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ABSTRACT OF DISSERTATION

MULTI-STATE MODELS WITH MISSING COVARIATES

Multi-state models have been widely used to analyze longitudinal event history
data obtained in medical studies. The tools and methods developed recently in this area
require the complete observed datasets. While, in many applications measurements on
certain components of the covariate vector are missing on some study subjects. In this
dissertation, several likelihood-based methodologies were proposed to deal with datasets
with different types of missing covariates efficiently when applying multi-state models.

Firstly, a maximum observed data likelihood method was proposed when the data
has a univariate missing pattern and the missing covariate is a categorical variable. The
construction of the observed data likelihood function is based on the model of a joint
distribution of the response longitudinal event history data and the discrete covariate with
missing values.

Secondly, we proposed a maximum simulated likelihood method to deal with the
missing continuous covariate when applying multi-state models. The observed data
likelihood function was approximated by using the Monte Carlo simulation method.

At last, an EM algorithm was used to deal with multiple missing covariates when
estimating the parameters of multi-state model. The EM algorithm would be able to
handle multiple missing discrete covariates in general missing pattern efficiently.

All the proposed methods are justified by simulation studies and applications to
the datasets from the SMART project, a consortium of 11 different high-quality
longitudinal studies of aging and cognition.

KEYWORDS: Longitudinal event history data, multi-state model, missing covariate data,
EM algorithm, maximum simulated likelihood, SMART project.
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Chapter 1 Introduction

1.1 Overview

Longitudinal event history[1] data commonly arise in chronic disease studies in
which patients are observed over time and discrete states of the disease are recorded. A
change of the disease states is called a transition or event. The outcome data often
consists of longitudinal records of time to transition and the types of transitions that
occur. Most often, patients are only observed at discrete time points (e.g., annually),

which leads to interval-censored transition times and unobserved transitions.

Multi-state models (MSM) [1-4] have become powerful tools in analysis of
longitudinal event history data in recent years. These are extensions to the widely used
survival models. In survival models, there are just two possible states at any time point,
either “alive” or “dead”, and two possible transitions, from “alive” to “alive” or from
“alive” to “dead”. Multi-state models allow researchers to investigate a process

containing any finite number of states and transitions at the same time.

One major use of multi-state models is to identify and quantify the effects of
potential risk factors associated with the different transitions among several states over
time. One limitation of the current developed methods and software packages in this area
is that they require the covariate data to be completely observed. However, the problem

of missing covariates is very common in practice. Indeed, the topics of this dissertation



were motivated by the missing covariates data from the Statistical Modeling of Aging
and Risk of Transition (SMART) project established at Sanders-Brown Center on Aging

(University of Kentucky).

We aim to develop methods that can handle different types of missing covariates
data efficiently in the application of multi-state models. In the following sections, we will
introduce the SMART project, a review of multi-state models, the problem of missing

covariates data and the methodologies we proposed to address this problem.

1.2 Background of the SMART Project

The Statistical Modeling of Aging and Risk of Transition (SMART) project at
University of Kentucky aggregates data from mature, extremely data-rich, and well-
known longitudinal cohorts of older adults: the Memory and Aging Project at
Washington University (MAPWU); the Oregon Brain Aging Study; Sanders-Brown
Healthy Brain Aging Volunteers, also known as the Biologically Resilient Adults in
Neurological Studies (BRAINS) cohort; the Nun Study; the Honolulu Asia Aging Study;
the Religious Orders Study; the Memory and Aging Project (Rush University); the
African American Dementia and Aging Project; the Klamath Exceptional Aging Project
(KEAP); and the Einstein Aging Study (EAS). Participants included in SMART were
primarily cognitively intact at baseline and were subsequently assessed for transition to

mild cognitive impairment (MCI) and dementia over many years. This combined cohort
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presents a unique opportunity to study dementia in terms of the risk factors that lead to
cognitive impairment or promote resistance to impairment. Abner, et al. [5] presented a

detailed description of this project and its database.

One issue with this project is that we have a large portion of data with missing
values on the risk factor covariates of interests due to the different designs of the studies
contributing data. For example, the EAS dataset has about 45% subjects with missing
APOEA4 allele status values; the KEAP dataset contains about 20% subjects with missing
APOE4 and about 50% subjects with missing baseline high blood pressure status; and in
the MAPWU dataset, there are about 70% patients with missing BMI values. All of the
above mentioned covariates are important potential risk factors for the transitions among
different types of cognition function states. Thus omitting them from the model is not an

appropriate way to analyze the data.

1.3 Multi-State Models

Multi-state models [1-4, 6, 7] are very useful to describe the progression of a
disease with several possible states over time. Many applications of multi-state models can
be found in the literature. Siannis et al. [8] proposed a multi-state model for joint modeling
of terminal and non-terminal events with application to a study of serious coronary heart
disease. Abner et al. [9] built a seven-state model to investigate the effects of two different

types of mild cognitive impairment (MCI) in the development of dementia. Kryscio et
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al.[10] provided a semi-Markov multi-state model to identify risk factors for transitions to
MCI and dementia after accounting for the competing risk of mortality. Commenges et al.
[11] used an illness-death model to study the incidence and the prevalence of Alzheimer’s
disease. Other applications of multi-state models can also be found in studies of dementia
[9], breast cancer [12-14] , liver cirrhosis [15], AIDS [16, 17],bone marrow transplantation

[18, 19],etc.

There are two types of multi-state models: a discrete-time version and a
continuous-time version. A discrete-time multi-state model views the transition process
as a discrete-time Markov chain assuming the process is observed at equally spaced time
points. While, a continuous-time multi-state model models the transitions as a
continuous-time Markov process. In this study, we focus on the continuous-time version

multi-state models.

1.3.1 Multi-State Process

Continuous-time multi-state models are based on the theory of multi-state
processes. A multi-state process is a stochastic process (X(t),t = 0) , with a finite state
space S = {1,2, ..., K}. It can be fully characterized by either the transition probability

matrix or the transition intensity matrix [1-3, 20].

Denote F (s —) the history before current time s, which is a o-algebra generated

by {X(u), u € [0, s)}. The transition probability matrix is a K by K matrix with entries
4



Pin(s, t) = P(X(t) =m|X(s) =LF(s —)),s <t.
The (I, m)th entry of the transition intensity matrix is defined as:

Alzgqop(X(s +At) =m|X(s) = F(s—)) /At m=l
%m(s) = —Z ay(s) m=1["

k+l

The transition intensity «;,,, measures the instantaneous hazard of the process transition

from state [ to state m at time s.

1.3.2 Markov Models

The process (X(t),t = 0) is Markovian if the transition probabilities and

transition intensities are independent of the past history, that is, for any s,t with0 < s <

t, we have
P(X(t) =m| X(s) = ;F(s—)) = P(X(t) =m| X(s) =)
and
Alggno P(X(s + At) =m|X(s) = 1) /At m # [
A (s) =1 _ a (s) m=1
; lk

For a Markov process, the future of the process after time s depends only on the
state occupied at time s. Under the Markov assumption, the transition probabilities can
be calculated from the intensities by solving the forward Kolmogorov differential

equation [4].



In this dissertation, we focus on time-homogenous Markov models. In time
homogeneous Markov models, all transition intensities are assumed to be constant
functions of time. Thus, we have a;,,(s) = a;,. Let P(s, t) be the transition probability
matrix with the (I, m)th entry be p;,,(s, t), and also let Q be the transition intensity
matrix with the (I, m)th entry be a;,,. In this case, the Kolmogorov differential equation
has an explicit solution using the decomposition of the intensity matrix into eigenvalues

and eigenvectors [21], which leads to
P(s,t) =P(t—s) = ex'p((t — s)Q) = Z Q" (t—s)"/rl,s<t.
r=0

If Q has unique eigenvalues vy, -+ , v, and 4 is the K X K matrix whose jth
column is a right eigenvector corresponding to v;, then @ = AVA~1 where V =
diag(vy, -+ ,vk ). Then

P(t —s) = Adiag(e"1t™), ...  evk(E=9))41

1.3.3 Modeling Intensities

Covariates in multi-state models are often incorporated through the transition
intensity functions to explain differences among individuals in the course of the disease
progression. One popular choice is the proportional hazards model [22]. Suppose we
have a baseline covariate vector Z = (Zl,ZZ, ...,Zp), whose values do not change over
time, a time-homogenous multi-state model with proportional intensities has the

following form:



alm(zlﬂ) = Am,o exp(ﬁ}"mz) = exp(,glm,o + ﬂ{mz); m# l.
Here a;,, 0 = exp(Bim,0) is called the baseline intensity from state [ to state m, and g =
(Bimo Bim; 1 =1,-+,K; m = 1,---,K;m # ), which represents all the parameters

associated with the multi-state model.
1.4 Missing Covariates Data

Even though multi-state models have been widely used in practice, in the current
literature there is still no efficient method for handling missing covariates data. The
complete case (CC) method is the common approach in most multi-state regression
studies and existing software packages [23-27]. There are several limitations to the CC
method. It results in biased estimates of the model parameters when covariates are not
missing completely at random (MCAR). Even when covariates are MCAR, dropping
subjects with incomplete covariate measurement can effectively result in loss of,
oftentimes, expensive-to-collect data[28]. Sometimes, if there’s a large portion of missing
data, the CC method would fail due to convergence problems. Thus, it is urgent for us to
identify efficient ways to deal with missing covariates data in the framework of multi-
state models. In order to study missing covariates data, we will first introduce two basic

concepts of missing data in multi-state model framework.



1.4.1 Missing Data Patterns
Some methods apply only to special patterns of missing data, whereas others
apply to any pattern. The concept of missing data pattern [29, 30] describes which values

are observed and which values are missing.

Denote X = (X, X5, ..., X)) and T = (tq, t,, ..., ty), here M is a random variable
indicating the number of observations, and X; is the corresponding occupied state of the
process X (¢) at jth observation at time ¢;. Denote Z = (Zy, Z,, ..., Z,) a p-dimensional
covariate vector. In our case, the longitudinal response data X is completely observed,

while some components of the covariates Z are possibly missing.

Consider three examples of missing data patterns among the covariates in Figures
1-3. For univariate missing data (see Figure 1.1), missing values are confined to a single
covariate, say Z;. If there are two or more components of Z with missing values and these
components can be rearranged so that all Zy, ..., Z;_; are missing for subjects wherever Z;
is missing for all j = 2, -+, p, then the data is said to have a monotone missing pattern
(see Figure 1.2). In most cases, we would have general missing data. Figure 1.3

represents a general pattern with no special structure.

1.4.2 Missing Data Mechanisms

In the previous section we considered various patterns of missing data. A different

issue concerns the mechanisms that lead to missing data, and in particular the question of

8



whether the fact that variables are missing is related to the underlying values of the
variables in the data set. Missing data mechanisms are crucial since the properties of
missing data methods depend very strongly on these mechanisms. The role of the
mechanism in the analysis of data with missing values were largely ignored until the
concept was formalized in the theory of Rubin[31], through treating the missing data

indicators as random variables and assigning them a distribution.

Rearrange the covariates vector such that Z = (Z,,;5 , Z,ps), Where
components Z,,¢ are completely observed and components of Z,,,;s are components

subject to be missing. Define an indicator vector R = (Ry, Ry, -+, Rpmis) such that

1 if Z; is observed
Rj: = {O if Z; is missing

Here, pmis is the dimension of the missing components Z,,,;s. The missing data
mechanism can be characterized by the following conditional

distribution P(R|X, Z, ¢ ), where ¢ denotes unknown parameters.

The missing data mechanism is called missing completely at random (MCAR) if
the missingness of Z,,,;s does not depend on the values of X and Z, that is
P(RIX,Z) = P(R|¢).
The missing data mechanism is called missing at random (MAR) if the missingness is
independent of the underlying value of Z,,,;5, but might be dependent on the values

of X and Z s, that is P(R|X,Z ) = P(R|X, Z,ps, ¢). The mechanism is called not



missing at random (NMAR) if the missingness is also dependent on the underlying value

of Zmis-

1.4.3 A Review of Methods for dealing with Missing Covariates

Literature focusing on dealing with missing covariates can be found in areas of
linear regressions with incomplete observed values in regressors [29, 32], logistic
regression models with missing covariates [33], generalized linear models [34-36],

survival models [28, 37, 38], etc.

Because standard techniques for most regression models require full covariates
information, one simple way to avoid the problem of missing data is to analyze only
those subjects who are completely observed. This method, known as the Complete Case
(CC) method, is still the default in most software packages. It is well known that the CC
analysis can be biased when the data are not MCAR. When the data are MCAR, the CC
method is unbiased. However, as the fraction of missing data increases, the deletion of all
subjects with missing data is unnecessarily wasteful and quite inefficient [28, 36].
Despite its limitations, the CC method is easy to implement and serves as a useful

baseline method for comparisons.

Like the CC method, the available case (AC) method [30] is also widely used in

practice. By using the AC method, one removes any covariate with missing values from

10



the regression model. This method is not helpful when the goal of the analysis to

investigate the effects of covariates on the response data.

Mean substitution (MS) [30, 39]is another widely used method in practice to deal
with missing covariates data. The MS method primarily works for missing continuous
variables. It imputes the missing covariate by its sample mean or its conditional mean

calculated from the observed data.

For missing binary covariate, Schemper and Smith [40] proposed the method of
probability imputation technique (PIT). By using the PIT method, the missing covariate
values are replaced by an estimate for the probability that the unobserved value is equal

to 1 based on the complete cases.

Rubin proposed the method of multiple imputation (MI) [41, 42]. MI has become
one of the standard methods for dealing with missing values. The method involves three
steps, namely (1) creating multiple complete datasets, (2) analyzing each complete
dataset using standard analysis, and then (3) combining the parameters estimated from
these complete datasets. Issues with MI method are that it requires the data can be
presented in a matrix with rows representing independent subjects and columns having
fixed dimension representing different variables, and the model used to analyze the
multiply imputed data is the same as the model used to impute missing values[43]. In

most multi-state model applications, the observed data contain longitudinal response data

11



with random length and unequal spacing. Thus, it is difficult to place the data in a matrix
with independent rows and fixed dimension columns, and it is also difficult to come up
with an imputation model for the missing covariates. This might be the reason we cannot
find literature of MI application in the framework of multi-state models. An alternative
solution would be to impute the missing covariate values conditioning only on other
observed covariates. This solution is not helpful when the missing covariates are
independent with the completely observed covariates or in cases where all the covariates
have some missing values. Little [29] and Lin and Ying [28] also pointed out that
imputing the missing covariates based on only the observed covariates could lead to bias

and is inappropriate. Schafer provided a comprehensive coverage on this topic [43].

Model-based procedures have been widely applied to deal with missing covariates
in generalized linear models (GLMSs) [28, 34, 36]. In applying these procedures, we first
define a model for the variables with missing values and then make statistical inferences
based on ML methods. Model-based methods are quite flexible and clearly set forth
underlying model assumptions so that they can be evaluated. In addition, asymptotic
variance estimates can be obtained based on second derivatives of the log-likelihood,
which takes into account the missing data. Model-based algorithms and techniques
include methods based on factoring the likelihood function of the observed data, Newton-

Raphson or quasi-Newton algorithms for directly maximizing the likelihood of the

12



observed data, and the EM algorithm of Dempster, Laird, and Rubin [44] for obtaining

ML estimates (MLESs) from the complete-data likelihood [30].

1.5 Estimation Methods

Estimation methods of statistical models with missing covariates are often more
complicated than those with complete data, simply because we can often treat the
covariate variables in the model as constant if the data is complete. While, this is not the
case when the data under study contains covariates with missing values. When the data
contains missing covariates values, two things have to be take into consideration in order
to analyze the data correctly and efficiently. First, we have to consider the mechanism
that leads to the missing covariate data. The missing data mechanism would be critical
for a particular method to work properly in the presence of missing data. Second, we
have to consider the distribution of the missing covariates. Most of the time, the observed
part of the data contains a lot information on the missing part of the data. In the
following, we will introduction three estimation methods for multi-state models with

missing covariates.

1.5.1 Maximum Likelihood Estimation (MLE)

Maximum Likelihood is a straightforward and easy-to-implement method for

dealing with missing covariate data. In the framework of multi-state models, we propose

13



to construct the likelihood function based on the conditional joint distribution
of (R, X, Z nis|Z ops)- Using properties of conditional distributions, we have

P(R,X, Znis|Zobs) = P(RIX, Zimis: Zops: ®)P (X1 Zmis, Zobs: BYP (Zimis| Z ops, ¥)-
Here P(R|X, Zmis, Zobs, @) defines the missing data mechanism, P(R|X, Zmis, Zops @)
is determined by the multi-state model and P(Z,is|Z,ps, ¥) 1S the distribution for the

missing components of the covariates conditioned on the observed covariates.

With the data, the likelihood can be calculated a
L= [ P(RIX, Zuis:Zanes 8)P (X1 Zimis, Zovss BYP s Zas, V) Zomis.

Here the integration is over all possible values of Z,,,;.

If the data is assumed to be MAR, thus we have P(R|X, Z s, Zops, P) =
P(R|X, Z,ps, @) and the likelihood can be rewritten as

L= P(RIX, Zaps8) | PCXVZumis Zorss BYP s Zaber V) dZomis

If the nuisance parameter ¢ is distinct from g and y, the missing data mechanism

can be ignored and we have
L& [ PX12ZiissZopss BYP s Zops V) d i (11D,

When all components of Z,,,;; are discrete variables, the integration in the above formula

iS a summation.
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1.5.2 Maximum Simulated Likelihood (MSL)

When Z,,,;s are continuous variables, calculation of the above likelihood function
involves integration, and in most cases it does not have a closed form. Numerical
simulation methods can be used to approximate the likelihood function (1.1) in this

situation.

Suppose Z,,is has a density g(z|y). First, we draw H independent random

variables Z3, ---, Z;, from g(z|y), and next calculate
H
H 1 *
L = 2 PXIZ}, Zops, B)
r=1

By the law of large numbers, we have L = L,as H — o. Thus L can be used

for estimation of the model instead of L, which involves complex integration in the

calculation.

1.5.3 EM Algorithm

Expectation Maximization (EM) algorithm [44] is a widely used method in the
literature of missing data problem. EM is an iterative algorithm for calculating the MLE
in the presence of missing data. Each iteration of EM algorithm consists an E
(expectation) step and an M (maximization) step. The E step finds the conditional
expectation of the complete-data log likelihood given the observed data and current

estimated parameters.
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Assume the data is MAR, then the complete data log likelihood has the following
form
LB, Y) = 1og(P(X|Zmis» Zobs BYP (Zomis| Zops, V)
= 10g(P(X|Zmis, Zobs: B)) + 10g(P(Zmis| Zops: ¥))-
Suppose (B, y®) is the estimate of the parameter (B, y) from the previous
iteration. For the current iteration, the E step can be written as
Q(B.¥|BD,¥®) = E(LB.V)IX, Zops, B, ¥ )
= f log(P(X|Zmis: Zobs: B))P (Zumis|X, Zops, B, ') AZ i
+ J- 109(P(Zimis|Zobs: ¥))P(Zimis| X, Zops, B, VD) AZ ;s -
The M step determines (B+1), y$+1) by maximizing the expected complete

data log likelihood function Q(B,v|8®,¥®).
1.6 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we propose a likelihood-based method for estimation of multi-state
models with univariate missing discrete covariate data. The calculation of log likelihood
with missing covariate data is discussed in detail. And the performance of the method is

assessed by numerical studies as well as a real data application.
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In Chapter 3, we deal with missing continuous covariate in multi-state models.
The method of MSL is used for the estimation. Robustness in the assumption of the

missing covariate distribution is assessed by numerical studies.

In Chapter 4, EM algorithm is used for estimation in situations where the data
under study has a general missing pattern. The method is limited to datasets with only
discrete missing covariates. The performance of the method is compared to the widely

used CC method by extensive simulation studies.

Finally in Chapter 5, we discuss some topics of the work and offer some potential

areas for future study.
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Figure 1.1: Pattern of Univariate Missing Data
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Figure 1.2: Pattern of Monotone Missing Data
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Figure 1.3: General Pattern of Missing Data
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Chapter 2 Estimation of Multi-State Models with Missing Categorical Covariate
based on Observed Data Likelihood

2.1 Introduction

Continuous-time multi-state models are commonly used to study diseases with
multiple stages. In these models, potential risk factors associated with the disease are
added to the transition intensities of the model as covariates. But, the problem of missing
covariate values arises frequently in practice. In the current literature, estimation methods
for multi-state models require complete covariate measurements. In the presence of
missing covariate values, the complete case (CC) method is the default. The limitations
of CC method are well known; it might produce biased estimates when missing data are
not missing completely at random (MCAR), and even if the data are MCAR, dropping a

large proportion of the data results in a substantial loss of information.

Other methods of handling missing covariate data in practice includes mean
substitution[30, 39] and multiple imputation [30, 41]. The mean substitution method
imputes the missing covariate by its sample mean or its conditional mean calculated from
the observed data. Schemper and Smith [40] proposed the method of probability
imputation technique (PIT) for missing binary covariate. By using the PIT method, the
missing covariate values are replaced by an estimate for the probability that the
unobserved value is equal to 1 based on the complete cases. Rubin [41, 42] proposed the

method of multiple imputation (MI). The method involves three steps, namely (1)
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creating multiple complete datasets, (2) analyzing each complete dataset using standard
analysis, and then (3) combining the parameters estimated from these complete datasets.
Issues with M1 method are that it requires the data can be presented in a matrix with rows
representing independent subjects and columns having fixed dimension representing
different variables, and the model used to analyze the multiply imputed data is the same
as the model used to impute missing values[43]. In most multi-state model applications,
the observed data contain longitudinal response data with random length and unequal
spacing. Thus, it is difficult to place the data in a matrix with independent rows and fixed
dimension columns, and it is also difficult to come up with an imputation model for the
missing covariate. An alternative is to impute the missing covariate values conditioning
only on other observed covariates. Our simulation studies as well as real data application
results showed that using multiple imputation method to impute the missing covariates

based on only the observed covariates could lead to bias and is inappropriate.

In this chapter, we propose a maximum likelihood method to deal with the
missing covariate data problem when estimating multi-state models. The method is based
on the observed data log likelihood. The dataset can contain one partially missing
categorical covariate as well as several other covariates with complete measurements.
The proposed method works in situations even when the response event history data have

mixed discrete-continuous pattern observations [20], in which the clinical status is
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assessed at discrete visit times while the transition time to one of the absorption states
(often death) is observed exactly. As long as the data is MAR, our simulation study
shows that the proposed method works well. By adding the missing data mechanism to

the model we also can extend this method to NMAR data.

The remainder of the chapter is organized as follows. In Section 2, we present the
proposed method. In Section 3, simulation studies were carried out to compare the
performance of our method to the widely used CC method, the probability imputation
technique (PIT) method proposed by Schemper and Smith [40] and the multiple
imputation (MI) method. We applied our method to the Einstein Aging Study (EAS)
dataset in the SMART database in Section 4. In the concluding section, we discuss the

advantages and possible extensions of our method.

2.2 Multi-State Models with Missing Covariate

In a time-homogenous Markov multi-state model, interesting covariates are often

incorporated into the transition intensities using a Cox form regression model:

A (Z|B) = Ao exp(BTnZ) = exp(Bimo + BinZ) m# L.

Here a;,, 0 = exp(Bin,0) is called the baseline intensity from state [ to state m, Z =

(21,25, ..., Z;) is a vector of baseline covariates whose values do not change over time
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and are completely observed, and B = (Bumo, Bims L =1+, K; m =1, K;m # 1),

which represents all the parameters associated with this multi-state model.

In real data applications, it is common that covariates might not be fully observed.
In this section, we introduce a likelihood-based method for dealing with partially missing
covariate data in the context of continuous-time multi-state models with a continuous-
discrete mixed type of observation scheme [20]. Our method can handle one partially
missing categorical covariate along with several other completely observed covariates in

the model. The completely observed covariates can be either continuous or discrete.

2.2.1 Joint Modeling the Response Data and Missing Covariate Data

Denote T = (Ty,T,, ..., Ty) and X = (X4, X5, ..., Xpy), here M is a random variable
indicating the number of observations, T; is the time of jth observation and X; is the
corresponding occupied state of the process X (t) at time 7;. To make it simple, we
assume that Z, is a baseline binary covariate, and its value might be missing. Also
denote Z,ps = (Z3, ..., Zp), Which is a vector of other baseline covariates whose values

are all observed. We define an indicator R such that

R:= {1 if Z; is observed
0 otherwise '

Here we assume the observation process is ignorable [20], thus the time points of the
observation process T can be viewed as fixed. The proposed method is based on the

conditional joint distribution of (R, X, Z;|T, Z,ps)- In this dissertation, we assume the
23



missing data is MAR. Under the assumption of MAR, the joint distribution can be written
as

P(R,X,Z1|T, Zops) = P(RIX, T, Zons, )P (X|T, Z1, Zons, BYP(Z1|Zobs, V).
Here, B is the vector of parameters of interests and is associated with the multi-state

model while (¢, y) are nuisance parameters.

Since Z; is binary, we use logistic regression to model the distribution of Z;:

b1
log <1 — pl) = Yo+ @ Zops
Here p; = P(Z1 = 1|Zops,¥) and y = (yo, @). In situations that Z; and Z,, are
independent or there’s just one covariate Z; and no Z ¢ variables, we have

lo ( b1 ):
g 1-p, Yo-

With the same method, we can generalize the model to the case where Z; has more than

two levels.

2.2.2 The Likelihood Function

Assume that state 1 to state K — 1 are all transient states, and the last state K
represents death, an absorbing state. Since we cannot make observations in continuous
time but only at a finite number of distinct times, the exact transition time to
state 1, 2, ..., K — 1 are unknown and are all interval-censored. The exact time of death

can be retrieved, but the state just before death is unknown.
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Denote t; = (t;1,t; 2, -, tim,) aNd X; = (X114, X; 2, ..., X1 m, ), Where t; ; is the time
point of the jth observation for subject i and x; ; is the corresponding occupied state at
that time point. Define index of death &; = I(x;,,, = K). Thus we have §; = 1 if
subject i died at time t; ., and §; = 0 otherwise. Write covariates z; = (21, Z; ops )
here z; ops = (Ziz, .-, Zip )- The likelihood contribution for the ith subject, L;, can be

calculated as

Li = P(Tilxii ti) Zi,ObSJ ¢)
1-r;

1
Ti
X (P(xilti; 2, B)P(2:11Z; obss Y)) Z P(x;|t, zi, BYP(2i 112105, V)

Zi,1=0
Here r; = 1 if z;; is observed and 0 otherwise, and the conditional distribution
P(x;|t;, z;, B), under the assumption that the process is Markov and given the baseline

state, can be calculated as

m;
P(x;|t;, z;, B) = 1_[ P(ox; 1% j1, ti o1, tijo 20 B) -
1

J

Here

P(x; 1% j-1, tij—1, tij» 20, B)
{pxi_j_l,xi_j(tij—li tijlzi'ﬂ) lf] * mi
6;

1—5i
L[Pxi,j_l,xi,j(tij—p tijlzixﬁ)] [Z Pxi,]-_l,k(ti,j’ti,j|Zi’ﬁ)“kk(Zi|ﬁ) ifj = m;

k+K

The log-likelihood function of all the subjects can be written as

L= U¢)+ LBV
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Here

l(p) = Z log (P(Ti|xi’ ti, Ziobs ¢))
i=1

and
n
I(B,y) = z 1 log (P(xilzi,lizi,obs' B)P(2;112; obss }’))

=1
1

+1-1r) Z P(xi1zi1, Zi obs, B)P(2i1|2i0ps V)

Zi1=0

If the nuisance parameters ¢ is not a function of (f,y ), then we have [ «
L(B,y).The Newton-Raphson method can be used to maximize the log-likelihood

function L(B,y).

2.3 Simulation Study

In this section, we evaluate the performance of the proposed method (referred to

as OL throughout) through simulations. Both MCAR and MAR data will be considered

here. We performed the full data method (referred to as FULL) on the original non-

missing covariates datasets. This estimation acts like a benchmark, so we can evaluate

the performance of our method in general. To show the advantage of the method, we also

compared it to the CC method, the PIT method proposed by Schemper and Smith [40],

and the MI method. In applying the MI method, we impute the missing covariate values
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by a regression model only based on the other fully observed covariates and ignoring the
longitudinal response data. The criteria used in the comparisons are percent bias (% bias),
estimated standard error (SE) and 95% confidence interval coverage rate (95% CP). The
results are based on 500 simulated datasets. All simulations were done in SAS 9.3
system[45]. PROC IML is used to calculate and maximize the likelihood functions.
PROC Ml and PROC MIANALY ZE were used to impute datasets and to combine results

for the MI method.

We consider two covariates (Z, Z,) in this simulation study. The first
covariate Z; is a baseline binary covariate, and its value would be missing for some
subjects. The second covariate Z, is a continuous covariate, and its value will be
completely observed. We generate Z, from a truncated normal distribution with
(u = 1,0 = 0.25) and truncated at 0 and 2. We generate Z; by a logistic regression
model based on the value of Z,, which has the following form

exp(Yo + v1Z2)

P=D= (1 +exp(y, + V1zz)).

We set (yo,71) = (—0.2,0.2) in the true model.

The longitudinal response data will be generated from a three-state model with the

following transition intensity matrix:

—(0.2 + exp(—=2.2 + $1Z1))  exp(—=2.2 + B1Z4) 0.2
Q= 0 —exp(=2.0 + $,Z,) exp(=2.0 + B,Z,) (-
0 0 0
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The true values of B, and 8, are 0.8 and 0.4 respectively. Subjects began in state 1 at
time 0. States 1 and 2 are transient states, while state 3 is an absorbing state. The states
occupied were observed at 1-year intervals with a common censoring time 10 years if the

subject was still in state 1 or state 2. The number of subjects (N) was 1000.

We consider both MCAR and MAR datasets in this study. For the MCAR
datasets, we considered two cases. In the first case, we randomly set Z; missing for about
30% of the subjects. We denote this case as MCAR 1. In the second case, we randomly
set Z, missing for about 70% subjects. Denote this type of dataset as MCAR 2. Both of
these two types of missing data are MCAR data, since the missingness of the data is

independent of underlying values of both the observed and unobserved data.

For the MAR datasets, we also considered two cases. In the first case, we set Z;
missing if the first transition happens within the first year. In this situation, we have about
30% subjects with missingness in the covariate. We denote this type of dataset as MAR
1. In the second case, we set Z; missing if the first transition happens within the first 3
years. In this case, we had about 70% subjects with missingness in the covariate. We
denote this dataset as MAR 2. Both of these two types of missing data are MAR, since
whether the covariate is missing depends on the observed data, which is the transition

history, but not on the unobserved data, which is the underlying value of Z;.
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The simulation results are listed in Table 2.1. When the datasets are MCAR, the
CC, PIT and OL methods all worked well. The percent bias was small, and the real
coverage rates for the nominal 95% confidence intervals were all near 95%. Both results
were close to those provided by the full data estimates in which we had complete
covariate values for all subjects. The PIT method has relative larger bias than the CC
method and the proposed OL method for the coefficient estimate of the partially missing
covariate Z;, but the bias is in an acceptable range. The CC method is less efficient than
the PIT method and the proposed OL method in terms of standard errors, especially for
the datasets MCAR 2, which have a higher missing proportion. The M1 method by
imputing the missing data based on only the observed covariate performs the worst
among the four methods considered. The results by MI method have large bias for the

coefficient estimate of the partially missing covariate Z; even though the data is MCAR.

When the data were MAR, the proposed OL method still works well, while the
other three methods considered here have relatively large biases. The CC method would
have as large as 120% bias for the coefficient estimate of Z;. The PIT and MI method
perform better than the CC method, but both methods have at least 10% bias for the
coefficient estimate of Z; no matter whether Z; and Z, are independent or not. However,
our method (OL) still worked well for MAR data; the estimates provided by our method

were unbiased. The simulation results also showed that our method did not lose much
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efficiency because of the missing data. The increases of the standard errors were
relatively small compared to those for the full data estimates (FULL), where we had

complete covariate data for all subjects.

2.4  Application

In this application, we used the data of the Einstein Aging Study (EAS) from the
SMART database. EAS, located at the Albert Einstein College of Medicine, Yeshiva
University (New York City), is a population-based study of cognitive aging and dementia
in a non-institutionalized, urban, and multi-ethnic community. Participants undergo
annual in-person evaluations that include cognitive, neurological, functional, and physical

assessments [46].

Three cognitive states are of interest, and they are: Cognitively Intact (state 1),
MCI (state 2), and Dementia (state 3). Death (state 4) is also included in our model as a
competing risk for MCI and Dementia. Being Cognitively Intact, MCI, and Dementia are
transient states, while Death is an absorbing state. Participants with normal cognitive
function may die or transition to MCI or dementia. Participants who transition to MCI
may die, transition to Dementia, or reverse back to the Cognitively Intact state.

Participants who were diagnosed as Demented cannot reverse back to being MCI or
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Cognitively Intact; however, they can transition to Death. See Figure 2.1 for the refined

transition model structure.

The original dataset contains longitudinally observed data on 2,097 patients. In
this application, we excluded participants if they had only one observation (n=500) or
already entered into MCI or Dementia at baseline (n=395). For the 1,202 participants
included in this study, all of these participants were Cognitively Intact at baseline, and
there were 4,302 total observed transitions. This resulted in 4.6 £ 2.7 transitions per

subject with a mean follow-up 5.7 £ 3.6 years.

One covariate of interest for our application is Apolipoprotein E4 allele (APOE4),
a genetic marker of Alzheimer’s risk; this covariate was not available for all EAS
participants. There were 509 (42.4%) participants with missing APOE4. See Table 2.2 for
the observed transition frequencies for both the full data and the dataset with only the
complete cases. Other risk factors of interest in this model are baseline age (Bage),
female gender (Female) and education level (LowEdu). Education level was
dichotomized into two groups, low education (< 12 years) and high education (> 12
years, above high school level). Baseline age, education level, and female gender were all

fully observed. Summaries of these risk factors are listed in Table 2.3.
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We used a time-homogenous Markov model to study the effects of these risk
factors on each transition. This four-state model has the following transition intensity

matrix:

a11(Z) a2(Z2) a3(Z2) a14(2)
Q(Z) = a21(Z) a22(Z) az3(Z) a4 (Z)
0 0 a33(Z) az4(2)

0 0 0 0

Here Z is the vector of above risk factors, namely Bage, Female, LowEdu, and APOEA4.
Since all patients were over 60 years old at baseline, we centered the original baseline age
at 60 to use as the age covariate in the model. Since the effects of risk factors on the
backward transition from state MCI to state Cognitively Intact are not of interest in this
study, we didn’t add covariates on the transition intensity function for this path. Thus, the
non-zero intensity functions in the transition intensity matrix Q(Z) have the following

Cox-type regression form:

Ifexp(ﬁlm,o) ifl=2m=1
0 (Z) = gexp(ﬁlm,o + Br.Z) ifl<m
L—Z alh(Z) lfl =m
h=l

We considered five methods to deal with the missing covariate data, the AC
method, the CC method, the PIT method, the proposed OL method, and the MI method.
For each method, a backwards algorithm was used for model selection. A basic model

was fit to the data with all risk factors modeled on all possible transitions. At each step
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the coefficient with the largest p value was eliminated from the model until all

coefficients remaining in the model were significant at the 0.05 level.

First, we fitted the model without APOE4. With APOE4 excluded from the
model, the data were completely observed. Table 2.4 lists the hazard ratios and the
corresponding 95% confidence intervals for all the significant risk factors (P<0.05). We
use these results to see how the missing APOE4 data affected the results of our proposed

OL method as well as the results of the CC, the PIT, and the conventional M| methods.

For the proposed OL method, the distribution of APOE4 is constructed by the
logistic regression model based on the fully observed covariates, which are Bage, Female

and LowEdu. The regression model has the following form:

P(APOE4 = 1)
°9\1=P(APOE4 = 1)

) = @, + p,Bage + p,Female + @p3;LowEdu.
The results generated by the OL method are listed in Table 2.5.

Table 2.6 lists the results by using the PIT method. In the PIT method, missing
APOEA4 values are imputed by its percentage based the observed data, which is 21.6% in

our data (see Table 2.3).

Since the likelihood function contained as many as 30 parameters in the initial

model and 42.4% of the subjects had missing data, the model failed to converge using the
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CC method. We refitted CC method on the reduced model based on the results of the PIT

method and the proposed OL method. The results are listed in Table 2.7.

When applying the M1 method, we imputed the missing APOE4 by logistic model
using the fully observed covariates Bage, Female and LowEdu as predictors. The
combined results showed that APOE4 is not significant on any of the transition paths.
Thus the final model reduces to the one of the AC method. In order to compare to the
proposed OL method, we refitted the MI method on the reduced model based on the

results of the PIT method and the OL method. The results are listed in Table 2.8.

The PIT method and the proposed OL method provide very similar results. The
effects of baseline age (Bage), female gender (Female), and low education (LowEdu) on
each path by both methods are also very close to those by the AC method. In general, a 1-
year increase in baseline age increased the transition intensities from Cognitively Intact to
MCI and MCI to Dementia. Cognitively Intact women had a lower mortality rate than
Cognitively Intact men. Cognitively Intact subjects with low education level had a higher
risk for the transition to MCI. And both the PIT method and the OL method showed that
APOE4 increased the transition intensities from Cognitively Intact to MCI. These
findings are much in line with other similar studies [10, 47]. The CC method fails to
indicate that Female gender has a significant effects on the transition intensity from

Cognitively Intact state to Death, while the effects of baseline age, low education level
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and APOE4 agree with the results by PIT method and OL method. The MI method, by
ignoring the longitudinal outcome data, fails to indicate APOE4 is significant in the

model.

We used the length of the 95% confidence intervals to compare the efficiency
among the methods which are considered here. The results showed that the CC method is
the least efficient method among the three. It has the largest length of each hazard ratio
95% confidence interval. The proposed OL method shows a small advantage over the PIT
method. Its length of the 95% confidence interval of the hazard ratio for the missing
covariate APOE4 on the path from state Cognitive Intact. to state MCI is less than the
length provided by the PIT method (0.66 vs. 0.70). The MI method considered here has
similar efficiency to the proposed OL method. However, MI method showed bias on the
estimation of the effect of APOE4, which results in APOE4 not being significant in the

model.

2.5 Discussion

Multi-state models have become a popular tool to study transitions in studies of
chronic disease. But, most model estimation methods and applications require fully
observed data. We proposed a likelihood-based method that would handle missing

covariate data in continuous-time Markov multi-state models. The proposed method
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works for dataset with one missing categorical covariate and several other completely
observed covariates. The completely observed covariates are allowed to be either

continuous or discrete.

Compared to the CC method, which is commonly used in multi-state models with
missing covariate data, our method has three major advantages. First, when the data are
MCAR our method was more efficient, especially when the data contained a large portion
of cases with missing covariate data. Second, our method worked for both MCAR data
and MAR data, while the CC method could provide biased estimates if the data are not
MCAR. Third, when the dataset contains a large portion of missing covariate cases, the
CC method might fail due to a convergence problem. In this case, the proposed method

would be an alternative for the analysis.

From our simulation studies, the PIT method proposed by Schemper and Smith
would also produce biased results when the data is not MCAR. The covariate
distributions of the missing covariates for the missing cases and observed cases would be
different when the missingness is dependent on other observed data. Thus the PIT method
is not recommended when the data is MAR not MCAR in estimation of multi-state

models with missing categorical covariate.

The MI method has become a widely used tool to deal with missing data. It is an

efficient method and is also easy to carry out in many statistical modeling area with
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missing data. However, in the area of multi-state models with missing covariates data, the
proper M1 method is often not easy to carry out. Our study found out that the
conventional method of imputing the missing covariate by a model based only on the

other observed covariates is biased even when the data is MCAR.

In our application to the EAS dataset, CC is inferior since it has the widest Cls
and since it fails to find female to be protective for transitions from cognitive intact to
death. Methods OL and PIT give the same results in the application, which were our
expectation since the EAS dataset is more MCAR than MAR. The MI method based on

observed covariates showed bias in the estimation of the effect of APOE4 in the model.

If the missing covariate is continuous, the observed data log-likelihood involves
integration. In this circumstance calculation of the log-likelihood would be difficult, since
there is never a closed form for the integration. Numerical integration methods, such as
Gaussian quadrature, Monte Carlo simulations, quasi-Monte Carlo, etc., can be used to
approximate observed data log-likelihood. We will explore this type of method in the

next chapter.

The proposed method could also be extended to data with multiple categorical
covariates with missing data. However, if the data contain too many covariates with
missing values, this method might encounter programming difficulties or convergence

problems when fitting the model. Modeling multiple covariates with missing data would
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introduce many nuisance parameters into the likelihood function. With too many
nuisance parameters in the likelihood function, there might be difficulties computing
estimates using the usual maximization techniques, like the Newton-Raphson method.
One possible solution to the problem discussed above is to use the EM algorithm as
discussed by Ibrahim et al.[36]. By applying the EM algorithm, the nuisance parameters
associated with the covariates model can be estimated separately from the model
parameters associated with the multi-state model. In Chapter 4, we will have a detailed

discussion about this method.
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Figure 2.1: Multi-State Model Structure
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Table 2.1: Simulation Results for four different types of missing covariate datasets

B4 (0.8) B2 (0.4)

MissMech Method % bias SE  95% CP % bias SE 95% CP
0 FULL 0.15% 0.064 94.6% 1.61% 0.056 94.4%
MCAR1 CcC 0.27% 0.077 94.6%  2.05% 0.067 95.0%
PIT 0.74% 0.071 93.8% 151% 0.056 94.0%

oL 0.22% 0.071 94.2% 159% 0.056 94.0%

MI -14.37% 0.073 69.8% -0.01% 0.056 94.8%

MCAR2 CcC 0.59% 0.118 95.4%  2.54% 0.102 93.6%
PIT 1.96% 0.084 92.2%  1.42% 0.056 94.2%

oL 0.31% 0.085 94.4% 157% 0.056 94.4%

Ml -33.78% 0.083 6.2% -2.13% 0.056 93.8%

MAR1 CcC -51.56% 0.081 0.0% -4.89% 0.071 93.4%
PIT -12.15% 0.069 73.8% -0.80% 0.056 95.2%
oL 0.23% 0.068 94.2%  1.65% 0.056 94.0%
MI -13.33% 0.074 754% -0.43% 0.056 95.0%
MAR?2 CC  -118.32% 0.128 0.0% -11.41% 0.119 93.8%
PIT -18.36% 0.082 57.8% -2.74% 0.056  94.0%
oL 0.13% 0.072 948% 1.60% 0.056 94.4%
MI -30.65% 0.091 17.6% -3.14% 0.056  93.6%

Note: MissMech=Missing Mechanism; FULL=Full Data Analysis; CC=Complete Case;
PIT=Probability Imputation Technique; OL=Observed-data Likelihood; MI=Multiple
Imputation; 95% CP=95% Confidence Interval Coverage Rate.
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Table 2.2: Observed frequency of transitions.

To (Full Data)

To (Complete Case)

From

Co.l. MCIl Dementia Death Co.l. MCIl Dementia Death
Co.l. 3027 328 37 454 2260 236 24 185
MCI 151 126 42 47 121 97 32 21
Dementia 48 42 30 27

Note: Co.l. =Cognitive Intact; Left panel: Full data; Right panel: Complete Case.

Table 2.3: Summary statistics of baseline risk factors (N=1,202).

Baseline Risk Factor

N Missing (%) N Percent (%) or mean = st. dev.

Baseline age 0(0) 78.88 £5.34
Female 0(0) 724 (60.2)
Low Education (<12 years) 0 (0) 593 (49.3)
APOE4 (> 1 e4 allele) 509 (42.4) 150 (21.6)
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Table 2.4: Hazard ratios (HR) for risk factors using Available Case method.

95% Confidence Interval

Risk Factor Path HR 3 0 Length
Baseline Age Co.l. to MCI 1.07 1.05 1.08 0.03
MCI to Dementia 1.04 1.00 1.07 0.07
Female Co.l. to Death 043 0.22 0.86 0.64
Low Education Co.l. to MCI 154 1.30 1.82 0.52

Note: Co.l. =Cognitive Intact

Table 2.5: Hazard ratios (HR) for risk factors using Observed-data Likelihood method.

Risk Factor Path

95% Confidence Interval

L U Length
Baseline Age Co.l. to MCI 1.07 1.05 1.08 0.03
MCI to Dementia 1.04 1.01 1.07 0.06
Female Co.l. to Death 045 0.24 0.85 0.61
Low Education Co.l. to MCI 154 1.30 1.83 0.53
APOE4 Co.l. to MCI 1.44 1.15 1.81 0.66

Note: Co.l. =Cognitive Intact

Table 2.6: Hazard ratios (HR) for risk factors using Probability Imputation Technique

method.
. 95% Confidence Interval
Risk Factor Path HR 3 0 Length
Baseline Age Co.l. to MCI 1.07 1.05 1.09 0.03
MCI to Dementia 1.04 1.01 1.07 0.06
Female Co.l. to Death 0.44 0.23 0.84 0.61
Low Education Co.l. to MCI 1.54 1.30 1.83 0.53
APOE4 Co.l. to MCI 1.47 1.16 1.86 0.70

Note: Co.l. =Cognitive Intact
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Table 2.7: Hazard ratios (HR) for risk factors using Complete Case method on the reduced
model

5 .
Risk Factor Path HR 95% Confidence Interval

L U Length
Baseline Age Co.l. to MCI 1.07 1.05 1.09 0.04
MCI to Dementia 1.05 1.01 1.10 0.09
Female Co.l. to Death 0.25 0.05 1.25 1.20
Low Education Co.l. to MCI 159 1.29 1.97 0.68
APOE4 Co.l. to MCI 152 1.19 1.95 0.76

Note: Co.l. =Cognitive Intact

Table 2.8: Hazard ratios (HR) for risk factors using Multiple Imputation method on the
reduced model

95% Confidence Interval

Risk Factor Path HR
L U Length
Baseline Age Co.l. to MCI 1.07 1.05 1.09 0.03
MCI to Dementia 1.04 101 1.07 0.07
Female Co.l. to Death 043 0.22 0.85 0.62
Low Education Co.l. to MCI 154 1.30 1.82 0.53
APOE4 Co.l. to MCI 1.25 0.98 1.56 0.58

Note: Co.l. =Cognitive Intact

Copyright © Wenjie Lou 2016
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Chapter 3 Estimation of Multi-State Models with Missing Continuous Covariate
using Maximum Simulated Likelihood

3.1 Introduction

Multi-state models are very useful tools to model chronic disease processes in
which patients might go through several different states. The common way to account for
interpersonal difference in the disease process in multi-state models is to add covariates
in the transition intensity functions. In the current literature, covariates have to be

completely observed. However, missing covariate data is very common in practice.

In Chapter 2, we discussed how to deal with discrete missing covariate data in the
framework of multi-state models. In this chapter, we propose a maximum simulated
likelihood method for estimation of multi-state models with missing continuous covariate
data. The method works for datasets with one missing continuous covariate. The dataset
can also contain several other completely observed covariates and the completely
observed covariates can be either discrete or continuous. The method is based on the
assumption that the corresponding missing covariate follows a normal distribution.
Through simulation studies, we showed that the proposed method is actually robust to the
normal assumption. The method still works with moderate violation of the normal
distribution assumption, and it works well for both MCAR and MAR type of missing

data.
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The rest of the chapter is organized as follows. In Section 2, we present the
method of maximum simulated likelihood in the framework of multi-state models with
missing continuous covariate data. In Section 3, the results of simulation studies are
presented. In this section we check the robustness of the distribution assumption of the
covariate. In Section 4, we apply the proposed method to a real data, the MAPWU dataset
from the SMART database. In the discussion section, we discuss the advantages as well

as limitations of the proposed method and lay out some possible future work.

3.2 The Maximum Simulated Likelihood Method

Covariates in multi-state models are often incorporated through the transition
intensity functions to explain differences among individuals in the course of the disease
progression. One popular choice is the proportional hazards model, which has the
following form for a time-homogenous model:

W (Z1B) = Um0 €XP(BTmZ) = exp(Buno + BinZ).
Here a;,, 0 = exp(Bim,0) is called the baseline intensity from state [ to state m, Z =
(Z1,Z,, ..., Z;) is a vector of baseline covariates whose values do not change over time,
and B = (Bimo, Bim;L = 1,+++,K; m = 1,--,K;m # 1), which represents all the

parameters associated with the multi-state model.
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Let t; = (t;1,ti2, ..., tim,) be the scheduled observation time points, and x; =
(xl-,l, Xi2) e xi,mi) be the corresponding occupied states for subject i. We view the
observation time points t; as given. Suppose z;; is continuous and is missing for a subset
of subjects, and covariates z; ,s = (Ziz' s zip) are completely observed for all subjects.
Components of z; ,,,; can be either continuous or discrete. Define an indicator variable r;

such that

{1 if z;; is observed
0 otherwise

T =
Assume the data is MAR, which assumes that P(r;|x;, Zi1, Z; ops) =
P(ri|xi, zi,obs). The likelihood function is based on the conditional joint distribution
of (13, X4, Zi1| Zi ops, ti ), Which can be written as
P(71, %1, 21| Zions ti ) = P(1i1%4, Zi opsr ti; @) P(Xil 211, Zi 065 i B) P (20112015 ¥)-
In the above formula, we assume P(z;;|z; o5s; ¥) has a normal distribution with
mean = uy + @7z; s and standard deviation o. Here y = (o, @, 0 ). The term

P(xi|i1, 2 ops, ti; B) is the same as in a multi-state model with completely observed

covariates data. Give the baseline state x; ;, we have
mi
P(x|zi1, Ziops, ti; B) = | | P(x; 1%; j-1, tij-1, tij» 20, B)
j=2

Assume the exact time of death is recorded but the state just before death is

unknown. Define index of death §; = I(xi,mi = K), here state K means death. Thus we
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have §; = 1 if subject i died at time t; ,,,,, and §; = 0 otherwise. In this type of
observation scheme, we have

P(x; 1% j-1, tij—1, tij» 20, B)
{pxi_j_l,xi_j(tij—li tijlzi'ﬂ) lf] * mi
&;

1—5i
L[Pxi,j_l,xi,j(tij—p tijlzixﬁ)] [Z Pxi,]-_l,k(ti,j’ti,j|Zi’ﬁ)“kk(Zi|ﬁ) ifj = m;

k+K

Here, pxi,j—pxi,j(tij_l' tijlz;, ﬁ) is the one-step transition probabilities, which is defined
as

Pxi_j_l,xi,j(tij—p tijlzs, B) = P(X(ti;) = xij|X(tij-1) = xij-1: 20 B) -
It can be calculated from the intensities by solving the forward Kolmogorov differential

equation [4].
The log-likelihood for all subjects can be written as I = [(¢p) + I(B,y). Here

l(p) = Z log (P(Ti|xi: Z ops tis ¢))
=1

and

n

LB,y = z 7 (log ((P(xilziliziobs' t; ﬂ))) + log (P(Zi1|zi,obsi )’)))

=1

+(1-m7) <log (J- P(xil 211, Zi obs: ti; B)P (21121 0bs: ¥) dZi1>>
Here B represents the parameters associated with the multi-state model and both ¢p and y
are nuisance parameters whose estimations are not the main interest. Assume ¢

and (B, y) are distinct, thus we have [ o< I[(B,y). The likelihood I(B,y) cannot be
a7



calculated directly since it involves integrations which have no closed forms. We propose

to approximate the log likelihood using Monte Carlo simulation method.

First, simulate H independent random variables from the standard normal
distribution, z;1 1, Zi1 2, -+, i1 - Then calculate z;; . = o + @72 ops + zi1,0, thus 77, .
follows a normal distribution with mean u = o + @”z; ., and standard deviation o.

Thus, we have

H

1
fp(xilzilizi,obs' ti; B)P (21112 0bs; ¥) dzin = ﬁz P(x;

r=1

Zi*l,r' Zj, ti; ﬂ)

Define the simulated log-likelihood function as

n

"(B,y) = Z 7 (log ((P(xilziliziobs; t;; ﬁ))) + log (P(Zi1|Zi,obs; Y)))

=1

1w )
+ (1 —17)| log EZ P(x,-|zl-1'r,zio,ti;ﬂ)

r=1
We have I7(B,y) =5 l(B,y) as H - oo by the law of large numbers when the
normal distribution assumption of z;; is correct. Estimates of the parameters can be
achieved by maximizing the above simulated likelihood function 17 (B, y) instead of the

true log-likelihood I[(B,y) by a numerical method such as the Newton-Raphson method.
3.3 Simulations

There are two purposes of the simulation study in this section. First, we will

examine the sensitivity of the MLEs to the violations of the Normal distribution
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assumption on the missing covariate. Second, we will compare the proposed method
(referred to as MSL throughout) to the widely used complete case (CC) method and the
method of mean substitution (MS). The criteria used for the comparison are the percent
bias and the standard errors of the model parameter estimates. Estimations from the
original complete datasets (without setting the covariate missing, marked as FULL in the

tables) are also generated for comparisons.

Datasets are generated from the following true model

a1 exp(Pizot, Pi2,141) exp(P13,0)
Q=40 L4)) exp(B2zo0 + B23121)(-
0 0 0

Here, Z, is a continuous covariate and will be set to be missing for some subjects. The
true value of (B2, B13,0, B23,00 Brz.1, B2z ) are setto (—2.8,—2.7,—3,0.8,—0.6)
correspondingly. Observations are taken annually. The death times are recorded exactly
but the state just before death is unknown. The observations will be right censored at time

25.
The values Z; are generated from one of the following distributions:
(1) Standard normal distribution: Normal(1,1).

(2) Uniform distribution with lower bound -1.5 and upper bound 1.5:

Uniform (—1.5,1.5).
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(3) Weibull distribution with shape parameter 1.5 and scale parameter 1:

Weibull(1.5,1).

In case (1), the normal assumption on the distribution form of the covariate is
correct. In case (2), the normal assumption on the covariate is violated but true
distribution is still symmetric. In case (3), the normal assumption on the covariate is

violated and true distribution is not symmetric.

Both MCAR and MAR datasets are studied in this simulation study. In the MCAR
datasets, we randomly set about 30% or 60% subjects with missing Z; value. In the MAR
datasets, we set Z; missing according to the time of its first transition. In Case (1), we set
the covariate missing if the first transition happens within the first 5 years. In this setting,
the datasets contain about 30% subjects with missing covariate values. In Case (2), we set
the covariate missing if the first transition happens in 15 years. In this setting, the datasets

contain about 60% subjects with missing covariate values

Simulations were set to have 500 iterations for each combination of the above
mentioned cases, and each dataset contains 700 subjects. The sample size was chosen to
correspond to the number of subjects we have in the MAPWU dataset. All the
calculations were done using PROC IML in SAS 9.3 system [45]. We set H = 50 for the

maximum simulated likelihood method. The results are listed in Table 3.1 and Table 3.2.

50



From the results listed in Table 3.1, we can see that when the data is MCAR all
three methods work relatively well. The CC method provides relatively larger standard
errors for parameters estimates than the MS method and the proposed MSL method. The
MS method is relatively sensitive to the datasets, and it has around 5% bias in certain
cases. The proposed MSL method has the best performance among the three, the
estimates provided by the MSL method is close to these we get from the original full

dataset.

When the data is MAR, both the CC method and MS method have large biases. In
the results listed in Table 3.2, the percentage bias (% Bias) can be as large as 90% for the
CC method and 27% for the MS method. The proposed MSL method still performs well

in our study.

The simulation studies also show that the estimations are relatively robust to the
violation of the normal assumption on the missing covariate. The largest percentage bias
in our simulation results was 6.2 % when the true covariate values were generated from a
Uniform (—1.5,1.5) distribution and the data is MAR with about 60% subjects with the

missing covariate.
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3.4 Application to the MAPWU Data from the SMART project

The Statistical Models of Aging and Risk of Transition (SMART) project is a
multi-center dementia study. This project aggregates data from 11 mature, extremely
data-rich, and well-known longitudinal cohorts of older adults with high autopsy rates
[5]. In section, we apply the proposed method to the MAPWU data from the SMART
project database. The MAPWU enrolls healthy volunteers from the community;
exclusion criteria include existing neurological disorders (e.g., Parkinson’s, Huntington’s,
or Alzheimer’s disease) and psychiatric disorders (e.g., schizophrenia, substance abuse),
as well as any active medical condition or treatment that impairs cognitive function [5,
48]. Cognitive function status of participants is assessed annually. Subjects included in
the current study (n=732) were all cognitively normal at baseline and assessed at least

two times.

Annual cognitive assessments are administered to each participant and used to
classify them into either Cognitively Normal or Cognitive Impairment (including mild
cognitive impairment and dementia). The state of death is also included in the model as a
competing risk. A cognitively normal person would transition to either Cognitive
Impairment state or die without Cognitive Impairment. A cognitive impairment person
could recover to cognitively normal or die with cognitive impairment. Figure 3.1 shows

the model transition structure.
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Each subject was scheduled to have cognitive assessments annually, while the
true time intervals between two consecutive assessments vary among different patients
and across time. The time intervals vary from 0.27 years to 12.08 years with mean + SD
1.25 £ 0.68. The number of total longitudinal observations of each patient ranges from 2

to 31 with an average of 6.3 £ 4.7 observations.

Between two consecutive assessments, subjects in the Cognitive Normal state at
prior assessment may remain at Cognitive Normal state or transition to Cognitive
Impairment state at the next assessment. Subjects at Cognitive Impairment state at the
prior assessment may remain at Cognitive Impairment state or reverse back to Cognitive
Normal state at the next assessment. All subjects may die at any time with or without
Cognitive Impairment. The exact death time could be retrieved, while the cognitive state
just before death is unknown. Table 3.3 lists the transition frequencies among these 3

states.

Our main goal was to study the effects of possible risk factors on the transitions
among the three states. We focus on 4 risk factors in this study, namely baseline age
(Bage), gender (Female), education level (Educ) and baseline BMI. Baseline age and
BMI are continuous variables, and Female and Educ are binary variables. Educ is defined

as less than 16 years of education, which is about below the college level. Bage, Female
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and Educ are all completely observed. The values of Baseline BMI are missing for 521

(71.2%) participants. Table 3.4 presents summary statistics for these baseline risk factors.

Figure 3.2 presents the histogram of the observed BMI values. The shape of this
plot shows that the distribution of baseline BMI has a normal bell shape. Exploratory
analyses based on the complete data show baseline BMI is independent with Female and
Educ. Thus we assumes BMI follows a normal distribution with mean u = u, + @,Bage

and standard deviation o.

Since all participants were at least 60 years old at baseline, we centered the
original baseline age at 60 in the model. We only considered patients with BMI>25 as
overweight, so we defined a new variable BMI* = max{(BMI — 25)/5, 0} as the risk
factor. Effects of risk factors on the backward transition from cognitive impairment to
cognitive normal was not of interest in this study, thus we have the following transition

intensity functions for the multi-state model:

aim(Bage, Female, Educ, BMI™)

_ exp(ﬁlm,o) ifl=2m=1
ex'p(ﬁlm,o + Bim1Bage + BynFemale + B, sEduc + ﬁlmABMI*) ifm>1 '

Table 3.5 lists the hazard ratio and the corresponding 95% confidence interval of
each risk factor on each transition path using the proposed MSL method, the MS method

and the CC method. The proposed MSL method and the MS method generated similar
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results for the risk factors Bage, Female and Educ. Both methods show that female
gender and education level have no significant effects on the transitions among these
states. And both methods show baseline age is significant on all three transitions, which
makes sense intuitively. Old people are likely to have higher risk of both cognitive
impairment and death. The results of the two methods differ for BMI. The MSL method
shows BMI is a significant risk factor of death for cognitively normal, and prevents
cognitively normal people from transitioning to cognitive impairment. This finding
indicates that the risk of death related to high body mass index (BMI) competes with the
risk of progressing to cognitive impairment. The MS method failed to show BMI has
significant effects on any of three possible transitions. The CC method showed less
conclusive results. It only showed the significant effect of baseline age on transitions
from Cognitively Normal to Cognitive Impairment, while failing to identify other

significant effects.

3.5 Discussion

Multi-state models have been widely used in recent years, and several software
packages have been available to fit various versions of multi-state models. Jackson[27]
developed the R package “msm” for time homogenous and piece-wise time homogenous
model. Meira-Machado et al. [4] developed an easy to use R library, call “tdc.msm”. The

package fits 5 different multi-state models, including time homogenous Markov model
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(THMM), non-homogenous Markov model (NHM), Cox Markov model (CMM), etc. Wu
et al. [49]developed a SAS macro program for a non-homogeneous three-state
progressive Markov multi-state model. Missing covariate data has been an issue in
practice. No efficient methodology has been proposed to address the problem in this area
so far. The maximum simulated likelihood method proposed in this manuscript provide a

solution for data with missing continuous covariate data.

The proposed method requires H draws for each subject with missing covariate in
construction of the simulated likelihood. In practice, the number of draws H has to be
dependent on the sample size of the dataset, the proportion of subjects with incomplete
covariate measurements, and also the complexity of the multi-state model being used.
The way we select the number of draws in our study is that we try a sequence of numbers

of H and see how the estimate convergences.

In this dissertation, we assume that the continuous partially missing covariate
follows a normal distribution. Our simulation study showed that the proposed method is
relatively robust to the violation of this assumption. Additional studies have to be
conducted if we want to apply the method to a dataset in which the missing continuous
covariate has a density much different from the normal distribution. In situations where

the missing covariate does not have a normal shaped density, the method can be easily
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modified by drawing values from the corresponding distribution. Again, we need to

check the validity of the covariate distribution assumption.

The method is limited to data with univariate missing pattern, in which there’s
only one covariate with missing value. In a case where the data has a general missing
data pattern with mixture of discrete and continuous covariates, we need to generate
random values from the joint distribution of the covariates. Future works would focus on
the construction of the joint distribution of covariates and the method that could draw

random values from the joint distribution efficiently.
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Figure 3.1: Three state model with backward transition
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Figure 3.2: Histogram of the observed values of BMI from the MAPWU cohort with
density curves. Solid curve is the fitted normal density curve and the dotted line is the
kernel estimate
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Chapter 4 Estimation of Multi-State Models with Missing Covariates by EM

algorithm

4.1 Introduction

Multi-state models have been widely used to analyze longitudinal event history
data obtained in medical and epidemiology studies. The tools and methods developed
recently in this area require the dataset to be complete. However, missing covariates data
IS very common in practice, and it has been an issue in applications. In the last two
chapters, we discussed how to deal with univariate discrete or continuous missing
covariate data. In this chapter, we propose an Expectation-Maximization (EM) algorithm
when applying multi-state models to datasets containing multiple missing categorical
covariates. The missing data are allowed to have the general missing pattern [30]. Our
simulation studies and real data application showed that the proposed EM algorithm

performs well for both MCAR and MAR data.

The remainder of this chapter is organized as follows. In Section 2 we describe
the EM method in detail. In Section 3, simulation studies are carried out to compare the
performance of the proposed method with the widely used CC method. We applied our
method to the Klamath Exceptional Aging Project (KEAP) cohort in Section 4. In the

concluding section, we discuss the advantages and limitations of the EM Algorithm.

4.2 The Method

To detail the method, we will begin with time-homogenous multi-state model

with compete covariates data. Then we will emphasize the EM algorithm in the case of
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multiple missing categorical covariates. At the end of this section, we discuss the

asymptotic variance-covariance matrix estimation.

4.2.1 Time-homogenous Multi-State Model

Suppose we have a baseline covariate vector Z = (Zl,Zz, ...,Zp), a time-
homogenous multi-state model with proportional intensities has the following form:
W (Z1B) = Ao €XP(BTmZ) = exp(Buno + BinZ).
Here a;,, o = exp(Bim,0) is called the baseline intensity for the transition from state [ to
statem, and B = (Bumo, Bim; L = 1,+,K; m = 1,---,K;m # ), which represents all the

parameters associated with the multi-state model.

4.2.2 Joint Modeling of the Response Data and the Partially Missing Covariates

Denote T = (T, Ty, ..., Ty) and X = (X4, X5, ..., X)y), here M is a random variable
indicating the number of observations, T; is the time of jth observation and X; is the
corresponding state of the process X (t) at time T;. Assume the observation process is
ignorable [20], which means the observation time points 7; is determined by a process
that is independent of the response X (t). Thus, we view the observation time points T as
fixed. Rearrange the vector of covariates such that we have Z = (me, ch). Here Z,p, is

the components whose values might be partially missing for some subjects, and Z,. is the

observed components whose values are recorded for all subjects.

We assume that the covariates are MAR. If a covariate is MAR, it means that the
probability of observing this covariate (conditional on the response and the other

observed covariates) does not depend on the underlying value of the covariate, but may
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depend on the response and the other observed covariates. Rubin [41] showed that if the
data is MAR, likelihood-based inferences do not depend on the missing data mechanism.

We also assume that each component of Z,,,,, is discrete. However, the completely
observed covariates Z .. are allowed to be a mixture of both continuous and discrete
variables.

To deal with the missing covariates, we will view the partially missing
covariates Z,,, as random variables. The likelihood will be based on the conditional joint

distribution of (X, Z,,,, ) given (T, Z,, ), which can be modeled as

P(X:melT:ch:ﬁ'Y) = P(XlT'Z'B)P(melzcc'Y)

Here B is the vector of parameters associated with the multi-state model and y is a
vector of the nuisance parameters associated with the distribution of the partially missing

covariates.

4.2.3 Likelihood under Interval-censored Data and Missing Covariates

Let t; ; be the time point of jth observation and x; ; be the corresponding
observed state at ¢;; point for subject i.Write t; = (t;1,t;, ..., tim,), and x; =
(xl-,l, Xi2) e xi,mi)- Since we only make observations at a finite number of distinct time
points, the transition times are interval-censored. Usually, the exact death time can be
retrieved but the state just before death is unknown. We define §; = 1 if the last observed
state is death and &; = 0 otherwise. Write z; = (2; ym, Zicc) AN Z; pin = (Zi.mis» Ziobs):
Where z; ;s and z; .5 are missing and observed components of z; ,,,,, respectively. If the

data is MAR, then the likelihood for subject i based on the observed data of x;, z; .,
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and z; ,ps Can be written as

Li(ﬂ; Y|xi' Zi,cc;zi,obs) = Z P(xilzi; B)P(Zi,pm|zi,cc; }'),

Zi mis

where the summation is over all possible underlying values of z; ;5.

Under the Markov assumption, we have
m;
P(xi|zi, B) = P(x;1]t;1) 1_[ P(x; 1% j-1, ti j-1, i jr 20 B) -
j=2

where, P(xl-,1|ti,1) is the distribution for the baseline state and the transition probabilities

have the following form
P(xijlxij-1,tij-1, tij 20 B) =
Pxi_j_l,xi,j(tij—p tij|zi B) ifj = m
1-8; 5 .
[pxi,j_l,xi,j(tij—l' tijlzi, ﬁ)] [ZkiK D1k (Lo ti 12 ﬁ)“kx(zilﬁ)] ifj = my
Since all components of z; ,,,,, are discrete, we propose a multinomial logit model
for P(2; pm|2icc, ¥). SUPPOSE Z; s has two components (z; 1, z; 7 ). ASSUME z; 5, has A

possible categories and z; ,,, has B possible categories, we have
Tap
log < ) = Yabo t ygbzi,ccr
Too

a€{01,..,A—1},b€e{01,..,B—1}(ab) = (0,0)

Here
A-1B-1
TTap — P(Zi,pm = (a, b)lzi,c(‘) Y); Z Tap = 1
a=0 b=0
and

Y= (yab,o,yab; a€f{01,..,A—1},b€{0,1,..,B—1}and (a,b) # (0,0)).
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The idea can be easily generalized to model z; ,,,, with more than two components.

The log likelihood for all subjects is

n
l(ﬁ' Y) = Z lOg (Li(ﬁr Y|xi; Zicc Zi,obs)) .
i=1

In most cases, the log likelihood function (B, y) does not have a closed form, so directly
maximizing the log likelihood is not straightforward, especially when nuisance
parameter y has a high dimension. To facilitate the estimation, we propose using an EM

algorithm to obtain MLEs.
4.2.4 The EM algorithm.
The E-step of EM would be
Qi(ﬁf Y|B(S)l Y(S)) = E[ll(ﬁ, Y|xi' Zi) |xil Zi,ObS' Zi,cc' B(S)' y(S)]

= z LB, yIx; Zi)P(Zi,mis|xir Zi,obsrzi,ccrﬁ(s)ry(s))-

Zimis

Here [;(B,y|x;, z;) is the complete data log likelihood for subject i and it has the form:
li(ﬁ' Y|xi: Zi) = log (P(xilzil B)P(Zi,pmlzi,cc' Y)) = lxi|zi(ﬁ) + lzi|zi,cc(Y)

Denote w; sy = P(Z; mis|Xi) Zi obs» Zicer B, ), then we have

0(B.¥|B89.¥9) = ) 0:(B.7]89.¥®)

n n

= z Z Wi (s) Lyl (B) + z Z Wi(s) Lzy)zi e (V)

1=1 Zjmis 1=1 Zjmis
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Write

Qx2(B|BS, ) = z z Wi (s) Lx;jz;(B)

L Zimis

and

Q.(v|B®,¥y®) = z z Wis) Lzilzi oo (V)

[ Zimis
now the “Q function” presented above is separated into two parts. Note that
Qxz(B|B®,¥y®) is a function of the multi-state model parameter B and does not contain
the nuisance parameter y. And Q,(y|B®, ¥®) is a function of only the nuisance
parameter y. The calculation of weights w; () can be done by using Bayes theorem. For

subject i, we have

P(xi|2;, B®) * P(Zipm|Zico V')
z:Zi,mis P(inZi, B(S)) * P(Zi,pmlzi,ccv y(s))

Wi,(s) = P(Zi,mis |xi' Ziobs Zjcc B(S)' y(s)) =

For the M-step, maximization of the function Q(B, y|B,¥'®) can be achieved
by maximizing Q. (B|B,¥®) and Q,(¥|B®, ') separately. The maximization
of Q,(¥|B®,¥) and Qx,(B|B®,¥™) do not have closed forms. We use the Newton-

Raphson method for the maximization.

4.25 Asymptotic Variance-Covariance Matrix Estimation

The EM algorithm does not provide the estimates of asymptotic variances as its
byproduct. Here we obtain the variance estimates by finding the observed information
matrix. One way to derive the observed information matrix is to take the derivatives
directly from the observed data log likelihood. Note that the observed data log likelihood

has the form
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n
l(e; Y) = Z lOg (Li(er Y|xi' Zicc Zi,obs))

=1

and it does not have a closed form. We use the forward difference method to compute the
Hessian matrix of [(8,y). Suppose f(x) is a real function and twice differentiable
regarding to a p-dimensional vector x, then the Hessian matrix of f(x) at x, can be

approximated as follow:

azf I _f(xo+hiei+h]-e]-)—f(xo+hiei)—f(x0+hjej)+f(x0)
Bxiax]- X=Xo — hlh]

Here e; is the ith coordinate vector, a vector with its ith component equal to 1 and all

others equal to 0, and h; is the step size.

4.3 Simulations

In this section, we study the performance of the proposed EM method through
simulation studies. Datasets were generated from an “iliness-death” model with backward

transitions. Four cases are considered here:

1) MCAR data with about 45% of subjects having missing covariates.
2) MCAR data with about 70% of subjects having missing covariates.
3) MAR data with about 45% of subjects having missing covariates.

4) MAR data with about 70% of subjects having missing covariates.

To see the advantages of the proposed method (EM), we compare it to the widely
used CC method as well as to the full data analysis (FULL). In the full data analysis, all
covariate values are preserved and there is no missing data. It is a benchmark for

evaluating our method’s performance in general. The comparisons were made through
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percent bias (% Bias), empirical standard error (ESE), asymptotic standard error (SE) and
95% confidence interval coverage probability (95% CP). The total number of subjects in
each simulated dataset is 500 or 1000. All results are based on 500 simulation datasets,

and calculations are made by using PROC IML in SAS 9.3® [45].

4.3.1 Generating the Dataset

Datasets were generated from an “illness-death” model with backward transitions.

The model has the following transition intensity matrix:

aq1 exp(ﬁn,o + .312,121) exp(ﬁw,o + .313,222)
Q(Z1,22) = exp(ﬁzm) Q22 exp(ﬁz&o + .323,121) :
0 0 0
Here
11 = _(exp(ﬁlz,o + ﬂ12,121) + exp(Biso + ,313,222))
and

;= —(exp(Ba1,0) + exp(Bazo + B2z 121))-
There are 7 parameters, (B12,0, B13,0, B21,0- B23,0 B12,1, Bz3.1, 13,2 ), in this model. The
first four parameters measure the baseline transition intensities, and the last three
parameters measure the effects of covariates on the transition intensities. We set the true
values of these parameters to be (2, —2.5, —3,—2, 0.5, 0.3, 0.4) respectively. Covariates
(Z,,Z,) are both binary variables with the following joint mass function:
01 ifz;=0,2z,=0
04 ifz;,=02,=1

0.3 ifZ:l:l,Zz:O.
0.2 if Z1 = 1,22 = 1

P(Zl,Zz) =
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Observations of the process are taken annually. State 3 means death in this
model, thus the transition time into state 3 is recorded exactly, while state just before
death is unknown. A common censoring time of 25 years is used, which results in right
censored transition time for those who remain in state 1 or state 2 at that time. The

covariates are baseline covariates; their values do not change over time.

4.3.2 Estimations with MCAR data

We study two MCAR data cases. In the first case, we randomly set covariate Z,
and Z, missing. Z; is missing with probability 0.2 and Z, is missing with probability
0.3. Thus, there are about 6% of subjects with both Z, and Z, missing, and about 45% of
subjects with at least one covariate missing. We denote this type of missing data MCAR
1. In the second case, we set Z; missing with probability 0.4 and Z, missing with
probability 0.5. In these data, there are about 70% subjects with at least one covariate
value unobserved. We denote this type of data MCAR 2. Note that the data are MCAR
data, since the probability of the covariates being missing is independent of both the

observed data and the underlying values of missing covariates.

The results for the two MCAR cases are presented in Table 4.1. When the data are
MCAR, it shows that both CC method and the proposed EM method work well. The
percent bias (% Bias) is relatively small. The 95% confidence interval coverage
probabilities (95% CP) hover around 95% and the estimated asymptotic standard errors
are close to the empirical standard error for all 7 parameters. Moreover, the results are
close to those provided by the FULL data analysis. We note that the proposed EM
method is more sufficient than the CC method since estimates provided by the EM

method have smaller standard errors than those provided by the CC method.
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4.3.3 Estimations with MAR data

In the first case of MAR data, we set covariate Z; missing if the first transition
happens in the first year, and set covariate Z, missing if the second transition happens
after year 8. Thus, approximately 45% of subjects have at least one covariate missing. In
the second case, we set covariate Z; missing if the first transition happens in the first 3
years, and set covariate Z, missing if the second transition happens after year 6. This
results in a dataset with approximately 70% subjects having at least one covariate
missing. Both of these two types of data are MAR but not MCAR, since the missingness
of covariates is dependent on the observed data but independent of the underlying values

of the missing data.

The results for the MAR data are presented in Table 4.2. When the data are MAR
but not MCAR, in general the CC method fails. The bias of the estimates provided by the
CC method can be very large, as large as 105% in our simulation studies. And the 95%
confidence interval coverage probability (95% CP) could be far away from 95%. The

proposed EM method still works well in both of these MAR cases.

4.4 Application

In this application, we used the KEAP cohort from the SMART database. KEAP
IS a population-based study of the oldest-old residents of the Klamath Basin, which is a
rural area of Oregon. Subjects enrolled in this study were at least 80 years old. Subjects
are visited in their homes by a geriatric research nurse every six months for

neuropsychiatric testing and structured clinical interview [50].
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The cognitive functions of each patient were classified into the following two
states: No Dementia (ND) and Dementia. A third state Death is also added to the model
to account the competing risk for Dementia. State ND includes both normal cognition and
mild cognitive impairment (MCI). Subjects who were in state ND at the previous visit
may die before the next scheduled assessment or may transition to Dementia at the next
scheduled assessment. Subjects who were in state Dementia may die before the next
assessment. There are no backward transitions from state Dementia to state ND. Figure

4.1 presents the model state structure.

The dataset contains 419 subjects. At baseline, there were 351 (83.8%) subjects in
state ND and 68 (16.2%) subjects in state Dementia. The number of observations for each
subject ranges from 2 to 22 with mean+SD of 7.7 + 4.9. Cognitive assessments are
administered to each subject with mean time interval between consecutive

assessments 0.58 + 0.46 years.

Covariates to be examined as potential risk factors for transitions among the 3
states in Figure 4.1 are: baseline age (Bage), female gender (Female), low education
(LowEdu; defined as high school or less), APOE4 (with or without an €4 allele), and
baseline high blood pressure (HBP). Bage, Female and LowEdu are all fully observed.
APOE4 and HBP are missing for some subjects. There are 80 (19%) subjects with
missing APOE4 and 206 (49%) subjects with missing HBP. 34 (8%) subjects have both
APOE4 and BHP missing, and 252 (60%) subjects have at least one of these missing.

Table 4.3 lists a summary of these 4 risk factors.
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Table 4.4 lists the observed transition frequency and row percentage for the
original 419 subjects as well as the 167 subjects with complete data. In the original data,
4.1% ND subjects transitioned to Dementia state, and 6.9% ND subjects died without
Dementia, 26.8% Dementia subjects died at the end of the study. In contrast for the CC
data, only 3.2% of ND subjects developed Dementia and 3.4% of them died without

Dementia. Among Dementia subjects, 19.8% died at the end of the study.

We used a time-homogenous Cox Markov model to investigate the effects of

potential risk factors on these transitions, which have the following forms:

exp(Bimo + BinZ),if L #m
alm(z) = —Z alh(Z), lfl =m

h=l

Here Z = (Bage, Female, LowEdu, APOE4, HBP). Bage were centered at 80 in the

model.

First, we conducted an available-case (AC) analysis, in which we dropped the two
covariates with missing values, APOE4 and HBP, out of the model. Without APOE4 and
HBP in the model, the data is fully observed, thus standard estimation methods, for
example the “msm” R-package [27], could be used to fit the model without dropping any
subjects. Then, we fitted the data with the proposed EM method after adding APOE4 and

HBP in the model. At last, we also conducted a CC analysis for the model.

Table 4.5 lists the hazard ratios (HR) and the corresponding 95% confidence
intervals (95% CI) for risk factors on each transition path by these three method. The
results obtained from the AC method show that the baseline age would increase the

hazard ratio for all three paths, from ND to Dementia and Death, and from Dementia to
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Death. Its effect on paths from ND to Dementia and from Dementia to Death are
significant (P value<0.05). The effects of Female gender and low education level on all
three paths are not significant. The estimated effects of baseline age, female gender and
low education level by applying the proposed EM method are close to these of the AC
analysis. And we also find out that APOE4 has significant effect (P Value<0.05) of
increasing the HR for transition path from ND to Dementia. High blood pressure has
significant effects on paths from ND to Dementia and to Death. Subjects at ND with
baseline high blood pressure have lower hazard ratio of developing dementia, while they
have higher mortality rate than those without high blood pressure at baseline. Comparing
to the results of the AC analysis and the proposed EM method, the CC method is less
efficient. The lengths of 95% confidence intervals of the hazard ratio are generally larger
than those provided by the AC method and the EM method. Also, the CC method failed
to indicate the significant effects of baseline age on transition path from Dementia to
Death and of APOE4 on path from ND to Dementia. The significant effect on baseline
age on path from Dementia to Death was indicated by both the AC method and the
proposed EM method. And the effect of APOE4 on path from ND to Dementia was well

studied in literature [10, 51, 52].

45 Discussion

Multi-state models are useful tools to analyze longitudinal event history data, and
have been widely applied in medical studies. Missing covariates in data has been an issue
in practice. Most of the currently available methods and software packages use the CC
method in the case of missing covariates data. The problem associated with the CC

method is that it will provide biased estimates if the data are not MCAR. Even if the data
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are MCAR, dropping all cases with missing covariates is inefficient and might cause
convergence problems in particular applications. In contrast, the proposed EM method
worked well for both MCAR and MAR data. In the case of MCAR data, the proposed

EM method was also more efficient than the CC method.

Standard multiple imputation methods are also very difficult to carry out in the
estimation of multi-state model in analyzing longitudinally collected event history data
with multiple missing baseline categorical covariates data. Constructing an appropriate
imputation model for the missing categorical covariates data is difficult when the
observed data contains longitudinal response data with random lengths and unequal

spaces.

Likelihood-based methods are common approaches to the analysis of missing data
[30]. The observed data likelihood contains both model parameters and nuisance
parameters used to model the distribution of missing covariates. When data have the
general missing pattern with multiple missing data covariates, we would need a relatively
large number of nuisance parameters to model the missing covariates, and directly
maximizing the observed data likelihood is difficult. By using the EM algorithm, we
were able to separate the model parameters and the nuisance parameters and make the

maximization of the likelihood possible.

EM algorithms have been used to deal with missing data problems in other areas.
Ibrahim [34] provided an EM algorithm for generalized linear model with incomplete
covariates measurements. Lin et al. [28] also used EM algorithm in the Cox regression
model with missing covariates data. Applying EM algorithm in the multi-state model

framework is more difficult than in the above mentioned areas. First, closed formulas
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usually do not exist for both the expectation step and the maximization step when
applying EM algorithm to multi-state models with missing covariates data. Numerical
methods have to be used to get the expectation log-likelihood function and to maximize
of the expected complete data log likelihood. Another issue encountered with missing
covariates data in the multi-state model is the usually large number of unknown
parameters. In applying maximum likelihood type methods to deal with missing
covariates data, a probability model with nuisance parameters has to be constructed for
the missing covariates. Plus, each covariate would have different coefficient parameters
on different transition paths. These two factors lead to a relatively larger numbers of
parameters compared to other situations. Our proposed EM algorithm would enable
researchers to estimate the nuisance parameters and model covariates coefficients

separately.

Our study showed that the proposed EM algorithm is efficient in dealing with
missing covariates data with a general missing pattern. However, this method is limited
to only missing discrete covariates. In the case of the missing continuous covariate, the Q
function in the E-step cannot be written as a weighted sum of the complete data log
likelihood. One possible solution to deal with missing continuous covariates in multi-
state models is to approximate the E-step using Gaussian quadrature or Monte Carlo

integration techniques.
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1=No
[Demen'tia {ND} "'[ 2=Dementia ]

3=Death

Figure 4.1: Transition flow diagram for the model
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Chapter 5 Discussions and Future Research

In this dissertation, we proposed several methods for dealing with different types
of missing covariates data in the framework of multi-state models. The methods
discussed in the previous several chapters are all likelihood-based methods. The
likelihood-based methods are one of most frequently used methods in the literature of
missing data. Another popular method is imputation-based methods. However, the
imputation-based methods are not feasible in the framework of multi-state model. The
observed response data for most multi-state model analysis is longitudinal data with
random length, thus it is a difficult to come up with an appropriate imputation model for
the missing covariates conditioned on the observed covariates and the observed response
longitudinal data. Our study also showed that the multiple imputation method

conditioning only on the observed covariates is biased

Because of the unique features of multi-state models, calculating and maximizing
the log likelihood function with missing covariates data directly would be very
complicated and difficult. However, in cases that the multi-state models have relative
simple state structures and the data has a univariate missing pattern with only one missing

discrete covariate, the direct MLE method becomes feasible.

In situations where the data has a continuous missing covariate, the MSL would
be an alternative for estimation. The MSL method replaces the true log likelihood
function with a simulated one, thus we avoiding the integration in the calculation of the

log likelihood, which often does not have a closed form for the integrand. One limitation
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of the method is that a parametric model or a distribution form of the missing covariate

has to be provided, which might be difficult to do in some applications.

When the data has a general missing pattern but the all missing covariates are
discrete variables, the EM method would be a good choice for estimation of the multi-
state model. The EM algorithm would allow us to estimate the model parameters
associated with the multi-state model and the nuisance parameters associated with the
covariates data separately in each iteration. And estimation of the nuisance parameters
would be easier since there are closed form estimates in some circumstances. The

limitation of the method lie in the slow convergence in some situations.

Despite the constraints and limitations of the methods we proposed in the
previous several chapters, we are satisfied with the results to date. The method we
proposed could help us deal with most cases of missing covariates data problems in

practice. However, there are some potential extensions of future research in this area.

Throughout the methods discussed in this dissertation, we assume the data is
either MCAR or MAR. Relaxing this assumption would help deal with a more general
type of missing data, the NMAR data. Possible solution for this topic is to provide an
appropriate model of missing mechanism for the data. For the EM algorithm, one could
use more advanced maximization algorithms to speed up the convergence of estimation,
and make this method feasible for more complicated multi-state models. More robustness
studies on the assumption of the distribution form of the missing continuous covariate
might be needed for more complicated models when using the MSL method for
estimation. Another area of possible future research lies in mixture of missing continuous

and discrete covariate variables. The likelihood-base method could still be feasible for the
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mixture continuous and discrete missing covariates data, while more advanced methods

have to be used to calculate and maximize the corresponding log likelihood function.

Copyright © Wenjie Lou 2016

85



Appendices

A. SAS/IML modules for the Observed Data Likelihood Method

PROC IML; RESET storage= D.OLapp;

/**********************************************************************/

/*A.1: Calculate the transition probability p(xi|zi) for subject i*/
/**********************************************************************/
START ProbSubj(Z) global(Xi,GNZ,GNstate, Gmsmparms,Gdeath);
n=nrow(Xi); logQ=J(GNstate,GNstate,0);
do nc=1 to GNZ; logQ=logQ+Gmsmparms[,Gnstate*(nc-1)+1:Gnstate*nc]*Z[nc]; end;
Q=exp(logQ); Q[loc(logQ=0)]=0;
do ns=1 to GNstate; Q[ns,ns]=-Q[ns,+]; end,;
A=teigvec(Q); V=teigval(Q); L=1.0;
doj=2ton;
from=Xi[j-1,2]; to=Xi[j,2]; ft=Xi[j-1,3]; tt=Xi[j,3]; timelag=tt-ft;
D=diag(exp(V[,1]#timelag)); P=A*D*inv(A);
if to=Gdeath then do;
pdj=0.0; do h=1 to GNstate; if h"=Gdeath then pdj=pdj+P[from,h]*Q[h,Gdeath];end;
L=L*pdj;
end;
else L=L*P[from,to];
end; Return(L);
FINISH ProbSubj;

/**********************************************************************/

[*A.2: Calculate the Observed Data Log-likelihood*/
/**********************************************************************/
START lIObs(parms) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GZmisCovs,
GNZmis, GNZful, GNZ, GNstate, Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob);
pmsm=parms[1:Gnpmsm]; Gmsmparms[loc(Gmsmparms”*=0)]=pmsm);
gamma=parms[Gnpmsm+1:Gnp]; logL=0.;
do id=1to GNSubj;
h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis];
Zful=Gmsmdata[h[1],GZful]; ZmisCovs=Gmsmdata[h[1],GZmisCovs];
expl=exp(ZmisCovs*gamma); pl=expl/(1+expl);
if Zmis=0 then Li=ProbSubj(Zful||0)*(1-pl);
else if Zmis=1 then Li=ProbSubj(Zful||1)*p1;
else Li=ProbSubj(Zful||0)*(1-p1)+ProbSubj(Zful||1)*pl;
if Li>0 then logL=logL+log(Li); else Gprob=1+Gprob;
end; return(logL);
FINISH IIObs;

/**********************************************************************/

/*A.3: Estimation using Observed Data Log-likelihood*/

/**********************************************************************/
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START Est_OL_App(Nsubj,parmsM0,gamma0,Zful,Zmis,ZmisCovs, death=0)
global(Gmsmdata,GNSubj,Xi,GZmis,GZful, GZmisCovs,GNZmis,GNZful, GNZ,GNstate,
Gmsmparms,Gdeath, GNp,Gnpmsm,Gnpz,Gprob);
GNsubj=Nsubj;GZmis=Zmis;GZful=Zful; GZmisCovs=ZmisCovs;
GNZmis=ncol(Zmis);GNZful=ncol(Zful); GNZ=GNZmis+GNZful;
GNstate=nrow(parmsM0); Gmsmparms=parmsMO0; Gdeath=death; Gprob=0;
parms_crt=parmsMO[loc(parmsM07=0)]"; hO=parms_crt||gamma0; GNp=ncol(h0);
Gnpmsm=ncol(parms_crt); optn={1 0 1 3};
call NLPnra(rc,xres,"llObs",h0,0ptn); estimate=xres" ;
call nlpfdd(f,g,hes,"llObs" estimate); cov=-ginv(hes); stderr=sqrt(vecdiag(cov));
norqua=probit(1-0.05/2); low=estimate-norqua*stderr; up=estimate+norqua*stderr;
z=abs(estimate/stderr); p=2*(1-probnorm(z));
EstCoef=parmsMO; EstCoef[loc(parmsM0”=0)]=estimate[1:Gnpmsm]);
EstGamma=estimate[Gnpmsm+1:GNp];Pgamma=p[Gnpmsm+1:GNp];
print EstCoef; print EstGamma pGamma;
EstHR=parmsMO; EstHR[loc(parmsM0”=0)]=exp(estimate[1:Gnpmsm]);
HR_low=parmsMO; HR_low[loc(parmsM0”=0)]=exp(low[1:Gnpmsm]);
HR_up=parmsMO0; HR_up[loc(parmsM0”=0)]=exp(up[1:Gnpmsm]);
EstP=parmsMO; EstP[loc(parmsMO0”=0)]=p[1:Gnpmsm]; Zs=Zful||Zmis;
do iz=1to GNZ;
Covname=ZsJiz]; HRiz=EstHR[,(iz-1)*GNstate+1:iz*GNstate];
Piz=EstP[,(iz-1)*GNstate+1:iz*GNstate];
Lowiz=HR_low[,(iz-1)*GNstate+1:iz*GNstate];
Upiz=HR_UP[,(iz-1)*GNstate+1:iz*GNstate];
print Covname "From" "To" "HR" "Low" "UP" "Pvalue";
do ir=1 to GNstate; do ic=1 to GNstate;
HR=HRiz[ir,ic]; Low=Lowiz[ir,ic]; Up=Upiz[ir,ic]; pv=Piz[ir,ic];
if HR”=0 then do; print ir ic HR Low Up pv; end;
end;end;
end; Ests=(estimate’)||(stderr’)||Gprob;
create Results from Ests; Append from Ests; close Results;
FINISH Est_OL_App; STORE module=_all_;
QUIT,

B. SAS/IML modules for the Maximum Simulated Likelihood method

PROC IML; RESET storage=D.SLapp ;

/**********************************************************************/

/*B.1: Calculate the transition probability p(xi|zi) for subject i*/
/**********************************************************************/
START ProbSubj(Z) global(Xi,GNZ,GNstate, Gmsmparms,Gdeath);

n=nrow(Xi); logQ=J(GNstate,GNstate,0);

do nc=1 to GNZ; logQ=logQ+Gmsmparms[,Gnstate*(nc-1)+1:Gnstate*nc]*Z[nc]; end;

Q=exp(logQ); Q[loc(Q=1)]=0; do ns=1 to GNstate; Q[ns,ns]=-Q[ns,+]; end;

A=teigvec(Q); V=teigval(Q); L=1.0;

doj=2ton;

from=Xi[j-1,2]; to=Xi[j,2]; ft=Xi[j-1,3]; tt=Xi[j,3]; timelag=tt-ft;
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D=diag(exp(V[,1]#timelag)); P=A*D*inv(A);

if to=Gdeath then do; pdj=0.0;
do h=1 to GNstate;

if h"=Gdeath then pdj=pdj+P[from,h]*Q[h,Gdeath]; end; L=L*pdj;

end;

else L=L*P[from,to];

end; Return(L);
FINISH ProbSubj;

/**********************************************************************/

/*B.2: Calculate the Simulated Log-likelihood*/
/**********************************************************************/
START IISL(parms) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GZmisCov,
GNZmis, GNZful, GNZ, GNstate, Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob,
GNR);
pmsm=parms[1:Gnpmsm]; Gmsmparms[loc(Gmsmparms”*=0)]=pmsm;
intcept=parms[Gnpmsm+1]; gamma=parms[Gnpmsm+2]; sigma=parms[Gnpmsm+3];
logL=0.;
do id=1to GNSubyj;
h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis];
Zful=Gmsmdata[h[1],GZful]; ZmisC=Gmsmdata[h[1],GZmisCoV];
mu=intcept+gamma*ZmisC;
if Zmis=. then do; simL=j(1,GNR,.);
Zs = j(1,GNR,.); call randseed(id,1); call randgen(Zs,'NORMAL',mu,sigma);
do mi=1to GNR;
if Zs[mi]<0 then Zsmi=0; else Zsmi=Zs[mi]; simL[mi]=ProbSubj(Zful||Zsmi);end;
Li=simL][:]; if Li>0 then logL=logL+log(Li); else Gprob=1,
end;
else do;
if Zmis<0 then Zmisabs=0; else Zmisabs=Zmis; Li=ProbSubj(Zful||Zmisabs);
if Li>0 then logL=logL+log(Li)+logpdf((NORMAL',Zmis,mu,sigma); else Gprob=1;
end;
end; return(logL);
FINISH IISL;

/**********************************************************************/

/*B.3: Estimation using Simulated Log-likelihood*/

/**********************************************************************/

START EstSL(Nsubj,parmsMO0,gamma0,Zmis,Zful,ZmisCov,death=0,NR=30)

global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GZmisCov, GNZful, GNZ, GNstate,

Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob, GNR);
GNsubj=Nsubj;GZmis=Zmis;GZful=Zful; GZmisCov=ZmisCov; GNZmis=ncol(Zmis);
GNZful=ncol(zZful); GNZ=GNZmis+GNZful; GNstate=nrow(parmsM0);
Gmsmparms=parmsMO0; Gdeath=death; Gprob=0;GNR=NR;
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parms_crt=parmsMO[loc(parmsM0”=0)]"; hO=parms_crt||gamma0; GNp=ncol(h0);
Gnpz=ncol(gamma0); Gnpmsm=GNp-GNpz;con=J(2,Gnp,.); con[1,GNp]=0.01;
optn={1 0 1 3}, call NLPnra(rc,xres,"lIs|",h0,0optn,con); estimate=xres" ;
call nlpfdd(f,g,hes,"lIsI",estimate); cov=inv(hes); stderr=sqrt(vecdiag(cov));
norqua=probit(1-0.05/2); low=estimate-norqua*stderr; up=estimate+norqua*stderr;
z=abs(estimate/stderr); p=2*(1-probnorm(z));
EstHR=parmsMO; EstHR[loc(parmsM0”=0)]=exp(estimate[1:Gnpmsm]);
HR_low=parmsMO; HR_low[loc(parmsM0”=0)]=exp(low[1:Gnpmsm]);
HR_up=parmsMO0; HR_up[loc(parmsM0”=0)]=exp(up[1:Gnpmsm]);
EstP=parmsMO; EstP[loc(parmsM0”=0)]=p[1:Gnpmsm];
Zs=Zful||Zmis;
do iz=1to GNZ;
Covname=ZsJiz]; HRiz=EstHR[,(iz-1)*GNstate+1:iz*GNstate];
Piz=EstP[,(iz-1)*GNstate+1:iz*GNstate];
Lowiz=HR_low[,(iz-1)*GNstate+1:iz*GNstate];
Upiz=HR_UP[,(iz-1)*GNstate+1:iz*GNstate];
print Covname "From" "To" "HR" "Low" "UP" "Pvalue";
do ir=1 to GNstate; do ic=1 to GNstate;
HR=HRiz[ir,ic]; Low=Lowiz[ir,ic]; Up=Upiz[ir,ic]; pv=Piz[ir,ic];
if HR”=0 then do; print ir ic HR Low Up pv; end;
end; end;
end; Ests=(estimate’)||(stderr’)||Gprob;
Create Results from Ests; Append from Ests; Close Results;
FINISH EstSL; Store module=_all_;
QUIT,

C. SAS/IML modules for the EM method

PROC IML; RESET storage=D.SLapp ;

/**********************************************************************/

[*C.1: Calculate the transition probability p(xi|zi) for subject i*/
/**********************************************************************/
START ProbSubj(Z) global(Xi,GNZ,GNstate, Gmsmparms,Gbsparms,Gdeath);
n=nrow(Xi); logQ=J(GNstate,GNstate,0);
do nc=1 to GNZ; logQ=logQ+Gmsmparms[,Gnstate*(nc-1)+1:Gnstate*nc]*Z[nc]; end;
Q=exp(logQ); Q[loc(Q=1)]=0; do ns=1 to GNstate; Q[ns,ns]=-Q[ns,+]; end;
A=teigvec(Q); V=teigval(Q); L=1.0;
doj=2ton;
from=Xi[j-1,2]; to=Xi[j,2]; ft=Xi[j-1,3]; tt=Xi[j,3]; timelag=tt-ft;
D=diag(exp(V[,1]#timelag)); P=A*D*inv(A);
if to=Gdeath then do; pdj=0.0;
do h=1 to GNstate; if h"=Gdeath then pdj=pdj+P[from,h]*Q[h,Gdeath]; end;
L=L*pdj;
end;
else L=L*P[from,to];
end; Return(L);
FINISH ProbSubyj;
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/**********************************************************************/

[*C.2: Calculate the Weights using Bayes Theorem*/
/**********************************************************************/
START MisDWeit(parms,pz) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GNZmis,
GNZzful, GNZ, GNstate, Gmsmparms, Gdeath, Gnpmsm, Gnpz, Gprob);
wet=J(GNSubj,Gnpz+1,0); Gmsmparms[loc(Gmsmparms"=0)]=parms;
Fpz=J(1,Gnpz+1,0); Fpz[1:Gnpz]=pz; Fpz[Gnpz+1]=1-Fpz[+];
do id=1 to GNSubyj;
h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis];
Zful=Gmsmdata[h[1],GZful]; Covs=Zmis;
do zj=GNZmis to 1 by -1;
if Zmis[,zj]=. then do;
Cov0=Covs; Cov1=Covs; Cov0][,zj]=0; Covl][,zj]=1; Covs=Cov0//Cov];
end;
end;
Nmis=nrow(Covs); *Number of mis patterns; Li=0; Weti=J(1,Gnpz+1,0);
do j=1 to Nmis;
Z=Covs]j,]; idxp=1; do jj=1 to GNZmis; idxp=idxp+Z[jj]*2**(GNZmis-jj); end;
weti[idxp]=ProbSubj(Zful||Z2)*Fpz[idxp];
end;
do wj=1 to Gnpz+1; wet[id,wj]=weti[wj]/weti[+]; end,;
end; return(wet);
FINISH MisDWeit;

/**********************************************************************/

/*C.3: Calculate the Expected Log Likelihood using Weights*/
/**********************************************************************/
START IlIWeit (parms) global (Gmsmdata, GNSubj, Xi, GZful, GZmis, GNZmis,
GNZful, GNZ, GNstate, Gmsmparms, Gnpmsm, Gdeath, Gnpz, Gwet, Gprob);
logL=0.; Gmsmparms[loc(Gmsmparms”=0)]=parms;
do id=1 to GNSubyj;
h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis];
Zful=Gmsmdata[h[1],GZful]; Covs=Zmis;
do zj=GNZmis to 1 by -1; if Zmis[,zj]=. then do;
Cov0=Covs; Cov1=Covs; Cov0l[,zj]=0; Covl][,zj]=1; Covs=Cov0//Cov];
end; end;
Nmis=nrow(Covs); *Number of mis patterns; Li=0;
do j=1 to Nmis;
Z=Covslj,]; idxp=1; do jj=1 to GNZmis; idxp=idxp+Z[jj]*2**(GNZmis-jj); end;
Li=ProbSubj(Zful||2);
if Li>0 then logL=logL+log(Li)*Gwet[id,idxp]; else Gprob=1+Gprob;
end;
end; return(logL);
FINISH lIWeit;
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/**********************************************************************/

[*C.4: Calculate the Observed Data Log Likelihood for Variance-Covariance Matrix*/
/**********************************************************************/
START IIObs (parms) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GNZmis, GNZful,
GNZ, GNstate, Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob);
pz=j(1,GNpz+1,0); pz[1:Gnpz]=parms[Gnpmsm+1:Gnp]; pz[Gnpz+1]=1-pz[+];
pmsm=parms[1:Gnpmsm]; Gmsmparms[loc(Gmsmparms”*=0)]=pmsm; logL=0.;
do id=1 to GNSubyj;
h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis];
Zful=Gmsmdata[h[1],GZful]; Covs=Zmis;
do zj=GNZmis to 1 by -1; if Zmis[,zj]=. then do;
Cov0=Covs; Cov1=Covs; Cov0[,zj]=0; Cov1l[,zj]=1; Covs=Cov0//CoV1;
end; end;
Nmis=nrow(Covs); *Number of mis patterns; Li=0;
do j=1 to Nmis;
Z=Covs]j,]; idxp=1; do jj=1 to GNZmis; idxp=idxp+Z[jj]*2**(GNZmis-jj); end;
Li=Li+ProbSubj(Zful||Z)*pz[idxp];
end;
if Li>0 then logL=logL+log(Li); else Gprob=1+Gprob;
end; return(logL);
finish 110bs;

/**********************************************************************/

[*C.5: Estimation using Expectation Maximization (EM) method*/
/**********************************************************************/
START MisDEM(Nsubj,parmsM0,pz0,Zmis,Zful,death=0,Cvg=1.e-4) global(Gmsmdata,
GNSubj, Xi, GZful, GZmis, GNZmis, GNZful, GNZ, GNstate, Gmsmparms, Gnpmsm,
Gdeath, Gnpz, Gnp, Gwet, Gprob);
Gprob=0; GNsubj=Nsubj; GZful=Zful;
GZmis=Zmis;GNZful=ncol(Zful);GNZmis=ncol(Zmis); GNZ=GNZful+GNZmis;
GNstate=nrow(parmsMO0); Gmsmparms=parmsMO0; Gdeath=death;
parms_crt=parmsMO[loc(parmsM0”=0)]"; GNpmsm=ncol(parms_crt);
pz_crt=pz0; Gnpz=ncol(pz0); Gnp=Gnpmsm+Gnpz; Ntr=0; optn={1 0 1 3};
do until(conv< cvg);
Gwet=MisDWeit(parms_crt,pz_crt);
call nlpnra(rc,curparms,”llweit",parms_crt,optn); curpz=Gwet[:,1:Gnpz];
conv=sqrt((curparms-parms_crt)*(curparms-parms_crt)"
+(curpz-pz_crt)*(curpz-pz_crt)");
parms_crt=curparms; pz_crt=curpz;
file testfile;put Ntr;put conv;closefile testfile;
Ntr=Ntr+1,
end;
estimate=curparms||curpz; call nlpfdd(f,g,hes,"llObs" estimate);
cov=inv(hes); stderr=sqrt(vecdiag(cov)); norqua=probit(1-0.05/2);
low=estimate -norqua*stderr; up=estimate +norqua*stderr;
z=abs(estimate /stderr); p=2*(1-probnorm(z));
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Est=parmsMO; Est[loc(parmsM0”=0)]=estimate[1:Gnpmsm];
MStd=parmsMO0; Mstd[loc(parmsMO0”=0)]=stderr[1:Gnpmsm];
MCI_low=parmsMO0; MCI_low[loc(parmsM0”=0)]=low[1:Gnpmsm];
MCI_up=parmsMO0; MCI_up[loc(parmsM0”=0)]=up[1:Gnpmsm];
Pvalue=parmsMO; Pvalue[loc(parmsM0”=0)]=p[1:Gnpmsm];
Estp=curpz; Pp=p[Gnhpmsm+1:GNpmsm+Gnpz];
Stdp=stderr[Gnpmsm+1:GNpmsm+Gnpz];
Lowp=low[Gnpmsm+1:GNpmsm+Gnpz];upp=up[Gnpmsm+1:GNpmsm+Gnpz];
EstHR=parmsMO; EstHR[loc(parmsM0”=0)]=exp(estimate[1:Gnpmsm]);
HR_low=parmsMO; HR_low[loc(parmsM0”=0)]=exp(low[1:Gnpmsm]);
HR_up=parmsMO0; HR_up[loc(parmsM0”=0)]=exp(up[1:Gnpmsm]);
Zs=Zful||Zmis;
do iz=1to GNZ;

Covname=ZsJiz]; HRiz=EstHR[,(iz-1)*GNstate+1:iz*GNstate];

Piz=Pvalue[,(iz-1)*GNstate+1:iz*GNstate];

Lowiz=HR_low[,(iz-1)*GNstate+1:iz*GNstate];

Upiz=HR_UP[,(iz-1)*GNstate+1:iz*GNstate];

print Covname "From" "To" "HR" "Low" "UP" "Pvalue";

do ir=1 to GNstate; do ic=1 to GNstate;

HR=HRiz[ir,ic]; Low=Lowiz[ir,ic]; Up=Upiz[ir,ic]; pv=Piz[ir,ic];
if HR”=0 then do; print ir ic HR Low Up pv; end,;

end; end;
end; Ests=(estimate’)||(stderr")||Estp||stdp||Gprob;
Create Results from Ests; Append from Ests; Close Results;

FINISH MisDEM,;
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