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INCORPORATING MACHINE VISION IN PRECISION DAIRY FARMING 

TECHNOLOGIES 

 

 The inclusion of precision dairy farming technologies in dairy operations is an 

area of increasing research and industry direction. Machine vision based systems are 

suitable for the dairy environment as they do not inhibit workflow, are capable of 

continuous operation, and can be fully automated. The research of this dissertation 

developed and tested 3 machine vision based precision dairy farming technologies 

tailored to the latest generation of RGB+D cameras. The first system focused on testing 

various imaging approaches for the potential use of machine vision for automated dairy 

cow feed intake monitoring. The second system focused on monitoring the gradual 

change in body condition score (BCS) for 116 cows over a nearly 7 month period. 

Several proposed automated BCS systems have been previously developed by 

researchers, but none have monitored the gradual change in BCS for a duration of this 

magnitude. These gradual changes infer a great deal of beneficial and immediate 

information on the health condition of every individual cow being monitored. The third 

system focused on automated dairy cow feature detection using Haar cascade classifiers 

to detect anatomical features. These features included the tailhead, hips, and rear regions 

of the cow body. The features chosen were done so in order to aid machine vision 

applications in determining if and where a cow is present in an image or video frame. 

Once the cow has been detected, it must then be automatically identified in order to keep 

the system fully automated, which was also studied in a machine vision based approach 

in this research as a complimentary aspect to incorporate along with cow detection. Such 

systems have the potential to catch poor health conditions developing early on, aid in 

balancing the diet of the individual cow, and help farm management to better facilitate 

resources, monetary and otherwise, in an appropriate and efficient manner. Several 

different applications of this research are also discussed along with future directions for 

research, including the potential for additional automated precision dairy farming 

technologies, integrating many of these technologies into a unified system, and the use of 

alternative, potentially more robust machine vision cameras. 
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CHAPTER I: INTRODUCTION 

Many attempts at making whole or partial farming operations fully automated 

have been conducted in recent years to promote production quantity, efficiency, and 

quality, in both plant and animal resources.  In the arena of livestock, dairy and beef 

cattle have been significantly examined relative to other livestock.  Part of this pursuit 

includes technologies that can make it possible to monitor specific biometrical data of 

individual dairy cow.  The research of this dissertation was conducted solely utilizing 

machine vision based approaches in order to address specific biometric monitoring needs 

of precision dairy farming. 

1.1 Dairy Industry Overview 

The structure of dairy farming in the United States is ever changing.  For the most 

part, the number of dairy cattle in the United States has been fairly constant over the past 

century while the amount of milk production expected of the individual cow continues to 

increase.  According to the USDA, the number of milk cow operations continues to 

decline in the United States. There were 65,000 milk cow operations in 2009 compared to 

97,460 in 2001, a decline of 33 percent. Despite the large decrease in milk cow 

operations during this time period, both milk production and milk cow numbers have 

been on the rise. Milk production increased 15 percent, from 165,332 million pounds in 

2001 to 189,320 million pounds in 2009. Milk cow inventory showed a smaller increase 

of 1 percent, from 9.10 million head in 2001 to 9.20 million head in 2009 [1].  From the 

USDA, we can see that in 2015 there were approximately 9.315 million head of dairy 

cattle producing 208.5 billion pounds of milk, or averaging 22,383 pounds of milk per 

cow. [2]  Most notable to this research is the fact that while the number of dairy cattle 
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remains near constant and the number of dairy operations decreases, the average dairy 

operation size has continued to increase as well as the annual milk production per cow.  

This means that more milk production is being expected and realized from a near 

constant dairy cattle population. This also means that the number of smaller operations is 

continuing to decrease as larger operations increase. 

Large commercial farms have several advantages over small farms, including 

access to skilled labor, market knowledge, technical knowledge, finance and capital, risk 

management, access to markets, and product traceability and quality assurance.[3]  

According to Winsten[4] the major concerns that smaller scale producers have include 

the profit level and financial progress of their dairy as well as their anxiety and stress 

levels associated with operating the dairy.  In their study, mean milk production per cow 

on large, modern confinement farms was 21% greater than on traditional dairy farms and 

45% greater than on management-intensive grazing farms.  The large, modern 

confinement farms were more likely to be using production technologies and services.[4]  

According to Tauer[5] many believe that small dairy farms cannot survive because costs 

of production per cwt (or per 100 pounds) of milk are thought to be higher than the cost 

of production per cwt of milk on larger farms.  In their study of New York dairy farms, it 

was determined that efficient small dairy farms can be competitive with larger dairy 

farms in producing milk at comparable costs per unit.  The frontier cost of production for 

a 50-cow farm was $13.61 per cwt, which was only slightly over 4% more than costs for 

a 500-cow farm which saw frontier cost of production at $13.03 per cwt. In a study by 

Hadley et al.[6] which observed the managerial and financial implications of dairy farm 

expansions in Michigan and Wisconsin, it was noted that as herd size increased, labor 
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efficiency improved because of labor saving technology adoption, specialization, and 

economies of size.  Most expansion experienced a significant improvement in labor and 

management expense per cwt.  Those who did not improve labor expense either failed to 

adopt technology to improve labor efficiency or faced an extremely competitive labor 

environment.[6]  Research by Bewley et al.[7] observing an overview of experiences of 

Wisconsin dairy farmers who modernized their operations indicates that producers who 

modernized their operations had positive feelings about their expansion experiences, 

accompanied by increased production and improved profitability and quality of life.  As 

herd size increased, milk production, labor efficiency, and satisfaction with herd 

performance, profitability, and quality of life increased.[7] 

Facilities improvements have been able to aid in increasing dairy efficiency, but 

the major factor in dairy production is still the individual animal.  Although genetics is a 

major reason for increased milk production of individual cow, proper individual cow 

management is also critical to enable the modern high-producing cow to meet her 

production potential.[8] Individual cow monitoring is hard enough for small operations 

where labor intensive visual inspections are done, but being able to monitor operations on 

a cow by cow basis is practically impossible with larger operations which tend to range in 

size from 500 to 2,000 cows and increasing.[1]  In the past, dairy producers have relied 

upon experience and personal judgment to address individual animal needs.  These skill 

sets are valuable to the industry as the management decisions ultimately rely upon the 

end judgments of these seasoned experts, but such skills are limited in their ability to 

accurately diagnose, treat, or even notice issues as they arise.  Often, by the time the 

producer is able to accurately identify that there is a health or production issue with an 
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individual animal, it is too late to effectively remedy the situation as most of these cues 

are based upon what the producer sees.  Many times, the issue begins as an internal 

physiological process, which cannot be seen readily by the human eye.  The use of 

technology in the dairy industry can aid in detecting and intervening sooner in such cases.   

1.2 Precision Dairy Farming Overview 

 The use of individual animal biometric monitoring technologies in dairy 

operations falls into a category known as precision dairy farming.  Precision dairy 

farming is the use of technologies to measure physiological, behavioral, and production 

indicators on individual animals to improve management strategies and farm 

performance.[10]  Current examples of precision dairy farming include processes such as 

daily milk yield monitoring and daily body weight monitoring.  Other processes such as 

monitoring feeding behavior or feed intake, respiration and heart rates, and automated 

BCS scoring are fairly new applications to the industry.  The main objectives of precision 

dairy farming are maximizing individual animal potential, detecting disease earlier, and 

minimizing the use of medication through preventive health measures.[10]   

As previously stated, the number of dairy cattle remains near constant while the 

demand for milk derived products continues to increase.  This has caused producers to 

selectively breed out those cattle that do not viably produce enough milk while 

continuing to breed higher yield cattle.  This is the only way to meet the demands of 

production and to make the most profit possible on what resources are 

available.[11,12,13,14,15]  Precision dairy farming practices realize this need and are so 

formatted to continue to aid in increasing the per cow yield while minimizing the added 

stress to the animal.  Monitoring the cow during pregnancy enables the producer to be 
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able to act if a problem arises due to pregnancy complications.  Using precision dairy 

farming aids in producing the healthiest calf possible so that it is able to grow faster and 

stronger than previous generations.  Making the most out of offspring is the best way to 

ensure the continuing progresses in the dairy industry, especially as milk product 

demands continue to increase globally.  The better head start the next generation of dairy 

cattle can achieve, the better off the industry as a whole will be. 

The loss of individual heads of cattle due to stress or disease is of serious concern 

to the producer as each individual is worth a few thousand dollars alone, not considering 

the loss of milk yield per day that the cow is sick or deceased.[16,17,18,19,20]  Being 

able to detect the onset of a sickness is essential to maintaining not just the health of the 

individual but of the entire herd as well.  In the worst case scenario, an entire herd can be 

lost due to illness if not contained or remedied in time.  With the aid of precision dairy 

farming, the ability to detect the early onset of any symptoms in the individual or the herd 

can aid in preventing sickness, death, or loss in daily yield.  For smaller producers the 

threat is even more so than for larger producers as the percentage of income is higher on 

a per head basis.  Precision dairy farming practices realize this and are aimed at not just 

helping large scale commercial operations but family owned, smaller operations, too.   

If any precision dairy farming technology used is to be truly viable, it must be 

cost effective for any size operation.[21,22]  The ability to have a veterinarian on hand 

can become costly and time consuming for any size operation, but more so for the smaller 

operator.  So, the necessity of automated systems that can aid in detecting some of the 

symptoms of an onset of a problem without the immediate need of a veterinarian is met 

by many of the proposed applications of precision dairy farming.[23,24,25,26] 
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The easiest way to lose money besides having a sick cow is having one that 

cannot be milked because of medication concerns.[18,27,28]  Sometimes, the cow may 

not be allowed to be milked due to the medication in its system.  Other times, the cow 

may even be over-dosing or under-dosing on medications which can impede its return to 

a healthy state.  Precision dairy farming addresses these issues by again monitoring for 

the onset of sickness, but also monitoring during the recovery period.[29,30]  A 

veterinarian cannot practically watch over every cow individually whereas an automated 

system can.  The day by day health can be monitored to determine if the medication or 

health recovery process being used is working, if the dosage or other therapy needs to be 

increased or decreased, and finally can give an accurate reading to the producer as to 

when the cow is healthy enough to resume full production capabilities. 

The use of precision dairy farming technologies is not limited to ill cows.  In fact, 

the majority of available technologies on the market are aimed at primarily monitoring 

healthy cow.  The purpose of these technologies is to provide data to the producer, 

veterinarians, researchers, and other interested parties which can guide the dairy 

operation in better understanding individual dairy cow behavior which in turn leads to 

maximized individual animal production.[31,32,33,34]  Examples of easily adjusted cow 

comfort include lying comfort, ambient temperature control, and water and feed access.  

Comfortable cows are able to devote more of their resources towards milk production 

instead of working just to maintain their health.  Precision dairy farming allows for the 

detection of the early onset of stressors or previously unnoticed stressors which affect 

cow performance.  Often, only simple adjustments need be made to alleviate or remove 
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these stressors, such as providing better access to comfortable bedding, cooling fans, or 

water and feed. 

1.3 Machine Vision Based Precision Dairy Farming 

 The majority of precision dairy farming technologies provide tactile equipment 

which must be attached to the cow in some manner in order to monitor their specified 

metric.  The major pitfall to these technologies is that such tactile placement of 

equipment can lead to broken or lost components.  If these components cannot monitor 

their respective metric because they have lost contact with the cow, then they have lost 

their benefit of use.  In the research of this dissertation, we propose various machine 

vision based precision dairy farming systems which remove this mandatory tactile data 

acquisition method.  Machine vision is the use of imaging-based approaches for 

automatic inspection and analysis applications.[35,36,37]  The benefits of using machine 

vision include the fact that such systems do not inhibit normal workflow, can be fully 

automated, and the camera’s contact with potentially damaging effects can be minimized 

by placing the system at a distance from the scene or object of interest and within a 

ruggedized enclosure. 

 There are many methods of machine vision which require image processing of the 

image data acquired by the system.  These image processing methods include 

registration, filtering, thresholding, segmentation, edge detection, pattern recognition, 

object detection, and object recognition.  For each of these image processing methods, 

there are also numerous, specialized sub-methods that can be utilized.  The systems of 

this dissertation research each aim to address a specific precision dairy farming need.  In 

doing so, each system combines different image processing methods in order to obtain 
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the desired output solely based upon the input imaging data.  The specific image 

processing methods utilized are outlined in their respective chapters addressing each 

machine vision system developed. 

Automated systems, such as those developed in this research, are an ideal solution 

to the problem of individual animal biometrics monitoring.  Such systems can handle any 

size herd and have the capability to monitor metrics on a daily, per milking, or other time 

scale basis as needed.  With increased metrics monitoring of individual dairy cow, the 

health of each cow can be monitored to adjust for matters such as feed intake, monitor for 

health concerns and pregnancy, and better manage quality facility production.  These 

technologies are not meant to replace the human component but to merely aid in decision 

making and provide a supplementary tool in resolving issues as they arise as well as a 

consultation tool to make better, more informed choices. 

1.4 Range Imaging Cameras 

 There exist several options when it comes to deciding upon a camera to use for a 

machine vision application and each has its own unique set of qualifications that make it 

best suited for the job.  In our research, the main consideration must be the environment 

in which the camera must work first and foremost.  Because this system can potentially 

be exposed to the natural elements for an indefinite amount of time, it must be able to 

withstand the changes in temperature throughout the year, withstand possible light water 

exposure, operate at a distance from the scene which can range from a single meter up to 

5 meters, and maintain real-time data rates at potentially large distances of over 40 

meters. 
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The second vital consideration for our choice of machine vision camera depends 

upon what we are trying to observe.  In each of our systems, the main goal was to 

monitor either a change in shape or identify a specific shape.  There are several camera 

technologies which are used for observing shape, the majority of which rely upon range 

imaging data.  Range imaging is used to describe 2D cameras which use sensor 

technology in order to determine the distance to points in the camera scene respective to 

each pixel of the 2D camera array, thereby creating a pseudo-3D, or also referred to as a 

2.5D, depth mapping of the camera scene. Example range imaging cameras include time-

of-flight, stereovision, and structured light.  These different sensors utilize either passive 

or active lighting architecture.  In passive systems, the lighting of the scene is from 

ambient light.  In active systems, the lighting of the scene is controlled by the system 

itself.  Ambient light may remain in the scene with an active system, but it is not the 

dominant source of scene illumination. 

The third most important consideration in camera choice must be the cost.  In 

order for such a precision dairy farming system to be adopted, it must be economically 

viable for the dairy operation.  A system which incorporates a camera that cost 

significantly less than an equal alternative will have a much higher chance of being 

utilized.  Therefore, this research only considered budget conscious options which could 

still afford proficient range imaging data acquisition and resolution.  Pixel resolution was 

an important factor as well since our systems would have to operate at a distance from the 

scene. The camera’s sensitivity to changing ambient light was also a factor since the 

system would be expected to work in areas where lighting may be inconsistent due to the 
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dynamic nature of the camera scene. In order for our system to run at real-time data rates, 

the frame rate of the camera must be at least 30fps. 

The rapid development of range imaging devices for the home computer gaming 

console industry has provided several sensor devices which can be engineered into 

machine vision applications.  The Microsoft™ Kinect™ is a prominent example of such 

a device, which incorporates the use of RGB+D.  The RGB aspect provides the scene 

color information while the depth (D) provides the range sensing information of the same 

scene for 2.5D scene reconstruction.  RGB+D makes the removal of background clutter 

that we are not interested in easy because the depth channel can act as a green screen.  

Because such gaming console sensors are mass produced, the cost of the sensor is rather 

inexpensive at a range of $100 to $200 per unit where a traditional machine vision sensor 

may range from $300 to $1,200 or up to $5,000 for a smart camera.  

 In terms of how these range imaging sensors operate, there are several methods 

available with each device having its own unique method of operation.  Besides the 

RGB+D setup already discussed, there also exists active and passive stereovision, 

structured light illumination, and time-of-flight systems.  Each range imaging method is 

designed to address a set of unique circumstances depending upon the operating 

environment of the system.  The aim is to select the range imaging method that best 

meets the needs and goals of the machine vision application being studied and optimizes 

the accuracy and precision of the results. 

Stereovision 

 Passive stereovision systems are relatively cheap, can be stationary, and can 

collect image data in a short period of time.  In our case, we refer more directly to it as 
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passive computer stereovision.  Passive stereovision works much like the human visual 

process, but with two cameras.  It takes a vantage of a scene from two differing 

perspectives or angles and then creates a 3D image based upon the disparities of objects 

in the two images due to depth information differences.  Any distortions in the field of 

view must be removed, such as barrel distortion.  The images collected by both cameras 

must also be reflected back to a common plane for comparison in a process known as 

image rectification.  The displacement, or disparity, of features in the images is measured 

to create a disparity map, which gives rise to the 3D nature of this imaging technique.  

While an excellent tool in 3D imaging, it does have some small error in not always being 

able to find the corresponding points for all points between images.  The limitation of 

accuracy using passive stereovision is minimal, but must always be considered as several 

small errors can lead to inaccurate data or results. 

Structured Light Illumination (SLI) 

 The resolution and accuracy of stereovision systems can be improved upon by 

reducing the stereometric system to just one camera and a projector in a system 

architecture known as structured light illumination (SLI).  By using an active 

stereovision SLI system instead of a passive two camera stereovision setup, the costs are 

further decreased, image data collection timing is faster, and resolution and accuracy of 

the scan are improved.  SLI systems work on the basis of projecting a light pattern, 

typically a set of stripes or a constellation of points, across the scene being observed in 

order to create depth and surface information from the deformation of the known 

projected pattern.  The accuracy of SLI systems comes from their ability to resolve the 

pixel correspondence matching problem that other systems encounter and they allow for 
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error detection and correction.  SLI systems are also more precise because they can 

capture the entire field of view at once instead of one point at a time. 

The PrimeSense™ Carmine 1.08 RGB+Depth sensor (PrimeSense™, Tel Aviv, 

Israel) is an example of a single pattern SLI range imaging device.  This camera is the 

same as is used in the Microsoft™ Kinect™ (Microsoft Corporation, Redmond, 

Washington). This device works on the principle of structured light illumination by 

projecting a pseudo-random dot pattern from a near-infrared (NIR) laser illuminator that 

codes the scene.  The distorted light pattern then returns to a NIR CMOS image sensor 

that uses various algorithms to triangulate the coded light from the scene in the system in 

order to extract the 3D depth data.  The position of these constellations within the 

camera’s field of view determines how far the target surface is from the sensor.  A second 

CMOS image sensor is included in the system that obtains the visible light, or RGB 

color, information of the scene. 

The disparity-depth model utilized by the PrimeSense™ Carmine 1.08 for range 

imaging derives the depth value of an object as shown in Equation 1.1, where Zr is the 

distance of the reference plane from the baseline, f is the focal length of the NIR camera, 

b is the triangulation base length separation between the NIR emitter and the NIR 

camera, and d is the observed disparity in the image space between the reference plane 

and the object plane.[38] 
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 The Intel® RealSense™ R200 (Intel Corporation, Santa Clara, California) is an 

example of a multiple pattern SLI range imaging device that also incorporates dual 
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camera stereovision in its system architecture.  The active lighting architecture utilizes 

multiple light patterns projected from a NIR laser projector to code the scene and 2 NIR 

cameras for depth data collection.  Because the NIR cameras are located on either side of 

the NIR laser projector, the system can also be viewed in a stereoscopic sense as the 

depth data is computed from the disparity between the 2 NIR cameras using triangulation.  

A third camera is included in the system that obtains the visible light, or RGB color, 

information of the scene. 

Time-of-Flight (TOF) 

 Time-of-flight (TOF) range imaging sensors work on the principle of determining 

the amount of time it takes for an emitted light pulse to bounce off of the scene and return 

to the sensor.  Because the speed of light is a constant, the time elapsed for this process 

allows for every independent pixel to be able to sense the distance between the pixel and 

the reflected object surface in the scene.  TOF systems utilize an active lighting system 

architecture constructed with a laser range finder or a flash-like light source in order to 

detect the distance to a point.  TOF systems are limited by the number of data points that 

they can capture at a given time and their relatively limited field of view.  Therefore, 

TOF systems can lead to accuracy errors. TOF sensors have traditionally been much 

more expensive than comparable range imaging devices, but since the research of this 

study began, the cost associated with manufacturing newer TOF devices has markedly 

dropped while the imaging components behind TOF range imaging have improved in 

performance. 

The latest range sensor developed by Microsoft™ is their Kinect™ V2. The 

Microsoft™ Kinect™ V2 sensor provides more imaging data streams to work with and a 
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greater pixel resolution and image size for image frames.  The single best feature update 

with this sensor is the use of a TOF sensor for depth data instead of a SLI based system 

architecture.  This TOF system utilizes the principle of continuous modulation defined in 

Equation 1.2.[39,40] 

 𝑐(𝜏) = 𝑟⨂𝑠 = lim
𝑇→∞

∫ 𝑟(𝑠) × 𝑠(𝑡 + 𝜏)𝑑𝑡
𝑇/2

−𝑇/2

 (1.2) 

 

The pixels of the NIR camera are able to directly correlate the incident light signal r(t) 

with the reference signal s(t). τ in Equation 1.2 is a phase offset used to sample the 

correlation function at different positions.  The depth distance returned by the TOF signal 

can be calculated using Equation 1.3 where ϕ is the phase offset of the returned signal 

due to the round-trip time of the light and λm is the modulated wavelength. 

 𝑑 =
𝜆𝑚

4𝜋
𝜙 (1.3) 

 

The Microsoft™ Kinect™ V2 acquires three samples of the correlation function c(τ) for 

use in deriving the phase offset ϕ which Microsoft™ claims in their patent reduces the 

effects of varying temperature, ambient lighting, the influence of an imperfect 

modulation signal, and the variation of the components of the device over time.[41]  

A tabulated comparison of the different features available with these 3 different 

range imaging camera technologies currently available on the market can be seen in 

Table 1.1.  With the research systems presented in this dissertation, all of the range 

imaging data collection was conducted with the same PrimeSense™ Carmine 1.08 

device.  The PrimeSense™ Carmine 1.08 has been openly available on the market since 

2010, which is also the same year that this dissertation research and the search for a range 
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imaging device began.  The Micorsoft® Kinect™ V2 has only become available to 

software developers and consumers since 2014.  The Intel® RealSense™ R200 has only 

been available to software developers and consumers since 2015.  Because these other 

devices have only been recently developed for consumers, they were not accessible at the 

time of initial data collection.  Therefore, future precision dairy farming research studies 

incorporating machine vision are strongly encouraged to utilize the Microsoft™ Kinect™ 

V2 and the Intel® RealSense™ R200 devices. 

Table 1.1 – Comparison table of various range imaging devices1 

 PrimeSense™  

Carmine 1.08 

Kinect™ V2 Intel® RealSense™ 

R200 

Color image 

resolution 

640 x 480 pixels 1,920 x 1,080 pixels 1,920 x 1,080 pixels 

Color image 

FOV 

~62 x 49 degrees  

(~10 x 10 pixels/degree) 

~84 x 54 degrees  

(~22 x 20 pixels/degree) 

~70 x 43 degrees 

(~27 x 25 pixels/degree) 

Depth image 

resolution 

320 x 240 pixels 512 x 424 pixels 480 x 360 pixels 

Depth image 

FOV 

~57 x 43 degrees  

(~5 x 5 pixels/degree) 

~70 x 60 degrees  

(~7 x 7 pixels/degree) 

~59 x 46 degrees     (~8 

x 8 pixels/degree) 

USB 

Standard 

2.0 3.0 3.0 

Supported 

OS 

Windows 7 or later Windows 8 or later Windows 8.1 or later 

Range 

Imaging 

System 

SLI – Single pattern TOF SLI – Multiple patterns 

1All values are shown with horizontal direction/dimension first and then the vertical 

direction/dimension. 

 

1.5 Dissertation Outline 

The goal of this dissertation is to pioneer the application of 3D video sensors to 

precision dairy farming for fully autonomous biometric monitoring of animals.  To do 

this, we will demonstrate the use of inexpensive RGB+D cameras to perform the tasks of 

(1) monitoring feed intake in terms of volume instead of mass; (2) reporting each 

animal’s body condition score over a period of nearly seven months, taking 

measurements twice daily; (3) anatomical labeling of the animal in terms of tailhead and 
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hips when viewed from above; and (4) identifying each animal based on its body 

markings. The main reason that these topics were chosen was because they are all 

interrelated.   

Feed intake is directly responsible for the body condition of the cow, just as the 

body condition is a reflection on the amount of feed intake.  The use of animal detection 

and recognition are necessary if a machine vision system is to be designed to determine if 

and where a cow is present in the image frame as well as determining who the cow is.  

This is important because the accuracy of precision dairy farming requires the monitoring 

of individual animal metrics.  In this manner, animal detection and recognition can be 

further incorporated into either a feed intake or body condition monitoring system in 

order for the system to be able to run completely autonomously and automatically in 

storing accurate metric data for every individual.   In the course of our research, each 

topic was researched independently so that no one topic could directly influence the 

outcomes of another. 

Unlike other approaches to monitoring individual dairy cow welfare, we postulate 

that the use of machine vision in precision dairy farming systems has the capability to 

increase metric measurement accuracy and reduce dairy personnel workload. As well, 

such systems are capable of working efficiently and effectively in an autonomous 

manner, will not inhibit workflow, and can boost dairy farm profits by minimizing daily 

operational costs and increasing individual animal performance.  In the research of this 

dissertation, we address the incorporation of machine vision based technology in three 

methods of precision dairy farming practices.  In this manner, the research conducted will 

be able to demonstrate not only the applicability of machine vision, but also its 
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adaptability and complexity with which it can address diverse problems while utilizing 

the same instrumental components. 

In Chapter 2, we address the potential for the application of machine vision in 

individual dairy cow feed intake monitoring.  The system developed for this research 

tested various imaging approaches for the potential use of machine vision in automated 

dairy cow feed intake monitoring.  The incorporation of such a system in a dairy 

operation has the ability to provide detailed and timely insight into the health condition of 

each individual dairy cow in a herd based upon changes in feed consumption as well as 

possibly financially benefiting the dairy operation by reducing the amount of feed 

wasted.  Though the feed tested by the system was done so in a controlled manner and 

with a small sample size, it provides a great deal of insight into the use of such a system 

in future work concerning the monitoring of dairy cow feed consumption in open feed 

bunks and controlled individual feeders alike. 

 In Chapter 3, we address the potential for the application of machine vision in 

monitoring the gradual change in dairy cow BCS over time.  The system developed in 

this study monitored 116 individual dairy cow over a period of nearly 7 months in order 

to monitor the gradual changes in BCS.  Several proposed automated BCS algorithms and 

systems have been previously developed by researchers, but none have monitored the 

change in BCS with such an automated system for a duration of this magnitude.  By 

monitoring the change in BCS over this timeframe, we are able to test the ability of an 

automated BCS system to capture the gradual changes in body condition on a per cow 

basis.  These gradual changes in BCS, whether higher or lower, infer a great deal of 

beneficial and immediate information on the health condition of every individual cow 
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being monitored.  Such information has the potential to catch poor health conditions 

developing early on, aid in balancing the diet of the individual cow, and help farm 

management to better facilitate resources, monetary and otherwise, in an appropriate and 

efficient manner. 

 In Chapter 4, we address the potential for the application of machine vision in the 

automation of dairy cow detection and identification.  Two approaches were tested 

independently in this study.  The first approach was to use Haar cascade classifiers 

designed to detect distinct anatomical features of dairy cow in a feature detection based 

approach.  These features include the tailhead region, hips region, and rear region of the 

cow body.  The features chosen are done so in order to aid machine vision applications in 

determining if and where a cow is present in an image or video frame.  Such an 

automation in dairy cow presence detection is critical in allowing precision dairy farming 

machine vision based applications to be left to operate capably and automatically on their 

own with no user input for an indefinite and uninterrupted period of operational time.  

The second approach was to use an optical flow based system in order to determine the 

identification of the individual cow in the imaging frame of the system.  All precision 

dairy farming systems must be able to maintain accurate information for each individual 

in the herd.  This requires a robust method of identification in order to determine which 

cow is present in the working area of the metric monitoring system.  By deriving an 

imaging based approach for cow detection and recognition, we are able to verify the 

presence and identification of the cow returned by other methods, such as RFID, which 

may already be incorporated in the dairy operation. 
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 Finally, in Chapter 5, we summarize the contributions of this dissertation research 

and provide an outlook for the continued proliferation of machine vision in precision 

dairy farming technologies.  Several different applications of this research are also 

discussed along with future directions for research.  Integrating many of these 

technologies together into a unified system will be a major advancement that will greatly 

benefit both the technology being used and the dairy operation utilizing it.  Also, 

integrating existing precision dairy farming technologies with those proposed in this 

study will help to ensure that the systems proposed are not seen as being conflictive in 

nature, but instead as cohesive advancements that greatly improve the reliability and 

performance of such autonomously operating systems. 

 In order for us to develop and test our systems, a sample dairy had to be chosen 

which would accurately represent a typical small to mid-size dairy operation in the 

United States.  The University of Kentucky Coldstream Dairy Research Farm is located 

about 8 miles north of the main University of Kentucky campus.  This dairy operation 

was the base for testing and validating each of the machine vision based precision dairy 

farming systems developed.  The University of Kentucky Coldstream Dairy Research 

Farm was originally constructed in the 1960’s and has been continually updated and used 

as a research facility.   

Among the various components of the complex are a free stall barn with 108 stalls 

for the milking herd; a tie-stall barn with 36 stalls, used primarily for cows in research 

trials that require individual feeding; a small free stall barn with 18 stalls and Calan™ 

(American Calan, Inc., Northwood, New Hampshire) individual feeders, used primarily 

for nutrition research; a milking parlor that holds eight cows (essentially 2 "double 2" 
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parlors); replacement heifer, dry cow, and maternity facilities; and a management 

building that includes an office, teaching facilities, and laboratory space.  The animals 

located at the farm that were used in this study consist of a dairy cow herd of 

approximately 100 Holsteins at a given time.  The average annual milk yield production 

is approximately 24,000 lbs. for the Holsteins.[9]  The farm can be seen in Figure 1.1 

with the offices in the building on the left side of the image, the milking and walkway 

areas in the middle building of the image, and the individual feeding stalls located in the 

arched barn seen at the right side of the image. 

 
Figure 1.1 – 3D mapped image of the University of Kentucky Coldstream Dairy 

Research Farm showing (red dot) environmentally controlled office, (blue dot) milking 

parlor and walkway, and (green dot) individual feed stalls. 

 

All of the cows exit the milking parlor by proceeding through the same walkway.  

The walkway is enclosed with a concrete slab floor, concrete block walls, and a roof.  

This enclosed walkway was chosen for our cow image data collection needs in order to 

keep the cameras and other equipment free from the natural elements, away from the 

influence of changing sunlight exposure in the image, and to have the best control 

environment.  The feed used in testing the feed intake system also originated from this 
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facility, though it was tested off site in a laboratory space back on the University of 

Kentucky campus.  Once the precision dairy farming topics were chosen, the herd for 

observation selected, and the site selected for data collection, the research was then able 

to move forward to determining which camera technology and machine vision processes 

would work best in developing plausible, suitable, efficient, and economically viable 

systems for individual animal welfare monitoring. 

To summarize, machine vision based approaches have the potential to be utilized 

in monitoring several performance metrics of the individual dairy cow.  The use of 

machine vision is already well established in maximizing the efficiency and profits of 

several businesses in the manufacturing industry, so there is no reason not to reap those 

same benefits in the dairy industry.  The major benefit that machine vision based 

technologies have over the majority of current precision dairy farming technologies is 

that they are non-tactile systems which have a much lower risk of being broken or 

otherwise damaged by the cow as it is placed out of reach and in a sturdy, secure 

location.  The results of the different research studies conducted herein greatly expand the 

knowledge of the use of machine vision based applications within the realm of precision 

dairy farming.  Incorporation of these precision dairy systems into existing dairy facilities 

has the potential to increase individual animal management and welfare, the production 

capacity and capabilities of each individual animal, the profitability and efficiency of the 

individual dairy, and the well-being of the individual dairy producer and laborer. 
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CHAPTER II: POTENTIAL FOR AUTOMATED MONITORING OF DAIRY 

COW FEED INTAKE 

Feed is the greatest expense for milk production [42] while feed intake is a major 

determinant of energy intake and consequently of milk production [43].  According to 

Bernard and Montgomery, lactating dairy cows must consume large quantities of dry 

matter to provide the nutrients needed to maintain high levels of milk production.  The 

consequences of low DMI are lower peak milk yields, lower total milk production, 

excessive loss of body weight, and poor reproductive performance.  Research shows a 

0.91 kg increase in milk production for each 0.45 kg increase in DMI, and as milk 

production continues to increase, management of DMI becomes more critical.[44] 

Monitoring dairy cow feed intake can simply utilize human visual inspection, 

such as the research conducted by Bach et al.[45], but the difficulty in manually 

collecting data at the time of feeding limits the extent of this type of monitoring [46].  

Several nutrition models have also been developed to attempt to predict feed intake, but 

even the best models have only been able to account for no more than 70% of the 

variation in intake [47] and all of the models under-predict actual observed DMI [48]. 

An automated feed monitoring system has the potential to electronically monitor 

individual cow feed intake.  Radio frequency identification (RFID) is the typical means 

used in automated identifications of individual cow for the purpose of monitoring 

individual cow behavior, such as monitoring their feed intake.  An RFID transponder 

located on the cow, typically in an ear tag or collar, interacts with an RFID reader located 

at the feeding area for traceability of an individual animal.  Example RFID based systems 

include GrowSafe™ (GrowSafe Systems, Ltd., Airdrie, Canada) and Calan™ gates..  
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Most of the previous work with RFID systems are more interested in monitoring feeding 

behavior than feed intake.[49,50,51,52,53] 

Research conducted by A. Bach et al.[45] used weighing scales to monitor both 

feeding behavior and feed intake.  This research required that the system automatically 

detect cow presence at the feed bunk and then monitored the amount of feed consumed at 

each presence detection.  The system did have occasions where the system computer 

failed to recognize the presence of cow, and therefore any feed consumed during that 

time was not recorded.  This study also reaffirmed the inability of human observers to 

keep track of feed intake as there were at least 96 occasions where the human observers 

did not detect cow presence at the feed bunk but the computer did.[45] 

The Insentec™ (Insentec™, Marknesse, the Netherlands) monitoring system 

allows for loose-housed cows to freely access a number of feeding and drinking stations; 

which also allows researchers to collect continuous feeding and drinking behavioral data.  

The basis of this system is an RFID identification coupled with an automated barrier 

between the cow and the feed and water.  The Insentec™ monitoring system performed 

well in the study by Chapinal et al.[51], but it still interfered with the natural feeding 

behaviors of the cow as a physical barrier was placed between the cow and the feed.  The 

fact that the number of cows that can feed at any time is reduced by such individual feed 

intake monitoring systems also plays a role in feed intake.  It has been suggested that 

lower feed intake by cows, utilizing such systems may be due to the fact that the visual 

stimulation associated with food is removed, and the lack of competition that exists with 

individual feeding compared to group feeding.[54]   
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None of these systems analyze the feed intake on a dry matter basis, which is 

where most of the nutritional value comes from the feed.  These systems instead work on 

an as-fed basis where the average noisture content of the feed is approximately half of the 

volume of the feed.  Another concern with using such systems is that they were built to fit 

local conditions, namely being suitable for closed, free, or tied stall barns.  The system 

utilized needs to be able to be exposed to harsh, uncontrolled, and changing 

environmental conditions and must perform reliably under the variable daily working 

conditions of a dairy.  The ideal system measures, controls, and monitors individual feed 

intake of the free-housed dairy cow while not interfering with feeding habits and not 

introducing additional work or inhibiting workflow on the farm.[55] 

The basis of the feed intake monitoring research conducted in this dissertation 

relies upon the ability to determine the volumetric mass density of a TMR simply by 

determining how much mass of the TMR can be contained within a known volumetric 

container; in this research, measured as kg/m3. Since TMR are not solid but instead 

contain air pockets due to the particulate nature of the TMR, bulk density is the preferred 

volumetric basis.  Given the implied link between feed volume and matter density as they 

relate to mass, an initial test was performed to determine how moisture content of feed 

changed over time and what effect this change might have on weight.  An example of this 

testing conducted by Shelley[56] can be seen in Figure 2.1 where a dry matter and 

moisture content analysis was conducted on samples of the feed delivered to the dairy 

cows from each day of feeding over the course of 20 days.  The Koster testing method 

[57, 58] was utilized by the farm management in order to determine the dry matter and 
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moisture content percentages of the feed samples.  As can be seen, the moisture content 

remained fairly constant over the duration of the samples tested. 

Date Sampled Dry Matter (%) % Moisture Content Date Tested 

1/7/2013 49 51 1/11/2013 

1/8/2013 51.5 48.5 1/11/2013 

1/9/2013 50 50 1/11/2013 

1/10/2013 49.5 50.5 1/11/2013 

1/11/2013 51 49 1/14/2013 

1/12/2013 55 45 1/14/2013 

1/13/2013 49 51 1/14/2013 

1/14/2013 51 49 1/17/2013 

1/15/2013 50 50 1/17/2013 

1/16/2013 49.5 50.5 1/17/2013 

1/17/2013 51 49 1/23/2013 

1/18/2013 50 50 1/23/2013 

1/19/2013 48 52 1/23/2013 

1/20/2013 53 47 1/23/2013 

1/21/2013 52 48 1/23/2013 

1/22/2013 53 47 1/23/2013 

1/23/2013 54 46 1/28/2013 

1/24/2013 48 52 1/28/2013 

1/25/2013 49 51 1/28/2013 

1/26/2013 48.5 51.5 1/28/2013 

Figure 2.1 – Feed samples tested for moisture content.[56] 

 

The moisture content was also tested on orts samples to see how the moisture 

content changed between the time of feed offering and feed removal.  It was determined 

that since the moisture content of the feed offered to the cow changed by less than 1% 

over a 24-h period, it had a negligible effect on the feed’s weight and was, therefore, not 

monitored in this study.  Typical TMR feedings situations do not incur large changes in 

temperature or pressure, nor does the TMR undergo major changes in air or water 

content, and therefore the relative density of the TMR remains near unity between the 

times of TMR offering and orts disposal.  Since the physical properties and moisture 
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content of a TMR change negligibly over a 24 h period, using the volumetric shape of the 

TMR can be utilized in directly determining the weight of the feed.  For these same 

reasons, a single TMR was tested with each experimental setup.  The dry matter content 

of the TMR used in the first experimental setup is shown in the second column of Table 

2.1, and the dry matter content of the TMR used in the second and third experimental 

setups is shown in the third column of Table 2.1.  By knowing any two of the three 

variables of density, volume, and mass, the third can be directly calculated. 

Table 2.1 - Ingredient and dry matter content of the TMR tested in the experimental 

setups1 

Composition TMR 1 TMR 2 

 

(% of DM) 

Corn silage 44.6 34.3 

Alfalfa silage 25.6 12.7 

Cottonseed whole 2.8 5.8 

Alfalfa hay 2.8 4.9 

Grain mix 24.2 42.3 
1TMR 1 was tested in the first experimental setup. TMR 2 was tested in the second and 

third experimental setups. 

 

The objective of this study was to assess the proof of concept usefulness of an 

inexpensive 3D video camera for measuring individual dairy cow feed intake by scanning 

and recording feed volume, from which we indirectly derive feed weight.  For the system 

to be deemed successful at measuring feed intake in terms of weight, it must perform well 

regardless of how the feed lays in the bin.  For instance, if after feeding, the bulk of feed 

lines the bin on one side only, then the camera system must handle this equally as well as 

other cases for this same weight of feed, such as when the feed is evenly distributed 

across the bin or lined along the opposing side.  The overall procedure of this study was 

to record 3D scans of a feed bin at various fill levels, and from the resulting scale weight 

versus feed volume, derive a single mapping from volume to weight.  The resulting 
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mapping was then used to compare the weight of feed derived from the volume to the 

actual weight measured by a digital scale.  The differences between these two values 

were analyzed by regression analysis.   

Simple regression analysis was conducted on all experimental setups tested.  The 

choice of regression analysis was made as the objective was to determine if a strong 

correlation existed between the camera sensor depth measurement values of the feed 

surface in a bin and the scale measured weight values of feed in a bin.  A linear 

correlation was assumed, but a quadratic correlation was utilized to expose inherent 

sensor error when the camera was positioned from the feed at or below the lower optimal 

operating range.  This sensor noise at close range has been previously studied and can be 

modelled as a quadratic relationship as outlined in the work by Nguyen et al.[59]. 

For the purpose of establishing a data set of weights and volumes, the same 

plastic feed bin used in controlled research feeding at the University of Kentucky 

Coldstream Dairy Research Farm was used in this research.  The bin was a Rubbermaid® 

3501 Food/Tote Box (Rubbermaid Commercial Products, LLC., Winchester, VA) with 

dimensions of 66.0 cm in length, 45.7 cm in width, and 38.1 cm in depth for a total 

volume capacity of 81.4 L or 0.29 m3 and a maximum weight capacity of 23.98 kg. A 

digital scale, ROYAL™ 17016G 315-lb freight scale (Royal Consumer Information 

Products, Inc., Bridgewater, New Jersey), which measures weight with an accuracy of 

within 0.0045 kg was employed for obtaining feed weight measurements.  For measuring 

volume, we employed a PrimeSense™ Carmine 1.08 RGB+depth sensor.  Positioning the 

sensor over the feed bin then creates an opportunity to measure the feed in the bin 

simulating the times before and after a cow has fed from the bin. 
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As with any machine vision system, no camera can make measurements occluded 

from its view, such as feed that may be hidden at the bottom of a bin when imaged from 

the side.  For this reason, measuring feed volume must either be done using a scanning 

process of sweeping the camera over the feed to ensure that no portion of the feed is 

occluded from the camera, such as the first and second experimental setups, or the 

camera must be placed directly above the feed bin to ensure no portion of the bin 

occludes the feed, such as the third experimental setup.  The first and second 

experimental setups allowed for observing the effects of sensor range and sensor noise 

given that placing the sensor further away allows the camera to see more of the bin in a 

camera frame but with potentially less depth accuracy, surface definition, and sensor 

noise than at close distances.  The third experimental setup allowed for comparing the 

ability of a single image capture system to derive values equivalent to those observed in 

the merged scanning process of the first two experimental setups. 

In the first and second experimental setups, the entire feed bin was captured as a 

3D model of merged meshes.  This required multiple images to be captured from 

differing perspectives around the feed bin in order to create the 3D model of the entire 

feed bin.  Figure 2.2A-D shows the image capture of the feed bin shown from the 

perspective of the camera.  Several points of occlusion from both the feed and the bin 

existed in a single image capture of the scene.  Therefore, multiple image captures around 

the feed bin not only facilitated creating a 3D merged mesh model, but also eliminated 

these points of occlusion observed in single image captures.  We recorded successive 

images at different positions around the bin, such as in Figure 2.2A-D, where the 

perspective is kept the same as in the first image captured but with the camera and data 
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collection at different positions around the scene.  Figure 2.2A is the initial image capture 

position for every test bin.  This initial image capture is taken at an angle perpendicular to 

the left side of the feed bin and in line with the viewpoint of the observer of the image.  

Image capture with the camera located at the rear side of the bin where the camera is to 

the right of the observer is shown in Figure 2.2B.  Image capture with the camera 

perpendicular to the right side of the bin and with the camera positioned opposite the 

observer is shown in Figure 2.2C.  Image capture with the camera at the front side of the 

bin with the camera positioned to the right of the observer is shown in Figure 2.2D.  The 

final merged image and data point cloud is shown in Figure 2.2E, which shows little to no 

points of data occlusion. The system architecture and setup are shown in Figure 2.2F with 

the arm of the frame and camera extended outwards at full length.  The camera arm in 

this position is perpendicular to the front side of the feed bin.  Markers were placed on 

the floor to ensure the same placement of the bin for every image capture. 
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Figure 2.2 – Data collection from different camera positions shown in A, B, C, and D.  

The final merged image and data point cloud for a sample is shown in E. The system 

architecture and setup are shown in F. 

  

Merging these disparate views allowed the system to scan the feed surface without 

occlusion.  In order to create an accurate scan model of the feed bin, there must exists 

enough overlapping data in the images captured to accurately align them.  The more input 

data overlap that exists, the greater the precision of the output merged image data.  

Eventually, a point of diminishing returns will be realized where the amount of time, 

data, and other resources used to collect the next image in the sequence outweighs the 

benefit of the newly added data information.  Therefore, in order to recreate a 3D surface 

with sufficient precision, a determination must be made as to the minimum amount of 
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data collection necessary to avoid occlusions as well as the maximum amount of data 

collected before reaching diminishing returns.   

KScan3D™ (LMI Technologies, Inc., Delta, British Columbia, Canada) was used 

for image capture and to merge images in real-time. In order to use the PrimeSense™ 

camera and the KScan3D™ software to capture an accurate scan model of the feed bin, it 

was determined that a series of 14 successive images were to be collected of the feed 

surface and bin.  The final result is a 3D surface recreation of the feed bin such as in 

Figure 2.2E.  More or less frames could have been captured during this process.  Less 

frames captured would not have made it possible for the KScan3D™ software to 

automatically align the scans as there was limited overlapping data from one image to the 

next.  More frames would have provided only a slight improvement on image merging 

and data overlap, but would overall not have been necessary. 

The sensor was installed onto an 80/20® aluminum frame (80/20 Inc., Columbia 

City, Indiana), as shown in Figure 2.2F, to minimize the effects of camera motion on the 

merging process.  A pivot arm was constructed to bring the camera over the center of the 

bin of feed for scanning or used to move the camera out of the scan area.  Attached to the 

side of the pivot arm was a swivel arm that allowed for 360 degrees of free rotation 

beneath the pivot arm about the point of attachment.  The camera was manually 

positioned in the same location for the start of every scan in a test set.  In the first 

experimental setup, the camera was at a distance of 99.1 cm from the floor and 61.0 cm 

from the top of the feed bin.  The camera was intentionally placed at a distance from the 

feed surface below the 80 cm lower limit of the 3D depth sensor’s optimal operating 

range in order to observe the effects on the accuracy of the image data. 
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For the merged image tests of the first and second experimental setups, the first 

image functioned as the anchor to which all of the successive images would be 

automatically merged and set the Cartesian coordinates to be assigned to all 3D scan data.  

The software then proceeded to collect 13 more images with a 2 s delay between each 

image capture as the user manually rotated the camera clockwise (looking down onto the 

bin) through one revolution with the swivel arm.  As each image was captured, the 

KScan3D™ software automatically aligned and merged the new data with the previously 

merged data to produce an updated 3D surface. 

A 0-kg scan, or empty bin scan, was the first scan collected with the system.  The 

bin was then filled with 2.27 kg of feed, and the feed biased and scanned in seven 

different positions within the bin: feed with a flat top surface (F); feed biased in the back 

left (BL) corner; back right (BR) corner; front left (FL) corner; front right (FR) corner; 

biased in the center (C) of the bin; and feed with a hole (H) in the center or the feed 

pushed out towards the walls of the bin.  Biasing with respect to this research meant that 

the majority of the feed volume in the bin was concentrated in that area of the bin.  The 

biasing of feed was conducted in order to determine if it had any effects on the system, as 

a robust system for measuring the feed volume and weight would have to not be affected 

by the surface contour of the feed.  After collecting data on the 2.27-kg bin of feed, the 

bin was then filled with another 2.27 kg of feed, and the same seven biasing scans 

collected by the system.  This process was then repeated at 2.27 kg increments until the 

bin had 22.68 kg of feed at which point the plastic bin could not hold any additional feed 

without spilling over the edges or being heavily mounded in the center of the bin. 
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After all scans had been conducted, the KScan3D™ software was then used to 

reduce the 3D point cloud data to 10%, or roughly 80,000 data points, of the original data 

as this was all that was needed to accurately represent the original 3D scan.  A larger 

percentage of the original data could have been utilized, but would not have significantly 

added to the accuracy of the representation of the feed in the bin.  A larger data point set 

would require more processing time as well, which would reduce the operational speed of 

the system.  The data were then processed to: (1) align the bins with the origin and the Z-

equals-zero plane; (2) interpolate the scattered data of each scan; (3) calculate the 

difference of the current volume scan data file from the 0-kg scan (empty bin) data file; 

(4) create a new scan dataset to represent the feed volume by itself (without the bin); (5) 

determine the numerical cumulative depth average value corresponding to the averaged 

volume value of the feed surface; and (6) analyze the relationship of the 3D scanned 

volume values to the known scale-measured weight values by regression analysis. 

The point clouds were saved to ASCII (.asc) text files of three columns of 

numerical values; each row representing the X, Y, and Z Cartesian coordinates of a single 

data point.  This data was then imported to MATLAB® for further processing and 

analysis.  An example of this file is shown in Figure 2.3.  A MATLAB® script was 

created to align the bins with the origin and the Z equals zero plane, shown in Figure 2.4, 

interpolate the scattered data of each scan, take the difference of the current scan data file 

from the 0kg. scan (empty bin) data file, create a new scan dataset to represent the feed 

by itself (without the bin), then determine the numerical volume ovalue of the feed, and 

save this information to a Microsoft™ Excel™ file.  The Excel™ file was then used to 
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analyze the correlation of the volume values determined in MATLAB® to the known 

weight values. 

 
Figure 2.3 – ASCII point cloud of feed bin data points. 

 

 
Figure 2.4 – Empty bin and bin of feed aligned together and with Z-axis. 

Aligning the bins with the origin ensured that the corner with the lowest data 

value for both bins would lie as close to the origin as possible.  Aligning the bins with 
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regards to the Z-equals-zero plane gave the data a view normal to the surface of the feed 

and the bin; as if the observer was looking directly down onto the bin and feed.  The 

alignment of the bins allowed for the interpolation of each data set to remove duplicate 

data for the feed surfaces, ensuring an accurate representation of the actual surface.  By 

taking the difference of the two data sets, the data that would have otherwise represented 

the plastic bin, and not the feed in the bin, could be removed from the final volume 

calculation. An example of this process is shown in Figure 2.5. 

 
Figure 2.5 – Aligned bins (top left), interpolated empty bin (top right), interpolated bin of 

feed (bottom left), and feed alone (bottom right). 

 

In the second experimental setup, the camera was moved to a distance of 138.1 

cm from the floor and 100.0 cm from the top of the feed bin.  The reason for this was to 

move the camera to a distance where the feed surface would be within the camera’s 
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optimum operating range of 80.0 cm to 350.0 cm.  Outside of this range, intrinsic errors 

from the camera itself are induced in the depth measurement data.  The same 

experimental procedures conducted in the first experimental setup were repeated for this 

increased camera distance setup.  No further camera distance changes were tested as any 

increased distance from sensor to scene would only reduce system accuracy. 

In the third experimental setup, the camera was kept at 138.1 cm from the floor 

and 100.0 cm from the top of the feed bin, but instead of capturing and merging 14 

successive images, the setup now allowed for a single image capture from directly above 

the center of the feed surface.  This test was conducted to determine if a single image 

capture system could derive comparable image weight values as the first two setups 

tested without requiring multiple image captures, a rotation mechanism about the feed 

surface, or the need for computationally intensive image merging.  The same data 

processing was conducted on the data collected in the third experimental setup as 

outlined for the first and second experimental setups.  This data processing included the 

same ordered operation steps of data reduction, alignment, interpolation, differencing, 

cumulative feed surface depth average value derivation, and simple regression analysis as 

outlined in the data processing description of the first experimental setup. 

Figure 2.6 shows the first and second-order least squares model fits for all three 

experimental setups.  The results show a strong model fit (R2 >0.99) for both linear and 

quadratic modeling of the volumetric scan data with relation to scale-measured weight 

values.  The initial hypothesis was that the relationship would be strictly linear.  As can 

be seen in Figure 2.6, a strong relationship exists between the known scale weight values 

and the image volume values.  As the scale weight value increased, so did the image 
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volume values.  The more densely plotted the volume values for that weight class, the 

stronger and more distinguishable the relationship of image volume values to that known 

weight value. 

 

 
 

 
Figure 2.6 - The collected data samples were plotted along with linear (solid line) and 

quadratic (dashed line) least squares regression models fit to the data comparing the 

image volume value to the scale weight for the first (A), second (B), and third (C) 

experimental setups tested.  The equations of fit and R2 values are shown at right for 

linear models (in bold) and quadratic models. 
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The residual error seen in Figures 2.7A and 2.7B was determined to be mainly 

due to the inherent sensor noise error of the PrimeSense™ camera’s depth sensor at short 

distances as expected.  In the first experimental setup tested, where the sensor was 

intentionally placed below the manufacturer suggested lower operating range, the 

increasing variance directly due to the increasing sensor noise error is clearly visible.  It 

was determined that a second-order fit instead would be optimal as it would include 

correction compensation for this residual sensor error at distances near this lower 

operating range. Figures 2.7C and 2.7E continue to exhibit a slight non-linear relationship 

between the scale weight and the image volume, which was still due to sensor noise but 

to a lesser degree as these experimental setups tested bin weights within the optimal 

operating range of the camera sensor.  At the increased camera distance in the second and 

third experimental setups, the contribution of sensor noise is greatly reduced and the 

variance randomly distributed when a quadratic relationship between scale weight and 

image volume was considered, as can be seen in Figures 2.7D and 2.7F. 
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Figure 2.7 –  The linear residual error plots for the first (A), second (C), and third (E) 

experimantal setups.  The quadratic residual error plots for the first (B), second (D), and 

third (F) experimental setups. 
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The linear standard error values achieved for the three experimental setups, in 

order, were 0.76 kg, 0.56 kg, and 0.57 kg.  The single coefficients for the three linear 

models were observed to all be highly significant (P < 0.01).  The quadratic standard 

error values achieved for the three experimental setups, in order, were 0.54 kg, 0.42 kg, 

and 0.20 kg.  The P-values for the individual coefficients of the three quadratic models 

were all observed to be highly significant (P < 0.01). These results show that the second-

order model with a single image capture system had the least statistical error and, 

therefore, had the best model fit to the data.  Once the least squares regression analysis 

was able to accurately determine the best model fit representing the relationship between 

image volume and scale weight, the image volume values were input to the model-

derived parametric equations with the resulting image weight conversion values output.  

In this manner, the known scale weight values can be directly compared to the calculated 

image weight values.  Figures 2.8-2.10 show the 95% prediction and confidence interval 

plots of these converted image volume values into kilogram-based image weights.  As 

can be seen in these figures, the prediction accuracy and confidence accuracy of the 

system is greatest with the third experimental setup. 
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First Experimental Setup 95% Prediction & 95% Confidence Intervals 

 

 
Figure 2.8 – The plots above show the 95% prediction intervals (top row) and 95% 

confidence intervals (bottom row) for linear (left) and quadratic (right) regression 

analysis for the first experimental setup with image volume values converted to 

kilograms.
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Second Experimental Setup 95% Prediction & 95% Confidence Intervals 

 

 
Figure 2.9 – The plots above show the 95% prediction intervals (top row) and 95% 

confidence intervals (bottom row) for linear (left) and quadratic (right) regression 

analysis for the second experimental setup with image volume values converted to 

kilograms.
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Third Experimental Setup 95% Prediction & 95% Confidence Intervals 

 

 
Figure 2.10 – The plots above show the 95% prediction intervals (top row) and 95% 

confidence intervals (bottom row) for linear (left) and quadratic (right) regression 

analysis for the third experimental setup with image volume values converted to 

kilograms. 

 

The fact that the residual errors for all 7 biased image captures for each weight 

increment in the quadratic residuals did not vary by more than 2 kg in the second 

experimental setup and by no more than 1 kg in the third experimental setup, shows that 

the variations in the surface, where the feed creates peaks and valleys in the surface, does 

not inhibit the system from accurately producing image weight values.  As long as the 
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system is calibrated before use at differing known scale weight values of the TMR, the 

system is able to produce image weight values to within a small percentage of error 

regardless of how the surface of the feed is arranged.  Based upon the statistical results of 

the three experimental setups, the single image capture system at a distance of 100.0 cm 

from the highest point of feed surface which includes quadratic sensor error 

compensating conversion of volume to weight was deemed to be the best option in 

regards to both error minimization and practicality.  A single image capture system can 

be run in real-time for continuous monitoring of the feeding area with no obstruction to 

the workflow or the cow’s feeding behavior.  The single image capture setup also has the 

benefit of no moving parts that can result in mechanical failure as well as having the 

smallest operating space requirement. 

The main contribution of the total error discovered in the volume values 

determined by the software was the fact that the feed scan and the empty bin scan were 

not always aligned by the software perfectly.  The process by which the software aligns 

the 2 input scans was rather simple and robust, but even slight misalignment in the X, Y, 

or Z direction along with any rotation of the data leads to an increased error the further 

misaligned the 3D scan data point clouds are for the 2 input scans.  Future versions of the 

alignment software must include an even more robust alignment procedure that the one 

utilized here, such as iterative closest point.  The main cause of misalignment was the 

manual nature by which the data was collected.  Even though great care was taken to 

ensure that the camera was fixated in nearly the exact same location for the initial image 

of every scan for the first two experimental setups, manually aligning the camera would 

not be as exact as an automated system or stationary system such as in the third 



45 

 

experimental setup.  The fact that neither feed bin or camera moves in the third 

experimental setup is a direct indication of this reduced alignment error problem with a 

stationary system. 

Testing was not conducted for bin weights greater than 22.68 kg as the feed in the 

bin at these values is either spilling out over the edges of the bin or is severely center 

biased as it must be piled in the center of the bin in order to accommodate this much feed.  

Another consideration that would need to be included in the analysis of the residual errors 

is the fact that the increase in weight will increase the deformation of the feed bin as the 

greater weight imparts a greater stress on the plasticity of the feed bin.  This may also 

help explain part of the slight deviation of the data from a purely linear relationship at 

greater weights as the feed bin did indeed have some slight deformation as feed weight 

increased. 

As a simple demonstration for the viability of expanding this research in future 

work with feed in a non-isolated and controlled manner, a sample test scan was 

conducted on a random sample of 4.99 kg laid out on the floor in such a manner as to 

mimic a pile of feed after having been visited by a cow.  This sample can be seen in 

Figure 2.11.  In Figure 2.11A, the final merged images and data point clouds can be seen 

in an overhead view.  In Figure 2.11B, the depth information from the same view is 

shown with external factors such as framing material and empty floor space removed.  In 

Figure 2.11C, the sample is shown from the side with the data point cloud converted to a 

mesh that accurately represents the feed surface.  The sample was then run through the 

same software as the rest of the research conducted in this study with a final image 
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volume value derived and then converted to an image weight value.  The scale-measured 

weight value was 4.99 kg and the computer-generated weight value was 4.9928 kg. 

 
Figure 2.11 – A 4.99kg test scan shown in A, the depth map of the test scan data shown 

in B, and the data point cloud converted to a mesh model shown in C. 

 

This study demonstrates potential for the use of imaging to measure feed intake, 

feed volume, and feed weight.  Future studies should address how the system functions in 

open feed bunks with multiple cows entering and exiting throughout the day as well as 

studying how feeding behaviors affect system accuracy.  Facial recognition techniques or 

RFID may be used to identify when animals enter or exit the feed bunk and are actively 

eating.  Separation panels extending from headlocks may be necessary if issues occur 

with cows entering their neighbors’ defined areas to steal feed.  Variations in TMR 

content and density would necessitate a change in calibration when making major ration 

changes or in evaluating rations across farms.  This research was conducted in a 

laboratory setting. Future experiments should carefully monitor changes in TMR density 

that could result from sorting of the ration by cows thus changing the forage-to-

concentrate ratio and possibly the moisture content in the feed bunk as well. Changes in 

ration density through time represent a potential technical challenge for this approach. 
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CHAPTER III: POTENTIAL FOR AUTOMATED MONITORING OF 

GRADUAL CHANGES IN DAIRY COW BODY CONDITION SCORE 

The body condition score of dairy cow provides a great deal of health information 

concerning the individual dairy cow.  The human visual scoring scale utilized in body 

condition scoring (BCS) was not developed until 1982.[60]  Since then, fervent research 

has been conducted to automate the process of BCS.  Attempts in recent years have been 

directed at deriving a BCS from 2D image information.  The results of previous studies 

confirm that 2D BCS is indeed viable utilizing image data, which has since progressed 

towards developing 3D BCS systems as cameras and computers available have increased 

in technology and capability while decreasing in upfront cost.  Studies that have 

attempted automated 3D BCS have included a human element in the scoring process at 

some point, which does not make them fully automated.  In order for a system to be fully 

automated, it must be able to collect, process, and analyze the data autonomously. 

The system developed in this research does just that and produces a score 

comparable or superior to the human visual score.  The main goal of this system is full 

autonomy, but equally as important is observing the ability of the system to detect and 

monitor the gradual change in BCS scores for an entire herd of dairy cow for an extended 

length of time.  It is essential for an automated BCS system to be able to both accurately 

produce BCS scores and to monitor the gradual change in these scores for the individual 

cow, if such a system is to be reliably incorporated in dairy operation management 

decisions regarding individual cow health and performance.  The end automated system 

was developed over several iterations of testing and studied over an observational period 
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of several months with the University of Kentucky Coldstream Dairy Research Farm 

dairy herd.  

Concurrent with the autonomous data recordings, human visual BCS scoring from 

three independent scorers was also collected once a week per scorer for this same period 

in order to monitor the variability in BCS over an extended period of time for human 

scores.  In this manner, it was possible to validate the computer-generated BCS values 

against those from the visual scoring in order to ensure that the processes and algorithms 

utilized in generating an automated score were indeed satisfactory.  As well, the human 

scores were observed comparatively against the computer-generated scores so that the 

changes in BCS for each individual cow could be analyzed as to how the scoring changed 

over an extended period of time.  The hope here was to be able to monitor the gradual 

change in BCS as the body condition and lactation cycle of the cow changed.  In order to 

observe the correlation of the lactation cycle with BCS, the days in milk (DIM) was 

recorded for every individual cow in the herd for the observational period. 

3.1 Body Condition Score (BCS) 

The 5-point BCS scoring system, also known as the United States Body Condition 

Scoring (USBCS) system, used in this research was developed in 1982 by Wildman et 

al.[60].  The subjectively visual based BCS scale goes from 1.0 to 5.0 in increments of 

0.25.  One full point of body condition equals 100 to 140 pounds gain in body 

weight.[61]  The BCS provides an estimation of the fat stores and energy status of the 

cow.  This is important particularly in early lactation, as cows cannot eat enough to meet 

their energy needs during this time.  The extra body fat is essential in helping to provide 

energy and milk production as the cow recovers post pregnancy. The BCS of a cow 
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should typically not change over an annual range from its highest point to lowest point by 

more than a full point on the scale, or, respectively, from just before calving to a few 

months post pregnancy when the fat stores of the cow will be at their highest and lowest.  

As long as the same scorer is used each time and the scoring system remains consistent, 

then the scores and information gained can be very useful in monitoring the health of a 

cow.   

The BCS process directs the scorer to view certain anatomical sites in the cow’s 

pelvic and loin areas for visual cues from which to ascertain a BCS value.  Kellogg[61] 

provides descriptions of various BCS values that can be assigned to the cow as follows: 

 1.0 – Deep cavity around tailhead. Bones of pelvis and short ribs sharp 

and easily felt. No fatty tissue in pelvic or loin area. Deep depression in 

loin. Essentially just skin and bones; very emaciated.  

 1.5 – The cow, with a body condition score of 1.5, is ideal for 

demonstrating the key indicators, but little else. Each vertebra is sharp 

and distinct along the backbone. The short ribs are also visible as 

individual bones. The ligaments connecting the sharp and well defined 

hook and pin bones to the backbone are easily seen. Her thurl is 

extremely dished in and the area on either side of the tailhead is sunken 

and hollow. There are folds of skin in the depression between the tail 

bone and pin bone. This cow is too thin, will not milk well or reproduce, 

and is most likely unhealthy. 

 2.0 – shallow cavity around tailhead with some fatty tissue lining it and 

covering pin bones.  Pelvis easily felt. Ends of short ribs feel rounded and 
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upper surfaces can be felt with slight pressure.  Depression visible in loin 

area.  The cow is too thin. She may be in good health, but her 

reproduction and milk production may suffer from a lack of body 

condition. Her backbones are easily seen, but they do not stand out as 

individual vertebra. The short ribs are also distinct and the scalloping at 

the edges is very apparent. The thurl is very hollow, with prominent hook 

and pin bones. The ligaments holding these bones to the back are very 

sharp and distinct. The spot where the thigh bone meets the pelvis is 

obvious, but unlike the BCS 1.5 cow, there is a little flesh here. The area 

on either side of the tailhead is hollow with folds of skin in the depression 

formed by the pelvis and tail.  Still a thin cow which will suffer from low 

milk yields and poor reproduction capability, but may be healthy. 

 3.0 – No cavity around tailhead and fatty tissue easily felt over whole 

area.  Pelvis can be felt with slight pressure. Thick layer of tissue 

covering top of short ribs which can still be felt with pressure.  Slight 

depression in loin area.  This cow is in ideal condition for most stages of 

lactation. The vertebra are rounded, but the backbone can still be seen. 

There is between a half inch and an inch of tissue covering the short ribs. 

The edges of the ribs are rounded and not as sharp as the BCS 2.0 and 2.5 

cows. Hook and pin bones are easily seen, but are round instead of 

angular. The ligaments connecting them to the backbone form clear 

boundaries between the forward and rear pelvic areas, but the fat covering 

makes them appear smooth and round. The thurl is dished, but not to the 
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same extent as in the thinner cows. The area on either side of the tailhead 

is hollow, but the folds of skin are not as distinct.  A cow in the range of 

3.0 to 3.5 is considered to be healthy, with good milk yield and 

reproduction capability. 

 4.0 – Folds of fatty tissue are seen around tailhead with patches of fat 

covering pin bones.  Pelvis can be felt with firm pressure.  Short ribs can 

no longer be felt.  No depression in loin area.  Although many producers 

want their cows to be heavy at calving, research here [in the United 

States] and in England shows that fat cows lose more condition, eat less, 

and have more post-calving problems than cows that freshen at half a 

condition score lower. A BCS 4 cow looks fleshy. Her back appears 

almost solid, like a table top. The short ribs still form a shelf, but they 

cannot be seen as individual bones and only felt with deep palpation. The 

hook and pin bones are rounded and have obvious fat padding. The area 

on either side of the tailhead is not hollow and there are no skin folds. 

 5.0 – Tailhead is buried in thick layer of fatty tissue.  Pelvic bones cannot 

be felt even with firm pressure.  Short ribs covered with thick layer of 

fatty tissue.  An obese cow is at high risk for metabolic problems, 

lameness, and will most likely remain open for months at a time. Her 

backbone and short ribs cannot be seen and only felt with difficulty. The 

shelf formed by the short ribs is well-rounded. Her thurl is filled in. The 

hook bone looks like a ball and the pin bone is buried in flesh. Fat 

deposits at the tailhead give her a dimpled appearance. 
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Generally, the visually based BCS scoring method indicates that a score of around 3.0 is 

optimally what is being sought after. Anything less than this is too thin and anything 

higher is too fat.   

On the lower end of the scale, there are cows that are malnourished and whose 

reproduction may suffer from a lack of body fat stores.  She may milk fine currently, but 

this may suffer if not corrected.  This can lead to health concerns both for her and for any 

calf she may be with.  On the higher end of the scale, there are cows that are obese.  

These cows may be at risk for metabolic issues along with decreased fertility.  Being 

obese will depress their appetite and can even lead them to go off feed while calving.  

Keeping the BCS around 3.0 allows the cow to have moderate body fat stores while 

keeping a healthy appetite.  The health conditions associated with a cow having this BCS 

score include items such as the cow is not stressed, should have no metabolic or other 

health issues, and should be able to go through pregnancy and lactate fine while 

continuing to maintain a good feed diet. 

3.2 Machine Vision Based Automated BCS 

 Several attempts have been made at developing an automated BCS system which 

utilizes a machine vision camera to score the cow.[62,63,64,65]  In order for such a 

machine vision based system to be deemed viable, there are several criteria that optimally 

should be met in an ideal system.  First, the system must be relatively affordable and easy 

to install and operate for it to be adopted.  Second, it must provide accurate BCS scores 

well within the range of human error of 0.25 between independent scorers.  Third, the 

system must be able to integrate with other precision dairy farming technologies to 

provide a broader system for better and more informed management decisions.  Finally, it 
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must be able to collect, process, and store individual records for each cow to assist in 

future monitoring and aid in cow history referrals which influence individual cow 

decision making.   

The methods tested can be broken down into the two categories of behind view or 

top view approaches.  The method of behind view is akin to the human visual scoring of 

cow as it relies upon anatomical information obtained from the hips, hooks, pins, and 

tailhead regions of the cow body, but at a perspective normal to the rear of the cow and in 

line with the spine of the cow.  The research conducted by Krukowski[62] is an example 

of this behind view approach where a time-of-flight camera was employed in order to 

obtain data samples of cow body for BCS scoring.  Such systems have been tested to 

within an accuracy of half of a point on the 5-point BCS scoring scale.  These results 

prove that the majority of information necessary for determining an accurate body 

condition of the cow are located in the region between the tail and the hips. 

The behind view approach does incorporate the majority of anatomical points 

employed in visually based scoring, but it does not take into consideration cow anatomy 

beyond the hips nor does it take into consideration greater emphasis on the region 

between the tail and hips where the fat reserves are typically stored.  The behind view 

approach is very similar to the current human visual calculation of BCS, but has 

limitations in the ability to see all the necessary anatomical structures necessary to 

provide the most accurate score possible.  When considering just the rear section, the 

tailhead and pinbone are mostly used for scoring along with some information from the 

hook bones but the vertebrae and the line between the hook bone and pinbone cannot be 

seen with this system setup and, therefore, are not used in accurately determining a BCS. 
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The method of top view captures the entire contour of the cow in an image frame 

from some point above the cow’s body, mainly ensuring that the rear portion of the cow 

is collected as this is where the majority of anatomical structures necessary for a proper 

score are located.  The added benefit of a top view over a behind view is that the sides of 

the cow can be added into the estimated BCS.  This is even more like the human visual 

scoring as the human scorer has the ability to view all sides of the cow in order to provide 

a more accurate score.  The top view imaging approach still incorporates the anatomical 

information necessary for proper scoring, but only in a 2D format when utilizing 

traditional camera technologies for data capture, which can make it difficult to get a good 

visual of the tailhead, pinbone, and the cavity between the two for scoring.  The research 

conducted by Bewley[10] is an example of this top view approach where 23 anatomical 

data points were manually identified in 2D grayscale color image data samples collected 

and then a BCS score derived from the angles between the points. 

The research by Halachmi et al.[63] is an example of a more automated top view 

system employing the use of polynomial curve fitting to the cow contour information of 

2D thermal images for BCS scoring.  The cow contour boundary in these thermal images 

can be separated from the background information and then used for scoring.  The ability 

to score this contour boundary, either manually or with automated processes, has been 

proven to be as accurate as visual scoring to within half of a point on the 5-point BCS 

scale.  The ability to reduce this scoring error range is of importance if automated scoring 

systems are to ever be fully deployed in dairy operations for scoring on a regular basis.  A 

major drawback of both the work by Bewley and Halachmi et al. is that the cow had to be 
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stopped under the camera for data collection.  This inhibited the natural movement of the 

cow and the workflow of the dairy. 

A more competent system would allow both the cow and workflow to proceed as 

they normally would within the imaging scene.  The work by Halachmi et al.[63] also 

indicates that it is not just the boney anatomical points of the cow’s body that are 

necessary in deriving an accurate BCS, but that the entire body contour between these 

points are also a critical element in proper scoring.  Therefore, it has been determined 

from previous research that the best approach moving forward is to utilize an imaging 

method that can collect information about the 3D shape of the cow’s body, such as with a 

3D machine vision camera, for automated BCS scoring. 

The approach considered in this research study was geared towards a 3D map of 

the body contour of the cow.  This will take the previous work from 2D and add a depth 

component that will incorporate the best of both behind and top views.  This added 

dimension will give the most realistic body contour possible and therefore the most 

accurate as it includes anatomical reference points, such as the spinal ridge, the hook 

bones, and the tailhead, which are essential in scoring.  Even the human visual inspection 

cannot compete with the ideal, fully automated computational 3D BCS system.  The 

systems developed and tested for this study included several modifications that would 

ultimately derive a solution that met our research needs.  Though several small 

modifications were made during this process, only two preliminary systems developed 

and tested are discussed in this chapter along with the developing, testing, and analysis of 

the results for the final system utilized.  The preliminary systems discussed are provided 
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here as a reference to show what did and did not work, including what elements of these 

systems helped to shape the final system design. 

The end desire of this research was to have a system that the individual dairy 

producer could install and operate with minimal learning of the system or involvement.  

During milking, all the energies of the individual worker are needed to keep the process 

flow timely and with minimal problems as most production facilities are very hands-on 

during the milking.  Therefore, the end system goal was to have a system designed to 

work on its own with minimal user input.  Having a system that does not require the user 

to constantly leave their other obligations to check on or use the system allows them to 

focus on maintaining as productive and efficient an operation as possible.  Stopping every 

cow to conduct BCS scoring only adds costly time to the process and stress for the 

animal.  Therefore, the walkway was left unaltered to allow cow to move freely beneath 

the system as they normally would. 

A fully automated BCS system is essential to precision dairy farming as it can 

potentially be used as frequently as on a daily or per milking basis to monitor the gradual 

changes in BCS score of every individual cow.  The end system developed in this study 

was developed to operate at every milking, twice per day, to ensure reliable BCS scorings 

and in order to collect data that could be used to monitor these gradual changes in BCS 

for every individual in the herd over any time frame review of the cow’s data history 

selected by the system user for both short and long term analysis.  Recording data twice 

per day also allowed for any possible unanticipated downtime of the system, such as the 

system being offline due to a power outage or component failure.  In these instances, the 

maximum amount of time that the system would be offline was expected to be one week. 
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3.3 Initial System Architecture Designs 

The first step in this process was to select the site for system setup and data 

collection.  The site chosen needed to not impede the normal movement of the cow, could 

record data samples for every individual animal without system movement, and had to 

have external variables, such as lighting and weather elements, easily controlled to 

minimize their possible influence on the results.  The Holstein milking herd located at the 

University of Kentucky Coldstream Dairy Research Farm was selected as the basis for 

data collection.  The cow herd was milked twice a day, once in the morning 

approximately from 4:30am to 6:30am and once in the evening approximately from 

3:30pm to 5:30pm.  After leaving the milking parlor, all cow exited via a roofed walkway 

walled on both sides and which included a concrete slab floor.  This walkway was 

selected for system placement due to the restrictions to movement that it placed on the 

cow, the possibility to maintain consistent lighting conditions in the walkway if needed, 

and the protection provided to the system from the natural elements.   

The focus of the system architecture was to have the system remain fixed above 

the walkway while the cow passed beneath.  Since we needed the cows to continuously 

move through the scene, it was decided to place the system at approximately the mid-way 

point of the walkway length.  At this position, cow tended not to stop, but instead 

consistently and at a moderate pace walk through the scene.  Since the system was placed 

in a stationary position mid-way of the walkway length, having only one direction of 

motion for moving objects into and out of the scene reduced the error possibility of not 

being able to collect the entire cow body in image data as it passed beneath the system.  

The stationary nature of the camera system did impose a field of view limitation on the 
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camera’s image frame.  Thus, the cameras were positioned at a distance high enough 

from the floor of the walkway that the entire width of the walkway could be captured at 

the same height that the sides of the cow could rub against the wall on either side.  This 

ensured that the entire top view of the cow in the scene would be captured even if the 

cow veered to the extreme left or right side of the walkway. 

Our initial approach was to incorporate a two camera stereovision based approach 

which operated on the basis of optical flow.  Optical flow is the apparent change of 

velocities of movement for objects in a field of view, which arise from the relative 

motion of objects, such as the cow in the scene, and the viewer, such as the cameras.  

This relative motion can provide important information about the spatial arrangement of 

the objects viewed and the rate of change of this arrangement.  Discontinuities in the 

optical flow can help in segmenting images into regions that correspond to different 

objects. 

The cameras used for the stereovision system were two Prosilica™ GC640 

cameras connected via Category 5 Ethernet to a computer which stored the grayscale 

intensity images sent from the camera system.  The two camera stereovision based 

approach was abandoned after testing revealed lighting and imaging issues associated 

with calibrating two independent cameras to operate in a dynamically lit scene.  The 

background image pixel intensities could not remain static between the two cameras or 

individually for each camera, which made the background subtraction of image data not 

associated with the cow, such as the walls and floor, difficult. Instead, the stereovision 

system was altered to operate with a single Prosilica™ GC640 camera so that a single set 

of camera adjustments and parameters needed to be considered.  This reduced the 
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problems associated with having to perfectly align the setup conditions of two cameras, 

which had become repetitive manual adjustments to both cameras and to the camera 

operating parameters.  

System automation was realized by allowing the optical flow processing to have 

complete control over data collection.  The software would monitor the central horizontal 

row of pixels from one frame to the next in order to determine if a moving object was 

present in the scene.  Data recording would start when significant change in pixel values 

occurred in this monitored region and data recording would stop when pixel values 

remained consistent in this monitored region from one frame to the next.  The optical 

flow processing method used worked adequately, but there were alignment and data 

collection errors in the image merging process that could lead to miscalculating BCS.  

The most important area of the cow’s body for scoring lay around the tailhead region.  In 

some images, the switching of a tail or erratic twist of the cow’s body caused the tailhead 

region of the resulting image to not accurately portray the true body contour.  The 

prominent issue with the optical flow process was the fact that data recording would 

occur when no object was present in the scene.  The highly sensitive nature of the pixel 

value monitoring scheme meant that the slightest change in pixel values for the 

monitoring region would cause the system to record multiple false samples where no cow 

was present.  Simple water and other fluid movement across the alleyway floor gave rise 

to the floor being too much of a reflective surface for the automation process chosen.  

This reflective surface caused pixel values in the intensity image to change as the fluid 

moved, which would cause the system to record unnecessary data samples. 
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The alternative approach was to instead use a light source of a constant value for 

which to monitor for optical flow. A laser light source along with a textured, plastic 

diffraction medium that changed the point-source laser beam into a stripe, was 

incorporated in order to cast a stripe of the laser beam onto the floor perpendicular to the 

direction of cow motion through the walkway.  In this manner, when the field of view 

beneath the laser stripe is empty, only a straight line is seen.  Once a cow enters the field 

of view and the straight line of laser light is obstructed by the cow body to create a 

curved line of laser light, the data collection begins.  When the laser light returns to a 

straight line in the monitoring region, the data collection stops.  By incorporating the 

monitoring of the change of the laser light line for system automation and data collection, 

the system had now become a structured light system.  The goal by doing this was to 

have the capability of creating a 3D contour map of the cow’s body still using optical 

flow to automate the process, but now monitoring the shift in the constant intensity value 

laser line in order to automate data recording.  In order to achieve this, three 7mW, 

750nm lasers were added to the system.  This system can be seen in Figures 3.1-3.2. 

The use of this laser light source did significantly reduce the number of false data 

collections, but it did not eliminate them.  It did not, however, reduce the optical flow 

image merging errors as had been expected.  The cow contours still did not adequately 

reflect the true outline of the cow body.  The recording of multiple cow also occurred on 

occasion as well as missed recording if a cow went too fast across the image scene.  Due 

to these continued errors with using an optical flow based approach, eventually it was 

decided to abandon this approach and to instead search for a different camera and 

machine vision process. 
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Figure 3.1 – BCS systems shown (side view). 

 

 
Figure 3.2 – BCS systems shown (view up from image scene). 
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3.4 Final System Architecture Design 

The final system architecture design utilized for the automated BCS system 

research incorporated the use of a PrimeSense™ Carmine 1.08 RGB+depth sensor.  The 

use of a structured light camera system that employed the use of a calibrated light pattern 

that illuminated the entire scene greatly enhanced the quality of samples collected.  

Instead of relying on pixel intensity values to change, this system could use its depth 

channel to monitor for foreground movement.  Therefore, if an object moved across the 

scene that had a closer distance to the camera than the concrete floor, then it would 

trigger data collection.  This camera also greatly reduced the problem of creating a depth 

map of the cow body.  With the Prosilica™ camera, the software would have to create an 

accurate merged image model of the cow contour first and then involve computationally 

time expensive algorithms in order to resolve the depth map of the cow contour.  With 

the PrimeSense™ camera, the incorporation of an NIR laser structured light constellation 

of predefined points meant that the problem of depth mapping had already been defined 

in the design of the camera.  Based upon the change in position of the constellation of 

infrared light points from the manufacturer’s predefined known constellation mapping, 

the distance to objects in the scene from the camera sensor could be determined in real-

time, with the camera sensor being rated at up to 60 fps operational speed. 

The BCS system is shown in Figures 3.1-3.2.  The PrimeSense™ camera was 

positioned in the walkway in the same location as the previous imaging device, but in 

such a manner that the horizontal direction of the camera was the axis of motion for cow 

to cross the scene and the vertical direction of the camera was the axis that was bound by 

the walls of the walkway.  Therefore, the horizontal direction was 640 pixels in length 
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and the vertical direction was 480 pixels in width since these are the dimensions for the 

sensors of the PrimeSense™ RGB and depth cameras. The camera was mounted at a 

distance of 3.05m from the lens to the floor of the alley way.  The camera was positioned 

at a distance high enough from the floor of the alley way that the entire width of the 

1.03m wide alley way could be captured at the same height that the sides of the cow 

would rub against the wall on either side.  This height averaged to approximately 1.5m 

from the camera lens to the back of the cow. 

This camera system was setup to automatically start the data recording software at 

4am and 3pm and to automatically stop the data recording software at 6:30am and 

5:30pm.  The lighting in the walkway was also controlled via the camera framing by a 

single lighting element that was designed to turn on and off at the same times as the 

software was via an electrical outlet timer.  The data collected by the camera was sent to 

a computer in a separate building which houses the administrative office of the farm.  The 

camera was connected to the computer via two 20m sections of Tripp Lite™ USB 2.0 

Active Extension Cable (Tripp Lite, Chicago, IL).  The USB 2.0 extension cables were 

needed as the distance from the camera to the computer was further than the 5m 

operating distance limitation of USB 2.0 cabling.  The extension cable was connected to 

the camera via a USB 2.0 hub.  The camera, lighting element, and USB hub were housed 

on an 80/20® aluminum frame which was fastened just beneath the roofing covering the 

walkway, and anchored into the walls on both sides of the walkway via truss joist anchor 

plates.  The 80/20® aluminum frame also allowed for minute adjustments to the position 

of the PrimeSense™ camera in the three Cartesian axial directions of rotation ensuring 
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proper alignment of the camera with the walls and floor of the walkway and nominal 

positioning in height above the walkway to capture the full width of every cow. 

Due to the physical restrictions of the walkway’s dimensions and the 

PrimeSense™ sensor’s capabilities and limitations, the entire length of cow could not be 

captured in a single image frame.  Instead, software was developed to record data 

samples as the cow passed beneath the system.  The software developed for this research 

recorded the initial background image data as the first image file of the sample.  Then, it 

successively recorded alternating depth and texture, or RGB color, frames.  The signals to 

start and stop recording were automated via the use of four truth lines in the image scene. 

A screenshot of the software with the four truth lines is shown in Figure 3.3. 

 
Figure 3.3 – BCS software showing truth lines that start/stop recording. 
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The cow always walks from the left side of the scene to the right side.  The truth lines 

represent the number of pixels in that particular column with a depth less than the 

background or equal to it.  If the depth value of an individual pixel in that column 

changes to a value less than the background depth value, then it is said to be “on” or 

equal to “1.”  If the depth value of the individual pixel does not decrease from the 

background depth value, then it is said to be “off” or equal to “0.”  When the pixel depth 

value is equal to the background depth value, it remains “off” and the answer to the 

question of, “Is the percentage of ‘on’ pixels greater than the threshold?,” remains 

“false.”  Once the percentage of “on” pixels exceeds the minimum threshold, percentage 

required for that column, 5% in the software used for this study, then the question 

becomes “true” and its value is set to “true.”  When the number of pixels on in the first 

three truth lines reaches the minimum threshold, a data sample starts recording. 

For this system setup, the minimum threshold for each truth line was 100 “on” 

pixels.  The truth lines must be activated from left to right in order to properly record a 

data sample.  As the cow moves across the scene, the fourth truth line becomes populated 

with “on” pixels as well.  Eventually, the tail end of the cow passes the first truth line, 

which causes the number of “on” pixels to decrease below the minimum threshold 

needed and simultaneously causes the software to stop recording data for that sample.  

The cow continues to walk across the scene from left to right until all four truth lines 

return to values below the minimum threshold. 

Once this occurs, the software is ready to record again once the initial recording 

condition is met.  If the cow does not leave the scene before 300 depth and 300 texture 

frames have been recorded, the software is programmed to automatically stop collecting 
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data for that sample so that its file size does not become significantly large, as each image 

frame collected was 225KB in size.  This limited the file size of a collected sample to 135 

MB.  With the software developed for this system and the data transfer speed limitation 

from the use of such a long section of USB 2.0 extension cables, the camera’s operational 

speed was reduced to operate at 30 fps, which gave the cow 10 seconds to move across 

the scene.  The average time for a cow to pass through the scene was greater than 1 

second and less than 5 seconds with most cow passing through in approximately 2 

seconds. 

 The use of 4 truth lines to initialize and cease data capture were a direct result of 

attempting to reduce the number of false data captures.  The previous systems tested 

utilized only a single line of observation for the automation of the recording commands.  

Because objects of variously smaller sizes than the length of a cow could pass beneath 

the system, several recordings of objects not containing a cow were collected with these 

previously tested systems.  The use of 4 truth lines ensures that only an object of 

sufficient size to represent a possible cow body in the scene can trigger the collection of 

data samples.  As well, the use of a single line of observation was not able to determine if 

the animal in the scene was going in the correct direction for data capture in the walkway.  

With the setup of this system, all samples collected must have the cow walk in the same 

direction for data recording.  Any animal going the reverse direction would lead to a 

sample that cannot be properly scored.  The use of these 4 truth lines and having the 

software monitor the order in which they are turned “on” ensures proper data collection 

and a reduction in the size of data collected for any false samples obtained by a cow 

going the wrong direction in the walkway. 
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Incorporated in the depth images captured was a pre-determined background 

subtraction method.  The automated background subtraction begins by building a 

background image over several video frames in real-time.  The use of non-overlapping 

blocks of 1,200 camera depth frames was chosen for which to build the background 

image. The background image was then continuously updated to avoid the possible error 

of one particular background image affecting the data collection results for an entire 

milking data set. The background image acquisition began by filling a circular cue with 

the 1,200 most recent depth frames and then searching these 1,200 depth frames, on a per 

pixel basis, to find each pixel’s supremum.  Thus, if the depth frame sequence used to 

develop the background image included a cow walking across the field of view and at 

least one depth frame included the floor and walls of the scene, then there existed at least 

one depth measurement of the walls and floor in the background image stack.  Pixels with 

a distance greater in length than any point on the animal were preserved by the supremum 

operation as background pixels.  Any pixels less than that distance were identified as 

pixels associated with the cow body.  Figure 3.4 shows an example depth frame and 

texture frame from the data collection.  As can be seen in the depth image, the cow body 

is already segmented out from the background. 

   
Figure 3.4 – Example segmented depth frame and texture frame captured with the 

PrimeSense™ Carmine 1.08. 
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In some situations, there existed some pixels that did not have at least one depth 

estimate over the depth frame sequence used for creating the background image.  For 

those pixels, hole filling was performed in the composite depth image using a process of 

inpainting where pixel depth values surrounding the hole are copied into the hole 

locations.  The next step of developing the background image involved the use of the 

image erosion process, which expands lighter shades of gray outward to mask 

neighboring pixels judged to be further away.  In the PrimeSense™ depth camera sensor, 

pixels along edges in the scene tend to fluctuate between the frontside and backside of the 

edge, for which the supremum operation preserved the backside.  The frontside edge was 

not accounted for in the composite image, thus applying the erosion operation preserved 

the frontside of the edge.  The final step of building the background subtraction involved 

adding a threshold buffer to the background which subtracts values beyond a fixed 

distance from the sensor out of the depth image captured.  Therefore, any pixels closer 

than this threshold were identified as cow pixels. 

3.5 Automated BCS Software 

The processing steps needed to convert the raw data samples into information that 

could be assigned a BCS value did not take place immediately after data sample 

collection.  Instead, the samples were saved to disk by date and sample number and then 

later processed using MATLAB® where the data was loaded by date and sample number.  

The software could be ran for a single day and sample or for as many consecutive days 

and samples as desired.  This flexibility was needed as the processing time needed to 

process the image data and generate a BCS for a single sample was approximately 3 

minutes.  With total daily recordings averaging 170 samples, it took several hours to 
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process a single day’s worth of data.  This allowed the computer’s full processing 

potential to be focused on data collection during milking times and then shifted the 

emphasis to BCS generation afterwards when data analysis was more power and time 

efficient.  As well, the samples as collected were not associated with cow identity.  As the 

main goal of this study was to monitor the gradual change in BCS on a per animal basis, 

the samples needed to be reorganized by cow identification first.  Therefore, immediately 

processing the samples after data acquisition would not have proved useful since this 

study was not as interested in real-time BCS scoring, as this has already been proven 

feasible, but instead was interested in the long-term view of BCS on a per cow basis. 

In order to generate a BCS, the sample must undergo several processing steps.  

The first step was to utilize the last depth image of the sample to create a depth point 

cloud.  In order to derive a value from which to determine a BCS score, the approach 

used in this system would need to next determine the difference between a smoothed cow 

body surface and the actual cow body surface represented in the depth point cloud.  By 

finding the difference between the two surfaces, it can be estimated how much of the fat 

reserves are missing from the body condition.  The process of determining the difference 

between a smoothed sample surface and the original sample surface is known in the study 

of aggregates as the angularity of the sample.  With an aggregate, the surface of the 

material can be categorized based upon the smoothness of its surface.  Smoothness is 

determined by fitting a smoothed curve against the angular surface of the aggregate 

sample.  The differences between points along the smoothed surface and the actual 

surface are then taken with respect to the center of the aggregate sample.  The total 

difference represents the amount of the actual aggregate surface that did not fit along this 



70 

 

idealized smooth surface.  It can be determined from this missing aggregate material 

difference value just how angular the surface is of the sample.   

If we refer back to the work of Halachmi et al.[63], it can be seen that aggregate 

angularity is practically the same manner undertaken in that study.  Instead of using an 

aggregate, the 2D contour of the cow body is used as the sample.  A fitted curve can then 

reveal how angular the cow contour is with respect to a smoothed version of the cow 

contour.  In our study, the research expands upon this fitted polynomial approach into the 

realm of 3D.  Instead of fitting a polynomial curve to just one position along the cow 

body, the process in this research fits a polynomial curve to every transverse cross-

section of the cow body between the hips and tail. 

If selected to undergo further processing, the data point cloud was then 

reorganized to align the individual data points with their nearest integer column value.  

This realignment of individual points allowed the data cloud representing the body to be 

dissected into unique transverse columns consisting of sufficient data to represent the 

cow’s dorsal body curvature at that location, much like a computed tomography (CT) 

scan is capable of neatly dissecting the view of internal organs for better viewing at 

different distances through the body.   

In order for an integer column value to be considered as containing a sufficient 

number of data points to properly construct a fitted polynomial curve, a lower minimum 

limit of 20 data points for each column was set in the software. The minimum limit 

ensured that columns containing only a few data points would not be able to insert 

erroneous fitted polynomial curve errors into the sample.  As well, to ensure that the 

column being observed actually covered the entire width of the cow in the sample, a 
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lower minimum limit of 150 was set for the distance between the minimum and 

maximum row values of the data points observed for each candidate column considered.  

Now that each distinct column had a sufficient number of data points to accurately 

represent the curvature of the body, a curve could be fitted to the data points which 

represented the estimated curvature of a smoothly surfaced cow body.  Examples can be 

seen in Figures 3.5-3.8 of these shifted data points shown as distinct cross-sections of the 

cow body with the collected 3D data points shown in red and the fitted polynomial data 

points shown in blue.  

 
Figure 3.5 – Transverse cross section example showing 11 distinct cross sections across 

the body of the cow for data points in the area around the hips of the cow body (red) and 

the respectively fitted parabolic curves (blue) for each of the 11 distinct cross sections. 
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Figure 3.6 – Cross section showing data points for the area around the shoulders region 

of the cow body (red) and fitted parabolic curves (blue) to these data points. 

 

 
Figure 3.7 – Cross section showing data points for the area around the hips region of the 

cow body (red) and fitted parabolic curves (blue) to these data points. 
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Figure 3.8 – Cross section showing data points for the area around the tailhead region 

of the cow body (red) and fitted parabolic curves (blue) to these data points. 

 

The use of third-order polynomials was selected for the curve-fitting process.  A 

higher order polynomial was too unstable to accurately represent the cow body curvature 

along the various transverse cross-sections of the cow body and a lower order polynomial 

was not able to accurately follow the unsymmetrical curvature across the cow body.  The 

difference between the fitted polynomial body curve data points and actual body curve 

data points was then determined, which represented the lack of possible fat reserves that 

could have been fitted into that region.  The absolute value of the deviation for each data 

point, i, along the cow contour, c, from the fitted parabola, p, along a single column, d, is 

expressed in Equation 3.1. 

 𝑑 =
1

𝑁
∑|𝑐𝑖 − 𝑝𝑖|

𝑁

𝑖=1

 (3.1) 

 

The value of N is only dependent upon how many data points exist for the current column 

under inspection.  Equation 3.1 is also known as the mean absolute error (MAE) for that 

column. 
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Example output point clouds with the original data points shown in red and the 

fitted polynomial data points shown in blue can be seen in Figures 3.9-3.13 where the full 

set of data points are shown on the left side of the image and the reduced set of data 

points used for BCS scoring are shown on the right side of the image.  Several possible 

bad candidate samples for BCS scoring are shown as well as samples of ideal point 

clouds which the software moves forward for scoring.   

Figure 3.9 and Figure 3.10 show example point clouds where some excess tail 

data points are shown.  The extra points of the tail are removed by setting a minimum 

difference of 150 on the minimum and maximum row values, along the y-axis, at each 

transverse cross section column value, along the x-axis, less than 0.  Since the data points 

of the tail do not meet the criteria for minimum difference for column values less than 0, 

they are removed.  The reduced data point clouds shown on the right side in Figure 3.9 

and Figure 3.10 provide examples of ideal samples that move forward for further 

processing. 

Figures 3.11-3.13 show example data point clouds where the data does not 

include the appropriate cow body region necessary for BCS scoring. The software 

recognizes the point cloud of Figure 3.11 as a bad sample because several of the first data 

points encountered have y-values that are at or exceed 200 pixels left of the 0 pixel y-axis 

(y ≥ 200).  The software recognizes the point cloud of Figure 3.12 as a bad sample 

because several of the first data points encountered have y-values that are at or exceed 

200 pixels right of the 0 pixel y-axis (y ≤ -200).  As well, there are multiple cows in the 

sample.  Since the alleyway is only wide enough for one cow at a time to proceed 

through, the rear cow must nudge the front cow to move forward, which is typically done 
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by the rear cow pushing on the left or right side of the front cow.  This requires the rear 

cow to move its body to the far left or right of the image scene, thereby exceeding either 

the left or right y-value limits of the software (-200 ≤ y ≤ 200).  The software recognizes 

Figure 3.13 as a bad sample because several of the first data points encountered have y-

values that are at or exceed 200 pixels either left of the 0 pixel y-axis (y ≥ 200) or right of 

the 0 pixel y-axis (y ≤ -200).  Just as is shown in Figure 3.13, this is an excellent 

indication that the sample has stopped data collection mid-cow and has not collected the 

appropriate data points around the rear region of the cow.  By allowing the software to be 

able to determine good and bad samples for further processing on its own, this allowed 

the system to be even more autonomous and to save processing time. 

 
Figure 3.9 – A full data point cloud is shown (left) and the reduced data point cloud with 

tail data points removed shown (right) for which a BCS value is to be determined. 
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Figure 3.10 – A full data point cloud is shown (left) and the reduced data point cloud 

with extended tail data points removed shown (right) for which a BCS value is to be 

determined. 

 

 
Figure 3.11 – A full data point cloud is shown (left) and the reduced data point cloud 

(right) for a bad sample in which several of the first data points encountered have y-

values that are at or exceed 200 pixels left of the 0 pixel y-axis (y ≥ 200). 
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Figure 3.12 – A full data point cloud is shown (left) and the reduced data point cloud 

(right) for a bad sample in which several of the first data points encountered have y-

values that are at or exceed 200 pixels right of the 0 pixel y-axis (y ≤ -200). 

 

 
Figure 3.13 – A full data point cloud is shown (left) and the reduced data point cloud 

(right) for a bad sample in which several of the first data points encountered have y-

values that are at or exceed 200 pixels either left of the 0 pixel y-axis (y ≥ 200) or right of 

the 0 pixel y-axis (y ≤ -200). 

 

The last step of the automated BCS software was to derive a computer generated 

BCS value using the MAE values derived for a sample.  In order to do so, the range of 

columns to be included in the scoring had to be specified.  Since data points beyond the 

hips region of the cow are not necessary for derivation of BCS, we simply specified a 
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column range limit which generally falls within this region.  Therefore, the first column 

containing 20 data points or more was assigned to be the minimum column value, 

minimum x-value column.  From this column, the software then moves forward, in the 

positive direction along the x-axis, 499 more columns, for a total of 500 columns of data 

points included in BCS derivation.  The right side of Figures 3.9-3.13 include this cutoff 

500 column range in the plots shown.  

The specification of 500 columns was chosen rather than integrating software to 

search for the hips because developing such software was deemed too computationally 

time expensive for this system.  Identifying the data points associated with the hips in the 

point cloud can also be rather subjective when determining where the cutoff is to be 

located.  By specifying a predetermined large column cutoff value, the software is 

capable of including all of the columns across the length of cow from tailhead to hips in 

order to arrive at a final value that represents the total error difference between the 

smoothed cow body contour and the actual body contour within this region. 

Following the same logic as outlined in the work by Halachmi et al. [63], if a cow 

is fatter, her body shape is more likely to be round and therefore the parabola might fit 

the cow’s shape better and the MAE would be smaller.  Conversely, if a cow is thin, her 

body shape is less round and the MAE is larger.  The deviation from a parabola for each 

integer column value along the length of cow from tailhead to hips is calculated and 

stored in a vector. Once all MAE integer column values have been determined, then the 

software calculates the sum of all of the individual MAE values, d, to arrive at a total 

MAE, represented by A in Equation 3.2. N, which represents the number of columns 

summated, is generally anticipated to conclude at some value less than or equal to 500, 
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with the vast majority of samples able to be scored attaining the 500 column cutoff 

length. 

 𝐴 =  ∑ 𝑑𝑖

𝑁

𝑖=1

 (3.2) 

 

A is then used by the software to derive a computer generated BCS value by means of 

Equation 3.3, where S represents the computer generated BCS determined. 

 𝑆 = 7.9434 ∗ (𝐴−0.467) (3.3) 

 

Equation 3.3 was derived by the empirical analysis of human BCS values as observed 

against the total MAE, A, values derived.  The determination of S came about after 

comparison of several models of fit for the data of A versus human BCS.  The research 

conducted by Bewley[10] also determined that a non-linear relationship may be a better 

model fit than the linear model derived in that study.  The analysis of our research 

concluded the same results, arriving at a non-linear power model representation of the 

data as the best fit. 

The BCS was generated in the same manner for every sample collected from 

April 1, 2014 to November 7, 2014.  The samples were further analyzed on a per cow 

basis, viewing the variability of the BCS over time for both human visual scores and the 

computer generated scores.  Over this observational time period from April 1, 2014 to 

November 7, 2014, three independent human scorers manually scored every cow in the 

herd once a week on the same day when possible or at most within a few days of one 

another.  One of the manual scorers was able to consistently score the herd on the same 

day and at the same time throughout the study.  There were occasions where only this 

scorer or only 2 of the 3 scorers were available to score within a week timeframe, but the 

fact that this scorer remained consistent throughout the study ensured that the human 



80 

 

visual scores did not have any gaps or inconsistencies in the data.  These once weekly, 

manually derived BCS values were collected in order to have a known set of reference 

values for which to compare the computer generated BCS values against on a per sample 

basis. 

Variations existed between the independent human scores due to the inherent 

subjective nature of BCS.  It was therefore decided to average the human scores for each 

week together in order to mitigate some of the subjective nature of the scoring.  

Therefore, if one of the scores differentiated from the others by a value of 0.5 or greater, 

then this value was rejected from averaging as human scoring error was present in this 

independent score and instead only two values were averaged together.  If all three values 

were spread from one another by 0.5 or greater, then the scores from the previous weeks 

were reviewed to see which of the scores most closely matched a logical BCS value 

determination for that week.  The manual BCS scores of the three independent scorers 

were saved in a matrix arranged by date and cow ID.  These manual BCS values were 

initially collected outside of the software, so the manual scores matrix in the software had 

to be updated by user input. 

The software had been written to account for this user input, and therefore 

automated to be able to autonomously select the associated date of manual BCS values 

from the manual scores matrix to compare to the computer generated BCS values.  The 

manual BCS values were then plotted against the computer derived BCS values over the 

entire observation time period of testing and analyzed.  Shorter time frames could have 

been comparatively analyzed, but again, the main goal of this study was to determine if it 



81 

 

was possible to observe the gradual change in body condition of every individual cow in 

the herd over an extended amount of time. 

3.6 Automated BCS System Results and Discussion 

Over the seven month data collection period, a total of 116 unique cow were 

examined at various stages of lactation and body condition.  The plots of the manually 

derived BCS scores versus the computer derived BCS scores over time can be seen in 

Appendix A.  The results show similar trends of change for both manual and computer 

derived BCS values for each cow over the entire testing period.  The most notable major 

difference was that for the majority of animals tested the computer derived BCS values 

changed gradually and relatively smoothly over time whereas the averaged human BCS 

values tended to exhibit erratic changes over time.  These results indicate that the 

computer-generated BCS values may be more reliable than human BCS values, but 

further investigation was necessary in order to reach any conclusion with certainty. 

Figure 3.14 plots the computer-generated BCS values derived with the 

autonomous system compared with the averaged human BCS values.  An ideal mapping 

would achieve a parity, ŷ = y or y = x, between the two scoring methods.  The system 

developed in this research achieved a linear model fit shown in Equation 3.4. 

 y = 0.519x + 1.344 (3.4) 

 

Although parity was not achieved, the linear model fit does justify a strong model fit 

between the human BCS values and the computer-generated BCS values. 
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Figure 3.14 – Human BCS versus computer-generated BCS results. 

 

Figure 3.15 plots the computer-generated BCS residual values against the human BCS 

values.  Table 3.1 shows the residuals for the computer-generated BCS when compared 

to the human BCS. 
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Figure 3.15 – Human BCS versus residuals of computer-generated BCS values in 

comparison (y-ŷ). 
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Table 3.1 – Residuals analysis for the automated BCS system samples dataset1 

 

BCS 

Residual Total 

Per 

Division 

Total 

(%) 

Per Division 

(%) 

≤ 0.1 6258 6258 33.80 33.80 

≤ 0.15 9029 2771 48.76 14.96 

≤ 0.2 11386 2357 61.49 12.73 

≤ 0.25 13212 1826 71.35 9.86 

≤ 0.3 14598 1386 78.84 7.49 

≤ 0.35 15696 1098 84.77 5.93 

≤ 0.4 16438 742 88.77 4.01 

≤ 0.45 16985 547 91.73 2.95 

≤ 0.5 17389 404 93.91 2.18 

≤ 0.55 17677 288 95.46 1.56 

≤ 0.6 17889 212 96.61 1.14 

≤ 0.65 18029 140 97.36 0.76 

≤ 0.7 18154 125 98.04 0.68 

≤ 0.75 18238 84 98.49 0.45 

≤ 0.8 18312 74 98.89 0.40 

≤ 0.85 18352 40 99.11 0.22 

≤ 0.9 18395 43 99.34 0.23 

≤ 0.95 18420 25 99.48 0.14 

≤ 1 18440 20 99.58 0.11 

> 1 18517 77 100.00 0.42 
1Residual values for computer-generated BCS compared to human BCS. Second column 

is the total number of samples at or below the respective BCS residual value.  Third 

column is the total number of samples greater than the previous BCS residual value listed 

and the respective BCS residual value.  Fourth column is the total percentage of samples 

at or below the respective BCS residual value.  Fifth column is the total percentage of 

samples greater than the previous BCS residual value listed and the respective BCS 

residual value. 

 

It can be seen from the above residuals plot and table that the automated scoring system 

developed in this research has a slightly positive trend with increasing BCS value and 
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that the error range is within the range of previously developed systems whose residual 

BCS error was within 0.5 on the 5-point BCS scale.  The fully automated system tested 

achieved scores within 0.5 on the 5-point BCS scale for 93.91% and within 0.25 on the 5-

point BCS scale for 71.35% of the 18,517 samples that were able to be scored.  The 

research by Bewley[10] achieved scores within 0.5 on the 5-point BCS scale for 100% 

and within 0.25 on the 5-point BCS scale for 89.95%.  

The results of our study indicate that the automation process of our system could 

use some refinement.  While the results are promising in terms of the plausibility of a 

fully automated BCS system, further research into data sample preparation for scoring 

must be conducted.  It is our determination that although the accuracy of our automated 

system is reliable, a higher precision is compulsory.   In order to achieve this higher 

precision, a trade-off between the amount of data collection and software processing 

speed may be necessary.  Viewing a moving average of the BCS on a weekly or twice 

weekly basis instead of a daily or twice daily basis should remove the majority of 

variation in scores seen as well as provide a more reliable analysis of the gradual change 

in individual cow BCS over time.  Additionally, the use of more seasoned and 

consistently reliable human visual BCS scorers as opposed to novice scorers could 

greatly benefit the comparison index between human and computer generated BCS 

values. 

During the observational period, the DIM for each individual cow was also 

recorded.  By comparing the DIM to the BCS, the change in BCS over the lactation cycle 

could be monitored.  Instead of viewing these changes on an individual cow basis, the 

entire sample data set was utilized.  In this manner, we could observe a statistical average 
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BCS value as it correlates to DIM and vice versa.  A histogram of the total number of 

individual cow samples at a particular DIM is shown in Figure 3.16. The resulting plot of 

BCS with respect to DIM can be seen in Figure 3.17 for the computer-generated BCS and 

in Figure 3.18 for the human BCS, respectively. 

 
Figure 3.16 – Histogram counting the number of samples in the data set per DIM. 
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Figure 3.17 – DIM versus computer-generated BCS. 
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Figure 3.18 – DIM versus human BCS. 
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lactation stage, the amount of milk produced by the cow begins to steady and so does the 

amount of body condition on the cow.  During this stage, the BCS of the cow will reach 

its minimum expected value as the amount of available body fat reserves that can be 

converted into milk production are at their lowest.  Towards the end of this stage, the cow 

will begin to rebuild body fat reserves as her milk production begins decreasing.  The late 

lactation stage which is exhibited next by the cow is indicative of further decreasing milk 

production which leads to increasing body fat reserves and BCS scores.  The last stage of 

the lactation cycle is the dry period when the cow does not produce milk.  During this 

stage, the cow continues to accumulate body condition in expectation of the next 

upcoming lactation cycle.  The highest BCS values expected for an individual cow can be 

seen in the latter days of the dry period. 

 In Figured 3.17-3.18, these stages are exhibited by the shape of the data.  The 

initial days of the data show a decrease in average BCS with an increase in the number of 

DIM, followed by a steadying off of BCS at its lowest values, and then followed by a 

steady increase in BCS for the remainder of the DIM.  Therefore, this plot shows that the 

BCS values generated by the automated system can be monitored over the lactation cycle 

of the individual cow in order to monitor whether or not the cow is exhibiting the 

expected body condition.  If not, then corrective measures can be taken early to avoid 

possible losses in future milk production. 

 Additionally, these DIM plots show that the computer-generated BCS was far 

better than the human BCS.  Whereas the DIM versus human BCS shows quite erratic 

correlation, the DIM versus computer-generated BCS shows a clearly distinct trend.  

These results further reinforce our assumptions that the human scoring during this data 
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collection period was not consistently reliable; an assumption already anticipated as the 

human BCS system is much more subjective than quantitative, where animal pose and 

scene lighting can greatly influence visually based scoring.  Future testing and validation 

of such an automated BCS system must be done so along with expert human BCS scoring 

in a controlled environment or other consistently reliable scoring means incorporated. 

3.7 Conclusions 

 The research conducted in this study was able to develop a fully automated BCS 

scoring system with no user input.  With this research, the system is left to operate on its 

own with automated system turn on and turn off.  As the cow walks past the camera, it 

begins to record the data for the sample.  Once out of the field of view, the recording 

automatically stops. Then, the processing of the sample to create a depth data point cloud 

for scoring is automatically conducted.  Once this point cloud has been created, the 

system then automatically scores the body contour of the cow represented in this point 

cloud in order to assign a proper BCS and stores this score in the software for further 

review.  Every aspect from data collection to BCS scoring was automated with the only 

user input being the cow number and timeframe selected for viewing.  In this study, the 

entire timeframe of observational data collection was reviewed, but shorter timeframes 

could also have been reviewed by a user of this system.  In situations where a significant 

change in BCS has occurred, such as an illness or change in eating habits, the short-term 

history of that cow can be observed in order to identify when the change began and how 

it changed. 

The results display the ability of the computer automated system to accurately and 

smoothly detect subtle changes in BCS over time much better than human visual scoring 
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by three independent scorers.  Whether these changes occur in a short-term or long-term 

frame of reference, it is extremely beneficial to be able to monitor sub-0.5 point changes 

in BCS.  Because scoring variability still exists in the BCS values produced by the 

software, it is advisable to use the average change of BCS values over time instead of 

independent samples as a guide. The inherent freedom of movement for the cow and the 

workflow in the system allows the cow to move through the imaging scene as it wishes.  

This freedom of movement can impart variably small error into the results as the kinetic 

nature of the cow body in the region of the thurl, between the pin and hook bones, 

slightly alters the shape of the cow body from one frame to the next and from one sample 

to the next. 

Future studies should look at the possible inclusion of gait analysis of cow in 

consideration of data collection for freely moving animals.  Observing the motion of the 

rear region of the cow could provide insight into how to address the influence motion of 

the cow across the scene may have on data collection and results.  Not only could gait 

analysis benefit the accuracy of a BCS system, but it is also another precision dairy 

farming topic that can help to give a better understanding into the health of individual 

cow.  Future versions of this system would benefit from the inclusion of a method of fully 

automated cow identification, whether it be based upon RFID technology, machine vision 

techniques, or a combination of the two.  Fully automated cow identification was not 

used in this research as the researchers desired to manually inspect every image of the 

entire data set in order to ensure that correct cow identification was made in every 

sample. 
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CHAPTER IV: POTENTIAL FOR IMAGING BASED AUTOMATED 

DETECTION AND RECOGNITION OF INDIVIDUAL DAIRY COW 

Various precision dairy farming systems incorporate the use of cameras in their 

data collection needs which operate on the basis of image processing.[10,62,63]  These 

metric monitoring systems can further be classified into those that use 2D cameras and 

those that use 3D cameras.  The realm of 2D camera systems include color, grayscale, or 

other such gradient color imaging scales.  The realm of 3D camera systems includes 

cameras which solely operate with depth mapping information and those which can also 

collect 2D colorized data.[66,67,68,69,70,71]  Most of these camera technologies require 

some human input or they rely on rudimentary techniques as to when to start and stop 

data collection.  Because of this, such camera systems are not fully automated or they fail 

to properly collect data. 

Along with automated animal presence detection for data collection, a machine 

vision based system should also incorporate automated individual dairy cow 

identification, which is essential in the adoption of precision dairy farming technologies.  

The currently prominent method of identification is via RFID.  Automated machine 

vision individual cow identification is based solely upon the 2D image data acquired by 

the camera.  An example machine vision system already in use that could benefit from 

this imaging based identification would be the DeLaval™ (DeLaval, Inc., Tumba, 

Sweden) BCS scoring system. 

The RFID of each single head of cattle is already mandatory in many countries for 

some species.[72]  The United States does not yet require this mandatory identification, 

but is under competitive pressure to develop identification programs to serve its livestock 
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industries as several countries continue to work towards an international harmonization 

of identification processes.[73]  The reliability of an RFID traceability system for 

livestock applications depends on 2 main factors: the persistence of the tag on the animal 

and the readability in different conditions in the stable.[74] The majority of these 

technologies are stand-alone monitoring systems that require little to no input from 

humans.  Those monitoring systems that are isolated from the cow, at some distance 

away from the cow, often utilize RFID sensors and readers in order to keep track of 

individual cow in the data samples collected.   

The identification accuracy rate of stand-alone RFID has been consistently tested 

to be well over 95%, with some estimations as high as only 1 read error for every 1,000 

animals.[33,75]  Although RFID is fairly robust, it is not without error and operational 

limitations.[76,77,78]  RFID read errors may result from tag-to-tag collision, short 

reading distance, low reading rate, dense tag environment, and electrical noise.[79,80,81]  

Example RFID based systems include GrowSafe™ and Calan™ gates.  RFID technology 

works best when sensors and readers are expected to cross paths only where arranged to 

do so and within a short range of one another. Because of this, misidentifications as well 

as missed identifications are possible, which can lead to incorrect storage of metrics data 

for the individual animal and invalid entries within the data collection system.[76,77,78]  

Though errors are few, they can inject erroneous results in data collection that may go 

unnoticed by humans utilizing the data. As well, there is no secondary system to verify 

the single output identification assignment. 

Some countries also do not allow transmission in the frequency bands that some 

RFID tags operate and still other RFID tags operate in frequency bands shared by other 
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technologies which can potentially lead to interference.[76,77,78]  Because RFID tags 

operate on the basis of wireless communication coverage with little to no data protection, 

the data transmitted is also open to data breaches, including but not limited to falsified 

data, blocked signals, and unauthorized third party data collection.  An area of increasing 

interest in individual animal identification includes insurance, mostly dealing with 

insurance fraud.[82]  Having an RFID tag and data record provides an electronic 

verification of the animal’s existence, but this does not necessarily prove that the animal 

supposedly wearing the tag is indeed the animal for which there are records.  Including a 

visual data reference record could potentially provide strong clout on the side of either 

the insurer or the insuree in matters relating to insurance claims, such as recuperating the 

value of deceased animals lost to natural disasters or disease. 

Schwartzkopf-Genswein et al.[83] monitored the feeding patterns of feedlot cow 

by means of an RFID system.  The study determined that the RFID nature of the system 

had some inherent factors that produced errors, such as non-grounded (looped) metal 

panels used to construct feedlot pens acting as unintended antennae and the transponder 

tags in the ear themselves causing missed identifications simply due to the orientation of 

the tag with respect to the reader.  Another factor of error potential is simply the limited 

read range of the system, meaning that actual feeding data had the potential to go 

unrecorded when the RFID tag was out of range.[83] 

A similar study by T. J. DeVries[50] noted similar errors from physical structures 

substituting as unintended antennae with RFID technology.  In the study by T. J. DeVries 

et al.[50], 12.6% of the observations that animals were confirmed present at the feed alley 

using video, the GrowSafe™ RFID-based feeding system failed to record animal 



95 

 

presence.  Another 3.5% of observations when the GrowSafe™ systems indicated that a 

cow was present at the feed alley, the video showed that the cow was not present.[50] 

In light of the detection and identification errors present with RFID systems and 

consistent with our theme of employing machine vision in precision dairy farming, we 

propose the use of 2D and 3D cameras for the detection and recognition of dairy cows.  

In particular, we propose an animal detection scheme based on a Haar classifier 

pioneered for facial detection in 2D video to detect and track an animal in 3D video.  For 

animal identification, we propose a texture analysis scheme of calculating the mean gray 

level of the animal in a 2D grayscale image along the animal’s spine.  While these 

proposed techniques fail to achieve the same level of accuracy as RFID, they present a 

substantial improvement in accuracy when used as a supplement to RFID. 

There exists the potential for an automated data collection process solely based 

upon whether or not the desired cow anatomy is within the camera image frame.  

Subsequently, the potential for identification of the animal present in this image frame is 

also possible using the intensity values of this image.  Our research approached this topic 

in terms of object detection and object recognition.  Object detection was realized in our 

research by use of the same PrimeSense™ Carmine 1.08 camera already utilized in both 

the feed intake and BCS research studies previously outlined.  Because the 3D shape of 

dairy cow remains fairly consistent across different animals, including different dairy 

cow breeds, the camera system was directed at determining the feasibility of feature 

detection by exploiting visible dairy cow anatomy. Object recognition was realized in our 

research by use of a Prosilica™ GC640 grayscale camera.  The change in camera was 

necessitated by the limitation in frame rate of the PrimeSense™ Carmine 1.08 due to its 
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operation at a distance of over 60m away from the host computer.  The required use of 

USB 2.0 extension cable reduced the frame rate of this camera from 60fps to 30fps, 

which induced motion blur as cows walked beneath the system.  With the Prosilica™ 

GC640, we were able to operate over 60m of Category 5 Ethernet cable at 50fps. This 

higher frame rate capability practically eliminated the motion blur seen in image captures 

of cows moving in the scene.  

Because of the unique coloration of the Holstein dairy cow breed, the object 

recognition camera system was directed at determining the identity of the cow in the 

camera scene based upon the hide coloration of the individual animal.  An added benefit 

of machine vision based identification over RFID is that it can be designed to accurately 

identify more than 1 object at a time.  Several cow can potentially be accurately 

distinguished from one another in the same camera scene. The method of identification 

using the 2D image data that was to be chosen had to address the issues of speed and 

accuracy for quickly moving objects as well as chosen based upon the proximity of the 

camera system to the scene under surveillance. 

Several 1D and 2D pictorial image code technologies, called symbologies, exists 

for automatic identification, such as barcodes, QR codes, and Maxi codes.[84]  

Automatic identification has been thoroughly tested with human faces and other objects 

utilizing similar approaches that reduce a 2D or 3D image into a less complex problem 

that deduces identification based upon features such as shape, intensity, or color 

pattern.[85,86,87]  Research has also been conducted for object recognition with 

invariance to pose, lighting, scale, and surrounding clutter.[88,89]   



97 

 

The computational processing power needed for object recognition invariance to 

all of these factors is far more than what is needed for our study.  In our study, the scene 

does not vary, so including factors for background clutter are unnecessary as we were 

able to operate on the basis of background subtraction due to our static scene and system 

setup.  The problems of pose and scale are also negated since the distance from camera to 

objects studied does not change nor does the pose.  As well, because the lighting of our 

scene could easily be controlled, this was not an issue either.  The reduction in external 

factors that requires a highly complex object recognition scheme works to our benefit in 

this research as we were able to create an automated identification process that was quite 

simple yet robust. 

4.1 Automated Dairy Cow Detection 

Precision dairy farming has increased its use of 3D cameras and their depth 

mapping information in order to monitor individual animal welfare with systems that are 

not obstructive to workflow or cow comfort.[55,90,91]  Systems which monitor the 

physiological changes of dairy cow with range imaging cameras require that individual 

animals be imaged as they pass through the camera scene.  For the majority of these 

camera based metric monitoring systems, there is only a rudimentary process involved in 

the software for determining when to start and stop data collection or, even worse, there 

is only a manual human involvement in this decision making process.[92]  Such systems 

are defined as automated, but human error and ill-defined software failures to properly 

collect data make such systems less than ideal for precision dairy farming applications.  

In order for a monitoring system to be truly automated, there must be a highly accurate 

data collection process included in the system which requires no human input.  
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Automated feature or object detection imaging systems have been thoroughly 

tested and verified with human subjects as well as static objects in both 2D and 3D 

images.[93,94,95]  Such detection systems rely heavily upon initial proper classification 

of the feature or object of interest as these classifications are the user dependent training 

stage of the system for which future independent identification will be based upon. 

Several such detection schemes exists and each has its own specialty for automated 

detection.[96,97,98,99,100,101,102,103,104,105,106,107,108,109,110] 

Because our interests were in identifying physiological regions of a cow body, it 

was decided that a 3D camera which includes depth information was best suited for this 

task rather than a 2D camera.  Data collection was conducted using a PrimeSense™ 

Carmine 1.08 RGB+depth sensor for this research with only the depth image data 

utilized.  The use of this camera provided depth range information which was accurate to 

within a few millimeters of actual cow body shape.  The ability of this camera to return 

such highly resolved cow body depth information made it possible to resolve several 

anatomical regions of interests across multiple cow. 

The method selected for object detection in this research was the Haar cascade 

classifier first developed by Viola and Jones[111].  Haar functions have been used since 

1910 when they were first introduced by the Hungarian mathematician Alfred 

Haar.[112,113]  the Haar transform is one of the earliest examples of what is known as a 

compact, dyadic, orthonormal wavelet transform.[113]  The Haar function, being an odd 

rectangular pulse pair, is the simplest and oldest orthonormal wavelet with compact 

support.[113]  The space frequency localization and multi-resolution analysis capability 

of a wavelet makes it an efficient tool in analyzing images.  The Haar scaling function 
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φ(x) and the Haar wavelet function ψ(x) are as shown, respectively, in Equations 4.1 and 

4.2 and an example of each of these 1D basis functions are shown in Figure 4.1. 

 𝜑(𝑥) =  {
1      0 ≤ 𝑥 < 1
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (4.1) 

 𝜓(𝑥) =  {
1 0 ≤ 𝑥 <  1 2⁄

−1 1 2⁄  ≤ 𝑥 < 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} (4.2) 

 

 
Figure 4.1 – Haar low pass scaling function 𝜑(𝑥) and Haar high pass wavelet 

function 𝜓(𝑥). 

 

The Haar wavelet transform can be obtained using the analysis filters for 

decomposition and the synthesis filters for reconstruction.  As we are interested in 

obtaining the features for classifications purposes and image compression, we are dealing 

with only the analysis filter.  The scaling function φ(x) and the wavelet function ψ(x) 

associated with the scaling filter hφ and the wavelet filter hψ are: 

 𝜑(𝑥) =  ∑ ℎ𝜑(𝑛)√2𝜑(2𝑥 − 𝑛)

𝑛

 (4.3) 

 𝜓(𝑥) =  ∑ ℎ𝜓(𝑛)√2𝜑(2𝑥 − 𝑛)

𝑛

 (4.4) 

 

In two-dimensional wavelet decomposition, the analysis scaling function can be written 

as the product of two one-dimensional scaling functions φ(x) and φ(y). 

 𝜑(𝑥, 𝑦) = 𝜑𝜑(𝑥, 𝑦) =  𝜑(𝑥)𝜑(𝑦) (4.5) 

 

If ψ(x) is the one-dimensional wavelet associated with the scaling function, then the three 

two-dimensional analysis wavelets are defined as: 
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 𝜓𝐻(𝑥, 𝑦) =  𝜑𝜓(𝑥, 𝑦) =  𝜑(𝑥)𝜓(𝑦) (4.6) 

 𝜓𝑉(𝑥, 𝑦) =  𝜓𝜑(𝑥, 𝑦) =  𝜓(𝑥)𝜑(𝑦) (4.7) 

 𝜓𝐷(𝑥, 𝑦) =  𝜓𝜓(𝑥, 𝑦) =  𝜓(𝑥)𝜓(𝑦) (4.8) 

 

Where 𝜓𝐻(𝑥, 𝑦), 𝜓𝑉(𝑥, 𝑦), and 𝜓𝐷(𝑥, 𝑦) correspond to horizontal, vertical, and diagonal 

wavelets, respectively. 

The Haar transform can be used for image compression, where each image pixel 

is represented by a corresponding element in an image matrix.  Multi-resolution analysis 

can be implemented using sub-band decomposition in which the image is decomposed 

into wavelet coefficients.  The rows and columns of the original image are convolved 

with the low pass filter hφ and the high pass filter hψ followed by decimation by a factor 

of 2 in each direction to generate lower scale components namely low-low(LL), low-

high(LH), high-low(HL), and high-high(HH) sub-images.  LH, HL, and HH correspond 

to the high resolution wavelet coefficients in the horizontal, vertical, and diagonal 

directions, respectively.  The LL sub-image is the approximation of the original image 

and all four sub-images contain one-fourth of the original number of samples.  Figure 4.2 

explains the decomposition, in which j+1 stands for the starting scale and m and n are, 

respectively, row and column directions. 
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Figure 4.2 – Haar wavelet transform decomposition using analysis filter banks. 

 

Alternatively, if we let A represent an input image with dimensions of M x N and 

let W represent the Haar wavelet transform, then B represents the resulting matrix product 

output image: 

 𝐵 = 𝑊𝑀𝐴𝑊𝑁
𝑇 (4.9) 

 

Where WM is applied to process each column of image matrix A, so the output should be 

an M x N matrix where each column is M/2 weighted averages followed by M/2 weighted 

differences. In order to process each row of image matrix A we proceed by multiplying 

the rows of WMA by the columns of 𝑊𝑁
𝑇.  Transposing the matrix puts the filter 

coefficients in the columns.  If we next allow H to represent the low pass filter and G to 

represent the high pass filter of the Haar wavelet transform, then Equation 4.9 can be 

rewritten as: 

𝐵 = 𝑊𝐴𝑊𝑇 =  [
𝐻
𝐺

] 𝐴 [
𝐻
𝐺

]
𝑇

=  [
𝐻
𝐺

] 𝐴 [𝐻𝑇

𝐺𝑇 ] =  [
𝐻𝐴
𝐺𝐴

] [𝐻𝑇

𝐺𝑇 ] =  [𝐻𝐴𝐻𝑇 𝐻𝐴𝐺𝑇

𝐺𝐴𝐻𝑇 𝐺𝐴𝐺𝑇 ] (4.10) 

 

Using this resulting matrix, we can rewrite Equations 4.5-4.8 as: 

wφ(j+1,m,n)

hφ(-n)

hφ(-m) wφ(j,m,n)

hψ(-m) wψ
H(j,m,n)

hψ(-n)

hφ(-m) wψ
V(j,m,n)

hψ(-m) wψ
D(j,m,n)
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 𝜑(𝑥, 𝑦) =  𝐻𝐴𝐻𝑇 (4.11) 

 𝜓𝐻(𝑥, 𝑦) = 𝐻𝐴𝐺𝑇 (4.12) 

 𝜓𝑉(𝑥, 𝑦) = 𝐺𝐴𝐻𝑇 (4.13) 

 𝜓𝐷(𝑥, 𝑦) =  𝐺𝐴𝐺𝑇 (4.14) 

 

  Figure 4.3 demonstrates the results of a Haar wavelet transform processed image.  

The upper left image of Figure 4.3 represents the result of Equation 4.11.  HA averages 

columns of A and the rows of this product are averaged by multiplication with HT.  

Therefore, the upper left sub-image is the low pass approximation of the entire image 

which results in a blur of the original image.  The upper right image of Figure 4.3 

represents the result of Equation 4.12.  HA averages columns of A and the rows of this 

product are differenced by multiplication with GT.  This sub-image holds the high 

frequency information about the intensity variations along the image columns as we 

move down the image, where higher values indicate a larger horizontal change resulting 

in defining the horizontal edges of high contrast boundaries. The bottom left image of 

Figure 4.3 represents the result of Equation 4.13. GA differences columns of A and the 

rows of this product are averaged by multiplication with HT.  This sub-image holds the 

high frequency information about the intensity variations along the image rows as we 

move across the image, where higher values indicate a larger vertical change resulting in 

defining the vertical edges of high contrast boundaries.  The bottom right image of Figure 

4.3 represents the result of Equation 4.14.  This equation differences across both the 

columns and rows of the image matrix which results in a sub-image that derives the high 

frequency information for the image matrix along lines of ±45 degrees. 



103 

 

 
Figure 4.3 – Low frequency resultant blur output image (LL), high frequency horizontal 

edges sub-image (LH), high frequency vertical edges sub-image (HL), and high 

frequency diagonal edges sub-image (HH) derived from using a Haar wavelet transform 

on an input image. 
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Figure 4.4 shows examples of 2D Haar features derived from the product of two 

1D Haar wave transform basis functions. The boundary features used by Viola and Jones 

[111] included those shown in Figure 4.4 as two-rectangle features and four-rectangle 

features as well as additional three-rectangle features.  These features can be utilized for 

object recognition alone or in a cascade of features. 

 
Figure 4.4 – 2D Haar features derived from 1D Haar wavelet transform basis equations. 
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The features available to the Haar cascade classifier were expanded upon in the work by 

Lienhart and Maydt[114].  A properly configured Haar cascade classifier consists of 

multiple classification stages for which each must be met in order for positive 

identification of an object.[115]  Failure to pass any stage of the cascaded classifier 

results in the software concluding that the object is not present.  At each stage, there may 

be a single feature or multiple features that must be met.  The Haar classifiers are 

designed to work with grayscale images, whether native grayscale or a color image being 

converted to grayscale.  The depth information of 3D cameras is often represented in or 

can be converted to grayscale intensity values.  Because grayscale intensity images can 

be best thought of as dark and light regions, or black and white, Haar features are often 

described simplistically as a combination of black and white regions.  A feature may 

consists of just a single black and a single white region, or they can be a more complex 

combination, but there must be at least 2 regions being comparatively tested.  This is 

because a Haar feature works on the basis of calculating the mathematical difference 

between adjacent regions in order to determine if the feature is present.   

An example grayscale intensity image and Haar features are shown in Figure 4.5.  

In a 2D grayscale image of a human face, such as in the left image of Figure 4.5, the eyes 

are typically a darker region than the cheeks region just beneath the eyes.  Therefore, the 

eyes can be represented as a black region and the cheeks region as a white region, such as 

seen in the middle image of Figure 4.5.   
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Figure 4.5 – The left image is the input grayscale intensity image.  The middle image 

shows a Haar cascade classifier feature used for distinguishing between the eyes and 

cheeks of the frontal face.  The right image shows a second Haar cascade classifier 

feature used for further distinguishing the presence of eyes on the frontal face image. 

 

The pixel values are totaled for each region in order to derive a representation of the 

image contrast between the comparative regions and the difference taken between the 2 

adjacent regions.  This difference should result in a value that accurately reflects that the 

pixel intensity of the cheeks region is higher than that of the eyes.  A further sub-

classification to determine if eyes are present in the image would include the nose region, 

such as seen in the right image of Figure 4.5.  Each eye would be represented by a black 

region and the nose represented by a white region.  The total pixel intensities of the eyes 

should be lower than that of the nose region in between.  Further sub-classification 

features can be utilized in distinguishing if eyes are present in the current image if desired 

or necessary.  This method works quite well for relatively static objects whose shape and 

coloration do not change much and the classifier can be setup to be rotation invariant as 

well as scale invariant.   

All of these specifications for a proper Haar cascade classifier make it an ideal 

choice as a feature detection scheme for surface based cow anatomy.  Because our 
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research focuses on the use of 3D structured light grayscale depth images for dairy cow 

detection, the data coming directly from the camera source is already in the ideal color 

format and eliminates any concerns of consistent scene lighting.  Additionally, the cow 

body contour image data provides a contrast gradient which is necessary for the use of 

Haar features for object detection.  The shape, height and width most notably, of each 

individual cow varies, but is addressed by the fact that the Haar cascade classifier scheme 

already incorporates a scaling factor that compresses the image in order to detect the 

feature of interest regardless of size or distance from the camera.  Since the Haar cascade 

classifier is not computationally intensive, which allows for faster processing times than 

comparable other feature detectors, we also do not have to concern ourselves with the 

fact that the cow can potentially move across the scene in a matter of seconds. 

The focus of this research is interested in identifying those anatomical structures 

most useful in BCS scoring of dairy cow, which includes the entire region of the cow 

from tail to hips, recognized as encompassing the entire rear region of the cow body.  As 

so, this was the first feature region to be tested.  Since the hips signify the starting point 

and the tail signifies the stopping point of the cow anatomy used for BCS, these 2 feature 

regions, hips and tailhead, were also tested independently.  The objective was to develop 

a Haar cascade classifier that would accurately detect the region specified for detection.  

It was predicted that the more rigid regions such as the rear and tailhead would be easier 

for object detection whereas the section that was centered about the hips was far too 

dynamic in its shape to be a highly accurate region for object detection.  While a feature 

detector for the entire rear region would be best suited for an automated BCS system, 

being able to automatically identify the starting and stopping points of data collection, 
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respectively the hips and tailhead regions, are just as beneficial for minimizing data 

storage needs, increasing system speed and performance, and returning orientation 

information. 

The implementation code for the feature detector relies upon the OpenCV (Itseez, 

Nizhny Novgorod, Russia)[116] CascadeClassifier base class for object detection. Of the 

many function calls within this class, the detectMultiScale function is the function call 

responsible for detecting the object in the image frame.  The detectMultiScale function 

includes many modifiable parameters. The first parameter of the function is the input 

image to be tested for object detection.  The second parameter creates a vector of objects 

which will hold and indicate the location of object detections within the input image.  The 

next parameter is the scaleFactor parameter which specifies how much the image size is 

reduced at each image scale. The default value for scaleFactor is 1.1 and this value was 

utilized in this research as well.  The minNeighbors parameter specifies how many 

neighbors each candidate rectangle should have in order to retain it.  If the candidate 

rectangle falls below this minimum number of neighbors, then it is eliminated from the 

list of possible object detection candidates. The flags parameter is not used as it is a 

legacy parameter only, and therefore its value is set to zero.  The last two paramters of 

the detectMultiScale function are minSize which indicates the minimum possible object 

size and maxSize which indicates the maximum possible object size.  Objects smaller 

than or larger than these object size limits are ignored.  Specifying minimum and 

maximum object size limits eliminates many potential false detections as well as speeds 

up the operational speed of the feature detector.   



109 

 

Of these parameters, the minimum number of neighbors (minNeighbors) 

parameter was the only parameter that was changed for performance evaluation while all 

others were kept constant at user defined values.  Similar Haar classifier performance 

analysis was conducted by Lienhart et al.[117] on a frontal face dataset.  The classifier 

scans the image pixel by pixel in a sliding window approach for all possible detections of 

the desired feature.  The result is that there will often be several overlapping candidate 

detections for the desired feature in the same region of the image where the feature is 

present. 

The minNeighbors parameter can help reduce the number of candidate detections 

by requiring a certain minimum integer value of detections to overlap.  If this threshold is 

not met, then those candidate feature identifications are discarded.  Adjusting this 

parameter was done so in order to attempt to reduce the number of feature identifications 

returned to only 1 per depth image since the feature could only possibly occur once per 

image. Adjusting the parameter was also done to attempt to increase the identification 

sensitivity of the detector in order to reduce the number of images falsely determined as 

not containing the feature when the feature would indeed be present.  This study was 

aimed at possibly finding a value for this parameter that could maximize upon both of 

these desired results for each classifier.  Figure 4.6 provides examples showing the 

different Haar classifiers of this study correctly identifying the different regions of 

interest on the same sample depth image. In this figure, the left image shows the rear 

classifier region, the middle image shows the tailhead classifier region, and the right 

image shows the hips classifier region. Just as in the research conducted by Lienhart et al. 
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(2003), a receiver operating characteristic (ROC) curve analysis was conducted on the 

performance of the Haar classifiers developed in this study. 

   
Figure 4.6 – Example showing the classifier correctly identifying the different regions of 

interest on the same sample depth image with a red box. Left image shows the rear 

classifier region, middle image shows the tailhead classifier region, and the right image 

shows the hips classifier region. 

 

As previously stated in Chapter 1, the cow at the University of Kentucky 

Coldstream Dairy Farm used in this study exit the milking parlor via a roofed alley way 

that is walled on both sides floor to roof and has a concrete slab floor.  Since the range of 

motion for these cow is limited for the length of the alley way, and the fact that lighting 

conditions can be controlled and made static, it was determined that optimal placement of 

the camera was mid-way of the alley way length.  This walled alley way inhibited the 

cow’s movement to be able to only go directly beneath the camera, entering the frame 

from the left and exiting on the right.  The camera was mounted at a distance of 3.05m 

from the lens to the floor of the alley way.  The camera was positioned at a distance high 

enough from the floor of the alley way that the entire width of the 1.03m wide alley way 

could be captured at the same height that the sides of the cow would rub against the wall 

on either side.  This height averaged to approximately 1.5m from the camera lens to the 

back of the cow.   

This camera system was fully automated to turn on just prior to the start of 

milking and to turn off just after the end of milking.  This was made possible because of 



111 

 

the fairly consistent schedule of the morning milking lasting from 4:30am to 6:30am and 

the evening milking from 3:30pm to 5:30pm.  The lights, camera, computer, and software 

would all turn on at 4am and 3pm and turn off at 7am and 6pm.  In the majority of cases, 

this gave ample time allowance in case milking began earlier than or ended later than 

usual.  In order to minimize the data storage space required, the camera data collection 

was automated to start recording a sample when the cow’s nose passed the center of the 

frame and to stop recording for that sample when the cow’s tail passed the center of the 

frame. 

The data collected by the camera was sent to a computer in a separate building 

which houses the administrative office of the farm.  The camera was connected to the 

computer via two 20m sections of Tripp Lite™ USB 2.0 Active Extension Cable (Tripp 

Lite, Chicago, IL).  The USB 2.0 extension cables were needed as the distance from the 

camera to the computer was further than the 5m operating distance limitation for full 

speed USB 2.0 device cabling.  The extension cable was connected to the camera via a 

USB 2.0 hub (Belkin International, Inc., Playa Vista, California).  The camera, lighting 

element, and USB hub were housed on an 80/20® aluminum frame which was fastened 

just beneath the roofing covering the walkway, and anchored into the walls on both sides 

of the walkway via truss joist anchor plates.  The 80/20® aluminum frame also allowed 

for minute adjustments to the position of the PrimeSense™ camera in the 3 Cartesian 

axial directions of rotation ensuring proper alignment of the camera with the walls and 

floor of the walkway and nominal positioning in height above the walkway to capture the 

full width of every cow. 
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Data was collected for 8 days.  The first 2 days were used as training data for the 

feature detector and the remaining 6 days were used as testing and evaluation data for the 

software. For the training data, a total of 149 samples were collected from various cows 

with an average of 30 frames per sample, or 4,400 frames of depth data.  For the testing 

data, a total of 1,110 samples were collected from various cows with an average of 

approximately 43 frames per sample, or 48,194 frames of depth data.  After the raw data 

was collected, the study then moved its focus to developing the object detection software. 

The Haar cascade classifiers of this research were developed utilizing OpenCV.  

In order to create a Haar cascade classifier, the user must first create a folder of negative 

images, which do not contain the feature to be detected, and a folder of positive images, 

which do contain the feature to be detected.  The region of interest containing the feature 

to be detected in each positive image is then manually cropped, and these cropped pixel 

coordinates stored in a text file. Using the command prompt of the computer, the 

prepackaged OpenCV executable for creating a Haar cascade classifier was then ran 

which automatically uses the negative and cropped positive images in order to create a 

cascade of Haar classifiers to a degree predetermined by the user.  Two Haar cascade 

classifiers were created for the rear region of the cow; the first classifier had 2 stages and 

the second classifier had 5 stages.  These 2 classifiers were developed with the same 751 

positive images and 2,095 negative images.  A single Haar cascade classifier with 7 

stages was created for the tailhead region. This classifier was developed with 800 positive 

images and 2,295 negative images. A single Haar cascade classifier with 6 stages was 

created for the hips region.  This classifier was developed with 751 positive images and 

2,095 negative images.   
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Because we were searching for simplistic, mostly rigid features with few 

attributes and the scene and scene objects almost never change, a higher order cascade 

classifier would not have been entirely necessary as any gains in feature detection would 

have been negated in equal or higher value in operational performance by slowing down 

the speed of the feature detector.  As well, a cascade classifier with a lower order would 

have potentially increased the speed of the feature detector at the cost of a much higher 

number of false positives and false negatives returned by the feature detector.  Another 

consideration is that as the number of stages increases, so does the required number of 

negatives and positives for the training of the classifier.  Again, since our features to be 

detected were not complex, it was decided that the first 2 days of our depth image data 

collection were sufficient enough to provide ample variation in the features to be detected 

for Haar cascade classifier training. 

Nine tests were ran which independently tested each Haar cascade classifier 

created.  The Haar cascade classifiers created were tested utilizing ImageJ (National 

Institutes of Health, Bethesda, Maryland) and Microsoft® Visual Studio® Community 

2013 (Microsoft Corporation, Redmond, Washington) with OpenCV.  ImageJ was used 

to combine the individual raw depth frames captured during data collection into a 30fps 

movie clip in AVI format.  This movie clip was then passed through a C++ script written 

with Visual Studio® and OpenCV along with the XML classifiers created with the help 

of the prepackaged OpenCV classifier training executable.  This software took each 

frame and analyzed it against the current Haar cascade classifier being tested in order to 

determine if the feature was present and, if so, drew a red rectangle around it.   
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In this study, the 3 values tested for the minNeighbors parameter were 10, 5, and 

1.  In the first test of each of the 4 classifiers, this required there to be a minimum of 10 

overlapping detections onto the candidate feature region, or a group size of 11 feature 

detections.  In the second test of each of the 4 classifiers, this required there to be a 

minimum of 5 overlapping detections onto the candidate feature region, or a group size of 

6 feature detections.  The results of the previous 2 tests returned favorable results for all 

of the classifiers except the second rear classifier.  Therefore, a ninth test of 

minNeighbors set to 1 overlapping feature, which equates to 2 detections that overlap in 

the feature region, was only tested on the second rear classifier developed.   

In order to verify the identification accuracy of the automated software, these 

Haar cascade classifier identifications were compared against human visual 

identifications of features in every depth frame of the test data set.  All 48,194 depth 

frames for the 6 test days were separated 3 times into either a positive or negative folder 

for each day for the rear, tailhead, and hips region based upon human visual identification 

of whether or not the feature was present in the depth image.  The automated 

identification frames were then compared and sorted (i) as true negatives, if also present 

in the visually identified negatives folder; (ii) as true positives, if also present in the 

visually identified positives folder; (iii) as false negatives, if an automated identification 

occurred in a visually identified negative image; and (iv) as false positives, if an 

automated identification occurred in a visually identified positive image.  As well, if 

multiple automated identifications occurred in an image, only 1 identification was 

counted as true positive if also present in the visually identified positives folder, and the 

rest were marked as false positives.  If the feature was not present in the image and 
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multiple identifications occurred, then all identifications were treated as false positives.  

Though the software developed by OpenCV is capable of multiple detections of a feature 

in an image, the desire of this research was to have only a single detection as the feature 

only occurred once per positive image.  Once the automated identifications were 

separated into 1 of these 4 folders, then an ROC analysis could be conducted on a per day 

basis and an overall performance basis for each of the 9 Haar cascade classifier tests 

performed. 

The true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), 

false negative rate (FNR), positive predictive value (PPV), and negative predictive value 

(NPV) can be seen for each of the 9 tests performed in Table 4.1.  This table comprises 

the average of all 6 test days of 48,194 depth frames.  From this table, we are able to 

derive the sensitivity and specificity values necessary for creating ROC plots for the 

evaluation of the tests conducted on the Haar classifiers for the anatomical regions of 

interests. 
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Table 4.1 – Statistical results for the Haar cascade classifiers tested for feature 

detection 

Statistic (%)1 

Classifier2 TPR TNR FPR FNR PPV NPV 

H 78 98 2 22 95 90 

H5 89 94 6 11 88 94 

R3 64 98 2 36 82 95 

R4 2 100 0 98 100 87 

R53 84 95 5 16 70 98 

R54 15 100 0 85 99 89 

R541 79 99 1 21 94 97 

T 82 100 0 18 100 97 

T5 91 100 0 9 99 98 
 

1Statistic: true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), 

false negative rate (FNR), positive predictive value (PPV), and negative predictive value 

(NPR) shown as percentages. 
2Classifiers: 7-stage Haar cascade classifier for anatomical hips region with 11 

overlapping hips regions detected (H) and 6 overlapping hips regions detected (H5); 3-

stage Haar cascade classifier for anatomical rear region with 11 overlapping rear 

regions detected (R3) and 6 overlapping rear regions detected (R53); 4-stage Haar 

cascade classifier for anatomical rear region with 11 overlapping rear regions detected 

(R4), 6 overlapping rear regions detected (R54), or 2 overlapping rear regions detected 

(R541); 7-stage Haar cascade classifier for anatomical tailhead region with 11 

overlapping tailhead regions detected (T) and 6 overlapping tailhead regions detected 

(T5). 

 

The results of the first rear region classifier tested at a minNeighbors value of 10 

(R3) and at a minNeighbors value of 5 (R53) can be seen plotted in Figure 4.7.  The 

second rear region classifier tested is also plotted in this figure for minNeighbors values 

of 10 (R4), 5 (R54), and 1 (R541).  The classifiers are plotted on a per day basis and 

averaged (respectively, AR3, AR53, AR4, AR54, and AR541).  The first 2 classifiers 

tested contained the region of the cow body from the hooks to the tail, or the rump or rear 

section of the cow.  Since this research desired to create a classifier that would be optimal 

for an automated BCS camera system, this large region was selected as it included all of 

the physiological identifiers necessary in deducing a human visual BCS score. 
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Figure 4.7 – The ROC plot for the 2 rear classifiers tested with minimum rear detection 

group sizes of 10 (R3 and R4), 5 (R53 and R54), and 1 (R541) for 6 independent days 

along with the group size 10 average result (AR3 and AR4), the group size 5 average 

result (AR53 and AR54), and the group size 1 average result (AR541). 

 

The accuracy of this classifier was possibly affected mainly by the kinetic use and 

shifting shape of the body fat and muscles in the region between the pins and the hooks, 

or the thurl region.  With every gait stride or shifting of weight that a cow undertakes, the 

contour of this region changes and can be highly different from one depth frame to the 

next, especially when erratic tail movement occurs.  Figure 4.7 shows that reducing the 
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minNeighbors value for the first rear region classifier increases the TPR, but reduces its 

overall performance.  Alternatively, reducing the minNeighbors value for the second rear 

region classifier increases both the TPR and the performance of the classifier.  Therefore, 

R541 is the optimal choice for rear region feature detection. 

The results of the tailhead region classifier tested at a minNeighbors value of 10 

(T) and at a minNeighbors value of 5 (T5) can be seen plotted in Figure 4.8 on a per day 

basis and averaged (respectively, AT and AT5).  The third classifier tested contained 

only the tailhead region of the cow body starting at the pins and ending at the tail.  The 

motivation for selecting this region was to be able to create a feature detector that could 

automatically stop the recording of depth data when the tail, or end, of the cow had 

entered the frame.  It is also a highly useful region on its own in the determination of 

BCS and the orientation of the cow in the frame.  The tailhead region being present in a 

depth frame also works well for other precision dairy farming technologies that require 

the entire rear section of the cow to be present. 
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Figure 4.8 – The ROC plot for the tailhead classifier tested with minimum tailhead 

detection group sizes of 10 (T) and 5 (T5) for 6 independent days along with the group 

size 10 average result (AT) and the group size 5 average result (AT5). 

 

The accuracy of the performance of this tailhead classifier was possibly affected by the 

highly erratic nature of tail motion.  Part of the accuracy of this classifier is due to the 

fact that the overall shape of this region changes only marginally even with tail motion.  

Figure 4.8 shows that T5 performed better than T, which indicates that T5 is the optimal 

choice for the tailhead region feature detection. 
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The results of the hips region classifier tested at a minNeighbors value of 10 (H) 

and at a minNeighbors value of 5 (H5) can be seen plotted in Figure 4.9 on a per day 

basis and averaged (respectively, AH and AH5).  Figure 4.9 shows that H performed 

better than H5, which indicates that H is the optimal choice for the tailhead region feature 

detection.  The fourth classifier tested was centered about the hips, or hooks, region of the 

cow body starting approximately at the posterior half of the loins region and ending at the 

anterior half of the rump region, covering the majority of the lumbar and sacral regions of 

the spine.  The motivation for selecting this region was to be able to create a feature 

detector that could automatically start the recording of depth data when the hooks had 

entered the frame.  In image or visual based BCS scoring systems, the hooks are the 

furthest anatomical point forward on the cow body considered.  In that regard, this region 

can be used to compliment the opposing tailhead region when defining the section of the 

cow body to be used for BCS scoring.  Additionally, the hooks are a rigid anatomical 

feature that can be readily used for identifying when a cow’s body is centrally present in 

a depth frame as well as determining the orientation of the cow’s body for a variety of 

precision dairy farming technology uses. 
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Figure 4.9 – The ROC plot for the hips classifier tested with minimum hips detection 

group sizes of 10 (H) and 5 (H5) for 6 independent days along with the group size 10 

average result (AH) and the group size 5 average result (AH5). 

 

The accuracy of the performance of this hips classifier was possibly affected by 

the highly kinetic nature of this region of the cow’s body.  This is a large region that 

encompasses several muscular and fatty structures, which are not ideal for a feature 

detector.  The left edge of the region includes the anterior half of the thurl region.  Again, 

this is an area that can appear differently from one depth frame to the next as the 

positions of the legs stretch and compress the muscle and fatty tissues of the region.  The 
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right edge of the region includes the posterior half of the lungs.  This is a mostly boney 

region as seen from above since the rib cage dominates the field of view in this section of 

the classifier region.  The trailing rib bones themselves can be confused by the classifier 

as hips.  In Figure 4.10, 2 depth image frames are shown for which the classifier has 

identified a hips region.  The left depth image is a false positive and the right depth image 

is a true positive.  There were 3 depth frames recorded in between the 2 depth frames 

shown in Figure 4.10.  The visual selection process of true negatives and true positives 

for this anatomical region also incurred this decision problem, but the human benefit was 

that we could look ahead in the frame sequence to verify if the hips were present whereas 

the computer did not have this advantage and must decide based solely upon the depth 

frame presented.  Looking at the 2 depth frames of Figure 4.10, it is easy to see the 

confusion of the hips classifier between hips and trailing rib bones.  Since this is a highly 

occurring classification error, the hips classifier of this research was deemed ineffective 

as tested. 

  
Figure 4.10 – The left image is a false positive for hips detection whereas the right image 

is a true positive for hips detection collected 4 frames later. 

 

Figure 4.11 shows all 9 test cases plotted together for comparative ROC analysis.  

This plot reinforces our choices of R541, T5, and H as the best performing classifiers for 
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their specific anatomical region of interest.  Of these 3, R541 and T5 performed the best 

and could be potentially utilized in a computer vision precision dairy farming system 

which automatically monitors BCS.  The classifier that performed the best overall was 

T5, as expected.  In a real time system where the cow walks across the scene below the 

camera, T5 would be preferred over R541 because R541 would have less depth image 

frames in a sample from which to make a true feature detection than T5, mostly due to 

the size difference of each feature in an image.  Consequently, T5 can afford a higher 

false negative rate per frame or per sample than R541. 
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Figure 4.11 – The ROC plot for all 4 classifiers (1 tailhead region classifier, 2 rear 

region classifiers, and 1 hips region classifier) developed and tested with minimum 

detection group sizes of 10 (T, R3, R4, and H), 5 (T5, R53, R54, and H5), and 1 (R541) 

for a total variation of 9 classifiers tested and evaluated. 

 

Adjusting the minNeighbor parameter allowed the software to reduce the number 

of candidate feature identifications returned per depth image to 1 for all but 14 images 

tested.  Since the 48,194 depth images were independently tested 9 times, this means that 

only 14 images out of 433,746 images had multiple feature identifications.  Future 

research should investigate the tradeoffs of false negatives, false positives, and possible 
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multiple identifications for minNeighbors values of less than 5 for each of the 4 Haar 

classifiers developed.  Since this study was aimed at discovering the potential for use in 

systems monitoring the BCS of dairy cow that were milked at least twice per day, the 

total number of false negatives incurred were not viewed as important or detrimental as 

the total number of false positives since multiple milking times provides multiple 

opportunities to collect BCS data on a per cow basis. 

Feature detectors for other regions of the cow body could have been tested, but 

were beyond the scope of this study.  Based upon the findings of this research, ideal 

features would include those with a limited ability to deform in natural cow movement.  

Future research should test feature detectors for additional regions of interests.  It would 

be pertinent to test feature detectors at different pose positions other than a strictly top 

view to gain access to other regions of interests not seen in the camera pose of this study.  

The top view approach was selected here because the number of moving body parts seen 

by the camera, which can decrease the accuracy of the feature detector greatly, is much 

less than from any other pose position. 

This research shows that automated feature based imaging systems have the 

potential to be utilized in precision dairy farming.  Such practical implications to be 

tested would possibly include automated BCS and automated respiration rate monitoring, 

both of which would rely solely upon depth image data centered about specific cow 

anatomy.  One limitation of this type of system is when the feature of interest is occluded 

from view of the camera, such as when another object comes between the camera and the 

object of interest.  This limitation is common amongst imaging based systems and is 

unavoidable unless the cow is kept isolated at all times, which is impractical unless there 



126 

 

is a specific immediate health risk being monitored.  The benefit that this non-tactile 

system has is that it has a much lower risk of being broken or otherwise damaged by the 

cow as it is placed out of reach and in a sturdy, secure location. 

4.2 Automated Dairy Cow Recognition 

The objective of the machine vision based identification study was to investigate 

the potential for a 2D grayscale imaging camera to accurately determine the identity of a 

Holstein cow in a camera scene based solely upon its hide coloration. The identification 

process reduces the 2D grayscale image to a 1D vector of cumulative pixel intensities for 

vector matching along the length of the cow.  An initial test dataset of Holstein cow 

images were collected to test for the feasibility of continuing on to include a full herd of 

Holstein cow.  After verification from the smaller test set of Holstein cow as to the 

abilities of the camera based identification process, the study then proceeded to test the 

accuracy of the same system for a much larger test set of Holstein cow.  Because image 

noise increases and cow hide variations decrease as the number of Holstein cow subjects 

tested increases, it was predicted that the overall accuracy of the system would decrease 

but remain suitable as a redundancy identification process. 

As previously stated, the cow at the University of Kentucky Coldstream Dairy 

Farm exit the milking parlor via a roofed alleyway that is walled on both sides floor to 

roof and has a concrete slab floor.  Since the range of motion for these cow is limited for 

the length of the alley way, and the fact that lighting conditions can be controlled and 

made static, it was determined that optimal placement of the camera was mid-way of the 

alley way length.  The data samples in this research were collected using a Prosilica™ 

GC640 (Allied Vision Technologies, GmbH, Stadtroda, Germany) camera mounted at a 
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distance of 3.05m from the lens to the floor of the alley way.  The camera was positioned 

at a distance high enough from the floor of the alley way that the entire width of the 

1.03m wide alley way could be captured at the same height that the sides of the cow 

would rub against the wall on either side.  This height averaged to approximately 1.5m 

from the camera lens to the back of the cow.  This ensured that the entire top view of the 

cow in the scene would be captured.  The size of each frame captured from the camera is 

640 pixels horizontal by 480 pixels vertical.  The entire length of the cow could not be 

captured in this limited field of view as even the shortest cow was at least 1,200 pixels in 

length from nose to tail at this fixed distance. 

The camera was made static and the fact that the cow moved across the scene, in 

the vertical direction of the camera, allowed for the use of optical flow to piece together a 

complete image of the cow from nose to tail. In the layout of this study, optical flow is 

the pattern of apparent motion of an object or objects, the cow, in a visual camera scene, 

the hallway, as caused by the relative motion between the camera and the scene or objects 

within the scene, the cow walking down the alleyway.  In order to generate images of the 

animal from nose to tail, the subject imaging system behaves similar to panoramic 

imaging in smart phones [118], except that the motion of the animal walking under the 

camera replaces the sweeping of the camera across a scene.  In each frame of video, the 

process of MPEG motion compensation [119,120,121,122] is applied where one frame of 

video, the reference frame, is divided into non-overlapping sub-blocks of 16x16 pixels.  

Each of these sub-blocks is then compared to equal sized blocks in the subsequent frame 

of video, the target frame, looking for the particular 16x16 block that minimizes the sum 

of absolute differences between pixels of the reference block.  The horizontal and vertical 
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shift of the 16x16 block from the reference to target video frame defines a motion vector 

for that block.   

Having 640x480 pixels per frame, each frame is composed of 40 by 30 sub-

blocks, and hence, each frame of video will produce 1,200 motion vectors. Many of these 

sub-blocks contain background pixels and not cow pixels.  As such, out of the 1,200 

motion vectors, only those blocks that correspond to motion vectors of at least 4 pixels, 

horizontal or vertical, are considered to derive from cow motion.  And out of all motion 

vectors considered to be from cow motion, the single median vector is selected and 

defined as the motion of the animal between frames. The image is then clipped to its 

center horizontal row pixels with the number of center row pixels preserved equal to 

twice the vertical motion of the animal, and this center row image is then divided into the 

left center row image and the right center row image so that you get two separate images, 

both as wide as the vertical motion of the animal. The two center row images are then 

separately appended to the left and right center row images from the previous frames 

until the animal leaves the field of view, at which point the images are complete.  This 

allowed the camera to collect sample images of independent cow from nose to tail, 

regardless of the length of the cow. The process then starts anew as the next animal enters 

the field of view.  

Before data collection took place, a single white stripe and a single black stripe 

were painted on both walls and across the floor, horizontal to the camera view, in order to 

aid in predefining the walls and floor as background pixels in the resultant image 

captures. These stripes can be seen in Figure 4.12.  When the camera would collect data, 

it would alternate between capturing pixels in the white stripe region for the right center 
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row image and capturing pixels in the black stripe region for the left center row image. 

The resulting final image capture can be seen in Figure 4.13, where the left image 

contains a cow sample with a black background, as if the cow were standing over a black 

floor, and the center image contains a cow sample with a white background, as if the cow 

were standing over a white floor. 

 
Figure 4.12 – This image shows the camera scene with the black and white stripes 

painted across the floor and up the walls. 
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Figure 4.13 – An example sample image collected by the optical flow based automated 

software, with the black background (left) and the white background (center).  An 

example test image after background subtraction and alignment processing (right). 

 

This camera system was fully automated to turn on just prior to the start of 

milking and to turn off just after the end of milking.  This was made possible because of 

the fairly consistent schedule of the morning milking lasting from 4:30am to 6:30am and 

the evening milking from 3:30pm to 5:30pm.  The lights, camera, computer, and software 

would all turn on at 4am and 3pm and turn off at 7am and 6pm.  In the majority of cases, 

this gave ample time allowance in case milking began earlier than or ended later than 

usual.  Networking capabilities were also utilized which allowed for the camera to be 

connected remotely to a computer via an Ethernet cable of approximately 40m in length 

and the data transmitted from this computer over the internet in real-time to a computer 
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located back at the University of Kentucky campus where the images from the optical 

flow data collection process were stored. 

The data set of sample images collected did include some bad data samples, such 

as when cows would turn their head back onto their body or false captures of objects 

moving below the camera that were not cow, such as a cat or a human.  These bad data 

collections were easily eliminated by placing a simple row length threshold on the image.  

If the object in the image fell below the threshold, it was not further processed.  As well, 

there were images captured with 2 cow in the same field of view.  These samples were 

eliminated from the data set by inducing a maximum row length threshold as well.  If the 

object did meet the length requirement, meaning it fell between the minimum and 

maximum row length thresholds, then it moved on to preparing the image for the 

background subtraction stage. 

The next step in image processing was to perform image registration in order to 

align the right center row image with the left center row image for the purpose of 

background subtraction.  The differences seen in cow position between the capture of left 

and right images is due to the time difference between image captures.  During image 

capture, the gait can quickly change pace and so can the shifting of body weight, causing 

the left and right images to not have a consistent alignment method across independent 

samples.  In order to account for this randomness, subpixel image registration by cross-

correlation was conducted by means of discrete Fourier transform processing on each 

sample to find the best fit shift difference for both the horizontal and vertical dimensions 

between the left and right images.  A variation of the MATLAB® algorithm developed 

by Guizar-Sicairos et al.[123] was employed in this task.  As well, the raw data capture 
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did not eliminate the contortion of the cow body as it walked across the scene and down 

the alley way.  In order to correct the resultant image to show a cow contour in line with 

the spine of the cow, the pixels of each row of data were shifted left or right to straighten 

the cow contour centrally in the image, which was conducted solely for making human 

visual identification of the cow contained in the image easier and had no influence on the 

computer software’s identification process. 

Removing the background is then performed by comparing the left and right 

center row images of the optical flow image samples collected looking for substantial 

differences in pixel intensity.  As previously stated, when the camera would collect data, 

it would alternate between capturing pixels in the white stripe region for the right center 

row image and capturing pixels in the black stripe region for the left center row image.  

Therefore, wall and floor pixels of the left and right images would sharply contrast from 

one another in image intensity.  Pixels with substantial differences in intensity between 

the two images corresponded to wall and floor pixels, which equated to being identified 

as the background pixels, while pixels close in intensity belonged to the animal. Masking 

these difference pixels then isolates the animal from the background, therefore 

eliminating the background pixels by setting their values equal to zero.  It is this final 

isolated animal image that is used to identify the animal.  An example final test image 

with the background removed and the cow body straightened can be seen in Figure 4.1c.   

The last step of image processing required each pixel of row data in the 

background subtracted final test image to be summated across all columns, or per row 

cumulative summation along the length of the cow.  This reduction of 2D grayscale 

images to a 1D vector of values is what was known in this research as the sample’s 
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signature for that particular cow image.  The 1D vector created was the same row length 

as the original input image with only a single pixel value comprised of the cumulative 

sum of all the columnar pixel values in that row.  The 1D vector created for the sample 

signature is comprised of the image row data rather than the column data because of the 

greater length in the image row size than column size.  This length difference allowed for 

a 1D signature that could contain a larger permutation of unique cumulative intensity 

values in the rows direction rather than the columns direction.  

Another reason that the 1D vector created for the sample signature was comprised 

of the image row data rather than the column data was because there were less motion 

changes in the direction of the rows than that of the columns.  For instance, a swinging 

tail would generally move in a horizontal frame motion of the cow’s body.  As well, the 

head and neck of the cow would also be more likely to change in a horizontal frame 

motion of the cow’s body along with any changes in the vertical frame direction.  Just the 

general stride of the cow would shift the body of the cow horizontally while in motion 

beneath the camera.  These changes as seen by the rows impart less of a cumulative 

change than if viewed along the columns.  The only body parts that would impart a large 

variable change in the direction of the rows are the legs and feet of the cow, which 

generally cannot be seen by the camera, and the ears of the cow, which are orders of 

magnitude smaller in total pixels than the rest of the cow body.  Although more rare, 

typically only seen if a cow is standing still below the camera and not in forward motion, 

is a cow reaching its head back towards its shoulder which would result in a large change 

in row data.  Rarely does a cow stop directly beneath the camera, so most of the changes 

that could affect row data do not occur.   
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Since the data collection was 8-bit unsigned (uint8) grayscale with integer values 

ranging from 0 to 255, the image pixel values were subsequently changed to 64-bit 

(double) floating-point values which ranged from 0 to 1.  In this manner, no single row of 

pixel values could be greater than the columnar pixel width of the image, which was 640.  

Because the image width was directly related to alley way width, image captures 

remained consistent for all cow along this dimension.  The only dimension that changed 

was the length of the cow, for which longer cow would have longer sample signatures 

and shorter cow shorter sample signatures.   

The identification of individual cow in samples was first conducted manually to 

ensure that the correct cow identified in the image was present, which made this the 

baseline known identifications for which to compare the automated identification 

matches against.  Then, once every independent sample had been manually identified, the 

research moved the focus to creating an identification signature for each sample cow 

included in the study.  

Individual ground truth identification signatures for each cow were created using 

sample signatures selected from the data as the training set.  In this research, a ground 

truth identification signature was developed to represent the average sample signature 

produced by individual cow across a subset of sample images. All of the data for each 

cow of the training set is aligned in order to produce an average identification signature 

of that individual cow.  The reason that an averaged identification signature was used is 

because of the various variables that exist that can slightly alter the identification 

signature derived between independent images of the same cow.  Some of these variables 

include, but are not limited to, lighting of the scene may change slightly, border pixels 
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around the cow body that are included in the sample signature, debris on the cow’s body, 

alterations in body pattern seen by the camera from cow motion, and erratic motion of the 

cow, such as a swinging tail or neck and head, that can misrepresent that section of the 

body where the erratic motion occurs.   

An example of several sample images for the same cow plotted together after 

being aligned with one another can be seen in the left image of Figure 4.14.  By taking 

the average of a training set of sample images for a particular cow that may vary only 

slightly from one another, we obtained an averaged unique identification signature for 

each cow that eliminates these small differences between independent sample signatures.  

An example identification signature derived from a subset of sample signatures can be 

seen in the right image of Figure 4.14.  Figure 4.15 shows a dairy cow with a darker hide 

coloration compared to a dairy cow with a lighter hide coloration.  The two signatures are 

readily distinguishable just by the human eye.  The pink line shows the unique cow 

signature being updated with each sample signature added. 

 
Figure 4.14 – Plot on left showing the 1D vectorization of the grayscale image intensity 

of several 2D test images for the same cow after the vector is rotated 90° 

counterclockwise. Plot on right is showing the averaged 1D signature derived for this 

cow which can be tested against future sample images in order to determine the cow 

present in the sample. 
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Figure 4.15 – Two dairy cow shown (top row) with their respective signatures shown 

below them (bottom row).  The background is shown in gray for easier viewing, but is 

black in the original sample image. 

 

Because the alignment was different for each sample signature due to gait and 

contour differences during capture, the 1D sample signatures had to be shifted in order to 

find the alignment of least error between the known identification signature and each 

additional independent sample signature included in the averaging of the identification 

signature, if more than a single sample was used to derive the identification signature.  

The error shifting and decision-making of least error alignment was automated in 

MATLAB®.  Each 1D sample signature was shifted by the length of either the initial or 

previous 1D identification signature one row pixel at a time in order to find the alignment 

of least cumulative sum of difference between the 2 signatures.  The closer the current 

sample signature was to the identification signature it was being tested against, the 

smaller the error difference value would be.  Once the error for each alignment had been 

determined, the software then averaged the 2 signatures in order to create a new averaged 
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unique identification signature to be used for individual identification matching.  This 

process was repeated for each individual sample signature being used to create the final 

set of averaged unique identification signatures, if the number of samples being used to 

create the unique identification signature ranged from 2 to 5 samples. If only a single 

sample was being used to create the unique identification signature, then that sample 

signature was determined to be the unique identification signature. 

Once the ground truth identification signatures for individual cow were created, 

they were tested against the complete set of data samples.  Each 1D sample signature was 

shifted by the length of the independent ground truth 1D identification signatures one row 

pixel at a time in order to find the alignment of least cumulative sum of difference.  The 

closer the input sample signature was to the ground truth identification signature it was 

being tested against, the smaller the error difference value would be.  This alignment of 

each input sample was conducted against all of the ground truth identification signatures 

with the error values of all comparisons stored in the software.  Once the error for each 

alignment had been determined, the software then chose the alignment with the smallest 

error value as the identification match. 

The first test conducted contained a total of 351 samples collected from 25 

independent Holstein cow.  The results of the signature alignment identification software 

was that it was able to accurately identify the cow in 344 out of 351 samples, or an 

identification accuracy of 98%.  Of the 7 incorrect identifications, 4 were because the 

cow was solid black and the automated subpixel image registration alignment of the left 

and right images resulted in misalignment, which distorted the signature of those 

samples.  Based on these results, the identification method of this research is only 
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feasible if there is enough variation in the coloring of cow in the herd for accurate 

subpixel image registration during background subtraction.   

If the background cannot be properly subtracted from the image or the left and 

right images cannot be properly aligned, then the current dimensional reduction method 

cannot operate properly for accurate identification.  Therefore, solely Holstein herds 

make for great candidates for this type of identification process whereas solely Jersey 

herds possibly would not.  The brown texture of the Jersey cow under bright lighting 

appears as white or near white pixel values in grayscale images.  Therefore, the 

individual signatures of Jersey cow would rely less on coloration and more on cow 

differences in body shape, length, width, and height such as can be determined with the 

use of a 3D camera for image alignment and background subtraction.  As well, Holsteins 

that are solid black or have little to no white coloration on their backs are hard to 

distinguish amongst, unless the cow length and width differences are enough to help 

distinguish individuals.  The same is also true of Holsteins that are solid white or have 

little to no black coloration on their backs, which makes distinguishing between very 

similar colored Holsteins difficult, but not impossible. In most general dairy operations, 

the entire herd is typically of a uniform breed, such as the Holstein herd of this study, and 

therefore the patterning of the cow hide will be as unique as the herd of this study.  

Future testing should be conducted which specifically addresses these concerns. 

The preliminary testing validated a need to investigate a larger dataset with a full 

herd being monitored.  In the secondary test, a total of 80 cow were observed with 6,484 

image samples collected.  The same software was utilized and the same data analysis was 

conducted as in the first test.  The second test was able to accurately identify the cow in 
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the image on the first attempt with an accuracy of 78.10% and was able to accurately 

identify the cow in the sample within the first 5 attempts with an accuracy of 95.60%.  

The results of the second test are shown in Table 4.2. 

Table 4.2 – Identification accuracy of the herd size 1D signature testing 

Identification 

Attempt 

Accuracy1 

(%) 

1 78.1 

2 89.22 

3 92.12 

4 94.21 

5 95.6 
 

1Accuracy here refers to the cumulative total number of correct identifications for the 

entire test dataset as the identification software is allowed additional identification 

attempts. 

 

The identification accuracy of the system proposed in this research was expected 

to decrease with an increase in subjects.  Therefore, the identification process was 

designed to incorporate the top 5 identification possibilities provided by the software 

instead of just looking at the initial identification.  By reducing the possible identity from 

80 subjects down to just 5, the software is able to reduce the choice of identity to only 

6.25% of the total herd.  When used in conjunction with other identification technologies, 

such as RFID, the process studied here has the potential to greatly reduce, if not 

eliminate, identification errors. The results of this second test show that further testing 

should be conducted along with the incorporation of RFID technology.  While RFID is 

the industry standard, it could potentially benefit from the identification redundancy 

provided by the work of this study with cameras.  If the RFID identification returned 

matches 1 of the 5 identification possibilities returned by the software of this research, 

then it will be able to provide a higher certainty of proper identification than the 
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utilization of RFID alone which only provides a single identification, whether it is correct 

or not. 

This research tested the capability of identifying individual cow from image data 

acquired with a 2D grayscale camera.  The results of this research showed that fully 

automated individual cow identification by means of machine vision utilizing only the 

coloration variations amongst cow in a herd was possible.  The degree to which this 

identification method is accurate depends upon several factors, most of which can be 

minimized by the incorporation of other technologies or physiological cow data.  Future 

research should include the use of 3D cameras that would provide cow body shape 

information for differentiation.  Future work should also research the use of signature 

developing software that can accommodate for animals entering and leaving the herd 

automatically, such as using the codebook method, which will search for the signature of 

the cow in the software identification database and develop a new signature to add to the 

identification database if it does not already exist.  Developing a system that utilizes both 

RFID and camera data should also be tested so that both technologies can be developed 

to work together to verify and complement one another in automated cow identification. 
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CHAPTER V: CONCLUSIONS AND FUTURE WORK 

 The feed intake system proposed in this dissertation was able to produce accurate 

feed weight values when compared to scale weight values of the same bins of feed.  

Future work should include studying this system in an open feed bunk design as well as 

being used with individual dairy cow over a long term observational period of time.  In 

order for such a system to be readily adopted, it must be able to provide accurate feed 

intake monitoring results for an extended period of time and be able to keep track of the 

individual animal records.  Because our study was only interested in determining the 

feasibility of such a system to determine the weight of feed in a bin, these issues were not 

addressed.  As well, feed of different mixtures and moisture content ought to be 

thoroughly analyzed with this system in order to determine how these different TMR 

affect the results of the system. 

Part of the reason for creating an automated BCS system is to eliminate the 

subjective error of human scoring.  The score can change by as much as 0.25 on the 1.0-

5.0 scale, even when using the same scorer on the same cow and the same day.  The 

automated system is completely objective and therefore reduces the error greatly because 

the algorithms and software are going to be the same every time with no bias injected into 

the data.  The insight gained from this research is a great leap forward in being able to 

ultimately provide an end user commercial system that can be readily installed and used 

at almost any dairy production facility.  When it comes to health and management in a 

dairy facility, being able to have historical data on individual cattle is essential.  The new 

system proposed by this research was less susceptible to noise and image interferences 

and was able to have near 100% useable data collection every time. 
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 Future research should focus primarily on making the BCS system to also be able 

to accurately make individual identification along with the collected data samples.  This 

can include modifying software such as that used in this research to visually do so or to 

integrate other technologies such as RFID tags and readers.  The imaging approaches 

tested in this dissertation for dairy cow detection and recognition provide a starting point 

for utilizing machine vision based applications in order to determine the presence and 

identification of cow in an image frame.  Future work ought to analyze further machine 

vision based identification based approaches for detection and recognition, but they also 

ought to include the RFID identification as well since these identifications are already in 

use in many dairy operations and even mandated across several countries. 

In order for precision dairy farming to reach its full potential of benefit to dairy 

operations, it must be able to provide the most accurate and detailed reports and records 

possible.  These reports and records will greatly help in operations management decision 

making, herd health choices, and future planning for the facility.  Being able to plan 

ahead is important in any business or industry, and the agricultural and dairy sectors are 

no different.  Simple mistakes and wrong choices can lead to the failure of a dairy 

operation and the better informed the operator is, the chance of making such errors is 

minimized.  Therefore, the future of machine vision based precision dairy farming 

systems must foresee the integration of many technologies into a cohesive network of 

data collection.  The dairy producer does not want to spend valuable time on a daily basis 

learning how to use a plethora of software programs possibly across several different 

computers in order to obtain the results desired.  Instead, having several precision dairy 

farming systems, machine vision based and otherwise, integrated into a single software 
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program that can provide quick and easy access of data results is the ideal approach going 

forward. 

Based upon the success of the precision dairy farming machine vision systems 

already developed, tested, and verified in this dissertation, we have already begun 

looking into other venues for the use of machine vision systems for resolving precision 

dairy farming topics of concern.  Initial data collection and analysis has already been 

conducted for a system that is aimed at monitoring the respiration rate and stance of dairy 

cow.  The ideal system would be able to monitor multiple freely housed dairy cows, but 

the initial testing was conducted on individual dairy cow with restricted movement so 

that system performance could be observed in an isolated manner for an extended period 

of time.  In order for such a system to be readily adopted, it must be able to accurately 

monitor the respiration rate and stance of the cow over an indefinite period of time. 

Respiration rate monitoring of individual dairy cow involves counting the number 

of breath inhalations or exhalations the cow makes on a per minute basis.  A visual 

monitoring approach is impractical as it requires personnel to devote their time and 

efforts solely to this task when their abilities could be best utilized elsewhere.  Tactile 

technology based approaches exists which afford the user the benefits of freeing up 

personnel and automating data collection. Such technologies include spirometers, waist 

bands, and leg bands.  A spirometer is an instrument for measuring the air capacity of the 

lungs based upon inhalations and exhalations.  As such, it can monitor respiration rate 

based upon the movement of air flow into or out of the lungs.  Such a system can either 

be setup for direct mouth attachment or adjacent placement.  The direct mouth approach 

is impractical as it would require the cow to continuously wear the device in its mouth or 
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it could only be used for discrete data collection events.  Using a system which places the 

monitor adjacent to the nose or mouth is slightly more practical, but is still quite 

infeasible as it comes as an annoyance to the cow to continuously wear such a device 

against its nose or mouth.  Inevitably, the cow will work to move the device away from 

its nose or mouth.  The use of waistbands measure respiration rate via an elastic band 

which stretches during inhalation and contracts during exhalation.  This is an effective 

technology for individual cow respiration rate monitoring, so long as the band has free 

movement.  If the band’s movement is inhibited, such as by being pinched between the 

cow and the ground, another cow, a wall, etc., then the devices ability to accurately 

monitor respiration rate is greatly reduced. A leg band is a device worn on one of the legs 

of the individual cow which monitors respiration rate based upon the oxidation of the 

blood in the cow’s body.  The major pitfall of this device is that it can be broken, 

damaged, or otherwise lose contact with the cow’s body.  It requires indefinite wearing 

for data collection.  For monitoring a respiratory condition that directly affects the cow’s 

immediate health, such as heat stress, time is a valuable asset in possibly saving the life 

of the animal.  The sooner that heat stress can be detected, the faster that corrective action 

can be taken to eliminate it.  If the leg band or other tactile technology used is lost from 

the cow’s body or data collection ceases during this crucial timing, then it becomes more 

of a liability than an asset. 

Stance monitoring of dairy cow simply involves monitoring the amount of time 

that a cow is standing up or lying down.  Monitoring the stance of a cow in standing and 

lying bouts is a major indicator of an individual dairy cow’s comfort.  Visual monitoring 

is again impractical for the same reasons as in respiration rate monitoring.  Tactile 
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technologies for stance monitoring exist, such as leg bands.  A leg band is worn on one of 

a dairy cow’s legs and monitors stance typically based upon an accelerometer.  The 

accelerometer provides axial data collection which infers whether the leg is bent 

horizontally or vertically straight.  The vertically straight nature of the leg infers a 

standing position while a horizontally bent leg infers that the cow is lying down.  Again, 

the major pitfall of this device is that it can be broken, damaged, or otherwise lose contact 

with the cow’s body.  Such events cause data collection cessation, which can only be 

corrected when the device is fixed or replaced.  Being able to continuously and accurately 

monitor cow comfort is essential in obtaining the best production results possible from 

each cow and can aid in early detection of lameness or other ailments. 

This research aims to show that an automated depth camera machine vision based 

system has the potential to be utilized in respiration rate and stance monitoring of 

individual dairy cow.  Because our interest was in monitoring the physiological changes 

of the lungs region of the cow body and in monitoring the stance of the cow, it was 

decided that a 3D camera with depth information would be best utilized for this study.  

The camera chosen was a Microsoft™ Kinect™ V2 which is capable of recording depth 

data, RGB color information, infrared imaging data, and audio data.  The data streams 

utilized by this study were the infrared and depth streams.  The only use for the infrared 

stream collection was during the testing and development stage of the system as it 

allowed for playback of visual recordings for verification of the respiration rate and 

stance of the cow.  The infrared data stream was chosen over the RGB color data stream 

because infrared video was able to record in low light and even night time conditions 
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when no naturally occurring external light sources were available.  This provides the user 

the ability to visually monitor the cow 24 hours a day. 

The Kinect™ V2 manufacturer’s camera connection was a 2m USB 3.0 cable 

connection, which does not allow for many options for safe placement of the host 

computer in an operating dairy farm environment.  The 50m distance between the ideal 

host computer location and the research data collection location called for the camera to 

be connected remotely to the computer. USB 3.0 does not have a specified operating 

limit, but data transfer performance is greatly reduced after 3m of cabling. Therefore, the 

camera cabling of the Kinect™ V2 was replaced with a 61m LC-LC fiber optic cable 

connection which incorporated the use of a set of Newnex FireNEX-5000H™ optical 

repeaters (Newnex Technology Corporation, Santa Clara, California) which maintained 

the necessary USB 3.0 data transmission rates. 

The cows at the University of Kentucky Coldstream Dairy Research Farm used in 

this study were individually isolated from physical contact with one another so as to not 

interfere with the data collection process.  Because we were able to isolate individual cow 

into a specific stall, and also because the depth information we were interested in could 

be monitored best from a position above the cow, a camera frame was engineered with 

80/20® aluminum which placed the camera in a fixed position above the cow and stall.  

This camera frame and setup can be seen in Figures 5.1-5.3.  The camera frame was 

designed to be quickly and easily adjustable in order to position the camera at an ideal 

height above the individual cow’s back and to position the camera centrally over the 

individual stall area.  Steps were taken in the designing and setup of the camera frame to 

isolate as much camera motion as possible.  This setup allowed for the maximum limited 
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freedom of movement and comfort for the cow in the camera scene while providing 

continuous, long-term monitoring over several consecutive hours for this study. 

 
Figure 5.1 – Respiration rate monitoring system viewed at an angle from the cow with 

the system operating above the cow.  The current system is capable of expanding to 

include a second monitoring camera above the middle cow in the image. 
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Figure 5.2 – Respiration rate monitoring system viewed from beside the cow with the 

system operating above the cow. 

 

 
Figure 5.3 – Respiration rate monitoring system viewed from behind the cow with the 

system operating above the cow. 
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During the software development stage, over 20 hours of data was collected and 

stored with the Kinect™ V2 camera for playback in order to refine the algorithms 

necessary for automated monitoring of respiration rate and stance.  The recording and 

playback of files was made possible by employing the use of Microsoft™ Kinect Studio 

(Microsoft Corporation, Redmond, Washington).  With the Kinect Studio software, any 

recorded file could be played back to simulate a connected Kinect™ V2 camera, which 

allowed for rapid development and testing.  The Kinect Studio software also allowed for 

recording only select data streams, which minimized the amount of data storage needed 

per frame of video.  Recording only the depth and infrared streams exhibited possible 

recording times of up to just over 2 hours and approximately 220GB of data storage 

space required.  The Kinect Studio software also allowed for looping of recorded data as 

well, allowing for shorter recordings and subsections of longer recordings to suffice for 

robust algorithm development. Figures 5.4 – 5.9 show example frames of data captured 

with the Kinect™ V2 using the Kinect Studio software.  As can readily be seen, the 

resolution of the color image with the Kinect™ V2 is much higher than that of the 

PrimeSense™ Carmine 1.08 and the edge detail as well as the general depth information 

in the depth images of the Kinect™ V2 are much more detailed than those collected with 

the PrimeSense™ Carmine 1.08.  The inclusion of an infrared data stream with the 

Kinect™ V2 that the user can access is beneficial for evening, night, and other low light 

monitoring. 
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Figure 5.4 – Kinect Studio in “Color” image mode showing the RGB color data stream. 

 

  
Figure 5.5 – Kinect Studio in “Grey Point Cloud” image mode for the depth frame. 
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Figure 5.6 – Kinect Studio in “Surface with Normal” image mode for the depth frame. 

 

 
Figure 5.7 – Kinect Studio in “Infrared” image mode. 
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Figure 5.8 – Kinect Studio in “Grey Point Cloud” image mode for the depth frame. 

 

 
Figure 5.9 – Kinect Studio in “Surface with Normal” image mode for the depth frame. 

  

The software for this system was developed using Visual Studio® Community 

2013 and the OpenCV library.  There were two positions to be monitored for stance: 

standing up and lying down.  As well, respiration rate monitoring by means of observing 

the depth information of the lungs required different algorithms for these two positions.  

Therefore, the software was developed to incorporate one set of instructions for when the 

cow was standing up and a second set for when the cow was lying down.  The algorithm 
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for stance monitoring was simple and straightforward. The software placed a set of lower 

and upper threshold limits on the depth frame data as well as a cropping of the frame to 

remove parts of the camera scene in which the individual cow did not have free access to 

move, which allowed for background and noise reduction.  The image also had a 

threshold applied which removed the floor and any other items in the background, 

primarily leaving only the pixels associated with the cow. The software would then find 

all of the contours within the cropped frame, identifying the largest contour as the outline 

of the cow’s body.  The depth data of the pixels inside of this contour were then averaged 

to arrive at a value which represented the average depth of all of the cow body data 

points.  If this value was at or above a predetermined threshold, then the frame was 

assigned to having a cow standing up.  If this value was below the predetermined 

threshold value, then the frame was said to have a cow lying down.  This was the extent 

of the stance monitoring software, but played a vital role in the structure of the respiration 

rate monitoring algorithms. 

For the respiration rate monitoring, once the frame was assigned as either a 

standing up or lying down cow from the previous step, it would then proceed to isolate a 

predefined region of interest from the cow body for depth data monitoring.  When the 

cow transitions from one stance to the other, the software is incapable of accurately 

monitoring the breathing because of how the algorithms are setup to monitor respiration 

rate based upon the stance.  Therefore, during times of stance transition, the software will 

stop the current respiration rate monitoring algorithm, provide for a pause in data analysis 

until the cow has settled into its new stance, and then resume respiration rate monitoring 

with the appropriate algorithm based upon the current stance.  
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If the cow was standing up in the frame, this provided the software the ability to 

observe the left lung, the right lung, or both at the same time.  From the contour 

information of the cow body, a centroid pixel could be determined which represented the 

center point on the back of the cow’s body.  Two 50 pixel by 50 pixel squares could then 

be offset from this center, one for the left lung and one for the right lung.  Each square 

would then search for the nearest cow body contour pixel point to this area.  The 

algorithm was setup for this to automatically take place for every depth frame.  By 

monitoring the change in pixel distance for this minimum value over time, the breathing 

of the cow standing up could be determined. Although both lungs were monitored 

separately at the same time, only a single lung could be monitored if desired or necessary.  

Such reasons for only wanting to monitor a single lung would include if the opposing 

lung’s depth information became occluded from view or if only a single lung were visible 

in the camera scene.  The setup of this research accounted for these factors as much as 

possible beforehand so that both lungs could be continuously monitored simultaneously.  

This also allowed for the verification of the breathing by comparing the two values to 

each other.  If both values were relatively close, then both areas were returning 

essentially the same lung capacity displacement value.   

If the cow was lying down, a similar approach was derived but for a single lung 

since only one side of the cow was visible in this position.  Again, the cow body contour 

data and centroid pixel information were used to determine the region of the cow body to 

monitor breathing.  For the lying down position, a single 50 pixel by 50 pixel square was 

positioned at an offset from the centroid which placed this square optimally over the lung 

in the camera scene.  The average value for the depth data of the pixels contained within 
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this area was then derived.  The algorithm was setup for this to automatically take place 

for every depth frame.  By monitoring the change in average depth value for the pixels in 

this region over time, the breathing of the cow lying down could be determined.  Because 

the cow did not move much once in the lying down position, this region could be 

continuously and consistently monitored from one frame to the next. 

This research tested the capability of monitoring both the respiration rate and 

stance of individual dairy cow by non-tactile means utilizing a 3D camera.  The results of 

this research show that such a system can accurately and effectively monitor both.  The 

system of this study was programed to monitor only a single cow at a time, isolated from 

other physical contact with other cow or any other external objects.  This was done in 

order to preserve data integrity by diminishing as many possible outside effects that could 

impart erroneous results as possible.  Future systems should develop software that can 

aptly handle multiple cow in a camera scene, possibly including different pose positions 

than just the top view approach of this study. Preliminary testing results also indicate that 

it may be better to offset the camera towards one side of the cow so that the standing 

position of the cow does not occlude the flank of the cow.  By offsetting the camera to 

either the left or right side, it may be possible to better observe the respiration of the cow.  

This system has been tested with only a few cow so far, so the study must also be 

expanded to include several more test subjects before any results can be deemed 

conclusive.  The preliminary results seen in Figures 5.10 and 5.11, though, for example 

observational periods of respiration rate monitoring data provide insight into the ability of 

this system to perform accurately.  The respiration rate determined for the examples in 

Figures 5.10 and 5.11, as well as for various other samples tested, have so far fallen 
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within a range of 36 ± 3 breathes per minute (bpm).  The human visual observation of 

this same sample was 36 bpm.  Therefore, further testing is deemed necessary as this 

system proves plausible and accurate at determining the respiration rate of individual 

dairy cow as well as monitoring their stance. 

 
Figure 5.10 – The above plot shows a standing respiration rate sample. The blue line is 

the raw data and the red line is the averaged data. 

 

 
Figure 5.11 – The above plot shows a lying respiration rate sample. 
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Although many precision dairy farming machine vision systems have been 

studied in the research of this dissertation, it is not an exhaustive use of this approach.  

There exist several other topics of concern in regards to animal welfare that have yet to 

be addressed.  Using the principles, methods, and results of this dissertation, it is hoped 

that future work will continue to build upon the work presented here to disseminate these 

systems across several modes of use.  It is easy to envision the use of these systems in 

other livestock operations, conducting the same data collection and analysis.  Although 

harder to visualize, the use of results of this dissertation research can be directed to 

observe several other biological lifeforms for biometric data analysis. Such systems 

would potentially be capable of providing a better understanding into the life processes 

and individual health of many different organisms.  Systems similar to the ones outlined 

in this research have already been developed, tested, and verified with human subjects.  

As imaging technology advances and the appreciation of individual welfare continues to 

increase, it is expected that such beneficial health monitoring systems will become quite 

commonplace. 
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APPENDIX A  

 The following plots contain the comparisons of human visual BCS scoring, shown 

with red data points, versus computer-generated BCS scoring, shown with blue data 

points.  There were 116 dairy cow included in this observational study over a period of 

221 days from April 1, 2014 to November 7, 2014.  The data were recorded at most twice 

per day, so some data points are BCS scores for samples recorded from the morning 

milkings and the others are from evening milkings.  This study aimed at observing the 

gradual changes in BCS for each individual animal of the dairy cow herd over the entire 

monitoring period.  Dairy cows in various stages of lactation were included.  Therefore, 

some cows only have a small dataset of BCS monitoring values because they either left 

the herd early on due to going dry or they came into the herd towards the end of the study 

due to beginning their lactation cycle.  The plots of this appendix are listed by cow 

identification number.  
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