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ABSTRACT OF THESIS 

 

 

THE EFFECT OF VARYING BISPHOSPHONATE TREATMENT ON CHANGES IN 
BONE MICRODAMAGE IN OSTEOPOROTIC WOMEN 

 

Bisphosphonates (BPs) are used for the treatment of osteoporosis. This study 
evaluated changes in bone microdamage with BP treatment duration. Fifty-one iliac crest 
biopsies were obtained from Caucasian women, ages 41 to 87 years, who were previously 
diagnosed and treated for osteoporosis with oral BPs for 1-16 years duration. Patients 
diagnosed with any disease, drug, or substance abuse that may affect bone metabolism 
were excluded. 

Bone samples were sectioned, stained, and histologically examined using light 
and fluorescence microscopy.  Bone area, number and length of microcracks were 
quantified. Following adjustment for age, BMD, BV/TV, trabecular thickness, and 
turnover, regression analysis revealed a relationship between microcrack density and 
treatment duration (p=0.018).  No significant relationship was observed between 
microcrack length and treatment duration.  

This study provides novel data relating microdamage with varying BP treatment 
duration in human bone.  Given information from other studies showing that 
microdamage amounts are related to changes in bone biomechanics, the BP treatment 
duration related changes in microdamage shown offer new information that may help 
optimize osteoporosis treatment. 
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Chapter I Introduction and Background  

1.1 Introduction 
As healthcare technology advances, therapies are being developed that increase 

the human life span. With an increase in life expectancy, there is a simultaneous need for 

continued quality of life. By the year 2030, the number of Americans that live past 65 

years of age will have almost doubled [1, 2] and underlying this profound change in 

demographics is an increased need to address and treat the medical concerns that occur in 

this aging population.  One of the most noteworthy of these medical concerns is 

osteoporosis, a systemic loss of bone from the skeleton. The prevalence of osteoporosis 

has continued to rise over time and will only continue to do so as the elder population 

expands (Fig. 1.1) [2]. 

 

Figure 1.1. Prevalence of Osteoporosis. Reproduced with permission from Wright NC, 
Looker et al. The recent prevalence of osteoporosis and low bone mass in the United 
States based on bone mineral density at the femoral neck or lumbar spine. JBMR 2014, 
2520-2526. Copyright John Wiley & Sons, Inc. 
 

More specifically, osteoporosis is a worldwide health problem with more than 200 

million people affected [5]. In the United States, more than 10 million people have been 

diagnosed with osteoporosis, and more than 18 million are at risk to develop the disease 

[5].  Based off data gathered from 1990-2011, the hospitalization costs for a hip fracture 

ranged from $8,358 to $32,195 [6].  In the year 2002, the estimated mean cost of treating 

an osteoporotic-related bone fracture in the United States was $8,600 [6]. Additionally in 
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that year, more than 1.6 million people experienced an osteoporosis-related fracture, 

which brought the nationwide total cost of treating osteoporotic-related incidents to $14 

billion [6].  

 

Figure 1.2. Consequences of a hip fracture [2]. 
 

As the elder population continues to grow, this multi-billion-dollar problem will 

continue to compound. Concurrently, the cumulative societal cost of acute and chronic 

healthcare expenses attributable to osteoporosis and osteoporosis-induced fractures over 

the next two decades is projected at $474 billion [5]. Individuals with osteoporosis will 

not only experience a financial burden because of the disease, but many will never return 

to their pre-injury socioeconomic status [5].  Osteoporotic fractures often result in lost 

work time or the inability to perform daily tasks, thus decreasing productivity and 

independence in the home place and the work place (Fig. 1.2).   

1.2 Background of Osteoporosis      
Osteoporosis is far more common in women. Worldwide, almost 40% of 

Caucasian women in the United States will experience at least one osteoporosis-related 

fracture after the age of 50 [7]. A major reason why post-menopausal women are prone to 

osteoporosis is estrogen levels decline following menopause. This loss of estrogen results 

in an imbalance of bone resorption and formation (Fig. 1.3).  Bone resorption and bone 

formation are balanced in normal, healthy bone. However, after menopause, bone 

resorption occurs at a higher rate than bone formation, resulting in lower bone mass, thus 
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an increased potential risk of fracture [8]. Moreover, as the life expectancy increases, 

more men are also being diagnosed with osteoporosis. This is likely due to a decrease in 

sex-steroid production, in addition to age-related bone loss [8].  

 

 

Figure 1.3. The balance of bone resorption and formation changes with osteoporosis.  
 

The diagnosis of osteoporosis is based on a bone mineral density (BMD) 

measurement.  BMD is the amount of mineral per area of bone and is measured via dual-

energy x-ray absorptiometry (DXA) [9, 10].  BMD scores are interpreted by comparing 

the difference, in units of standard deviations, between an individual BMD value for a 

particular patient’s bone to the distribution of BMD values from the same bone in a 

normal, healthy 30-year-old person of the same gender. This is known as a “t-score” [5, 

11-12]. The t- score threshold triggering the diagnosis of osteoporosis, as determined by 

the World Health Organization, is -2.5[5]. However, it has also been determined that a 

patient’s BMD t-score may not accurately represent risk of fracture as it does not account 

for all characteristics of bone that influence its ability to resist fracture [9, 10-13, 23]. 

Here you may wish to add that regardless of t-score a low energy fracture in post-

menopausal women, or anyone over the age of 70, may also be a manifestation of bone 

weakened by osteoporosis and meriting Rx. 
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Moreover, osteoporosis is often called a “silent disease” as patients may not know 

that they have osteoporosis until fracture occurs.  A decrease in bone density, manifested 

as increased porosity and thinner cortices in cortical bone, and deteriorated bone structure 

in trabecular bone characterize this disease. As bone becomes more porous and weaker, 

there is an increased risk of fragility fracture [3, 4]. The term “fragility fracture” refers to 

fractures occurring in response to low-energy traumas or normal activities of daily living 

[5]. While osteoporosis is most commonly associated with decreased bone quantity mass, 

it is important to note that changes in bone quality also occur with this disease [4].  

1.3 Osteoporosis 
While osteoporosis is associated with decreased bone mass and increased risk of 

fragility fracture, there are two different categories of the disease. They are differentiated 

by etiology, and referred to as primary or secondary osteoporosis [28-30].  Primary 

osteoporosis is most common in women and is normally age-related or linked to 

menopause [30]. Secondary osteoporosis occurs equally in men and women and is linked 

to the presence of other diseases, drugs or physiological conditions [28].  

 

Figure 1.4. Healthy bone exhibits a balance between bone formation and resorption.  
Diseases, like osteoporosis, can cause this balance to shift towards either accelerated 
bone resorption or formation. 

 

In women with primary osteoporosis, an estrogen deficiency makes bone more 

sensitive to parathyroid hormone (PTH), resulting in increased bone resorption [28]. For 

younger men diagnosed with primary-type I osteoporosis, it is normally the result of 

medication use or low testosterone levels [8]. In both cases, the balance of bone 

remodeling is altered to favor resorption, (Fig. 1.4), and results in bone loss.  Primary 

type-II osteoporosis is more common in the elderly [30] and is often the result of age-

related vitamin D deficiency, which causes an increase in PTH, again resulting in 



 

 5   
 

accelerated bone resorption [28].  This, in combination with an age-related decrease in 

bone formation, results in a net loss of bone.  Type-II osteoporotic patients are at risk for 

fracture, just like type-I patients [28-30].  

1.4 Consequences of Osteoporosis on Bone Quality and Remodeling  
 

 

Figure 1.5. The different parameters that influence bone quality. 
 

The concept of bone quality interweaves the mechanical and physiological 

properties that bone possesses to maintain its structural integrity. Bone quality can further 

be defined as the ability of bone to withstand loading without significant deformation or 

failure. Osteoporosis is considered a systemic bone disease and its effects manifest 

differently in each of the material and structural parameters of bone quality (Fig. 1.5) [4, 

14-19].  

 

Figure 1.6. The difference in microarchitecture between cortical and trabecular bone. 
Adapted from [22]. 
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The microarchitecture of bone is considered a structural parameter of bone quality 

and refers to the structural components of both cortical and trabecular bone. Cortical and 

trabecular bone are the two different types of human bone and differ distinctly in porosity 

(Fig 1.6) [20]. The human skeleton has a cortical to trabecular bone ratio of 

approximately 4:1 [21]. Cortical bone is found in the shafts of long bones and creates an 

outer shell around trabecular bone. Trabecular bone is much more porous and is primarily 

found in the ends of long bones, the vertebrae, and the flat bones like the skull and the 

pelvis [20-21]. Osteoporosis-related bone loss weakens this microarchitecture by 

increasing the degree of porosity. 

 
Abnormalities in bone turnover and remodeling are responsible for the loss of 

bone noted in osteoporotic patients, and control both the quantity and quality of bone in 

the human skeleton [8]. In normal, healthy bone, a balance between bone formation by 

osteoblasts and resorption by osteoclasts exists. Bone remodeling takes place in a 

remodeling cavity within an area of bone that needs remodeling. Frost termed this area 

the Basic Multicellular Unit (BMU), and it contains the osteoclasts, osteoblasts, and the 

osteocytes [24].  

1.5 Mechano-sensitivity of Bone Remodeling   
 Osteoclasts are responsible for resorbing bone and osteoblasts are responsible for 

new bone formation. Osteocytes make up the inter-connected network of cells that layer 

the bone matrix and account for almost 95% of bone cells. They were previously thought 

to be responsible for sensing changes in the mechanical loading, which directs 

osteoclastic and osteoblastic actions [25]. However, it has since been determined that all 

cells within bone are receptive to mechanical loading [25-26].  

 
Wolff’s law states that bone remodels as needed to meet its mechanical demands 

[46].  Reduced loading favors the bone resorption, which decreases bone density and 

strength. An increased loading favors bone formation, which increases bone density and 

strength [27].   

 In healthy trabecular bone, remodeling occurs at the surface and is completed 

after about 200 days. However, in cases where bone metabolism is altered, such as 
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diseases like hyperparathyroidism, the remodeling cycle can be as short as 100 days. 

Remodeling cycles can also last as long as 1,000 days in low bone-turnover states that are 

induced by other bone metabolic diseases and various pharmaceuticals [27].   

 

Figure 1.7: The bone remodeling process.  
 
The remodeling cycle (Fig. 1.7) is initiated by osteoclastic resorption, which 

erodes at the site of remodeling and has a median duration of 30-40 days. Resorption and 

formation are a tightly coupled sequence where bone formation immediately follows 

resorption where osteoblasts lay new, un-mineralized bone matrix over the resorption 

area.  Bone formation extends over a period of about 150 days [24]. In a healthy patient, 

the remodeling area is completely refilled with new bone. Conversely, in diseased states, 

such as osteoporosis, the main deficiency is that osteoblasts are unable to completely 

refill the resorption area, resulting in a net loss of bone mass [24].  

1.6 Treatments of Osteoporosis  
Treatment of osteoporosis begins with two different approaches: increase the rate 

of bone formation or decrease the rate of bone resorption. Increasing bone formation 

includes increased calcium consumption, Vitamin D supplements to aid calcium uptake, 

and regular weight-bearing exercise to stimulate bone formation [3, 31].  Additionally, 

several therapeutics can be prescribed for patients with osteoporosis.    

 

Hormone Replacement Therapy (HRT) involves administration of estrogen and 

progesterone and is intended to remedy the estrogen deficiency of post-menopausal 

women that results in accelerated bone loss [31]. SERMs (selective estrogen-receptor 
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modulators) are prescribed to stimulate estrogen-like activities within the body. They 

were developed to have similar effects as HRT, without the potential negative side effects 

of HRTs [31-32]. 

 

Suppression of excess bone resorption is accomplished by using antiresorptive 

medications and bisphosphonates.  Bisphosphonates (Fig. 1.8) are the most prescribed 

treatment for osteoporosis because of their ability to suppress osteoclast activity, thus 

slowing bone resorption, and subsequently, loss of bone [33]. 

1.6.1 Bisphosphonates 
Bisphosphonates reduce the risk of vertebral, non-vertebral, and hip fractures [34] 

and are considered the cornerstone therapy for the onset of osteoporosis [35]. However, it 

is important to note that bisphosphonates do not build new bone tissue; they suppress 

bone resorption by inducing osteoclastic apoptosis. 

 

Figure 1.8. The chemical structure of bisphosphonate [27]. 
 

 

Figure 1.9. Mechanism of bisphosphonates. Adapted from [34].  
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Bisphosphonates have a high affinity for bone mineral due their chemical 

structure (Fig. 1.8). They will saturate bone-remodeling sites where hydroxyapatite 

crystals are exposed [34].  Once bound to the exposed mineral, osteoclasts take up the 

bisphosphonates and induce osteoclast apoptosis (Fig.1.9) [34]. This is the proposed 

mechanism by which bisphosphonates inhibit osteoclastic bone resorption in the 

remodeling space [34]. 

 
Sometime after initiation of bisphosphonate treatment, the population of 

osteoclasts declines, but the existing osteoblasts continues to form new bone matrix. This 

phenomenon, the bone-remodeling transient, is the mechanism believed responsible for 

the rapid gain in bone mass noted shortly after commencement of bisphosphonate 

treatment [36, 37].  However, this behavior is only temporary and will cease once the 

remodeling sites, presently active with osteoblast activity, are filled with newly laid bone 

matrix [36, 37].  Due to decreased osteoclastic activity, the resorption of bone slows, thus 

allowing newer bone to mature and increasing the mineral content of bone. Increased 

mineralization and an initial increase in bone mass led to increases in mechanical strength 

and fracture resistance and are thought to be the initial beneficial therapeutic effects of 

bisphosphonate treatment for osteoporosis [36, 37]. 

 

Bone resorption and formation, i.e., bone turnover, are tightly coupled.  While 

bisphosphonates suppress bone resorption and reduce bone loss, they also indirectly 

suppress bone formation [36, 48]. Moreover, bisphosphonates may suppress bone 

turnover to such an extent that the skeleton might be unable to repair the mechanical 

loading- induced defects that occur in bone due to normal physiologic activities.  These 

defects are commonly referred to as microdamage.  Microdamage is generally considered 

to have an effect on the clinically relevant mechanical properties of bone [34-35, 38-39, 

40-43] and is thus one of the parameters governing bone quality (Fig. 1.5) 

Developing a greater understanding of the relationship between bisphosphonate 

treatment and bone quality is important because the long-term use of bisphosphonates has 

been linked to atypical fractures. Although the precise cause of these fractures is 



 

 10   
 

unknown, it has been hypothesized that bisphosphonate treatment alters bone quality, and 

this may be manifested by altering bone microdamage [34-35, 38-39, 40-43].  

1.7 Atypical fractures linked to bisphosphonates 
Numerous studies have demonstrated the anti-fracture efficacy of 3-5 years of 

bisphosphonate treatment, but the long-term effects of bisphosphonate treatment are 

unknown [38, 44-48].  Yet after 3-5 years, longer treatment has been associated with 

atypical fractures, the majority of which occur in the femur [34-35, 38-39, 40-43].  In 

2008, a large case-control study was conducted where a significant correlation was 

identified between femoral fractures and bisphosphonate use longer than five years in 

women who had no obvious secondary causes of bone loss [38].   

 

In 2010, the American Society of Bone and Mineral Research established a task 

force to investigate long-term bisphosphonate use and atypical fractures. This study 

concluded that the incidence of atypical fractures in relation to bisphosphonate treatment 

appeared to be very small (.13%), especially when compared with the number of hip, 

vertebral and other fractures that were prevented because of bisphosphonate treatment 

[35]. However, preclinical data evaluating the effects of bisphosphonates on collagen 

cross-linking and maturation, accumulation of microdamage, mineralization, 

angiogenesis and remodeling provided evidence for an association between atypical 

fractures and bisphosphonate use [35].  Moreover, observations have been made that 

suggest that the risk of fracture increases with increasing bisphosphonate treatment 

duration [35, 38, 40-48].  

 
In 2013, a study [39] proposed the potential mechanism of bisphosphonate-

associated atypical fractures. It was hypothesized these fractures are associated with long-

term suppression of bone turnover, which is induced by long-term bisphosphonate 

treatment. At the submicroscopic level of collagen fibrils, it was found that suppressed 

bone turnover increases the number of non-enzymatic crosslinks, which reduces 

collagen’s plasticity, and consequently contributes to a loss in bone toughness [39, 45]. 

Suppression of bone turnover increases mineralization [39].  It has been shown that 

increased mineralization has been associated with decreased bone toughness (Fig. 1.10), 
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and this, in conjunction with reduced microdamage repair accompanying reduced bone 

turnover, may partially explain the origin of the increased microcrack density observed in 

the present study.  

 

  

Figure 1.10. The postulated relationships between modulus and toughness versus 
mineralization (from Wainwright, [47]). 

 

While microdamage is a result of every day normal physiological loading on the 

human skeleton and a stimulus of bone remodeling, it is unknown if it is a potential 

mechanism of the observed atypical fractures occurring in women on long-term 

bisphosphonate treatment. However, bone is a complex composite material with a 

hierarchy of structural parameters that each responds differently to bisphosphonate 

treatment and individually contributes to the mechanical properties of the bone.  

1.8 Mechanical Properties of Bone 
 The biomechanical properties of bone (Fig. 1.11) are derived from material and 

structural attributes. Material-level attributes include the amount, size, and size 

distribution of bone mineral, the amount of matrix as well as the types and amounts of 

collagen cross-linking within this matrix, and the degree of material imperfection, 

commonly measured as microdamage [49-49].  These material level attributes are 

responsible for bone’s intrinsic material properties such as modulus, strength, ductility, 

and toughness. These material properties are determined independent of bone mass, 

volume, or geometry [48].     
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 There is a relationship between the material level properties and the 

structural level properties.  Such properties are common in nature and reveal the complex 

interplay between intrinsic material properties and extrinsic structural properties which 

attain a desired set of mechanical behaviors for the organ.   

 

 

Figure 1.11. The hierarchical levels of bone biomechanical properties. Adapted from [19, 
47-48]. 
 

1.9 Microdamage in Bone  
 The presence of microdamage (Fig. 1.12) in bone results in targeted remodeling. 

[46, 51-53]. Specifically, each time a microcrack is formed, bone remodeling is activated 

in that area of microdamage [51-52]. Bone remodeling is a tightly coupled sequence that 

begins with resorption of the damaged area. If resorption is suppressed, perhaps via 

bisphosphonate treatment, then microdamage-initiated remodeling will be delayed.  This 

means that patients with suppressed turnover, e.g., those on a bisphosphonate regimen 

will not experience normal remodeling.  Suppressed turnover prevents repair of the 

damaged bone and allows for continued accumulation of microdamage [53, 56].  
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Figure 1.12. A photograph of a well-defined microcrack (arrows) stained en bloc with 
basic fuchsin. 
 

Linear microdamage is a material parameter governing bone quality and is 

defined as microscopic linear cracks 30-200 µm in length [51]. Microdamage occurs 

because of the natural repetitive mechanical loading that accompanies the activities of 

daily living [46, 51-52, 56]. Failure of a material from a specific number of loading 

cycles at a specific stress level (Fig. 1.13) is regarded as its “fatigue limit,” [54] where 

cyclic loading will lead to incremental failure [46, 53]. This is the concept that establishes 

the mechanical theory that the presence of microdamage may reduce overall bone 

strength and resistance to fracture [53-55]. However, bone stands alone from any other 

composite material because it can repair the damage that occurs [46, 51-52, 56]. 

 
There are no sources in the current document. 

Figure 1.13. S-N curve demonstrating the fatigue life of bone.  
 

50 μm 

200x 
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 Previous research has established that the presence of microdamage (Fig. 1.12) 

reduces bone’s mechanical strength, stiffness and resistance to fracture; yet there is an 

inconsistency in the role of microdamage within bone [53-54]. As other researchers have 

stated, the inconsistency is that the initiation and growth of microdamage initially reduces 

the risk of fracture because it allows for a dissipation of energy that may have otherwise 

caused the bone to fracture [52].   

1.9.1 Microdamage Initiation and Propagation in Bone   
Microdamage is thought to increase resistance to fracture through a mechanism 

referred to microcrack toughening [60]. Microcrack toughening happens in two stages 

(Fig. 1.14): 1) formation of the frontal propagation zone and 2) formation of the wake 

zone [60]. In the frontal propagation zone, microcracks accumulate around the main 

crack tip (dissipates energy), which reduces the strength of the bone matrix around the tip 

of the main crack. This eventually reduces the elastic modulus of the bone matrix in front 

of and surrounding the tip and allows for more crack initiation and propagation [62-64].  

The wake zone is the area of increased presence of microcracks left behind in the bone 

matrix as the main crack continues to propagate. This area has a decreased elastic 

modulus and allows for more initiation and propagation of microdamage [62-64].  

Understanding the mechanisms behind microdamage initiation and propagation is 

important for better understanding of whole bone fracture and the influence of 

microdamage on bone quality.  

 

Figure 1.14. Mechanism of toughening. a) Microdamage presence. b) Stage 1: formation 
of frontal propagation zone occurs as microcracks form to dissipate energy from larger, 
main microcrack. c) The wake zone of microcracks that were a result of the stress placed 
on the area due to the larger, propagating microcrack. Adapted from [62-63]. 
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1.10 Aging, Microdamage and the Mechanical Properties of Bone  
 Microcrack density increases with age [56, 63, 66-68]. However, this 

microdamage formation is not necessarily pathologic; as it is thought to be the skeleton’s 

natural response to dissipate strain energy and prevent development of fractures at sites 

subjected to high stress [63]. During mechanical testing, the bone samples of the older 

subject group had a much shorter fatigue life [63]. Microdamage accumulated more 

rapidly in an older subject (75 ± 3.9 years), group compared to a younger (61.3 ± 3.1 

years) subject group [63]. 

 Aging is associated with reduced turnover. The increased accumulation of 

microcracks in older bone may be due to reduced turnover because remodeling cannot 

occur at the rate of microcrack accumulation [66]. With aging comes degradation in 

stiffness, strength, and fracture toughness [67]. The reduction in stiffness lowers the 

critical stress level required to initiate a microcrack, and energy required to propagate the 

crack through the tissue [67-68].  

 Like the aging process, microdamage also has a negative effect on the mechanical 

properties of bone [56, 66-73].  A crack density (crack number/ bone area) greater or 

equal to 1 crack per 1 mm2 of bone area was associated with reductions of more than 50% 

in yield and ultimate strength, and a reduction of more than 40% in the modules of the 

bone samples tested [69].  These studies, along with others [56, 67-73], highlight the 

multiple effects of microdamage on bone. Despite its role in energy dissipation, it has 

been concluded that even a small presence of microdamage in human bone can alter its 

mechanical properties [56, 66-73]. Given the prevalence of osteoporosis, the human and 

economic consequences of osteoporosis related fractures, the widespread use of 

bisphosphonates for treating osteoporosis, the hypothesized link between long term 

bisphosphonate treatment and atypical fractures, and the potential role of bisphosphonate  

induced bone repair reductions and microdamage accumulation: the goal of the present 

study was to quantify the relationship between the duration of bisphosphonate treatment 

and microdamage in human trabecular bone.  
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Chapter II Rationale 

 2.1 Effects of Bisphosphonates on Animal Bone 
 Studies completed in a canine model indicate that microcrack density begins to 

increase significantly in trabecular bone after only 1 year of bisphosphonate treatment 

[72-73]. Moreover, bone turnover is suppressed by ~70% after this 1 year of treatment, 

when compared to a non-treated control group [72].  Additionally, with increased 

microdamage accumulation, the overall toughness of bone had decreased by 15-20% after 

this 1 year of treatment [72].  The authors of this study concluded that despite the 

significant increase in microcrack density, the increases found in bone volume and 

mineralization were enough to offset any degradation in bone strength that may have 

resulted from microdamage accumulation [72].   

Another study followed, comparing the effects of 1 and 3 years of bisphosphonate 

treatment.  The results showed bone toughness had continued to decline (~ 30%) up to 3 

years of treatment and that bone turnover had been suppressed by an additional ~58% 

when compared to 1-yr treatment animals [73]. Yet, the authors determined that the 

decline in bone toughness was not due to microcrack density, as the difference between 

the two groups (1-yr and 3-yr treated) was not statistically different. From these results, 

the authors hypothesized that microdamage accumulation could still be controlled at only 

~30% of normal bone turnover rate. Furthermore, the amount of microdamage was lower 

at 3 years of treatment because there was a noted increase in bone volume, thus lowering 

the strain of the trabecular connections, and inversely affecting microcrack density (crack 

number/bone area) [49, 70, 72-73].    

2.2 The Effects of Bisphosphonates on Human Bone  
 A research effort investigated the difference in microcrack density in trabecular 

bone between women treated with alendronate for an average duration of 5 years (n=38) 

against non-treated control group (n=28). After adjustment for covariates (age, BMD, and 

turnover), the statistical analysis indicated that microcrack density was significantly 

higher in the treated group [75]. However, despite the significant increase in crack 

density, mean crack length did not increase with bisphosphonate treatment duration. 
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These findings correlated with the results of bisphosphonate studies completed in a 

canine model [49, 70, 76-79].  

 Additional studies have examined the effect of bisphosphonate treatment duration 

on not just microdamage, but on other material properties of bone such as collagen cross-

linking and degree of mineralization (Fig. 1.10) [78]. It determined that as treatment 

duration increased, so did bone mineralization. This study attributed these changes as part 

of what may contribute to bisphosphonates’ “anti-fracture efficacy” in osteoporotic 

patients [78]. However, as the degree of mineralization increases, bone becomes stiffer 

and will have a lower resistance to fracture.  If bone mineralization continues to increase 

with bisphosphonate treatment, this change may actually impair this anti-fracture efficacy 

[79]. Evidence available in the literature demonstrates a potential relationship between 

bisphosphonate treatment duration and bone microdamage.  The present study is 

important because it will provide new information regarding this relationship in human 

bone treated for longer durations than reported in the literature and do so with large 

sample sizes, thus permitting regression analyses to quantify the effect of treatment 

duration and microdamage. 
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Chapter III Materials and Methods 

3.1 Study Design  
 This cross-sectional study was designed to investigate the effects of varying 

duration bisphosphonate treatment on microdamage in human bone samples from 

Caucasian women diagnosed with osteoporosis. Measured microdamage-relevant 

parameters included: microcrack number, microcrack length, and trabecular bone area.  

Covariates included subject age, bone mineral density (BMD), bone volume/total 

volume, (BV/TV), body mass index (BMI), trabecular thickness, and bone turnover.  A 

sample size with a statistical power (β) of 0.8 and a probability level (α) of 0.05 was 

determined prior to the start of this study.  

3.2 University of Kentucky Bone Registry 
 Bone samples meeting the inclusion criteria, but not violating the exclusion 

criteria, were identified from electronic data files and physically retrieved from among 

existing approximately 8,000 samples presently located in the Kentucky Bone Registry 

maintained by the Division of Nephrology, Bone and Mineral Metabolism at the 

University of Kentucky Medical Center. Each sample had previously been embedded in 

poly methyl methacrylate (PMMA) under an established protocol to preserve the integrity 

of the sample, as well as aid in storage, handling and histological sectioning [76]. 

3.3 Histological Examination and Analysis 
Samples within the registry were obtained from patients who have undergone a 

routine bone biopsy. Every bone sample undergoes routine histologic and 

histomorphometric analyses. From these analyses, data for bone mineral density bone 

volume/total volume (BV/TV), trabecular thickness (TbTh) and activation frequency 

(Ac.f, bone turnover) was gathered for each sample and utilized in the statistical analysis.  

3.4 Inclusion and Exclusion Criteria 
Samples meeting the following inclusion criteria were identified from the registry: 

post-menopausal, osteoporotic, and treated for a continuous duration with oral 

bisphosphonates. Any patient with a hip or spine t-score lower than -1.5 was considered 

osteoporotic in this study. Patients were excluded if they had been diagnosed with 

osteogenesis imperfecta, osteomalacia, or any genetic bone disease, hyperparathyroid 



 

 19   
 

disease, chronic kidney disease, Paget’s disease of bone, or any other disease known to 

alter bone metabolism. In addition, patients were excluded if they had a documented 

history of drug or alcohol abuse, selective estrogen receptor modulators, sex steroids, 

teriparatide, or any medications also known to alter bone metabolism.  

3.5 Methyl methacrylate Removal  
All bone samples that met the inclusion criteria, but not the exclusion criteria, 

were previously mounted in methyl methacrylate (MMA) for histological examination 

purposes.  Microdamage analyses required that this mounting material be removed.  To 

remove the MMA, the samples were immersed in 2-methoxyethyl acetate at room 

temperature and under constant stirring until the MMA was completely removed and the 

surfaces of bone were available to the stains required for microdamage identification.   

3.5.1 Staining 
Bone samples with MMA removed were then exposed to basic fuchsin to stain the 

microcracks so that they could be viewed under a microscope and quantified. staining 

was completed according to an established protocol developed in this laboratory 

previously [53, 70, 72-76]. The staining was performed en bloc with a 1% basic fuchsin 

solution (JT Baker, B660-03, Phillipsburg, NJ) in a series of graded alcohol solutions 

(80%, 90%, and 100% EtOH). Each staining step was performed under vacuum at 20 

mmHg and constant stirring at room temperature.  

1) Time in solution: 48h in 70% EtOH  
2) Time in solution: 2h 1% basic fuchsin in 80% EtOH  
3) Change solution from step 2 
4) Time in solution: 2h 1% basic fuchsin in 80% EtOH  
5) Repeat steps 2-4, replacing with 90% EtOH  
6) Repeat steps 2-4, replacing with 100% EtOH  
7) Rinse in 100% EtOH in order to remove excess staining agent  

3.6 Re-embedding of Samples 
After staining, each bone sample was placed in a ventilated glass vial with 15 mL 

of methyl methacrylate monomer and left in a water bath operating at 65° Celsius for 24 

hours. After 24 hours in the heated water bath, the monomer solution polymerizes and the 

bone is re-embedded in MMA. [82-83]. 
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3.7 Cutting of Samples 
 Stained and re-embedded bone samples were then cut to a thickness of 

approximately 100 microns using a 150um thick diamond wire saw (Histosaw, DDK, 

Wilmington, DE) and then histological analyzed.   

3.8 Analysis of Samples 
 A microscope (Axioplan 2 Imaging, Carl Zeiss, Thornwood, NY) was connected 

to OsteoMeasure software (OsteoMeasureXP V1.01, OsteoMetrics, Decatur, GA) 

intended for the histologic analysis of tissue. This histomorphometric software was used 

to quantify the area of bone tissue examined, crack number, and crack length.  

Starting at the corner of each section examined, an optical field of 485 μm x 365 

μm was examined under 200x magnification. A third party randomized and re-labelled 

the samples to ensure that the observer who performed all measurements was blinded to 

bisphosphonate treatment duration. 

 

 
Figure 3.1. Linear microdamage (arrows) in human bone.  
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Observed microcracks (Fig. 3.1) met all of the following criteria:  

• Length between 30 – 200 microns 

• Basic fuchsin “halos” surrounding the crack borders. 

• Stained through the entire depth of the observed crack. 

• Remains visible throughout changes in the focus of the field.  

 

3.9 Microdamage Parameters 
Bone microdamage is characterized [46, 51-53, 63-65, 69-77, 80]  by the 

following parameters:  

• Bone Area (Br_A) the area of bone examined for microdamage (mm2). 

• Crack number (Cr_N) quantifies the number of cracks per bone sample.  

• Crack density (Cr_D) accounts for bone area and quantifies the number of 

microcracks per mm2 of bone (#/mm2).  

• Crack length (Cr_L) quantifies the length of a single microcrack (µm).  

• Crack surface density (Cr_S.D) quantifies the total length of microcracks in a 

bone sample per mm2 of bone area.   

The most significant parameter in this study of microdamage is crack density (Cr_D) 

as it is most representative of microdamage in a bone sample [48-49, 64-65, 69-80].  

Microdamage Detection  

When analyzing bone samples stained for microdamage, the following techniques 

were used to identify microcracks that produced in vivo: 

• A combination of light and fluorescence microscopy [80, 82] 

•  Altering the depth and focus of the field [82] 

• Changing the magnification [82]  

When used collectively, these techniques aid in differentiation of actual bone 

microcracks caused by in vivo loading versus scratches or other seeming microdamage 

attributable to specimen processing [80, 82].  
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The rationale of these techniques was that pre-existing microcracks have sharp 

borders and basic fuchsin stains through the depth of the crack [81].  Fluorescence 

microscopy can be used in the detection of microdamage [81]. A study demonstrated its 

effectiveness by staining bone samples with the standard en bloc basic fuchsin staining 

protocol, and quantified microdamage using both light and fluorescent microscopy [81]. 

It was determined that the two types of microscopy can be used in conjunction to locate 

microdamage (Fig. 3.2). Using fluorescent microscopy, only microcracks stained with 

basic fuchsin fluoresced orange against the background field, enabling unstained, or 

partially stained artefactual cracks to be excluded [81].  

 

 
 

Figure 3.2. Light (left) and fluorescent (right) microscopy can be used in conjunction to 
define microdamage. Note the presence of the linear microcracks, distinctly defined in 
both types of microscopy.  

 

3.10 Statistical Analysis  
 All data were analyzed using SAS 9.3 (SAS Institute Inc., Cary, North Carolina). 
General regression models were used to relate the response variables (e.g. microcrack 

number and microcrack length) to duration of bisphosphonate treatment and covariates 

(e.g. BV/TV, BMD, BMI, trabecular thickness, bone turnover rate, and patient age). 

Effect of bisphosphonate treatment duration was modeled using linear regression and 

adjusted for covariates.  A p<0.05 was considered indicative of significant differences.  
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Chapter IV Results  

4.1 Results  
 The relationship between increasing microcrack density and bisphosphonate 

treatment duration was significant, and fit as a linear model (Fig. 4.1). Despite increasing 

microcrack density, mean length crack did not increase as treatment duration continued 

(Fig. 4.2). The data were adjusted for BV/TV, BMD, BMI, trabecular thickness, bone 

turnover rate, and patient age (Table 1). No trend was evident between body mass index, 

exercising, and increased accumulation of microcracks. Although this analysis is limited 

due to lack of complete information, it also supports that the increased microcrack 

densities noted in patients treated with long-term bisphosphonates was associated with 

treatment duration. Fifty-one samples were included in the analysis.  Despite the pre-

determined sample size of 71, the current sample size was already large enough reveal a 

statistically significant relationship.   

Table 1: Characteristics of Study Subjects 
 Mean Standard Deviation Min Max 

Duration (years) (n=51) 7.27 3.23 1 16 

Age (years)  63 8.7 41 74 

BMI (Body Mass Index) 26.6 5.3 19.2 47.7 

BMD hip -1.8 .74 -2.6 -0.5 

BMD spine -2.0 1.0 -3.2 -0.4 

BV/TV 17.04 6.0 4.9 34 

Trabecular Thickness (TbTh, µm) 104.9 27.9 55.1 175 

Activation Frequency (Ac.f, cycles/yr) 0.2 .12 .02 .46 

BP Rx duration (years)* 7.2 3.72 1 16 

Crack density (µm/mm2)* 3.3 1.98 0.55 7.38 

Crack length (µm) 80 24.3 52 169 

*p<0.05  
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Figure 4.1. Microcrack density and bisphosphonate treatment duration 

 

Figure 4.2. Mean crack length and bisphosphonate treatment duration 
  
 
 

p= 0.171 

p= 0.0175 
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Figure 4.3. Decreasing trabecular thickness and bisphosphonate treatment duration 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

p= 0.070 
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Chapter V Discussion and Conclusion 

5.1 Key findings of this study 
The key findings of this study were:  

1) microcrack density in human trabecular bone was linearly related to the duration
of bisphosphonate treatment,

2) mean crack length was unrelated to the duration of bisphosphonate treatment, and
3) age, BMD, BV/TV, trabecular thickness, bone turnover, and BMI were not

significant predictors of increasing microdamage density of samples in this study,
and

4) trabecular thickness may be declining as duration of bisphosphonate treatment
continues.



   Figure 5.1. The causes and resistance of bone microdamage. 
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This study provides new insights (Fig. 5.1) into the relationship between 

bisphosphonate treatment duration and microdamage in bone from women with 

osteoporosis. Previous studies have studied short-term bisphosphonate treatment 

durations in animal models and humans, but to the best of our knowledge, this is the first 

study of the relationship between bone quality and bisphosphonate treatment durations 

greater than 7 years in human bone. The results of prior bisphosphonate studies in 

animals and humans [69, 84-87] are consistent with the key findings of the present study. 

Age-related skeletal changes are well documented [50, 56, 63]. It has been shown that 

aging is associated with an increase in microcrack density [63, 66-68]. After noting the 

relationship between microcrack density and increasing bisphosphonate treatment 

duration in this study, it was inferred that the effects of aging might have influenced  this 

relationship. Since patient age increases with increasing BP Rx, the observed increase in 

microcrack density could be related to increasing patient age as well as increasing BP 

treatment duration. Following adjustment of the data for increasing patient age, the 

relationship between BP treatment duration and microcrack density changes remained 

significant. This demonstrates a significant relationship between increasing BP Rx 

duration and increasing microdamage density without the influence of patient age. 

Moreover, age was not the only predictor of increased microcrack density in this 

study. Reduced bone turnover is the result of bisphosphonate treatment and has been 

associated with an increase in microcrack accumulation [72-75]. Additionally, it has been 

determined that bisphosphonate treatment suppresses the targeted remodeling necessary 

for repairing microdamage [39, 51]. Activation frequency (cycles/year) and bone 

formation rate (mm3/mm2/year) were used to determine bone turnover rate.  After the 

data were adjusted for bone turnover, turnover was found not to be significantly 

associated with the increased microcrack density noted in this study.  

This analysis makes sense, as treatment duration continues and bone turnover is 

reduced, there will be an increased accumulation of microcracks because of the altered 

rate of remodeling associated with bisphosphonate treatment. The bisphosphonate-
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associated decrease in osteoclast activity (resorption) leads to a decrease in osteoblast 

activity (formation). For longer durations, continuous bisphosphonate treatment increases 

the drug concentration so that it directly affects osteoblast activity [76]. It has been 

determined that at higher concentrations, bisphosphonates promote osteoblast apoptosis 

or even completely arrests osteoblast growth [76]. The reduction in turnover and bone 

formation allows for the increase of microcrack accumulation noted in patients treated 

with long-term bisphosphonate durations.  

 Change in bone microarchitecture was also a potential predictor for increased 

microcrack density. Trabecular thickness was analyzed with both microcrack density and 

treatment duration to determine the relationship between trabecular bone structure, 

bisphosphonate treatment duration and microcrack density.  

Any change in trabecular structural area will result in a change to the amount of stress 

applied to trabeculae.  This is demonstrated in the following equations (Fig. 5.1): 

𝜎𝜎 = 𝐹𝐹
𝐴𝐴

(a) 

Where, 

F is force  

A is area (base*height) 

𝜎𝜎 = 𝑀𝑀𝑦𝑦
𝐼𝐼

 (b) 

Where, 

My is moment (force*distance) 

I is moment of interia (base*height3/12) 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚=𝐹𝐹𝐹𝐹  (c) 
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Where, 

F is force 

r is distance from central axis of trabeculae 

Therefore, any changes in trabecular structural area (base, height, and radius) would 

have a direct effect the amount of stress acting on the trabeculae. A reduction in 

trabecular area would result in a greater amount of stress applied; thus inducing increased 

microcrack accumulation [46, 53].  The statistical analysis, however, revealed that the 

relationship between trabecular thickness and bisphosphonate treatment duration did not 

reach significance in this experiment (p=0.070). Yet, when the data were fitted as a linear 

relationship, trabecular thickness looks to be declining as bisphosphonate treatment 

duration continues (Fig. 4.4).  After a power analysis was performed (α=0.05, β=0.8), it 

was determined that for this relationship to be statistically significant, the sample size 

must also increase to 71. Potentially, if trabecular thickness was declining as treatment 

duration increases, the increase in microcrack density could have been the result of 

structural changes and a subsequent increase in stress on the trabeculae. 

It was important to investigate all other aspects the stress equations shown in Figure 

5.1 to analyze all potential predictors of increased microcrack accumulation. While it was 

evident that a decrease in trabecular area would result in higher stress, a direct increase in 

force would also result in higher stress placed on the trabeculae. The most obvious reason 

for an increased amount of force on the trabeculae was patient weight. In the United 

States alone, one in three adults (33%), adolescents or children is either overweight or 

obese [95]. Patient BMIs were calculated to ensure an accurate representation of weight 

and examined. A person with a BMI over 25 is considered overweight by national 

standards [95]. It was calculated that 21 (41%) of the patients had a BMI greater than 25. 

This equates to 1 in 2.4 people and adequately represents the aforementioned general 

population ratio. The analysis revealed, however, that there was no significant 

relationship (p=0.75) between BMI and increased microcrack density. This finding 

further supports that increased microcrack density was associated with bisphosphonate 

treatment duration.  
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Figure 5.2. Relationships of body mass index, exercise, and microcrack density. 

In addition to force, the number of cyclical loads (Fig. 5.2)  affects the amount of 

microdamage present in bone [46, 51-52, 56]. This cyclical loading is the result of daily 

activity and varied per patient. In this study, patients only indicated if they exercised, but 

did not give the type or frequency of activity. Due to the vague nature of this information, 

no interpretation was made if exercise (cyclical loading) played a role in the increased 

accumulated microdamage noted in this study.  

While this study concluded that increased microcrack density was significantly 

associated with bisphosphonate treatment duration, the intrinsic effects of BP-treatment 

on the material properties of bone were not examined.  Other studies, however, have 

indicated that a higher incidence and initiation of microcracks exists in bisphosphonate-

treated bone. The noted increase in cracks was possibly due to changes in the intrinsic 

material properties, such as increased collagen cross-linking [87, 89-90, 97], which is 

associated with reduced bone turnover [35-36, 39, 51, 53, 56].  

In fact, a recent study alluded that the potential mechanism behind increased 

microcrack accumulation is the BP duration-driven increased accumulation of AGEs 

(advanced glycation end-products) [87]. The bisphosphonate-associated reduced bone 

turnover is responsible for this increased accumulation of AGEs [87, 89-90, 97]. These 
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non-enzymatic cross-links act by limiting fibrillar sliding that occurs on a nanoscale 

level. The limiting effects on fibrillar sliding act to diminish the extent of plastic 

deformation, therefore reducing intrinsic toughness [89-90] and allowing increased 

initiation of microdamage within the bone matrix [87].  

Figure 5.3. Increased microcrack density results in altered bone mechanical properties. In 
this study, 48 of the 51 (94%) samples had a microcrack density greater than 1 Cr/mm2. 

Furthermore, there are studies that link reduction in bone mechanical properties with 

bisphosphonate treatment due to microdamage [9, 37, 48-49, 78, 83, 91-95]. Specifically, 

a study (Fig. 5.3) quantified a microcrack density in trabecular bone (1 crack/sq.mm) that 

correlated to a 50% reduction in yield and ultimate strength [68] 
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Figure 5.4. Stress-strain curve that illustrates the changes in bone mechanical properties 
due to microdamage.  

With the use of a typical stress-strain curve, it was illustrated how a 50% reduction in 

yield and ultimate strength affects other mechanical properties of bone (Fig. 5.4). The 

load bearing capabilities are diminished with reduced strength and yield. In addition, 

resistance to fracture (bone toughness) is reduced as the area under the curve becomes 

smaller when yield and strength are lowered because of increased microcrack 

accumulation.  

5.2 Conclusion 
In conclusion to this study, it was determined oral long-term bisphosphonate use 

is associated with a higher amount of bone microdamage in patients the longer they take 

the drug. Despite a correlation between bisphosphonate treatment and increased 

microcrack density, however, increasing crack length was not significantly associated 

with treatment duration in this study. Nevertheless, this data contributes to the 

characterizing the relationship between microdamage and bisphosphonate treatment 

duration. Currently, bisphosphonates are an excellent therapy to combat the effects of 
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osteoporosis and other bone-altering diseases, but studies on how treatment duration 

affects bone quality need to be continued. Further characterization of the relationships 

between bone material properties (i.e. microdamage) and structural properties (i.e. 

fracture toughness) will help to optimize treatment duration.  
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Chapter VI Importance, Limitations, and Future Work 

6.1 Importance 
This study presents novel information about the effects of bisphosphonate 

treatment duration on human bone. By ensuring that the data were analyzed after 

adjustment for potential predictors (age, turnover, BMD, BMI, BV/TV, TbTh), it allowed 

the study to isolate the effects of bisphosphonate treatment duration on microcrack 

density in osteoporotic women. 

However, at the current moment, only a few studies have been published [103-

104] that associate greater microcrack density with the reported incidences of 

bisphosphonate-induced atypical fractures. Although it has been shown that microdamage 

does cause a reduction in mechanical properties of bone, the quantification of a 

microcrack density that would induce clinically relevant fragility of bone remains 

unknown and needs to be determined. A previous study, whose findings support this 

study, determined that under fatigue loading tests bisphosphonate-treated bone contained 

more microdamage when compared to a non-treated group [97]. The knowledge that 

bisphosphonate-treated bone has a decreased ability to resist loading- induced microcrack 

formation [72-73, 75-76, 87, 89-90], and the findings of this study and others all support 

that bisphosphonate-treated bone treated has a higher occurrence of microdamage. Given 

the information from other studies indicating that microdamage is related to changes in 

bone biomechanics, the bisphosphonate treatment duration related changes in 

microdamage shown herein offer relevant information that may help optimize the 

treatment of osteoporosis. 

6.2 Limitations 
As stated previously, only trabecular bone samples were analyzed in this study. 

To investigate the changes in microcrack density that occur in bone due to 

bisphosphonate treatment, microdamage should have been quantified in cortical bone. 

Additionally, this could be a limitation if the sole purpose of this study were to analyze 

microdamage resulting from bisphosphonate treatment as a mechanism behind atypical 

fractures; as these fractures primarily occur within cortical bone [34-35, 38-39, 40-43]. 
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An additional limitation to this study was its cross-sectional nature. As such, the 

data offered insight limited to the date at which the biopsy was performed. An ideal study 

would have an additional biopsy from each patient before bisphosphonate treatment was 

initiated to quantify the amount of bone microdamage that existed before treatment. 

Additionally, patients would have thoroughly recorded their weight and activity levels 

over their course of treatment. The design of this study, however, best suited the 

resources available and still succeeded in demonstrating that bisphosphonate treatment 

duration is significantly associated with the amount of bone microdamage in osteoporotic 

patients.   

6.3 Future Work 
The next most logical investigations to pursue that dove-tail with the present 

findings are, in order of importance, to:  

1) evaluate the influence of bone structural parameters on microcrack

density. Specifically, this work would determine if a significant

relationship exists between trabecular thickness and microcrack density.

This study will require additional samples to increase the present

sample size to enable a statistically valid determination whether

decreasing trabecular thickness is significantly related to increasing

microcrack density,

2) determine whether changes in bone composition or structure, i.e.,

mineral-to-matrix ratio, collagen cross-linking ratio, crystal c-axis

length, etc, are significant covariates in the presently established

relationship relating bisphosphonate treatment duration and microcrack

density,

3) quantify how microcrack density, associated with varying

bisphosphonate treatment duration, influences clinically relevant bone

mechanical properties, i.e., modulus, yield point, strength, fatigue life,

and fracture toughness,

4) bridge the gap in knowledge linking the presently observed

microdamage findings with clinically relevant bone load bearing
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parameters by using available theories established for classical fracture 

mechanics. 

6.3.1 Griffith’s Criterion of Fracture Mechanics 
The origin of contemporary fracture mechanics can be traced to the work done 

during World War I by A.A. Griffith of the Royal Aircraft Establishment in England [61, 

99] who sought to investigate the fracture of brittle war materials. Griffith proposed a

theoretical analysis of fracture in materials where an applied stress creates a concentrated 

stress at a defect (microcrack) that is higher than the cohesive strength within the material 

(bone), and then the defect (or microcrack) will propagate [61]. According to Griffith’s 

criterion, the following two conditions are required for crack initiation and growth:  

1) The bonds at the crack tip (cohesive strength) must be stressed to point of

failure. The stress at the crack tip is a function of a stress concentration factor,

which is governed by the ratio of crack radius to crack length.

2) For crack propagation, the amount of strain energy applied must be greater

than or equal to the surface energy of the two new crack surfaces produced

[60]. This condition is expressed in the equation shown below.

𝑑𝑑𝑈𝑈𝑠𝑠
𝑑𝑑𝑑𝑑

≥ 𝑑𝑑𝑈𝑈𝛾𝛾
𝑑𝑑𝑑𝑑

 (1) 

Where, 

 Us  is the strain (applied) energy due to crack propagation 

Uγ  is the surface energy 

 dc is the crack length [60, 96]. 

When a microcrack is formed, two new surfaces are formed as well, raising the 

surface energy of the material [62]. For a microcrack to propagate, the change in strain 

energy due to crack extension must be greater than or equal to the surface energy that 

exists to prevent formation of new cracks [99-102]. Equation 2 represents the Griffith 

Equation as it can be applied to bone [61]. The stress (σc) at which the material (bone) 

would fracture (microcrack propagation) can be calculated by the following equation.  

𝜎𝜎𝑐𝑐 = (2𝐸𝐸𝛾𝛾𝑠𝑠
𝜋𝜋𝜋𝜋

)1/2 (2) 
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Where,  

E= elastic modulus of bone 

γs= specific surface area

a= ½ the length of a crack 

The term “fracture toughness” is defined at the ability of bone to resist fracture 

through changes that occur in the material parameters in the presence of microcracks [58, 

90]. Changes that occur in the bone material in front of propagating microcracks are 

known as “intrinsic toughening mechanisms” [62].  Such structures as cement lines are 

present at the boundary of osteons work to deflect and blunt crack propagation [64, 95, 

97]. Bone’s intrinsic resistance to crack propagation can be determined using linear 

elastic fracture mechanics (LEFM) in terms of fracture toughness, Kc [63]. Kc can be 

determined ex vivo in a bone sample using Equations 3&4. The left side of Figure 6.1 

gives a schematic of how a bone sample may be tested to determine its fracture toughness 

in the presence of microdamage.   

𝐾𝐾𝑐𝑐 = 𝑃𝑃𝑌𝑌2
𝐵𝐵𝑊𝑊0.5   (3) 
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Where, 

P is the applied load 

 B is the specimen thickness 

W is width 

Y2 is a pre-determined shape function [69] that corresponds with a and W. 

 a individual microcrack length 

𝑌𝑌2 =
(2+ 𝑎𝑎

𝑊𝑊)

�1− 𝑎𝑎
𝑊𝑊
�
3/2 [�0.866 + 4.64 �𝑎𝑎

𝑊𝑊
�� − 13.36�𝑎𝑎

𝑊𝑊
�
2

+ 14.72 �𝑎𝑎
𝑊𝑊
�
3
− 5.6 �𝑎𝑎

𝑊𝑊
�
4
)]        (4) 

Y2 is a pre-determined shape function [69] that corresponds to individual microcrack 
length (a) and width of the sample. 

Figure 6.1 a) A schematic diagram for determining the “fracture toughness” of a bone 
sample. b) Shows an in vivo microcrack being halted by an osteon within the bone 
matrix. c) A microscopic view of osteons and their cement lines. Adapted from [62]. 
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Appendix A: Mechanical Properties Definitions as related to Bone 

Stress: the loading (force) applied to a known cross-sectional area of an object  

Strain: deformation of an object due to stress 

Yield strength (“strength”): the stress at which plastic (permanent) deformation begins 

Ultimate strength: the maximum amount of stress that can be tolerated by a material 

Toughness: amount of energy absorbed by material to a pre-determined deflection 

Fracture Toughness (resistance to fracture): amount of energy absorbed before 
fracture  

Elastic Modulus: ratio of stress to strain-measurement of an object’s resistance to being 
elastic (non-permanent) deformation (slope of the line in the stress-strain curve) 

Stiffness: rigidity of an object 

Sources:  
[57, 101, 105, 108] 
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