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Abstract

Boolean networks are an important class of computational models for molecular interaction networks. Boolean
canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in
the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of
the network. Recently, dynamic network control approaches have been used for the design of new therapeutic
interventions and for other applications such as stem cell reprogramming. This work studies the role of canalization
in the control of Boolean molecular networks. It provides a method for identifying the potential edges to control
in the wiring diagram of a network for avoiding undesirable state transitions. The method is based on identifying
appropriate input-output combinations on undesirable transitions that can be modified using the edges in the wiring
diagram of the network. Moreover, a method for estimating the number of changed transitions in the state space of
the system as a result of an edge deletion in the wiring diagram is presented. The control methods of this paper were
applied to a mutated cell-cycle model and to a p53-mdm2model to identify potential control targets.

1 Introduction
A gene regulatory network (GRN) is a representation
of the intricate relationships among genes, proteins, and
other substances that are responsible for the expression
levels of mRNA and proteins. The amount of these gene
products and their temporal patterns characterize specific
cell states or phenotypes. Thus, GRNs play a key role in
the understanding of the various functions of cells and
cellular components and ultimately might help to design
intervention strategies for the control of biological sys-
tems. Recently, practical applications in cancer systems
biology such as the identification of new therapeutic tar-
gets have stimulated the development of computational
tools that can help to identify new intervention targets.
Experimentally, the interventions are realized by manip-
ulating the wiring diagram of a system with the use of
drugs or by gene knockouts to impact the dynamics of
the system so that it is directed towards a desired state
[5, 7, 19, 32, 33]. From the modeling perspective, the
identification of intervention targets amounts to finding

*Correspondence: murrugarra@uky.edu
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a set of relevant nodes and edges that can be used for
performing interventions in silico.
Many dynamic systems theory approaches have been

used over the last decades to develop computational tools
for analyzing the dynamics of GRNs. As a result, a large
variety of models exists today. Boolean networks is a class
of computational models in which genes can only be in
one of two states: ON or OFF. Boolean networks (BNs),
and more general discrete models in which genes can take
on more than two states, have been effectively used to
model biological systems such as the yeast cell-cycle net-
work [20], the Th regulatory network [22], the lac operon
[30], the p53-mdm2 complex [1, 5, 25], A. thaliana [3], and
for many other systems [2, 6, 10, 11, 27, 34].
BNs as models for GRNs were introduced by S.

Kauffmann [16] and R. Thomas [29]. BNs have been
proposed as a framework that does not rely on kinetic
constants and therefore requires fewer parameters to esti-
mate, which simplifies analysis. Boolean canalizing rules
were introduced by S. Kauffman and collaborators [14]
and reflect the concept of canalization in evolutionary
biology that Waddington pioneered in 1942 [31]. Boolean
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canalization has been intensively studied from the net-
work dynamic perspective [13, 15, 21, 24]. It has been
shown that networks that use only nested canalizing rules
exhibit more stable dynamics compare to network using
random rules [15, 23]. Furthermore, it has shown that
each additional layer of canalization provides a degree
of stability [18, 21]. The Boolean functions in published
models tend to have many canalizing variables [14, 23].

1.1 Boolean networks
A Boolean network can be defined as a dynamical sys-
tem that is discrete in time as well as in variable states.
More formally, consider a collection x1, . . . , xn of vari-
ables, each of which can take on values in the binary set
{0, 1}. A Boolean network in the variables x1, . . . , xn is
a function

F = (f1, . . . , fn) : {0, 1}n → {0, 1}n

where each coordinate function fi is a Boolean function on
a subset of {x1, . . . , xn} which represents how the future
value of the i-th variable depends on the present values of
the variables.
The dynamical properties of a Boolean network are

given by the difference equation x(t + 1) = F(x(t));
that is, the dynamics is generated by iteration of F.
More precisely, the dynamics of F is given by the state
space graph S, defined as the graph with vertices in
K

n = {0, 1}n which has an edge from x ∈ {0, 1}n to
y ∈ {0, 1}n if and only if y = F(x). In this context,
the problem of finding the states x ∈ {0, 1}n where
the system will get stabilized is of particular importance.
These special points of the state space are called attrac-
tors of a Boolean network, and these may include steady
states (fixed points), where F(x) = x, and cycles, where
Fr(x) = x for some integer number r > 1. Attractors in
Boolean network modeling might represent cell types [16]
or cellular states such as apoptosis, proliferation, or cell
senescence [12, 28].

1.2 Canalizing functions
A Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1} is
canalizing in the variable xi with canalizing input value a
and canalizing output value b if f (x1, . . . , xi = a, . . . , xn) =
b. That is, once xi gets its canalizing input, it by itself
determines the output of the function regardless of the
value of the other variables. The variable xi is called a
canalizing variable.

1.3 Nested canalizing functions
Let σ be a permutation on the set {1, 2, . . . , n}. The func-
tion f (x1, . . . , xn) : {0, 1}n → {0, 1} is a nested canalizing
function (NCF) in the variable order xσ(1), . . . , xσ(n) with

canalizing input values a1, . . . , an ∈ {0, 1} and canalizing
output values b1, . . . , bn ∈ {0, 1} if it can be represented in
the form

f =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 if xσ(1) = a1
b2 if xσ(1) �= a1, xσ(2) = a2
b3 if xσ(1) �= a1, xσ(2) �= a2, xσ(3) = a3
...
bn if xσ(1) �= a1, . . . , xσ(n) = an
bn + 1 if xσ(1) �= a1, . . . , xσ(n) �= an.

Let α = {a1, . . . , an} and β = {b1, . . . , bn}. Then f is said
to be {σ ,α,β}.
NCF if it is NCF in the variable order xσ(1), . . . , xσ(n)

with canalizing input values α and canalizing output val-
ues β .

1.4 Partially nested canalizing functions
Any Boolean function f (x1, . . . , xn) : {0, 1}n → {0, 1} can
be represented in the form:

f =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b1 if xσ(1) = a1
b2 if xσ(1) �= a1, xσ(2) = a2
...
bd if xσ(1) �= a1, . . . , xσ(d) = ad
g if xσ(1) �= a1, . . . , xσ(d) �= ad

where either n = d, where xd is a terminal canal-
izing variable and g is a constant or n < d where
g(xσ(d+1), . . . , xσ(n)) is a non-constant function and none
of the variables xσ(d+1), . . . , xσ(n) are canalizing for g. The
integer d is called the nested canalizing depth of f. Such
Boolean functions are called partially nested canalizing
functions (PNCFs), see [18] for more details.

1.5 Layers of canalization
A Boolean function can be represented in different forms
as a nested canalizing function. A unique representation
of the function is obtained by grouping the variables in
layers of canalization [21]. Every Boolean function can be
uniquely written as

f (x1, . . . , xn) =M1(M2(. . . (Mr−1(MrPc + 1)
+ 1) . . .) + 1) + b,

(1)

where Mi = ∏ki
i=1

(
xij + aij

)
, Pc is a polynomial with no

canalizing variables, and k = k1 + · · · + kr is the canal-
izing depth. Each variable xi appears in exactly one of the
M1,M2, . . . ,Mr ,Pc. The proof of this property is given in
[9]. The number r in Eq. 1 is called the layer number of f.

Example 1.1. Consider the Boolean functions f1, f2, and
f3 with truth tables given at Table 1. The layers represen-
tation for f1 is

f1(x1, x2, x3) = x1x3(x2+1)+1, whereM1 = x1x3(x2+1),
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Table 1 Truth table for the Boolean functions in Example 1.1

x1 x2 x3 f1 x1 x2 x3 f2 x1 x2 x3 f3

0 0 0 1 0 0 0 0 0 0 0 1

0 0 1 1 0 0 1 0 0 0 1 0

0 1 0 1 0 1 0 1 0 1 0 0

0 1 1 1 0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1 1 0 0 0

1 0 1 0 1 0 1 1 1 0 1 0

1 1 0 1 1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 0

for f2 is

f2(x1, x2, x3) = (x1 + 1)[ x2(x3 + 1) + 1]+1, where
M1 = x1 + 1, M2 = x2(x3 + 1),

and for f3 is

f3(x1, x2, x3) = (x1 + 1)(x2 + x3 + 1), where
M1 = x1 + 1, Pc = x2 + x3 + 1.

Thus f1 has layer number equal to 1, f2 has layer number
equal to 2, and f3 has layer number 1. The polynomial Pc
does not have canalizing variables.

1.6 Definition of control actions
This paper considers two types of control action: dele-
tion of edges and constant expression of edges. An edge
deletion represents the experimental intervention that
prevents a regulation from happening. This action can be
achieved by the use of therapeutic drugs that target a spe-
cific gene interaction, see reference [5] where this type of
control has been experimentally applied. A node deletion
can be represented by the deletion of all of its outgoing
edges. A constant expression or a constitutive activation
of a node might result in aberrant cell proliferation and
cancer, see [5] where the constant expression of cyclin G
in the signaling pathway of p53 is reported as a signature
of abnormal gene expression that leads to cancer. But con-
stant expressions could also help to drive the system into
a more desirable state, see [27] where constant expression
of nodes have been proposed as potential controls. As a
proof of principle, this paper will consider the constant
expression of an edge as a potential control action.

Definition 1.2 (Edge Control). Consider the edge xi →
xj in the wiring diagramW . For ui,j ∈ F2, the control of the
edge xi → xj consists of manipulating the input variable
xi for fj in the following way:

Fj(x,ui,j) = fj
(
xj1 , . . . , (ui,j + 1)xi, . . . , xjm

)
.

For each value of ui,j we have the following control
settings:

• When ui,j = 0, Fj(x,ui,j) = fj(xj1 , . . . , xi, . . . , xjm).
That is, the control is not active.

• When ui,j = 1, Fj(x,ui,j) = fj(xj1 , . . . , xi = 0, . . . ,
xjm). This is the case when the control is active and
the action represents the removal of the edge xi → xj.

For simplicity, in Definition 1.2 we considered only
edge deletions. To include both the deletion and constant
expression of an edge we could consider the following
control function

Fj(x,μ)= fj
(
xj1 , . . . ,

(
u+
i,j + u−

i,j + 1
)
xi + u+

i,j, . . . , xjm
)

where u−
i,j,u

+
i,j ∈ F2.

Then for each combination of u−
i,j and u+

i,j we have the
following control settings:

• For u−
i = 0,u+

i = 0, Fj(x, 0, 0) = fj
(
xj1 , . . . , xi,

. . . , xjm
)
. That is, the control is not active.

• For u−
i = 1,u+

i = 0, Fj(x, 1, 0) = fj
(
xj1 , . . . , xi = 0,

. . . , xjm
)
. This action represents the knock out of the

node xj.
• For u−

i = 0,u+
i = 1, Fj(x, 0, 1) = fj

(
xj1 , . . . , xi = 1,

. . . , xjm
)
. This action represents the constant

expression of the node xj.
• For u−

i = 1,u+
i = 1, Fj(x, 1, 1) = fj

(
xj1 , . . . , xi + 1,

. . . , xjm
)
. This action changes the variable xi to its

negative value and might not be a relevant case of
control.

2 Methods
2.1 Eliminating state transitions through edge deletion

and constant expression
We avoid undesirable state transitions in the state space
graph of a system of canalizing functions bymeans of edge
deletion in the system’s wiring diagram.
Let F = (f1, . . . , fn) : {0, 1}n → {0, 1}n be a Boolean

network and S = (Vs,Es) be the state space graph of
F, where Vs ⊆ {0, 1}n is the vertex set of S and Es ⊆
{0, 1}n × {0, 1}n is its edge set. Suppose for u, v ∈ Vs there
is a directed edge {u, v} ∈ Es which represents an unde-
sirable transition. We eliminate the transition by deleting
appropriate edges from the wiring diagram of the system,
W = (Vw,Ew), where Vw = {x1, . . . , xn} and Ew = Vw ×
Vw. The following is a sufficient condition for eliminating
a transition from S through deleting an edge in Ew.

Method 2.1. Suppose xt ∈ Vw which takes input from
xk ∈ Vw, i.e. {xk , xt} ∈ Ew (we will also use the notation
xk → xt). Let also xk be a canalizing variable in ft , the
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functions that determines the state of xt in S. If the follow-
ing four conditions are met, then deleting the edge {xk , xt}
from Ew results in eliminating the transition {u, v} from Es:

1. No variable in a more dominant layer assumes its
canalizing input in u.

2. xk has canalizing input 0.
3. The k-th entry of u is 1, i.e. [u]k = 1.
4. xk has canalizing output that is the negation of the

t-th entry of v, that is [v]t .

The reason behind the first condition is that if any vari-
able whose layer is more or equally dominant than xk ’s
layer has assumed its canalizing input in u, then replac-
ing xk with 0 will have no effect on ft ’s output. Deleting
an edge has to impose change on the network for control
and so the second requirement is needed since if [u]k = 0
already, then deleting the edge xk → xt will have no
effect on the network. The third condition has a similar
explanation.
Similar sufficient conditions can be stated for eliminat-

ing a state space transition through constant expression of
an edge, simply by replacing 0 with 1 and 1 with 0.
Node deletion can also be used for control through

canalization. In that case, node deletion corresponds to
deleting the outgoing edges from the deleted node, and
Method 2.1 can be applied to each one of them.

2.2 Effect of edge deletion and constant expression on
the state space

We count the maximum number of state space transitions
that can be changed as a result of deleting a single edge.

Method 2.2. Let F = (f1, . . . , fn) : {0, 1}n → {0, 1}n be a
Boolean network where ft is a PNCF of depth d in m vari-
ables in canalizing variable order 1, 2, . . . , d. The deletion
of the edge xk → xt results in

(a) up to 2n−�1−�2−...−�r changes in the state space if
k ≤ d and xk is in the r-th layer of ft , where �1, . . . �r
are the numbers of variables in layers 1, . . . , r,
respectively; that is, the probability that any
transition will be removed from the state space upon
deletion of xk → xt is at most
2n−�1−�2−...−�r/2n = ( 1

2
)�1+�2+...+�r ;

(b) up to 2n−d−1 changes in the state space if d < k ≤ m,
i.e., xk is not canalizing; thus, the probability that a
particular transition will be removed from the state
space upon deletion of xk → xt is at most

( 1
2
)d−1.

To see how the bound is calculated, notice that when
xk → xt is deleted, half of the transition table can poten-
tially change (the other half had xk = 0 already). Of
the remaining half, half contains the canalizing input of

a variable in the most dominant layer and so xk can-
not cause change. Now half of the half only can possibly
change but half of that has the canalizing input of another
variable from a more or equally dominant layer to the one
where xk is, thus preventing xk from causing change, etc.
This upper bound remains the same when instead of

deleting an edge, an edge is constantly expressed.

2.3 General procedure for identifying control edges
Below we provide a general procedure for identifying
control edges based on the two methods we developed.
Figure 1 further illustrates it.
Given a Boolean network model for a biological system:

1. Formulate a goal in terms of the part of the state space
you wish to avoid, e.g., a fixed point or a cycle. If it
contains more than one state, consider all states that
are part of it. Choose to begin with one of them, v.

2. For control via edge deletion, identify all 1’s in the
state u preceding v; for control via constant
expression, identify all 0’s.

3. Begin with, say, the leftmost 1 (or 0) in u. Observe
the canalizing structure of the functions in your
model. Then check if the conditions of Method 2.1
are satisfied.

4. If some of the conditions of Method 2.1 are not met
or you are looking for other control options, proceed
to the next 1 (or 0) in u.

5. If you wish to avoid a cycle or other trajectory that
contains several states, you can repeat the above
steps on all states in order to find all control options.

6. If you find multiple edges as candidates for control,
you may want to choose to delete the ones that have
the smallest impact on the state space thus
minimizing the side effects of edge manipulation.

3 Results
We apply the control methods we developed to the
Boolean models of two networks: a model of the
human tumor suppressor gene p53 pathways [17] and a
mammalian cell-cycle network [8].

3.1 p53-mdm2model
In [17], a Boolean model, Eq. (2), of the widely studied p53
pathway is built, where the external signal is dna_dsb, the
DNA damage input.

ATMnext = Wip1(ATM + dna_dsb)
p53next = Mdm2(ATM + Wip1)

Wip1next = p53
Mdm2next = ATM(p53 + Wip1)

(2)

The other variables are ATM, p53, Wip1, and Mdm2.
When dna_dsb = 0, the state space has a single fixed
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Fig. 1 Flowchart of the procedure for identifying edges as control candidates

point, (0000), corresponding to no stress. However, when
dna_dsb = 1, i.e., the DNA damage input turns on, the
state space contains a single cycle of length seven (Fig. 3)
and no fixed points. The cycle represents cyclic variation
in the expression patterns of all the four genes. We want
to prevent this cycle from taking place through removing
one or multiple transitions from it.
The wiring diagram of the model is presented on Fig. 2.

By Method 2.1, we identify that deleting edge p53→Wip1
(which also happens to correspond to deleting the node
Wip1) has the effect of removing the following four
transitions from the undesirable cycle in Fig. 3:

Fig. 2Wiring diagram of the p53-mdm2model from [17]. Pointed
arrows correspond to positive regulatory interactions and blunt
arrows to negative regulatory interactions. The edge deletion control
candidate is given as a dotted (red) edge and the two constant
expression control candidates are denoted by thicker edges (blue)

(1100) → (1110),
(1110) → (0110),
(0110) → (0111),
(0111) → (0011).

The bold entries in the states correspond to the entries
where conditions 3 and 4 of Method 2.1 apply. As a result,
the system has only a single steady state, (1100). Unfortu-
nately, not all four proteins are inactive in it but we will
see that this can be achieved through constant expression
of the edge Wip1→ATM, as it will be discussed later.
We can also count the number of changes that delet-

ing p53→Wip1 from the wiring diagram induces on the
state space transitions: by Method 2.2, there can be up to
24−1 = 8 changes, and in fact we observe exactly as many,
demonstrating that the bound from Method 2.2 is sharp:

Fig. 3 The cycle for the Boolean network of the p53 pathways in the
presence of DNA damage. The state space is defined as (ATM p53
Wip1 Mdm2)
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out of the 16 states in the state space, 8 contain p53 = 1.
When applying the original update rules, the value of p53
in these eight states remains 1 (and so Wip1 becomes 1),
while after deleting p53→Wip1, Wip1 becomes 0 since
now the output of its update rule is 0, thus causing a
change in the state space.
Constant expression of an edge is another strategy for

removal of transitions in a state space graph. There are
analogous conditions to Method 2.1 for constant expres-
sion, obtained by simply replacing 0 with 1 and vice
versa. For example, Wip1 is a canalizing variable in the
function of ATM with canalizing input 1 and canalizing
output 0. Therefore, we can set the edge Wip1→ATM
to constant expression in order to remove the follow-
ing transitions from the undesirable cycle: (10001) →
(11001), (11001) → (11101), and (00011) → (10001).
The result is a state space with fixed point (0000), cor-
responding to no stress as when dna_dsb = 0. Another
option for control via constant expression is the edge
Mdm2→p53 which also results in a single steady state,
although this time it is (1000).

3.2 Mutated cell-cycle network model
As a second application, we consider Fauré et al. [8] who
proposed a Boolean model of the cell-cycle progression.
We focus on the scenario when the tumor suppressor
retinoblastoma protein Rb is absent as reflected in Eq. (3).
The wiring diagram for that case is given in Fig. 4. Fauré
et al. [8] assume that the expression of CycD changes inde-
pendently of the cell’s content and reflects the state of the
growth factor. According to their model, the mammalian
cell-cycle with amutated phenotype will cycle through the
eight states (Fig. 5) even when CycD is inactive.

E2F = (CycA ∧ CycB) ∨ (p27 ∧ CycB)

CycE = E2F
CycA = (E2F ∧ Cdc20 ∧ (Cdh1 ∧ Ubc))

∨ (CycA ∧ Cdc20 ∧ (Cdh1 ∧ Ubc))
p27 = (p27 ∧ (CycE ∧ CycA) ∧ CycB ∧ CycD)

∨ (CycE ∧ CycA ∧ CycB)

Cdc20 = CycB
Cdh1 = (CycA ∧ CycB) ∨ Cdc20 ∨ (p27 ∧ CycB)

Ubc = Cdh1 ∨ (Cdh1 ∧ Ubc
∧(Cdc20 ∨ CycA ∨ CycB))

CycB = Cdc20 ∧ Cdh1

(3)

We propose four edges from the wiring diagram in
Fig. 4 that can be used for control in order to avoid
the cycle in Fig. 5. These edges were identified follow-
ing Method 2.1 applied on transitions in the cycle with
the objective of eliminating the cycle and also leading the

Fig. 4Wiring diagram of the mutated (CycD and Rb inactive)
mammalian cell-cycle network. Pointed arrows correspond to positive
regulatory interactions and blunt arrows to negative regulatory
interactions [8]. Edge deletion control candidates are dotted (red) and
constant expression control candidates are denoted by thicker edges
(blue)

system to fixed point(s) where p27 = Cdh1 = 1 as in a
normal cell. The results are summarized in Table 2. Other
attempts at control produced fixed points and/or cycles
where p27 = Cdh1 = 0.

4 Discussion
In the Methods section, we noticed that the bound from
Method 2.2 is sharp. This was demonstrated using the
p53 model. In general, the exact bound from part (a) of
Method 2.2 is achieved when Ft(x,ut,k) = xk or xk (as a
function), where Ft(x,ut,k) is the function obtained from
ft by plugging in the canalizing input of the variables that
are more or equally dominant to xk .

Fig. 5 The cycle which persists in the absence of a growth factor in
the mutated phenotype (Rb inactive). The state space is defined as
(E2F CycE CycA p27 Cdc20 Cdh1 Ubc CycB)
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Table 2 Summary of control results for the mutated cell-cycle
network

Control action Outcome

Delete E2F→CycE Single fixed point
with p27 = Cdh1 = 1

Delete Cdh1→Ubc > 90% of states in component
with fixed point where
p27 = Cdh1 = 1

Express constantly Two fixed points,
CycB→E2F both with p27 = Cdh1 = 1

Express constantly > 90% of states in component
Cdc20→CycA with fixed point where

p27 = Cdh1 = 1

The bound fromMethod 2.2 can also help choose which
edge to delete or constantly express when there is more
than one option with the purpose of controlling the side
effects resulting from an edge manipulation. If it is desir-
able to minimize the impact on the state space, thus
avoiding possible negative side effects on the system, one
should choose for control an edge whose input variable
is in the least dominant layer possible in the target func-
tion. That is, if xi and xj are both canalizing variables in ft
and xj is in a less dominant layer than xi, then one should
choose to delete or constantly express the edge xj → xt
since according to the bound of Method 2.2, the maxi-
mum impact of this control is smaller than if xi → xt is
manipulated.
It is important to point out thatMethod 2.1 only guaran-

tees that a certain transition will be avoided and one may
be able to use this to remove a cycle from a state space
as we did for the p53 model. However, the method does
not guarantee that the systemwill not contain other cycles
since removing transitions from a cycle destroys the cycle
but may also create a different one, nor does it guarantee
that the resulting fixed point will be exactly the desired
one as it was observed in both applications. To find con-
trollers that give the desired fixed points one could use the
algebraic methods described in [26].
This paper considers edge manipulations as poten-

tial control actions to avoid undesirable attractors. Con-
trol through edge manipulations in the wiring diagram
of a network has been previously considered in [4].
Although the authors of [4] consider edge additions in the
wiring diagram as control actions, that is, by adding new
regulators to the existing set of regulators that help the
system to transition into a desirable attractor.

5 Conclusions
The structure of the canalizing variables in a biologi-
cally relevant Boolean rule plays an important role in

the control of Boolean networks. Special combinations
of canalizing inputs can help identify network controllers
and the canalizing structure of a Boolean function allows
to estimate the number of transitions that change after
using the type of controllers proposed in this paper. More-
over, the hierarchy of the canalizing variables can be used
for assessing the impact on the network dynamics as a
result of a given control. This paper exploits the canaliz-
ing properties of Boolean rules to derive a method that
can be useful for identifying control targets for avoiding
undesirable states. Additionally, it provides a method for
assessing the impact of the controllers on the dynamics
of the uncontrolled network. Thus these two complemen-
tary methods can help in the selection of appropriate
controllers. Method 2.1 gives a practical way for identify-
ing the potential edges to control in the wiring diagram
of a network for avoiding undesirable state transitions.
Method 2.2, on the other hand, provides a measure of
the impact of an edge deletion onto the state space of a
model and establishes that this impact differs significantly
based on the canalizing properties of the nodes involved:
an edge coming from a node with stronger canalization,
represented in the model by a variable in a more domi-
nant layer, has exponentially higher probability to change
the state space than an edge from a node with weaker
canalization, represented by a variable in a less dominant
layer. Therefore, Method 2.2 is a useful tool for assessing
the impact of the controllers identified by Method 2.1 on
the dynamics of the system providing a way for selecting
desirable controllers.
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