occupied, is closely linked to movements of individuals (MacKenzie et al. 2003). 

Extinction (or conversely survival) highlights reductions in site occupancy across 

landscapes, that is, the probability that an occupied site becomes unoccupied over a time 

period (MacKenzie et al. 2003). Both colonization and extinction are indicative of 

population persistence; these vital rates can be greatly influenced by both abiotic (e.g., 

resource availability, Tilman 1993) and biotic conditions (e.g., competition, Comont et al. 

2014). In particular, fragmented landscapes often have reduced colonization rates because 

they may be resistant to dispersal (Gamble et al. 2007), whereas stressors that deteriorate 

abiotic conditions can increase the probability of extinction (Schrott et al. 2005).  

 In Central Appalachia, mountaintop removal mining (MTR) represents the 

dominant form of land-cover change and has led to the deterioration of freshwater and 

terrestrial ecosystems (Bernhardt and Palmer 2011, Wickham et al. 2013). Mountaintop 

removal mining involves the extraction of shallow coal seams via removal of overlain 

geologic material (Palmer et al. 2010). Overburden material or spoil (i.e. unconsolidated 

rock) is often disposed into adjacent valleys, burying streams and forming valley fills 

(VF) (Palmer et al. 2010, Bernhardt and Palmer 2011). Unweathered rock in VFs alters 

downstream water chemistry (Lindberg et al. 2011, Bernhardt et al. 2012, Griffith et al. 

2012). For example, elevated specific conductance in MTR/VF stream reaches, a result of 

high ion concentrations, is frequently above the Central Appalachian Ecoregion’s aquatic 
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benchmark of 300 μS/cm (Ecoregion 69; U.S. EPA 2011). MTR/VF landscapes also 

display altered hydrology (Griffith et al. 2012) due decreased infiltration and reduced 

evapotranspiration, which in turn increase discharge of MTR/VF streams (Messinger and 

Paybins 2003, Negley and Eshleman 2006). Peak flow is increased during large storm 

events compared to unmined streams (Messinger and Paybins 2003). Furthermore, 

MTR/VF streams often have stream flow in normally dry periods (Messinger and Paybins 

2003). In addition to alterations to water quality and hydrology, MTR/VF landscapes 

contain widespread habitat fragmentation of the terrestrial environment (Wickham et al. 

2013). Native vegetation is typically slow to recolonize the area, likely due to compaction 

required by the Surface Mining Control and Reclamation Act (Office of Surface Mining 

1977) as well as thin topsoil and the prevalence of nonnative invasive plant species 

(Angel et al. 2005, Zipper et al. 2011).  

Stream-breeding salamanders are common components of Central Appalachia, 

and populations tend to exhibit relatively stable occupancy due to high adult survival and 

moderately long life spans (2-10 years; Organ 1961, Danstedt 1975, Green 2003, Lowe 

2003). Populations tend to have the highest densities in watersheds with undisturbed 

riparian zones (Willson and Dorcas 2003, Nowakowski and Maerz 2009). In disturbed 

areas, however, stream salamander populations often exhibit altered dynamics. For 

example, stream salamander populations have reduced occupancy after urbanization 

(Price et al. 2011). In preliminary studies within MTR/VF stream reaches, stream 

salamander populations have shown reduced occupancy, abundance, and species richness 

compared to reference streams (Wood and Williams 2013a, Muncy et al. 2014, Price et 

al. 2016). However, multi-year studies of stream salamander populations within MTR/VF 



3 
 

stream reaches have yet to be published. Multiple years of data allow for estimations of 

population persistence that are not possible from single-year studies. 

Using count data from three consecutive years, I estimated colonization and 

survival probabilities for five stream salamander species within MTR/VF stream reaches 

and reference stream reaches, and I examined habitat dynamics that may drive these 

processes. My objectives were to 1) determine if colonization and survival probabilities 

for stream salamander populations differ between site types (MTR/VF and reference 

stream reaches) and among species and life stages, and 2) differentiate relevant habitat 

conditions between site types that may influence these vital rates, with particular focus on 

specific conductance. For the first objective, I hypothesized that colonization and survival 

probabilities would be lower in MTR/VF stream reaches than reference stream reaches as 

a result of limited patch connectivity and hydrological changes. For the second objective, 

in relation to specific conductance, I hypothesized that because of altered hydrology, 

MTR/VF stream reaches would show consistently greater monthly and yearly specific 

conductance and more monthly and yearly fluctuation of specific conductance.  



4 
 

CHAPTER 2: METHODS 

Location 

I conducted salamander surveys in 23 intermittent, headwater streams in Breathitt 

and Knott Counties, southeastern Kentucky, USA (see Table 2.1, Figure 2.1). Streams 

were categorized by site type; those that had VF (n=11) were classified as MTR/VF, and 

the remainder (n=12) were considered reference. The MTR/VF streams were within the 

reclaimed Laurel Fork Surface Mine, active from the late 1990’s to early 2000’s and 

released from bond in November 2007. Dominant vegetation species on the landscape 

were autumn olive (Elaeagnus umbellata), sericea lespedeza (Lespedeza cuneata), tall 

fescue (Schedonorus arundinaceus), Virginia pine (Pinus virginiana), black locust 

(Robinia pseudoacacia), and white oak (Quercus alba) (Fritz et al. 2010). Reference 

streams were in the main block of Robinson Forest, a mixed mesophytic, second-growth 

forest located northeast of Laurel Fork Surface Mine. Prevalent vegetation in Robinson 

Forest included Eastern hemlock (Tsuga canadensis), white oak (Quercus alba), chestnut 

oak (Q. prinus), and tulip poplar (Liriodendron tulipifera) (Phillippi and Boebinger 

1986). For more site details, see Muncy et al. (2014) and Price et al. (2016). 

In 2013, Muncy et al. (2014) delineated 10-meter reaches within which to sample 

for salamanders. Ten meters was the desired stream length in order for salamander 

capture data to be comparable to other stream salamander studies in the eastern U.S. (e.g., 

Grant et al. 2009, Price et al. 2011). For MTR/VF streams, the reaches were located 

downstream of valley fills; locations of reference reaches were based on similarity to 

MTR/VF reach widths and depths. Due to variable microhabitat usage by stream 
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salamander species (Petranka 2010), chosen stream reaches contained riffle, run, and pool 

microhabitats to promote detections of multiple salamander species. 

 

Data Collection 

Stream reaches were sampled three times per year from 2013-2015 

(approximately monthly from April through June) at base flow during daylight hours. 

Active searches, consisting of overturning cover objects and sorting through detritus, 

were constrained to 0.5 man hours within the stream. I also conducted surveys in the 

riparian zone adjacent to streams; duration of these surveys was 0.25 man hours, and my 

efforts focused on searching under cover objects and detritus within 1 m from the wetted 

stream width. Captured individuals were counted and classified by species and life stage: 

larvae or adult (i.e. post-metamorphosis). I also recorded visually-detected salamanders 

that escaped capture during the sampling period. I released all individuals into the stream 

after recording data. 

Before each sample, I documented multiple site-specific and visit-specific 

measures: water temperature (°C, using Max/Min Digital Thermometer©), air 

temperature (°C) and wind speed (mph, using Kestrel 2500 Pocket Weather Meter©), 

percent cloud, turbidity, average stream width (cm) and depth (cm) at 5-meter intervals, 

and date of last precipitation (from Monthly Climatological Summary at 

Kymesonet.org/historical_data.php). Once per year, habitat measurements at each stream 

reach were recorded, including substrate composition (using categories described in Jung 

et al. 2004) and number of cover objects (logs ≥8 cm and rocks ≥15 cm) within the 

stream reach. I collected 50 mL of water from the 10-meter transects in sterile, conical 
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centrifuge tubes during each sampling event and monthly from July 2015-March 2016. 

Samples were taken to the Forestry Hydrology Lab (Department of Forestry at the 

University of Kentucky) to be analyzed for specific conductance using standard 

procedures (Greenberg et al. 1992). 

To compare hydroperiod between site types, I arbitrarily selected six stream 

reaches of each site type in which to install Solinst LTC Levelogger Juniors (Model 

3001, LTC F30/M10©), set to record stream level (i.e. height of water column), 

conductivity, and water temperature every 15 minutes. Leveloggers were placed inside of 

a PVC tube with holes to allow for water flow. The PVC tube was secured to rebar in the 

stream, and the logger was also tied to a nearby tree with rope. Unless the topography did 

not allow, I set up the Leveloggers upstream of the stream reaches where I sampled (see 

Appendix D for pictorial illustration of set-up). I also installed a single Solinst 

Barologger Edge (Model 3001, LT F5/M1.5©) at a weather station in each site type; 

these recorded barometric pressure (kPa) every 15 minutes, which was necessary so that 

Levelogger readings could be compensated for atmospheric barometric pressure. I 

uploaded Levelogger and Barologger data monthly and accumulated data from March 

2015 through December 2015. 

 

Habitat Analysis 

To analyze habitat conditions between site types, I first investigated specific 

conductance from the water samples by running a mixed model (repeated measures 

ANOVA) using the proc mixed command in SAS (version 9.3) to compare site type-

specific means and variation from 1) May 2013, May 2014, and May 2015, and 2) April 
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2015-March 2016. Assumptions of the model are normality, homogeneity, and 

independence (SAS Library 1997). For predictors, I used site type, year (for analysis 1, 

month for analysis 2), and an interaction term of site type and year (or month). The 

interaction term was included to test for dependence between predictors. I ran a similar 

mixed model to compare site type-specific means and variation for 1) percent detritus of 

stream substrate in 2013, 2014, and 2015, and 2) number of cover objects (logs ≥8 cm 

and rocks ≥15 cm) within the stream reaches in 2013, 2014, and 2015. For predictors, I 

used site type, year, and an interaction term of site type and year. For all models, 

protected LSD post-hoc t-tests were conducted on significant interactions (Full SAS code 

in Appendix C).  

Hydroperiod is another aspect of habitat that I compared between site types and 

could specifically relate to salamander survival. Using Solinst’s Levelogger 4.0.3 

software©, I compensated Levelogger level readings with the Barologger atmospheric 

barometric pressure readings. I then calculated hydroperiod (percent of time water is 

present in the stream bed) using two methods, which each have limitations. First, I 

classified compensated level readings greater than zero as flowing water. However, since 

I discovered inaccuracies in some level readings, I also calculated hydroperiod using the 

Levelogger conductivity readings, classifying readings greater than zero as flowing water 

since conductivity is only recorded when the logger sensor is submersed. Both 

calculations were administered for the entire time that loggers were deployed (March to 

December 2015) as well as for the growing season (April 15 to October 15, 2015) for 

comparison since headwater streams tend to be intermittent (Datry et al. 2014). For all 

analyses, I calculated the mean hydroperiod and standard deviation for each site type. 
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Dynamic Modelling 

I used dynamic occupancy modelling to evaluate my hypothesis regarding 

salamander population dynamics. Using a hierarchical framework, dynamic occupancy 

models take into account the actual versus realized states as well as spatio-temporal 

interactions (Royle and Kéry 2007). For this study, I used a hierarchical, dynamic 

occupancy model to examine species-specific initial occupancy, abundance, colonization, 

and survival. The model accounted for imperfect detection, a factor in detection surveys 

that, if ignored, could result in false negatives (i.e. an occupied site classified as 

unoccupied; Gu and Swihart 2004, Royle 2006, Mazerolle et al. 2007). Multiple visits 

(n=3) to every transect each year allowed for calculation of detection probabilities, 

providing estimations of the accuracy of the occupancy calculations. Populations at each 

stream reach were assumed to be independent and closed each year, entailing that no 

individuals entered or exited the stream reaches within yearly sampling replications 

(Dorazio et al. 2013). 

I separated the salamander count data by life stage (i.e. larvae or adult) where 

possible for five stream salamander species. Due to few adult captures, I did not separate 

life stage for the spring salamander (Gyrinophilus porphyriticus) or the northern red 

salamander (Pseudotriton ruber). I had sufficient individuals to separate southern two-

lined salamander (Eurycea cirrigera) adult and larvae. For the northern dusky salamander 

(Desmognathus fuscus) and seal salamander (D. monticola), I analyzed adults separately 

but combined larvae into a single “Desmognathus larvae” category due to larval 

identification complications (a solution also used in Price et al. 2016; see Appendix A for 

species-specific encounter matrices.) 



9 
 

In the model, occupancy (ψ) was considered a Bernoulli random variable (e.g., 

MacKenzie et al. 2003) that measures the probability that species S will occupy site s. 

Occupancy is denoted with a 1, whereas non-occupancy is 0. If site s was occupied in the 

first year, initial occupancy is, mathematically: 

ψ , , , 1     Eq. 1 

As seen in Equation 2, I investigated how site type and specific conductance 

affect occupancy. MTR/VF stream reaches have the MTRs covariate equal to 1, and 

reference stream reaches have MTRs=0. Specific conductance was only analyzed for 

MTR/VF stream reaches; specific conductance in MTR/VF stream reaches was 

consistently elevated such that analysis with reference stream reaches would not provide 

beneficial information as to the potential effect on salamander occupancy parameters. 

, , 1 , , ,   Eq. 2 

Abundance given occupancy for species S at site s in year y (AS,s,y) was modeled 

as a truncated Poisson distribution. Rate of abundance ( , , ) was modeled on a log scale 

with site type and specific conductance: 

, , , , 1
, ,

, ,

!

, ,

, ,
, 1,2,3,…  Eq. 3 

log , , , 1 , , ,   Eq. 4 

Colonization (γ) is a measure indicating the probability that species S is present at 

site s in year y +1 but did not occupy site s in year y (Eq. 5). Survival (Φ) is a measure 

indicating the probability that species S occupies site s in year y +1 given that it occupied 

site s in year y (Eq. 6). Site type and specific conductance were also used as covariates 

for colonization and survival (as shown in Eq. 7 for survival): 
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, , , , 1| , , 0    Eq. 5 

, , , , 1| , , 1    Eq. 6 

, , , 1 , , ,   Eq. 7 

The detection model indicates that individuals from species S occupying site s in 

year y were detected on visit v independently with probability ( , , , ). Given abundance, 

the number of detections ( , , , ) follows a binomial distribution: 

, , , ~ 	 , , , , , ,     Eq. 8 

Date of last precipitation (number of days since last precipitation event, Precip) 

and number of cover objects (Cover) were included in the model since they dictate 

salamander activity and thus may affect salamander detection (Orser and Shure 1975, 

Kleeberger 1985, Connette et al. 2011). These variables for each visit v were integrated 

into the model as covariates on the logistic scale: 

, , , , , , , ,   Eq. 9 

The model used a Bayesian framework, applying Markov chain Monte Carlo 

(MCMC) using the program JAGS in R (version 2.15.1©; R Development Core Team 

2010; see Appendix B for full code). Non-informative priors were used, providing little 

information about the posterior distribution. For each parameter, I computed the mean 

and species-specific values for each site type, and I report the median and 95% credible 

intervals. I also calculated posterior distributions for each parameter (means and species-

specific) with 95% credible intervals.  
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Table 2.1 Coordinates for Stream Reaches. Garmin eTrex 20© was used to obtain 

Northern and Western values. MTR/VF stream reaches are located below valley fills on 

the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson 

Forest. 

Stream Reach Site Type Northern Western 
Bee Branch Far MTR/VF 37.43885 -83.17313 
Bee Branch Near MTR/VF 37.43753 -83.17129 
Big Hollow MTR/VF 37.42157 -83.1741 
Hickory Log MTR/VF 37.4238 -83.17381 
Spice MTR/VF 37.42444 -83.18521 
Stillrock MTR/VF 37.41773 -83.16781 
Turkey MTR/VF 37.42431 -83.18331 
Unnamed White Oak Left MTR/VF 37.41414 -83.16862 
Unnamed White Oak Right MTR/VF 37.41429 -83.16919 
Wharton MTR/VF 37.42519 -83.17512 
White Oak MTR/VF 37.41608 -83.16692 
Boardinghouse Reference 37.4619 -83.15867 
Bucklick Reference 37.46441 -83.13272 
Cole's Fork A Reference 37.46568 -83.1198 
Falling Rock A Reference 37.47327 -83.13432 
Falling Rock B Reference 37.47496 -83.13451 
Field Branch A Reference 37.47064 -83.15401 
Goff Reference 37.48154 -83.12122 
Little Millseat A Reference 37.47561 -83.15632 
Little Millseat B Reference 37.47805 -83.16625 
Miller Reference 37.4871 -83.12101 
Mulberry Reference 37.46517 -83.1496 
Tome Reference 37.47266 -83.14204 
  



12 
 

Figure 2.1 Site Map. Stream reaches for this study are located in Breathitt and Knott 

counties, Kentucky. MTR/VF stream reaches are located below valley fills on the 

reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson 

Forest. This map was published in Price et al. (2016). 
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CHAPTER 3: RESULTS 

Habitat Dynamics 

When comparing physical habitat of stream reaches from the two site types over 

three years, there was a significant interaction between site type and year for the three 

year comparison of percent detritus (F(2,42)=4.98, p=0.0115; Figure 3.1). This indicates 

that site type and year are not independent of each other, and thus each site type per year 

combination must be analyzed for differences. MTR/VF stream reaches had higher 

percent detritus than reference streams for every year but only significantly so in 2015 

(p=0.0084; Figure 3.1). Number of cover objects did not have a significant interaction 

between site type and year (F(2,42)=0.46, p=0.6358; Figure 3.2). However, a greater 

number of cover objects were found within reference stream reaches in all three years 

compared to MTR/VF stream reaches (Figure 3.2). 

Analysis of specific conductance of water samples from May 2013, 2014, and 

2015 showed a significant interaction between site type and year (F(2,42)=24.04, 

p<0.0001; Figure 3.3). MTR/VF stream reaches had significantly greater mean specific 

conductance than reference stream reaches for all three years (p<0.0001; Figure 3.3; see 

Appendix E.01.1 for all p-values). Mean specific conductance of MTR/VF stream 

reaches also varied significantly among years (p<0.05), while mean specific conductance 

of reference stream reaches was statistically the same for all three years (p>0.05; Figure 

3.3; see Appendix E.01.2 for all p-values). Similarly, for April 2015-March 2016 water 

samples, there was a significant interaction between site type and month 

(F(11,231)=11.70, p<0.0001; Figure 3.4 ). For every month, MTR/VF stream reaches had 

significantly greater mean specific conductance than reference stream reaches (p<0.0001; 
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Figure 3.4; see Appendix E.01.3 for all p-values). Reference specific conductance was 

not significantly different among months (p>0.05), but MTR/VF stream reaches 

demonstrated significant month-to-month variation (p<0.05; Figure 3.4; see Appendix 

E.01.4 for all p-values). Mean MTR/VF specific conductance ranged from 916.36 μS/cm 

(January 2016) to 1794.82 μS/cm (June 2015). In comparison, reference stream reaches 

had mean specific conductance below 60 μS/cm for all 12 months (Figure 3.4). 

Hydroperiod highlighted further differences between MTR/VF and reference 

stream reaches (Table 3.1). Both level and conductivity calculations showed almost 

constant flow for MTR/VF stream reaches in both time spans. Conversely, reference 

stream reaches had flowing water less than 40% of the time spans. For the growing 

season, reference stream reaches had an average hydroperiod of 22.87 (±27.40 SD) using 

the levels calculation and 34.29 (±18.91 SD) using the conductivity calculation. Similar 

hydroperiods were calculated for reference sites from March through December 2015, 

with an average hydroperiod of 22.54 (±26.79 SD) using the levels calculation and 26.94 

(±16.58 SD) using the conductivity calculation (See Appendix E.02 for site-specific 

calculations). 

 

Salamander Dynamics 

From the nine salamander sampling sessions in 2013 through 2015, a total of 

2,303 individuals from the focal five species were detected. Of the 636 detected in 2013, 

only 76 were in MTR/VF stream reaches. Similarly, 52 of 817 and 98 of 850 salamanders 

were found in MTR/VF stream reaches for 2014 and 2015 respectively. Eurycea 

cirrigera, D. fuscus, and D. monticola were the most abundant species in both site types. 
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There was an increase in D. fuscus adult detections from 2013 to 2015 in reference 

stream reaches (61 in 2013 to 164 in 2015) but not as large of an increase in MTR/VF 

stream reaches (18 in 2013 to 30 in 2015). For MTR/VF stream reaches, there was a 

noticeable increase in number of G. porphyriticus each year (2 in 2013 to 12 in 2015). I 

detected very few P. ruber in either site type, with a maximum of 37 individuals (2015) 

in reference stream reaches and 5 individuals (2013) in MTR/VF stream reaches per year 

(See Appendix E.03 for species-specific counts for each year). 

Neither number of cover objects (α = -0.08 (95% CI= -0.37 to 0.19)) nor last date 

of precipitation (α = 0.02 (95% CI= -0.17 to 0.22)) affected detection overall, with 

parameter differences close to zero and the 95% CI including zero (Figure 3.5). However, 

D. monticola adults (α = 0.32 (95% CI= 0.16 to 0.49)) and E. cirrigera adult (α = 0.19 

(95% CI= -0.01 to 0.38)) were detected more frequently with more cover objects; all 

other species were detected less frequently with more cover objects (Figure 3.6). 

Detection of D. fuscus adults (α = 0.15 (95% CI= 0.05 to 0.25)) and E. cirrigera adults (α 

= 0.28 (95% CI= 0.12 to 0.45)) increased with more time between the last precipitation 

event and the date of capture (Figure 3.6). 

Mean initial occupancy for all species and life stages was lower in MTR/VF 

stream reaches compared to reference stream reaches (Figure 3.7). The lowest initial 

occupancy estimate in the reference stream reaches was 0.63 (P. ruber), whereas the 

highest MTR/VF initial occupancy estimate was 0.48 (D. fuscus adults). Overall mean 

initial occupancy for MTR/VF stream reaches was 0.41 (95% CI= 0.23 to 0.60), 

compared to 0.91 (95% CI= 0.68 to 0.98) for reference stream reaches. Reference sites 

had an overall increase in initial occupancy (α = 2.64 (95% CI= 0.94 to 4.29); Figure 
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3.11). Pseudotriton ruber is the only species for which the effect on initial occupancy 

was not strong because the 95% confidence interval included zero (α = 1.19 (95% CI= -

0.52 to 3.33); Figure 3.12). Increases in specific conductance were correlated with a 

decrease in initial occupancy (α = -0.68 (95% CI= -1.81 to 0.22); Figure 3.13), but the 

effect is not strong overall or for any life stage except Desmognathus larvae (α = -1.13 

(95% CI= -3.85 to -0.09); Figure 3.14). 

Mean abundance was lower for all species and life stages in MTR/VF stream 

reaches than reference stream reaches (Figure 3.8). The highest mean abundance in 

reference stream reaches was 11.61 ((95% CI= 8.48 to 18.46), E. cirrigera larvae), 

whereas the highest mean abundance in MTR/VF stream reaches was 1.21 ((95% CI= 

0.85 to 1.80), D. fuscus adults). All species at reference stream reaches had mean 

abundances greater than 4, but all mean abundances at MTR/VF stream reaches were less 

than 2. Reference sites had an overall increase in abundance (α = 1.37 (95% CI= 0.92 to 

1.76); Figure 3.11), and the effect was strong overall and for every species (Figure 3.12). 

Increases in specific conductance were correlated with decreases in abundance (α = -0.19 

(95% CI= -0.47 to 0.18); Figure 3.13), but the effect was weak overall. Desmognathus 

fuscus was the only species for which the effect was strong (α = -0.47 (95% CI= -0.75 to 

-0.19); Figure 3.14). 

Mean colonization in MTR/VF stream reaches was lower than reference stream 

reaches for all species and life stage groups (Figure 3.9). In reference stream reaches, all 

species-specific mean colonization estimates were between 0.76 (95% CI= 0.42 to 0.97, 

P. ruber) and 0.88 (95% CI= 0.54 to 1.00, D. fuscus adults). Conversely, the highest 

estimated colonization probability for MTR/VF stream reaches was D. fuscus adults (0.27 
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(95% CI= 0.07 to 0.68)); the lowest was D. monticola adults (0.08 (95% CI= 0.00 to 

0.26)). Overall mean colonization of MTR/VF stream reaches was 0.17 (95% CI= 0.06 to 

0.40), compared to 0.82 (95% CI= 0.45 to 0.98) for reference stream reaches. Reference 

stream reaches were correlated with an increase in colonization (α = 3.16 (95% CI= 1.02 

to 5.62); Figure 3.11). The effect of site type was strong overall and for all species except 

G. porphyriticus (α = 2.71 (95% CI= -1.83 to 7.39)) and Desmognathus larvae (α = 3.01 

(95% CI= -1.43 to 7.71); Figure 3.12). Increases in specific conductance were correlated 

with a reduction in colonization (α = -0.33 (95% CI= -1.58 to 0.79); Figure 3.13), but the 

effect was weak overall and for all species (Figure 3.14). 

Average survival in MTR/VF stream reaches was lower than reference stream 

reaches for all species and life stage groups (Figure 3.10). Within MTR/VF stream 

reaches, E. cirrigera adults had the highest survival (0.82 (95% CI= 0.52 to 1.00)), 

whereas E. cirrigera larvae had the lowest survival (0.52 (95% CI= 0.13 to 0.82)). All 

species and life stages in MTR/VF stream reaches had survival below 0.85, whereas the 

lowest survival for reference stream reaches was 0.90 (95% CI= 0.55 to 0.98, P. ruber). 

Overall mean survival in MTR/VF stream reaches was 0.71 (95% CI= 0.45 to 0.93), 

compared to 0.95 (95% CI= 0.82 to 0.99) in reference stream reaches. Reference sites 

were correlated with increases in survival, although the effect was weak (α = 1.99 (95% 

CI= -0.11 to 3.72); Figure 3.11). Desmognathus fuscus adults (α = 2.01 (95% CI= 0.10 to 

3.84)), D. monticola adults (α = 2.69 (95% CI= 0.41 to 6.56)), and E. cirrigera larvae (α 

= 3.12 (95% CI= 1.12 to 5.77)) were the only species for which site type had a strong 

effect (Figure 3.12). Increases in specific conductance decreased survival (α = -0.01 (95% 
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CI= -1.25 to 1.01); Figure 3.13), although the effect was weak overall and for each 

species (Figure 3.14).
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Table 3.1 Hydroperiod Calculations. Mean hydroperiod (the percent of time stream reaches have flowing water) was calculated for 

two time periods: March through December 2015, and the growing season (April 15 through October 15, 2015). Two methods were 

used to calculate mean hydroperiod for each time period: Levelogger compensated level greater than zero indicated flowing water 

(Levels), and Levelogger conductivity readings greater than zero indicated flowing water (Conductivity). MTR/VF stream reaches are 

located below valley fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 

Units=percent of time with flowing water; SD= standard deviation. 

Site Type 
March-December April 15-October 15 

Levels Conductivity Levels Conductivity 
Mean SD Mean SD Mean SD Mean SD 

MTR/VF 100 0 97.33 4.88 100 0 96.83 7.40 
Reference 22.54 26.79 26.94 16.58 22.87 27.40 34.29 18.91 
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Figure 3.1 Mean In-Stream Detritus. From a repeated measures ANOVA, the interaction of site type and year was statistically 

significant (F(2,42)=4.98, p=0.0115). Letters show statistical significance; columns that do not share a letter are statistically different 

(p<0.05; protected LSD post-hoc t-tests). Lowercase letters are used for comparing reference stream reaches; uppercase letters are 

used for MTR/VF stream reaches. The asterisk indicates statistical significance (p=0.0084) between site types within 2015. Error bars 

show 95% confidence intervals. MTR/VF stream reaches are located below valley fills on the reclaimed Laurel Fork Surface Mine. 

Reference stream reaches are within Robinson Forest. 
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Figure 3.2 Mean Number of Cover Objects. From a repeated measures ANOVA, the interaction of site type and year was not 

statistically significant (F(2,42)=0.46, p=0.6358). Error bars show 95% confidence intervals. MTR/VF stream reaches are located 

below valley fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.3 Comparison of Specific Conductance from May 2013-2015. Columns show mean specific conductance from grab samples 

in May 2013, May 2014, and May 2015. From a repeated measures ANOVA, the interaction of site type and year was statistically 

significant (F(2,42)=24.04, p<0.0001). Letters show statistical significance; columns that do not share a letter are statistically different 

(p<0.05; protected LSD post-hoc t-tests). Lowercase letters are used for comparing reference stream reaches; uppercase letters are 

used for MTR/VF stream reaches. Asterisks indicate statistical significance (p<0.0001) between site types within a single year. Error 

bars show 95% confidence intervals. MTR/VF stream reaches are located below valley fills on the reclaimed Laurel Fork Surface 

Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.4 Monthly Mean Specific Conductance. Columns show mean specific conductance from monthly grab samples from April 

2015-March 2016. From a repeated measures ANOVA, the interaction of site type and month was statistically significant 

(F(11,231)=11.70, p<0.0001). Reference specific conductance was not significantly different across months (p>0.05); however, 

specific conductance between site types was statistically significant (p<0.0001) for every month (protected LSD post-hoc t-tests). 

Asterisks indicate significant differences (p<0.05) in specific conductance of MTR/VF stream reaches between successive months. 

Error bars show 95% confidence intervals. MTR/VF stream reaches are located below valley fills on the reclaimed Laurel Fork 

Surface Mine. Reference stream reaches are within Robinson Forest. 

0

400

800

1200

1600

2000

M
ea

n
 S

p
ec

if
ic

 C
o

n
d

u
ct

an
ce

 
(μ

S
/c

m
)

Month
Reference
MTR/VF

* * * * * *



 

24 

 
 

Figure 3.5 Posterior Distribution for Detection Covariates. This figure shows the mean effect of number of cover objects (logs ≥8 cm 

and rocks ≥15 cm) within 10-meter stream reaches and date of last precipitation (in relation to salamander sampling events) on 

salamander detection. Points are posterior means, and error bars show 95% credible intervals. 
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Figure 3.6 Species-Specific Posterior Distributions for Detection Covariates. These figures show the species-specific effects of 

number of cover objects (logs ≥8 cm and rocks ≥15 cm) within 10-meter stream reaches and date of last precipitation (in relation to 

salamander sampling events) on salamander detection. Points are posterior means, and error bars show 95% credible intervals. Groups 

are Desmognathus fuscus adults (DfA), D. monticola adults (DmA), Eurycea cirrigera adults (EcA), Gyrinophilus porphyriticus 

adults and larvae (Gp), Pseudotriton ruber adults and larvae (Pr), E. cirrigera larvae (EcL), and Desmognathus larvae (DuL). 
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Figure 3.7 Stream Salamander Initial Occupancy Estimates. This figure shows species-specific and mean initial occupancy estimates 

in reclaimed mountaintop removal mining with valley fills (MTR/VF) and second-growth forest (reference) stream reaches. Columns 

represent average initial occupancy, and error bars show 95% credible intervals. Groups are denoted as Desmognathus fuscus adults 

(DfA), D. monticola adults (DmA), Eurycea cirrigera adults (EcA), Gyrinophilus porphyriticus adults and larvae (Gp), Pseudotriton 

ruber adults and larvae (Pr), E. cirrigera larvae (EcL), and Desmognathus larvae (DuL). MTR/VF stream reaches are located below 

valley fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.8 Stream Salamander Abundance Estimates. This figure shows species-specific abundance estimates, given occupancy, for 

reclaimed mountaintop removal mining with valley fills (MTR/VF) and second-growth forest (reference) stream reaches. Columns 

represent average abundance, and error bars show 95% credible intervals. Groups are Desmognathus fuscus adults (DfA), D. 

monticola adults (DmA), Eurycea cirrigera adults (EcA), Gyrinophilus porphyriticus adults and larvae (Gp), Pseudotriton ruber 

adults and larvae (Pr), E. cirrigera larvae (EcL), and Desmognathus larvae (DuL). MTR/VF stream reaches are located below valley 

fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.9 Stream Salamander Colonization Estimates. This figure shows species-specific and mean colonization estimates for 

reclaimed mountaintop removal mining with valley fills (MTR/VF) and second-growth forest (reference) stream reaches. Columns 

represent average colonization, and error bars show 95% credible intervals. Groups are Desmognathus fuscus adults (DfA), D. 

monticola adults (DmA), Eurycea cirrigera adults (EcA), Gyrinophilus porphyriticus adults and larvae (Gp), Pseudotriton ruber 

adults and larvae (Pr), E. cirrigera larvae (EcL), and Desmognathus larvae (DuL). MTR/VF stream reaches are located below valley 

fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.10 Stream Salamander Survival Estimates. This figure shows species-specific and mean survival estimates for reclaimed 

mountaintop removal mining with valley fills (MTR/VF) and second-growth forest (reference) stream reaches. Columns represent 

average survival, and error bars show 95% credible intervals. Groups are Desmognathus fuscus adults (DfA), D. monticola adults 

(DmA), Eurycea cirrigera adults (EcA), Gyrinophilus porphyriticus adults and larvae (Gp), Pseudotriton ruber adults and larvae (Pr), 

E. cirrigera larvae (EcL), and Desmognathus larvae (DuL). MTR/VF stream reaches are located below valley fills on the reclaimed 

Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.11 Posterior Distribution for Site Type. This figure shows the mean effect of site type (second-growth forest (reference) 

stream reaches vs. reclaimed mountaintop removal mining with valley fills (MTR/VF) stream reaches) on initial occupancy, 

abundance, colonization, and survival estimates. Points are posterior means, and error bars show 95% credible intervals. Positive 

values indicate higher parameter estimates in reference stream reaches than in MTR/VF stream reaches. MTR/VF stream reaches are 

located below valley fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within Robinson Forest. 
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Figure 3.12 Species-Specific Posterior Distributions for Site Type. These figures show the species-specific effects of site type 

(second-growth forest (reference) stream reaches vs. reclaimed mountaintop removal mining with valley fills (MTR/VF) stream 

reaches) on occupancy dynamic estimates. Points are posterior means, and error bars show 95% credible intervals. Groups are 

Desmognathus fuscus adults (DfA), D. monticola adults (DmA), Eurycea cirrigera adults (EcA), Gyrinophilus porphyriticus adults 

and larvae (Gp), Pseudotriton ruber adults and larvae (Pr), E. cirrigera larvae (EcL), and Desmognathus larvae (DuL). MTR/VF 

stream reaches are located below valley fills on the reclaimed Laurel Fork Surface Mine. Reference stream reaches are within 

Robinson Forest. 
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Figure 3.12 (continued).  
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Figure 3.13 Posterior Distribution for Specific Conductance. This figure shows the mean effect of conductivity on initial occupancy, 

abundance, colonization, and survival estimates. Points are posterior means, and error bars show 95% credible intervals. 
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Figure 3.14 Species-Specific Posterior Distributions for Specific Conductance. These figures show the species-specific effects of 

conductivity on initial occupancy, abundance, colonization, and survival. Points are posterior means, and error bars show 95% 

credible intervals. Groups are Desmognathus fuscus adults (DfA), D. monticola adults (DmA), Eurycea cirrigera adults (EcA), 

Gyrinophilus porphyriticus adults and larvae (Gp), Pseudotriton ruber adults and larvae (Pr), E. cirrigera larvae (EcL), and 

Desmognathus larvae (DuL). 
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Figure 3.14 (continued). 
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CHAPTER 4: DISCUSSION 

I found that over a three year period, stream salamander populations in MTR/VF 

stream reaches had reduced initial occupancy, abundance, colonization, and survival 

probabilities compared to reference stream reaches. Site type influenced the occupancy 

parameters, with MTR/VF occupancy parameters generally reduced, as evidenced by the 

posterior distributions. Although the effect of specific conductance on the occupancy 

parameters was unclear from my analyses, MTR/VF stream reaches always had elevated 

monthly and yearly specific conductance. MTR/VF stream reaches also had increased 

percentage of detritus and fewer cover objects than reference stream reaches. The 

perennial nature of the MTR/VF stream reaches is yet another alteration from typical 

intermittent Appalachian streams. 

My data provide empirical evidence to Green (2003)’s claim that small stream-

dwelling amphibians maintain stable populations. From reference stream reaches, I had a 

consistent number of salamander detections each year as well as high initial occupancy 

and abundance. This was expected, as stream salamanders have shown high occupancy in 

forested streams in previous studies (Price et al. 2011, Muncy et al. 2014).  High 

colonization and survival estimates for reference stream reaches further reflect the 

stability of salamander populations in forested catchments. Even if local extinctions 

occur, my data suggest that recolonization rates are high and may allow for species 

recovery (Sjögren 1991, Hanski 1999). 

Stream salamander populations in MTR/VF stream reaches, on the other hand, 

show altered population vital rates. In particular, the low colonization estimates could 

signify disruptions to dispersal in MTR/VF streams. For D. fuscus and D. monticola, 
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juveniles are the dispersal agents, whereas adults are philopatric (Grant et al. 2010). 

Juveniles mostly use the terrestrial landscape to disperse (Grant et al. 2010); this out-of-

network dispersal is advantageous compared to in-network since it requires less distance 

to access nearby reaches (Macneale et al. 2005) and reduces extinction risk by increasing 

connectivity among reaches (Hill et al. 2002). In Grant et al.'s study (2010), D. fuscus and 

D. monticola individuals had similar dispersal probabilities, likely due to comparable life 

histories. In my study, both species had reduced colonization probabilities in MTR/VF 

stream reaches compared to reference stream reaches, although D. monticola had a 

pronounced lower estimate in MTR/VF stream reaches compared to D. fuscus. This 

suggests that Desmognathus juveniles of both species may be having difficulties 

dispersing overland to other headwater stream reaches in the MTR/VF landscape.  

Plethodontid salamanders have physiological limitations to dispersal, due to 

moisture and temperature requirements for respiration (Feder 1983), which may be 

exacerbated by reduced forest cover seen in the MTR/VF catchments (Reference 0.99 

(95% CI= 0.99 to 1.00), MTR/VF 0.25 (95% CI=0.12 to 0.38); Muncy et al. 2014). 

Reduced canopy cover often increases temperature and decreases soil moisture (Chen et 

al. 1999), which likely prevent terrestrial salamander populations from obtaining pre-

mining abundances on reclaimed MTR/VF land (Wood and Williams 2013b). 

Salamanders also have behavioral responses to changes in canopy cover, as dispersing 

Desmognathine salamanders avoid within-stream canopy gaps (Cecala et al. 2014). 

Dispersal limitations such as these could have contributed to low colonization of stream 

salamanders in MTR/VF stream reaches. 
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Conversely, reduced colonization in MTR/VF stream reaches may be a result of 

lack of local recruitment. In the MTR/VF stream reaches, all groups that included larvae 

(E. cirrigera larvae, Desmognathus larvae, P. ruber, and G. porphyriticus) had 

colonization below 0.25, indicating a less than 25% chance of recruitment. Even if a 

species was present in the stream below the stream reach and moved upstream to my 

sampling area (Lowe 2003, Lowe et al. 2008), there is little probability that larvae would 

be present the next year. On the other hand, larval salamanders had high probabilities 

(>0.75) of colonizing reference stream reaches where previously absent or undetected. 

Larvae in reference reaches, therefore, have much greater local recruitment compared to 

in MTR/VF reaches. 

Individual survivorship may be reduced in MTR/VF stream reaches, leading to 

low population survival and potentially low colonization if dispersers are not able to 

persist. Impacts to the aquatic environment, as analyzed in this study, may be especially 

relevant to individual survival. Eurycea cirrigera larval abundance decreases at detritus 

concentrations greater than 11.40% (Miller et al. 2007), and the mean detritus 

concentration in MTR/VF stream reaches was at least 15% all three years of this study. 

Lower abundance suggests a reduction in survival, in this case likely due to inadequate 

prey base. Macroinvertebrates, the main food supply for stream salamanders, are the key 

organisms that reduce in-stream detritus amounts (Webster 1983), and the high 

percentage of detritus within MTR/VF stream reaches may indicate a lack of 

macroinvertebrate taxa. Additionally, detritus tends to dissolve slower in MTR/VF stream 

reaches and is strongly correlated with specific conductance (Fritz et al. 2010). Similarly, 



39 

 

 
 

elevated levels of specific conductance are often correlated with low species richness and 

abundance of sensitive macroinvertebrates (Pond 2010, Pond 2012, Pond et al., 2014).  

The altered hydrological regime likely has consequences for salamander 

persistence. While a few intermittent streams have been known to become perennial due 

to effluent discharge, the ecological effects of this transformation are unknown (Datry et 

al. 2014). In this study, the lowest survival estimate was for E. cirrigera larvae. Eurycea, 

particularly first-year larvae, are unable to combat drift downstream (Johnson and 

Goldberg 1975). As a result of increased runoff, E. cirrigera larvae may be washed away 

to farther downstream reaches (Barrett et al. 2010). Reduced infiltration from compaction 

and reduction of forest cover in catchments are known to increase runoff in MTR/VF 

stream reaches (Negley and Eshleman 2006). Yearly flow at MTR/VF stream reaches, as 

indicated by the hydroperiod calculations, suggests that these stream channels could be 

affected by increased peak water flow at any time in the year and inhibit larval Eurycea 

survival in particular. 

Specific conductance did not have a strong correlation to colonization or survival, 

but the model analysis only considered the specific conductance variation within 

MTR/VF sites. Since mean specific conductance level in the MTR/VF stream reaches 

was consistently above the aquatic benchmark of 300 μS/cm in Central Appalachian 

Ecoregion (U.S. EPA 2011), individual survival may be so low as to not show any further 

effects due to specific conductance changes within MTR/VF stream reaches, even though 

known consequences of elevated specific conductance for amphibians include increased 

larval corticosterone levels and decreased survival (Karraker et al. 2008, Chambers 

2011). Hitt and Chambers (2014) estimated a threshold specific conductance between 600 
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and 1000 μS/cm for fish in West Virginia. Regional headwater fish have conductivity 

thresholds of 343 μS/cm (for blackside dace) and 261 μS/cm (Kentucky arrow darter), 

above which few individuals are found (Hitt et al. 2016). Future studies should similarly 

calculate threshold values for stream salamanders in order to better understand the 

potential effects of specific conductance on individual survival. 

From my data, it is evident that MTR/VF impacts not only the terrestrial and 

aquatic environments but also the persistence of stream salamanders on the landscape. If 

other MTR/VF stream reaches in the region are similar in habitat and water chemistry to 

my study stream reaches, stream salamander populations in MTR/VF stream reaches will 

decline unless steps are taken to ensure both structural and functional restoration of 

MTR/VF streams (Bernhardt and Palmer 2011). The Office of Surface Mining 

Reclamation and Enforcement recently proposed the Stream Protection Rule (2015), in 

compliance with the Clean Water Act (Environmental Protection Agency 1972) and 

SMCRA (Office of Surface Mining 1977), which may aid in future restoration processes. 

Recommended regulations in the proposed Rule include broader stream buffer zones and 

better overall protection and restoration of headwater streams (Office of Surface Mining 

Reclamation and Enforcement 2015). Future MTR/VF management needs to consider 

limitations to overland dispersal and protect upland habitat in addition to aquatic habitat 

(Miller et al. 2015). Implementation of these regulations, along with practices that help 

restore the vegetative structure of MTR/VF sites such as the Forestry Reclamation 

Approach (Angel et al. 2005), could reduce landscape resistance, repair hydrological 

regimes, and allow for improved salamander colonization and survival in MTR/VF 

stream reaches.  
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APPENDICES 
 

APPENDIX A-MATRICES 
 

A.01 Species-specific encounter matrices. 
 
A.01.1 D. fuscus adult. 
 
Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3 

Boardinghouse 0 1 0 0 0 0 0 7 2 2 4 

Bucklick 0 1 1 1 2 0 0 0 2 1 9 

Cole's Fork A 0 0 0 2 1 5 3 5 0 5 15 

Falling Rock A 0 5 7 4 5 6 8 3 3 7 1 

Falling Rock B 0 0 0 0 0 3 1 2 4 3 1 

Field Branch A 0 7 0 1 4 7 8 11 3 8 11 

Goff 0 5 2 1 1 6 3 1 5 5 2 

Little Millseat A 0 3 4 3 5 6 3 10 5 7 5 

Little Millseat B 0 2 5 0 8 12 6 13 8 14 14 

Miller 0 0 1 0 2 5 3 1 0 4 1 

Mulberry 0 1 1 0 1 0 0 0 1 0 1 

Tome 0 1 0 2 0 2 2 2 9 1 1 

Bee Branch Far 1 1 0 0 0 1 0 1 0 3 0 

Bee Branch Near 1 2 2 0 1 0 0 1 3 6 3 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 0 0 0 0 0 1 0 0 0 

Spice 1 0 0 1 0 0 0 0 0 0 0 

Stillrock 1 0 0 1 0 1 0 0 0 0 0 

Turkey 1 0 0 0 0 0 0 0 1 1 1 

Unnamed White Oak Left 1 1 3 4 2 3 2 3 0 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 6 1 5 

Wharton 1 0 0 0 0 0 1 0 0 0 0 

White Oak 1 0 0 3 4 1 1 1 0 0 0 
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A.01.2 D. monticola adult. 
 

Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3

Boardinghouse 0 3 2 3 2 3 7 4 2 4 2 

Bucklick 0 4 6 3 3 8 5 7 3 3 5 

Cole's Fork A 0 1 4 2 0 11 1 5 3 5 8 

Falling Rock A 0 1 0 0 0 2 1 0 0 0 1 

Falling Rock B 0 6 4 4 1 13 8 12 2 2 6 

Field Branch A 0 5 4 2 2 4 0 0 2 2 3 

Goff 0 0 2 4 1 4 3 5 4 3 7 

Little Millseat A 0 0 2 5 4 6 3 5 1 1 1 

Little Millseat B 0 0 0 0 0 0 1 0 2 1 1 

Miller 0 1 2 7 5 6 7 7 3 5 11 

Mulberry 0 0 2 1 0 1 5 6 1 1 2 

Tome 0 13 3 2 1 3 2 3 4 3 5 

Bee Branch Far 1 0 0 2 1 0 1 0 1 1 2 

Bee Branch Near 1 0 1 6 3 0 5 4 2 6 6 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 0 0 0 0 0 0 0 0 0 

Spice 1 0 0 0 0 0 0 0 0 0 0 

Stillrock 1 0 0 0 1 0 0 0 0 0 0 

Turkey 1 0 0 0 1 0 0 0 0 0 0 

Unnamed White Oak Left 1 3 0 0 0 0 0 0 0 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 0 0 0 

Wharton 1 0 1 0 0 0 0 1 1 1 0 

White Oak 1 0 0 0 0 0 0 0 0 0 0 
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A.01.3 E. cirrigera adult. 
 

Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3

Boardinghouse 0 2 0 0 0 0 0 0 1 1 0 

Bucklick 0 0 0 2 0 0 0 1 5 0 4 

Cole's Fork A 0 2 0 0 0 0 0 2 0 0 1 

Falling Rock A 0 4 1 2 0 0 1 0 1 0 0 

Falling Rock B 0 3 2 0 0 4 1 1 2 4 1 

Field Branch A 0 4 2 0 0 0 0 1 0 1 0 

Goff 0 4 2 0 0 0 0 0 3 2 1 

Little Millseat A 0 4 0 0 1 1 0 1 2 1 0 

Little Millseat B 0 0 0 0 0 3 0 0 1 0 0 

Miller 0 5 0 0 0 5 0 0 1 1 0 

Mulberry 0 4 0 0 0 2 0 0 1 1 2 

Tome 0 1 0 1 0 5 0 0 2 0 0 

Bee Branch Far 1 0 1 0 0 1 0 0 0 0 0 

Bee Branch Near 1 2 0 0 0 1 0 1 2 0 0 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 0 0 0 0 0 0 0 0 0 

Spice 1 0 0 0 0 0 0 0 0 0 0 

Stillrock 1 0 0 0 0 0 0 0 0 0 0 

Turkey 1 1 0 0 0 0 0 1 0 1 0 

Unnamed White Oak Left 1 0 0 0 0 0 0 0 0 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 0 0 0 

Wharton 1 0 0 0 0 1 0 0 1 1 0 

White Oak 1 0 0 0 0 0 0 0 0 0 0 
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A.01.4 G. porphyriticus adult and larvae. 
 

Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3

Boardinghouse 0 2 1 6 2 4 3 4 1 5 4 

Bucklick 0 2 5 5 0 1 6 2 0 4 7 

Cole's Fork A 0 1 6 4 0 1 2 3 2 6 6 

Falling Rock A 0 1 0 3 2 1 2 1 1 1 2 

Falling Rock B 0 2 3 3 2 2 4 4 1 8 3 

Field Branch A 0 4 1 2 7 3 2 4 4 2 1 

Goff 0 1 0 1 0 0 1 1 4 4 3 

Little Millseat A 0 0 1 0 2 0 1 3 1 1 1 

Little Millseat B 0 1 1 0 0 0 2 1 2 5 5 

Miller 0 0 1 3 10 1 6 8 0 5 6 

Mulberry 0 0 2 4 3 4 1 0 0 3 3 

Tome 0 1 2 7 2 3 3 1 0 3 1 

Bee Branch Far 1 0 0 0 0 0 0 0 0 0 1 

Bee Branch Near 1 0 0 2 0 1 0 0 0 0 0 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 0 0 0 1 1 1 0 1 0 

Spice 1 0 0 0 0 0 0 0 0 0 0 

Stillrock 1 0 0 0 0 0 0 0 0 0 0 

Turkey 1 0 0 0 0 0 0 0 0 0 0 

Unnamed White Oak Left 1 0 0 0 0 0 0 0 1 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 1 1 1 

Wharton 1 0 0 0 0 0 0 0 0 0 0 

White Oak 1 0 0 0 0 0 1 0 2 2 2 
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A.01.5 P. ruber adult and larvae. 
 

Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3

Boardinghouse 0 4 0 2 1 1 6 3 0 1 4 

Bucklick 0 0 0 0 0 1 0 2 3 1 0 

Cole's Fork A 0 0 0 4 0 0 0 5 1 6 7 

Falling Rock A 0 0 0 2 1 0 0 0 2 3 1 

Falling Rock B 0 0 0 0 0 0 0 1 0 2 0 

Field Branch A 0 1 2 0 1 1 2 8 0 1 0 

Goff 0 0 0 0 0 1 0 1 0 0 0 

Little Millseat A 0 0 3 0 0 0 0 0 0 4 0 

Little Millseat B 0 0 0 0 0 0 0 0 0 1 0 

Miller 0 1 0 0 0 0 0 0 1 0 0 

Mulberry 0 0 0 0 0 0 0 0 0 0 1 

Tome 0 0 0 0 0 0 0 0 0 0 0 

Bee Branch Far 1 0 0 0 0 0 0 0 0 0 0 

Bee Branch Near 1 0 1 0 0 0 0 1 0 0 0 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 0 0 0 0 0 0 1 0 3 

Spice 1 0 0 0 0 0 0 0 0 0 0 

Stillrock 1 0 0 0 0 0 0 0 0 0 0 

Turkey 1 0 0 0 0 0 0 0 0 0 0 

Unnamed White Oak Left 1 0 1 3 0 0 0 1 0 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 0 0 0 

Wharton 1 0 0 0 0 0 0 0 0 0 0 

White Oak 1 0 0 0 0 1 0 0 0 0 0 
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A.01.6 Combination Desmognathus larvae (D. fuscus and D. monticola). 
 
Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3 

Boardinghouse 0 1 8 7 2 1 3 0 9 3 1 

Bucklick 0 4 2 14 0 3 5 0 6 2 0 

Cole's Fork A 0 10 8 3 7 4 4 4 7 8 0 

Falling Rock A 0 2 5 7 0 1 1 1 5 2 0 

Falling Rock B 0 3 11 5 12 0 3 1 2 5 1 

Field Branch A 0 7 6 3 8 1 5 0 6 5 0 

Goff 0 0 0 0 2 0 0 1 2 0 0 

Little Millseat A 0 2 3 0 2 1 6 1 0 1 4 

Little Millseat B 0 8 5 9 0 2 2 0 2 3 0 

Miller 0 2 2 3 3 0 4 2 2 0 0 

Mulberry 0 1 3 0 4 1 1 2 3 2 0 

Tome 0 0 1 0 3 3 1 3 0 0 0 

Bee Branch Far 1 0 0 2 0 2 0 0 2 1 0 

Bee Branch Near 1 3 2 0 2 0 1 0 0 0 0 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 0 0 0 0 0 0 0 0 0 

Spice 1 0 0 0 0 0 0 0 0 0 0 

Stillrock 1 0 0 0 0 0 0 0 0 0 0 

Turkey 1 6 4 1 0 0 0 0 2 1 0 

Unnamed White Oak Left 1 2 1 2 0 2 0 0 1 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 2 3 0 

Wharton 1 0 0 0 0 0 0 0 1 0 0 

White Oak 1 0 0 0 0 0 0 0 0 0 0 
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A.01.7 E. cirrigera larvae. 
 
Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3 

Boardinghouse 0 1 6 4 13 13 20 6 4 7 9 

Bucklick 0 2 2 3 11 9 16 37 3 12 14 

Cole's Fork A 0 0 0 1 0 3 1 4 2 6 0 

Falling Rock A 0 8 7 7 36 5 11 15 6 6 10 

Falling Rock B 0 1 1 2 9 4 10 5 7 8 8 

Field Branch A 0 7 4 2 6 6 9 9 2 2 2 

Goff 0 3 1 3 11 0 3 13 0 4 9 

Little Millseat A 0 4 5 2 6 7 7 11 12 13 17 

Little Millseat B 0 0 0 0 0 3 2 1 0 0 2 

Miller 0 1 0 0 5 0 1 1 0 0 0 

Mulberry 0 1 1 1 4 4 3 6 2 0 2 

Tome 0 0 0 0 9 2 2 2 0 2 11 

Bee Branch Far 1 0 0 0 0 0 0 0 1 0 1 

Bee Branch Near 1 1 1 0 0 0 0 2 0 1 8 

Big Hollow 1 0 0 0 0 0 0 0 0 0 0 

Hickory Log 1 0 1 2 2 0 0 0 0 0 0 

Spice 1 0 1 0 0 0 0 0 0 0 0 

Stillrock 1 0 0 0 0 0 0 0 0 0 0 

Turkey 1 0 0 0 0 0 0 4 0 0 0 

Unnamed White Oak Left 1 1 0 0 0 0 0 0 0 0 0 

Unnamed White Oak Right 1 0 0 0 0 0 0 0 0 0 0 

Wharton 1 0 0 0 0 0 0 0 0 0 0 

White Oak 1 1 1 0 0 0 0 0 0 0 0 
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A.02 Detection matrices. 
 
A.02.1 Cover objects. 
 

Site MTR/VF C1.1 C2.1 C3.1 

Boardinghouse 0 28 25 15 

Bucklick 0 49 57 37 

Cole's Fork A 0 33 38 60 

Falling Rock A 0 18 15 21 

Falling Rock B 0 47 53 54 

Field Branch A 0 40 40 24 

Goff 0 75 78 119 

Little Millseat A 0 34 42 50 

Little Millseat B 0 36 36 22 

Miller 0 61 66 134 

Mulberry 0 73 68 69 

Tome 0 53 57 42 

Bee Branch Far 1 8 9 37 

Bee Branch Near 1 43 47 75 

Big Hollow 1 45 49 26 

Hickory Log 1 5 4 6 

Spice 1 6 2 6 

Stillrock 1 29 27 46 

Turkey 1 23 20 58 

Unnamed White Oak Left 1 46 48 49 

Unnamed White Oak Right 1 23 17 27 

Wharton 1 21 19 37 

White Oak 1 24 10 11 
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A.02.2 Date of last precipitation. 
 
Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3 

Boardinghouse 0 3 1 1 1 1 1 1 2 0 1 

Bucklick 0 4 4 1 2 0 4 4 1 0 0 

Cole's Fork A 0 4 4 2 2 0 4 4 1 0 0 

Falling Rock A 0 2 1 1 1 1 1 0 0 3 0 

Falling Rock B 0 2 1 1 1 1 1 0 0 3 0 

Field Branch A 0 3 1 0 0 1 1 4 2 3 1 

Goff 0 6 1 2 1 1 1 1 0 0 0 

Little Millseat A 0 6 1 1 0 8 4 4 0 3 1 

Little Millseat B 0 1 1 1 2 8 4 4 0 3 1 

Miller 0 6 1 1 1 1 1 1 0 0 0 

Mulberry 0 1 1 1 1 2 1 0 2 6 0 

Tome 0 3 1 1 1 1 1 0 6 0 0 

Bee Branch Far 1 2 1 2 1 2 1 1 1 0 0 

Bee Branch Near 1 2 1 2 1 2 1 1 6 0 0 

Big Hollow 1 1 1 0 1 1 2 4 0 0 1 

Hickory Log 1 1 1 0 1 2 4 5 0 0 1 

Spice 1 4 1 2 1 2 1 4 2 0 1 

Stillrock 1 1 1 1 1 1 4 5 2 0 3 

Turkey 1 4 1 0 1 2 1 4 2 0 1 

Unnamed White Oak Left 1 4 1 1 1 1 4 5 2 0 3 

Unnamed White Oak Right 1 4 1 1 1 1 4 5 2 0 3 

Wharton 1 1 1 0 1 1 2 1 0 0 1 

White Oak 1 4 1 1 1 1 4 5 2 0 3 

 

If rained earlier in day prior to sampling: 0 
If rained the day before sampling: 1 
If rained two days before sampling: 2 
Etc. 

  



50 

 

 
 

A.02.3 Specific conductance. 
 

Site MTR/VF C1.1 C1.2 C1.3 C1.4 C2.1 C2.2 C2.3 C3.1 C3.2 C3.3

Boardinghouse 0 44.3 68.4 63.6 86.1 84.8 93.6 33 42.3 53.6 

Bucklick 0 157.3 64.7 50.3 52.7 66.5 64.4 67.9 38.7 46.7 53.7 

Cole's Fork A 0 54.1 67.5 72.8 66.8 64.5 97.8 114.8 42.6 63.2 101.5

Falling Rock A 0 99.4 36.9 44.2 48.8 46.2 52.1 54.5 34.3 41.7 45.1 

Falling Rock B 0 46.6 36.5 47.8 51.7 47.4 58.8 68.4 35.4 47.4 48.3 

Field Branch A 0 40.5 44.2 39.3 47 51.1 52.8 58.6 32.9 41.4 44.5 

Goff 0 46.4 36.4 44.8 75.7 49 60.5 61.6 36.9 47.9 43.2 

Little Millseat A 0 46.2 73.8 57.3 53.2 52.4 5.92 79.9 32.9 45.8 47.3 

Little Millseat B 0 51.8 81.1 45.5 114.3 88.1 89.3 98.1 32.9 41.2 58.8 

Miller 0 35.2 27.5 37.1 55.4 42.3 50.8 58.2 27.7 41.3 37.4 

Mulberry 0 48.7 38.1 50 56.8 55.8 76.4 78 34 48.3 58.6 

Tome 0 104 59.2 71.4 78.7 84.9 116.9 127.1 45.3 58.7 56.2 

Bee Branch Far 1 1784 1467 1967 1550 1501 1724 1795 1287 1687 1657

Bee Branch Near 1 1425 1716 1793 1435 1562 1633 1408 1546 1491

Big Hollow 1 1561 1673 2240 2190 1694 1898 2010 1351 1682 1736

Hickory Log 1 1902 2020 2750 2710 2280 2480 2650 2090 2360 2460

Spice 1 2110 1880 2330 2210 1941 2080 2220 1786 1966 2130

Stillrock 1 1326 1545 2460 2430 2050 2430 2550 1750 2170 2690

Turkey 1 928 747 1129 1086 1075 1118 726 929 1040

Unnamed White Oak Left 1 1595 389 714 711 496 788 836 452 684 773 

Unnamed White Oak Right 1 516 1530 1905 1872 1495 1771 1897 1279 1553 1623

Wharton 1 2320 2190 2530 2420 2250 2290 2400 1842 2070 2160

White Oak 1 1823 1394 2020 2050 1664 2010 2050 1553 1804 1967
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APPENDIX B-MODEL CODE 
 

B.01.1 General model code. 
 
## Hierarchical dynamic occupancy model 
 
## Notes: 
##    S indexes species 
##    s indexes site 
##    y indexes year 
##    v indexes visit 
 
model{ 
    ##### Likelihood ##### 
 
    ##### Occupancy ##### 
 
    for(S in 1:nspecies){ 
        ## 1) Mean parameters 
 
        for(mtr in 0:1){ 
            ## a) Initial occupancy 
            eta.psi0[S,mtr+1] <- beta.occ[1,mtr+1,S] 
            logit(psi0.pop[S,mtr+1]) <- eta.psi0[S,mtr+1] 
 
            ## b) Colonization 
            eta.gamma[S,mtr+1] <- beta.occ[2,mtr+1,S] 
            logit(gamma.pop[S,mtr+1]) <- eta.gamma[S,mtr+1] 
 
            ## c) Survival 
            eta.phi[S,mtr+1] <- beta.occ[3,mtr+1,S] 
            logit(phi.pop[S,mtr+1]) <- eta.phi[S,mtr+1] 
        } 
         
        ## 2) Site specific parameters 
        for(s in 1:nsite){ 
            ## Initial occupancy 
            logit(psi[S,s,1]) <- eta.psi0[S,MTR[s]+1] +  
                beta.occ[1,3,S] * MTR[s] * Conductivity[s,1] 
 
            Occupancy[S,s,1] ~ dbern(psi[S,s,1]) 
             
            ## Occupancy in subsequent years 
            for(y in 2:nyear){ 
                ## Colonization 
                logit(gamma[S,s,y-1]) <-  eta.gamma[S,MTR[s]+1] +  
                    beta.occ[2,3,S] * MTR[s] * Conductivity[s,y] 
 
                ## Survival 
                logit(phi[S,s,y-1]) <-  eta.phi[S,MTR[s]+1] +  
                    beta.occ[3,3,S] * MTR[s] * Conductivity[s,y] 
 
                ## Occupancy 
                psi[S,s,y] <- (1-Occupancy[S,s,y-1]) * gamma[S,s,y-1] + 
                    Occupancy[S,s,y-1] * phi[S,s,y-1] 
                 
                Occupancy[S,s,y] ~ dbern(psi[S,s,y]) 
            } 
        } 
    } 
 
    ## Abundance given occupancy 
    for(S in 1:nspecies){ 
        log(lambda.pop[S,1]) <- beta.abund[1,S] 
        log(lambda.pop[S,2]) <- beta.abund[2,S] 
         
        for(s in 1:nsite){ 
            for(y in 1:nyear){ 
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                log(lambda[S,s,y]) <- beta.abund[1,S] * (1-MTR[s]) + 
                    beta.abund[2,S] * MTR[s] +  
                    beta.abund[3,S] * MTR[s] * Conductivity[s,y] 
                 
                Abundance.tmp[S,s,y] ~ dpois(lambda[S,s,y])T(1,) 
 
                Abundance[S,s,y] <- Abundance.tmp[S,s,y]*Occupancy[S,s,y] 
            } 
        } 
    } 
 
    ## Detection 
    for(S in 1:nspecies){ 
        for(s in 1:nsite){ 
            for(y in 1:nyear){ 
                for(v in 1:nvisit[y]){ 
                    logit(p[S,s,y,v]) <- beta.det[1,S] + 
                        beta.det[2,S] * CoverObjects[s,y] +  
                        beta.det[3,S] * Precip[s,y,v] 
                } 
            } 
        } 
    } 
 
    ## Observations 
    for(i in 1:nobs){ 
        for(S in 1:nspecies){ 
            Y[i,S] ~ dbinom(p[S,Site[i],Year[i],Visit[i]], 
                            Abundance[S,Site[i],Year[i]]) 
        } 
    } 
 
    ##### Priors ##### 
 
    ## Parameters for half-t priors on variance 
    df <- 3 
    tau <- .25 
     
    ## Occupancy 
    for(i in 1:3){ # 1=Initial, 2=Colonization, 3=Survival 
        for(k in 1:3){ # 1=Intercept, 2=MTR, 3=Conductivity*MTR 
            for(S in 1:nspecies){ 
                ## beta.occ[i,k,S] ~ dnorm(0,tau.beta.occ[i,k]) 
                xi.occ[i,k,S] ~ dnorm(0,tau.beta.occ[i,k]) 
                beta.occ[i,k,S] <- mu.beta.occ[i,k] + alpha.beta.occ[i,k] * xi.occ[i,k,S] 
            } 
             
            mu.beta.occ[i,k] ~ dnorm(0,.36) 
            ## sigma.beta.occ[i,k] ~ dt(0,.25,3)T(0,) 
            ## tau.beta.occ[i,k] <- pow(sigma.beta.occ[i,k],2) 
            tau.beta.occ[i,k] ~ dgamma(df/2,df/2/tau) 
            sigma.beta.occ[i,k] <- abs(alpha.beta.occ[i,k])/sqrt(tau.beta.occ[i,k]) 
            alpha.beta.occ[i,k] ~ dnorm(0,1) 
        } 
    } 
     
    ## Abundance 
    for(i in 1:3){ 
        for(S in 1:nspecies){ 
            ## beta.abund[i,S] ~ dnorm(0,tau.beta.abund[i]) 
            xi.abund[i,S] ~ dnorm(0,tau.beta.abund[i]) 
            beta.abund[i,S] <- mu.beta.abund[i] + alpha.beta.abund[i] * xi.abund[i,S] 
        } 
         
        mu.beta.abund[i] ~ dnorm(0,.001) 
        ## sigma.beta.abund[i] ~ dt(0,.25,3)T(0,) 
        ## tau.beta.abund[i] <- pow(sigma.beta.abund[i],2) 
        tau.beta.abund[i] ~ dgamma(df/2,df/2/tau) 
        sigma.beta.abund[i] <- abs(alpha.beta.abund[i])/sqrt(tau.beta.abund[i]) 
        alpha.beta.abund[i] ~ dnorm(0,1) 
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    } 
 
    ## Detection 
    for(i in 1:3){ 
        for(S in 1:nspecies){ 
            ## beta.det[i,S] ~ dnorm(0,tau.beta.det[i]) 
            xi.det[i,S] ~ dnorm(0,tau.beta.det[i]) 
            beta.det[i,S] <- mu.beta.det[i] + alpha.beta.det[i] * xi.det[i,S] 
        } 
 
        mu.beta.det[i] ~ dnorm(0,.36) 
        ## sigma.beta.det[i] ~ dt(0,.25,3)T(0,) 
        ## tau.beta.det[i] <- pow(sigma.beta.det[i],2) 
        tau.beta.det[i] ~ dgamma(df/2,df/2/tau) 
        sigma.beta.det[i] <- abs(alpha.beta.det[i])/sqrt(tau.beta.det[i]) 
        alpha.beta.det[i] ~ dnorm(0,1) 
    } 
     
 
    ##### Derived Values ##### 
    ## Percent occupancy 
    for(S in 1:nspecies){ 
        for(s in 1:nsite){ 
            OccSum[S,s] <- sum(Occupancy[S,s,]) 
        } 
         
        PercOcc[S,1] <- 100*inprod(OccSum[S,],(1-MTR[]))/(sum(1-MTR[])*nyear) 
        PercOcc[S,2] <- 100*inprod(OccSum[S,],MTR[])/(sum(MTR[])*nyear) 
    } 
 
    ## Mean abundance given occupancy 
    for(S in 1:nspecies){ 
        for(s in 1:nsite){ 
            AbundMean.tmp[S,s] <- mean(Abundance[S,s,]) 
        } 
         
        AbundMean[S,1] <- inprod(AbundMean.tmp[S,],(1-MTR[]))/(sum(1-MTR[])*nyear) 
        AbundMean[S,2] <- inprod(AbundMean.tmp[S,],MTR[])/(sum(MTR[])*nyear) 
    } 
}   
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B.01.2 Code for running model. 
 
## ----setup, include=FALSE, cache=FALSE----------------------------------- 
## set global chunk options 
opts_chunk$set(fig.align='center',  
               fig.show='hold', 
               dev="tikz", 
               cache=FALSE, 
               echo=FALSE, 
               results="hide") 
options(formatR.arrow=TRUE,width=90) 
 
## ----prelim-------------------------------------------------------------- 
## Load packages 
 
library(knitr) 
library(rjags) 
library(coda) 
library(xtable) 
library(ggmcmc) 
library(gridExtra) 
 
## Load output file 
load("~/Scratch/S_Price/Dynamic_Occupancy/coda.Rdata") 
 
## Load data 
load("../Data/Salamander Data 12.16.2015_formatted.Rdata") 
 
## Remove PR 
# Counts <- Counts[,-which(colnames(Counts)=="PR")] 
 
## Set names 
spnames <- colnames(Counts[,-(1:3)]) 
 
## Generate ggmcmc object 
ggs.coda <- ggs(coda) 
 
## Numerical summaries 
summ <- summary(coda) 
 
## Set table number 
tab_num <- 1 
 
## ----perc-occupancy,fig.height=7----------------------------------------- 
## Percent Occupancy 
ind <- grep("PercOcc",colnames(coda[[1]])) 
 
coda_tmp <- mcmc.list(coda[[1]][,ind],coda[[2]][,ind]) 
 
names <- as.vector(t(outer(c("Control","MTR-VF"),spnames,paste,sep=" - "))) 
colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <- names 
     
 
X <- data.frame(Parameter=colnames(coda[[1]])[ind], 
                x=length(ind):1) 
 
f <- ggs_caterpillar(ggs.coda,"PercOcc",X=X)  
 
f + geom_hline(yintercept=7.5) + 
    labs(x="",y="") +  
    scale_y_continuous(breaks=length(ind):1,labels=names) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
tab$Parameter <- as.vector(t(outer(c("Control","MTR-VF"),spnames,paste,sep=" - "))) 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_percent_occupancy_summary.txt"),quote=FALSE,row.na
mes=FALSE) 
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tab_num<- tab_num + 1 
 
## ----mean-abund,fig.height=7--------------------------------------------- 
## Percent Occupancy 
ind <- grep("AbundMean",colnames(coda[[1]])) 
 
coda_tmp <- mcmc.list(coda[[1]][,ind],coda[[2]][,ind]) 
 
names <- as.vector(t(outer(c("Control","MTR-VF"),spnames,paste,sep=" - "))) 
colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <- names 
     
 
X <- data.frame(Parameter=colnames(coda[[1]])[ind], 
                x=length(ind):1) 
 
f <- ggs_caterpillar(ggs.coda,"AbundMean",X=X)  
 
f + geom_hline(yintercept=7.5) + 
    labs(x="",y="") +  
    scale_y_continuous(breaks=length(ind):1,labels=names) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
tab$Parameter <- as.vector(t(outer(c("Control","MTR-VF"),spnames,paste,sep=" - "))) 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_mean_abundance_summary.txt"),quote=FALSE,row.name
s=FALSE) 
tab_num <- tab_num + 1 
 
 
 
## ----mtr-overall,fig.height=2-------------------------------------------- 
 
## Overall effects of MTR-VF 
coda_tmp <- as.mcmc.list(lapply(1:2,function(j){ 
    as.mcmc(cbind(sapply(1:3,function(k){ 
        coda[[j]][,paste0("mu.beta.occ[",k,",1]")] - 
            coda[[j]][,paste0("mu.beta.occ[",k,",2]")] 
    }), 
    coda[[j]][,"mu.beta.abund[1]"] - coda[[j]][,"mu.beta.abund[2]"])) 
})) 
 
colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <- c(paste("Occ",c("Initial","Colonization","Survival"),sep="/"),"Abundance") 
 
ggs_tmp <- ggs(coda_tmp) 
 
(f <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=colnames(coda_tmp[[1]]),x=4:1)) + 
    geom_vline(x=0,lty=2) + 
    scale_y_continuous(name="",labels=colnames(coda_tmp[[1]]),breaks=4:1) + 
    scale_x_continuous(name="",limits=c(-5,5),oob=function(x,limits) pmax(pmin(x,limits[2]),limits[1]))) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_site_type_effects.txt"),quote=FALSE,row.names=FALSE) 
tab_num <- tab_num + 1 
 
 
 
## ----conductivity-overall,fig.height=2----------------------------------- 
## Overall effects of conductivity on occupancy and abundance, and detection effects 
ind <- c(paste0("mu.beta.occ[",1:3,",3]"), 
         "mu.beta.abund[3]") 
 
coda_tmp <- as.mcmc.list(lapply(1:2,function(j){ 
    coda[[j]][,ind] 
})) 
 
colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <-  
    c(paste("Occ",c("Initial","Colonization","Survival"),"Cond",sep="/"), 
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      "Abundance/Cond") 
       
ggs_tmp <- ggs(coda_tmp) 
 
(f <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=colnames(coda_tmp[[1]]),x=4:1)) + 
    geom_vline(x=0,lty=2) + 
    scale_y_continuous(name="",labels=colnames(coda_tmp[[1]]),breaks=4:1) + 
    scale_x_continuous(name="",limits=c(-5,5),oob=function(x,limits) pmax(pmin(x,limits[2]),limits[1]))) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_conductivity_effects.txt"),quote=FALSE,row.names=FAL
SE) 
tab_num <- tab_num + 1 
 
 
## ----detection-overall,fig.height=1.5------------------------------------ 
## Overall effects of conductivity on occupancy and abundance, and detection effects 
ind <- paste0("mu.beta.det[",1:3,"]") 
 
coda_tmp <- as.mcmc.list(lapply(1:2,function(j){ 
    coda[[j]][,ind] 
})) 
 
colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <-  
    paste("Det",c("Intercept","Cover","Precip"),sep="/") 
       
ggs_tmp <- ggs(coda_tmp) 
 
(f <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=colnames(coda_tmp[[1]]),x=3:1)) + 
    geom_vline(x=0,lty=2) + 
    scale_y_continuous(name="",labels=colnames(coda_tmp[[1]]),breaks=3:1) + 
    scale_x_continuous(name="",limits=c(-5,5),oob=function(x,limits) pmax(pmin(x,limits[2]),limits[1]))) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_detection_parameters.txt"),quote=FALSE,row.names=FA
LSE) 
tab_num <- tab_num + 1 
 
 
 
## ----variances,fig.height=7.5-------------------------------------------- 
## Generate random half-t for comparison 
jagged <- jags.model("test_half_t_bugs.R",data=list()) 
halft <- coda.samples(jagged,n.iter=10000,variable.names="x") 
 
## Random effects variances 
 
ind <- c(grep("sigma.beta.occ",colnames(coda[[1]]),value=TRUE), 
         grep("sigma.beta.abund",colnames(coda[[1]]),value=TRUE), 
         grep("sigma.beta.det",colnames(coda[[1]]),value=TRUE)) 
 
parnames <- 
c(paste("Occ",as.vector(t(outer(c("Control","MTR","Conductivity"),c("Initial","Colonization","Survival"),paste,sep="/"))),sep="/"), 
           paste("Abund",c("Control","MTR","Conductivity"),sep="/"), 
           paste("Det",c("Intercept","Cover","Precip"),sep="/")) 
            
coda_tmp <- as.mcmc.list(lapply(coda,function(mcmc){ 
    mcmc[,ind] 
})) 
colnames(coda_tmp[[1]]) <-  colnames(coda_tmp[[2]]) <- parnames 
 
ggs_tmp <- ggs(coda_tmp) 
 
(f <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=parnames,x=15:1))+ 
    labs(x="",y="Parameter") +  
    scale_y_continuous(breaks=15:1,labels=parnames) + 
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    geom_vline(x=quantile(halft[[1]],c(.5,.95,.975)),lty=c(2,3,3))) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_variance_parameters.txt"),quote=FALSE,row.names=FAL
SE) 
tab_num <- tab_num + 1 
 
 
 
## ----mtr-species,fig.width=3,fig.height=2-------------------------------- 
for(S in 1:length(spnames)){ 
    ## Overall effects of MTR-VF 
    coda_tmp <- as.mcmc.list(lapply(1:2,function(j){ 
        as.mcmc(cbind(sapply(1:3,function(k){ 
            coda[[j]][,paste0("beta.occ[",k,",1,",S,"]")] - 
                coda[[j]][,paste0("beta.occ[",k,",2,",S,"]")] 
        }), 
        coda[[j]][,paste0("beta.abund[1,",S,"]")] - 
        coda[[j]][,paste0("beta.abund[2,",S,"]")] 
        )) 
    })) 
     
    colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <- 
c(paste("Occ",c("Initial","Colonization","Survival"),sep="/"),"Abundance") 
     
    ggs_tmp <- ggs(coda_tmp) 
     
    print(f <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=colnames(coda_tmp[[1]]),x=4:1)) + 
          geom_vline(x=0,lty=2) + ggtitle(spnames[S]) +  
          scale_y_continuous(name="",labels=colnames(coda_tmp[[1]]),breaks=4:1) + 
          scale_x_continuous(name="",limits=c(-5,5),oob=function(x,limits) pmax(pmin(x,limits[2]),limits[1]))) 
     
    tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
    colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
     
    
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_site_type_effects_",spnames[S],".txt"),quote=FALSE,row.
names=FALSE) 
} 
tab_num <- tab_num + 1 
     
 
 
## ----conductivity-species,fig.width=3,fig.height=2----------------------- 
for(S in 1:length(spnames)){ 
    ## Overall effects of conductivity on occupancy and abundance, and detection effects 
    ind <- c(paste0("beta.occ[",1:3,",3,",S,"]"), 
             paste0("beta.abund[3,",S,"]")) 
     
    coda_tmp <- as.mcmc.list(lapply(1:2,function(j){ 
        coda[[j]][,ind] 
    })) 
     
    colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <-  
        c(paste("Occ",c("Initial","Colonization","Survival"),"Cond",sep="/"), 
          "Abundance/Cond") 
     
    ggs_tmp <- ggs(coda_tmp) 
     
    print(f <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=colnames(coda_tmp[[1]]),x=4:1)) + 
          geom_vline(x=0,lty=2) + 
          ggtitle(spnames[S])+ 
          scale_y_continuous(name="",labels=colnames(coda_tmp[[1]]),breaks=4:1) + 
          scale_x_continuous(name="",limits=c(-3,3),oob=function(x,limits) pmax(pmin(x,limits[2]),limits[1]))) 
     
    tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
    colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
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write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_conductivity_effects_",spnames[S],".txt"),quote=FALSE,r
ow.names=FALSE) 
} 
tab_num <- tab_num + 1 
     
 
 
## ----detection-species,fig.width=3,fig.height=1.5------------------------ 
for(S in 1:length(spnames)){ 
    ## Overall effects of conductivity on occupancy and abundance, and detection effects 
    ind <- paste0("beta.det[",1:3,",",S,"]") 
     
    coda_tmp <- as.mcmc.list(lapply(1:2,function(j){ 
        coda[[j]][,ind] 
    })) 
     
    colnames(coda_tmp[[1]]) <- colnames(coda_tmp[[2]]) <-  
        paste("Det",c("Intercept","Cover","Precip"),sep="/") 
     
    ggs_tmp <- ggs(coda_tmp) 
     
    print(g <- ggs_caterpillar(ggs_tmp,X=data.frame(Parameter=colnames(coda_tmp[[1]]),x=3:1)) + 
          geom_vline(x=0,lty=2) + 
          ggtitle(spnames[S])+ 
          scale_y_continuous(name="",labels=colnames(coda_tmp[[1]]),breaks=3:1) + 
          scale_x_continuous(name="",limits=c(-3,3),oob=function(x,limits) pmax(pmin(x,limits[2]),limits[1]))) 
     
    tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
    colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
     
    
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_detection_parameters_",spnames[S],".txt"),quote=FALSE,
row.names=FALSE) 
} 
tab_num <- tab_num + 1 
     
 
## ----initial-occ-table,results="asis"------------------------------------ 
ilogit <- function(x) exp(x)/(1 + exp(x)) 
 
index <- c("mu.beta.occ[1,1]", 
           grep("^beta.occ\\[1,1",colnames(coda[[1]]),value=TRUE), 
           "mu.beta.occ[1,2]", 
           grep("^beta.occ\\[1,2",colnames(coda[[1]]),value=TRUE)) 
 
parnames <- c(outer(c("Mean",spnames),c("Control","Mined"),paste,sep=": ")) 
 
coda.psi0 <- as.mcmc.list(lapply(1:2,function(j){ 
    tmp <- ilogit(coda[[j]][,index]) 
    colnames(tmp) <- parnames 
    tmp 
})) 
 
ggs.psi0 <- ggs(coda.psi0) 
 
X <- data.frame(Parameter=colnames(coda.psi0[[1]]), 
                x=16:1) 
 
f <- ggs_caterpillar(ggs.psi0,X=X) 
 
f + geom_hline(yintercept=8.5) + 
    labs(x="",y="") +  
    scale_y_continuous(breaks=16:1, 
                       labels=X[,1]) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
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write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_initial_occupancy_summary.txt"),quote=FALSE,row.nam
es=FALSE) 
tab_num <- tab_num + 1 
 
## ----colonization-table,results="asis"----------------------------------- 
index <- c("mu.beta.occ[2,1]", 
           grep("^beta.occ\\[2,1",colnames(coda[[1]]),value=TRUE), 
           "mu.beta.occ[2,2]", 
           grep("^beta.occ\\[2,2",colnames(coda[[1]]),value=TRUE)) 
 
parnames <- c(outer(c("Mean",spnames),c("Control","Mined"),paste,sep=": ")) 
 
coda.gamma <- as.mcmc.list(lapply(1:2,function(j){ 
    tmp <- ilogit(coda[[j]][,index]) 
    colnames(tmp) <- parnames 
    tmp 
})) 
 
ggs.gamma <- ggs(coda.gamma) 
 
X <- data.frame(Parameter=colnames(coda.gamma[[1]]), 
                x=16:1) 
 
f <- ggs_caterpillar(ggs.gamma,X=X) 
 
f + geom_hline(yintercept=8.5) + 
    labs(x="",y="") +  
    scale_y_continuous(breaks=16:1, 
                       labels=X[,1]) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_colonization_summary.txt"),quote=FALSE,row.names=F
ALSE) 
tab_num <- tab_num + 1 
 
## ----survival-table,results="asis"--------------------------------------- 
index <- c("mu.beta.occ[3,1]", 
           grep("^beta.occ\\[3,1",colnames(coda[[1]]),value=TRUE), 
           "mu.beta.occ[3,2]", 
           grep("^beta.occ\\[3,2",colnames(coda[[1]]),value=TRUE)) 
 
parnames <- c(outer(c("Mean",spnames),c("Control","Mined"),paste,sep=": ")) 
 
coda.phi <- as.mcmc.list(lapply(1:2,function(j){ 
    tmp <- ilogit(coda[[j]][,index]) 
    colnames(tmp) <- parnames 
    tmp 
})) 
 
ggs.phi <- ggs(coda.phi) 
 
X <- data.frame(Parameter=colnames(coda.phi[[1]]), 
                x=16:1) 
 
f <- ggs_caterpillar(ggs.phi,X=X) 
 
f + geom_hline(yintercept=8.5) + 
    labs(x="",y="") +  
    scale_y_continuous(breaks=16:1, 
                       labels=X[,1]) 
 
tab <- f$data[order(f$data$x,decreasing=TRUE),1:6] 
colnames(tab) <- c("Group","2.5%","5%","Median","95%","97.5%") 
 
write.table(format(tab,nsmall=2,digits=2),file=paste0("Tables/",tab_num,"_colonizatoin_summary.txt"),quote=FALSE,row.names=F
ALSE) 
tab_num <- tab_num + 1  
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APPENDIX C-SAS CODE 
 

C.01.1 SAS code percent detritus 2013-2015. 
 
proc import datafile="E:\Habitat Data\Habitat Data SAS.xlsx" 
out=habitat3yrs 
dbms=xlsx 
replace; 
sheet="Sheet3"; 
getnames=yes; 
run; 
 
proc mixed data=habitat3yrs plots=residualpanel; 
class site_type site year; 
model Detritus=site_type year site_type*year /solution; 
lsmeans site_type year site_type*year /pdiff; 
repeated year /subject=site type=ar(1); 
run; 
 
 
C.01.2 SAS code number of cover objects 2013-2015. 
 
proc import datafile="E:\Habitat Data\Habitat Data SAS.xlsx" 
out=habitat3yrs 
dbms=xlsx 
replace; 
sheet="Sheet3"; 
getnames=yes; 
run; 
 
proc mixed data=habitat3yrs plots=residualpanel; 
class Site_type site year; 
model Cover_Stream=site_type year site_type*year /solution; 
lsmeans site_type year site_type*year /pdiff; 
repeated year /subject=site type=ar(1); 
run; 
 
 
C.02.1 Spreadsheet imported into SAS for detritus and cover objects. 
 
Site_type Site Year Detritus Cover_Stream 

0 Boardinghouse 1 8 28 

0 Bucklick 1 10 49 

0 Cole's Fork A 1 17 33 

0 Falling Rock A 1 0 18 

0 Falling Rock B 1 20 47 

0 Field Branch A 1 7 40 

0 Goff 1 8 75 

0 Little Millseat A 1 15 34 

0 Little Millseat B 1 12 36 

0 Miller 1 10 61 

0 Mulberry 1 6 73 
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0 Tome 1 4 53 

1 Bee Branch Far 1 5 8 

1 Bee Branch Near 1 3 43 

1 Big Hollow 1 10 45 

1 Hickory Log 1 74 5 

1 Spice 1 10 6 

1 Stillrock 1 7 29 

1 Turkey 1 5 23 

1 Unnamed White Oak Left 1 20 46 

1 Unnamed White Oak Right 1 5 23 

1 Wharton 1 1 21 

1 White Oak 1 25 24 

0 Boardinghouse 2 8 25 

0 Bucklick 2 10 57 

0 Cole's Fork A 2 23 38 

0 Falling Rock A 2 25 15 

0 Falling Rock B 2 15 53 

0 Field Branch A 2 10 40 

0 Goff 2 5 78 

0 Little Millseat A 2 15 42 

0 Little Millseat B 2 5 36 

0 Miller 2 10 66 

0 Mulberry 2 7 68 

0 Tome 2 2 57 

1 Bee Branch Far 2 5 9 

1 Bee Branch Near 2 5 47 

1 Big Hollow 2 15 49 

1 Hickory Log 2 80 4 

1 Spice 2 15 2 

1 Stillrock 2 10 27 

1 Turkey 2 5 20 

1 Unnamed White Oak Left 2 15 48 

1 Unnamed White Oak Right 2 10 17 

1 Wharton 2 5 19 

1 White Oak 2 30 10 

0 Boardinghouse 3 2 15 

0 Bucklick 3 1 37 

0 Cole's Fork A 3 40 60 

0 Falling Rock A 3 4 21 

0 Falling Rock B 3 25 54 

0 Field Branch A 3 2 24 
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0 Goff 3 10 119 

0 Little Millseat A 3 20 50 

0 Little Millseat B 3 10 22 

0 Miller 3 4 134 

0 Mulberry 3 5 69 

0 Tome 3 5 42 

1 Bee Branch Far 3 40 37 

1 Bee Branch Near 3 10 75 

1 Big Hollow 3 20 26 

1 Hickory Log 3 90 6 

1 Spice 3 35 6 

1 Stillrock 3 48 46 

1 Turkey 3 9 58 

1 Unnamed White Oak Left 3 20 49 

1 Unnamed White Oak Right 3 1 27 

1 Wharton 3 1 37 

1 White Oak 3 85 11 
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C.03.1 SAS code specific conductance May 2013-2015. 
 
/*Comparing water chemistry variables for May 2013-2015"*/ 
proc import datafile="E:\Water Data\Water Samples Forest Hydrology Lab\Water 
quality SAS May.xlsx" 
out=waterMay3yrs 
dbms=xlsx 
replace; 
sheet="sheet1"; 
getnames=yes; 
run; 
 
title "Conductivity"; 
proc mixed data=waterMay3yrs plots=residualpanel; 
class Site_type site year; 
model Cond=site_type year site_type*year /solution; 
lsmeans site_type year site_type*year /pdiff; 
repeated year /subject=site type=ar(1); 
run; 

 
 
C.03.2 Spreadsheet imported into SAS for specific conductance May 2013-2015. 
 
Site Site_type Year Cond 

Boardinghouse  0 2013 44.3 

Bucklick 0 2013 64.7 

Coles Fork A 0 2013 67.5 

Falling Rock A 0 2013 36.9 

Falling Rock B 0 2013 36.5 

Field Branch A 0 2013 44.2 

Goff 0 2013 36.4 

Little Millseat A 0 2013 73.8 

Little Millseat B 0 2013 81.1 

Miller 0 2013 27.5 

Mulberry 0 2013 38.1 

Tome 0 2013 59.2 

Bee Branch Far 1 2013 1467 

Bee Branch Near 1 2013 1425 

Big Hollow 1 2013 1673 

Hickory Log 1 2013 2020 

Spice 1 2013 1880 

Stillrock 1 2013 1545 

Turkey 1 2013 747 

Unnamed White Oak Left 1 2013 389 

Unnamed White Oak Right 1 2013 1530 

Wharton 1 2013 2190 

White Oak 1 2013 1394 

Boardinghouse  0 2014 84.8 

Bucklick 0 2014 64.4 
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Coles Fork A 0 2014 97.8 

Falling Rock A 0 2014 52.1 

Falling Rock B 0 2014 58.8 

Field Branch A 0 2014 52.8 

Goff 0 2014 60.5 

Little Millseat A 0 2014 59.2 

Little Millseat B 0 2014 89.3 

Miller 0 2014 50.8 

Mulberry 0 2014 76.4 

Tome 0 2014 116.9 

Bee Branch Far 1 2014 1724 

Bee Branch Near 1 2014 1562 

Big Hollow 1 2014 1898 

Hickory Log 1 2014 2480 

Spice 1 2014 2080 

Stillrock 1 2014 2430 

Turkey 1 2014 1075 

Unnamed White Oak Left 1 2014 788 

Unnamed White Oak Right 1 2014 1771 

Wharton 1 2014 2290 

White Oak 1 2014 2010 

Boardinghouse  0 2015 42.3 

Bucklick 0 2015 46.7 

Coles Fork A 0 2015 63.2 

Falling Rock A 0 2015 41.7 

Falling Rock B 0 2015 47.4 

Field Branch A 0 2015 41.4 

Goff 0 2015 47.9 

Little Millseat A 0 2015 45.8 

Little Millseat B 0 2015 41.2 

Miller 0 2015 41.3 

Mulberry 0 2015 48.3 

Tome 0 2015 58.7 

Bee Branch Far 1 2015 1687 

Bee Branch Near 1 2015 1546 

Big Hollow 1 2015 1682 

Hickory Log 1 2015 2360 

Spice 1 2015 1966 

Stillrock 1 2015 2170 

Turkey 1 2015 929 

Unnamed White Oak Left 1 2015 684 
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Unnamed White Oak Right 1 2015 1553 

Wharton 1 2015 2070 

White Oak 1 2015 1804 
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C.04.1 SAS code specific conductance monthly 2015. 
 
/*Comparing water chemistry variables for April 2015-March 2016"*/ 
proc import datafile="E:\Water Data\Water Samples Forest Hydrology Lab\Water 
quality SAS 2015.xlsx" 
out=water2015 
dbms=xlsx 
replace; 
sheet="Sheet2"; 
getnames=yes; 
run; 
 
title "Conductivity"; 
proc mixed data=water2015 plots=residualpanel; 
class Site_type site month; 
model Cond=site_type month site_type*month /solution; 
lsmeans site_type month site_type*month /pdiff; 
repeated month /subject=site type=ar(1); 
run; 
 
 
C.04.2 Spreadsheet imported into SAS for specific conductance monthly 2015. 
 
Site Site_type Month Cond 

Boardinghouse  0 April 33 

Bucklick 0 April 38.7 

Coles Fork A 0 April 42.6 

Falling Rock A 0 April 34.3 

Falling Rock B 0 April 35.4 

Field Branch A 0 April 32.9 

Goff 0 April 36.9 

Little Millseat A 0 April 32.9 

Little Millseat B 0 April 32.9 

Miller 0 April 27.7 

Mulberry 0 April 34 

Tome 0 April 45.3 

Bee Branch Far 1 April 1287 

Bee Branch Near 1 April 1408 

Big Hollow 1 April 1351 

Hickory Log 1 April 2090 

Spice 1 April 1786 

Stillrock 1 April 1750 

Turkey 1 April 726 

Unnamed White Oak Left 1 April 452 

Unnamed White Oak Right 1 April 1279 

Wharton 1 April 1842 

White Oak 1 April 1553 

Boardinghouse  0 May 42.3 
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Bucklick 0 May 46.7 

Coles Fork A 0 May 63.2 

Falling Rock A 0 May 41.7 

Falling Rock B 0 May 47.4 

Field Branch A 0 May 41.4 

Goff 0 May 47.9 

Little Millseat A 0 May 45.8 

Little Millseat B 0 May 41.2 

Miller 0 May 41.3 

Mulberry 0 May 48.3 

Tome 0 May 58.7 

Bee Branch Far 1 May 1687 

Bee Branch Near 1 May 1546 

Big Hollow 1 May 1682 

Hickory Log 1 May 2360 

Spice 1 May 1966 

Stillrock 1 May 2170 

Turkey 1 May 929 

Unnamed White Oak Left 1 May 684 

Unnamed White Oak Right 1 May 1553 

Wharton 1 May 2070 

White Oak 1 May 1804 

Boardinghouse  0 June 53.6 

Bucklick 0 June 53.7 

Coles Fork A 0 June 101.5 

Falling Rock A 0 June 45.1 

Falling Rock B 0 June 48.3 

Field Branch A 0 June 44.5 

Goff 0 June 43.2 

Little Millseat A 0 June 47.3 

Little Millseat B 0 June 58.8 

Miller 0 June 37.4 

Mulberry 0 June 58.6 

Tome 0 June 56.2 

Bee Branch Far 1 June 1675 

Bee Branch Near 1 June 1491 

Big Hollow 1 June 1734 

Hickory Log 1 June 2460 

Spice 1 June 2130 

Stillrock 1 June 2690 

Turkey 1 June 1040 
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Unnamed White Oak Left 1 June 773 

Unnamed White Oak Right 1 June 1623 

Wharton 1 June 2160 

White Oak 1 June 1967 

Boardinghouse  0 July 47.6 

Bucklick 0 July 46.9 

Coles Fork A 0 July 60.5 

Falling Rock A 0 July 46.5 

Falling Rock B 0 July 47.8 

Field Branch A 0 July 40.4 

Goff 0 July 48.2 

Little Millseat A 0 July 46.8 

Little Millseat B 0 July 45.3 

Miller 0 July 36.7 

Mulberry 0 July 51.1 

Tome 0 July 49.8 

Bee Branch Far 1 July 1397 

Bee Branch Near 1 July 1298 

Big Hollow 1 July 1636 

Hickory Log 1 July 2480 

Spice 1 July 1933 

Stillrock 1 July 1803 

Turkey 1 July 867 

Unnamed White Oak Left 1 July 441 

Unnamed White Oak Right 1 July 1315 

Wharton 1 July 2030 

White Oak 1 July 1491 

Boardinghouse  0 August 54.9 

Bucklick 0 August 48.5 

Coles Fork A 0 August 65.9 

Falling Rock A 0 August 50.8 

Falling Rock B 0 August 48.5 

Field Branch A 0 August 42.3 

Goff 0 August 47.8 

Little Millseat A 0 August 56 

Little Millseat B 0 August 46 

Miller 0 August 43.4 

Mulberry 0 August 53.5 

Tome 0 August 52.4 

Bee Branch Far 1 August 1005 

Bee Branch Near 1 August 1008 
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Big Hollow 1 August 1539 

Hickory Log 1 August 2460 

Spice 1 August 1732 

Stillrock 1 August 1759 

Turkey 1 August 81.4 

Unnamed White Oak Left 1 August 471 

Unnamed White Oak Right 1 August 1423 

Wharton 1 August 1916 

White Oak 1 August 1321 

Boardinghouse  0 September 40.8 

Bucklick 0 September 39.5 

Coles Fork A 0 September 65.7 

Falling Rock A 0 September 34.2 

Falling Rock B 0 September 43.7 

Field Branch A 0 September 41.6 

Goff 0 September 37.5 

Little Millseat A 0 September 39.9 

Little Millseat B 0 September 34.9 

Miller 0 September 34.4 

Mulberry 0 September 53.7 

Tome 0 September 59.8 

Bee Branch Far 1 September 1276 

Bee Branch Near 1 September 1196 

Big Hollow 1 September 1376 

Hickory Log 1 September 2030 

Spice 1 September 1756 

Stillrock 1 September 1974 

Turkey 1 September 884 

Unnamed White Oak Left 1 September 628 

Unnamed White Oak Right 1 September 1327 

Wharton 1 September 1764 

White Oak 1 September 1569 

Boardinghouse  0 October 45.9 

Bucklick 0 October 53.1 

Coles Fork A 0 October 69.4 

Falling Rock A 0 October 45.4 

Falling Rock B 0 October 51.6 

Field Branch A 0 October 47.5 

Goff 0 October 47.4 

Little Millseat A 0 October 54.7 

Little Millseat B 0 October 42 
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Miller 0 October 43.1 

Mulberry 0 October 65.5 

Tome 0 October 61.5 

Bee Branch Far 1 October 1538 

Bee Branch Near 1 October 1447 

Big Hollow 1 October 1654 

Hickory Log 1 October 2430 

Spice 1 October 2020 

Stillrock 1 October 2230 

Turkey 1 October 1041 

Unnamed White Oak Left 1 October 719 

Unnamed White Oak Right 1 October 1558 

Wharton 1 October 2070 

White Oak 1 October 1797 

Boardinghouse  0 November 36.6 

Bucklick 0 November 34.9 

Coles Fork A 0 November 54.1 

Falling Rock A 0 November 33.6 

Falling Rock B 0 November 38.3 

Field Branch A 0 November 35.7 

Goff 0 November 35.5 

Little Millseat A 0 November 43.7 

Little Millseat B 0 November 33.6 

Miller 0 November 30.2 

Mulberry 0 November 48.7 

Tome 0 November 43.5 

Bee Branch Far 1 November 1166 

Bee Branch Near 1 November 1075 

Big Hollow 1 November 1309 

Hickory Log 1 November 1999 

Spice 1 November 1632 

Stillrock 1 November 1772 

Turkey 1 November 849 

Unnamed White Oak Left 1 November 655 

Unnamed White Oak Right 1 November 1237 

Wharton 1 November 1649 

White Oak 1 November 1367 

Boardinghouse  0 December 39.8 

Bucklick 0 December 40 

Coles Fork A 0 December 49 

Falling Rock A 0 December 39 
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Falling Rock B 0 December 39 

Field Branch A 0 December 33.2 

Goff 0 December 37.3 

Little Millseat A 0 December 38 

Little Millseat B 0 December 36.9 

Miller 0 December 28 

Mulberry 0 December 43.1 

Tome 0 December 43.2 

Bee Branch Far 1 December 1014 

Bee Branch Near 1 December 981 

Big Hollow 1 December 1292 

Hickory Log 1 December 2090 

Spice 1 December 1476 

Stillrock 1 December 1464 

Turkey 1 December 665 

Unnamed White Oak Left 1 December 352 

Unnamed White Oak Right 1 December 1346 

Wharton 1 December 1825 

White Oak 1 December 1314 

Boardinghouse  0 January 34.6 

Bucklick 0 January 38.5 

Coles Fork A 0 January 45.6 

Falling Rock A 0 January 34.9 

Falling Rock B 0 January 36.2 

Field Branch A 0 January 32.6 

Goff 0 January 37.5 

Little Millseat A 0 January 35 

Little Millseat B 0 January 34.1 

Miller 0 January 26.4 

Mulberry 0 January 37.8 

Tome 0 January 25.7 

Bee Branch Far 1 January 263 

Bee Branch Near 1 January 1073 

Big Hollow 1 January 1469 

Hickory Log 1 January 1211 

Spice 1 January 629 

Stillrock 1 January 185 

Turkey 1 January 512 

Unnamed White Oak Left 1 January 249 

Unnamed White Oak Right 1 January 1273 

Wharton 1 January 1826 
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White Oak 1 January 1390 

Boardinghouse  0 February 37.7 

Bucklick 0 February 41.4 

Coles Fork A 0 February 42.7 

Falling Rock A 0 February 37.1 

Falling Rock B 0 February 37.8 

Field Branch A 0 February 33.1 

Goff 0 February 37.9 

Little Millseat A 0 February 37.6 

Little Millseat B 0 February 36.8 

Miller 0 February 27.9 

Mulberry 0 February 37.3 

Tome 0 February 41.1 

Bee Branch Far 1 February 1255 

Bee Branch Near 1 February 1167 

Big Hollow 1 February 1458 

Hickory Log 1 February 1795 

Spice 1 February 1676 

Stillrock 1 February 1340 

Turkey 1 February 653 

Unnamed White Oak Left 1 February 334 

Unnamed White Oak Right 1 February 1266 

Wharton 1 February 2010 

White Oak 1 February 1283 

Boardinghouse  0 March 44.1 

Bucklick 0 March 47.3 

Coles Fork A 0 March 55.9 

Falling Rock A 0 March 46.8 

Falling Rock B 0 March 48.3 

Field Branch A 0 March 40.5 

Goff 0 March 49.6 

Little Millseat A 0 March 44.2 

Little Millseat B 0 March 45.4 

Miller 0 March 36.9 

Mulberry 0 March 51.2 

Tome 0 March 50.8 

Bee Branch Far 1 March 1386 

Bee Branch Near 1 March 1354 

Big Hollow 1 March 1545 

Hickory Log 1 March 2080 

Spice 1 March 1772 
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Stillrock 1 March 1631 

Turkey 1 March 750 

Unnamed White Oak Left 1 March 487 

Unnamed White Oak Right 1 March 1474 

Wharton 1 March 2140 

White Oak 1 March 1553 
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APPENDIX D-PICTURES OF LOGGER SET-UP 
 

Solinst Levelogger was placed inside a PVC tube with numerous holes, attached to rebar 
with metal wire and a u bolt. Additionally, a rope was tied to the Levelogger and a nearby 
tree. Mesh was taped to the front and back of the PVC tube to limit sedimentation and 
detritus entering the PVC tube. 

 
 
Example of PVC tube displacement after a large rain event. 
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APPENDIX E-ADDITIONAL TABLES 
 
E.01 Specific p-values from grab sample analyses 
 
E.01.1 Table of p-values for differences of least square means for May 2013-2015, 
corresponding to between-site type specific conductance difference for each year. 
 

2013 2014 2015 
<0.0001 <0.0001 <0.0001

 
 
E.01.2 Table of p-values for differences of least square means for May 2013-2015, 
corresponding to within-site type specific conductance difference between years.  
 

Site Type 2013/14 2014/15 2013/15 
Reference 0.5466 0.4792 0.93936 
MTR/VF <0.0001 0.0002 0.0003 

 
 
E.01.3 Table of p-values for differences of least square means for April 2015-March 
2016, corresponding to between-site type specific conductance difference for each month. 
 

Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. 

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

 
 
E.01.4 Table of p-values for differences of least square means for April 2015-March 
2016, corresponding to within-site type specific conductance difference between 
consecutive months. 
 

Site Type 
Apr.-
May 

May-
June 

June-
July 

July-
Aug. 

Aug.-
Sept. 

Sept.-
Oct. 

Oct.-
Nov. 

Nov.-
Dec. 

Dec.-
Jan. 

Jan.-
Feb. 

Feb.-
Mar. 

Reference 0.93 0.93 0.91 0.97 0.96 0.89 0.82 0.99 0.96 0.97 0.93 
MTR/VF 0.04 0.16 <0.0001 0.10 0.48 <0.0001 <0.0001 0.52 <0.0001 <0.0001 0.10 
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E.02 Site-specific hydroperiod calculations the entire time loggers were out (March–
December 2015) and for the growing season (April 15-October 15, 2015). Cells equal the 
proportion of time with water flow in relation to the number of records for the time 
period, calculated using Levelogger compensated level or conductivity readings. 
Units=percent of time with flowing water. 
 

Site Type Site 

March-December April 15-October 15 

Level 
Calculation

Conductivity 
Calculation 

Number 
of 

Records 

Level 
Calculation 

Conductivity 
Calculation 

Number 
of 

Records 
MTR/VF Bee Branch Near 100 100 26562 100 100 17655

Big Hollow 100 100 26661 100 100 17657
Stillrock 100 87.90 26663 100 81.73 17656
Turkey 100 100 26480 100 100 17560
Unnamed White 
Oak Right 

100 99.99 26656 100 99.99 17656

Wharton 100 96.07 26663 100 99.27 17658
Reference Cole’s Fork A 34.37 33.25 26500 32.22 48.61 17658

Falling Rock B 22.90 11.72 26563 29.42 17.63 17657
Field Branch A 3.08 18.90 26570 3.61 28.44 17654
Little Millseat A 4.48 26.86 26572 1.28 23.79 17657
Miller 0.42 14.30 26427 0.17 21.40 17655
Mulberry 70.01 56.59 26634 70.51 65.84 17656
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E.03 Summary of salamander captures by species in spring 2013, 2014, and 2015 in 
MTR/VF and reference stream reaches. 
 

Species 
Reference MTR/VF 

2013 2014 2015 2013 2014 2015 
D. fuscus adults 61 144 164 18 17 30 
D. fuscus larvae - 32 49 - 5 11 
D. monticola adults 98 158 109 13 11 20 
D. monticola larvae - 35 13 - 0 2 
Desmognathus combined 
larvae 

145 - - 23 - - 

E. cirrigera adults 45 28 39 4 5 5 
E. cirrigera larvae 80 251 182 9 6 11 
G. porphyriticus adults 1 0 1 0 0 0 
G. porphyriticus larvae 75 85 104 2 5 12 
P. ruber adults 1 4 2 0 0 0 
P. ruber larvae 18 28 37 5 3 4 
       
UNIDENTIFIED       
Desmognathus adults 36 0 25 2 0 3 
Desmognathus larvae 0 0 19 0 0 0 
G. porphyriticus or P. ruber 
larvae 

0 0 8 0 0 0 

       
TOTALS       
Desmognathus larvae total 145 67 81 23 5 13 
E. cirrigera 125 279 221 13 11 16 
G. porphyriticus 76 85 105 2 5 12 
P. ruber 19 32 39 5 3 4 
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