
University of Kentucky
UKnowledge

Forestry and Natural Resources Faculty
Publications Forestry and Natural Resources

11-2015

Quantifying the Effects of Biomass Market
Conditions and Policy Incentives on Economically
Feasible Sites to Establish Dedicated Energy Crops
Sandhya Nepal
University of Tennessee

Marco A. Contreras
University of Kentucky, marco.contreras@uky.edu

George A. Stainback
University of Kentucky, gdrewst02@uky.edu

John M. Lhotka
University of Kentucky, jmlhot2@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/forestry_facpub

Part of the Forest Sciences Commons

This Article is brought to you for free and open access by the Forestry and Natural Resources at UKnowledge. It has been accepted for inclusion in
Forestry and Natural Resources Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Repository Citation
Nepal, Sandhya; Contreras, Marco A.; Stainback, George A.; and Lhotka, John M., "Quantifying the Effects of Biomass Market
Conditions and Policy Incentives on Economically Feasible Sites to Establish Dedicated Energy Crops" (2015). Forestry and Natural
Resources Faculty Publications. 5.
https://uknowledge.uky.edu/forestry_facpub/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232573582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/forestry_facpub?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/forestry_facpub?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/forestry?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/forestry_facpub?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/forestry_facpub/5?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Quantifying the Effects of Biomass Market Conditions and Policy Incentives on Economically Feasible Sites to
Establish Dedicated Energy Crops

Notes/Citation Information
Published in Forests, v. 6, no. 11, p. 4168-4190.

© 2015 by the authors; licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)
http://dx.doi.org/10.3390/f6114168

This article is available at UKnowledge: https://uknowledge.uky.edu/forestry_facpub/5

http://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/forestry_facpub/5?utm_source=uknowledge.uky.edu%2Fforestry_facpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


Forests 2015, 6, 4168-4190; doi:10.3390/f6114168 
 

forests 
ISSN 1999-4907 

www.mdpi.com/journal/forests 
Article 

Quantifying the Effects of Biomass Market Conditions and 
Policy Incentives on Economically Feasible Sites to Establish 
Dedicated Energy Crops 

Sandhya Nepal 1, Marco A. Contreras 2,*, George A. Stainback 2 and John M. Lhotka 2 

1 Department of Geography, Room 304, Burchfiel Geography Building, University of Tennessee, 
Knoxville, TN 37996, USA; E-Mail: snepal@vols.utk.edu 

2 Department of Forestry, University of Kentucky, Thomas Poe Cooper Building, Lexington,  
KY 40546, USA; E-Mails: gdrewst02@uky.edu (G.A.S.); john.lhotka@uky.edu (J.M.L.) 

* Author to whom correspondence should be addressed; E-Mail: marco.contreras@uky.edu;  
Tel.: +1-859-257-5666; Fax: +1-859-323-1031. 

Academic Editors: Maarten Nieuwenhuis and Eric J. Jokela 

Received: 11 August 2015 / Accepted: 12 November 2015 / Published: 18 November 2015 
 

Abstract: This study used a spatially-explicit model to identify the amount and spatial 
distribution of economically feasible sites for establishing dedicated energy crops under 
various market and policy scenarios. A sensitivity analysis was performed for a biomass 
market with different discount rates and biomass prices as well as policy scenarios including 
propriety tax exemption, carbon offset payments, and the inclusion of farmland for biomass 
production. The model was applied to a four-county study area in Kentucky representing 
conditions commonly found in the Ohio River Valley. Results showed that both biomass 
price and discount rate have a can strongly influence the amount of economically efficient 
sites. Rising the biomass price by 5 $·t−1 and lowering discount rate by 1% from the baseline 
scenario (40 $·t−1 and 5%) resulted in an over fourteen fold increment. Property tax 
exemption resulted in a fourfold increase, a carbon payment on only 1 $·t−1 caused a twelve 
fold increase and extending the landbase from marginal land to farmland only slightly 
increase the economically efficient sites. These results provide an objective evaluation of 
market and policy scenarios in terms of their potential to increase land availability for 
establishing dedicated energy crops and to promote the bioenergy industry. 

Keywords: woody biomass utilization; spatially-explicit model; sensitivity analysis; Kentucky 
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1. Introduction 

Dedicated energy crops are expected to increase their contribution to the bioenergy industry because 
of the growing use of renewable resources for energy production [1,2]. Compared with natural forests, 
energy crops can: exhibit faster growth rates, produce higher biomass yields, provide numerous 
environmental benefits, and promote the development of rural economies [3,4]. Although these crops 
have the potential to provide a sustainable supply of feedstock for the bioenergy industry, they have not 
been established on a commercial scale able to significantly satisfy increasing energy demands [5–7]. 
Large-scale energy generation from dedicated energy crops is currently restricted by several factors 
including marginal returns, landowners’ willingness to grow crops, and competing cost-effective fossil 
fuels such as natural gas and coal [8–10]. 

Support from policy incentives could play a significant role in promoting the bioenergy industry by 
increasing marginal returns [11,12]. This is particularly important for landowners, who are likely only 
willing to grow these crops if they anticipate returns at least similar to those from current land uses. 
Additionally, long-term policy incentives have the potential to increase stability in market conditions 
and reduce risks associated with establishing energy crops [9,13]. Several studies have examined the 
impact of alternative policy incentives and market conditions on bioenergy production. For example, 
Chamberlain and Miller [14] used a linear profit model to establish threshold market prices and identify 
favorable policy incentives that ensure economic profit and maximize environmental benefits of 
switchgrass (Panicum virgatum L.) crops. Results showed that under medium and low biomass prices 
(50 $·t−1 and 30 $·t−1, on a dry basis and henceforth only referred to as t), carbon credit payments and 
incentives based on ecosystem valuation are required. Similarly, Luo and Miller [15] used a game theory 
approach to model biomass production decisions of switchgrass and identify incentives required to drive 
the bioenergy industry, and found that a carbon market with high biomass prices would be required to 
sustain and increase the bioenergy industry. Another study examined various policy alternatives 
preferred by landowners to promote the bioenergy industry and used logistic regression to identify 
factors that influence these policy preferences [16]. Results indicated that landowners prefer tax-based 
policies over direct subsidy support. Although these aforementioned studies have been helpful to 
understand the influence of various policy incentives on biomass production, previous studies have 
examined and quantified the effect of various market and policy scenarios on the amount and spatial 
distribution of land available for establishing energy crops at coarse scales [17–20]. Existing spatially 
explicit models estimate biomass yield and production transportation at the watershed [21], county [22] 
or regional levels [23–25]. 

The objective of this study was to quantify the effect of different market and policy scenarios on the 
amount of land where it is economically feasible to establish dedicated woody energy crops. 
Economically feasible lands were identified using a fully spatially-explicit model that identifies sites 
where potential biomass yields exceed the break-even biomass amounts [26]. The model considers 
biomass productivity estimated using biomass prices, site index, and total production costs, which are 
computed considering off-road transportation costs from parcels to existing roads and on-road 
transportation costs to closest conversion facilities. We applied the model under different market and 
policy scenarios including varying discount rates, biomass prices, tax exemptions, carbon payments, and 
land cover types. The study was conducted in a four-county study area in northern Kentucky with 
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conditions commonly found in the Ohio River Valley and much of the southern US, such as diverse land 
cover types, small privately-owned land parcels, a relatively extensive transportation network, and 
presence of conversion facilities with the ability to co-fire with coal. 

2. Experimental Section 

We selected sweetgum (Liquidambar styraciflua L.) as the potential species to utilize in an energy 
crop plantation system because: (i) it is one of the most adaptable hardwood species with an ability to 
grow on a wide range of soil and site qualities and Kentucky is it well encompassed within its growing 
range [27,28]; (ii) its management and silvicultural operations are well understood and genetic 
improvements have been successful [29–31]; and (iii) it coppices well, is generally insect and disease 
resistant [32], and has been recommended as a potential species for biomass production in the 
southeastern states including Kentucky [30,33]. 

The study area consisted of four counties (Boone, Gallatin, Carroll, and Trimble) in northern 
Kentucky. The area encompasses almost 170,000 ha and is comprised of land cover types including 
evergreen forest, deciduous forests, pasture/hay, other agricultural crops, and developed area.  
Land cover data in a 30-m raster resolution was obtained from the 2012 CropScape data maintain by the 
USDA National Agricultural Statistics Services [34]. This layer was reclassified into a 90-m resolution 
to decrease the total number of grid cells, reduce computing time, and create grid cells large enough to 
represent land parcels of manageable size. A transportation road layer was obtained from the Kentucky 
Geography Network [35]. For any local roads where speed limits were unavailable, speed limits of  
16 km·h−1, 40 km·h−1, and 56 km·h−1 were assigned for dirt roads, city roads, and county roads, 
respectively. There are three existing conversion facilities in the study area with the ability to co-fire 
biomass with coal for power generation located in Bedford, Ghent, and Rabbit Hash. 

2.1. Model Description 

We used a spatially-explicit model developed by Nepal et al. [26] to identify the amount and spatial 
distribution of economically feasible sites to establish energy crops. First, the model calculates total 
production costs (establishment and management, harvesting, and transportation) and combines them 
with the delivered biomass price to determine break-even biomass amount for each potential site  
(grid cell). It considers on-road and off-road transportation costs to take into account the location of 
potential sites relative to existing roads and thereafter to the nearest conversion facility. Second,  
break-even biomass amounts are compared with potential biomass yield, estimated from site index. Sites 
with potential biomass yields larger than the break-even biomass amounts are considered economically 
feasible for establishing energy crops and vice versa. A conceptual model illustrating the model inputs 
and calculations is presented in Figure 1. 

Considering a 12-year rotation, establishment (site preparation and planting) and management 
(herbicide, pesticide, and fertilizer applications) costs of $1,198 ha−1 were used based on estimates 
provided by Kline and Coleman [33]. In the model, harvesting costs are divided into the cost of cutting, 
chipping and blowing chips (CCB cost) and off-road transportation. A CCB cost, constant across the 
study area, of 11.25 $·t−1 was used based on an economic analysis tool developed for willow crops in 
the eastern US [34]. Off-road transportation cost for a given grid cell was calculated considering a tractor 
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with a 6-t trailer rental rate of 60 $·h−1, an average tractor speed of 6.5 km·h−1, and the Euclidian distance 
from the grid cell center to the closest existing road. On-road transportation cost for a give grid cell was 
calculating considering a 25-t chipvan operating costs of 78.5 $·h−1, and total travel time from the grid 
cell to the nearest conversion facility along the existing road network [36]. Lastly, a discounted annual 
property tax of 1% for agricultural land valued at 556.7 $·ha−1 [37], resulting in total discount tax of 
49.29 $·ha−1 over the 12-year rotation was also included in the model. 

 

Figure 1. Diagram illustrating the general structure of the spatially-explicit model to identify 
economically feasible site to establish bioenergy crops. (CCB cost indicates the cost of 
cutting, chipping, and blowing chips). 

In the model, production costs (establishments and management, CCB, off- and on-road 
transportation), property taxes, and delivered biomass price are used to determine the break-even 
biomass amount (𝑉𝑉) in t per year by grid cell as follows: 

𝑉𝑉 =  
𝐴𝐴
𝑡𝑡
∙

[ 𝐶𝐶𝑆𝑆𝑆𝑆 ∙ (1 −  𝑒𝑒−𝑟𝑟𝑟𝑟)  +  𝐶𝐶𝐻𝐻𝑆𝑆𝐻𝐻  +   𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇]

[𝑃𝑃 −  (
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝐿𝐿𝑟𝑟𝑟𝑟𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟

 +  𝐶𝐶𝑜𝑜𝑜𝑜𝐿𝐿𝑣𝑣𝑇𝑇𝑜𝑜
 +  𝐶𝐶𝐶𝐶𝐶𝐶)] ∙ 𝑒𝑒−𝑟𝑟𝑟𝑟

 (1) 

where; A is the grid cell size (ha), which is 0.81 ha across the study area; t is the rotation age (12 years); 
𝐶𝐶𝑆𝑆𝑆𝑆 is a one-time site preparation and plantation cost that occurs during the first year of the first rotation 
($·ha−1); 𝐶𝐶𝐻𝐻𝑆𝑆𝐻𝐻 is the sum of discounted costs for herbicide, pesticide and fertilizer treatments ($·ha−1); 
𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 is the sum of discounted property taxes ($·ha−1) over one rotation; P is the delivered biomass price 
($·t−1); 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 and 𝐶𝐶𝑜𝑜𝑜𝑜 are the off- and on-road transportation cost ($); CCB is the cost of the cutting, 
chipping and blowing chips into the trailer ($·t−1); 𝐿𝐿𝑟𝑟𝑟𝑟𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 and 𝐿𝐿𝑐𝑐ℎ𝑡𝑡𝑖𝑖𝑣𝑣𝑇𝑇𝑜𝑜 are the loading capacity of the 
trailer (3 t) and the chipvan truck (12.5 t); and r is the real discount rate. 

 



Forests 2015, 6 4172 
 

Potential biomass yields by grid cell were estimated based on site index (tree height in meters at  
age 50). Following procedures presented by Kline and Coleman [33], only areas with site index values 
between 22.9 and 38.1 meters are suitable for establishing sweetgum bioenergy crops, thus cells with 
sites index outside this range were estimated to yield no biomass. For other cells, their associated site 
index values were scaled to the suitable site index values and then related to the range of estimates from 
Kline and Coleman [33], from 3 to 9 t ha−1·year−1. Calculations of site index were based on a weighted 
score of four major soil factors: physical condition, moisture availability during the growing season, 
nutrient availability, and aeration [38]. These soil data were obtained from spatial and tabular soil data 
from the Soil Survey Geographic Database (SSURGO) [39]. For a more detailed description of 
procedures used to estimate biomass yields, please refer to Nepal et al. [26]. 

2.2. Baseline Scenario 

For the baseline scenario, we only considered marginal agricultural lands to prevent competition with 
food production and avoid conversion of natural forest. These marginal lands included 47,158 ha of 
pasture/hay and barren land cover types in the 170,000-ha, four-county study area (Figure 2).  
A delivered biomass price of 40 $·t−1, based on the range of prices presented in previous research  
work [33,40,41], a real discount rate of 5%, and a property tax of 49.3 $·ha−1 were considered. 

 

Figure 2. Distribution of pasture/hay and barren lands across the four-county study area.  
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2.3. Alternative Scenarios 

We considered five alternative scenarios to evaluate the effects of market conditions and policy 
incentives on the amount and spatial distribution of sites economically feasible to establish dedicated 
energy crops. Scenarios I and II evaluated market conditions by applying a sensitivity analysis to 
examine the effect of small changes in discount rate and biomass prices, respectively. Policy incentives 
consisted scenarios III-V: property tax exemption, a sensitivity analysis with the inclusion of different 
carbon offset payments, and the inclusion of farmland as suitable sites. 

2.3.1. Scenario I—Discount Rates 

Although rotations of energy crops are relatively short, discount rates can still have an important 
influence on profitability levels and thus on the area economically feasible to establish these crops. 
Moreover, it is difficult to select a discount rate that can appropriately represent the dynamic nature of 
market conditions and the alternative options of individual investors. Other biomass studies have used a 
discount rate of 5% for forest valuations in the US [42,43]. We considered five real discount rates values 
ranging from 3 to 7 percent. 

2.3.2. Scenario II—Biomass Prices 

Previous studies have used a wide range of delivered biomass prices depending on species and 
geographic locations (i.e., [14,33,44–46]). We considered five biomass price values ranging from 35 to 
55 $·t−1 increasing every 5 $. 

2.3.3. Scenario III—Tax Incentives 

Several US states offer property tax exemptions over lands used for power generation from renewable 
sources [47]. Although such policies for growing biomass crops are not available in Kentucky, they 
could prove as an effective mechanism to encourage landowners to grow these crops. We then simulated 
a policy scenario consisting of eliminating property taxes, by removing it from the break-even biomass 
calculation (Equation (1)). 

2.3.4. Scenario IV—Carbon Offset Payments 

Programs establishing carbon offset payments are likely to be efficient mechanisms for capturing the 
value of carbon sequestration, promoting the biomass utilization for energy generation, and increase 
landowners’ willingness to grow dedicated energy crops [46,48]. Carbon payments vary widely from 
0.05 $·t−1 [49] to 15 $·t−1 [50]. Based on these exiting carbon payment values and preliminary model 
results, we considered four carbon payments values ranging from 1 to 4 $·t−1. 

We adjusted the calculation of break-even biomass amount to include: (i) carbon offset payments 
incurred at the end of each rotation, which represents carbon emissions avoided by replacing coal with 
biomass feedstock for energy generation; and (ii) an annual carbon offset payment representing the 
carbon stored in biomass. The calculation of break-even biomass amount by grid cell is as follows: 
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𝑉𝑉 =
𝐴𝐴
𝑡𝑡

[𝐶𝐶𝑆𝑆𝑆𝑆 ∙ (1 − 𝑒𝑒−𝑟𝑟𝑟𝑟) + 𝐶𝐶𝐻𝐻𝑆𝑆𝐻𝐻 + 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇]

��(𝑃𝑃 + 𝑃𝑃𝑐𝑐 ∙ 1.01) − �
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝐿𝐿𝑟𝑟𝑟𝑟𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟

+ 𝐶𝐶𝑜𝑜𝑜𝑜
𝐿𝐿𝑣𝑣𝑇𝑇𝑜𝑜

+ 𝐶𝐶𝐶𝐶𝐶𝐶�� ∙ 𝑒𝑒−𝑟𝑟𝑇𝑇 � + [∑ 𝑃𝑃𝑐𝑐 ∙ 1.835𝑒𝑒−𝑟𝑟𝑟𝑟]𝑟𝑟
0

 (2) 

where the additional variable 𝑃𝑃𝑐𝑐 is the carbon offset payment ($·t−1). The constant 1.835 is a conversion 
factor to estimate the amount of CO2 equivalent in one ton of biomass. It was determined by using the 
standard 0.5 converting factor from biomass to carbon content and the 3.67 factor that indicates CO2 to 
C atomic mass ratio [51–53]. The constant 1.01 multiplying 𝑃𝑃𝑐𝑐 represents the carbon emissions avoided 
by using one ton of biomass for electricity generation. It was determined by calculating the total 
electricity generated from biomass, following procedures outlined in Shrestha et al. [54], and then 
multiplying it by the GHG intensity of electricity generated from coal, which was 0.001236 ton CO2e 
per k·Wh−1 [55]. 

2.3.5. Scenario V—Inclusion of Agricultural Lands 

Bioenergy production has been confined to marginal agricultural land, but including more productive 
lands might be necessary to satisfy the increasing demand of energy generation. In this analysis, we 
included existing row crop agricultural lands covering an additional area of about 4014 ha as potential 
sites for establishing bioenergy crops. The break-even biomass amount for each grid cell for this existing 
row crop agricultural land was also calculated using Equation (1), but including a total discount property 
tax of 98.49 $·ha−1, obtained from the Kentucky Department of Revenue. 

3. Results 

3.1. Baseline Scenario 

In the spatially-explicit model there are location-independent (𝐶𝐶𝑆𝑆𝑆𝑆 , 𝐶𝐶𝐻𝐻𝑆𝑆𝐻𝐻 , 𝐶𝐶𝑟𝑟𝑇𝑇𝑇𝑇 , and 𝐶𝐶𝐶𝐶𝐶𝐶 ) and 
location-dependent (𝐶𝐶𝑜𝑜𝑜𝑜 and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜) costs. As aforementioned, location-independent costs amounted to 
1198 $·ha−1 plus 11.25 $·t−1 of biomass harvested. 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜  ranged from 0 to 7.83 $·t−1 depending on 
proximity to existing roads with an average of 1.26 $·t−1, and 𝐶𝐶𝑜𝑜𝑜𝑜 ranged from 0.1 to 4.76 $·t−1 with an 
average of 1.95 $·t−1, depending on proximity to conversion facilities. Total transportation costs varied 
between 0.1 and 10.98 $ t−1 with an average of 3.21 $·t−1. Break-even biomass amounts obtained by 
combining all production costs with the delivered biomass price of 40 $·t−1 ranged from 3.70 to  
5.98 t·year−1 across the study area. 

Site index values varied between 18.6 to 28.9 meters across the study area, but as suggested by Baker 
and Broadfoot [38], only grid cells with site index value larger than 22.9 meters were considered suitable 
for growing sweetgum. Out of the 47,158 ha of existing pasture/hay and barren lands, there were  
17,274 ha suitable for growing sweetgum energy crops, and potential biomass yields on these sites varied 
between 3.24 and 4.54 t·year−1. When break-even biomass amounts were compared with biomass yield 
estimates by grid cell, only a total of 942 ha were identified as economically feasible to establish 
sweetgum, which represent about 5.5% of the total pasture/hay and barren lands. These economically 
feasible sites are mostly scattered throughout the study area with relatively the same amount in  
each county. 
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3.2. Alternative Scenarios 

3.2.1. Scenario I—Discount Rates 

Discount rate had a significant effect on the amount of area economically feasible to establish 
sweetgum energy crops. Increasing discount rates resulted in higher break-even biomass amounts due to 
the higher associated production costs (Table 1). Ranges of break-even biomass amounts overlapped and 
their width steadily increased with larger discount rates indicating more variability across the study area 
(Figure 3). Larger break-even biomass amounts with increasing discount rates caused the area 
economically feasible to decrease sharply from the 17,269 ha for 3% discount rate to zero ha for 7% 
discount rate (Table 1). When the discount rate was reduced only one percent from the baseline scenario 
(from 5% to 4%), the total economically feasible area increased over 14 fold from 942 ha to 13,397 ha. 
On the other hand, increasing the discount rate by one percent (from 5% to 6%) resulted in almost no 
economically feasible area. 

Table 1. Scenario I results: discount rate sensitivity analysis and associated economically 
feasible area. (Bold font indicates baseline scenario). 

Discount Rate (%) 
Break-Even Biomass Amount 

(t·year−1) 
Economically Feasible Area (ha) 

3 2.6–4.3 17,269 
4 3.1–5.1 13,397 
5 3.7–6.0 942 
6 4.3–7.0 18 
7 5.0–8.2 0 

 

Figure 3. Ranges of break-even biomass amount at different discount rates.  
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In general, economically feasible areas considering higher discount rates (i.e., >5%) are located on 
sites relatively close to existing roads. As discount rate is reduced, additional areas farther from roads 
become economically feasible. Figure 4 shows the spatial distribution of economically feasible areas 
across the study area at different discount rates, where sites indicated as economically feasible for a 
given discount rate are also feasible for higher rates. Although for most discount rates sites are relatively 
scattered across the study area, some clusters can be observed in eastern Trimble Co and northeastern 
Carroll Co as well as along the northwestern boundary of the study area close to the Ohio River on more 
productive sites. 

 

Figure 4. Spatial distribution of economically feasible sites for establishing sweetgum at 
different discount rates. 
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3.2.2. Scenario II—Biomass Prices 

The amount of area economically feasible to establish sweetgum energy crops was also sensitive the 
delivered biomass price. Contrary to discount rates, increasing biomass prices resulted in reduced  
break-even biomass amounts because lower yields were required to cover production costs (Table 2). 
The reduction rate of break-even biomass amount decreased with increasing biomass price, and results 
suggest that break-even biomass might stabilize at around 2.5 t per year when larger values (>55 $·t−1) 
are considered (Figure 5). Also the variation in break-even biomass amount across the study area 
decreased with increasing biomass prices. Increasing biomass prices resulted in larger areas 
economically feasible to grow energy crops (Table 2). When the biomass price was reduced $5 from the 
baseline scenario (from 40 to 35 $·t−1), there was no area economically feasible. A delivered biomass 
price of at least 36 $·t−1 is needed to have any area feasible to grow these crops. On the other hand, 
increasing the delivered biomass price by $5 resulted in the total economically feasible area to increase 
almost fifteen fold from 942 ha to 13,903 ha. When the biomass price was further increased to 50 $·t−1, 
almost all suitable pasture/hay and barren land became economically feasible. When 55 $·t−1 was 
considered, all available area became economically feasible. 

Table 2. Scenario II results: delivered biomass price sensitivity analysis and associated 
economically feasible area. (Bold font indicates baseline scenario). 

Biomass Price ($·t−1) 
Break-Even Biomass Amount 

(t·year−1) 
Economically Feasible Area (ha) 

35 4.5–8.3 0 
40 3.7–6.0 942 
45 3.2–4.7 13,903 
50 2.7–3.8 17,272 
55 2.4–3.2 17,274 

 

Figure 5. Ranges of break-even biomass amount at different biomass prices.  
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In general, feasible sites at lower delivered biomass prices (i.e., 40 $·t−1) were located on close 
proximity to existing road mostly in eastern Trimble Co and central Carroll Co and on productive site 
along the Ohio River (Figure 6). When higher prices were considered; sites farther away from road and 
on less productive areas become economically feasible; with the feasible area scattered throughout the 
four counties but more concentrated in eastern Trimble and Carroll counties. 

 

Figure 6. Spatial distribution of economically feasible sites for establishing sweetgum at 
different delivered biomass prices. 

3.2.3. Scenario III—Tax Incentives 

Eliminating property taxes resulted in break-even biomass amounts about 5.5% lower (3.5–5.6 t·year−1) 
than the taxed scenario. When these values were compared with potential biomass yields (3.2–4.5 t·year−1) 
by grid cell, the total area economically feasible for sweetgum energy crops more than quadrupled from 
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942 ha to 4167 ha, representing about 24% of the total existing pasture/hay and barren lands. Sites that 
became economically feasible when property taxes were removed were located throughout the four-county 
study area, but relatively more concentrated in eastern Trimble and Carroll counties, and southwest 
Gallatin County (Figure 7). 

 

Figure 7. Spatial distribution of economically feasible sites for establishing sweetgum with 
and without property tax exemptions. 

3.2.4. Scenario IV—Carbon Offset Payment 

Carbon offset payments had a positive effect on the amount of area economically feasible to establish 
sweetgum energy crops. Break-even biomass amounts decreased as carbon payments increase, although 
at a decreasing rate, which seemed to approach a 2–2.5 t·year−1 when larger carbon payment values  
(>4 $·t−1) were considered (Figure 8). The variation break-even biomass amount across the study area 
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also decreased with increasing carbon offset payments (Table 3). Increasing carbon offset payments 
resulted in larger areas economically feasible because higher carbon offset payments require smaller 
biomass productivity to cover the production costs and provide positive economic returns. Considering 
only a 1 $·t−1, the economically feasible area increased by almost twelve times from 942 ha to  
11,260 ha. When carbon payment was increased to 2 $·t−1, over 96% of total suitable area became 
economically feasible (16,615 ha). A carbon payment of 3 $·t−1 resulted in all area becoming 
economically feasible, and when the carbon payment was further increased, as expected all remained 
economically feasible. Figure 9 shows the spatial distribution of feasible areas at different carbon 
payments, where sites feasible at a given carbon payment are also feasible for lower values. 

 

Figure 8. Ranges of break-even biomass amounts associated to different carbon  
offset payments. 

Table 3. Scenario IV results: carbon offset payment sensitivity analysis and associated 
economically feasible area. (Bold font indicates baseline scenario). 

Carbon Offset Payment 
($·t−1) 

Break-Even Biomass Amount 
(t·year−1) 

Economically Feasible Area 
(ha) 

0 3.7–6.0 942 
1 3.3–5.0 11,260 
2 3.0–4.3 16,615 
3 2.7–3.8 17,274 
4 2.5–3.4 17,274 
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Figure 9. Spatial distribution of economically feasible sites for establishing sweetgum at 
different carbon offset payments. 

3.2.5. Scenario V—Inclusion of Agricultural Lands 

Although row crop agricultural lands are generally more productive than marginal agricultural lands, 
potential biomass yields were only slightly higher than pasture/hay and barren land, with averages of 3.7 
vs. 3.6 t·year−1, respectively. However, larger property taxes of row crop agricultural lands compared 
with pasture/hay and barren lands due to their higher value, resulted in larger break-even biomass 
amounts ranging from 3.9 to 6.3 t·year−1. When the break-even biomass amounts were compared with 
potential biomass yields by grid cell within the row crop agricultural land, only 28 ha out of 4014 ha 
(about 0.7%) were economically feasible.  
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3.2.6. Combined Effects 

We extended the analysis to examine the combined effects of multiple factors on the amount of 
economically feasible area to establish sweetgum energy crops. We considered two additional scenarios 
with different biomass prices and carbon offset payments with and without property taxes. For all these 
cases, a 5% discount rate was used. 

Similar to their individual effect, increasing delivered biomass prices and carbon offset payments 
resulted in a rapid increase in the amount of area economically feasible to establish sweetgum energy 
crops (Table 4). Only the combination of lowest delivered biomass price and no carbon offset payment 
resulted in no area economically feasible. When carbon payments progressively increased, the amount 
of area economically feasible increased to 2%, 30%, 84%, and 99% of the total hay/pasture and barren 
lands available. Carbon payment of 3, 2, and 1 $·t−1 were required to make 100% of the area 
economically feasible when considering biomass prices of 40, 45, and 50 $·t−1, respectively. No carbon 
payment was necessary for the highest biomass price. 

Table 4. Combined effects of biomass price and carbon offset payments on the amount of 
economically feasible area (ha) including property taxes. 

Biomass Price ($·t−1) 
Carbon Payment ($·t−1) 

0 1 2 3 4 
35 0 279 5301 14,486 17,255 
40 942 11,260 16,615 17,274 17,274 
45 13,906 17,240 17,274 17,274 17,274 
50 17,272 17,274 17,274 17,274 17,274 
55 17,274 17,274 17,274 17,274 17,274 

The same pattern of increasing amount of economically feasible area with increasing biomass price 
and carbon payments was observed in the scenario without property taxes (Table 5). However, more 
areas were economically feasible compared with scenarios including property taxes, and even the 
smallest biomass price with no carbon payment resulted in 46 ha being feasible. Carbon payments of  
4, 3, and 1 $·t−1 were required to make all available sites economically feasible considering  
biomass prices 35, 40, and 45 $·t−1, respectively, and no carbon payments were required for larger  
biomass prices. 

Table 5. Combined effects of biomass price and carbon offset payments on the amount of 
economically feasible area (ha) with property tax exemption. 

Biomass Price ($·t−1) 
Carbon Payment $·t−1) 

0 1 2 3 4 
35 46 929 11,590 16,850 17,274 
40 4167 14,281 17,254 17,274 17,274 
45 16,537 17,274 17,274 17,274 17,274 
50 17,274 17,274 17,274 17,274 17,274 
55 17,274 17,274 17,274 17,274 17,274 
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4. Discussion 

The economically feasible area was highly sensitive to market conditions expressed in terms of 
discount rates and delivered biomass prices. Discount rates had a positive effect on the break-even 
biomass amount, thus a negative effect on the economically feasible area. Results also showed increasing 
variation in the break-even biomass amounts across the study area with increasing discount rates. This 
might be explained by the fact that as discount rates increase, a given change in production costs that 
occur at the end of the rotation will have a larger impact on the financial return to the landowner. Results 
also showed a reduction in the break-even biomass amounts across the study area with increasing 
delivered biomass prices. Although having opposite effects, a small change in the discount rate resulted 
in a similar effect as a small change in delivered biomass price change from the baseline scenario. A 1% 
reduction in discount rate or a 5 $·t−1 increase in delivered biomass price from the baseline scenario 
caused the amount of economically feasible area increased from about 5% to almost 80% of the available 
land base. Further reducing the discount rate to 3% and increasing the delivered biomass price to 50 $·t−1 
resulted in all suitable land base becoming economically feasible. Quantifying the effect of market 
conditions on the economically feasible area is essential to identify minimum conditions required to 
positively affect landowners’ willingness to grow these crops and increase biomass production by 
making it more competitive with alternative sources [13,54]. 

A policy scenario where property taxes are exempted proved as an effective mechanism to promote 
bioenergy production by increasing the economically feasible area over four times. It has been reported 
that landowners prefer tax incentive policies over direct subsidies [16]. However, to some extent, local 
governments depend on property taxes and eliminating them might limit their ability to support  
rural communities. 

Incorporating policies that allow existing row crop agricultural lands as potential sites for energy 
crops showed only a marginal effect. Although row crop agricultural lands usually have higher site 
qualities, soil properties were relatively similar over both land types of agricultural lands as delineated 
on our land use input data, and the slightly larger biomass productivity on row crop agricultural lands 
did not offset the larger associated property taxes. This result indicates that there may not need to be a 
policy protection to restrict biomass production on agricultural lands. 

On the other hand, policy scenarios installing carbon offset payments can serve as an effective 
mechanism to promote biomass production. Similar to delivered biomass prices, the economically 
feasible area was also highly sensitive to carbon payments. A carbon payment of 2 $·t−1 resulted in over 
96% of the suitable land base to become economically feasible. This is important because carbon offset 
payments present an alternative financial venture available to landowners simply responding to favorable 
market incentives [56]. Moreover, in states like Kentucky where coal is the largest source of energy 
production, delivered coal prices remain fairly low [57]. Thus, instead of raising the delivered biomass 
price, installing carbon payments might be a more viable option. Installing carbon offset payments 
assumes that generating power from burning biomass results in greenhouse gas (GHG) savings 
compared with power generation from burning coal. There is still considerable debate in the literature 
about these potential GHG savings, mainly due to uncertainties of the many site-specific factors and 
productions components considered in life cycle assessments, which make difficult the accurate 
estimation of the amount of GHG emissions and fossil energy consumption. However, the renewable 
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nature of biomass is recognized as a comparative advantage and had been a driving force for including 
carbon offset payments in policy portfolios at the state, national, and global levels [56–58]. 

Although individual factors can have a critical impact on promoting biomass for bioenergy, analyzing 
and modeling the overall effects of market and policies scenarios is complex. Our analysis of the 
interactions of biomass prices and carbon offset payments, with and without property taxes, helped 
examine the combined effect of these factors to identify policies that can effectively promote biomass 
production. As expected, in several cases, reducing the discount rate, increasing biomass prices, and 
introducing carbon payments resulted in all suitable land becoming economically feasible.  
This indicated that site productivity, and thus biomass yield, was the limiting factor. Changes in the 
management intensity might be an alternative to further increase areas economically suitable for the 
same fixed land base. For the purpose of identifying the relative effect of market and policy scenarios 
on the economically feasible area, we estimated biomass yields following the study of Kline and 
Coleman [33] that assigns an average biomass yield for low, medium, and high quality sites, which we 
determined based on site index. As aforementioned and as recommended by Baker and Broadfoot [38], 
only areas with site index between 22.9 and 38.1 meters were considered suitable for growing sweetgum 
crops. However, lower productivity areas might still be economically feasible, especially near existing 
conversion facilities where transportation costs are lower. Including these lower productivity areas is 
then likely to increase the economically feasible area. 

Estimating biomass yields based on site-specific site conditions is not trivial as detailed information 
about soil properties, weather, species genetic improvements, and management scenario are required.  
In this study, we estimated biomass yield based on site quality as measured by site index [33].  
This approach accounted for neither the relationships between site index and management scenarios nor 
the resulting likely different establishment costs to obtain similar biomass yields. Future studies should 
incorporate more detailed site-specific biomass yield models as they become available to improve the 
accuracy of estimates as well as properly capture the interactions between site quality and management 
scenarios and their contribution to biomass yields. Furthermore, site index values were calculated based 
on soil properties obtained from the SSURGO [39], which are prone to inconsistent results at the site 
level due to edge-matching. However, these soils’ data were compiled with the purpose of minimizing 
discontinuity in map units along soil survey area boundaries, and, most importantly, the SSURGO 
dataset is the most comprehensive soil dataset with the finest resolution available in the US. Another 
potential source of error is the reclassification of the 30-m land use raster into a 90-m resolution. The 
original classification accuracy of the land use raster is between 85%–95% and horizontal positional 
accuracy of about 10 meters. We anticipate this potential reclassification-related source of error to be 
marginal as 90-m cell size is 0.81 ha in size and this study evaluated economically feasible areas at a 
much larger scale. What is more, although we considered a single species to establish dedicated energy 
crops, given appropriate estimates of establishment and management costs and accurate biomass  
yield predictions, other species can also be included in the analysis as well as including larger  
geographical regions. 

Lastly, this study indicates where woody energy crop production would be economically feasible 
given existing infrastructure and market conditions. As the amount of biomass produced even from all 
available sites is less 75,000 t·year−1 across the four-county study area is not large enough when 
delivered to the three facilities, we assumed biomass demand is always available. If additional power 
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plant facilities or road infrastructure were built, then production costs would be reduced. In addition, 
there are other economic and social factors besides economic feasibility that landowners typically 
consider when making land-use decisions such as the opportunity cost of using the land for energy crops, 
which was not taken into account in the analysis. In the specific area encompassed by the study, 
opportunity costs range from about $80 per acre on pastureland to over $500 per acre on prime 
agricultural land [35]. Including such costs in the analysis would likely reduce the amount of area 
landowners would be willing to devote to energy crops. Other studies have shown that such costs can 
have a substantial impact on the availability of land for bioenergy production [61,62]. Previous work has 
also demonstrated that fluctuations in energy markets and an uncertain policy environment can 
substantially influence land-use decisions by landowners [13]. Also, non-economic drivers may 
influence a landowner’s willingness to supply biomass for energy. For example, studies have found that 
factors such as the design and security of contracts [61] and the requirement for a long-term commitment 
of land [63] are barriers to landowners’ willingness to plant energy crops. 

5. Conclusions 

We used a spatially explicit model to evaluate, and most importantly, quantify the effects of market 
conditions and policy incentives on the amount of land economically feasible to establish sweetgum 
energy plantations. The economically feasible area was highly sensitive to market conditions, expressed 
in terms of discount rates and delivered biomass prices. As expected, increasing delivered biomass prices 
and reducing discount rates showed a positive effect. It was found that raising the delivered biomass 
price by 5 $·t−1 and lowering the discount rate 1% from the baseline scenario (40 $·t−1 and 5%, 
respectively) caused a similar effect on the economically feasible area, an increment from about 5% to 
80% of the available land base (hay/pasture and barren lands). 

Eliminating property taxes proved to be an effective policy as the amount of economically feasible 
area increased from 5% to 42% of the available land base. Although landowners typically prefer tax 
incentive policies over direct subsidies, this policy might not be preferred by local governments because 
it might limit their ability to support local communities. Allowing biomass production on more 
productive agricultural lands, such as row crop lands, resulted in a marginal increase in the area 
economically feasible. Introducing carbon offset payments was also an effective policy as it had a 
significant effect on the amount of economically feasible area. A payment of 1 $·t−1 increased the 
economically feasible area from 5% to 65%. In regions where energy production comes primarily from 
fossil fuels, such as the eastern coal fields of the United States, this policy might be a more viable than 
raising delivered biomass prices. 

As aforementioned, dedicated energy crops have the potential to supply a stable feedstock for the 
bioenergy industry, but their establishment has not been implemented on a commercial scale to 
significantly supply increasing energy demands. It is anticipated that policy incentives, such as the 
renewable portfolio standard in Kentucky, will play an important role in promoting bioenergy  
production [64]. Results from our analysis provide an analytical approach to quantify the effect of 
alternative policies and identify those that can most efficiently promote bioenergy production in terms 
of the amount of land where dedicated energy crops can provide positive economic returns. 
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