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ABSTRACT OF DISSERTATION 
 

Lung cancer is a leading cause of cancer-related mortality irrespective of gender. 

The Sulfiredoxin (Srx) and Peroxiredoxin (Prx) are a group of thiol-based 

antioxidant proteins that plays an essential role in non-small cell lung cancer. 

Understanding the molecular characteristics of the Srx-Prx interaction may help 

design the strategies for future development of therapeutic tools. Based on 

existing literature and preliminary data from our lab, we hypothesized that the Srx 

plays a critical role in lung carcinogenesis and targeting the Srx-Prx axis or Srx 

alone may facilitate future development of targeted therapeutics for prevention 

and treatment of lung cancer. First, we demonstrated the oncogenic role of Srx in 

urethane-induced lung carcinogenesis in genetically modified FVB mice. The 

Srx-null mice showed resistance to urethane-induced lung cancer. Second, we 

demonstrated the Srx and Prx sites important for Srx-Prx interaction. The 

orientation of this arm is demonstrated to cause some steric hindrance for the 

Srx-Prx interaction as it substantially reduces the rate of association between Srx 

and Prx. Finally, we carried out virtual screening to identify molecules that can 

successfully target Srx-Prx interaction. Multiple in-silico filters were used to 

minimize the number of chemicals to be tested. We identified ISO1 as an 

inhibitor of the Srx-Prx interaction. KD value for Srx-ISO1 interaction is calculated 

to be 42 nM. Together, these data helps to identify an inhibitor (ISO1) of the Srx-

Prx interaction that can be further pursued to be developed as a 

chemotherapeutic tool.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 
Redox signaling is signaling involving oxidation-reduction cycles of molecules 

leading to cell signal transduction. Redox signaling is an essential component of 

cellular processes involved in the maintenance of physiological homeostasis. It is 

an integral part of eukaryotic as well as prokaryotic cell signaling. The 

physiological activities regulated by redox signaling include (but are not limited 

to) growth factor signaling such as epidermal growth factor (EGF) [1] and insulin-

like growth factor [2] as well as important energy metabolism and hormonal 

signaling [3]. Reactive oxygen/nitrogen species (ROS/RNS) are highly reactive 

oxygen/nitrogen containing species. ROS/RNS have a very short half-life, partly 

due to their highly reactive nature and the presence of antioxidants in host 

organisms. Any imbalance in production and utilization of ROS/RNS leads to 

abnormal accumulation of these particles. This abnormal accumulation of highly 

reactive molecules is known as oxidative stress. Oxidative stress contributes to 

multiple disorders in humans, including diabetes, Alzheimer’s disease, 

Parkinson’s disease, hepatic diseases, and various types of cancer [4, 5]. 

Antioxidants are molecules that are preferentially oxidized under oxidative stress 

conditions. They can be internal housekeeping molecules (expressed in 

intracellular or extracellular compartments of animal tissue) or external molecules 

(part of daily diet or supplements). Every organism expresses many antioxidant 

molecules at intracellular and extracellular sites to protect it from oxidative 

damages. Thiol-based antioxidants are major internal housekeeping antioxidant 
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molecules that act as redox switches to maintain physiological homeostasis [6]. 

Peroxiredoxins (Prxs) and sulfiredoxin (Srx) are part of the thiol-based 

antioxidant system. 

1.1.1 Peroxiredoxin 

Prx is a class of thiol-based peroxidases ubiquitously found in prokaryotes as 

well as eukaryotes. Prx was first discovered about 27 years ago in yeast [7]. 

These proteins initially had multiple names, for example, protector protein, thiol-

specific antioxidants, thioredoxin-linked thiol peroxidase and thioredoxin 

peroxidase. Finally, they were classified and widely accepted as peroxiredoxin 

[7-12]. There are six different isoforms of Prxs expressed in humans (i.e., Prx1-6) 

[13]. These Prx are involved in the regulation of cell proliferation, apoptosis, 

embryonic development, lipid metabolism, immune response, and other 

functions. [14]. All human Prx have one enzymatic cysteine called peroxidatic 

cysteine (CP) on their N-terminus. Five out of six human Prxs also have another 

cysteine called resolving cysteine (CR) on their C-terminus. Classification of Prx 

is largely based on the presence and the behavior of CR. Human Prx are 

classified into three groups: (i) typical 2-Cys Prx (i.e. Prx1-4), (ii) atypical 2-Cys 

Prx (i.e. Prx5), and (iii) 1-Cys Prx (i.e. Prx6) [15]. A few publications reported the 

N-terminus as a reference for location of CP and CR. However, distance between 

CP and CR is not the same among different typical 2-Cys Prxs. From the 

comparison of typical 2-Cys Prxs, we found that the C-terminal of Prxs can be a 

better reference for CP and CR as their distance from the C-terminal end is 

approximately fixed across all typical 2-Cys Prx. For example, the CP is at a 
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distance of 148-149 amino acids from the C-terminal end whereas the CR is at a 

distance of 27-28 amino acids from the C-terminal end. The Prx family of proteins 

reduces hydrogen peroxide (H2O2), alkyl hydroperoxides and peroxynitrite into 

water and other harmless metabolites. In this reaction, the thiol group of CP is 

oxidized to sulfenic acid. The cysteine-sulfenic acid group can be enzymatically 

reduced back by the glutaredoxin or thioredoxin (Trx)-thioredoxin reductase 

system [16, 17]. The pKa of most biological cysteines is in the range of 8-9 if it is 

not stabilized by other molecular factors, while the pKa of CP falls in a lower range 

of 5-6 due to stabilization by the conserved arginine and threonine residues in 

neighboring positions [18]. There is no evidence of stabilization of CR by any 

intramolecular factors. Therefore, the pKa of CR should remain in the same range 

as other non-stabilized biological cysteines (i.e., 8-9). The difference in pKa 

values makes CR resistant to oxidation compared to CP. The rate constant (k) of 

Prx-thiol oxidation is higher than most other thiol-based antioxidant proteins. It is 

the main reason why Prx are 105-107 times more efficient antioxidants compared 

to other thiol-based antioxidants such as glutathione, Trx, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), protein-tyrosine phosphatase 1B (PTP1B), 

etc. [19]. Higher rate constant and lower pKa are indicators of the Prx’s ability to 

reduce ROS that are present even in minute amounts. If the oxidative stress level 

is high and/or the amount of Prx is low, the CP can become over-oxidized to 

sulfinic (-SOOH) or sulfonic acid (-SOOOH) forms, leading to the loss of 

antioxidant activity [20]. Figure 1-1 shows this reaction along with Srx mechanism 

of action. 
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Figure 1-1: Sulfiredoxin reduces over-oxidized peroxiredoxin and acts as a switch to regulate antioxidant vs 
chaperone function of peroxiredoxin : Figure shows the relative location of CP in Prx monomer and its role in the 
reduction of ROS. It also shows how the Srx forms phosphoryl esters and thiosulfinate intermediate finally leading to 
reduction of Prx Cys-sulfinic (-SOOH) form to Cys-sulfenic (-SOH) acid form. 
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Over-oxidation of Prxs is detectable in almost all eukaryotes and a few 

prokaryotes such as cyanobacteria [21]. Earlier literature indicated that the 

hyperoxidation of Prxs is a unique property of eukaryotic Prxs. However, the 

latest reports present evidence of this phenomenon in prokaryotes too [21]. 

Hyperoxidation and loss of antioxidant function is not a disadvantage for the host. 

The hyperoxidation of Prxs adds an additional molecular chaperone function to a 

few members of this class [22]. However, the molecular basis behind gain of 

chaperone function is yet to be identified. Further research is required to identify 

proteins whose folding is assisted by Prx. The chaperone function of Prx was 

considered a unique property of eukaryotic Prx until similar activity was detected 

in prokaryotes such as Helicobacter pylori [23]. 

1.1.2 Sulfiredoxin 

Experts long wondered about the existence of enzymes having the potential to 

reduce over-oxidized Prxs until Srx was identified in Saccharomyces cerevisiae 

[24] and was later found to be conserved in higher eukaryotes and a few 

prokaryotes (e.g. cyanobacteria). Srx plays a role in the reduction of over-

oxidized Prxs and hence acts as a regulator of oligomerization of these Prxs. 

Rate constants from two independent studies indicate that the reduction of 

oxidized Prxs by Trx (rate constant 106 M-1s-1) is much faster than the rate of 

reduction of over-oxidized Prxs by Srx (rate constant approximately 2 M-1s-1) [25, 

26]. Therefore, reduction of over-oxidized Prx by Srx can be considered a rate-

limiting step in the reduction of over-oxidized Prxs. 
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The closest prokaryotic counterpart of Srx is a functionally unrelated protein 

called ‘ParB’ in bacteria, which carries out the function of chromosome 

partitioning [27]. The ‘Oncogenic suppressive activity’ or ‘Osa’ protein is probably 

a connecting link between ParB and Srx. Osa contains both the DNAse domain 

[18] of ParB and the ATPase domain of Srx [28].  Srx requires ATPase domain 

for ATP hydrolysis required for Prx reduction. The ‘ParB’ is a chromosome 

partitioning protein that requires a DNAse domain for its function. In normal 

human tissues, Srx is present in kidney, lungs, and pancreas [29]. Srx is mainly a 

cytosolic protein that can translocate into mitochondria under oxidative stress 

conditions [30]. Recent research suggests that mitochondrial Srx level follows 

circadian rhythm [31]. In this manner, Prx3 along with Srx plays an important role 

in the management of mitochondrial redox balance. 

The Srx-Prx axis can be explored as a therapeutic target as well as a therapeutic 

tool depending on its role in a particular pathological condition. For example, 

individual Prx can be considered as a good therapeutic targets in lung cancer 

[32], glioblastoma [33], colorectal cancer [34], and prostate cancer [35], where 

they protect tumor cells. It is important to evaluate the risk-benefit ratio of 

targeting individual members of the Srx-Prx axis as they also have a protective 

role in normal (non-tumor) tissue. Srx null mice have a normal phenotype under 

laboratory conditions [34]. Prx3 knockout mice are born and mature normally 

[36]. Prx4 knockout mice have mild prostate atrophy [37]. Prx1 and Prx2 

knockout mice are reported to have some issue with erythropoiesis [38, 39] but 

they are otherwise normal. Hence, the majority of proteins in the Srx-Prx axis can 
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be knocked-out without any life-threatening issue under non-stress conditions. 

Considering the risk associated with cancer, it is worth exploring targets that can 

prolong the lives of patients by a few extra years. Hence, the benefits associated 

with targeting Srx or individual Prx outweigh the associated risk; therefore, the 

Srx-Prx system can be considered as therapeutic target in cancer. On the other 

hand, individual Prxs can be explored as a therapeutic or diagnostic tool in 

Parkinson’s disease, Alzheimer’s disease, and diabetic complications [40-44]. 

These differential properties of individual components of the Srx-Prx system draw 

our attention to differences in molecular properties of individual Prx that gives 

them the ability to play such diverse roles. An improved understanding of these 

molecular differences will help us in therapeutic intervention of the Srx-Prx 

system. 

1.1.3 Enzymatic roles of Srx 

Human Srx has a length of 137 amino acids [45]. Srx is present in mammals, 

birds, and many (not all) other eukaryotic organisms [46]. It is an exclusive 

enzyme that acts as an antioxidant to reduce the sulfinic acid form of typical 2-

Cys Prxs [47]. Biteau and colleagues identified how adenosine triphosphate 

(ATP)-bound yeast Srx in the presence of Mg2+ approaches the over-oxidized 

Prx1, phosphorylates it, and forms thiosulfinate intermediate, which can be 

further reduced by other thiol-reducing enzymes [24]. Yeast Srx has cysteine at 

two locations in its primary sequence; the first cysteine (Cys48) helps the 

enzymatic cysteine (Cys84) by recycling the thiosulfinate intermediate [48]. 

However, human Srx has only one cysteine, i.e. Cys99 (a homologue of Cys84 of 
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yeast). Therefore, it needs an external source of thiol, such as Trx or glutathione, 

to reduce the thiosulfinate intermediate [48, 49]. The evolution of an ATP 

consuming process to reactivate Prxs after deactivation of their peroxidase 

function by H2O2 provides a unique advantage to the host organism. The H2O2 

and Srx act as an On-Off switch for the chaperone and peroxidase functions of 

various Prx. The excess of H2O2 enhances the chaperone function and reduces 

the peroxidase function of Prxs, whereas an excess of Srx reverses this process 

[50]. Figure 1-1 depicts the mechanism by which Srx performs the 

aforementioned antioxidant function. The Prx structure in this figure is designed 

to give a rough idea about the positions of individual cysteine in a typical 2-Cys 

Prx. The C-terminal CR is shown in the C-terminal arm and the other cysteine in 

Prx indicates the N-terminal CP. 

Another important action of Srx involves the deglutathionylation of several 

substrates in eukaryotes [45]. Most of the Prx-independent and a few Prx-

dependent functions of Srx are mediated by this mechanism. Figure 1-2 depicts 

the role of Srx in the deglutathionylation process. Srx can regulate the chaperone 

function of Prx1 by controlling its levels of glutathionylation. The glutathionylation 

of Cys83 of Prx1 favors formation of dimer over decamer, resulting in the loss of 

chaperone activity [51]. Although it is a general consensus that Prx-reducing 

activity of Srx is more important than its deglutathionylation function, more 

mechanistic studies are required to assess the individual contribution of Prx 

reduction and deglutathionylation processes in regulating the chaperone function 

of Prx1 or other typical 2-Cys Prxs.  
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Figure 1-2: Mechanism of the deglutathionylation function of sulfiredoxin : Figure shows how glutathione assists 
sulfiredoxin in carrying out this function.  
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There is no evidence of tissue specific predominance of one Srx function over 

the other. However, there is a great scope for exploration of Srx 

deglutathionylation function. The lack of extensive biochemical studies in this 

field may be a possible reason behind the difficulty in ranking the importance of 

antioxidant vs. deglutathionylation functions of Srx. Unlike the antioxidant 

function of Srx, which is exclusive to Prxs, the deglutathionylation carried out by 

Srx does not seem to be limited to Prxs. S100A4, actin and PTP1B are examples 

of substrates other than Prx whose glutathionylation levels can be regulated by 

Srx [22, 52]. There may be other intracellular targets of Srx that can be 

deglutathionylated by Srx. Identification of those substrates may help to identify 

different mechanisms of Srx signaling. 

1.1.4 Molecular characteristics of the Srx-Prx interaction 

The Cys99 of human Srx is not involved in Srx-Prx binding but it is directly 

involved in the antioxidant and deglutathionylation functions of Srx [47, 50, 53]. 

Amino acids adjacent to Cys99 (i.e., Gly97, Gly98, His100, and Arg101) are 

considered to play a supportive role for the enzymatic activity of Srx [54]. Pro52, 

Leu82, Phe96, Val118, Val127, and Tyr128 are amino acids that form a hydrophobic 

pocket in Srx that acts as the interface for Srx-Prx interaction [54, 55]. The 

hydrophobic pocket formed by the active site of Srx forms a depression that 

wraps around the slightly protruding active site of Prx [54]. It acts as a lock and 

key model of Srx-Prx interaction. 

The Prx family of proteins is one of the most abundant and most efficacious 

antioxidants in the human body. The enzymatic cysteine of Prx is called 
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peroxidatic cysteine (CP). A few Prx isoforms also contain a cysteine called CR. 

Classification of Prx is based mainly on the presence and behavior of CR in 

different Prx-isoforms [15]. Individual Prxs also contain cysteines other than 

peroxidatic and CR, which may play some regulatory role in these Prx. For 

example, Cys83 of Prx1 mediates the formation of a decameric complex of Prx1 

that differentiates the functions of Prx1 from Prx2 [56]. Despite sharing 78% 

sequence similarity with other typical 2-Cys Prx, one cysteine of Prx1 (Cys83) 

plays an especially important role as it is a highly efficient chaperone compared 

to other Prx [56]. One report indicates that Cys83-Cys83 disulfide bond formation 

is not essential for rat Prx1, in particular, as it forms a decameric structure 

through hydrophobic interactions and van der Waals bonds [57]. 

Glutathionylation of Cys83 has been reported to negatively affect the chaperone 

function of Prx1 [51]. However, the way the glutathionylation impacts the 

chaperone activity of other typical 2-Cys Prxs remains to be understood. 

The number of amino acids between the peroxidatic and CR is critical for the 

formation of the Prx dimer. All human typical 2-Cys Prx have 121 amino acids 

between the CP and CR. This 121 amino acid distance imparts the ability to form 

an intermolecular disulfide bond between the CP of one typical 2-Cys Prx 

monomer and the CR of another monomer and vicenegativersa. The bond results 

in the formation of a homodimer of Prx in which the two Prx monomers are 

oriented in an antiparallel manner. Under reduced state, these typical 2-Cys Prx 

are still present in the form of a homodimer but the process involves only non-

covalent interaction [58]. In atypical 2-Cys Prxs, there is a 104 amino acid 



 

12 
 

distance between CP and CR [47]. This distance helps the Prx5 form an 

intramolecular disulfide bond. The distance of CP and CR from the GGLG and YF 

motif is another highly conserved feature of typical 2-Cys Prxs. The GGLG motif 

is located between the CP and CR, 42 amino acids downstream of the CP. The YF 

motif is localized between the CR and the N-terminus (i.e., 20 amino acids 

downstream of CR). GGLG and YF motifs bestow these Prx with the unique 

ability to become over-oxidized by H2O2 [59]. The YF motif interacts with the 

GGLG motif, which hinders interaction between the CP of oxidized Prx and the CR 

of the other monomer. This allows the second H2O2 molecule to react with the CP 

of the first Prx monomer in a timely manner, resulting in the formation of over-

oxidized Prx [60]. In the absence of the GGLG and YF motifs, Prx will not 

become over-oxidized, thus they are important for the chaperone function of Prxs 

[59]. The GGLG and YF motifs were also identified in prokaryotic Prx [21]. The 

chaperone function is gained by the formation of higher molecular weight 

complexes that look like a stack of rings in transmission electron microscopy and 

X-ray crystallography studies [61]. In some species, hyperoxidation of the CP is 

not required for the gain of chaperone function, as their Prx can form a high-

molecular weight structure in the absence of hyperoxidation [62]. However, 

human Prxs have been known to gain chaperone function only after the CP is 

over-oxidized. Susceptibility to hyperoxidation varies among the typical 2-Cys 

Prxs. For example, Prx3 is considered more resistant to hyperoxidation than 

other isoforms [63]. The conservation of amino acids around the CP probably 

indicates their importance for the enzymatic activity or a particular behavior of a 
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Prx isoform. For example, most Prx have a proline and a threonine (occasionally 

serine) before the CP, forming a PXXXTXXC motif. This may be important for the 

enzymatic activity of Prxs [64]. In human typical 2-Cys Prx, amino acids around 

the CP (i.e. PLDFTFVCPTEI motif) and the CR (i.e. HGEVCPAXW motif) are 

highly conserved [65]. This conserved sequence of amino acids around CP and 

CR may indicate their importance for Prx function [66]. However, the significance 

of these amino acids has not been experimentally proved yet and may be of 

interest for further studies. Although all typical 2-Cys Prx are generally 

considered substrates of Srx, the affinity of Srx to individual Prx is not the same 

[32]. Srx has the highest affinity for Prx4 among all the typical 2-Cys Prxs [32].  

However, the way this high affinity of interaction affects the kinetics of Prx4 

reduction compared to other Prx still needs to be studied. Members of the Prx 

family may have different subcellular localizations, and their abundance in 

different tissues also varies. The interaction between Srx and different isoforms 

of Prx is thus also affected by their subcellular localization. For example, the Srx-

Prx3 interaction becomes significant only under higher oxidative stress 

conditions. At higher oxidative stress, the mitochondrial wall gets damaged. 

Hence, Srx may translocate from cytosol to mitochondria through those damaged 

mitochondrial walls [30]. At lower oxidative stress conditions, the Srx-Prx3 

interaction is not noticeable. An alternative explanation of this phenomenon is 

proposed in the literature: Prx3 can be over-oxidized only at higher oxidative 

stress levels due to its high resistance to over-oxidation [63]. There may be some 

molecular characteristics of reduced Prx3 that does not allow its interaction with 
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Srx. Hence, the molecular rearrangement during over-oxidation of Prx3 becomes 

necessary for facilitation of Srx-Prx3 interaction. However, more mechanistic 

studies are required to clarify whether this is the case. All these molecular factors 

affect signaling of the Srx-Prx axis. Differential affinity of Srx for individual Prx as 

well as molecular characteristics of individual Prx allows them to regulate a wide 

range of cell signaling, which I will discuss in detail in the next few sections. 

1.1.5 The role of the Srx-Prx axis in cell-signaling and carcinogenesis 

The main function of the Srx-Prx system is to protect host cells from oxidative 

damages. This property of the Srx-Prx system becomes harmful to the host 

organism when it starts protecting the survival of tumor cells. As per the data 

from Oncomine (an online microarray database) [67] and other published 

literature, the Srx-Prx system is altered in multiple types of cancer. Table 1-1 

summarizes different types of cancer in which expression of individual members 

of the Srx-Prx system is altered. The information in Table 1-1 indicates changes 

in mRNA expression. Up-regulation indicates more than a 1.5 fold increase in 

mRNA levels whereas down-regulation indicates more than a 1.5 folds decrease 

in mRNA levels. Apart from mRNA, alterations at the protein level are also 

reported for multiple tumor types. Information about expression changes at 

places other than those shown in Table 1-1 are mainly based on studies of their 

protein levels. The correlation between patient survival and protein expression 

changes has not been studied. From published data, the Srx-Prx system 

predominantly functions as an activator or enhancer of oncogenic signaling to 

promote cancer development.  
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Table 1-1: Expression pattern of the Srx-Prx system in different cancer types as evident from microarray 
data available at Oncomine: Up-regulation is classified as more than a 1.5 fold increase in expression compared 
to normal non-tumor cells; Down-regulation is classified as more than a 1.5 fold decrease in expression compared 
to normal non-tumor cells. Data summarized here can be confirmed by other independent studies 

Protein Up-Regulation Down-Regulation 

Srx 
Breast cancer, Colorectal cancer, Lung cancer, 

Prostate cancer, Skin cancer 
Esophageal Cancer 

Prx1 

Bladder cancer, Colorectal cancer, Gastric cancer, 

Leukemia, Liver Cancer, Lymphoma, Breast cancer, 

Pancreatic cancer, Sarcoma 

Esophageal Cancer, Head & Neck cancer, 

Myeloma 

Prx2 
Colorectal cancer, Lung cancer, Lymphoma, Myeloma, 

Ovarian cancer 

Brain & Central Nervous System (CNS) cancer, 

Esophageal cancer, Head & Neck cancer, Kidney 

cancer, Leukemia, Pancreatic cancer, Sarcoma 

Prx3 
Gastric cancer, Head & Neck cancer, Lymphoma, 

Prostate Cancer 

Bladder cancer, Brain & CNS cancer, Kidney 

cancer, Leukemia, Pancreatic cancer 

Prx4 

Bladder cancer, Brain & CNS cancer, Breast cancer, 

Cervical cancer, Colorectal cancer, Head & Neck 

cancer, Kidney cancer, Lung cancer, Lymphoma, 

Melanoma, Prostate Cancer, Sarcoma 

Leukemia, Liver cancer, Pancreatic cancer 
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A few reports have also indicated a tumor suppressor function of the Prx family. 

Hence, Prx may function as a double-edged sword in tumorigenesis. The exact 

role of the individual components of the Srx-Prx system in cancer can be 

complicated, and should be considered in the context of specific cancer and cell 

types. 

1.1.5.1 Srx in cell-signal transduction and tumorigenesis 
The expression of Srx is regulated by factors at both the transcriptional and 

translational levels. Redox signaling is the major component that activates Srx 

expression. Figure 1-3 summarizes how the expression of Srx is regulated by 

redox signaling. Activation of transcription factors, such as nuclear factor 

erythroid 2-related factor 2 (Nrf2), induces Srx expression [68]. Activator protein-

1 (AP-1) also up-regulates Srx expression [69]. c-Jun is a component of the AP-1 

complex and its activation stimulates Srx expression. TAM67 is an N-terminal 

deletion mutant of c-Jun that acts as a c-Jun antagonist. Therefore, TAM67 

negatively regulates Srx expression by inhibiting the AP-1 complex [70]. Multiple 

intracellular and extracellular factors such as nitric oxide, cigarette smoke, dietary 

derived electrophiles, and tumor promoters like 12-O-tetradecanoylphorbol-13-

acetate (TPA) lead to the activation of Nrf2 or AP-1 and have the potential to 

stimulate the expression of Srx [70, 71]. In mouse macrophages, treatment with 

lipopolysaccharide strongly induces Srx expression in an Nrf2 and AP1 

dependent manner [72]. Besides these transcriptional regulations, Srx 

expression is negatively regulated at the translational level by cAMP-PKA (cyclic 

AMP-protein kinase A) through the elF2 kinase Gcn2 [73].  
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Figure 1-3: Oxidative stress stimulates sulfiredoxin expression by activating AP-1 and Nrf2 activity: AP-1 and Nrf2 
transcriptionally regulates the sulfiredoxin expression. 
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Srx is over-expressed in a variety of cancers and it may promote carcinogenesis in a 

Prx-dependent or independent manner [32, 52]. It promotes tumor progression in lung 

cancer by enhancing intracellular phosphokinase signaling such as mitogen-activated 

protein kinase (MAPK) and AP-1/MMP9 (matrix metalloproteinase 9) signaling in a 

Prx4-dependent manner [32].  

Srx may also enhance cell migration in lung cancer in a Prx-independent manner by 

interacting with S100A4 (a calcium binding protein) and non-muscle myosin IIA [52]. 

Aberrant expression of Srx in lung squamous cell carcinoma, lung adenocarcinoma, and 

pancreatic cancer is correlated with poor survival in patients [74-76]. Srx is also over-

expressed in renal cell carcinoma where it is proposed to be a good target for antibody 

to induce tumor cell death [77]. Srx expression is stimulated by TPA via MAPK/JNK (c-

Jun N-terminal kinase) pathway in skin carcinogenesis and Srx depletion at least 

partially protects mice against DMBA (7,12-dimethylbenz[a]anthracene) / TPA-induced 

skin carcinogenesis [78]. Srx is also necessary for colon carcinogenesis as it is highly 

over-expressed in colon tumor tissue compared to normal human colon, and Srx null 

mice are highly resistant to azoxymethane/dextran sulfate sodium-induced colon 

carcinogenesis [34]. Although the importance of Srx in various tumor types is well 

established, research is needed to understand the mechanism by which Srx plays a role 

in tumor progression and metastasis. Considering lung cancer as an example, the 

antioxidant and deglutathionylation activities of Srx may work in tandem to enhance the 

chances of tumor promotion and metastasis [32, 52]. However, more studies are 

required before we can rank their individual contributions toward cancer. Unraveling the 

http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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mechanistic details of Srx signaling will further help us design better approaches to 

target tumors in which Srx plays an essential role. 

1.1.5.2 Prx1 in cell-signal transduction and tumorigenesis 
Prx1 is mainly localized in the cytoplasm and can translocate to the nucleus [79]. The 

expression of Prx1 is regulated at both transcriptional and post-transcriptional levels. At 

the transcriptional level, Nrf2 directly activates its expression [80]. Focal adhesion 

kinase is also reported to be involved in transcriptional regulation of Prx1 [81]. In one 

study, Prx1 null mice were shown to be prone to spontaneous tumor development [38], 

suggesting that Prx1 may function as a tumor suppressor. However, Prx1 null mice 

developed in another lab were normal and free of tumor development [82]. The tumor 

suppressor function of Prx1 may be mediated by its regulation of PTEN (phosphatase 

and tensin homolog) levels as indicated in a mouse breast cancer model [83]. Also, 

PTEN null mouse embryonic fibroblasts are resistant to ROS-mediated induction of 

Prx1/Prx2 expression [84]. Prx1 may also be required for ROS-mediated activation of 

the K-Ras/ERK pathway that contributes to lung tumorigenesis [85]. Moreover, Prx1 

along with Prx4 plays an essential role in the regulation of c-Jun and AP-1 mediated 

promoter activity in lung cancer cells [86]. Activation of Prx1 by histone deacetylase 

inhibitor (FK228), results in induction of apoptosis in esophageal tumor cells [87]. 

Furthermore, Prx1 helps reactivate DEP-1 (a protein tyrosine phosphatase that 

functions as tumor suppressor) by reducing the levels of ROS [88]. These mechanisms 

are a few examples of how Prx1 functions as a tumor suppressor.  
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On the other hand, there are many reports indicating that Prx1 has an essential pro-

oncogenic role in cancer. For example, Prx1 promotes vascular endothelial growth 

factor expression in a toll-like receptor 4-dependent manner. This effect of Prx1 

enhances angiogenesis and results in an environment favorable for tumor cell 

proliferation and promotes tumor progression in prostate cancer [89, 90]. Prx1 is over-

expressed in esophageal cancer cells and has an auto-immunogenic activity [91]. Prx1 

protein is also found aberrantly increased in early stage endometrial cancer where its 

functional significance is yet to be established [92]. Prx1 induces TRAIL (tumor necrosis 

factor–related apoptosis-inducing ligand) resistance by suppressing the redox-

dependent activation of caspase [93]. TRAIL is a biological agent that induces apoptosis 

of cancer cells and is considered a promising anticancer agent [94]. Down-regulation of 

Prx1 (using RNA interference or chemical agents like dioscin) results in induction of 

apoptosis in tumor cells [95, 96]. Also, in A549 lung adenocarcinoma cells, Prx1 

enhances the transforming growth factor (TGF)-β1 induced epithelial-mesenchymal 

transition (EMT) by stimulating the expression of snail and slug—two transcription 

factors that inhibit E-cadherin expression [97]. For this function, the Cys51 (CP) of Prx1 is 

essential, as replacement of Cys51 by Ser nullifies this effect [97]. A study using murine 

hepatocytes as well as human esophageal and lung cancer cell lines reports that TGF-

β1 enhances ROS production by up-regulating the levels of ferritin heavy chain and 

intracellular labile iron pool [98]. It can be inferred from these studies that ROS 

produced by TGF-β1 signaling probably oxidizes the CP of Prx1 and this oxidation is 

essential for the role of Prx1 in EMT. Therefore, higher levels of ROS may promote the 
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progress of EMT. Whether and how the hyperoxidation of Prx1 and its molecular 

chaperone activity are involved in the process of EMT is largely unknown. Figure 1-4 

depicts how Prx can perform both tumor suppressor and oncogenic functions. The 

factors that determine the dominance of one role over another are yet to be identified. 

Possibly, Prx1 functions as a tumor suppressor before transformation, but after 

transformation it promotes tumor cell proliferation by protecting against ROS-induced 

cell death. Other possible explanations may be related to the single nucleotide 

polymorphism or allelic variants of Prx1, but these factors need further investigation.  

1.1.5.3 Prx2 in cell-signal transduction and tumorigenesis 
Prx2 is the second member of the typical 2-Cys Prx. It is mainly present in cytosol [79] 

and is one of the most efficient H2O2 scavengers in cells compared to the majority of 

other antioxidants [99]. In red blood cells, the oxidation-reduction cycle of Prx2 

correlates with the circadian rhythm resulting in circadian rhythm dependent 

oligomerization of Prx2 [100]. This oscillation in levels of over-oxidized Prx2 is not 

controlled at the transcriptional level since red blood cells do not have a nucleus [100]. It 

is also not likely controlled by Srx, as the oscillations exist in Srx null mice [101]. Rather, 

it is controlled by hemoglobin autoxidation and 20S proteasome in red blood cells that 

are in turn regulated by circadian rhythm [101]. Extensive methylation of CpG islands in 

the promoter region of the Prdx2 gene is one of the mechanisms to control Prx2 

expression in melanoma [102]. Prx2 expression is also regulated by transcription factor 

Hand1/Hand2 [103]. 
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Figure 1-4: Peroxiredoxin may act as a tumor-suppressor or oncogene depending on the tumor type.
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In mouse embryonic fibroblasts, Prx2 is induced by ROS in a PTEN dependent 

manner [84]. As mentioned earlier, PTEN activation is regulated by Prx1; 

therefore, it can be assumed that Prx1 may have potential to affect Prx2 

expression too. Prx2 is down-regulated in a few cancers where Prx1 is up-

regulated, but the exact mechanism behind the differential expression is not yet 

known [104, 105]. Whether or not PTEN is responsible for this relationship 

between Prx1 and Prx2 expression in those tissues remains a question. 

Nitrosylation of Tyr193 in the YF motif of Prx2 is an important post-translational 

modification that plays a critical role in regulation of disulfide bond formation 

under oxidative stress conditions [106]. Glutathionylation is another post-

translational modification of Prx2 that may affect its localization to the 

extracellular compartment [107]. Extracellular Prx2 is glutathionylated under 

oxidative stress conditions and the glutathionylated form induces TNFα 

production, leading to oxidative stress dependent inflammatory reaction [107]. In 

this manner, Prx2 plays a role in cytokine mediated inflammation. Serum levels 

of Prx2 in colorectal cancer are correlated with survival of patients [108]. In 

human papillomavirus related cervical cancer, increased expression of Prx2 is 

proposed to mediate carcinogenesis in cervical tissue [109, 110]. However, more 

studies are required to establish whether alteration of Prx2 is a cause or effect of 

carcinogenesis. Prx2 is the main factor determining the metabolic stress and 

oxidative stress response of breast cancer cells metastasized to lung [111]. It 

also regulates the activation of transcription factor STAT3 by transferring the 

oxidative equivalents to the latter, resulting in generation of a disulfide-linked 
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inactive STAT3 oligomer [99]. Prx2 reduces the chances of metastasis by 

negatively regulating Src/ERK activation, resulting in increased E-cadherin 

expression and β-catenin retention [112]. Prx2 overexpression also reduces the 

chances of TGF-β1 induced EMT and cell migration in colorectal cancer cells 

[113]. It is interesting to note that the effect of Prx2 on TGF-β1 induced EMT in 

colorectal cancer cells is exactly opposite to the effect of Prx1 on the same 

signaling pathway in A549 cells, which is discussed earlier in this review and 

depicted in Figure 1-4. However, it is not clear yet whether these activities are 

regulated in a tissue-specific manner or they co-exist in the same cancer type.  

1.1.5.4 Prx3 in cell-signal transduction and tumorigenesis 
Prx3 is primarily a mitochondrial Prx. The expression of Prx3 is enhanced by 

SirT1 in partnership with FoxO3a and PGC1α, and the absence of either leads to 

its down-regulation [114]. SirT1 enhances the complex formation of FoxO3a with 

PGC1α and this complex regulates the expression of Prx3 as well as multiple 

other antioxidant proteins [114]. Prx3 expression is also regulated by superoxide 

dismutase through an unknown mechanism [115]. Prx3 is a downstream target of 

c-Myc transcription factor and it acts as a major mediator for the regulation of c-

Myc functions in cell transformation, tumor progression, and apoptosis [116]. In 

medulloblastoma, Prx3 is a target of MiR-383 (a microRNA), and its expression 

reduces cell proliferation [117]. In cervical cancer, Prx3 is over-expressed and its 

levels are correlated with an increased rate of cell proliferation [118]. Single 

nucleotide polymorphism RS7082598 of the PRDX3 gene is correlated with a 

reduced risk of cervical cancer [119]. In lung squamous cell carcinoma, Prx3 is 
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over-expressed along with increased Srx in an Nrf2 dependent manner, which 

indicates a potentially important role of the Srx-Prx3 axis in these tumors [74].  

1.1.5.5 Prx4 in cell-signal transduction and tumorigenesis 
Prx4 is the fourth member of typical 2-Cys Prx family and resides mainly in 

endoplasmic reticulum. There is also a low molecular weight secreted form of 

Prx4 that can be found in extracellular matrix and plasma. Although there are a 

few reports about the post-transcriptional regulation of Prx4, how this protein is 

regulated at the transcriptional level is yet to be studied. Calpain (a calcium-

dependent cysteine protease) can enhance the expression of Prx4 through post-

transcriptional regulation [120]. 

Besides its regular antioxidant function, Prx4 also mediates the oxidative folding 

of various endoplasmic reticulum proteins through its chaperone function. 

Chaperone function is accomplished through cooperation with protein disulfide 

isomerase [121]. Data in our lab indicate that Prx4 is susceptible to 

hyperoxidation at very low levels of oxidative stress. Hence, the chaperone 

function of Prx4 may be facilitated at lower oxidative stress levels. Prx4 improves 

insulin synthesis by enhancing the endoplasmic reticulum folding of insulin and 

thus improves pancreatic β-cell function [122]. In pancreatic cancer, Prx4 is 

reported to be down-regulated [67]. However, it is not clear whether the Prx4 

down regulation is a cause or effect of pancreatic cancer. Expression of Prx4 

promotes the metastatic potential of lung adenocarcinoma cells [86]. Prx4 along 

with Srx increases RAS-RAF-MEK signaling by enhancing intracellular 

phosphokinase signaling [32]. The RAS-RAF-MEK pathway is well-known for 
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controlling cancer cell proliferation and metastasis in various types of cancer. 

Therefore, the ability of the Srx-Prx4 system to modulate this pathway indicates 

their importance in cancer development. The exact mechanism of regulation of 

RAS-RAF-MEK pathway by Srx or Prx4 is not identified yet. Theoretically, a ROS 

dependent mechanism may be involved since Srx restores the antioxidant 

function of Prx4 [32]. Moreover, Prx4 is a downstream mediator of Srx in lung 

cancer development. The Prx4 knockdown recapitulates the phenotypes of Srx 

knockdown cells (i.e. reduction in anchorage independent colony formation, cell 

migration, and invasion) [32]. There are a few other typical 2-Cys Prx-isoforms 

that may have similar effects in other pathological or physiological conditions, but 

such a strong relationship of Srx with other Prx is not reported yet. Furthermore, 

Prx4 is over-expressed in the majority of cancers where Srx is overexpressed 

(refer to Table 1-1) [67]. In prostate cancer, over-expressed Prx4 enhances the 

rate of cell proliferation [123]. In oral cavity squamous cell carcinoma, expression 

of Prx4 enhances cancer metastasis [124]. In colorectal cancer, high expression 

of Prx4 correlate with poor survival of patients [125]. As mentioned before, Srx is 

also highly expressed in colon cancer and is required for chemical-induced colon 

carcinogenesis [34]. Therefore, it may be of interest to study the significance of 

Srx and Prx4 in colon cancer. 

1.1.6 Summary and future directions 

The Srx-Prx axis plays a critical role in a variety of physiological and pathological 

conditions involving redox signaling. Some information is available about cross-

talk between the Srx-Prx axis and other signaling pathways. However, the factors 



 

27 
 

that affect this cross-talk are largely unknown. The way an individual isoform of 

Prx contributes to different signaling pathways remains elusive. It is necessary to 

differentiate the contributions of the antioxidant function of Prx and its molecular 

chaperone function in terms of their impact on signal-transduction. Further 

research will help to unravel the list of proteins whose folding is assisted by Prx. 

Such research will provide a direction to identify different signaling pathways that 

are modulated by the chaperone function of Prx. Classification of signaling 

pathways regulated by chaperone and antioxidant functions of Prx will help us 

design a better targeting strategy against Prx in tumor cells. Prx is clearly shown 

to play a protective role in cardiovascular and neurological diseases. However, 

its role in cancer is still controversial due to both tumor-suppressor and 

oncogenic roles played by Prx-isoforms in different cancer types. Special 

attention needs to be paid to the mechanism by which the same Prx-isoform can 

play different, and sometimes opposite roles in different cancer types. Post-

translational modifications of Prx may be one of the mechanisms that contribute 

to the dual behavior of Prx. Other possible explanations may include the 

presence of allelic variants or single nucleotide polymorphism of the Prx genes. 

More in-depth mechanistic studies in the future will help to unravel the 

interweaved behavior of Prx and lead to development of better therapeutic 

strategies for cancer prevention or treatment. 

The Srx itself plays an oncogenic role in many types of cancer, including skin, 

colon, and lung cancer, to name a few. The biochemistry of Srx function has 

been studied in great detail. However, discerning the role of Srx in 
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carcinogenesis requires a deeper understanding that can only be fulfilled by 

future research. Considering the oncogenic role of Srx, it will be worth exploring 

Srx inhibitors as molecules of choice for chemoprevention and/or chemotherapy. 

Our existing understanding of the Srx-Prx interaction can help in designing good 

targeting strategies against Srx. However, more details regarding Srx 

deglutathionylation activity will be of great help for defining future directions. The 

hydrophobic pocket of Srx or other amino acids present at the Srx-Prx interface 

can be defined as a target for inhibitor screening. Virtual screening tools and 

other computational methods of drug-discovery can help reduce the cost and 

time required for identifying a good inhibitor. In short, Srx can be explored as a 

therapeutic target in cancer and targeting Srx using small molecules can be a 

valuable strategy for development of future chemotherapeutic molecules.  
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1.2 Scope of dissertation 

1.2.1 Hypothesis  

The majority of Srx functions are mediated through the Srx-Prx interaction. 

Previous publications from our research group have demonstrated the oncogenic 

role of the Srx-Prx interaction in tumor promotion and metastasis. The general 

hypothesis of the research described in this dissertation is that Srx plays a critical 

role in lung carcinogenesis and targeting the Srx-Prx axis or Srx alone may 

facilitate future development of targeted therapeutics for prevention and 

treatment of human cancer.  

1.2.2 Specific aims 

To test the stated hypothesis, the following specific aims were designed: 

Specific Aim 1: Demonstrate that Srx enhances urethane-induced lung 

carcinogenesis. 

Specific Aim 2: Demonstrate the molecular domains in Srx and Prx that can be 

used as a target site to modulate Srx-Prx interaction or inhibit Srx. 

Specific Aim 3: To demonstrate the potential of ISO1 as an inhibitor of the Srx-

Prx interaction.  
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CHAPTER 2: EFFECT OF SULFIREDOXIN DEPRIVATION ON THE 
URETHANE-INDUCED LUNG TUMORIGENESIS 

2.1 Synopsis 
Sulfiredoxin (Srx) is the exclusive enzyme that reduces the over-oxidized form of 

typical 2-Cys peroxiredoxins (i.e. Prx1-4). It has been found to be over-expressed 

in human non-small cell lung cancer. Cigarette smoke induces lung 

carcinogenesis and is a mixture of multiple carcinogens that work together to 

promote tumorigenesis. Urethane is a component of cigarette smoke and has 

been known to induce lung tumors in mice. We first tested the effect of cigarette 

smoke condensate on Srx expression in vitro. Both cigarette smoke and 

urethane induced Srx expression in vitro. To study the effect of Srx on lung 

tumorigenesis in vivo, we tested the effect of Srx-knockout on urethane-induced 

lung tumorigenesis in mice. Srx knockout mice were generated on FVB 

background and lung tumorigenesis was induced by urethane protocol. We found 

significantly lower tumor multiplicity in Srx knockout (Srx-/-) mice compared to 

wild type (Srx+/+) or heterozygous (Srx+/-) siblings. Urethane treated BEAS2B 

cells indicated increased expression of Srx, Prx1, Prx2, and Nrf2. 

Histopathological analysis revealed that loss of Srx decreases tumor cell 

proliferation and enhances apoptosis. This data indicates that loss of Srx protects 

mice against urethane-induced lung tumorigenesis. Hence, Srx has a critical 

oncogenic role in lung tumorigenesis. 
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2.2 Introduction 
Sulfiredoxin (Srx) is an exclusive enzyme that reduces over-oxidized typical 2-

Cys peroxiredoxins [24]. Srx utilizes ATP and magnesium (Mg2+) or manganese 

(Mn2+) as cofactors and forms sulfinic phosphoryl ester followed by thiosulfinate 

intermediate to reduce over-oxidized Prx [24, 126]. Srx is evolutionarily 

conserved in the majority of eukaryotes, but is rare in prokaryotes, with few 

exceptions (e.g. cyanobacteria). Apart from its antioxidant function, Srx can 

catalyze the deglutathionylation of actin, Prx2, and protein phosphatase [45, 53]. 

There may be other unidentified substrates that are deglutathionylated by Srx. 

Biochemistry of the Srx-Prx interaction and enzymatic activity of Srx has been 

studied in great detail (please refer to chapter 1); however, the physiological and 

pathological significance of Srx has not been fully revealed. Srx expression is 

altered in many types of human cancer. Our previous work has demonstrated 

oncogenic association of Srx with skin, colon, and lung tumorigenesis, where it is 

found to be highly over-expressed in tumors compared to adjacent normal tissue 

[32, 34, 78, 86, 127]. 

Lung cancer is the leading type of cancer-related deaths worldwide [128, 129]. 

Smoking multiplies the risk of lung cancer according to amount and quality of 

exposure. To understand the effect of cigarette smoke on antioxidant protein 

expressions, we treated BEAS2B cells with cigarette smoke condensate (CSC) 

and studied its effect on the expression of various antioxidant proteins. CSC 

induced expression of various antioxidant proteins, including Srx. Cigarette 

smoke is a complex mixture of more than 5,000 chemicals [130]. To further study 
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the effect of cigarette smoke on tumorigenesis, we decided to test one of its 

components, urethane, which is a well-known lung carcinogen [131, 132]. 

Urethane is also present in a variety of fermented food and beverages, including 

alcoholic beverages [133]. Urethane-induced lung carcinogenesis is a well-

established model in mice. Mechanistic studies identified Nrf2, AP-1, STAT3, and 

many other oxidative stress induced proteins as mediators of urethane’s 

carcinogenic activity [134, 135]. Previous studies have indicated that oxidative 

stress related induction of Srx expression is mediated through Nrf2 as well [69, 

78]. Therefore, we hypothesized that Srx may be a mediator of urethane-induced 

lung cancer. Whether Srx is involved in urethane-induced lung carcinogenesis 

has not yet been studied. Therefore, we studied the functional significance of Srx 

in urethane-induced lung carcinogenesis. We used Srx knockout mice and a 

well-established urethane-induced lung carcinogenesis model for this study. The 

model provides an important experimental strategy to study the pathological 

significance of Srx in urethane-induced lung carcinogenesis. Our data suggest 

that loss of Srx protects mice from urethane-induced lung tumorigenesis. 

2.3 Materials & methods 

2.3.1 Cell culture and western blot 

Human lung/bronchus epithelial BEAS2B cell line was commercially obtained 

from American Type Culture Collection (ATCC; Manassas, VA). Cells were 

cultured in our laboratory less than 6 months after resuscitation. All experiments 

were conducted with BEAS2B cells within 10 passages in 6 months. Cells were 
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maintained in Dulbecco's Modified Eagle Medium (DMEM) (Lonza Walkersville, 

Inc., Walkersville, MD) containing 5% fetal bovine serum. 

Cigarette smoke condensate was obtained from Dr. Chandra Gary Gairola’s 

laboratory at the University of Kentucky. Urethane and N-acetyl cysteine were 

commercially obtained from Sigma-Aldrich (St. Louis, MO). The cells were 

treated with CSC concentrations of 10 μg/mL, 20 μg/mL, and 40 μg/m for 48 hours. 

To mimic chronic exposure to urethane from a variety of food, beverages, and 

cigarette smoke, we treated cells with urethane for 5 days. The media was 

changed daily and fresh urethane added each time the media was changed. For 

western blot, cells were lysed in radioimmunoprecipitation assay (RIPA) buffer 

containing protease inhibitors (Santa Cruz Biotech, Dallas, TX). Protein bands 

were separated using sodium-dodecyl sulfate-polyacrylamide gel electrophoresis 

and western blotting was performed following standard protocol. The primary 

antibodies used included anti-Srx (Proteintech, Chicago, IL; Catalog 14273-1-

AP), anti-Prx I (Abcam, Cambridge, MA; Catalog ab41906), anti-Prx II (Santa 

Cruz Biotech; Catalog SC-33574), anti-Prx III (Santa Cruz Biotech; Catalog SC-

59661), anti-Nrf2 (Santa Cruz Biotech; Catalog SC-722), anti-Prx IV (Abcam; 

Catalog ab133872), anti-p-c-Jun (Cell Signaling, Billerica, MA; Catalog 9261L) 

and anti-β-actin (Sigma–Aldrich; Catalog A2228). 

2.3.2 Quantitative reverse transcription and polymerase chain reaction 

BEAS2B cells were treated with CSC or urethane. Vehicle treated cells were 

used as control. RNA was extracted using the RNeasy Kit (Qiagen, Valencia, 

CA). RNA (200 ng) was used for cDNA synthesis and polymerase chain reaction 
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(PCR). The following primers were used in the process:  mSRX forward 5’- AAA 

GTG CAG AGC CTG GTG G-3’, mSRX reverse 5’-CTT GGC AGG AAT GGT 

CTC TC-3’; mNRF2 forward 5’-AGT GGA TCT GCC AAC TAC TC-3’; mNRF2 

reverse 5’-CAT CTA CAA ACG GGA ATG TCT G-3’; mPrx1 forward 5’- ACC 

TCT TCC TGC GTT CTC AC-3’, mPrx1 reverse 5’-TGT CCA TCT GGC ATA 

ACA GC-3’; mGAPDH forward 5’-ACA ACT TTG GCA TTG TGG AA-3’, 

mGAPDH reverse 5’-GAT GCA GGG ATG ATG TTC TG-3’. Reverse 

transcription and PCR were carried out using standard protocol [78]. The PCR 

product was mixed with SYBR green and 6X running buffer. This mixture was run 

on 3% agarose. The bands were quantitated using ImageJ software 1.49. 

Quantitative results were normalized by level of GAPDH mRNA. 

2.3.3 Lentiviral ShRNA knockdown of Srx in BEAS2B cells 

BEAS2B cells were treated with 5 mM urethane for 3 generations. This treatment 

induced expression of Srx and other antioxidant proteins in those cells. ShRNA-

based knockdown experiments were planned and performed according to 

previously published methods [86]. All ShRNA constructs, including MISSION® 

pLKO.1-puro control vector (vector control), MISSION® non-target shRNA 

(ShNT), and ShRNAs specifically targeting Srx (ShSrx), were commercially 

obtained (Sigma-Aldrich). Commercial sequencing services were utilized to 

confirm the sequence. Lentiviral particles expressing ShRNA were produced in 

HEK293T cells using the provider’s plasmid packaging system and FuGENE 6 

transfection reagent following suggested transfection and virus production 

procedures. The titer of virus-containing medium was determined by measuring 
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the level of p24 using ELISA and Lenti-X GoStix kits (Clontech, Mountain View, 

CA). To establish stable knockdown, urethane-treated BEAS2B cells were 

infected with lentiviral particles. Cells were subsequently maintained in 

puromycin-containing medium to establish stable cells. 

2.3.4 Soft agar colony formation assay 

BEAS2B cells were treated with 5 mM and 10 mM urethane for 5 days. The 

control group was treated with phosphate buffer saline (PBS) as vehicle control. 

Each of these groups was harvested and cell numbers were counted using a 

LunaTM automated cell counter. The cells were suspended in 0.3% agar. The cell 

culture (6-well) plates were pre-coated with 1 mL of 0.6% agar and 15,000 cells 

were plated per well for each group. Urethane was added to the treatment group 

and PBS to the vehicle control group 24 hrs after plating. Medium was changed 

every 4 days and fresh urethane/vehicle was added each time the media was 

changed. The plates were incubated for 6 weeks. The soft agar colonies were 

stained using 0.25% crystal violet staining and images were taken using 

Amscope 3.7 software with a digital camera. The size and number of colonies 

were counted using OpenCFU 3.8.11 software. 

To study the role of Srx in the urethane-induced BEAS2B cell transformation, we 

knocked-down Srx expression in urethane-treated BEAS2B cells using the 

lentiviral method. The BEAS2B cells were first treated for 3 generations with 5 

mM urethane to enhance Srx expression. These cells were subjected to lentiviral 

infection to knockdown Srx. Vector-infected cells were used as control. These 

cells were subsequently maintained on 5 mM urethane along with puromycin-
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containing media to get stable transfection. Srx expression in non-treated 

BEAS2B cells, along with multi-generation urethane-treated ShV and ShSrx cells 

were measured using western blot. We carried out the colony formation assay 

after stable knockdown was confirmed. Both ShVector (empty vector transfected) 

and ShSrx (Vector loaded with Srx shRNA transfected) cell colonies were treated 

with 5 mM urethane and puromycin throughout the incubation period. The rest of 

the procedure was the same as the procedure used for normal BEAS2B cells. 

2.3.5 Srx knockout mice genotyping 

Mouse breeding and animal protocols were performed following the guidelines of 

the University of Kentucky’s Institutional Animal Care and Use Committee. Srx 

knockout mice were generated on FVB background using Srx-/- B6/129 mice 

backcrossed onto an FVB mice strain [34]. After backcrossing on FVB 

background for seven generations, the inbred offspring were used for 

experiments. Genomics DNA from tail clip was extracted using genomic DNA 

extraction kit (Qiagen). This genomic DNA was used for PCR-based genotyping 

as previously reported [136]. 

2.3.6 Urethane protocol 

A randomized double-blind experimental design was applied to eliminate 

potential subjective bias. Briefly, mice at 7 week of age, including wild type (Wt), 

heterozygous, and knockouts, were given once weekly intraperitoneal injection 

for 3 weeks, with 1 mg/g body weight of urethane (Sigma-Aldrich) dissolved in 

saline [137, 138]. The mice were weighed before every administration of 
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urethane during the first 3 weeks. After the third administration of urethane, mice 

were weighed once weekly. Mice were maintained on a normal diet and ad 

libitum water for 10 weeks following the first injection. During this period of 10 

weeks, mice with signs of severe suffering were euthanized. At the end of 10 

weeks, all mice were humanely sacrificed. Mouse lungs were perfused with PBS 

followed by multiple rinses in PBS. Tumors were counted using a magnifying 

glass. This counted all the tumors on the surface of lung. Mouse lungs were fixed 

in 4% paraformaldehyde and stored in 70% ethanol before being processed with 

standard paraffin embedding and sectioning. For histological assessment, all 

lobes of each lung were sectioned for 15 slides and the first slide was stained by 

hematoxylin and eosin (H&E) staining. 

2.3.7 Immunohistochemistry staining and in situ apoptosis assay 

Immunohistochemistry was performed using Vectastain Elite ABC kit #PK-6100 

(Vector Laboratories, Inc., Burlingame, CA) with hematoxylin counterstaining. 

Antibodies used include anti-Srx (1:200, Proteintech, Chicago, IL; Catalog 

14273-1-AP), anti-Prx1 (1:300, Abcam, Cambridge, MA; Catalog ab41906), anti-

Nrf2 (1:200, Santa Cruz Biotech, Inc., Dallas, TX; Catalog SC-722) and anti-Ki67 

(1:20, Abcam, Cambridge, MA; Catalog ab16667). Terminal deoxynucleotidyl 

transferase-mediated dUTP nick end labeling (TUNEL) assay was performed 

using TACS 2TdT-DAB In Situ Apoptosis Detection Kit (Trevigen, Gaithersburg, 

MD) to assay apoptosis in mouse lung. Following manufacturer’s protocol, all 

samples were counterstained with methyl green, dehydrated, and mounted 

before microscopic visualization. Images of immunohistochemistry were taken 
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using a digital camera with AmScope 3.7 software attached to a Zeiss Axioplan 2 

Imaging microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY). The IHC 

images were quantitated using the Aperio Imagescope and the quantitative 

values were plotted in the form of bar graph for comparison. 

2.3.8 Statistical analysis 

Quantitative data were presented as sample mean ± standard deviation (x� ± SD). 

Data were analyzed with the indicated statistical methods using SigmaPlot 

(version 13.0). For calculation of the p-value, parameters of two-tailed 95% 

confidence interval were used for all analyses. A p-value of ≤0.05 was 

considered statistically significant. 

2.4 Results 

2.4.1 CSC enhances the expression of antioxidant proteins 
BEAS2B cells were selected to study the effect of urethane on protein expression 

as they are an immortalized normal (non-cancer) lung cell line that is considered 

suitable to study chemical-induced carcinogenesis of lung cells. BEAS2B cells 

(human lung Broncho epithelial cell line) were treated with CSC at concentrations 

of 10 µg/mL, 20 µg/mL, and 40 µg/mL. The two higher concentrations 

significantly enhanced expression of Srx and other antioxidant proteins after 48 

hours of treatment (Figure 2-1A & B). The expression of all Prx (except Prx3) 

showed significant increase in concentration at all 3 concentrations. The Prx3 

expression did not show significant increase in expression. We further tested 

whether this over-expression of the Srx-Prx axis is mediated by oxidative stress. 
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Figure 2-1: Cigarette smoke condensate (CSC) induces the expression of 
antioxidant proteins: CSC increases the expression of Srx, Prx, and Nrf2 in a 
dose-dependent manner and this effect can be reversed by co-exposing cells 
with N-acetyl cysteine: (A) western blot and (B) quantification graph showing 
expression of different proteins in BEAS2B cells treated with CSC for 48 hours; 
(C) western blot and (D) quantification graph showing the effect of N-acetyl 
cysteine on CSC-induced protein expression. The statistical significance is 
achieved for differences in all three treatments compared to control in panel (B) 
and both NAC treated group compared to CSC only group in panel (D). 
Statistically significant difference was not observed in case of Prx3. One way 
ANOVA followed by Holm-Sidak post hoc test was utilized to test statistical 
significance (p≤0.05). 
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We co-treated a group of BEAS2B cells with N-acetyl cysteine (antioxidant) along 

with CSC for 48 hours. N-acetyl cysteine reversed the enhanced expression of 

these proteins (Figure 2-1C & D). Hence, CSC-induced overexpression of the 

Srx-Prx axis is mediated through oxidative stress. To confirm whether the 

regulation of protein expression is at a transcriptional or translational level, we 

studied the mRNA expression of individual proteins using reverse transcription 

followed by polymerase chain reaction (RT-PCR). The RT-PCR results indicated 

increased transcription of antioxidant proteins (Figure 2-2A & B). The highest 

increase in transcription was observed in Nrf2, Srx, and Prx1; transcription of 

Prx2 and Prx4 increased to a lesser extent. On comparing the changes in protein 

expression with mRNA expression, we found that the effect of CSC on protein 

expression was much stronger than its effect on mRNA expression. Hence, apart 

from transcriptional regulation, there can be other mechanisms by which CSC 

enhances protein expression. 

2.4.2 Urethane enhances expression of antioxidant protein 

Urethane is a component of cigarette smoke and fermentation products. We 

selected urethane to confirm whether it can enhance Srx expression in the same 

way as CSC. To mimic chronic human exposure conditions, we treated BEAS2B 

cells with urethane for 5 days. This 5-day chronic treatment induces the 

expression of sulfiredoxin in a dose-dependent manner (Figure 2-3 A&B). 

Urethane also enhances the expression of typical 2-Cys Prxs, especially Prx1 

and Prx2. The levels of over-oxidized Prxs (i.e., Prx-SO3) were also found to be 

enhanced in urethane treated cells too.  
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Figure 2-2: Cigarette smoke condensate regulates the transcription of the 
Srx and Prx: Cigarette smoke condensate transcriptionally regulates the 
expression of antioxidant transcripts. (A) RT-PCR gel showing mRNA expression 
of individual proteins; (B) graph showing quantification of bands. T-test was 
applied to analyze the statistical difference in mRNA expression (*p ≤ 0.05). 
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Figure 2-3: Urethane treatment enhances antioxidant protein expression in 
BEAS2B cells: (A & B) Effect of urethane on protein expression; (C&D) effect of 
urethane on mRNA expression; (E&F) effect of trigonelline on urethane-induced 
protein expression. One-way ANOVA on Ranks followed by Dunn’s test was 
applied for analysis of protein expression. T-test was applied to analyze the 
statistical difference in mRNA expression (*p ≤ 0.05). 



 

43 
 

On comparison on increase in total Prx expression to increase in Prx-SO3 

expression, we concluded that Prx-SO3 expression probably due to increased 

levels of total Prx and not due to higher oxidation of Prxs. Nrf2 signaling can be 

considered the most plausible mechanism of Srx and Prx1 induction by urethane 

treatment, as Srx was found to have higher expression in urethane-treated cells 

compared to control. The expression of Prx3 and Prx4 did not change 

substantially after 5 days of urethane treatment. To confirm the mechanism of 

Srx and Prx1 induction we next carried out reverse transcription-polymerase 

chain reaction. BEAS2B cells treated urethane for 5 days showed increase in 

mRNA transcription of antioxidant proteins (i.e. Srx, Prx1 and Nrf2). The increase 

in mRNA expression in the group treated with 5mM urethane was found to be 

statistically significant (two tailed t-test, p≤0.05) for Nrf2 and Srx, but not for Prx1 

compared to respective non-treated BEAS2B control (Figure 2-3 C&D). Similar to 

CSC treatment, the effect of urethane on protein expression was stronger 

compared to its effect on mRNA expression. Ergo, there can be non-

transcriptional mechanisms by which urethane can regulate the expression of 

these proteins. 

Earlier literature has indicated that the Nrf2 enhances the Srx transcription. 

Hence, a Nrf2 inhibitor should reduce the Nrf2 induced Srx and Prx1 expression. 

We studied the effect of trigonelline (Nrf2 inhibitor) on Srx and Prx1 expression in 

urethane treated cells. Trigonelline inhibited Srx expression in urethane treated 

cells (Figure 2-3 E & F). It confirms that urethane-induced Srx expression is 

mediated through Nrf2. Trigonelline inhibited Prx1 expression to a lesser extent. 



 

44 
 

Hence, urethane-induced Prx1 expression is (at least partially) mediated through 

Nrf2.  

2.4.3 Urethane treatment transforms BEAS2B cells in an Srx-dependent 
manner 

After confirming the effect of urethane treatment on protein expression, we tested 

the effect of this treatment on BEAS2B cell transformation. Our initial study 

indicated that 5-day urethane treatment induces Srx expression in BEAS2B cells. 

Therefore, we initially treated cells for 5 days with 5 mM or 10 mM urethane, 

followed by treatment in soft agar plate with respective urethane concentrations 

or vehicle (phosphate buffer saline)-treated control. As expected, the vehicle-

treated control group showed low anchorage-independent colony formation. 

However, the urethane-treated group produced multiple colonies. The numbers 

of colonies were higher in the 10 mM urethane-treated group compared to the 5 

mM urethane-treated group, which indicates the dose-dependence of urethane’s 

effect (Figure 2-4A & C). Statistically significant differences were observed in a 

number of colonies in the 10 mM urethane-treated group (but not the 5 mM 

urethane-treated group) compared to vehicle-treated control.  

To study the role of Srx in the urethane-induced BEAS2B cell transformation, we 

studied the effect of Srx-knockdown on colony formation in the urethane-treated 

cells. The cells treated with urethane for multiple generations followed by Srx 

knockdown showed lower incidences of colony formation compared to vector 

infected control (Figure 2-4 B & D). Hence, urethane induced cell transformation 

is mediated through induction of Srx expression. 
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Figure 2-4: Urethane transforms BEAS2B cells in an Srx-dependent 
manner: Urethane enhances anchorage independent cell growth in a dose-
dependent manner (A & C). Urethane-induced cell transformation is partially 
mediated through Srx, as knockdown of Srx results in reduced potential of colony 
formation (B & D). Each treatment group represents data from triplicates (n= 3). 
Statistical methods used were (C) one-way ANOVA and Holm-Sidak post-hoc 
analysis (*p ≤ 0.05), and (D) t-test (*p ≤ 0.05) 
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Srx-knockdown reduced the number of small and large colonies compared to 

vector control. The differences in number of colonies were statistically significant 

(p ≤ 0.05) irrespective of colony size. Hence, our data shows that urethane 

transforms BEAS2B cells and enhances anchorage-independent colony 

formation. Our data also confirms that the aforementioned transformation is 

partially reversible by knockdown of Srx. Hence, Srx plays an important role in 

urethane mediated cell transformation of BEAS2B cell. 

2.4.4 Srx knockout mice are resistant to urethane-induced lung cancer 

Srx knockout mice on FVB background were completely normal under normal 

laboratory conditions. To study the role of Srx in in vivo lung tumorigenesis, a 

well-established urethane-induced mouse lung tumorigenesis protocol was 

applied (Figure 2-5A). Mean mouse weight was plotted on a time scale. Srx 

knockout and heterozygous mice showed a statistically significantly (p<0.001) 

better weight profile compared to wild type mice (Figure 2-5B). The differences in 

weight profile over weeks were not statistically significant between heterozygous 

and knockout mice groups (p=0.148). To minimize mouse suffering, all mice were 

humanely sacrificed 10 weeks after the first urethane administration. 

We examined the tumor incidence in mice lungs. Representative images of mice 

lungs with tumors and H&E staining of tumors are shown (Figure 2-6A & C). All 

mice had lung tumors at this stage. The number of tumors was counted using a 

magnifying glass. The intra-tissue tumors limited the detection of those tumors. 

However, they should follow the same pattern as the surface tumor while 

comparing the effect of Srx expression. 
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Figure 2-5: Srx null mice are resistant to urethane toxicity: (A) Schematic 
presentation of the urethane protocol; (B) effect of urethane treatment on mouse 
body weight. The Srx genotype did not affect weights of non-treated mice. 
Statistical methods used were two-way ANOVA and Holm-Sidak post-hoc 
analysis (*p ≤ 0.05). 
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Figure 2-6: Srx null mice are resistant to urethane-induced carcinogenesis: (A) Whole lung tissue; (B) 10X 
images of Hematoxylin and Eosin stained mouse tumors; (C) average tumor multiplicity in Srx Wt, Het, and 
knockout mice, (D) average tumor size in Srx Wt, Het, and knockout mice. We started with equal number of mice in 
each group. Due to mice fighting and injury, few mice needed to be sacrificed. Hence, we had different number of 
lungs in different genotype. The dots above and below error bars indicate outliers (C & D). Statistical methods used 
were one-way ANOVA (C-D) and Holm-Sidak post-hoc analysis (*p ≤ 0.05). 
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The number of tumors per lung tended to be lower in Srx knockout (-/-) mice 

compared to wild type (p=0.001) or heterozygous (p=0.012) mice (Figure 2-6C). 

The average tumor multiplicity in Srx knockout mice was reduced by 

approximately 2-fold compared to wild type mice. Smaller tumor size and tumor 

location hindered accessibility for measurement of tumor diameter. Therefore, we 

used the longest diameter of each tumor from the H&E stained slides. These 

tumor diameters (µM) were used for comparison of tumor sizes in all three 

groups. The average diameter in Srx knockout mice tended to be lower than wild 

type and heterozygous mice, although statistically significant differences were 

found only on comparison of wild type with knockout mice (p= 0.022) as opposed 

to wild type vs. heterozygous (p=0.199) or heterozygous vs. knockout (p=0.174) 

mice (Figure 2-6D). Our data indicate that Srx knockout mice had a significant 

reduction in tumor multiplicity and tumor diameter compared with their wild type 

or heterozygous counterparts. Therefore, these data suggested that genomic 

loss of increases the mice resistance to urethane-induced lung tumorigenesis. 

2.4.5 Urethane induces the expression of antioxidant proteins in mouse 
lung 

To investigate why Srx depletion in mice led to lower tumor multiplicity, we 

examined the effect of urethane treatment on the expression of Srx in mouse 

lung tumors. An immunohistochemical method that specifically detected Srx in 

formaldehyde-fixed tissue was applied as previously reported [139]. Previous 

reports from our group indicate that Srx is barely detectable in normal human 

lung tissue. After urethane treatment, the majority of lung tissue, including tumor 
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tissue from Srx (+/+) or (+/-) mice, showed strong positive Srx-staining (Figure 2-

7A). There were differences in strength of staining in Wt vs. Het mouse tissue as 

well, with Wt showing stronger staining. Lack of positive staining in the lung and 

tumors of Srx knockout mice further validated the specificity of anti-Srx staining 

(Figure 2-7A & D). We also tested Prx expression in these lungs and found 

positive staining for Prx1 (Figure 2-7B&E). Prx expression was lower in Srx+/- 

and Srx-/- mice compared to Srx+/+ mice. 

As Nrf2 transcriptionally up-regulates the expression of Srx as well as Prx1, we 

stained these lung tumors for Nrf2 using specific antibody. Our data confirmed 

the expression of Nrf2 in urethane-treated tumors (Figure 2-7C&F). The 

expression of Nrf2 was higher in Srx+/- and Srx-/- mice compared to Srx+/+ 

mice. These data suggest that application of urethane led to increased 

expression of antioxidant proteins in mouse lung and tumors. 

2.4.6 Depletion of Srx reduced cell proliferation and increased apoptosis in 
the urethane treated groups 

To identify the reasons behind reduction of tumor multiplicity and diameter in Srx 

knockout mice, we further investigated the effect of Srx depletion on cell 

proliferation and apoptosis. Mouse lung tumors from all three genotypes were 

stained with Ki67 (a cell proliferation marker). There was an enhanced staining 

for Ki67 in tumors from wild type mice as opposed to knockout and 

heterozygous, where the Ki67 staining was significantly lower (Figure 2-8A). The 

positive nucleus were counted using Aperio Imagescope software and plotted for 

quantitative comparison.  
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Figure 2-7: Immunohistochemistry staining showing expression of different 
proteins in urethane-treated lung tissue: 20X images of 
immunohistochemistry indicating expression in lung tumor from mice lungs of 
different Srx genotypes: (A) Srx, (B) Prx1, and (C) Nrf2. The staining was 
quantitated using Aperio Imagescope software. Quantitative values of 3,3′-
diaminobenzidine (DAB) staining estimation are plotted for (D) Srx, (E) Prx1, and 
(F) Nrf2 expression. Statistical methods used were one-way ANOVA on Ranks 
and Dunn’s post-hoc analysis (*p ≤ 0.05). 
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Figure 2-8: Srx enhances tumor cell proliferation and reduces tumor cell 
apoptosis in urethane-induced lung carcinogenesis: (A) 20X images of Ki67 
staining as a tumor cell proliferation marker in tumors from different Srx genotype 
mice; (B) 20X images of TUNEL staining as an indicator of tumor cell apoptosis 
in tumors from different Srx genotype mice. The number of positive nucleus was 
quantitated using Aperio Imagescope software. (C) quantitative comparison of 
tumor cell proliferation index (Ki67 staining); (D) quantitative comparison of tumor 
cell apoptosis (TUNEL staining). Statistical methods used were one-way ANOVA 
(C & D) and Holm-Sidak post-hoc analysis (*p ≤ 0.05) 
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Quantitatively, the difference in cell proliferation was statistically significant with a 

significantly lower number of positive nuclei in knockout (p<0.001) and 

heterozygous (p=0.006) compared to wild type mice (Figure 2-8A & C). A 

statistically significant difference could not be observed in Ki67 positive nuclei 

between the knockout vs. heterozygous groups.  

We also examined intra-tumoral apoptosis using TUNEL staining. There were 

enhanced TUNEL positive cells in tumors from knockout mice as opposed to wild 

type and heterozygous (Figure 2-8B & D). Quantitatively, the differences in 

TUNEL positive nuclei were statistically significant with a significantly higher 

number of positive nuclei in knockout compared to wild type (p<0.001) as well as 

heterozygous (p=0.001) mice. Differences between TUNEL staining in 

heterozygous and wild type mice were not statistically significant. 

2.5 Discussion 
The primary function of Srx is to reduce over-oxidized Prxs in host cells. Protein 

deglutathionylation is an alternative function [22]. Cellular antioxidants, such as 

glutaredoxin, Prx, Trx, and Trx-like proteins, as well as Srx, have been identified 

as over-expressed in a wide range of human cancers [69, 78, 140, 141]. These 

antioxidants promote cell survival through regulation of oxidative stress. Cigarette 

smoke is known to enhance susceptibility to lung cancer [142]. It is a complex 

mixture of chemicals that has potential to induce lung carcinogenesis. Many 

components of cigarette smoke act as direct or indirect lung carcinogens. We 

first checked the effect of cigarette smoke on expression of the Srx and Prxs. 

Cigarette smoke condensate enhanced the expression of Srx as well as 
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individual Prxs (Figure 2-1). This action of CSC could be reversed with the 

addition of chemical antioxidants such as N-acetyl cysteine. Hence, the effect of 

cigarette smoke on expression of Srx-Prx axis components is at least partially 

mediated through oxidative stress. This increase in expression of antioxidant 

proteins was regulated at the transcriptional level (Figure 2-2). However, the 

extent of change in mRNA expression is not as strong as the extent of change in 

protein expression. This may be an indicator of non-transcriptional mechanisms 

that cause the enhanced expression of Srx-Prx axis components in response to 

CSC treatment. 

To further investigate the effect of the Srx-Prx axis on lung cancer, we selected a 

carcinogenic component of cigarette smoke. Urethane is a component of 

cigarette smoke and a well-known lung carcinogen in mice [138]. However, the 

urethane itself is not the carcinogen. Rather, urethane is metabolized to vinyl 

carbamate epoxide, which later causes the majority of urethane toxicity [143]. 

These mechanisms of urethane-induced lung carcinogenesis along with our data 

are summarized in Figure 2-9. Humans are mainly exposed to urethane from 

alcoholic beverages [144]. Alcohol increases the expression of CYP2E1 [145], 

which along with esterase are enzymes that play the main roles in metabolism of 

urethane [146]. CYP2E1 converts urethane to vinyl carbamate epoxide, whereas 

esterase converts it to ethanol [146]. Considering the stoichiometry of reaction, 

the presence of alcohol has potential to slow down the metabolism of urethane 

by esterase. Hence, the metabolism of urethane to vinyl carbamate epoxide 

becomes the predominant mechanism of metabolism partially due to increased 
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CYP2E1 expression and partially due to reduced rate of metabolism by esterase. 

Cigarette smoke is another major source of urethane [131, 132]. Many 

individuals consume alcohol and smoke cigarettes simultaneously [147]. This 

trend of alcohol consumption along with smoking has increased in recent years. 

Hence, the risk of urethane toxicity and urethane-induced lung cancer may be 

higher in individuals who smoke and consume alcohol simultaneously. Human 

lungs have a lower expression of urethane-metabolizing enzymes (i.e. CYP2E1) 

and esterase, compared to other tissue like liver and gastrointestinal tract [148, 

149]. This multiplies the risk of the aforementioned stoichiometric inhibition of 

esterase in human lung. Hence, the risk of urethane conversion to carcinogenic 

metabolite increases under regular exposure conditions where lungs are 

simultaneously exposed to alcohol and cigarette smoke. 

To study the role of Srx in lung carcinogenesis, we used the urethane model to 

mimic lung cancer development in humans. Srx knockout mice were established 

on an FVB background. Srx knockout mice were completely normal under 

standard laboratory conditions. We demonstrated that depletion of Srx rendered 

mice resistant to urethane-induced lung cancer, as Srx null mice showed 

reduced tumor multiplicity and tumor diameter compared to wild type mice. Srx 

null mice showed an almost 2-fold lower incidence of tumor multiplicity and 

roughly 1.5-fold reduction in median tumor diameter. In mechanistic studies, we 

found that Srx was strongly expressed in urethane-treated lung tumors and 

depletion of Srx led to reduction in cell proliferation. 
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Figure 2-9: Prospective mechanism of urethane-induced lung carcinogenesis: CYP2E1 (Pathway A) and esterase 
(Pathway B) are the main enzymes that metabolize urethane. Pathway A predominates in metabolism of urethane as the 
majority of urethane exposure to humans is from alcoholic beverages; Pathway B is stoichiometrically inhibited/slowed 
down due to the presence of alcohol (an end product in Pathway B). 
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This study also demonstrates that depletion of Srx results in an enhanced rate of 

intra-tumoral apoptosis. Reduced cell proliferation and increased intra-tumoral 

apoptosis may contribute to the tumor-resistant phenotype of Srx knockout mice. 

As per data from the American Cancer Society publication ‘Cancer Facts & 

Figures’ and ‘Global Cancer Statistics’ reports, lung cancer is the leading cause 

of cancer related deaths in the USA and worldwide irrespective of gender [128]. 

Identification of novel therapeutic targets for lung cancer is therefore very 

important. Srx and Prx are highly expressed in human lung tumors. Srx 

expression is critical for the pathogenesis of several human diseases, including 

cancer. Our current and previous data clearly demonstrate that Srx plays a 

significant pathogenic role in human cancer development. The cellular levels of 

Srx may be regulated through AP-1 and Nrf2 [69]. In this study, we demonstrate 

that urethane directly stimulates the expression of Srx, Prx, and Nrf2. Nrf2 is 

involved in transcriptional regulation of Srx and Prx1 [69, 80]. Our data indicates 

that urethane induces Srx and Prx1 expression at the transcriptional level. Earlier 

researches as well as our current data indicate that Nrf2 acts as a mediator of 

urethane-induced carcinogenesis [134]. Hence, our finding establishes that 

urethane enhances Nrf2 expression and later transcriptionally regulates the 

expression of Srx and Prx1. These findings further establish the role of Srx as a 

mediator of urethane-induced lung carcinogenesis. Our findings of the tumor-

resistant phenotype of Srx knockout mice may reflect a long-term accumulative 

effect of urethane exposure. It is not clear whether loss of Srx has any effect on 

the mutagenic potential of urethane. Nevertheless, our findings suggest that Srx 
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is one of the critical components that contribute to mouse lung tumorigenesis 

in vivo. Targeting Srx may thus be employed as a novel strategy for lung cancer 

prevention and/or treatment in the future. 

2.6 Summary 
Urethane is a well-established lung carcinogen with potential to induce 

carcinogenesis in other tissues as well. It is a component of cigarette smoke and 

alcoholic beverages. Alcoholic beverages are the main source of urethane 

exposure for humans, while cigarette smoke is another major source. Vinyl 

carbamate epoxide is a metabolite of urethane that is responsible for the majority 

of its toxicities. Metabolism of urethane to vinyl carbamate epoxide is the 

preferred method of urethane metabolism in the presence of alcohol. Hence, the 

chances of urethane toxicity increase under normal human exposure conditions. 

The role of Nrf2 in urethane-induced lung carcinogenesis has been documented 

in the literature. This study identified the role of Srx in urethane-induced lung 

carcinogenesis: urethane causes enhanced expression of Nrf2, leading to 

transcriptional upregulation of Srx and Prx expression, in turn leading to lung 

tumorigenesis. Knockdown of Srx in FVB mice partially protects mice against 

urethane-induced lung tumorigenesis. The protection in Srx null mice is mainly 

due to a reduction in tumor cell proliferation and increase in tumor cell apoptosis. 

Hence, Srx plays an essential role in urethane-induced lung carcinogenesis and 

can be considered a novel target for lung cancer prevention and/or treatment.  
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CHAPTER 3: THE BIOLOGY OF SULFIREDOXIN (SRX)-
PEROXIREDOXIN1 (PRX1) INTERACTION: STRUCTURE TO 

MOLECULAR INSIGHTS 

3.1 Synopsis 
Typical 2-Cys Prx is the group of Prx that is reduced by Srx. Srx-Prx1 interaction 

is involved in pathogenesis of various oxidative stress-induced conditions, 

including cancer, inflammation, cardiovascular disorders, and neurological 

diseases. The purpose of this study was to understand the structural biology of 

the Srx-Prx1 interaction, which may be of significance as a molecular target site 

for a novel drug-discovery process. Homology modeling and protein-protein 

docking approaches were applied to examine the Srx-Prx1 interaction using 

in silico methods, including I-TASSER, Phyre2, Swissmodel, MZDOCK, and 

ZDOCK. Using in silico studies, a 26-amino acid motif at the C-terminus of Prx1 

was identified that may cause a steric hindrance for the kinetics of the Srx-Prx1 

interaction. These findings were tested in vitro using purified recombinant 

proteins, including Srx, Prx1, and Prx1Mutant (deleted C-terminal arm). We found 

that deletion of the C-terminal arm of Prx1 significantly enhanced its association 

with Srx (i.e. >1000-fold increase in ka) with minimal effect on dissociation (kd). 

These results were further validated in Prx4. These data confirms that the c-

terminal arm of Prx is not required for Srx-Prx interaction. Taken together, these 

data add novel structural insights critical for understanding the biology of the Srx-

Prx interaction. 
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3.2 Introduction 
The molecular characteristics of protein-protein interaction must be identified in 

order to design an effective targeting strategy for inhibition of such interactions. A 

3-dimensional structure of a protein and its individual components can play a 

major or minor role in protein interaction. Understanding the molecular structure 

of individual proteins is the first criteria that must be fulfilled to study the effect of 

a 3-dimensional structure of individual proteins on protein-protein interaction. 

Protein structure can be predicted experimentally using X-ray crystallography 

and nuclear magnetic resonance studies. In the absence of experimental data, it 

can be predicted computationally by homology modeling. Homology modeling is 

one of the most popular methods for prediction of protein structures based on the 

known structure of homologous proteins with some sequence identity [150]. It is 

not trivial to predict the structure covering the full length of a protein using 

experimental methods, as crystallizing the whole protein is a cumbersome task 

that can be affected by myriad experimental factors leading to lower confidence 

in the predicted structure. The relative ease of predicting the structure covering 

the full protein sequence by homology modeling has led to popularity of this 

method. Homology modeling has already established its utility in hypothesis 

making for molecular studies [151, 152]. Protein structures predicted using this 

method can be used computationally for protein-protein docking studies. 

Protein-protein docking is a unique computational tool to identify the points of 

contact during protein-protein interaction that can help in designing a targeting 

strategy to inhibit those interactions [153]. Predictions of docking studies can be 
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further confirmed experimentally using amino acid mutation and deletion studies. 

Recombinant proteins can be designed with mutations at individual points of 

contacts or deletion of a particular domain. These mutants can be used to study 

the effect of particular mutations on protein-protein interactions. Once confirmed, 

amino acids from these experiments can be defined as binding sites for protein-

small molecule docking or virtual screening to identify the inhibitors of interaction. 

We carried out protein-protein docking studies followed by deletion mutation to 

confirm the role of the Prx C-terminal arm in Srx-Prx binding. 

3.3 Materials and methods 

3.3.1 Homology modeling and protein-protein docking studies 

Although the structures of Prx and Srx are available in the Protein Data Bank, 

none of the entries actually covers the full sequence of these proteins. Therefore, 

homology modeling was used to predict the full-length structures of all Prx and 

Srx. We used multiple online homology modeling programs in this experiment, 

including I-TASSER (iterative threading assembly refinement) [154, 155], Phyre2 

[156] and Swissmodel [157]. We used M-ZDOCK [158] for prediction of dimeric 

structure from the monomeric structure predicted by I-TASSER and Phyre2. 

Followed by homology modeling studies, we carried out protein-protein docking 

studies using the ZDOCK [159] online server to identify structural characteristics 

of interaction. We analyzed the final output of these experiments using PyMOL 

visualizer and labeled the binding and catalytic site components.  
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3.3.2 Western blot and immunoprecipitation (IP) assay in HEK293T cells 

HEK293T (human embryonic kidney) cells were transfected with pLV expression 

vector for FLAG-tagged Srx. The stable transfection was ensured by maintaining 

these cells on puromycin containing media. Cells were divided into three groups 

and were treated with vehicle, 500 µM H2O2, or 1000 µM H2O2 for 10 minutes. 

The vehicle treated group was used as control. The cells were lysed using RIPA 

buffer for western blot and immunoprecipitation buffer for IP. The lysate were 

incubated with anti-Srx antibody overnight at 4o C. Next morning magnetic beads 

coated with anti-rabbit secondary antibody was incubated with samples for 2 

hours. The sample was separated using magnetic bars. The beads were washed 

3 times with fresh IP buffer. The protein was eluted using 1X LDS buffer buy 

heating at 90o C for 10 minutes. Western blot was carried out using standard 

procedures as described earlier in this dissertation. 

3.3.3 Purification of recombinant proteins 

Srx, Prx1wildtype, Prx1mutant (in which the last 22 amino acids from the C-terminal 

were deleted), Prx4wildtype, and Prx4mutant were expressed in E. coli BL21(DE3) 

cells using pRSET B vector. Srx was inserted between the BamHI and EcoRI 

restriction sites of pRSET B. All the Prx wild type and Prx mutants were inserted 

between BamHI and HindIII restriction sites of pRSET B. Coomassie blue 

staining of different gels containing purified proteins is shown along with a 

pRSET B vector map in Figure 3-1. All proteins had a (His)6 tag at the N-terminal. 

BL21(DE3) cells were cultured at 37o C in LB broth media (Sigma-Aldrich). 
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Figure 3-1: Protein purification using pRSET B vector: (A) Vector map; (B) 
coomassie blue stained gels showing pure protein bands. The replicate bands 
represents different preparation of proteins. 
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After addition of isopropyl-1-thio-D-galactopyranoside (1.0 mM), the cultures 

were incubated for 4 hours at room temperature. The cells were lysed using lysis 

buffer [8 M urea (pH 8.0), 100 mM monosodium phosphate, 10 mM Tris Base]. 

Protein purification was carried out using an Ni2+ charged IMAC Select Affinity 

Gel [Sigma-Aldrich] column for purification of His-tagged proteins. The column 

was washed with wash buffer [20 mM imidazole (pH 8.0), 300 mM NaCl, and 50 

mM monosodium phosphate]. The protein was eluted with elution buffer [300 mM 

imidazole (pH 8.0), 300 mM NaCl, and 50 mM monosodium phosphate] and was 

dialyzed in 20 mM Tris-HCl to remove extra salts and re-nature the protein. 

3.3.4 In vitro IP using purified recombinant proteins 

The Srx (2 µg) was incubated with multiple concentrations of Prx1wildtype and 

Prx1mutant (500 ng, 1µg, 2 µg, 4µg) in 500 µL of IP buffer for 2 hours at 4o C. The 

samples were incubated with anti-Srx antibody overnight at 4o C. Next morning 

magnetic beads coated with anti-rabbit secondary antibody was incubated with 

samples for 2 hours. The sample was separated using magnetic bars. The beads 

were washed 3 times with fresh IP buffer. The protein was eluted using 1X LDS 

buffer buy heating at 90o C for 10 minutes. The western blot were carried out 

using standard procedures. 

3.3.5 Study of the Srx-Prx interaction kinetics using surface plasmon 
resonance (SPR) 

The interaction of Srx (analyte) with Prx1wildtype and Prx1mutant (ligand) was 

measured by surface plasmon resonance (SPR) technique using ProteOnTM 

XPR36 instrument (Bio-Rad). The ligands were immobilized on GLC sensor 
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chips (Bio-Rad) using the amine coupling method using BioRad standard 

manufacturer protocol. Ligand capturing on the GLC chip was performed as per 

the manufacturer’s protocol. Several different concentrations of pure recombinant 

Srx (analyte) were used to evaluate the ligand-analyte binding. The data were 

acquired and processed by ProteOn manager software and the Langmuir 1:1 

evaluation model was used for analysis. 

3.3.6 Statistical analysis 

SPR data analyzed using the Langmuir 1:1 evaluation model. Quantitative data 

were presented as mean ± standard deviation (x� ± SD). Data were analyzed with 

the indicated statistical methods using SigmaPlot (version 13.0). For calculation 

of the p-value, parameters of two-tailed 95% confidence interval were used for all 

analyses (p ≤ 0.05 was considered statistically significant). 

3.4 Results 

3.4.1 Complete 3D-structure of full length proteins were predicted using 
homology modeling 

Multiple homology modeling programs were tested for prediction of dimeric 

structure. Swissmodel predicted a partial structure, which we could not use for 

our purpose. Phyre2 gave good results as well; however, I-TASSER proved to be 

the best for all proteins under this study. Although I-TASSER is time consuming, 

the capability of predicting the best structure from minimal information was 

appreciable. Therefore, we determined the structure of Prx1 and Srx monomer 

using I-TASSER (Figure 3-2). Prx1 monomers were uploaded to M-ZDOCK to 

predict the structure of Prx1 dimer. 
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Figure 3-2: Representative images of Srx and Prx1: The Srx binding site 
forms a groove. Prx1 has a extending C-terminal arm of the Prx1 dimer. 
Prx1mutant is prepared by deletion of the last 22 amino acids from the C-terminal 
arm. The structure of (A) Srx (ribbon), (B) Srx (spheres), (C) Prx1 wild type 
dimer, and (D) Prx1mutant dimer, are shown, with important cysteines marked in 
red, other binding site amino acids marked in magenta, and the last 22 amino 
acids of Prx1 marked in orange. Srx is marked in white and Prx chains are 
marked in green 
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We received multiple structures with different scores for each of our predictions. 

A best guess for possible structures was made on the basis of the individual 

scores as well as information available in the literature. Different software has 

different score range that correlates with the confidence in structure. We 

compared the individual score and selected best structure for our study. A similar 

strategy was used to predict the 3-dimensional structures of Prx2-4. The 

structures of other Prxs were similar to Prx1 with slight differences in orientation 

of the C-terminal (Figure 3-3). We observed an extending C-terminal arm in Prx1 

that covers the peroxidatic (CP) and resolving (CR) cysteine of Prx1 dimer (Figure 

3-2C). Similar C-terminal arms are present in other Prxs with a slightly different 

orientation (Figure 3-3). The 3-dimensional structure of Prx1mutant (Figure 3-2D) 

was predicted by deleting the 22 amino acids from the C-terminal of both chains 

of the Prx1 dimer. 
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Figure 3-3: Representative images of typical 2-Cys Prxs other than Prx1: Full length structures of (A) Prx2 
dimer, (B) Prx3 dimer, and (C) Prx4 dimer, produced by homology modeling. All important cysteines are marked in 
red, the last 22 amino acids of Prx are marked in orange, and the rest of the Prx chain amino acids are marked in 
green  
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3.4.2 Protein-protein docking output identified a possibility of steric 
hindrance for the Srx-Prx interaction 

All protein-protein docking studies were carried out using the ZDOCK online 

server. The hydrophobic pocket of Srx along with CP and CR of Prxs were defined 

as the binding site [55]. Docking output was visualized using the PyMOL 

visualizer. The results of docking indicated that the extending arm of Prx1 might 

create some steric hindrance for access of Srx to Prx1 (Figure 3-4A) as this arm 

covers the part of Prx1 that needs to be accessed by Srx for Prx1 reduction. 

Comparison of this phenomenon with Srx binding to other typical 2-Cys Prx 

indicated the possibility of steric hindrance in these Prx as well. However, the 

extent of hindrance may vary due to orientation of the C-terminal arm in an 

individual Prx. This may lead to differences in interaction affinity of Srx for 

individual members of the typical 2-Cys Prx family. Deletion of the C-terminal arm 

might reduce this steric hindrance (e.g. Srx may have easier access to Prx1mutant) 

(Figure 3-4B). Hence, deletion mutation may result in faster interaction between 

Srx and Prx. 

3.4.3 IP assay confirms the differences in interaction of Srx with individual 
Prx 

The pull-down assay indicated differences in interaction between Srx and 

individual Prxs under normal and oxidative stress conditions. A multiple-fold 

increase exists in pull-down of Prx3 and Prx-SO3 under oxidative stress 

conditions whereas the difference is less obvious in cases of Prx1, Prx2 and Prx4 

(Figure 3-5A & B). It could be due to mitochondrial location of Prx3. Srx cannot 

translocate to mitochondria under non-stress conditions. 
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Figure 3-4: The C-terminal arm hinders Srx binding to Prx1: Structures of Srx bound to (A) Prx1wildtype dimer 
and (B) Prx1mutant dimer, with highlighted Srx binding site (magenta), Prx cysteine (red) and the last 22 amino acids 
of Prx (orange) to depict the ease of access of Srx binding site to CP of Prx1. 
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Figure 3-5: Effect of H2O2 treatment on Srx interaction with various typical 2-Cys Prxs in HEK293T cells: (A) 
Western blot showing the relative amount of individual Prxs and oxidized Prx pulled down under oxidative stress 
conditions induced by 10 min treatment with 500 µM and 1000 µM H2O2 compared to non-treated control; (B)  band 
strength of individual Prxs under oxidative stress conditions compared to non-treated control as quantitated by ImageJ 
software. All bands shows same western blot gel. Quantitation is done for 4 different films. The quantitative comparison 
was carried out using One-way ANOVA followed by Holm-Sidak post-hoc analysis. 
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Under oxidative stress conditions, the mitochondrial wall’s permeability increases 

leading to Srx translocation to mitochondria and hence, increased Srx-Prx3 

interaction. Increased Prx-SO3 is mainly due to increased oxidation of Prx under 

oxidative stress conditions. The C-terminal arm of Prx is known to re-orient itself 

once the Prx is oxidized [54]. These conformational changes can explain the 

differences in Srx-Prx interaction under different redox states. The difference in 

interaction of Prx3 may be partially due to its localization in the mitochondrial 

compartment where Srx cannot reach under normal culture conditions. However, 

no such factor plays a role in the case of Prx1, Prx2 and Prx4. Hence, 

differences in interaction of these Prxs to Srx under oxidative stress conditions 

could be attributed to molecular rearrangements in these Prxs. The difference 

between Srx interactions and individual Prxs may be partially due to the different 

orientation of the C-terminal arm in these Prxs, as predicted by homology 

modeling. However, these differences need to be confirmed by further evidence. 

3.4.4 Srx binds more efficiently to Prx1mutant than Prx1wildtype 

IP, which was carried out using recombinant Srx, Prx1wildtype and Prx1mutant, 

indicated the effect of the C-terminal arm on the Srx-Prx interaction. When equal 

amounts of Prx1wildtype and Prx1mutant were incubated with a fixed amount of Srx, 

more Prx1mutant was pulled-down by IP using anti-Srx antibody compared to 

Prx1wildtype (Figure 3-6A & B). The differences in binding are not as obvious at 

lower Prx concentrations since at such concentrations excess of Srx is available 

for each molecule of Prx1wildtype and Prx1mutant. Hence, differences in binding are 

compensated by the excess of Srx. 
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Figure 3-6: Prx C-terminal arm deletion enhances the Srx-Prx interaction: For the same amount of Prx1 wild type and 
mutant incubated with a fixed amount of Srx, more Prx1mutant is pulled-down along with Srx compared to Prx1wildtype. (A) 
Western blot showing amount of Prx1wildtype and Prx1mutant pulled down along with Srx; (B) quantitated values of Prx1widltype 
and Prx1mutant pulled down at each concentration of Prx1. The quantitation represents bands from 4 different films. The 
positive (+ve) control contains only Srx, with no Prx. The negative (-ve) control contains only Prx1 wildtype or mutant, but 
no Srx. 
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The differences become quite obvious at higher Prx1 concentrations. As the Srx 

concentration becomes a limiting factor for interaction, a greater fraction of Prx 

with higher affinity (i.e. Prx1mutant) for Srx is pulled-down with anti-Srx antibody. 

These results confirm that Prx1mutant has higher steady-state interaction potential 

for Srx compared to Prx1wildtype. The results also emphasize the possibility that 

the C-terminal arm of Prx1 may cause some steric hindrance for Srx-Prx1 

interaction.  

3.4.5 Deletion of Prx C-terminal arm leads to faster Srx-Prx association with 
minimal effect on dissociation 

The effect of C-terminal arm deletion on kinetics of the Srx-Prx interaction was 

studied using the SPR technique. The deletion mutation resulted in more than a 

1,000-fold increase in association rate constant (ka) of the Srx-Prx1 interaction 

i.e. at equivalent molar concentrations of Prx1wildtype and Prx1mutant, the ka for the 

Srx-Prx1mutant interaction was more than 1,000-fold higher compared to ka for the 

Srx-Prx1wildtype interaction (Table 3-1; Figure 3-7 A & B). However, the deletion 

mutation did not significantly affect the dissociation rate constant (kd). Overall, the 

deletion mutation resulted in more than a 1,000-fold increase in interaction 

affinity. Based on homology modeling, we predicted slight differences in the 

orientation of the C-terminal arm in different Prx. Our predictions indicated that 

the C-terminal may cause steric hindrance to Srx access in all typical 2-Cys Prxs. 

However, the extent of steric hindrance could be different. To confirm our 

hypothesis, we deleted the same sequence of 22 amino acids from Prx4 and 

studied the interaction kinetics. 
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Table 3-1: The C-terminal deletion of Prx1 increases its affinity for Srx : The kinetic parameters calculated using SPR 
indicates faster rate of association and higher affinity of Srx for Prx1mutant compared to Prx1wildtype. E represents value of 
10. ka is association rate constant. kd is dissociation rate constant. KD is equilibrium dissociation constant. KD has inverse 
relationship with affinity of interaction.  

 Parameters (Unit) ka  (1/Ms) kd (1/s) KD (M) Comments 

Prx1wildtype 6.93 E
-01

 5.32 E
-04

 7.69 E
-04

 
Prx1 has a slow rate of association but a very slow rate 
of dissociation. It results in a longer time required to form 
the Srx-Prx interaction but is a highly stable complex. 

Prx1mutant 

(last 22 amino acids 
from Prx1 C-terminal 
are deleted) 

2.54 E
+03

 4.44 E
-04

 1.75 E
-07

 
Deletion mutation results in more than 1,000-fold 
increase in rate of association with minimal effect on rate 
of dissociation.  

Prx4wildtype 5.09 E
-01

 1.66 E
-03

 3.26 E
-03

 
Compared to Prx1wildtype, the Srx-Prx4 complex 
dissociates faster. 

Prx4mutant 

(last 22 amino acids 
from Prx1 C-terminal 
are deleted) 

9.04 E
+01

 2.69 E
-03

 2.97 E
-05

 
Deletion mutation results in more than 100-fold increase 
in rate of association with minimal effect on rate of 
dissociation. 
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Figure 3-7: C-terminal deletion mutation increases the Srx-Prx affinity: The kinetic parameters calculated using SPR 
indicate a slower rate of association and lower affinity of Srx for (A) Prx1wildtype compared to (B) Prx1mutant as well as (C) 
Prx4wildtype compared to (D) Prx4mutant. Different color lines represent different concentrations of analyte. The dissociation 
rate is calculated from the peak of each curve i.e. the time we stop influx of protein for association. Hence, association 
and dissociation are measured at different times. Hence, two parameters are independent of each other. 
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Again the SPR analysis confirmed our hypothesis. Deletion of the C-terminal arm 

in Prx4 resulted in more than 100-fold faster association (ka) with minimal effect 

on dissociation (kd) (Table 3-1; Figure 3-7 C & D). Hence, both Prx1 and Prx4 

deletion mutations confirm our hypothesis about the steric hindrance caused by 

Prx C-terminal site for Srx access to Prx. There is lower effect of Prx4 C-terminal 

deletion on Srx-Prx4 interaction, compared to effect of Prx1 C-terminal arm 

deletion on Srx-Prx1 interaction. 

3.5 Discussion 
Proteomics is one of the fastest evolving fields in molecular biology. The 

molecular interaction of individual proteins can regulate a variety of cell signaling 

processes elucidating their role in physiological homeostasis as well as 

pathological conditions. The importance of these macromolecules has led to 

development of various tools that can provide insight from their molecular 

structure. Multiple experimental methods are available to study the structure of 

proteins; however, these methods have limitations in maintaining the 

conformation of a native protein in an environment suitable for structural 

prediction by nuclear magnetic resonance or X-ray crystallography. It takes years 

of research by a group of structural chemists to determine the structure of a 

simple protein. Often, these research efforts are insufficient to predict the 

complete structure of proteins.  

The time and effort required for structural predictions using experimental 

methods and the limitations of these methods led to development of 

computational tools that can help structural chemists to temporarily fill the gap in 
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existing knowledge. Homology modeling is a computational method of protein 

structural prediction that provides great potential to fill the gap in existing data 

within acceptable limits of error [160]. Protein-protein docking is another 

computational method that provides insight into protein functions and molecular 

characteristics by filling the gap in existing knowledge about protein-protein 

interactions [161].  Both of these techniques are used in this study to help us 

understand the Srx-Prx interaction. A great amount of biochemical data related to 

Srx-Prx interaction is already available. We utilized experimental and 

computational prediction data to make a hypothesis that the C-terminal arm of 

typical 2-Cys Prxs may cause steric hindrance for the Srx-Prx interaction, as 

depicted in Figure 3-8. Experimental evidence from the existing literature 

suggests similar interaction of Srx with all 4 typical 2-Cys Prx. However, by virtue 

of being different proteins of the same subfamily, they also have minor 

differences in their characteristics. Our computational prediction indicated that 

those minor differences in interaction may be due to varying orientations of the 

C-terminal arm of Prx. To confirm our prediction of steric hindrance and the role 

of the Prx C-terminal arm in Srx-Prx interaction, we performed deletion mutation. 

Due to similarities in typical 2-Cys Prx and accepted conventions in the field, we 

decided to first study Prx1 molecular characteristics. The research in this field 

clearly establishes that differences in biochemistry of Srx interaction with 

individual typical 2-Cys Prx are minor. The major differences between typical 2-

Cys Prx come from their subcellular localization, not their molecular 

characteristics [30]. The Prx C-terminal arm contains 26 amino acids. 
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Figure 3-8: Extending C-terminal arm of Prx covers the Srx-Prx interface and may cause steric hindrance for Srx 
access to Prx: The figure depicts the relative location of the Prx C-terminal extending arm and location where the 
concave shape of the Srx-hydrophobic pocket needs to fit to carry out Prx reduction. In the presence of the C-terminal 
arm, Srx can access the Prx binding site only from a unique direction, leading to steric hindrance for Srx interaction. In 
absence of a C-terminal arm, Srx is freer to access Srx from different directions, which may result in faster association. 
The importance of inhibition of this interaction and its evolutionary values are mentioned in chapter 1 of this dissertation. 
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Out of those, the initial 4 amino acids are critical for Prx antioxidant function, 

while the last 22 amino acids do not affect the Prx antioxidant function. Hence, 

we deleted the last 22 amino acids of Prx1 C-terminal and studied its effect on 

Srx-Prx interaction. The effect of deletion mutation was studied on both steady-

state Srx-Prx interaction and kinetics of the Srx-Prx interaction. The IP 

experiments indicated that the deletion mutation enhances the steady-state Srx-

Prx interaction. It was not clear whether the effect on steady state interaction was 

due to changes in rate of association or dissociation or both. SPR is the 

technique of choice to study kinetics of protein-protein interaction [162]. This 

technique was used for studying the effect of C-terminal deletion on the kinetics 

of the Srx-Prx interaction. The SPR results indicated more than 1,000-fold 

increase in the association rate constant (ka) after deletion of the C-terminal arm. 

Higher ka is a direct indicator of faster rate of association. Hence, C-terminal arm 

deletion leads to approximately 1000-fold faster rate of association. The deletion 

mutation resulted in a slight reduction in dissociation rate constant (kd). The ratio 

of kd/ka is equal to the equilibrium dissociation rate constant (KD) in SPR. The 

reciprocal of KD is an indicator of affinity. Hence, lower KD indicates better affinity 

of the Srx-Prx interaction. Deletion mutation reduces the KD value of the Srx-Prx1 

interaction by more than 1000-fold; hence, Prx1 C-terminal arm deletion results 

in more than 1000-fold increase in affinity of the Srx-Prx1 interaction.  

To further confirm the applicability of these results to other typical 2-Cys Prxs, the 

effect of this same deletion mutation was studied in Prx4. Considering 

differences in C-terminal arm orientation (as predicted from homology modeling), 
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we expected that the extent of steric hindrance may be slightly different than 

what we saw in Prx1. This prediction was confirmed by SPR analysis of Srx 

interaction with Prx4wildtype and Prx4mutant. The deletion mutation in Prx4 resulted 

in roughly 100-fold increase in ka with minimal effect on kd. Again, the equilibrium 

dissociation constant (KD) for the Srx-Prx4mutant interaction was calculated to be 

approximately 100 times lower than the KD for the Srx-Prx4wildtype interaction. The 

effect of differences in orientation of the C-terminal arm indicated a 10-fold 

difference in effect of C-terminal arm deletion (i.e. 1,000-fold in the case of Prx1 

while only 100-fold in the case of Prx4). Hence, deletion of the C-terminal arm of 

Prx affects the rate of Srx-Prx association and these results can be extrapolated 

to other typical 2-Cys Prx. However, the extent of the effect may be different in 

other typical 2-Cys Prx.  

While considering structural details of the Srx-Prx interaction published by 

Jonsson and colleagues, we found supportive evidence to our hypothesis [163]. 

The YF (tyrosine-phenylalanine) motif present in the C-terminal arm of Prx 

actually occludes the Srx-Prx interaction [163]. The YF motif is responsible for 

holding the C-terminal arm in a particular orientation, where it causes steric 

hindrance for the Srx-Prx interaction resulting in reduced rate of association. 

Jonsson and colleagues, also states a slight stabilizing effect of the C-terminal 

arm on the Srx-Prx complex. However, our data indicates very low effect of C-

terminal arm deletion on dissociation rate constant (kd). We repeated these 

experiments 5 times and found very low effect on kd in each repetition, wherease 

the effect on ka was always multifold. On comparison of experimental methods, 
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we found that the Jonsson group used an N-terminal truncated Srx (amino acid 

1-37 deleted) for their study, while we used the complete Srx sequence. The 

differences in the Srx-Prx complex stability (once it is formed) can be partially 

due to the presence of N-terminal in our protein which is present at the site 

where the Prx C-terminal arm wraps itself around Srx. Figure 3-9 shows 

representative images of these differences. Hence, it can be concluded from 

experimental data that the C-terminal arm of Prxs causes steric hindrance for Srx 

association with Prxs. However, it may have a slight stabilizing effect on the 

formed complex. Such a stabilizing effect should be minor compared to the multi-

fold effect of Prx C-terminal on rate of association and it may have a minor effect 

on overall affinity. Taken together, these results give us some insight about the 

molecular characteristics of Srx-Prx interaction. Hence, this information about the 

Srx-Prx interaction interface can help us in successfully designing targeting 

strategies to inhibit the Srx-Prx interaction. 
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Figure 3-9: The Srx-Prx complex showing crystal structure with truncated Srx N-terminal: (A & B) The 
complete Srx structure predicted via homology modeling with N-terminal amino acids 1-37 marked yellow to 
represent the truncated part (C & D) and its orientation. 
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3.6 Summary 
Srx hydrophobic pocket formed by the Srx active site binds with a Prx homodimer 

in a region where CP and CR of alternate monomers is located. The C-terminal of 

the second monomer (the one with CR in the binding site) covers the binding site 

and forms a pocket. This C-terminal arm can cause steric hindrance for Srx 

access to Prxs. Our data confirms this steric hindrance as deletion of the C-

terminal arm results in increased steady state interaction between Srx and Prxs. 

Hence, Prx C-terminal arm is not required for Srx-Prx interaction. This data is 

further confirmed by kinetic studies which indicate that deletion mutation results 

in much faster association of Prxs with Srx with very low effect on dissociation. It 

results in overall higher affinity of the Srx-Prx interaction. Taken together, this 

study adds insight to the molecular characteristics of the Srx-Prx interaction and 

may help us design future targeting strategies for inhibition of the Srx-Prx 

interaction. 
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CHAPTER 4: TARGETING SRX-PRX INTERACTION USING 
SMALL-MOLECULE INHIBITORS 

4.1 Synopsis 
The Srx-Prx axis is a critical component of the antioxidant system in eukaryotes. 

It is involved in pathogenesis of various oxidative stress-induced conditions that 

includes (but is not limited to) lung, skin, and colorectal cancer. The purpose of 

this study is to target the Srx-Prx interaction using small molecules that may 

further lead to development of novel therapeutics. We used in silico virtual 

screening and protein-small molecule docking to identify a few inhibitors of Srx-

Prx interaction. Multiple in silico parameters were used as filters to minimize the 

number of small molecules to be tested. Molecules shortlisted on the basis of 

computational predictions were tested using in vitro techniques. These chemicals 

significantly reduced the chances of cell growth. ISO1 was found to be the best 

Srx inhibitor, with a KD of 42 nM. Taken together, these data show a promising 

approach to identifying an Srx inhibitor that can be employed as a research tool 

as well as a therapeutic tool in the future. 
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4.2 Introduction 
Macromolecular protein-protein interaction plays a very important role in several 

cell-signaling pathways, including redox signaling [164]. Srx-Prx interaction is 

one example of intracellular protein-protein interaction involved in redox 

signaling. Protein-protein interaction is one of the most complex macromolecular 

interactions inside cells and scientists have devoted decades of research to 

inhibit such interaction using small molecules [165]. Identification of a proper 

targeting strategy and target site is the most daunting task in the drug-discovery 

process. Decades of research from computational biologists have led to 

development of in silico tools that can be used to identify pockets or target sites 

in individual proteins that can be targeted using small molecules [166]. Molecular 

biologists can contribute to identification of proper targeting sites by identifying 

amino acids essential for protein function. In fact, contribution of molecular and 

computational biologists must complement each other for successful drug-

discovery. Virtual screening is the process of screening a ligand library against a 

given target site or well-defined pocket or entire 3-dimensional structure of a 

given protein [167]. Virtual screening has proved to be a good computer-aided 

drug-designing tool in recent years as it helps to reduce the cost and time 

required for drug discovery. Virtual screening is a daunting task as identification 

of target sites and orientation of molecules that may lead to inhibition of a protein 

are still based on individual judgment of the researcher. Knowledge of molecular 

biology, and especially the molecular characteristics of particular protein-protein 

interaction, can prove to be a great asset for computational biologists as it helps 

to improve the accuracy of predictions and probability of success in later stages 
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of the drug-discovery process. Hits selected by virtual screening can either 

undergo further in silico screening for their pharmacokinetic properties or can be 

directly subjected to in vitro testing. The path taken for hits is selected based on 

availability of resources and prospective use of the molecules. 

Molecular biology research reported in earlier chapters of this dissertation helped 

us identify a prospective pocket in typical 2-Cys Prxs. The amino acids of Srx 

that are involved in Srx-Prx interaction have been documented in the literature 

[127]. The amino acids form a groove/pocket in the Srx structure that can 

potentially be targeted by small molecules. The probability of small molecule 

binding sites can be predicted using pocket finder software, such as ConCavity 

and MetaPocket 2.0 [168, 169]. We used the aforementioned pockets of Srx and 

Prx for a virtual screening process. Screening 8,836,468 chemicals available in 

the ZINC online database against our targets returned 1,400 hits. We filtered 

these hits based on predicted pharmacokinetics and pharmacodynamics and 

shortlisted 100 molecules. Due to lack of funding, we decided to test only 4 

molecules. I selected 4 molecules that covered 4 different chemical classes. One 

of them showed promising results. We named it inhibitor of sulfiredoxin 

oxidoreductase 1 (ISO1). ISO1 showed good efficacy against Srx. However, its 

pharmacokinetic profile needed improvement. ISO1 is an amphoteric molecule 

with lipophilicity outweighing hydrophilicity. Hence, we tested 3 more molecules 

while looking for a molecule with better pharmacokinetic profile. The main 

purpose of testing these molecules was to find an efficacious molecule with 

better pharmacokinetic profile. We finally tested these chemicals in vitro, using 
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lung cancer cell lines. As an aside, we later collaborated with the University of 

Kentucky College of Pharmacy for screening of more chemical libraries against 

the given target sites in Srx. We identified 41 more molecules with the help of Dr. 

Zhan’s laboratory and these are being tested in vitro; however, those molecules 

are not part of this dissertation and their testing will be continued in the future. 

Virtual screening and in vitro testing helped us identify the molecule that shows 

the most promising inhibition of cancer cell growth at minimal toxicity to normal 

organ control cells. It may be beneficial for future research to use QSAR 

techniques to design and test new molecules related to the one identified in our 

study, as this will help in identifying molecules with better efficacy and lower 

toxicity potential. 

4.3 Materials and methods 

4.3.1 Cell lines, plasmids, antibodies and chemicals 

Human lung cancer A549 cells were obtained from ATCC and cultured in RPMI 

medium containing 10% fetal bovine serum under standard conditions. All 

experiments were performed using cells within 10 passages from resuscitation. 

Primary antibodies used include rabbit  anti-Srx (Proteintech, Chicago, IL; 

Catalog 14273-1-AP), rabbit anti-Prx I (Abcam, Cambridge, MA; Catalog 

ab41906), rabbit anti-PrxSO3 (Abcam Catalog ab16830), mouse anti-β-actin 

(Sigma–Aldrich; Catalog A2228), mouse anti-Prx III (Santa Cruz Biotech; Catalog 

SC-59661), anti-pERK (Cell Signaling, Billerica, MA; Catalog 9101S), anti-ERK 

(Cell Signaling, Billerica, MA; Catalog 4376S), anti-p-c-Jun (Cell Signaling, 

Billerica, MA; Catalog 9261L), anti-c-Jun (Santa Cruz; Catalog SC-1694), anti-
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pCREB (Cell Signaling, Billerica, MA; Catalog 9198S), and anti-CREB (Cell 

Signaling, Billerica, MA; Catalog 9197). Recombinant human EGF was 

commercially obtained (Sigma-Aldrich). All the molecules tested in vitro were 

purchased from eMolecules (La Jolla, CA) or other registered vendors on the 

ZINC database. Molecules from other chemical libraries were provided by the 

University Of Kentucky College Of Pharmacy. Dimethyl sulfoxide (DMSO) was 

purchased from Alfa Aesar (Ward Hill, Massachusetts).  

4.3.2 Virtual screening to identify the Srx-Prx interaction inhibitor 

Binding pockets were predicted based on previous experiments mentioned in this 

dissertation as well as existing literature [54, 55]. Those binding pockets were 

further confirmed using ConCavity and MetaPocket 2.0 software. We screened 

approximately 8.8 million compounds from the ZINC database [170] using DOCK 

Blaster (an online server) [171] against Srx. Out of these compounds we 

identified approximately 1,400 that can bind to Srx in different orientations. We 

used iGEMDOCK as a second virtual screening software for confirming the 

output of DOCK Blaster [172]. We selected these molecules and further 

predicted their metabolic profile using MetaPrint2D-React (online server) [173]. 

We used multiple filters to further minimize the number of compounds to be 

tested. The filters are listed in Table 4-1 with their significance in the drug 

discovery process. After incorporating these filters, we still had approximately 

100 compounds that could be tested in vitro; however, we tested 7 of them based 

on chemical class and individual filters. 



 

 
 

90 

Table 4-1: Filters applied to shortlist virtually screened hits and their significance 

 

Filter  Significance in Drug Discovery Process 

Binding site Overall probability of inhibition 

Binding energy Probability of competitive inhibition 

Number of contacts Increases the probability that the aforementioned parameters will be fulfilled 

Lipinski’s Rule of Five Drug-likeness 

Metabolites Pharmacokinetics as well as pharmacodynamics 

Chemical class Rough idea about other difficulties that may arise during testing of molecules 

Toxicity May limit pre-clinical/clinical outcomes 
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4.3.3 Small molecule assay for Srx inhibitory activity 

A549 cells were pre-treated with 20 µM of the individual compounds being tested 

for 45 min followed by treatment with H2O2 for 10 min. The treatment groups 

were incubated with 20 µM individual Srx inhibitor for another 4-6 hour. The 

DMSO treated group was used as recovery control, a 0-hour H2O2 treated group 

was used as oxidation control, while a non-treated group was used as basal level 

oxidation control. 

4.3.4 Western blotting, IP, and phosphokinase profiling 

Earlier data from our group has shown that Srx enhances phosphokinase 

signaling [32]. Western blotting and IP were performed using standard protocols. 

Whole cell lysate as well as purified recombinant proteins (purified as per 

protocol in Chapter 3) were used for IP. According to affinity of the antibodies 

and protein molecular weight, membranes were cut and stripped for multiple 

western blots to minimize variation. All cells were cultured in T75 flasks, cells 

were collected by trypsinization, and cell numbers were counted in a Coulter cell 

counter. Cells were then lysed in RIPA buffer at a concentration of 2 × 107 

cells/mL. For phosphokinase profiling, cells were serum starved for 18-20 hours 

along with 20 µM chemical inhibitor. After serum starvation, we added serum-

containing medium along with100 ng/mL EGF. The cells were incubated with 

EGF containing media for multiple different time-points. Cells were then lysed in 

RIPA buffer and western blot was performed to study phosphokinase signaling. 
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4.3.5 Colony formation, cell proliferation assay and cell cycle analysis 

For the colony formation experiment, cells were suspended in 0.3% agar and 

2,000 cells/well were seeded into a 24-well plate pre-coated with 0.5 ml of 0.6% 

agar. Culture medium was changed every 5 days for 4 weeks. The number and 

size of colonies were examined and data were obtained by analyzing with 

OpenCFU software. For the cell proliferation assay, 2,000 cells were plated per 

well of a 24-well plate. The chemicals were added the next day. The medium was 

changed every 24 hours with fresh media and inhibitor added at each time-point. 

After 72 hours, cells from each well were trypsinized and suspended in 1 mL 

media. The number of cells was counted 3 times with Coulter counter. To study 

the effect of Srx inhibition on cell cycle, we used flow cytometry analysis. An 

equal number of A549 (lung adenocarcinoma) cells were plated in 100 mm 

dishes. The next day, we started serum starvation with media free of any serum. 

After 24 hours serum starvation, we added fresh media containing 10% serum 

and 20 µM ISO1. The cells were incubated for another 24 hours with inhibitor and 

serum containing media. Finally, cells were trypzinized and stained using 

propidium iodide. Cell cycle analysis was carried out using standard protocol at 

the University of Kentucky College of Medicine facility for Flow Cytometry. 10,000 

cells were counted for each treatment group. 

4.3.6 Surface plasmon resonance study of Srx-Prx interaction kinetics 

The interaction kinetics of Srx (ligand) with chemical inhibitors was measured by 

SPR technique using ProteOnTM XPR36 instrument (Bio-Rad). Srx was 

immobilized on GLH sensor chips (Bio-Rad) using the amine coupling method. 
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Ligand capturing on the GLH chip was performed as per the manufacturer’s 

protocol. Several different concentrations of pure chemical inhibitors were used 

to evaluate the ligand-analyte binding. The data were acquired and processed by 

ProteOn manager software and Langmuir 1:1 evaluation model was used for 

kinetic analysis. 

4.3.7 Wound healing assay 

To test the effect of ISO1 on wound healing, cells were seeded in 6-well plates at 

a density of 1 × 106 cells per well to reach faster confluence. Wounds were made 

by scratching with a sterile 1000 μL pipette tip. Floating cells were removed by 

rinsing three times with PBS. Images of cell migration at different time points 

were recorded using the microscopic camera and AmScope 3.7 software. 

4.3.8 Statistical analysis 

SPR data was analyzed using the Langmuir 1:1 evaluation model. Quantitative 

data were presented as mean ± standard deviation (x� ± SD). Data were analyzed 

with indicated statistical methods by using SigmaPlot (version 13.0). For 

calculation of the p-value, parameters of two-tailed 95% confidence interval were 

used for all analyses. P ≤ 0.05 was considered statistically significant. 

4.4 Results 

4.4.1 Srx contains a good druggable pocket suitable for virtual screening 

Identifying a drug target site is a cumbersome step in the drug discovery process. 

We predicted a prospective target site in Srx and Prx using data from Chapter 3 

of this dissertation as well as from existing literature [54, 55]. However, 
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druggability of these sites needed to be confirmed. First, we predicted possible 

small molecule binding sites in Srx and Prx1 homodimers (as a representative of 

typical 2-Cys Prx subfamily) using MetaPocket 2.0 open access software (Figure 

4-1A&B), which predicts 3 possible target sites in each protein. The target sites 

that were predicted based on experimental data were confirmed by MetaPocket 

2.0 prediction. To further confirm druggability of these target sites, we predicted 

druggable pocket(s) using ConCavity open access software (Figure 4-1C&D). 

ConCavity predicted a druggable pocket in sulfiredoxin that covers the target 

sites predicted based on experimental studies as well as one of the target sites 

predicted by MetaPocket 2.0 software. However, ConCavity failed to predict a 

druggable pocket in the Prx1 homodimer. Confirmation of the druggability of the 

Srx pocket by multiple approaches increased the chances of accurate prediction 

as a target site; hence we further pursued this target site during in silico 

screening. 

4.4.2 In silico studies led to selection of four chemicals for in vitro testing 

Based on earlier experimental results and in silico predictions, we defined 

multiple target sites of Srx and carried out virtual screening using DOCK Blaster. 

The output of DOCK Blaster was confirmed by iGEMDOCK. Based on two virtual 

screening methods we identified 1,400 hits. To further refine the list of molecules, 

we used multiple filters defined in Table 4-1. We shortlisted 100 molecules based 

on advanced filtration. Due to economic constraints, we could not test many 

molecules. Hence, we first selected 4 molecules from 4 different chemical 

classes with the best predicted results on the basis of individual filters. 
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Figure 4-1:  Predicted pockets in Srx and Prx1: MetaPocket 2.0 predicted 3 probable binding pockets in Srx (A) 
and Prx1 (B); ConCavity predicted one pocket in Srx (C & D) as a druggable target but it could not confirm the 
presence of a druggable pocket in Prx1. 
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The 4 chemicals with selected parameters are listed in Table 4-2, and 

representative images of the Srx-binding site are shown in Figure 4-2. Based on 

in vitro results, we carried out quantitative structure-activity relationship (QSAR) 

predictions to identify more molecules related to ISO1 while trying to identify an 

inhibitor with better pharmacokinetic profile. We tested 3 more chemicals related 

to ISO1 but none of them produced better effect. Hence, the majority of in vitro 

results reported in this chapter belong to ISO1. 

4.4.3 Two molecules showed inhibition of Srx activity 

First we tested all small molecules for Srx inhibitory activity. We over-oxidized the 

Prx in A549 cells and replenished the media with fresh media containing inhibitor. 

We allowed the cells to recover for 4-6 hours in the presence of inhibitor. 

ZINC64002748 (Mol3) and ISO1 showed inhibition of Prx reduction (Figure 4-3). 

We tested these two chemicals for the rest of the in vitro studies. We tested small 

molecules for their potential to inhibit Srx-Prx1 interaction using recombinant 

proteins and IP assay. Both chemicals inhibited pull-down of Prx1 with Srx at 100 

µM concentration (Figure 4-4A & B). However, at lower concentrations, ISO1 

showed better effect compared to ZINC64002748. To compare the intracellular 

efficacy of these two molecules, we used HEK293T cells over-expressing FLAG-

Srx. On treatment with H2O2, followed by cell lysis using IP buffer containing 20 

µM of small molecules, ISO1 successfully inhibited pull-down of Prx-SO3 (i.e. 

over-oxidized form of Prx) with Srx (Figure 4-4 C & D). Hence, ISO1 can inhibit 

Srx interaction with Prx in both reduced as well as oxidized state. 



 

 
 

97 

Table 4-2: List of 4 chemicals selected on the basis of virtual screening 

Parameter ZINC38768782 ZINC39975876 ZINC 64002748 ZINC 142037 (ISO1) 

 
N-(4-isopropylphenyl)-2-

oxo-benzimidazole-5-
sulfonamide 

N-(2,4-
dimethoxyphenyl)-2,3-
dioxo-quinoxaline-6-

carboxamide 

5-[2-[2-
furylmethyl(methyl) 

amino]acetyl]benzimidaz
ol-2-one 

4-cyano-N-(3-
ethynylphenyl) 

benzene-1-
sulfonamide 

Binding 
energy -49.82 kcal/mol -81.76 kcal/mol -103.22 kcal/mol -70.13 kcal/mol 

Number of 
contacts 4 3 2 5 

Sites of 
metabolic 
modifications 

 
   

xLogP 1.51 3.3 1.23 2.20 
H-bond 
donors 3 3 3 1 

H-bond 
acceptors 8 6 6 4 

Alternative 
names used 
in this 
dissertation 

Mol1 Mol2 Mol3 ISO1 
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Figure 4-2: Representative images of docked small molecules in Srx-binding pocket. 



 

 
 

99 

 

Figure 4-3: Effect of individual small molecules on Prx-SO3 reduction: ZINC64002748 and ISO1 inhibit Prx-SO3 
reduction in A549 cells as evident from western blot and quantitative values of band in 4-hour (A & C) and 6-hour (B & D) 
recovery. 
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Figure 4-4: Effect of ZINC64002748 and ISO1 on pull-down of Prx1 and Prx-
SO3 along with Srx: (A-B) Inhibition of Prx1 recombinant protein 
immunoprecipitation with Srx recombinant protein; (C-D) Prx-SO3 IP along with 
Srx in FLAG-Srx overexpressing HEK293T cells. Statistical method applied was 
one-way ANOVA followed by Holm-Sidak post-hoc analysis (*p≤0.05). Upper 
band in Prx-SO3 band represent Prx4-SO3 while other 3 Prx are part of lower 
band. 
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4.4.4 Two molecules inhibit cell growth and colony formation in lung and 
colon cancer cells 

On testing the effect of ZINC64002748 and ISO1 in lung cancer cell lines, we 

found successful inhibition of non-small cell lung cancer (NSCLC) cell growth at 

concentrations which showed minimal toxicity in non-cancer BEAS2B cell lines 

from lungs (Figure 4-5 A & B). The effect was more selective for NSCLC cells 

compared to small cell lung cancer (SCLC) cell lines i.e. H69 and H82 cells. 

ZINC64002748 showed higher potency in A549 cells compared to ISO1. Similar 

results were observed in the anchorage-independent cell growth (colony 

formation) assay. Both ISO1 and ZINC64002748 inhibited anchorage-

independent colony formation in the A549 NSCLC cell line. ZINC64002748 

showed more potent inhibition of colony formation in A549 cells compared to 

ISO1 treatment (Figure 4-6). 

4.4.5 Surface plasmon resonance studies indicate higher affinity of Srx for 
ZINC64002748 and ISO1 compared to Prx1 

GLH chips were utilized to study the affinity of Srx for individual chemicals. Srx 

was used as ligand while ZINC64002748 and ISO1 were used as analytes. On 

calculation of kinetic parameters, we found both the chemicals showed higher 

association rate constant (ka) for Srx compared to ka of Prx1 for Srx (Table 4-3; 

Figure 4-7). On comparison of dissociation rate constant (kd), we found both the 

chemicals have higher kd compared to Prx1. On comparison of equilibrium 

dissociation rate constant (KD), we found that both the chemicals have lower KD 

compared to Prx1 (Table 4-3). The kinetic parameters of Prx1 are calculated and 

discussed in Chapter 3 of this dissertation. 
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Figure 4-5: Effect of ZINC64002748 and ISO1 on cell growth: Small molecules 
that inhibit Srx-expressing cell growth in lung cancer cells: (A) ISO1 and (B) 
ZINC64002748. Each treatment was carried out in triplicates (n = 3). 
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Figure 4-6: Small molecules inhibit anchorage-independent cell growth: (A) 
Representative images of colonies; (B) concentration-dependent effect of ISO1 
and ZINC64002748 on colony formation. Each treatment represents the 
triplicates (n = 3). 
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Figure 4-7: Surface plasmon resonance curves of Srx interaction with small 
molecules: (A) ISO1 and (B) ZINC64002748. The faster on and off rate 
represents micelle formation in case of ISO1 as shown in panel (A). It can also 
occur due to multi-molecular binding to same protein molecule. 
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Table 4-3: Srx has higher binding affinity for chemical inhibitors than Prx1 (SPR analysis): Srx-Prx1 kinetic 
parameters were taken from Chapter 3 of this dissertation. The data represents a calculation carried out using 5 different 
concentrations of analyte (small molecules). 

Parameters (Unit) Ka  (1/Ms) Kd (1/s) KD (M) Comments 

ISO1 8.65 E+07 3.61 E00 4.22 E-08 Srx has much higher affinity for ISO1 compared to 
Srx affinity for Prx1 or ZINC64002748 

ZINC64002748 2.08 E+02 1.86 E-02 8.95 E-05 Srx has slightly higher affinity for ZINC64002748 
compared to Srx affinity for Prx1 

Prx1 6.93 E-01 5.32 E-04 7.69 E-04  

 



 

106 
 

On comparison of KD values between the chemicals, we found ISO1 has a lower 

KD (hence, higher affinity) for its interaction with Srx compared to ZINC64002748-

Srx interaction. The KD value for Srx-ISO1 interaction was 4.22 E-08 M (i.e. 42.2 

nM) while that for Srx-ZINC64002748 interaction was 8.95 E-05 M (i.e. 89.5 µM). 

These values are inversely proportional to the affinity of these molecules for Srx. 

However, the EC50 in cell culture depends on variety of parameters including 

uptake of these molecules by cells. As ISO1 is amphoteric in nature, it forms 

micelles leading to hindered uptake into the cells. Hence, effect of ZIN64002748 

is better in terms of EC50 compared to effect of ISO1. 

4.4.6 ISO1 inhibits Srx-mediated phosphokinase signaling  

Previous data from our lab indicates that Srx enhances phosphokinase signaling. 

Knockdown of Srx results in reduced phosphokinase signaling. Hence, any Srx 

inhibitor should produce effect similar to Srx knockdown on phosphokinase 

signaling. To further confirm specificity of effects produced by two small 

molecules, we tested their effects on phosphokinase signaling. ZINC64002748 

indicated a slight stimulatory effect on phosphokinase signaling. However, Srx 

inhibition should reduce the phosphokinase signaling. For individual time points, 

ISO1 reduced the phosphokinase signaling at 20 µM concentrations (Figure 4-8). 

The effect of ISO1 was similar to the one produced as a result of Srx knockdown. 

Hence, all the effects produced by ISO1 add up to show its efficacy as a specific 

Srx inhibitor. Even though ZINC64002748 showed higher potency against lung 

and colon cancer cells, its effect may not be specific to Srx inhibition as it could 

not consistently inhibit phosphokinase signaling as expected from a Srx inhibitor. 
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Figure 4-8: ISO1 inhibits phosphokinase signaling: The western blot showing EGF-induced phosphokinase signaling 
after (A) ZINC64002748 and (B) ISO1 treatment; the bands for individual time-points were quantitated using ImageJ 
software and plotted as shown (C) 15 min, (D) 30 min, (E) 60 min, and (F) 120 min. 
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Hence, ZINC64002748 may not be a specific inhibitor of Srx. Considering 

specificity of ISO1; we carried out the rest of the in vitro studies with ISO1. 

4.4.7 ISO1 arrests cell growth in G2 phase 

To confirm the effect of Srx inhibitor ISO1 on cell cycle phase, we used flow 

cytometry. On testing the effect of ISO1 in lung cancer cells (A549), we found 

substantial reduction in number of cells in the S-phase of cell growth (Figure 4-

9A). The number of cells in G2 phase was higher compared to non-treated 

control.  

4.4.8 ISO1 inhibits cell-migration in wound healing assay 

Earlier research from our lab shows that Srx enhances cell-migration in wound 

healing assay [32]. To further confirm the specificity of ISO1, we tested its effect 

on A549 cell-migration using wound healing assay. The wound was made by 

scratching with a micropipette tip and cells were incubated with multiple 

concentrations of ISO1. The ISO1 inhibited wound healing in a dose-dependent 

manner (Figure 4-9B) with statistically significant inhibition obtained at 

concentrations above 20 µM (p≤0.05). 
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Figure 4-9: ISO1 inhibits lung cancer cell growth and migration: ISO1 (A) 
inhibits cell cycle progression to S-phase; (B) inhibits cell migration in wound 
healing assay. 
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4.5 Discussion 
Homology modeling and protein-protein docking studies reported in Chapter 3 

along with existing literature helped us to identify the Srx-Prx interaction 

interface. This interface could be targeted via amino acids in the Srx or Prx chain 

that are present at interface or via dual binders that can act on amino acids at 

both the Srx and Prx interfaces. Srx has three different sites that can be targeted 

for inhibition of its enzymatic activity. Those sites include: (1) hydrophobic pocket 

(i.e. a groove with multiple hydrophobic amino acids); (2) the ATP and Mg2+ 

cofactor binding site; and (3) Cys99 and neighboring amino acids [54, 55, 163]. 

The hydrophobic pocket is involved in Srx-Prx binding. ATP hydrolysis is 

necessary for reduction of Prx-SO3 and Mg2+ acts as a cofactor in this process. 

Cys99 is involved in formation of thiosulfinate intermediate, which is required for 

reduction of Prx-SO3 but it is not important for the Srx-Prx binding [24]. Targeting 

the ATP binding site has good potential to inhibit Srx and this site is easily 

accessible to small molecules. However, the probability of toxicity was predicted 

to be very high for any molecule that could bind at the ATP binding site. 

Therefore, we did not test any of these molecules. Cys99 is also easily accessible 

for small molecules. However, an effort to define Cys99 and only its adjacent 

amino acids led to a huge number of hits during virtual screening. The chances 

of non-specificity of interaction were very high in those molecules. The 

hydrophobic pocket is an easily accessible groove with well-defined 3-

dimensional structure. This groove is responsible for Srx-Prx binding. Cys99 is 

also present in proximity (but not inside) of this pocket. Hence, it may be a site of 

interaction for a specific inhibitor. To reduce the number of false positive 
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molecules in virtual screening, we defined a complex 3-dimesional target site that 

included all important amino acid components of the hydrophobic pocket (Pro52, 

Leu82, Phe96, Val118, Val127 and Tyr128) along with Cys99. Proximity of these amino 

acids to each other made me believe that it would be a druggable target site. 

However, druggability of a protein intramolecular target site can be affected by 

myriad biochemical and structural factors. Therefore, I decided to confirm it with 

two existing druggable pocket prediction tools: MetaPocket 2.0 and ConCavity. 

The druggability of the pocket defined in this study was confirmed by both 

in silico prediction methods. Based on existing literature and earlier experiments, 

we had defined a pocket in the Prx dimer as a target site. However, the Prx 

binding pocket druggability could not be confirmed using all methods. 

Considering the narrower Prx pocket and inability to confirm its druggability by 

prediction method, the chances of false positive in virtual screening was 

predicted to be high. 

Virtual screening is not a 100% accurate method and human judgment must be 

used to improve the chances of success and minimize the numbers of false 

positive as well as false negative. To reduce the chances of failure, we decided 

to confine ourselves to virtual screening against the Srx pocket and use Prx 

interface only for guidance. Virtual screening using DOCK Blaster and 

iGEMDOCK helped us select 1,400 hits out of 8,836,468 molecules that were 

originally screened against Srx. To minimize the number of false positives, we 

utilized multiple filters related to pharmacokinetic and pharmacodynamic 

descriptors. The filters allowed us to reduce the number to 100 chemicals. I 
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refined the methodology and filters to select 4 compounds from 4 different 

chemical classes. These molecules had the highest predicted probability of 

success based on docking and molecular descriptors. The 4 chemicals were first 

tested for their ability to inhibit the reduction of over-oxidized Prx. ZINC64002748 

and ISO1 showed acceptable inhibition at 20 µM concentrations. Hence, both 

were selected for further in vitro testing in cell culture. We later carried out a 

QSAR study to improve the pharmacokinetic profile of ISO1 and selected 3 

molecules for further testing. However, changes in structure that led to better 

pharmacokinetic profile resulted in loss of anti-Srx activity. Hence, the majority of 

data reported here are results of ISO1 testing in cell culture. 

The chemicals were first tested for their ability to inhibit Srx by testing inhibition of 

Prx-SO3 reduction. Oxidative stress resulted in hyperoxidation of Prxs. A 5-hour 

recovery after induction of oxidation is sufficient for reduction of the majority of 

Prx-SO3. Hence, the A549 cells were first treated for 10 minutes with H2O2, and 

then were allowed to recover for 5 hours with fresh media containing different 

concentrations of small molecules. The 0-hour oxidation control and DMSO 

(vehicle) reduction control groups were used as controls for induction of oxidation 

and recovery. Both ZINC64002748 and ISO1 showed successful inhibition of 

Prx-SO3 reduction; however, the effect was more promising for ISO1. We next 

tested the ability of these chemicals to inhibit the Srx-Prx and Srx-PrxSO3 

interaction using pull-down assay. Both molecules inhibited the Srx-Prx 

interaction at higher concentrations. However, at lower concentrations only ISO1 

could significantly reduce the Prx pull-down along with Srx. Similarly, ISO1 
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successfully inhibited Prx-SO3 pull-down along with Srx at 20 µM concentration 

while ZINC64002748 could not produce significant effect on Prx-SO3 pull-down. 

As mentioned earlier, the hydrophobic pocket of Srx is responsible for Srx-Prx 

binding while Cys99 (amino acid outside hydrophobic pocket) is responsible for 

enzymatic activity. Hence, Srx enzymatic activity can still be inhibited even if the 

Srx-Prx binding is not affected. Therefore, we decided to further test both the 

molecules to select one with specific activity. 

Earlier publications from our group reported the role of Srx in promoting cell 

growth and colony formation in NSCLC cell lines [32, 70]. Therefore, we decided 

to test the effect of these chemicals on cell growth in lung cancer cell lines. For 

confirming the specificity of effect, we simultaneously tested NSCLC cell lines, 

SCLC lines, and a lung normal immortalized cell line (i.e. BEAS2B cells). Both 

the chemicals inhibited lung cancer cell growth. The effect was more selective 

towards inhibition of NSCLC cell lines compared to SCLC or non-cancer lung cell 

lines. ZINC64002748 showed more potent inhibition of cell growth compared to 

ISO1. Similarly, on testing in colony formation, both small molecules inhibited the 

anchorage-independent colony formation in A549 cells. 

An ideal inhibitor should have a higher affinity for the target enzyme compared to 

its physiological substrate. We tested Srx-Prx affinity using SPR as reported in 

Chapter 3 of this dissertation. To compare the affinities, we carried out SPR 

analysis for individual chemicals. Both the chemicals showed higher affinity (i.e. 

lower KD) for Srx compared to the Srx affinity for Prx. The affinity of ISO1 was 

higher for Srx compared to that of ZINC64002748. 
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Another report from our group indicates that the Srx-Prx axis promotes 

phosphokinase signaling in lung cancer cells [32]. Therefore, we expected Srx 

inhibitors to reduce phosphokinase signaling in a manner similar to that observed 

in the Srx-knockdown cell lines. The A549 cells were serum starved for 16-18 

hours in the presence of 20 µM chemical inhibitor followed by stimulation of 

phosphokinase signaling with media containing 10% serum and 100 ng/mL EGF. 

The phosphokinase signaling was studied using western blot analysis and 

specific antibody against phosphorylated proteins. On comparison of 

phosphokinase signal (especially p-c-Jun, p-CREB and p-ATF) at individual time-

points, we observed significant reduction in phosphokinase signaling in the ISO1 

treatment group compared to DMSO (vehicle) treated control group. 

ZINC64002748 failed to inhibit phosphokinase signaling in the expected manner. 

The results of all experiments discussed so far led us to conclude that ISO1 may 

be a more specific inhibitor of Srx compared to ZINC64002748. Even though the 

latter showed more potent effect in inhibition of cell growth and colony formation, 

it may be partially mediated through a mechanism other than inhibition of Srx-Prx 

interaction. Considering the effect of ISO1 in all tests, we decided to further study 

its effect on cancer cells. On testing its effect on cell cycle, we found that ISO1 

inhibits the progression of cells to S-phase by blocking the majority of cells in 

G1/G2 phase (mainly G2 phase). On comparing this effect to Srx knockdown, we 

found that this effect is similar to the one observed in Srx-knockdown cells [32]. 

Similar to Srx-knockdown cells, ISO1 also inhibited tumor cell migration in the 

wound healing assay. Taken together, ISO1 is a promising molecule that can 
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inhibit Srx. All the tests performed in this study have confirmed specificity of ISO1 

mechanism. Further QSAR studies can help to identify a Srx inhibitor with better 

efficacy and pharmacokinetic profile. 

4.6 Summary 
The Srx hydrophobic pocket is directly involved in Srx-Prx binding. The 

hydrophobic pocket is a well-defined druggable target site for inhibition of Srx-Prx 

interaction. Virtual screening led to a list of multiple molecules that have potential 

to bind with Srx. Careful selection of filters led to minimization of the number of 

molecules to be tested in vitro. Seven molecules were tested in vitro for their 

ability to inhibit the reduction of over-oxidized Prx by Srx. Two molecules 

(ZINC64002748 and ZINC142037) out of 7 successfully inhibited reduction of 

over-oxidized Prx. Further in vitro testing confirmed that ZINC142037 can inhibit 

Srx specifically. ZINC142037 was named inhibitor of sulfiredoxin oxidoreductase 

1 (ISO1). In the future, more QSAR studies can help identify a molecule related 

to ISO1 that has better efficacy of Srx inhibition and a better pharmacokinetic 

profile. ISO1 and other molecules identified using QSAR can be further explored 

for their efficacy as chemotherapeutic molecules in lung cancer. 
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CHAPTER 5 OVERALL DISCUSSION 

5.1 Summary of dissertation 
Srx is an exclusive molecule that can reduce over-oxidized Prx. The Srx-Prx axis 

plays a critical role in a variety of physiological as well as pathological conditions 

involving redox signaling. Some information is available about the cross-talk of 

the Srx-Prx axis in several signaling pathways, but the factors that affect these 

are largely unknown. Prx has clearly been shown to play a protective role in 

cardiovascular and neurological diseases. However, its role in cancer is still 

controversial due to both tumor-suppressor and oncogenic roles played by Prx-

isoforms in different cancer types. More in-depth mechanistic studies in the future 

will help to unravel interweaved behavior of Prx and will lead to development of 

better therapeutic strategies for cancer prevention or treatment. Srx itself plays 

an oncogenic role in multiple types of cancer, including cancers of the skin, 

colon, and lung. The biochemistry of Srx function has been studied in great 

detail. However, the role of Srx in carcinogenesis needs a deeper understanding, 

which can be fulfilled by future research. Considering the oncogenic roles of Srx, 

it will be worth exploring Srx inhibitors as a molecule of choice for 

chemoprevention and/or chemotherapy.  

The majority of Srx functions are mediated through Srx-Prx interaction. Previous 

publications from our research group have demonstrated the role of Srx-Prx 

interaction in tumor promotion and metastasis. Based on existing information 

available about the Srx-Prx interaction, we designed a general hypothesis that 

Srx plays a critical role in lung carcinogenesis, and targeting the Srx-Prx axis or 
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Srx alone may facilitate future development of targeted therapeutics for 

prevention and treatment of lung cancer.  

To test this hypothesis, we first demonstrated that Srx enhances urethane-

induced lung carcinogenesis (Specific Aim 1). Urethane is a well-known lung 

carcinogen in mice [138]. Urethane is metabolized to vinyl carbamate epoxide, 

which later causes the majority of urethane toxicity [143]. Humans are mainly 

exposed to urethane from alcoholic beverages and cigarette smoke. Alcohol 

increases the expression of CYP2E1 [145], which along with esterase are two 

enzymes that play a main role in metabolism of urethane [146]. CYP2E1 

converts urethane to vinyl carbamate epoxide, whereas esterase converts it to 

ethanol [146]. Considering the stoichiometry of reaction, the presence of alcohol 

has potential to slow down the metabolism of urethane by esterase. Hence, the 

metabolism of urethane to vinyl carbamate epoxide becomes the predominant 

mechanism of metabolism partially due to increased CYP2E1 expression and 

partially due to reduced rate of metabolism by esterase. Many individuals 

consume alcohol and smoke cigarettes at the same time [147]. Hence, the risk of 

urethane toxicity and urethane-induced lung cancer may be higher in these 

individuals. Human lungs have lower expression of urethane metabolizing 

enzymes (i.e. CYP2E1) and esterase [148, 149], which multiplies the risk of 

stoichiometric inhibition of esterase in human lungs. Hence, the risk of urethane 

conversion to carcinogenic metabolite increases under regular exposure 

conditions where lungs are simultaneously exposed to alcohol and cigarette 

smoke. 
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To study the role of Srx in lung carcinogenesis, we used the urethane model to 

mimic lung cancer development in humans. Srx knockout mice were established 

on an FVB background. Srx knockout mice were completely normal under 

standard laboratory conditions. We demonstrated that depletion of Srx rendered 

mice resistant to the urethane-induced lung cancer as Srx null mice showed 

reduced tumor multiplicity as well as tumor diameter compared to wild type mice. 

In mechanistic studies, we found that depletion of Srx led to reduction in cell 

proliferation and increased the rate of intra-tumoral apoptosis. Reduced cell 

proliferation and increased intra-tumoral apoptosis may contribute to tumor-

resistant phenotype of Srx knockout mice. Our findings of the tumor-resistant 

phenotype of Srx knockout mice may reflect a long-term accumulative effect of 

urethane exposure. Our findings suggest that Srx is one of the critical 

components that contribute to mouse lung tumorigenesis in vivo. Targeting Srx 

may thus be used as a novel strategy for lung cancer prevention and/or 

treatment in the future. 

Molecular interaction of individual proteins can regulate a variety of cell signaling 

processes leading to their role in physiological homeostasis as well as 

pathological conditions. We used computation methods of homology modeling 

and protein-protein docking to study the characteristics of Srx-Prx interaction. A 

great amount of biochemical data related to Srx-Prx interaction is already 

available. We utilized both experimental and computational prediction data to 

make a hypothesis that the C-terminal arm of typical 2-Cys Prxs may cause 

steric hindrance for the Srx access to Prx. The experimental proofs of 
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demonstrated that the C-terminal arm of Prx is not essential for Srx-Prx binding 

(Specific Aim 2). Experimental evidence from existing literature suggests the 

similarity in interaction of Srx with all four typical 2-Cys Prxs. However, by virtue 

of being different proteins of same subfamily, they also have minor differences in 

their characteristics. Our computational prediction indicated that those minor 

differences in interaction could be due to different orientation of the C-terminal 

arm in individual Prxs. To confirm our prediction on steric hindrance and role of 

Prx C-terminal arm in Srx-Prx interaction, we carried out deletion mutation and 

tested our hypothesis. 

Due to similarities in typical 2-Cys Prx and accepted conventions in the field, we 

decided to first study the effect of the C-terminal arm of Prx1 on its interaction 

with Srx. Research in this field clearly establishes that differences in biochemistry 

of Srx interaction with individual typical 2-Cys Prxs are small and it can be safely 

assumed to be quite close to interaction characteristics of any other typical 2-Cys 

Prx. The major differences among the four typical 2-Cys Prxs comes from their 

subcellular localization rather than their molecular characteristics [30]. The Prx C-

terminal arm contains 26 amino acids. Out of those, the initial four are critical for 

Prx antioxidant function. However, the last 22 amino acids do not affect Prx 

antioxidant function. Hence, we deleted the last 22 amino acids of the Prx1 C-

terminal and studied the effect on Srx-Prx interaction. 

The effect of deletion mutation was studied on both the steady-state Srx-Prx 

interaction as well as kinetics of the Srx-Prx interaction. IP experiments indicated 

that deletion mutation enhances the steady-state Srx-Prx interaction. However, it 
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was not clear whether the effect on steady state interaction was due to changes 

in rate of association or rate of dissociation or both. The SPR results indicated a 

more than 1,000-fold increase in the association rate constant (ka) after deletion 

of the C-terminal arm. Higher ka is a direct indicator of faster rate of association. 

Hence, C-terminal arm deletion leads to approximately 1000-fold faster rate of 

association than Prx1wildtype. The deletion mutation resulted in a slight change in 

dissociation rate constant (kd). The ratio of kd/ka is equal to the equilibrium 

dissociation rate constant (KD) in SPR. The reciprocal of KD is an indicator of 

affinity of interaction. Hence, lower KD indicates better affinity of the Srx-Prx 

interaction. The deletion mutation reduces the value of KD by more than 1000-

fold. Hence, Prx1 C-terminal arm deletion results in more than 1000- fold 

increase in affinity of the Srx-Prx1 interaction.  

To further confirm the applicability of these results to other typical 2-Cys Prxs, the 

effect of the same deletion mutation was studied in Prx4. Considering differences 

in C-terminal arm orientation (as predicted from homology modeling), we 

expected that the extent of steric hindrance may be different than what we saw in 

Prx1. This prediction was confirmed by SPR analysis of Srx interaction with 

Prx4wildtype and Prx4mutant. The deletion mutation in Prx4 resulted in roughly 100-

fold increase in ka with minimal effect on kd. Again, the equilibrium dissociation 

constant (KD) for the Srx-Prx4mutant interaction was calculated to be approximately 

100 times lower than the KD for the Srx-Prx4wildtype interaction. Hence, the 

deletion of the C-terminal arm of Prx affects the rate of the Srx-Prx association 

and these results can be extrapolated to other typical 2-Cys Prxs. However, the 
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extent of the effect may be different in different typical 2-Cys Prxs. This data 

confirms that the C-terminal arm of Prx is present at the Srx-Prx interface and it 

can cause some steric hindrance for Srx access to Prxs. The crystal structure of 

Prx show slight conformational change in oxidized state. Srx access to Prx 

further promotes a conformation change so that Srx can fit in Prx binding site. 

Taken together, these results give us some insight about molecular 

characteristics of the Srx-Prx interaction. Hence, this information about the Srx-

Prx interaction interface can help in successful designing of targeting strategies 

to inhibit the Srx-Prx interaction. 

Our experimental data along with existing literature helped us to identify the Srx-

Prx interaction interface. This interface could be targeted either by targeting the 

amino acids in Srx chain that are present at interface, or amino acids in Prx chain 

that are present at interface or dual binders that can bind both amino acids in Srx 

interface as well as amino acids in Prx interface. Srx has three different sites that 

can be targeted for inhibition of its enzymatic activity. Those sites include (1) 

hydrophobic pocket; (2) the ATP and Mg2+ cofactor binding site; and (3) Cys99 

and neighboring amino acids [54, 55, 163]. Considering the factors determining 

specificity, we defined a complex 3-dimensional target site that included all 

important amino acid components of hydrophobic pocket (Pro52, Leu82, Phe96, 

Val118, Val127 and Tyr128) along with Cys99. Proximity of these amino acids to each 

other made me believe that it would be a druggable target site. However, 

druggability of a protein intramolecular target site can be affected by multiple 

biochemical and structural factors. Therefore, I decided to confirm it with existing 
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druggable pocket prediction tools, i.e. MetaPocket 2.0 and ConCavity. The 

druggability of the pocket defined in this study was confirmed by both in silico 

prediction methods. Based on existing literature and earlier experiments, we 

defined a pocket in the Prx dimer as a target site. However, the Prx binding 

pocket druggability could not be confirmed using all methods. Considering the 

narrower Prx pocket and inability to confirm its druggability by prediction method, 

the chances of false positive in virtual screening was predicted to be high. Virtual 

screening is not a 100% accurate method and human judgment must be used to 

improve the chances of success. Both false positive as well as false –ve are high 

in virtual screening if human judgment is not used. Due to minimal funding 

available for this study, we decided to confine ourselves to virtual screening 

against the Srx pocket and use Prx interface only for guidance for inhibition of 

interaction. The virtual screening using DOCK Blaster and iGEMDOCK helped us 

in selection of 1,400 hits out of 8,836,468 molecules that were originally 

screened against Srx. To minimize the number of false positives, we utilized 

multiple filters related to pharmacokinetic and pharmacodynamic parameters. 

These filters helped us in minimizing the number to 100 chemicals. However, due 

to economic constraints and lack of funding we could test only 7 chemicals.  

Two of these chemicals (i.e. ZINC64002748 and ISO1) showed acceptable 

inhibition of Prx-SO3 reduction at 20 µM concentrations (Specific Aim 3). Hence, 

ZINC64002748 and ISO1 were selected for further in vitro testing in cell culture. 

We next tested the ability of these chemicals to inhibit Srx-Prx and Srx-PrxSO3 

interaction using pull-down assay. Compared to ZINC64002748, ISO1 showed 
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more significant inhibition of the Prx and Prx-SO3 pull-down along with Srx. As 

mentioned earlier, the hydrophobic pocket of Srx is responsible for Srx-Prx 

binding while Cys99 (an amino acid outside the hydrophobic pocket) is 

responsible for enzymatic activity. Hence, Srx enzymatic activity can still be 

inhibited even if Srx-Prx binding is not affected. Therefore, we decided to further 

test both the molecules to select one with specific activity. 

Earlier publications from our group reported the role of Srx in promoting cell 

growth and colony formation in NSCLC cell lines [32, 70]. Therefore, we decided 

to test the effect of these chemicals on cell growth in lung cancer cell lines. For 

confirming the specificity of effect, we simultaneously tested NSCLC cell lines, 

SCLC lines, and a lung normal immortalized cell line (BEAS2B cells). Both the 

chemicals inhibited lung cancer cell growth. The effect was more selective 

towards inhibition of NSCLC cell lines compared to SCLC or non-cancer lung cell 

lines. ZINC64002748 showed more potent inhibition of cell growth compared to 

ISO1. However, the effect of ISO1 was more selective towards NSCLC cell lines. 

Similarly, on testing in colony formation, both small molecules inhibited 

anchorage-independent colony formation in A549 cells. 

An ideal inhibitor should have higher affinity for the target enzyme compared to 

its physiological substrate. To compare the affinities, we carried out SPR 

analyses for the individual chemicals. Both the chemicals showed higher affinity 

(i.e. lower KD) for Srx compared to the Srx affinity for Prx. The affinity of ISO1 

was higher for Srx compared to that of ZINC64002748. Another report from our 

group indicates that the Srx-Prx axis promotes phosphokinase signaling in lung 
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cancer cells [32]. Therefore, we expected a Srx inhibitor to reduce 

phosphokinase signaling in a manner similar to that observed in Srx-knockdown 

cell lines. On comparison of phosphokinase signal (especially p-c-Jun, p-CREB 

and p-ATF) at individual time-points, we observed significant reduction in 

phosphokinase signaling in the ISO1 treatment group compared to DMSO 

(vehicle)-treated control group. ZINC64002748 failed to inhibit phosphokinase 

signaling in the expected manner.  

The results of all experiments discussed so far led us to a conclusion that ISO1 

may be a more specific inhibitor of Srx compared to ZINC64002748. Further 

testing of ISO1 demonstrated its ability to inhibit cell cycle progression. ISO1 

reduced the ability of cells to progress to S-phase by slowing down G1 and G2 

phases. Similar to Srx-knockdown cells, ISO1 also inhibited tumor cell migration 

in a wound healing assay. Taken together; ISO1 is a promising molecule that can 

inhibit Srx. All the tests performed in this study have confirmed specificity of ISO1 

mechanism. However, further QSAR studies can help to identify a Srx inhibitor 

with better efficacy. In the future, more QSAR studies can help to identify a 

molecule related to ISO1 that has better efficacy of Srx inhibition and better 

pharmacokinetic profile. ISO1 and other molecules identified using QSAR study 

can be further explored for their efficacy as a chemotherapeutic molecule in lung 

cancer. 
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5.2 Conclusions and future directions 
Srx plays a critical role in lung carcinogenesis. Hence, it can be explored as a 

potential target for chemoprevention as well as chemotherapy. The majority of 

Srx actions are mediated through its interaction with Prx, which is a class of thiol-

based antioxidant proteins. Hence, understanding the molecular characteristics 

of Srx-Prx interaction can help in designing better targeting strategies against the 

Srx-Prx axis. Our study first demonstrated the oncogenic role of Srx in urethane-

induced lung carcinogenesis (Specific Aim 1). Next we demonstrated the effect 

of Prx C-terminal arm on Srx-Prx interaction. This study demonstrated that the 

Prx C-terminal arm is present at Srx-Prx interface and it can cause steric 

hindrance for Srx access to Prx (Specific Aim 2). Finally, we used in silico 

methods to screen chemical databases and selected a few potential hits that can 

act as inhibitors of Srx. On testing these molecules in vitro, we identified ISO1 as 

a specific inhibitor of Srx (Specific Aim 3). ISO1 showed in vitro inhibition of lung 

cancer cell growth as well as colony formation. However, its in vivo efficacy 

needs to be tested in the future. 

In the future, our lab can utilize QSAR approaches to identify a molecule that has 

better efficacy of Srx-inhibition with better pharmacokinetic profile. These 

molecules can be tested for their in vivo efficacy in chemoprevention and/or 

chemotherapy. 
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APPENDIX 1 

Abbreviations 
AP-1 activator protein-1 

ATP adenosine triphosphate 

CP peroxidatic cysteine (N-terminal cysteine) 

CR resolving cysteine (C-terminal cysteine) 

CSC cigarette smoke condensate 

Cys cysteine 

DMSO dimethyl sulfoxide 

EGF epidermal growth factor 

EMT epithelial-mesenchymal transition 

GLC general ligand coupling chip with compact capacity 

GLH general ligand coupling chip with high capacity 

Het Heterozygous i.e. Srx (+/-) 

H&E hematoxylin and eosin 

IP immunoprecipitation 

ISO1 inhibitor of sulfiredoxin oxidoreductase 1 

KO Knockout i.e. Srx (-/-) 

Nrf2 Nuclear factor erythroid 2 [NF-E2]-related factor 2 

PBS phosphate buffer saline 

PCR polymerase chain reaction 

Prx peroxiredoxin 

PTEN phosphatase and tensin homolog 

PTP1B protein-tyrosine phosphatase 1B 

QSAR quantitative structure-activity relationship 



 

127 
 

RIPA radioimmunoprecipitation assay buffer 

RNS reactive nitrogen species 

ROS reactive oxygen species 

RT-PCR reverse transcription - polymerase chain reaction 

SCLC small cell lung cancer 

SPR surface plasmon resonance 

Srx sulfiredoxin 

TGF-β1 transforming growth factor-β1 

TPA 12-O-tetradecanoyl-phorbol-13-acetate 

TRAIL tumor necrosis factor–related apoptosis-inducing ligand 

Trx thioredoxin 

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick end 
labeling 

Wt wild type i.e. Srx (+/+) 
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this case). More details of authors rights can be found on following website: 

https://www.elsevier.com/about/company-information/policies/copyright 

 

 

 

  

http://www.ncbi.nlm.nih.gov/pubmed/26170166
http://www.ncbi.nlm.nih.gov/pubmed/26170166
https://www.elsevier.com/about/company-information/policies/copyright


 

129 
 

REFERENCES 
 

[1] K. Palanivel, V. Kanimozhi, B. Kadalmani, M.A. Akbarsha, Verrucarin A 
induces apoptosis through ROS-mediated EGFR/MAPK/Akt signaling pathways 
in MDA-MB-231 breast cancer cells, Journal of cellular biochemistry, (2014). 
[2] Y.I. Oh, J.H. Kim, C.W. Kang, Protective effect of short-term treatment with 
parathyroid hormone 1-34 on oxidative stress is involved in insulin-like growth 
factor-I and nuclear factor erythroid 2-related factor 2 in rat bone marrow derived 
mesenchymal stem cells, Regulatory peptides, 189 (2014) 1-10. 
[3] S. Diano, Role of reactive oxygen species in hypothalamic regulation of 
energy metabolism, Endocrinology and metabolism, 28 (2013) 3-5. 
[4] T. Nakamura, D.H. Cho, S.A. Lipton, Redox regulation of protein misfolding, 
mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative 
diseases, Experimental neurology, 238 (2012) 12-21. 
[5] L. Rochette, M. Zeller, Y. Cottin, C. Vergely, Diabetes, oxidative stress and 
therapeutic strategies, Biochimica et biophysica acta, 1840 (2014) 2709-2729. 
[6] B. Groitl, U. Jakob, Thiol-based redox switches, Biochimica et biophysica 
acta, 1844 (2014) 1335-1343. 
[7] K. Kim, I.H. Kim, K.Y. Lee, S.G. Rhee, E.R. Stadtman, The isolation and 
purification of a specific "protector" protein which inhibits enzyme inactivation by 
a thiol/Fe(III)/O2 mixed-function oxidation system, The Journal of biological 
chemistry, 263 (1988) 4704-4711. 
[8] Y.S. Lim, M.K. Cha, H.K. Kim, T.B. Uhm, J.W. Park, K. Kim, I.H. Kim, 
Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant 
protein as a possible role in vivo, Biochemical and biophysical research 
communications, 192 (1993) 273-280. 
[9] M.K. Cha, H.K. Kim, I.H. Kim, Thioredoxin-linked "thiol peroxidase" from 
periplasmic space of Escherichia coli, The Journal of biological chemistry, 270 
(1995) 28635-28641. 
[10] S. Ichimiya, J.G. Davis, D.M. O'Rourke, M. Katsumata, M.I. Greene, Murine 
thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of 
the brain most susceptible to hypoxic and ischemic injury, DNA and cell biology, 
16 (1997) 311-321. 
[11] R.A. Stacy, E. Munthe, T. Steinum, B. Sharma, R.B. Aalen, A peroxiredoxin 
antioxidant is encoded by a dormancy-related gene, Per1, expressed during late 
development in the aleurone and embryo of barley grains, Plant molecular 
biology, 31 (1996) 1205-1216. 
[12] Y. Zhou, X.Y. Wan, H.L. Wang, Z.Y. Yan, Y.D. Hou, D.Y. Jin, Bacterial 
scavengase p20 is structurally and functionally related to peroxiredoxins, 
Biochemical and biophysical research communications, 233 (1997) 848-852. 
[13] P. Dammeyer, E.S. Arner, Human Protein Atlas of redox systems - what can 
be learnt?, Biochimica et biophysica acta, 1810 (2011) 111-138. 
[14] E.M. Hanschmann, J.R. Godoy, C. Berndt, C. Hudemann, C.H. Lillig, 
Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and 



 

130 
 

health significance: from cofactors to antioxidants to redox signaling, Antioxidants 
& redox signaling, 19 (2013) 1539-1605. 
[15] S.G. Rhee, S.W. Kang, T.S. Chang, W. Jeong, K. Kim, Peroxiredoxin, a 
novel family of peroxidases, IUBMB life, 52 (2001) 35-41. 
[16] E.S. Arner, A. Holmgren, Physiological functions of thioredoxin and 
thioredoxin reductase, European journal of biochemistry / FEBS, 267 (2000) 
6102-6109. 
[17] K.J. Dietz, Plant peroxiredoxins, Annual review of plant biology, 54 (2003) 
93-107. 
[18] A. Zeida, A.M. Reyes, M.C. Lebrero, R. Radi, M. Trujillo, D.A. Estrin, The 
extraordinary catalytic ability of peroxiredoxins: a combined experimental and 
QM/MM study on the fast thiol oxidation step, Chemical communications, 50 
(2014) 10070-10073. 
[19] C.C. Winterbourn, The biological chemistry of hydrogen peroxide, Methods 
in enzymology, 528 (2013) 3-25. 
[20] T. Rabilloud, M. Heller, F. Gasnier, S. Luche, C. Rey, R. Aebersold, M. 
Benahmed, P. Louisot, J. Lunardi, Proteomics analysis of cellular response to 
oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their 
active site, The Journal of biological chemistry, 277 (2002) 19396-19401. 
[21] M.B. Pascual, A. Mata-Cabana, F.J. Florencio, M. Lindahl, F.J. Cejudo, 
Overoxidation of 2-Cys peroxiredoxin in prokaryotes: cyanobacterial 2-Cys 
peroxiredoxins sensitive to oxidative stress, The Journal of biological chemistry, 
285 (2010) 34485-34492. 
[22] H.H. Jang, K.O. Lee, Y.H. Chi, B.G. Jung, S.K. Park, J.H. Park, J.R. Lee, 
S.S. Lee, J.C. Moon, J.W. Yun, Y.O. Choi, W.Y. Kim, J.S. Kang, G.W. Cheong, 
D.J. Yun, S.G. Rhee, M.J. Cho, S.Y. Lee, Two enzymes in one; two yeast 
peroxiredoxins display oxidative stress-dependent switching from a peroxidase to 
a molecular chaperone function, Cell, 117 (2004) 625-635. 
[23] M.H. Chuang, M.S. Wu, W.L. Lo, J.T. Lin, C.H. Wong, S.H. Chiou, The 
antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches 
from a peroxide reductase to a molecular chaperone function, Proceedings of the 
National Academy of Sciences of the United States of America, 103 (2006) 2552-
2557. 
[24] B. Biteau, J. Labarre, M.B. Toledano, ATP-dependent reduction of cysteine-
sulphinic acid by S. cerevisiae sulphiredoxin, Nature, 425 (2003) 980-984. 
[25] C.A. Tairum, Jr., M.A. de Oliveira, B.B. Horta, F.J. Zara, L.E. Netto, Disulfide 
biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the 
reduction of yeast Tsa1 by thioredoxin, Journal of molecular biology, 424 (2012) 
28-41. 
[26] X. Roussel, G. Bechade, A. Kriznik, A. Van Dorsselaer, S. Sanglier-
Cianferani, G. Branlant, S. Rahuel-Clermont, Evidence for the formation of a 
covalent thiosulfinate intermediate with peroxiredoxin in the catalytic mechanism 
of sulfiredoxin, J Biol Chem, 283 (2008) 22371-22382. 
[27] M.K. Basu, E.V. Koonin, Evolution of eukaryotic cysteine sulfinic acid 
reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein 
ParB, Cell cycle, 4 (2005) 947-952. 



 

131 
 

[28] P. Maindola, R. Raina, P. Goyal, K. Atmakuri, A. Ojha, S. Gupta, P.J. 
Christie, L.M. Iyer, L. Aravind, A. Arockiasamy, Multiple enzymatic activities of 
ParB/Srx superfamily mediate sexual conflict among conjugative plasmids, 
Nature communications, 5 (2014) 5322. 
[29] T.S. Chang, W. Jeong, H.A. Woo, S.M. Lee, S. Park, S.G. Rhee, 
Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized 
peroxiredoxin through reduction of cysteine sulfinic acid in the active site to 
cysteine, The Journal of biological chemistry, 279 (2004) 50994-51001. 
[30] Y.H. Noh, J.Y. Baek, W. Jeong, S.G. Rhee, T.S. Chang, Sulfiredoxin 
Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized 
Peroxiredoxin III, The Journal of biological chemistry, 284 (2009) 8470-8477. 
[31] I.S. Kil, K.W. Ryu, S.K. Lee, J.Y. Kim, S.Y. Chu, J.H. Kim, S. Park, S.G. 
Rhee, Circadian Oscillation of Sulfiredoxin in the Mitochondria, Molecular cell, 59 
(2015) 651-663. 
[32] Q. Wei, H. Jiang, Z. Xiao, A. Baker, M.R. Young, T.D. Veenstra, N.H. 
Colburn, Sulfiredoxin-Peroxiredoxin IV axis promotes human lung cancer 
progression through modulation of specific phosphokinase signaling, 
Proceedings of the National Academy of Sciences of the United States of 
America, 108 (2011) 7004-7009. 
[33] T.H. Kim, J. Song, S.R. Alcantara Llaguno, E. Murnan, S. Liyanarachchi, K. 
Palanichamy, J.Y. Yi, M.S. Viapiano, I. Nakano, S.O. Yoon, H. Wu, L.F. Parada, 
C.H. Kwon, Suppression of peroxiredoxin 4 in glioblastoma cells increases 
apoptosis and reduces tumor growth, PloS one, 7 (2012) e42818. 
[34] Q. Wei, H. Jiang, A. Baker, L.K. Dodge, M. Gerard, M.R. Young, M.B. 
Toledano, N.H. Colburn, Loss of sulfiredoxin renders mice resistant to 
azoxymethane/dextran sulfate sodium-induced colon carcinogenesis, 
Carcinogenesis, 34 (2013) 1403-1410. 
[35] R. Ummanni, F. Barreto, S. Venz, C. Scharf, C. Barett, H.A. Mannsperger, 
J.C. Brase, R. Kuner, T. Schlomm, G. Sauter, H. Sultmann, U. Korf, C. 
Bokemeyer, R. Walther, T.H. Brummendorf, S. Balabanov, Peroxiredoxins 3 and 
4 are overexpressed in prostate cancer tissue and affect the proliferation of 
prostate cancer cells in vitro, Journal of proteome research, 11 (2012) 2452-
2466. 
[36] L. Li, W. Shoji, H. Takano, N. Nishimura, Y. Aoki, R. Takahashi, S. Goto, T. 
Kaifu, T. Takai, M. Obinata, Increased susceptibility of MER5 (peroxiredoxin III) 
knockout mice to LPS-induced oxidative stress, Biochemical and biophysical 
research communications, 355 (2007) 715-721. 
[37] Y. Iuchi, F. Okada, S. Tsunoda, N. Kibe, N. Shirasawa, M. Ikawa, M. Okabe, 
Y. Ikeda, J. Fujii, Peroxiredoxin 4 knockout results in elevated spermatogenic cell 
death via oxidative stress, The Biochemical journal, 419 (2009) 149-158. 
[38] C.A. Neumann, D.S. Krause, C.V. Carman, S. Das, D.P. Dubey, J.L. 
Abraham, R.T. Bronson, Y. Fujiwara, S.H. Orkin, R.A. Van Etten, Essential role 
for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour 
suppression, Nature, 424 (2003) 561-565. 
[39] T.H. Lee, S.U. Kim, S.L. Yu, S.H. Kim, D.S. Park, H.B. Moon, S.H. Dho, K.S. 
Kwon, H.J. Kwon, Y.H. Han, S. Jeong, S.W. Kang, H.S. Shin, K.K. Lee, S.G. 



 

132 
 

Rhee, D.Y. Yu, Peroxiredoxin II is essential for sustaining life span of 
erythrocytes in mice, Blood, 101 (2003) 5033-5038. 
[40] X. Hu, Z. Weng, C.T. Chu, L. Zhang, G. Cao, Y. Gao, A. Signore, J. Zhu, T. 
Hastings, J.T. Greenamyre, J. Chen, Peroxiredoxin-2 protects against 6-
hydroxydopamine-induced dopaminergic neurodegeneration via attenuation of 
the apoptosis signal-regulating kinase (ASK1) signaling cascade, The Journal of 
neuroscience : the official journal of the Society for Neuroscience, 31 (2011) 247-
261. 
[41] Y. Yoshida, A. Yoshikawa, T. Kinumi, Y. Ogawa, Y. Saito, K. Ohara, H. 
Yamamoto, Y. Imai, E. Niki, Hydroxyoctadecadienoic acid and oxidatively 
modified peroxiredoxins in the blood of Alzheimer's disease patients and their 
potential as biomarkers, Neurobiology of aging, 30 (2009) 174-185. 
[42] L. Chen, R. Na, M. Gu, A.B. Salmon, Y. Liu, H. Liang, W. Qi, H. Van 
Remmen, A. Richardson, Q. Ran, Reduction of mitochondrial H2O2 by 
overexpressing peroxiredoxin 3 improves glucose tolerance in mice, Aging cell, 7 
(2008) 866-878. 
[43] E. Zeldich, C.D. Chen, T.A. Colvin, E.A. Bove-Fenderson, J. Liang, T.B. 
Tucker Zhou, D.A. Harris, C.R. Abraham, The neuroprotective effect of Klotho is 
mediated via regulation of members of the redox system, The Journal of 
biological chemistry, 289 (2014) 24700-24715. 
[44] V.J. Findlay, H. Tapiero, D.M. Townsend, Sulfiredoxin: a potential 
therapeutic agent?, Biomedicine & pharmacotherapy = Biomedecine & 
pharmacotherapie, 59 (2005) 374-379. 
[45] V.J. Findlay, D.M. Townsend, T.E. Morris, J.P. Fraser, L. He, K.D. Tew, A 
novel role for human sulfiredoxin in the reversal of glutathionylation, Cancer 
research, 66 (2006) 6800-6806. 
[46] A. Perkins, L.B. Poole, P.A. Karplus, Tuning of Peroxiredoxin Catalysis for 
Various Physiological Roles, Biochemistry, (2014). 
[47] H.A. Woo, W. Jeong, T.S. Chang, K.J. Park, S.J. Park, J.S. Yang, S.G. 
Rhee, Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys 
peroxiredoxins, The Journal of biological chemistry, 280 (2005) 3125-3128. 
[48] X. Roussel, A. Kriznik, C. Richard, S. Rahuel-Clermont, G. Branlant, 
Catalytic mechanism of Sulfiredoxin from Saccharomyces cerevisiae passes 
through an oxidized disulfide sulfiredoxin intermediate that is reduced by 
thioredoxin, The Journal of biological chemistry, 284 (2009) 33048-33055. 
[49] S. Boukhenouna, H. Mazon, G. Branlant, C. Jacob, M.B. Toledano, S. 
Rahuel-Clermont, Evidence that glutathione and the glutathione system 
efficiently recycle 1-cys sulfiredoxin in vivo, Antioxidants & redox signaling, 22 
(2015) 731-743. 
[50] J.C. Moon, G.M. Kim, E.K. Kim, H.N. Lee, B. Ha, S.Y. Lee, H.H. Jang, 
Reversal of 2-Cys peroxiredoxin oligomerization by sulfiredoxin, Biochemical and 
biophysical research communications, 432 (2013) 291-295. 
[51] H.Z. Chae, H. Oubrahim, J.W. Park, S.G. Rhee, P.B. Chock, Protein 
glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific 
peroxidases that function as antioxidants, molecular chaperones, and signal 
modulators, Antioxidants & redox signaling, 16 (2012) 506-523. 



 

133 
 

[52] R.R. Bowers, Y. Manevich, D.M. Townsend, K.D. Tew, Sulfiredoxin redox-
sensitive interaction with S100A4 and non-muscle myosin IIA regulates cancer 
cell motility, Biochemistry, 51 (2012) 7740-7754. 
[53] J.W. Park, J.J. Mieyal, S.G. Rhee, P.B. Chock, Deglutathionylation of 2-Cys 
peroxiredoxin is specifically catalyzed by sulfiredoxin, The Journal of biological 
chemistry, 284 (2009) 23364-23374. 
[54] T.J. Jonsson, M.S. Murray, L.C. Johnson, L.B. Poole, W.T. Lowther, 
Structural basis for the retroreduction of inactivated peroxiredoxins by human 
sulfiredoxin, Biochemistry, 44 (2005) 8634-8642. 
[55] T.J. Jonsson, L.C. Johnson, W.T. Lowther, Protein engineering of the 
quaternary sulfiredoxin.peroxiredoxin enzyme.substrate complex reveals the 
molecular basis for cysteine sulfinic acid phosphorylation, The Journal of 
biological chemistry, 284 (2009) 33305-33310. 
[56] W. Lee, K.S. Choi, J. Riddell, C. Ip, D. Ghosh, J.H. Park, Y.M. Park, Human 
peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 
in Prx1 underscores the structural and functional differences between Prx1 and 
Prx2, The Journal of biological chemistry, 282 (2007) 22011-22022. 
[57] T. Matsumura, K. Okamoto, S. Iwahara, H. Hori, Y. Takahashi, T. Nishino, Y. 
Abe, Dimer-oligomer interconversion of wild-type and mutant rat 2-Cys 
peroxiredoxin: disulfide formation at dimer-dimer interfaces is not essential for 
decamerization, The Journal of biological chemistry, 283 (2008) 284-293. 
[58] A. Echalier, X. Trivelli, C. Corbier, N. Rouhier, O. Walker, P. Tsan, J.P. 
Jacquot, A. Aubry, I. Krimm, J.M. Lancelin, Crystal structure and solution NMR 
dynamics of a D (type II) peroxiredoxin glutaredoxin and thioredoxin dependent: 
a new insight into the peroxiredoxin oligomerism, Biochemistry, 44 (2005) 1755-
1767. 
[59] Z.A. Wood, L.B. Poole, P.A. Karplus, Peroxiredoxin evolution and the 
regulation of hydrogen peroxide signaling, Science, 300 (2003) 650-653. 
[60] A. Hall, P.A. Karplus, L.B. Poole, Typical 2-Cys peroxiredoxins--structures, 
mechanisms and functions, The FEBS journal, 276 (2009) 2469-2477. 
[61] J.R. Harris, E. Schroder, M.N. Isupov, D. Scheffler, P. Kristensen, J.A. 
Littlechild, A.A. Vagin, U. Meissner, Comparison of the decameric structure of 
peroxiredoxin-II by transmission electron microscopy and X-ray crystallography, 
Biochimica et biophysica acta, 1547 (2001) 221-234. 
[62] F. Angelucci, F. Saccoccia, M. Ardini, G. Boumis, M. Brunori, L. Di Leandro, 
R. Ippoliti, A.E. Miele, G. Natoli, S. Scotti, A. Bellelli, Switching between the 
alternative structures and functions of a 2-Cys peroxiredoxin, by site-directed 
mutagenesis, Journal of molecular biology, 425 (2013) 4556-4568. 
[63] A.C. Haynes, J. Qian, J.A. Reisz, C.M. Furdui, W.T. Lowther, Molecular 
basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to 
hyperoxidation, The Journal of biological chemistry, 288 (2013) 29714-29723. 
[64] A. Hall, D. Parsonage, L.B. Poole, P.A. Karplus, Structural evidence that 
peroxiredoxin catalytic power is based on transition-state stabilization, Journal of 
molecular biology, 402 (2010) 194-209. 
[65] Ensembl Genome Browser www.ensembl.org/index.html. 

http://www.ensembl.org/index.html


 

134 
 

[66] W.R. Pearson, BLAST and FASTA similarity searching for multiple sequence 
alignment, Methods in molecular biology, 1079 (2014) 75-101. 
[67] Oncomine www.oncomine.org. 
[68] F.X. Soriano, F. Leveille, S. Papadia, L.G. Higgins, J. Varley, P. Baxter, J.D. 
Hayes, G.E. Hardingham, Induction of sulfiredoxin expression and reduction of 
peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-
dithiole-3-thione, Journal of neurochemistry, 107 (2008) 533-543. 
[69] F.X. Soriano, P. Baxter, L.M. Murray, M.B. Sporn, T.H. Gillingwater, G.E. 
Hardingham, Transcriptional regulation of the AP-1 and Nrf2 target gene 
sulfiredoxin, Molecules and cells, 27 (2009) 279-282. 
[70] Q. Wei, H. Jiang, C.P. Matthews, N.H. Colburn, Sulfiredoxin is an AP-1 
target gene that is required for transformation and shows elevated expression in 
human skin malignancies, Proceedings of the National Academy of Sciences of 
the United States of America, 105 (2008) 19738-19743. 
[71] K. Abbas, S. Riquier, J.C. Drapier, Peroxiredoxins and sulfiredoxin at the 
crossroads of the NO and H2O2 signaling pathways, Methods in enzymology, 
527 (2013) 113-128. 
[72] H. Kim, Y. Jung, B.S. Shin, H. Kim, H. Song, S.H. Bae, S.G. Rhee, W. 
Jeong, Redox regulation of lipopolysaccharide-mediated sulfiredoxin induction, 
which depends on both AP-1 and Nrf2, The Journal of biological chemistry, 285 
(2010) 34419-34428. 
[73] M. Molin, J. Yang, S. Hanzen, M.B. Toledano, J. Labarre, T. Nystrom, Life 
span extension and H(2)O(2) resistance elicited by caloric restriction require the 
peroxiredoxin Tsa1 in Saccharomyces cerevisiae, Molecular cell, 43 (2011) 823-
833. 
[74] Y.S. Kim, H.L. Lee, K.B. Lee, J.H. Park, W.Y. Chung, K.S. Lee, S.S. Sheen, 
K.J. Park, S.C. Hwang, Nuclear factor E2-related factor 2 dependent 
overexpression of sulfiredoxin and peroxiredoxin III in human lung cancer, The 
Korean journal of internal medicine, 26 (2011) 304-313. 
[75] H. Merikallio, P. Paakko, V.L. Kinnula, T. Harju, Y. Soini, Nuclear factor 
erythroid-derived 2-like 2 (Nrf2) and DJ1 are prognostic factors in lung cancer, 
Human pathology, 43 (2012) 577-584. 
[76] Y. Soini, M. Eskelinen, P. Juvonen, V. Karja, K.M. Haapasaari, A. Saarela, 
P. Karihtala, Nuclear Nrf2 expression is related to a poor survival in pancreatic 
adenocarcinoma, Pathology, research and practice, 210 (2014) 35-39. 
[77] B. Seliger, S.P. Dressler, C. Massa, C.V. Recktenwald, F. Altenberend, J. 
Bukur, F.M. Marincola, E. Wang, S. Stevanovic, R. Lichtenfels, Identification and 
characterization of human leukocyte antigen class I ligands in renal cell 
carcinoma cells, Proteomics, 11 (2011) 2528-2541. 
[78] L. Wu, H. Jiang, H.A. Chawsheen, M. Mishra, M.R. Young, M. Gerard, M.B. 
Toledano, N.H. Colburn, Q. Wei, Tumor promoter-induced sulfiredoxin is required 
for mouse skin tumorigenesis, Carcinogenesis, 35 (2014) 1177-1184. 
[79] Z.A. Wood, E. Schroder, J. Robin Harris, L.B. Poole, Structure, mechanism 
and regulation of peroxiredoxins, Trends Biochem Sci, 28 (2003) 32-40. 

http://www.oncomine.org/


 

135 
 

[80] Y.J. Kim, J.Y. Ahn, P. Liang, C. Ip, Y. Zhang, Y.M. Park, Human prx1 gene is 
a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to 
tumor biology, Cancer research, 67 (2007) 546-554. 
[81] D.M. McKean, L. Sisbarro, D. Ilic, N. Kaplan-Alburquerque, R. Nemenoff, M. 
Weiser-Evans, M.J. Kern, P.L. Jones, FAK induces expression of Prx1 to 
promote tenascin-C-dependent fibroblast migration, The Journal of cell biology, 
161 (2003) 393-402. 
[82] J. Uwayama, A. Hirayama, T. Yanagawa, E. Warabi, R. Sugimoto, K. Itoh, 
M. Yamamoto, H. Yoshida, A. Koyama, T. Ishii, Tissue Prx I in the protection 
against Fe-NTA and the reduction of nitroxyl radicals, Biochemical and 
biophysical research communications, 339 (2006) 226-231. 
[83] J. Cao, J. Schulte, A. Knight, N.R. Leslie, A. Zagozdzon, R. Bronson, Y. 
Manevich, C. Beeson, C.A. Neumann, Prdx1 inhibits tumorigenesis via regulating 
PTEN/AKT activity, The EMBO journal, 28 (2009) 1505-1517. 
[84] Y.Y. Huo, G. Li, R.F. Duan, Q. Gou, C.L. Fu, Y.C. Hu, B.Q. Song, Z.H. Yang, 
D.C. Wu, P.K. Zhou, PTEN deletion leads to deregulation of antioxidants and 
increased oxidative damage in mouse embryonic fibroblasts, Free radical biology 
& medicine, 44 (2008) 1578-1591. 
[85] Y.H. Park, S.U. Kim, B.K. Lee, H.S. Kim, I.S. Song, H.J. Shin, Y.H. Han, K.T. 
Chang, J.M. Kim, D.S. Lee, Y.H. Kim, C.M. Choi, B.Y. Kim, D.Y. Yu, Prx I 
suppresses K-ras-driven lung tumorigenesis by opposing redox-sensitive 
ERK/cyclin D1 pathway, Antioxidants & redox signaling, 19 (2013) 482-496. 
[86] H. Jiang, L. Wu, M. Mishra, H.A. Chawsheen, Q. Wei, Expression of 
peroxiredoxin 1 and 4 promotes human lung cancer malignancy, American 
journal of cancer research, 4 (2014) 445-460. 
[87] I. Hoshino, H. Matsubara, N. Hanari, M. Mori, T. Nishimori, Y. Yoneyama, Y. 
Akutsu, H. Sakata, K. Matsushita, N. Seki, T. Ochiai, Histone deacetylase 
inhibitor FK228 activates tumor suppressor Prdx1 with apoptosis induction in 
esophageal cancer cells, Clinical cancer research : an official journal of the 
American Association for Cancer Research, 11 (2005) 7945-7952. 
[88] R. Godfrey, D. Arora, R. Bauer, S. Stopp, J.P. Muller, T. Heinrich, S.A. 
Bohmer, M. Dagnell, U. Schnetzke, S. Scholl, A. Ostman, F.D. Bohmer, Cell 
transformation by FLT3 ITD in acute myeloid leukemia involves oxidative 
inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ 
PTPRJ, Blood, 119 (2012) 4499-4511. 
[89] J.R. Riddell, P. Maier, S.N. Sass, M.T. Moser, B.A. Foster, S.O. Gollnick, 
Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 
dependent activation of HIF-1alpha, PloS one, 7 (2012) e50394. 
[90] J.R. Riddell, W. Bshara, M.T. Moser, J.A. Spernyak, B.A. Foster, S.O. 
Gollnick, Peroxiredoxin 1 controls prostate cancer growth through Toll-like 
receptor 4-dependent regulation of tumor vasculature, Cancer research, 71 
(2011) 1637-1646. 
[91] P. Ren, H. Ye, L. Dai, M. Liu, X. Liu, Y. Chai, Q. Shao, Y. Li, N. Lei, B. Peng, 
W. Yao, J. Zhang, Peroxiredoxin 1 is a tumor-associated antigen in esophageal 
squamous cell carcinoma, Oncology reports, 30 (2013) 2297-2303. 



 

136 
 

[92] G.L. Maxwell, B.L. Hood, R. Day, U. Chandran, D. Kirchner, V.S. Kolli, N.W. 
Bateman, J. Allard, C. Miller, M. Sun, M.S. Flint, C. Zahn, J. Oliver, S. Banerjee, 
T. Litzi, A. Parwani, G. Sandburg, S. Rose, M.J. Becich, A. Berchuck, E. Kohn, 
J.I. Risinger, T.P. Conrads, Proteomic analysis of stage I endometrial cancer 
tissue: identification of proteins associated with oxidative processes and 
inflammation, Gynecologic oncology, 121 (2011) 586-594. 
[93] I.S. Song, S.U. Kim, N.S. Oh, J. Kim, D.Y. Yu, S.M. Huang, J.M. Kim, D.S. 
Lee, N.S. Kim, Peroxiredoxin I contributes to TRAIL resistance through 
suppression of redox-sensitive caspase activation in human hepatoma cells, 
Carcinogenesis, 30 (2009) 1106-1114. 
[94] G. Wu, Z. Ji, H. Li, Y. Lei, X. Jin, Y. Yu, M. Sun, Selective TRAIL-induced 
cytotoxicity to lung cancer cells mediated by miRNA response elements, Cell 
biochemistry and function, (2014). 
[95] M.C. Gao, X.D. Jia, Q.F. Wu, Y. Cheng, F.R. Chen, J. Zhang, Silencing Prx1 
and/or Prx5 sensitizes human esophageal cancer cells to ionizing radiation and 
increases apoptosis via intracellular ROS accumulation, Acta pharmacologica 
Sinica, 32 (2011) 528-536. 
[96] Z. Wang, Y. Cheng, N. Wang, D.M. Wang, Y.W. Li, F. Han, J.G. Shen, P. 
Yang de, X.Y. Guan, J.P. Chen, Dioscin induces cancer cell apoptosis through 
elevated oxidative stress mediated by downregulation of peroxiredoxins, Cancer 
biology & therapy, 13 (2012) 138-147. 
[97] B. Ha, E.K. Kim, J.H. Kim, H.N. Lee, K.O. Lee, S.Y. Lee, H.H. Jang, Human 
peroxiredoxin 1 modulates TGF-beta1-induced epithelial-mesenchymal transition 
through its peroxidase activity, Biochemical and biophysical research 
communications, 421 (2012) 33-37. 
[98] K.H. Zhang, H.Y. Tian, X. Gao, W.W. Lei, Y. Hu, D.M. Wang, X.C. Pan, M.L. 
Yu, G.J. Xu, F.K. Zhao, J.G. Song, Ferritin heavy chain-mediated iron 
homeostasis and subsequent increased reactive oxygen species production are 
essential for epithelial-mesenchymal transition, Cancer research, 69 (2009) 
5340-5348. 
[99] M.C. Sobotta, W. Liou, S. Stocker, D. Talwar, M. Oehler, T. Ruppert, A.N. 
Scharf, T.P. Dick, Peroxiredoxin-2 and STAT3 form a redox relay for HO 
signaling, Nature chemical biology, (2014). 
[100] J.S. O'Neill, A.B. Reddy, Circadian clocks in human red blood cells, Nature, 
469 (2011) 498-503. 
[101] C.S. Cho, H.J. Yoon, J.Y. Kim, H.A. Woo, S.G. Rhee, Circadian rhythm of 
hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 
20S proteasome in red blood cells, Proceedings of the National Academy of 
Sciences of the United States of America, 111 (2014) 12043-12048. 
[102] J. Furuta, Y. Nobeyama, Y. Umebayashi, F. Otsuka, K. Kikuchi, T. 
Ushijima, Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG 
islands in putative promoter regions in human malignant melanomas, Cancer 
research, 66 (2006) 6080-6086. 
[103] A.C. Barbosa, N. Funato, S. Chapman, M.D. McKee, J.A. Richardson, E.N. 
Olson, H. Yanagisawa, Hand transcription factors cooperatively regulate 



 

137 
 

development of the distal midline mesenchyme, Developmental biology, 310 
(2007) 154-168. 
[104] Y. Qi, J.F. Chiu, L. Wang, D.L. Kwong, Q.Y. He, Comparative proteomic 
analysis of esophageal squamous cell carcinoma, Proteomics, 5 (2005) 2960-
2971. 
[105] J. Shen, M.D. Person, J. Zhu, J.L. Abbruzzese, D. Li, Protein expression 
profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue 
and tissue affected by pancreatitis as detected by two-dimensional gel 
electrophoresis and mass spectrometry, Cancer research, 64 (2004) 9018-9026. 
[106] L.M. Randall, B. Manta, M. Hugo, M. Gil, C. Batthyany, M. Trujillo, L.B. 
Poole, A. Denicola, Nitration Transforms a Sensitive Peroxiredoxin 2 into a More 
Active and Robust Peroxidase, The Journal of biological chemistry, 289 (2014) 
15536-15543. 
[107] S. Salzano, P. Checconi, E.M. Hanschmann, C.H. Lillig, L.D. Bowler, P. 
Chan, D. Vaudry, M. Mengozzi, L. Coppo, S. Sacre, K.R. Atkuri, B. Sahaf, L.A. 
Herzenberg, L.A. Herzenberg, L. Mullen, P. Ghezzi, Linkage of inflammation and 
oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a 
danger signal, Proceedings of the National Academy of Sciences of the United 
States of America, 111 (2014) 12157-12162. 
[108] D. Ji, M. Li, T. Zhan, Y. Yao, J. Shen, H. Tian, Z. Zhang, J. Gu, Prognostic 
role of serum AZGP1, PEDF and PRDX2 in colorectal cancer patients, 
Carcinogenesis, 34 (2013) 1265-1272. 
[109] K.A. Lee, J.W. Kang, J.H. Shim, C.W. Kho, S.G. Park, H.G. Lee, S.G. Paik, 
J.S. Lim, D.Y. Yoon, Protein profiling and identification of modulators regulated 
by human papillomavirus 16 E7 oncogene in HaCaT keratinocytes by 
proteomics, Gynecologic oncology, 99 (2005) 142-152. 
[110] M.I. Lomnytska, S. Becker, I. Bodin, A. Olsson, K. Hellman, A.C. Hellstrom, 
M. Mints, U. Hellman, G. Auer, S. Andersson, Differential expression of ANXA6, 
HSP27, PRDX2, NCF2, and TPM4 during uterine cervix carcinogenesis: 
diagnostic and prognostic value, British journal of cancer, 104 (2011) 110-119. 
[111] V. Stresing, E. Baltziskueta, N. Rubio, J. Blanco, M.C. Arriba, J. Valls, M. 
Janier, P. Clezardin, R. Sanz-Pamplona, C. Nieva, M. Marro, D. Petrov, A. 
Sierra, Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress 
response of human metastatic breast cancer cells in lungs, Oncogene, 32 (2013) 
724-735. 
[112] D.J. Lee, D.H. Kang, M. Choi, Y.J. Choi, J.Y. Lee, J.H. Park, Y.J. Park, 
K.W. Lee, S.W. Kang, Peroxiredoxin-2 represses melanoma metastasis by 
increasing E-Cadherin/beta-Catenin complexes in adherens junctions, Cancer 
research, 73 (2013) 4744-4757. 
[113] J. Feng, Z. Fu, J. Guo, W. Lu, K. Wen, W. Chen, H. Wang, J. Wei, S. 
Zhang, Overexpression of peroxiredoxin 2 inhibits TGF-beta1-induced epithelial-
mesenchymal transition and cell migration in colorectal cancer, Molecular 
medicine reports, 10 (2014) 867-873. 
[114] Y. Olmos, F.J. Sanchez-Gomez, B. Wild, N. Garcia-Quintans, S. 
Cabezudo, S. Lamas, M. Monsalve, SirT1 regulation of antioxidant genes is 



 

138 
 

dependent on the formation of a FoxO3a/PGC-1alpha complex, Antioxidants & 
redox signaling, 19 (2013) 1507-1521. 
[115] C.A. Wood-Allum, S.C. Barber, J. Kirby, P. Heath, H. Holden, R. Mead, A. 
Higginbottom, S. Allen, T. Beaujeux, S.E. Alexson, P.G. Ince, P.J. Shaw, 
Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron 
injury and amelioration by ebselen, Brain : a journal of neurology, 129 (2006) 
1693-1709. 
[116] D.R. Wonsey, K.I. Zeller, C.V. Dang, The c-Myc target gene PRDX3 is 
required for mitochondrial homeostasis and neoplastic transformation, 
Proceedings of the National Academy of Sciences of the United States of 
America, 99 (2002) 6649-6654. 
[117] K.K. Li, J.C. Pang, K.M. Lau, L. Zhou, Y. Mao, Y. Wang, W.S. Poon, H.K. 
Ng, MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 
(PRDX3), Brain pathology, 23 (2013) 413-425. 
[118] J.X. Hu, Q. Gao, L. Li, Peroxiredoxin 3 is a novel marker for cell 
proliferation in cervical cancer, Biomedical reports, 1 (2013) 228-230. 
[119] M. Safaeian, A. Hildesheim, P. Gonzalez, K. Yu, C. Porras, Q. Li, A.C. 
Rodriguez, M.E. Sherman, M. Schiffman, S. Wacholder, R. Burk, R. Herrero, L. 
Burdette, S.J. Chanock, S.S. Wang, Single nucleotide polymorphisms in the 
PRDX3 and RPS19 and risk of HPV persistence and cervical precancer/cancer, 
PloS one, 7 (2012) e33619. 
[120] H. Roumes, A. Pires-Alves, L. Gonthier-Maurin, E. Dargelos, P. Cottin, 
Investigation of peroxiredoxin IV as a calpain-regulated pathway in cancer, 
Anticancer research, 30 (2010) 5085-5089. 
[121] L. Zhu, K. Yang, X. Wang, X. Wang, C.C. Wang, A novel reaction of 
peroxiredoxin 4 towards substrates in oxidative protein folding, PloS one, 9 
(2014) e105529. 
[122] I. Mehmeti, S. Lortz, M. Elsner, S. Lenzen, Peroxiredoxin 4 improves insulin 
biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E 
cells, The Journal of biological chemistry, 289 (2014) 26904-26913. 
[123] C. Pritchard, B. Mecham, R. Dumpit, I. Coleman, M. Bhattacharjee, Q. 
Chen, R.A. Sikes, P.S. Nelson, Conserved gene expression programs integrate 
mammalian prostate development and tumorigenesis, Cancer research, 69 
(2009) 1739-1747. 
[124] K.P. Chang, J.S. Yu, K.Y. Chien, C.W. Lee, Y. Liang, C.T. Liao, T.C. Yen, 
L.Y. Lee, L.L. Huang, S.C. Liu, Y.S. Chang, L.M. Chi, Identification of PRDX4 
and P4HA2 as metastasis-associated proteins in oral cavity squamous cell 
carcinoma by comparative tissue proteomics of microdissected specimens using 
iTRAQ technology, Journal of proteome research, 10 (2011) 4935-4947. 
[125] N. Yi, M.B. Xiao, W.K. Ni, F. Jiang, C.H. Lu, R.Z. Ni, High expression of 
peroxiredoxin 4 affects the survival time of colorectal cancer patients, but is not 
an independent unfavorable prognostic factor, Molecular and clinical oncology, 2 
(2014) 767-772. 
[126] W.T. Lowther, A.C. Haynes, Reduction of cysteine sulfinic acid in 
eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin, Antioxidants & redox 
signaling, 15 (2011) 99-109. 



 

139 
 

[127] H. Jiang, L. Wu, J. Chen, M. Mishra, H.A. Chawsheen, H. Zhu, Q. Wei, 
Sulfiredoxin Promotes Colorectal Cancer Cell Invasion and Metastasis through a 
Novel Mechanism of Enhancing EGFR Signaling, Mol Cancer Res, (2015). 
[128] L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, 
Global cancer statistics, 2012, CA: a cancer journal for clinicians, 65 (2015) 87-
108. 
[129] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016, CA: a cancer 
journal for clinicians, 66 (2016) 7-30. 
[130] R. Talhout, T. Schulz, E. Florek, J. van Benthem, P. Wester, A. 
Opperhuizen, Hazardous compounds in tobacco smoke, Int J Environ Res Public 
Health, 8 (2011) 613-628. 
[131] T. Gordon, M. Bosland, Strain-dependent differences in susceptibility to 
lung cancer in inbred mice exposed to mainstream cigarette smoke, Cancer 
letters, 275 (2009) 213-220. 
[132] X. Ma, J. Deng, N. Cao, Z. Guo, Y. Zheng, S. Geng, M. Meng, H. Lin, Y. 
Duan, G. Du, Lasting glycolytic stress governs susceptibility to urethane-induced 
lung carcinogenesis in vivo and in vitro, Toxicol Lett, 240 (2016) 130-139. 
[133] D.W. Lachenmeier, Rapid screening for ethyl carbamate in stone-fruit 
spirits using FTIR spectroscopy and chemometrics, Anal Bioanal Chem, 382 
(2005) 1407-1412. 
[134] H. Satoh, T. Moriguchi, J. Takai, M. Ebina, M. Yamamoto, Nrf2 prevents 
initiation but accelerates progression through the Kras signaling pathway during 
lung carcinogenesis, Cancer research, 73 (2013) 4158-4168. 
[135] H.M. Yun, M.H. Park, D.H. Kim, Y.J. Ahn, K.R. Park, T.M. Kim, N.Y. Yun, 
Y.S. Jung, D.Y. Hwang, D.Y. Yoon, S.B. Han, J.T. Hong, Loss of presenilin 2 is 
associated with increased iPLA2 activity and lung tumor development, 
Oncogene, 33 (2014) 5193-5200. 
[136] A.G. Planson, G. Palais, K. Abbas, M. Gerard, L. Couvelard, A. Delaunay, 
S. Baulande, J.C. Drapier, M.B. Toledano, Sulfiredoxin protects mice from 
lipopolysaccharide-induced endotoxic shock, Antioxidants & redox signaling, 14 
(2011) 2071-2080. 
[137] H.M. Yun, K.R. Park, M.H. Park, D.H. Kim, M.R. Jo, J.Y. Kim, E.C. Kim, Y. 
Yoon do, S.B. Han, J.T. Hong, PRDX6 promotes tumor development via the 
JAK2/STAT3 pathway in a urethane-induced lung tumor model, Free radical 
biology & medicine, 80 (2015) 136-144. 
[138] P.M. Westcott, K.D. Halliwill, M.D. To, M. Rashid, A.G. Rust, T.M. Keane, 
R. Delrosario, K.Y. Jen, K.E. Gurley, C.J. Kemp, E. Fredlund, D.A. Quigley, D.J. 
Adams, A. Balmain, The mutational landscapes of genetic and chemical models 
of Kras-driven lung cancer, Nature, 517 (2015) 489-492. 
[139] S. Henery, T. George, B. Hall, D. Basiji, W. Ortyn, P. Morrissey, 
Quantitative image based apoptotic index measurement using multispectral 
imaging flow cytometry: a comparison with standard photometric methods, 
Apoptosis, 13 (2008) 1054-1063. 
[140] J. Wu, X.H. Chen, X.Q. Wang, Y. Yu, J.M. Ren, Y. Xiao, T. Zhou, P. Li, 
C.D. Xu, ERp19 contributes to tumorigenicity in human gastric cancer by 



 

140 
 

promoting cell growth, migration and invasion, Oncotarget, 6 (2015) 11794-
11805. 
[141] R. Ummanni, D. Duscharla, C. Barett, S. Venz, T. Schlomm, H. Heinzer, R. 
Walther, C. Bokemeyer, T.H. Brummendorf, P.V. Murthy, S. Balabanov, Prostate 
cancer-associated autoantibodies in serum against tumor-associated antigens as 
potential new biomarkers, J Proteomics, 119 (2015) 218-229. 
[142] D.A. Henry, H.L. Corcoran, T.D. Lewis, G.R. Barnhart, S. Szentpetery, R.R. 
Lower, Orthotopic cardiac transplantation: evaluation with CT, Radiology, 170 
(1989) 343-350. 
[143] L.G. Hernandez, P.G. Forkert, Inhibition of vinyl carbamate-induced 
mutagenicity and clastogenicity by the garlic constituent diallyl sulfone in F1 (Big 
Blue x A/J) transgenic mice, Carcinogenesis, 28 (2007) 1824-1830. 
[144] P.C. Chan, NTP technical report on toxicity studies of urethane in drinking 
water and urethane in 5% ethanol administered to F344/N rats and B6C3F1 
mice, Toxic Rep Ser, (1996) 1-91, A91-99, B91-99 passim. 
[145] J.M. Schattenberg, M.J. Czaja, Regulation of the effects of CYP2E1-
induced oxidative stress by JNK signaling, Redox Biol, 3 (2014) 7-15. 
[146] U. Hoffler, H.A. El-Masri, B.I. Ghanayem, Cytochrome P450 2E1 (CYP2E1) 
is the principal enzyme responsible for urethane metabolism: comparative 
studies using CYP2E1-null and wild-type mice, J Pharmacol Exp Ther, 305 
(2003) 557-564. 
[147] M.J. Krauss, P.A. Cavazos-Rehg, A.D. Plunk, L.J. Bierut, R.A. Grucza, 
Effects of state cigarette excise taxes and smoke-free air policies on state per 
capita alcohol consumption in the United States, 1980 to 2009, Alcohol Clin Exp 
Res, 38 (2014) 2630-2638. 
[148] G.I. Somers, N. Lindsay, B.M. Lowdon, A.E. Jones, C. Freathy, S. Ho, A.J. 
Woodrooffe, M.K. Bayliss, G.R. Manchee, A comparison of the expression and 
metabolizing activities of phase I and II enzymes in freshly isolated human lung 
parenchymal cells and cryopreserved human hepatocytes, Drug Metab Dispos, 
35 (2007) 1797-1805. 
[149] P.L. Sheets, G.S. Yost, G.P. Carlson, Benzene metabolism in human lung 
cell lines BEAS-2B and A549 and cells overexpressing CYP2F1, J Biochem Mol 
Toxicol, 18 (2004) 92-99. 
[150] C.S. Ring, F.E. Cohen, Modeling protein structures: construction and their 
applications, FASEB journal : official publication of the Federation of American 
Societies for Experimental Biology, 7 (1993) 783-790. 
[151] K. Trujillo, S. Paoletta, E. Kiselev, K.A. Jacobson, Molecular modeling of 
the human P2Y14 receptor: A template for structure-based design of selective 
agonist ligands, Bioorg Med Chem, 23 (2015) 4056-4064. 
[152] P. Kirubakaran, M. Karthikeyan, D. Singh Kh, S. Nagamani, K. Premkumar, 
In silico structural and functional analysis of the human TOPK protein by 
structure modeling and molecular dynamics studies, J Mol Model, 19 (2013) 407-
419. 
[153] H. Park, H. Lee, C. Seok, High-resolution protein-protein docking by global 
optimization: recent advances and future challenges, Curr Opin Struct Biol, 35 
(2015) 24-31. 



 

141 
 

[154] A. Roy, A. Kucukural, Y. Zhang, I-TASSER: a unified platform for 
automated protein structure and function prediction, Nature protocols, 5 (2010) 
725-738. 
[155] Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC 
bioinformatics, 9 (2008) 40. 
[156] L.A. Kelley, M.J. Sternberg, Protein structure prediction on the Web: a case 
study using the Phyre server, Nature protocols, 4 (2009) 363-371. 
[157] K. Arnold, L. Bordoli, J. Kopp, T. Schwede, The SWISS-MODEL 
workspace: a web-based environment for protein structure homology modelling, 
Bioinformatics, 22 (2006) 195-201. 
[158] B. Pierce, W. Tong, Z. Weng, M-ZDOCK: a grid-based approach for Cn 
symmetric multimer docking, Bioinformatics, 21 (2005) 1472-1478. 
[159] B.G. Pierce, Y. Hourai, Z. Weng, Accelerating protein docking in ZDOCK 
using an advanced 3D convolution library, PloS one, 6 (2011) e24657. 
[160] F.I. Khan, D.Q. Wei, K.R. Gu, M.I. Hassan, S. Tabrez, Current updates on 
computer aided protein modeling and designing, Int J Biol Macromol, 85 (2015) 
48-62. 
[161] L.C. Xue, D. Dobbs, A.M. Bonvin, V. Honavar, Computational prediction of 
protein interfaces: A review of data driven methods, FEBS letters, 589 (2015) 
3516-3526. 
[162] W. Huber, F. Mueller, Biomolecular interaction analysis in drug discovery 
using surface plasmon resonance technology, Curr Pharm Des, 12 (2006) 3999-
4021. 
[163] T.J. Jonsson, L.C. Johnson, W.T. Lowther, Structure of the sulphiredoxin-
peroxiredoxin complex reveals an essential repair embrace, Nature, 451 (2008) 
98-101. 
[164] Y.M. Go, D.P. Jones, The redox proteome, The Journal of biological 
chemistry, 288 (2013) 26512-26520. 
[165] J.A. Wells, C.L. McClendon, Reaching for high-hanging fruit in drug 
discovery at protein-protein interfaces, Nature, 450 (2007) 1001-1009. 
[166] J. Chen, X. Ma, Y. Yuan, J. Pei, L. Lai, Protein-protein interface analysis 
and hot spots identification for chemical ligand design, Curr Pharm Des, 20 
(2014) 1192-1200. 
[167] N.M. Cerqueira, D. Gesto, E.F. Oliveira, D. Santos-Martins, N.F. Bras, S.F. 
Sousa, P.A. Fernandes, M.J. Ramos, Receptor-based virtual screening protocol 
for drug discovery, Arch Biochem Biophys, 582 (2015) 56-67. 
[168] J.A. Capra, R.A. Laskowski, J.M. Thornton, M. Singh, T.A. Funkhouser, 
Predicting protein ligand binding sites by combining evolutionary sequence 
conservation and 3D structure, PLoS Comput Biol, 5 (2009) e1000585. 
[169] Z. Zhang, Y. Li, B. Lin, M. Schroeder, B. Huang, Identification of cavities on 
protein surface using multiple computational approaches for drug binding site 
prediction, Bioinformatics, 27 (2011) 2083-2088. 
[170] J.J. Irwin, B.K. Shoichet, ZINC--a free database of commercially available 
compounds for virtual screening, Journal of chemical information and modeling, 
45 (2005) 177-182. 



 

142 
 

[171] J.J. Irwin, B.K. Shoichet, M.M. Mysinger, N. Huang, F. Colizzi, P. Wassam, 
Y. Cao, Automated docking screens: a feasibility study, Journal of medicinal 
chemistry, 52 (2009) 5712-5720. 
[172] K.C. Hsu, Y.F. Chen, S.R. Lin, J.M. Yang, iGEMDOCK: a graphical 
environment of enhancing GEMDOCK using pharmacological interactions and 
post-screening analysis, BMC bioinformatics, 12 Suppl 1 (2011) S33. 
[173] P. Piechota, M.T. Cronin, M. Hewitt, J.C. Madden, Pragmatic approaches 
to using computational methods to predict xenobiotic metabolism, Journal of 
chemical information and modeling, 53 (2013) 1282-1293. 

 
  



 

143 
 

VITA 
Murli Mishra 

Education 

2008-2010  M.S. (Pharm.) Regulatory Toxicology 

   National Institute of Pharmaceutical Education and Research 

(NIPER), S.A.S. Nagar, Punjab, India 

 

2004-2008  Bachelor of Pharmacy 

   Poona College of Pharmacy, Bharati Vidyapeeth University, 

   Pune, Maharashtra, India 

 

Awards and Fellowships 

• Society of Toxicology 2014 YouTox Video Challenge 3rd Prize Winner 

(Shared with Shohana Tawrin) 

• Society of Toxicology 2012 ASIO-SIG Dr. Harihara Mehendale Graduate 

Student Best Abstract Award  

• Availed GATE fellowship as an MS student for 2 years (2008-2010) on 

qualifying GATE 2007 as well as 2008 

 

Publications 

• Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q*. The Sulfiredoxin-

Peroxiredoxin (Srx-Prx) Axis in Cell Signal Transduction and Cancer 

Development. Cancer Lett, 2015; 366 (2):150-59 

• Jiang H, Wu L, Chen J, Mishra M, Chawsheen HA, Zhu H, Wei Q*. 

Sulfiredoxin Promotes Colorectal Cancer Cell Invasion and Metastasis 



 

144 
 

through a Novel Mechanism of Enhancing EGFR Signaling. Mol Cancer Res, 

2015; 13(12): 1554-66 

• Kwatra M*, Kumar V, Ghosh P, Jangra A, Mishra M, Vohora D, Khanam R*. 

Ameliorative Effect of Naringin against Doxorubicin-Induced Acute Cardiac 

Toxicity in Rats. Pharm Biol, 2016; 54(4):637-47 

• Jangra A*, Kasbe P, Pandey SN, Dwivedi S, Gurjar SS, Kwatra M, Mishra M, 

Venu AK, Sulakhiya K, Gogoi R, Sarma N, Bezbaruah BK, Lahkar M. 

Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: 

Modulation of Antioxidants and Inflammatory Cytokines Level in Mice 

Hippocampus. Biol Trace Elem Res, 2015;168(2): 462-71 

• Jiang H, Wu L, Mishra M, Chawsheen HA, Wei Q*. Expression of 

Peroxiredoxin 1 and 4 Promotes Human Lung Cancer Malignancy. Am J 

Cancer Res, 2014; 4(5): 445-60 

• Wu L, Jiang H, Chawsheen HA, Mishra M, Young MR, Gerard M, Toledano 

MB, Colburn NH, Wei Q*. Tumor Promoter-Induced Sulfiredoxin Is Required 

for Mouse Skin Tumorigenesis. Carcinogenesis, 2014; 35 (5): 1177-84 

• Hensley P, Mishra M, and Kyprianou N*. Targeting Caspases in Cancer 

Therapeutics. Biol Chem, 2013; 394 (7): 831-43 

• Mishra M, Chawsheen HA, Wu L, Jiang H, Wei Q*. PRDX4 (Peroxiredoxin 4). 

Atlas Genet Cytogenet Oncol Haematol, April 2013 URL: 

http://atlasonline.critt-informatique.fr/Genes/PRDX4ID50280chXp22.html  

 

http://www.ncbi.nlm.nih.gov/pubmed/23509217
http://atlasonline.critt-informatique.fr/Genes/PRDX4ID50280chXp22.html


 

145 
 

Abstracts and Presentations 

• Mishra M, Chawsheen H, Wu L, Jiang H, Wei Q. The Biology of Srx-Prx1 

Interaction: Structure to Molecular Insights. Abstract presented at Society of 

Toxicology Annual Meeting 2014 held in Phoenix, Arizona 

• Mishra M, Poduri R, Jena G, Mohan CG, Parikh N, Chakraborti AK. In Silico 

Methods of Genotoxicity Prediction: Can It Be Used Reliably for Prediction of 

In Vitro / In Vivo Genotoxicity? Abstract presented at Society of Toxicology 

Annual Meeting 2012 held in San Francisco, California 

• Freeman SJ, Rowland JL, Mishra M, Goebel C, Schellauf F, Scheel J. Meta-

Analysis of the Application of Weight of Evidence (WoE) and Read-Across for 

the Assessment of Repeat Dose Systemic Toxicity Abstract presented at the 

8th World Congress on Alternatives and Animal Use in the Life Sciences 

2011 held in Montreal, Canada 

 

Work Experience 

• Regulatory Toxicologist (July 2010-Aug 2011), GlaxoSmithKline Consumer 

Healthcare Research and Development  


	EXPLORATION OF THE SRX-PRX AXIS AS A SMALL-MOLECULE TARGET
	Recommended Citation

	TITLE PAGE
	ABSTRACT
	APPROVAL
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.1.1 Peroxiredoxin
	1.1.2 Sulfiredoxin
	1.1.3 Enzymatic roles of Srx
	1.1.4 Molecular characteristics of the Srx-Prx interaction
	1.1.5 The role of the Srx-Prx axis in cell-signaling and carcinogenesis
	1.1.5.1 Srx in cell-signal transduction and tumorigenesis
	1.1.5.2 Prx1 in cell-signal transduction and tumorigenesis
	1.1.5.3 Prx2 in cell-signal transduction and tumorigenesis
	1.1.5.4 Prx3 in cell-signal transduction and tumorigenesis
	1.1.5.5 Prx4 in cell-signal transduction and tumorigenesis

	1.1.6 Summary and future directions

	1.2 Scope of dissertation
	1.2.1 Hypothesis
	1.2.2 Specific aims


	CHAPTER 2: EFFECT OF SULFIREDOXIN DEPRIVATION ON THE URETHANE-INDUCED LUNG TUMORIGENESIS
	2.1 Synopsis
	2.2 Introduction
	2.3 Materials & methods
	2.3.1 Cell culture and western blot
	2.3.2 Quantitative reverse transcription and polymerase chain reaction
	2.3.3 Lentiviral ShRNA knockdown of Srx in BEAS2B cells
	2.3.4 Soft agar colony formation assay
	2.3.5 Srx knockout mice genotyping
	2.3.6 Urethane protocol
	2.3.7 Immunohistochemistry staining and in situ apoptosis assay
	2.3.8 Statistical analysis

	2.4 Results
	2.4.1 CSC enhances the expression of antioxidant proteins
	2.4.2 Urethane enhances expression of antioxidant protein
	2.4.3 Urethane treatment transforms BEAS2B cells in an Srx-dependent manner
	2.4.4 Srx knockout mice are resistant to urethane-induced lung cancer
	2.4.5 Urethane induces the expression of antioxidant proteins in mouse lung
	2.4.6 Depletion of Srx reduced cell proliferation and increased apoptosis in the urethane treated groups

	2.5 Discussion
	2.6 Summary

	CHAPTER 3: THE BIOLOGY OF SULFIREDOXIN (SRX)-PEROXIREDOXIN1 (PRX1) INTERACTION: STRUCTURE TO MOLECULAR INSIGHTS
	3.1 Synopsis
	3.2 Introduction
	3.3 Materials and methods
	3.3.1 Homology modeling and protein-protein docking studies
	3.3.2 Western blot and immunoprecipitation (IP) assay in HEK293T cells
	3.3.3 Purification of recombinant proteins
	3.3.4 In vitro IP using purified recombinant proteins
	3.3.5 Study of the Srx-Prx interaction kinetics using surface plasmon resonance (SPR)
	3.3.6 Statistical analysis

	3.4 Results
	3.4.1 Complete 3D-structure of full length proteins were predicted using homology modeling
	3.4.2 Protein-protein docking output identified a possibility of steric hindrance for the Srx-Prx interaction
	3.4.3 IP assay confirms the differences in interaction of Srx with individual Prx
	3.4.4 Srx binds more efficiently to Prx1mutant than Prx1wildtype
	3.4.5 Deletion of Prx C-terminal arm leads to faster Srx-Prx association with minimal effect on dissociation

	3.5 Discussion
	3.6 Summary

	CHAPTER 4: TARGETING SRX-PRX INTERACTION USING SMALL-MOLECULE INHIBITORS
	4.1 Synopsis
	4.2 Introduction
	4.3 Materials and methods
	4.3.1 Cell lines, plasmids, antibodies and chemicals
	4.3.2 Virtual screening to identify the Srx-Prx interaction inhibitor
	4.3.3 Small molecule assay for Srx inhibitory activity
	4.3.4 Western blotting, IP, and phosphokinase profiling
	4.3.5 Colony formation, cell proliferation assay and cell cycle analysis
	4.3.6 Surface plasmon resonance study of Srx-Prx interaction kinetics
	4.3.7 Wound healing assay
	4.3.8 Statistical analysis

	4.4 Results
	4.4.1 Srx contains a good druggable pocket suitable for virtual screening
	4.4.2 In silico studies led to selection of four chemicals for in vitro testing
	4.4.3 Two molecules showed inhibition of Srx activity
	4.4.4 Two molecules inhibit cell growth and colony formation in lung and colon cancer cells
	4.4.5 Surface plasmon resonance studies indicate higher affinity of Srx for ZINC64002748 and ISO1 compared to Prx1
	4.4.6 ISO1 inhibits Srx-mediated phosphokinase signaling
	4.4.7 ISO1 arrests cell growth in G2 phase
	4.4.8 ISO1 inhibits cell-migration in wound healing assay

	4.5 Discussion
	4.6 Summary

	CHAPTER 5 OVERALL DISCUSSION
	5.1 Summary of dissertation
	5.2 Conclusions and future directions

	APPENDIX 1
	Abbreviations

	APPENDIX 2
	Copyrights

	REFERENCES
	VITA

