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Multi-state models have been widely used to analyze longitudinal event history 
data obtained in medical studies. The tools and methods developed recently in this area 
require the complete observed datasets. While, in many applications measurements on 
certain components of the covariate vector are missing on some study subjects. In this 
dissertation, several likelihood-based methodologies were proposed to deal with datasets 
with different types of missing covariates efficiently when applying multi-state models.  

Firstly, a maximum observed data likelihood method was proposed when the data 
has a univariate missing pattern and the missing covariate is a categorical variable. The 
construction of the observed data likelihood function is based on the model of a joint 
distribution of the response longitudinal event history data and the discrete covariate with 
missing values.  

Secondly, we proposed a maximum simulated likelihood method to deal with the 
missing continuous covariate when applying multi-state models. The observed data 
likelihood function was approximated by using the Monte Carlo simulation method.  

At last, an EM algorithm was used to deal with multiple missing covariates when 
estimating the parameters of multi-state model. The EM algorithm would be able to 
handle multiple missing discrete covariates in general missing pattern efficiently.  

All the proposed methods are justified by simulation studies and applications to 
the datasets from the SMART project, a consortium of 11 different high-quality 
longitudinal studies of aging and cognition. 

 

 

KEYWORDS: Longitudinal event history data, multi-state model, missing covariate data, 
EM algorithm, maximum simulated likelihood, SMART project.  
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Chapter 1 Introduction 

1.1 Overview 

Longitudinal event history[1] data commonly arise in chronic disease studies in 

which patients are observed over time and discrete states of the disease are recorded. A 

change of the disease states is called a transition or event. The outcome data often 

consists of longitudinal records of time to transition and the types of transitions that 

occur. Most often, patients are only observed at discrete time points (e.g., annually), 

which leads to interval-censored transition times and unobserved transitions. 

Multi-state models (MSM) [1-4] have become powerful tools in analysis of 

longitudinal event history data in recent years. These are extensions to the widely used 

survival models. In survival models, there are just two possible states at any time point, 

either “alive” or “dead”, and two possible transitions, from “alive” to “alive” or from 

“alive” to “dead”. Multi-state models allow researchers to investigate a process 

containing any finite number of states and transitions at the same time.  

One major use of multi-state models is to identify and quantify the effects of 

potential risk factors associated with the different transitions among several states over 

time. One limitation of the current developed methods and software packages in this area 

is that they require the covariate data to be completely observed. However, the problem 

of missing covariates is very common in practice. Indeed, the topics of this dissertation 
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were motivated by the missing covariates data from the Statistical Modeling of Aging 

and Risk of Transition (SMART) project established at Sanders-Brown Center on Aging 

(University of Kentucky). 

We aim to develop methods that can handle different types of missing covariates 

data efficiently in the application of multi-state models. In the following sections, we will 

introduce the SMART project, a review of multi-state models, the problem of missing 

covariates data and the methodologies we proposed to address this problem.  

1.2 Background of the SMART Project 

The Statistical Modeling of Aging and Risk of Transition (SMART) project at 

University of Kentucky aggregates data from mature, extremely data-rich, and well-

known longitudinal cohorts of older adults: the Memory and Aging Project  at 

Washington University (MAPWU); the Oregon Brain Aging Study; Sanders-Brown 

Healthy Brain Aging Volunteers, also known as the Biologically Resilient Adults in 

Neurological Studies (BRAiNS) cohort; the Nun Study; the Honolulu Asia Aging Study; 

the Religious Orders Study; the Memory and Aging Project (Rush University); the 

African American Dementia and Aging Project; the Klamath Exceptional Aging Project 

(KEAP); and the Einstein Aging Study (EAS). Participants included in SMART were 

primarily cognitively intact at baseline and were subsequently assessed for transition to 

mild cognitive impairment (MCI) and dementia over many years. This combined cohort 
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presents a unique opportunity to study dementia in terms of the risk factors that lead to 

cognitive impairment or promote resistance to impairment. Abner, et al. [5] presented a 

detailed description of this project and its database.  

One issue with this project is that we have a large portion of data with missing 

values on the risk factor covariates of interests due to the different designs of the studies 

contributing data. For example, the EAS dataset has about 45% subjects with missing 

APOE4 allele status values; the KEAP dataset contains about 20% subjects with missing 

APOE4 and about 50% subjects with missing baseline high blood pressure status; and in 

the MAPWU dataset, there are about 70% patients with missing BMI values. All of the 

above mentioned covariates are important potential risk factors for the transitions among 

different types of cognition function states. Thus omitting them from the model is not an 

appropriate way to analyze the data.  

1.3 Multi-State Models 

Multi-state models [1-4, 6, 7] are very useful to describe the progression of a 

disease with several possible states over time. Many applications of multi-state models can 

be found in the literature. Siannis et al. [8] proposed a multi-state model for joint modeling 

of terminal and non-terminal events with application to a study of serious coronary heart 

disease. Abner et al. [9] built a seven-state model to investigate the effects of two different 

types of mild cognitive impairment (MCI) in the development of dementia. Kryscio et 
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al.[10] provided a semi-Markov multi-state model to identify risk factors for transitions to 

MCI and dementia after accounting for the competing risk of mortality. Commenges et al. 

[11] used an illness-death model to study the incidence and the prevalence of Alzheimer’s 

disease. Other applications of multi-state models can also be found in studies of dementia 

[9], breast cancer [12-14] , liver cirrhosis [15], AIDS [16, 17],bone marrow transplantation 

[18, 19],etc.  

There are two types of multi-state models: a discrete-time version and a 

continuous-time version. A discrete-time multi-state model views the transition process 

as a discrete-time Markov chain assuming the process is observed at equally spaced time 

points. While, a continuous-time multi-state model models the transitions as a 

continuous-time Markov process. In this study, we focus on the continuous-time version 

multi-state models.  

1.3.1 Multi-State Process 

Continuous-time multi-state models are based on the theory of multi-state 

processes. A multi-state process is a stochastic process (𝑋𝑋(𝑡𝑡), 𝑡𝑡 ≥ 0) , with a finite state 

space 𝑺𝑺 = {1,2, … ,𝐾𝐾}. It can be fully characterized by either the transition probability 

matrix or the transition intensity matrix [1-3, 20].  

Denote ℱ(𝑠𝑠 −) the history before current time 𝑠𝑠, which is a 𝜎𝜎-algebra generated 

by {𝑋𝑋(𝑢𝑢),𝑢𝑢 ∈ [0, 𝑠𝑠)}. The transition probability matrix is a 𝐾𝐾 by 𝐾𝐾 matrix with entries 
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𝑝𝑝𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑡𝑡) = 𝑃𝑃�𝑋𝑋(𝑡𝑡) = 𝑚𝑚| 𝑋𝑋(𝑠𝑠) = 𝑙𝑙;ℱ(𝑠𝑠 −)� , 𝑠𝑠 < 𝑡𝑡 . 

The (𝑙𝑙,𝑚𝑚)𝑡𝑡ℎ entry of the transition intensity matrix is defined as: 

𝛼𝛼𝑙𝑙𝑙𝑙(𝑠𝑠) = �
lim
∆𝑡𝑡→0

P�𝑋𝑋(𝑠𝑠 + ∆𝑡𝑡) = 𝑚𝑚|𝑋𝑋(𝑠𝑠) = 𝑙𝑙;ℱ(𝑠𝑠 −)� /∆𝑡𝑡        𝑚𝑚 ≠ 𝑙𝑙

−�𝛼𝛼𝑙𝑙𝑙𝑙(𝑠𝑠)
𝑙𝑙≠𝑙𝑙

                                                                       𝑚𝑚 = 𝑙𝑙 . 

The transition intensity 𝛼𝛼𝑙𝑙𝑙𝑙 measures the instantaneous hazard of the process transition 

from state 𝑙𝑙 to state 𝑚𝑚 at time 𝑠𝑠.  

1.3.2 Markov Models 

The process (𝑋𝑋(𝑡𝑡), 𝑡𝑡 ≥ 0)  is Markovian if the transition probabilities and 

transition intensities are independent of the past history, that is, for any 𝑠𝑠, 𝑡𝑡 with 0 ≤ 𝑠𝑠 <

𝑡𝑡, we have 

𝑃𝑃�𝑋𝑋(𝑡𝑡) = 𝑚𝑚| 𝑋𝑋(𝑠𝑠) = 𝑙𝑙;ℱ(𝑠𝑠 −)� = 𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑚𝑚| 𝑋𝑋(𝑠𝑠) = 𝑙𝑙) 

and 

𝛼𝛼𝑙𝑙𝑙𝑙(𝑠𝑠) = �
lim
∆𝑡𝑡→0

P(𝑋𝑋(𝑠𝑠 + ∆𝑡𝑡) = 𝑚𝑚|𝑋𝑋(𝑠𝑠) = 𝑙𝑙) /∆𝑡𝑡                        𝑚𝑚 ≠ 𝑙𝑙

−�𝛼𝛼𝑙𝑙𝑙𝑙(𝑠𝑠)
𝑙𝑙≠𝑙𝑙

                                                                       𝑚𝑚 = 𝑙𝑙 

For a Markov process, the future of the process after time 𝑠𝑠 depends only on the 

state occupied at time 𝑠𝑠.  Under the Markov assumption, the transition probabilities can 

be calculated from the intensities by solving the forward Kolmogorov differential 

equation [4].  
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In this dissertation, we focus on time-homogenous Markov models. In time 

homogeneous Markov models, all transition intensities are assumed to be constant 

functions of time. Thus, we have 𝛼𝛼𝑙𝑙𝑙𝑙(𝑠𝑠) = 𝛼𝛼𝑙𝑙𝑙𝑙. Let 𝑷𝑷(𝑠𝑠, 𝑡𝑡) be the transition probability 

matrix with the (𝑙𝑙,𝑚𝑚)𝑡𝑡ℎ entry be 𝑝𝑝𝑙𝑙𝑙𝑙(𝑠𝑠, 𝑡𝑡), and also let 𝑸𝑸 be the transition intensity 

matrix with the  (𝑙𝑙,𝑚𝑚)𝑡𝑡ℎ entry be 𝛼𝛼𝑙𝑙𝑙𝑙. In this case, the Kolmogorov differential equation 

has an explicit solution using the decomposition of the intensity matrix into eigenvalues 

and eigenvectors [21], which leads to 

𝑷𝑷(𝑠𝑠, 𝑡𝑡) = 𝑷𝑷(𝑡𝑡 − 𝑠𝑠) = 𝑒𝑒𝑒𝑒𝑝𝑝�(𝑡𝑡 − 𝑠𝑠)𝑸𝑸� = �𝑸𝑸𝑟𝑟(𝑡𝑡 − 𝑠𝑠)𝑟𝑟 𝑟𝑟!⁄
∞

𝑟𝑟=0

, 𝑠𝑠 < 𝑡𝑡. 

If 𝑸𝑸 has unique eigenvalues 𝑣𝑣1,⋯  , 𝑣𝑣𝐾𝐾 and 𝑨𝑨 is the 𝐾𝐾 × 𝐾𝐾 matrix whose 𝑗𝑗th 

column is a right eigenvector corresponding to 𝑣𝑣𝑗𝑗 , then 𝑸𝑸 = 𝑨𝑨𝑨𝑨𝑨𝑨−𝟏𝟏, where 𝑨𝑨 =

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣1,⋯  , 𝑣𝑣𝐾𝐾 ). Then 

 𝑷𝑷(𝑡𝑡 − 𝑠𝑠) = 𝑨𝑨 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑒𝑒𝑣𝑣1(𝑡𝑡−𝑠𝑠),⋯  , 𝑒𝑒𝑣𝑣𝐾𝐾(𝑡𝑡−𝑠𝑠)�𝑨𝑨−𝟏𝟏 

1.3.3 Modeling Intensities 

Covariates in multi-state models are often incorporated through the transition 

intensity functions to explain differences among individuals in the course of the disease 

progression. One popular choice is the proportional hazards model [22].  Suppose we 

have a baseline covariate vector 𝒁𝒁 = �𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑝𝑝�, whose values do not change over 

time, a time-homogenous multi-state model with proportional intensities has the 

following form: 
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𝛼𝛼𝑙𝑙𝑙𝑙(𝒁𝒁|𝜷𝜷) = 𝛼𝛼𝑙𝑙𝑙𝑙,0 𝑒𝑒𝑒𝑒𝑝𝑝(𝜷𝜷𝒍𝒍𝒍𝒍𝑇𝑇 𝒁𝒁) = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝜷𝜷𝒍𝒍𝒍𝒍𝑇𝑇 𝒁𝒁�;  𝑚𝑚 ≠ 𝑙𝑙.    

Here 𝛼𝛼𝑙𝑙𝑙𝑙,0 = 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽𝑙𝑙𝑙𝑙,0) is called the baseline intensity from state 𝑙𝑙 to state 𝑚𝑚, and 𝜷𝜷 =

�𝛽𝛽𝑙𝑙𝑙𝑙,0,𝜷𝜷𝑙𝑙𝑙𝑙; 𝑙𝑙 = 1,⋯ ,𝐾𝐾;  𝑚𝑚 = 1,⋯ ,𝐾𝐾;𝑚𝑚 ≠ 𝑙𝑙�, which represents all the parameters 

associated with the multi-state model.  

1.4 Missing Covariates Data 

Even though multi-state models have been widely used in practice, in the current 

literature there is still no efficient method for handling missing covariates data. The 

complete case (CC) method is the common approach in most multi-state regression 

studies and existing software packages [23-27]. There are several limitations to the CC 

method. It results in biased estimates of the model parameters when covariates are not 

missing completely at random (MCAR). Even when covariates are MCAR, dropping 

subjects with incomplete covariate measurement can effectively result in loss of, 

oftentimes, expensive-to-collect data[28]. Sometimes, if there’s a large portion of missing 

data, the CC method would fail due to convergence problems. Thus, it is urgent for us to 

identify efficient ways to deal with missing covariates data in the framework of multi-

state models. In order to study missing covariates data, we will first introduce two basic 

concepts of missing data in multi-state model framework. 



  

 8   
 

1.4.1 Missing Data Patterns 

Some methods apply only to special patterns of missing data, whereas others 

apply to any pattern. The concept of missing data pattern [29, 30] describes which values 

are observed and which values are missing.  

Denote 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀) and 𝑻𝑻 = (𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑀𝑀), here 𝑀𝑀 is a random variable 

indicating the number of observations, and 𝑋𝑋𝑗𝑗 is the corresponding occupied state of the 

process 𝑋𝑋(𝑡𝑡) at 𝑗𝑗𝑡𝑡ℎ observation at time 𝑡𝑡𝑗𝑗. Denote 𝒁𝒁 = �𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑝𝑝� a 𝑝𝑝-dimensional 

covariate vector. In our case, the longitudinal response data 𝑿𝑿 is completely observed, 

while some components of the covariates 𝒁𝒁 are possibly missing.  

Consider three examples of missing data patterns among the covariates in Figures 

1-3. For univariate missing data (see Figure 1.1), missing values are confined to a single 

covariate, say 𝑍𝑍1. If there are two or more components of 𝒁𝒁 with missing values and these 

components can be rearranged so that all 𝑍𝑍1, … ,𝑍𝑍𝑗𝑗−1 are missing for subjects wherever 𝑍𝑍𝑗𝑗 

is missing for all 𝑗𝑗 = 2,⋯ ,𝑝𝑝, then the data is said to have a monotone missing pattern 

(see Figure 1.2). In most cases, we would have general missing data. Figure 1.3 

represents a general pattern with no special structure.   

1.4.2 Missing Data Mechanisms  

In the previous section we considered various patterns of missing data. A different 

issue concerns the mechanisms that lead to missing data, and in particular the question of 
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whether the fact that variables are missing is related to the underlying values of the 

variables in the data set. Missing data mechanisms are crucial since the properties of 

missing data methods depend very strongly on these mechanisms. The role of the 

mechanism in the analysis of data with missing values were largely ignored until the 

concept was formalized in the theory of Rubin[31], through treating the missing data 

indicators as random variables and assigning them a distribution.  

Rearrange the covariates vector such that 𝒁𝒁 = (𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 ,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎), where 

components 𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎 are completely observed and components of 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 are components 

subject to be missing. Define an indicator vector 𝑹𝑹 = �𝑅𝑅1,𝑅𝑅2,⋯ ,𝑅𝑅𝑝𝑝𝑙𝑙𝑝𝑝𝑠𝑠� such that  

 𝑅𝑅𝑗𝑗: = �
1           if 𝑍𝑍𝑗𝑗  is observed
0           if 𝑍𝑍𝑗𝑗  is missing    . 

Here, 𝑝𝑝𝑚𝑚𝑑𝑑𝑠𝑠 is the dimension of the missing components 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎. The missing data 

mechanism can be characterized by the following conditional 

distribution 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁,𝝓𝝓 �, where 𝝓𝝓 denotes unknown parameters.  

The missing data mechanism is called missing completely at random (MCAR) if 

the missingness of 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 does not depend on the values of 𝑿𝑿 and 𝒁𝒁, that is 

 𝑃𝑃(𝑹𝑹|𝑿𝑿,𝒁𝒁 ) = 𝑃𝑃�𝑹𝑹| �𝝓𝝓 . 

The missing data mechanism is called missing at random (MAR) if the missingness is 

independent of the underlying value of 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎, but might be dependent on the values 

of 𝑿𝑿 and 𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, that is 𝑃𝑃(𝑹𝑹|𝑿𝑿,𝒁𝒁 ) = 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓 . The mechanism is called not 
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missing at random (NMAR) if the missingness is also dependent on the underlying value 

of 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎.  

1.4.3 A Review of Methods for dealing with Missing Covariates  

Literature focusing on dealing with missing covariates can be found in areas of 

linear regressions with incomplete observed values in regressors [29, 32], logistic 

regression models with missing covariates [33], generalized linear models [34-36], 

survival models [28, 37, 38], etc. 

Because standard techniques for most regression models require full covariates 

information, one simple way to avoid the problem of missing data is to analyze only 

those subjects who are completely observed. This method, known as the Complete Case 

(CC) method, is still the default in most software packages. It is well known that the CC 

analysis can be biased when the data are not MCAR. When the data are MCAR, the CC 

method is unbiased. However, as the fraction of missing data increases, the deletion of all 

subjects with missing data is unnecessarily wasteful and quite inefficient [28, 36]. 

Despite its limitations, the CC method is easy to implement and serves as a useful 

baseline method for comparisons. 

Like the CC method, the available case (AC) method [30] is also widely used in 

practice. By using the AC method, one removes any covariate with missing values from 
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the regression model. This method is not helpful when the goal of the analysis to 

investigate the effects of covariates on the response data. 

Mean substitution (MS) [30, 39]is another widely used method in practice to deal 

with missing covariates data. The MS method primarily works for missing continuous 

variables. It imputes the missing covariate by its sample mean or its conditional mean 

calculated from the observed data.  

For missing binary covariate, Schemper and Smith [40] proposed the method of 

probability imputation technique (PIT). By using the PIT method, the missing covariate 

values are replaced by an estimate for the probability that the unobserved value is equal 

to 1 based on the complete cases. 

Rubin  proposed the method of multiple imputation (MI) [41, 42]. MI has become 

one of the standard methods for dealing with missing values. The method involves three 

steps, namely (1) creating multiple complete datasets, (2) analyzing each complete 

dataset using standard analysis, and then (3) combining the parameters estimated from 

these complete datasets. Issues with MI method are that it requires the data can be 

presented in a matrix with rows representing independent subjects and columns having 

fixed dimension representing different variables, and the model used to analyze the 

multiply imputed data is the same as the model used to impute missing values[43]. In 

most multi-state model applications, the observed data contain longitudinal response data 
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with random length and unequal spacing. Thus, it is difficult to place the data in a matrix 

with independent rows and fixed dimension columns, and it is also difficult to come up 

with an imputation model for the missing covariates. This might be the reason we cannot 

find literature of MI application in the framework of multi-state models. An alternative 

solution would be to impute the missing covariate values conditioning only on other 

observed covariates. This solution is not helpful when the missing covariates are 

independent with the completely observed covariates or in cases where all the covariates 

have some missing values. Little [29] and Lin and Ying [28] also pointed out that 

imputing the missing covariates based on only the observed covariates could lead to bias 

and is inappropriate. Schafer provided a comprehensive coverage on this topic [43]. 

Model-based procedures have been widely applied to deal with missing covariates 

in generalized linear models (GLMs) [28, 34, 36]. In applying these procedures, we first 

define a model for the variables with missing values and then make statistical inferences 

based on ML methods. Model-based methods are quite flexible and clearly set forth 

underlying model assumptions so that they can be evaluated. In addition, asymptotic 

variance estimates can be obtained based on second derivatives of the log-likelihood, 

which takes into account the missing data. Model-based algorithms and techniques 

include methods based on factoring the likelihood function of the observed data, Newton-

Raphson or quasi-Newton algorithms for directly maximizing the likelihood of the 
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observed data, and the EM algorithm of Dempster, Laird, and Rubin [44] for obtaining 

ML estimates (MLEs) from the complete-data likelihood [30].  

1.5 Estimation Methods 

Estimation methods of statistical models with missing covariates are often more 

complicated than those with complete data, simply because we can often treat the 

covariate variables in the model as constant if the data is complete. While, this is not the 

case when the data under study contains covariates with missing values. When the data 

contains missing covariates values, two things have to be take into consideration in order 

to analyze the data correctly and efficiently. First, we have to consider the mechanism 

that leads to the missing covariate data. The missing data mechanism would be critical 

for a particular method to work properly in the presence of missing data. Second, we 

have to consider the distribution of the missing covariates. Most of the time, the observed 

part of the data contains a lot information on the missing part of the data. In the 

following, we will introduction three estimation methods for multi-state models with 

missing covariates.  

1.5.1 Maximum Likelihood Estimation (MLE) 

Maximum Likelihood is a straightforward and easy-to-implement method for 

dealing with missing covariate data. In the framework of multi-state models, we propose 
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to construct the likelihood function based on the conditional joint distribution 

of (𝑹𝑹,𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎). Using properties of conditional distributions, we have 

𝑃𝑃(𝑹𝑹,𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎) = 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓 𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸). 

Here 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓  defines the missing data mechanism, 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓  

is determined by the multi-state model and 𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸) is the distribution for the 

missing components of the covariates conditioned on the observed covariates.  

With the data, the likelihood can be calculated a 

 𝐿𝐿 = �𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓 𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸) 𝑑𝑑𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎. 

Here the integration is over all possible values of 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎. 

If the data is assumed to be MAR, thus we have 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓 =

𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓  and the likelihood can be rewritten as 

𝐿𝐿 = 𝑃𝑃�𝑹𝑹|𝑿𝑿,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓  �𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸)𝑑𝑑𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 

If the nuisance parameter 𝝓𝝓 is distinct from 𝜷𝜷 and 𝜸𝜸, the missing data mechanism 

can be ignored and we have 

𝐿𝐿 ∝ �𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸)𝑑𝑑𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎           (𝟏𝟏.𝟏𝟏). 

When all components of 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 are discrete variables, the integration in the above formula 

is a summation.  
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1.5.2 Maximum Simulated Likelihood (MSL) 

When 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 are continuous variables, calculation of the above likelihood function 

involves integration, and in most cases it does not have a closed form. Numerical 

simulation methods can be used to approximate the likelihood function (1.1) in this 

situation.  

Suppose 𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎 has a density 𝑑𝑑(𝒛𝒛|𝜸𝜸). First, we draw 𝐻𝐻 independent random 

variables 𝒁𝒁𝟏𝟏∗ ,⋯ ,𝑍𝑍𝐻𝐻∗  from 𝑑𝑑(𝒛𝒛|𝜸𝜸), and next calculate 

𝐿𝐿𝐻𝐻 =
1
𝐻𝐻
�𝑃𝑃(𝑿𝑿|𝒁𝒁𝒓𝒓∗ ,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)
𝐻𝐻

𝑟𝑟=1

 

By the law of large numbers, we have 𝐿𝐿𝐻𝐻
𝑎𝑎.𝑠𝑠.
��  𝐿𝐿,𝑑𝑑𝑠𝑠 𝐻𝐻 → ∞. Thus 𝐿𝐿𝐻𝐻 can be used 

for estimation of the model instead of 𝐿𝐿, which involves complex integration in the 

calculation.  

1.5.3 EM Algorithm 

Expectation Maximization (EM) algorithm [44] is a widely used method in the 

literature of missing data problem. EM is an iterative algorithm for calculating the MLE 

in the presence of missing data. Each iteration of EM algorithm consists an E 

(expectation) step and an M (maximization) step. The E step finds the conditional 

expectation of the complete-data log likelihood given the observed data and current 

estimated parameters.  
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Assume the data is MAR, then the complete data log likelihood has the following 

form 

𝑙𝑙(𝜷𝜷,𝜸𝜸) = 𝑙𝑙𝑙𝑙𝑑𝑑�𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸)�  

= 𝑙𝑙𝑙𝑙𝑑𝑑�𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)� + 𝑙𝑙𝑙𝑙𝑑𝑑�𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸)�. 

Suppose �𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� is the estimate of the parameter (𝜷𝜷,𝜸𝜸) from the previous 

iteration. For the current iteration, the E step can be written as 

𝑄𝑄�𝜷𝜷,𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� = 𝐸𝐸�𝑙𝑙(𝜷𝜷,𝜸𝜸)|𝑿𝑿,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎) �

= � 𝑙𝑙𝑙𝑙𝑑𝑑�𝑃𝑃(𝑿𝑿|𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)�𝑃𝑃�𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎�𝑿𝑿,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� 𝑑𝑑𝒁𝒁𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎

+ �𝑙𝑙𝑙𝑙𝑑𝑑�𝑃𝑃(𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸)�𝑃𝑃�𝒁𝒁𝒍𝒍𝒎𝒎𝒎𝒎�𝑿𝑿,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� 𝑑𝑑𝒁𝒁𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎 . 

The M step determines �𝜷𝜷(𝒎𝒎+𝟏𝟏),𝜸𝜸(𝒎𝒎+𝟏𝟏)� by maximizing the expected complete 

data log likelihood function 𝑄𝑄�𝜷𝜷,𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)�.  

1.6 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. 

In Chapter 2, we propose a likelihood-based method for estimation of multi-state 

models with univariate missing discrete covariate data. The calculation of log likelihood 

with missing covariate data is discussed in detail. And the performance of the method is 

assessed by numerical studies as well as a real data application.  
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In Chapter 3, we deal with missing continuous covariate in multi-state models. 

The method of MSL is used for the estimation. Robustness in the assumption of the 

missing covariate distribution is assessed by numerical studies.  

In Chapter 4, EM algorithm is used for estimation in situations where the data 

under study has a general missing pattern. The method is limited to datasets with only 

discrete missing covariates. The performance of the method is compared to the widely 

used CC method by extensive simulation studies.  

Finally in Chapter 5, we discuss some topics of the work and offer some potential 

areas for future study. 
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Figure 1.1: Pattern of Univariate Missing Data 

 

Figure 1.2: Pattern of Monotone Missing Data 
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Figure 1.3: General Pattern of Missing Data 
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Chapter 2 Estimation of Multi-State Models with Missing Categorical Covariate 
based on Observed Data Likelihood 

2.1 Introduction 

Continuous-time multi-state models are commonly used to study diseases with 

multiple stages. In these models, potential risk factors associated with the disease are 

added to the transition intensities of the model as covariates. But, the problem of missing 

covariate values arises frequently in practice. In the current literature, estimation methods 

for multi-state models require complete covariate measurements. In the presence of 

missing covariate values, the complete case (CC) method is the default. The limitations 

of CC method are well known; it might produce biased estimates when missing data are 

not missing completely at random (MCAR), and even if the data are MCAR, dropping a 

large proportion of the data results in a substantial loss of information.  

Other methods of handling missing covariate data in practice includes mean 

substitution[30, 39] and multiple imputation [30, 41]. The mean substitution method 

imputes the missing covariate by its sample mean or its conditional mean calculated from 

the observed data. Schemper and Smith [40] proposed the method of probability 

imputation technique (PIT) for missing binary covariate. By using the PIT method, the 

missing covariate values are replaced by an estimate for the probability that the 

unobserved value is equal to 1 based on the complete cases. Rubin [41, 42] proposed the 

method of multiple imputation (MI). The method involves three steps, namely (1) 
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creating multiple complete datasets, (2) analyzing each complete dataset using standard 

analysis, and then (3) combining the parameters estimated from these complete datasets. 

Issues with MI method are that it requires the data can be presented in a matrix with rows 

representing independent subjects and columns having fixed dimension representing 

different variables, and the model used to analyze the multiply imputed data is the same 

as the model used to impute missing values[43]. In most multi-state model applications, 

the observed data contain longitudinal response data with random length and unequal 

spacing. Thus, it is difficult to place the data in a matrix with independent rows and fixed 

dimension columns, and it is also difficult to come up with an imputation model for the 

missing covariate. An alternative is to impute the missing covariate values conditioning 

only on other observed covariates. Our simulation studies as well as real data application 

results showed that using multiple imputation method to impute the missing covariates 

based on only the observed covariates could lead to bias and is inappropriate.  

In this chapter, we propose a maximum likelihood method to deal with the 

missing covariate data problem when estimating multi-state models. The method is based 

on the observed data log likelihood. The dataset can contain one partially missing 

categorical covariate as well as several other covariates with complete measurements. 

The proposed method works in situations even when the response event history data have 

mixed discrete-continuous pattern observations [20], in which the clinical status is 
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assessed at discrete visit times while the transition time to one of the absorption states 

(often death) is observed exactly. As long as the data is MAR, our simulation study 

shows that the proposed method works well. By adding the missing data mechanism to 

the model we also can extend this method to NMAR data. 

The remainder of the chapter is organized as follows. In Section 2, we present the 

proposed method. In Section 3, simulation studies were carried out to compare the 

performance of our method to the widely used CC method, the probability imputation 

technique (PIT) method proposed by Schemper and Smith [40] and the multiple 

imputation (MI) method. We applied our method to the Einstein Aging Study (EAS) 

dataset in the SMART database in Section 4. In the concluding section, we discuss the 

advantages and possible extensions of our method. 

2.2 Multi-State Models with Missing Covariate  

In a time-homogenous Markov multi-state model, interesting covariates are often 

incorporated into the transition intensities using a Cox form regression model:  

𝛼𝛼𝑙𝑙𝑙𝑙(𝒁𝒁|𝜷𝜷) = 𝛼𝛼𝑙𝑙𝑙𝑙,0 𝑒𝑒𝑒𝑒𝑝𝑝(𝜷𝜷𝑙𝑙𝑙𝑙𝑇𝑇 𝒁𝒁) = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝜷𝜷𝑙𝑙𝑙𝑙𝑇𝑇 𝒁𝒁�         𝑚𝑚 ≠ 𝑙𝑙. 

Here 𝛼𝛼𝑙𝑙𝑙𝑙,0 = 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽𝑙𝑙𝑙𝑙,0) is called the baseline intensity from state 𝑙𝑙 to state 𝑚𝑚, 𝒁𝒁 =

(𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑝𝑝) is a vector of baseline covariates whose values do not change over time 



  

 23   
 

and are completely observed, and 𝜷𝜷 = �𝛽𝛽𝑙𝑙𝑙𝑙,0,𝜷𝜷𝑙𝑙𝑙𝑙; 𝑙𝑙 = 1,⋯ ,𝐾𝐾;  𝑚𝑚 = 1,⋯ ,𝐾𝐾;𝑚𝑚 ≠ 𝑙𝑙�, 

which represents all the parameters associated with this multi-state model.  

In real data applications, it is common that covariates might not be fully observed. 

In this section, we introduce a likelihood-based method for dealing with partially missing 

covariate data in the context of continuous-time multi-state models with a continuous-

discrete mixed type of observation scheme [20]. Our method can handle one partially 

missing categorical covariate along with several other completely observed covariates in 

the model. The completely observed covariates can be either continuous or discrete.   

2.2.1 Joint Modeling the Response Data and Missing Covariate Data 

Denote 𝑻𝑻 = (𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑀𝑀) and 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀), here 𝑀𝑀 is a random variable 

indicating the number of observations,  𝑇𝑇𝑗𝑗 is the time of 𝑗𝑗𝑡𝑡ℎ observation and 𝑋𝑋𝑗𝑗 is the 

corresponding occupied state of the process 𝑋𝑋(𝑡𝑡) at time 𝑇𝑇𝑗𝑗. To make it simple, we 

assume that 𝑍𝑍1 is a baseline binary covariate, and its value might be missing. Also 

denote 𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎 = (𝑍𝑍2, … ,𝑍𝑍𝑝𝑝), which is a vector of other baseline covariates whose values 

are all observed. We define an indicator 𝑅𝑅 such that 

 𝑅𝑅: = �1           if 𝑍𝑍1 is observed
0           otherwise            

. 

Here we assume the observation process is ignorable [20], thus the time points of the 

observation process 𝑻𝑻 can be viewed as fixed. The proposed method is based on the 

conditional joint distribution of (𝑅𝑅,𝑿𝑿,𝑍𝑍1|𝑻𝑻,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎). In this dissertation, we assume the 
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missing data is MAR. Under the assumption of MAR, the joint distribution can be written 

as 

 𝑃𝑃(𝑅𝑅,𝑿𝑿,𝑍𝑍1|𝑻𝑻,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎) = 𝑃𝑃�𝑅𝑅|𝑿𝑿,𝑻𝑻,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎, �𝝓𝝓 𝑃𝑃(𝑿𝑿|𝑻𝑻,𝑍𝑍1,𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷)𝑃𝑃(𝑍𝑍1|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸). 

Here, 𝜷𝜷 is the vector of parameters of interests and is associated with the multi-state 

model while �𝝓𝝓,𝜸𝜸� are nuisance parameters. 

Since 𝑍𝑍1 is binary, we use logistic regression to model the distribution of 𝑍𝑍1: 

𝑙𝑙𝑙𝑙𝑑𝑑 �
𝑝𝑝1

1 − 𝑝𝑝1
� = 𝛾𝛾0 + 𝝋𝝋𝑇𝑇𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎 

Here 𝑝𝑝1 = 𝑃𝑃(𝑍𝑍1 = 1|𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸) and 𝜸𝜸 = (𝛾𝛾0,𝝋𝝋). In situations that 𝑍𝑍1 and 𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎 are 

independent or there’s just one covariate 𝑍𝑍1 and no 𝒁𝒁𝒐𝒐𝒐𝒐𝒎𝒎 variables, we have 

𝑙𝑙𝑙𝑙𝑑𝑑 �
𝑝𝑝1

1 − 𝑝𝑝1
� = 𝛾𝛾0. 

With the same method, we can generalize the model to the case where 𝑍𝑍1 has more than 

two levels. 

2.2.2 The Likelihood Function 

Assume that state 1 to state 𝐾𝐾 − 1 are all transient states, and the last state 𝐾𝐾 

represents death, an absorbing state. Since we cannot make observations in continuous 

time but only at a finite number of distinct times, the exact transition time to 

state 1, 2, … ,𝐾𝐾 − 1 are unknown and are all interval-censored. The exact time of death 

can be retrieved, but the state just before death is unknown.  
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Denote 𝒕𝒕𝒎𝒎 = �𝑡𝑡𝑝𝑝,1, 𝑡𝑡𝑝𝑝,2, … , 𝑡𝑡𝑝𝑝,𝑙𝑙𝑖𝑖� and 𝒙𝒙𝒎𝒎 = �𝑒𝑒𝑝𝑝,1, 𝑒𝑒𝑝𝑝,2, … , 𝑒𝑒𝑝𝑝,𝑙𝑙𝑖𝑖�, where 𝑡𝑡𝑝𝑝,𝑗𝑗 is the time 

point of the 𝑗𝑗th observation for subject 𝑑𝑑 and  𝑒𝑒𝑝𝑝,𝑗𝑗 is the corresponding occupied state at 

that time point. Define index of death 𝛿𝛿𝑝𝑝 = 𝐼𝐼�𝑒𝑒𝑝𝑝,𝑙𝑙𝑖𝑖 = 𝐾𝐾�. Thus we have 𝛿𝛿𝑝𝑝 = 1 if 

subject 𝑑𝑑 died at time 𝑡𝑡𝑝𝑝,𝑙𝑙𝑖𝑖, and 𝛿𝛿𝑝𝑝 = 0 otherwise. Write covariates 𝒛𝒛𝒎𝒎 = �𝑧𝑧𝑝𝑝1, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎�, 

here 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎 = �𝑧𝑧𝑝𝑝2, … , 𝑧𝑧𝑝𝑝𝑝𝑝�. The likelihood contribution for the 𝑑𝑑th subject, 𝐿𝐿𝑝𝑝 , can be 

calculated as 

𝐿𝐿𝑝𝑝 = 𝑃𝑃�𝑟𝑟𝑝𝑝|𝒙𝒙𝒎𝒎, 𝒕𝒕𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝝓𝝓� 

         × �𝑃𝑃(𝒙𝒙𝒎𝒎|𝒕𝒕𝒎𝒎,𝒛𝒛𝒎𝒎,𝜷𝜷)𝑃𝑃�𝑧𝑧𝑝𝑝,1|𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸��
𝑟𝑟𝑖𝑖
� � 𝑃𝑃(𝒙𝒙𝒎𝒎|𝒕𝒕𝒎𝒎, 𝒛𝒛𝒎𝒎,𝜷𝜷)𝑃𝑃�𝑧𝑧𝑝𝑝,1|𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸�

1

𝑧𝑧𝑖𝑖,1=0

�

1−𝑟𝑟𝑖𝑖

. 

Here 𝑟𝑟𝑝𝑝 = 1 if 𝑧𝑧𝑝𝑝1 is observed and 0 otherwise, and the conditional distribution 

𝑃𝑃(𝒙𝒙𝒎𝒎|𝒕𝒕𝒎𝒎, 𝒛𝒛𝒎𝒎,𝜷𝜷), under the assumption that the process is Markov and given the baseline 

state, can be calculated as 

𝑃𝑃(𝒙𝒙𝒎𝒎|𝒕𝒕𝒎𝒎, 𝒛𝒛𝒎𝒎,𝜷𝜷) = �𝑃𝑃�𝑒𝑒𝑝𝑝,𝑗𝑗|𝑒𝑒𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗, 𝒛𝒛𝒎𝒎,𝜷𝜷�
𝑙𝑙𝑖𝑖

𝑗𝑗=2

. 

Here 

 𝑃𝑃�𝑒𝑒𝑝𝑝,𝑗𝑗|𝑒𝑒𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗, 𝒛𝒛𝒎𝒎,𝜷𝜷�         

=

⎩
⎪
⎨

⎪
⎧𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�                                                                                          if 𝑗𝑗 ≠  𝑚𝑚𝑝𝑝

�𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷��
1−𝛿𝛿𝑖𝑖

�� 𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑙𝑙�𝑡𝑡𝑝𝑝,𝑗𝑗 , 𝑡𝑡𝑝𝑝,𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�𝛼𝛼𝑙𝑙𝐾𝐾(𝒛𝒛𝒎𝒎|𝜷𝜷)
𝑙𝑙≠𝐾𝐾

�
𝛿𝛿𝑖𝑖

  if 𝑗𝑗 =  𝑚𝑚𝑝𝑝
 

The log-likelihood function of all the subjects can be written as 

 𝑙𝑙 =  𝑙𝑙(𝝓𝝓) +  𝑙𝑙(𝜷𝜷,𝜸𝜸). 
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Here 

𝑙𝑙(𝝓𝝓) = � log �𝑃𝑃�𝑟𝑟𝑝𝑝|𝒙𝒙𝒎𝒎, 𝒕𝒕𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝝓𝝓��
𝑛𝑛

𝑝𝑝=1

 

and 

𝑙𝑙(𝜷𝜷,𝜸𝜸) = ��𝑟𝑟𝑝𝑝 log �𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝,1, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷�𝑃𝑃�𝑧𝑧𝑝𝑝,1|𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸��
𝑛𝑛

𝑝𝑝=1

+ (1 − 𝑟𝑟𝑝𝑝)� � 𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝,1,𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝜷𝜷�𝑃𝑃�𝑧𝑧𝑝𝑝,1|𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝜸𝜸�
1

𝑧𝑧𝑖𝑖,1=0

�� 

If the nuisance parameters 𝝓𝝓 is not a function of (𝜷𝜷,𝜸𝜸 ), then we have 𝑙𝑙 ∝

𝑙𝑙(𝜷𝜷,𝜸𝜸).The Newton-Raphson method can be used to maximize the log-likelihood 

function 𝑙𝑙(𝜷𝜷,𝜸𝜸). 

2.3 Simulation Study 

In this section, we evaluate the performance of the proposed method (referred to 

as OL throughout) through simulations. Both MCAR and MAR data will be considered 

here. We performed the full data method (referred to as FULL) on the original non-

missing covariates datasets.  This estimation acts like a benchmark, so we can evaluate 

the performance of our method in general. To show the advantage of the method, we also 

compared it to the CC method, the PIT method proposed by Schemper and Smith [40], 

and the MI method. In applying the MI method, we impute the missing covariate values 
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by a regression model only based on the other fully observed covariates and ignoring the 

longitudinal response data. The criteria used in the comparisons are percent bias (% bias), 

estimated standard error (SE) and 95% confidence interval coverage rate (95% CP). The 

results are based on 500 simulated datasets. All simulations were done in SAS 9.3 

system[45]. PROC IML is used to calculate and maximize the likelihood functions. 

PROC MI and PROC MIANALYZE were used to impute datasets and to combine results 

for the MI method.  

We consider two covariates (𝑍𝑍1,𝑍𝑍2) in this simulation study. The first 

covariate 𝑍𝑍1 is a baseline binary covariate, and its value would be missing for some 

subjects. The second covariate 𝑍𝑍2 is a continuous covariate, and its value will be 

completely observed. We generate 𝑍𝑍2  from a truncated normal distribution with 

(𝜇𝜇 = 1,𝜎𝜎 = 0.25) and truncated at 0 and 2. We generate 𝑍𝑍1 by a logistic regression 

model based on the value of 𝑍𝑍2, which has the following form 

𝑃𝑃(𝑍𝑍1 = 1) =
𝑒𝑒𝑒𝑒𝑝𝑝(𝛾𝛾0 + 𝛾𝛾1𝑍𝑍2)

�1 + 𝑒𝑒𝑒𝑒𝑝𝑝(𝛾𝛾0 + 𝛾𝛾1𝑍𝑍2)�
. 

We set (𝛾𝛾0,𝛾𝛾1) = (−0.2, 0.2) in the true model.  

The longitudinal response data will be generated from a three-state model with the 

following transition intensity matrix: 

𝑸𝑸 = �
−�0.2 + exp(−2.2 + 𝛽𝛽1𝑍𝑍1)� exp(−2.2 + 𝛽𝛽1𝑍𝑍1) 0.2

0 −exp(−2.0 + 𝛽𝛽2𝑍𝑍2) exp(−2.0 + 𝛽𝛽2𝑍𝑍2)
0 0 0

� . 
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The true values of  𝛽𝛽1 and 𝛽𝛽2 are 0.8 and 0.4 respectively. Subjects began in state 1 at 

time 0. States 1 and 2 are transient states, while state 3 is an absorbing state. The states 

occupied were observed at 1-year intervals with a common censoring time 10 years if the 

subject was still in state 1 or state 2. The number of subjects (N) was 1000. 

We consider both MCAR and MAR datasets in this study. For the MCAR 

datasets, we considered two cases. In the first case, we randomly set 𝑍𝑍1 missing for about 

30% of the subjects. We denote this case as MCAR 1. In the second case, we randomly 

set 𝑍𝑍1 missing for about 70% subjects. Denote this type of dataset as MCAR 2. Both of 

these two types of missing data are MCAR data, since the missingness of the data is 

independent of underlying values of both the observed and unobserved data. 

For the MAR datasets, we also considered two cases. In the first case, we set 𝑍𝑍1 

missing if the first transition happens within the first year. In this situation, we have about 

30% subjects with missingness in the covariate. We denote this type of dataset as MAR 

1. In the second case, we set 𝑍𝑍1 missing if the first transition happens within the first 3 

years. In this case, we had about 70% subjects with missingness in the covariate. We 

denote this dataset as MAR 2. Both of these two types of missing data are MAR, since 

whether the covariate is missing depends on the observed data, which is the transition 

history, but not on the unobserved data, which is the underlying value of 𝑍𝑍1. 
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The simulation results are listed in Table 2.1. When the datasets are MCAR, the 

CC, PIT and OL methods all worked well. The percent bias was small, and the real 

coverage rates for the nominal 95% confidence intervals were all near 95%. Both results 

were close to those provided by the full data estimates in which we had complete 

covariate values for all subjects. The PIT method has relative larger bias than the CC 

method and the proposed OL method for the coefficient estimate of the partially missing 

covariate 𝑍𝑍1, but the bias is in an acceptable range. The CC method is less efficient than 

the PIT method and the proposed OL method in terms of standard errors, especially for 

the datasets MCAR 2, which have a higher missing proportion. The MI method by 

imputing the missing data based on only the observed covariate performs the worst 

among the four methods considered. The results by MI method have large bias for the 

coefficient estimate of the partially missing covariate 𝑍𝑍1 even though the data is MCAR.  

When the data were MAR, the proposed OL method still works well, while the 

other three methods considered here have relatively large biases. The CC method would 

have as large as 120% bias for the coefficient estimate of 𝑍𝑍1. The PIT and MI method 

perform better than the CC method, but both methods have at least 10% bias for the 

coefficient estimate of 𝑍𝑍1 no matter whether 𝑍𝑍1 and 𝑍𝑍2 are independent or not. However, 

our method (OL) still worked well for MAR data; the estimates provided by our method 

were unbiased. The simulation results also showed that our method did not lose much 
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efficiency because of the missing data. The increases of the standard errors were 

relatively small compared to those for the full data estimates (FULL), where we had 

complete covariate data for all subjects. 

2.4 Application  

In this application, we used the data of the Einstein Aging Study (EAS) from the 

SMART database.  EAS, located at the Albert Einstein College of Medicine, Yeshiva 

University (New York City), is a population-based study of cognitive aging and dementia 

in a non-institutionalized, urban, and multi-ethnic community. Participants undergo 

annual in-person evaluations that include cognitive, neurological, functional, and physical 

assessments [46]. 

Three cognitive states are of interest, and they are: Cognitively Intact (state 1),   

MCI (state 2), and Dementia (state 3). Death (state 4) is also included in our model as a 

competing risk for MCI and Dementia. Being Cognitively Intact, MCI, and Dementia are 

transient states, while Death is an absorbing state. Participants with normal cognitive 

function may die or transition to MCI or dementia. Participants who transition to MCI 

may die, transition to Dementia, or reverse back to the Cognitively Intact state. 

Participants who were diagnosed as Demented cannot reverse back to being MCI or 
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Cognitively Intact; however, they can transition to Death. See Figure 2.1 for the refined 

transition model structure. 

The original dataset contains longitudinally observed data on 2,097 patients. In 

this application, we excluded participants if they had only one observation (n=500) or 

already entered into MCI or Dementia at baseline (n=395). For the 1,202 participants 

included in this study, all of these participants were Cognitively Intact at baseline, and 

there were 4,302 total observed transitions. This resulted in 4.6 ± 2.7 transitions per 

subject with a mean follow-up 5.7 ± 3.6 years.  

One covariate of interest for our application is Apolipoprotein E4 allele (APOE4), 

a genetic marker of Alzheimer’s risk; this covariate was not available for all EAS 

participants. There were 509 (42.4%) participants with missing APOE4. See Table 2.2 for 

the observed transition frequencies for both the full data and the dataset with only the 

complete cases.  Other risk factors of interest in this model are baseline age (Bage), 

female gender (Female) and education level (LowEdu). Education level was 

dichotomized into two groups, low education (≤ 12 years) and high education (> 12 

years, above high school level). Baseline age, education level, and female gender were all 

fully observed. Summaries of these risk factors are listed in Table 2.3.  
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We used a time-homogenous Markov model to study the effects of these risk 

factors on each transition. This four-state model has the following transition intensity 

matrix: 

Q(𝐙𝐙) = �

𝛼𝛼11(𝒁𝒁) 𝛼𝛼12(𝒁𝒁)
𝛼𝛼21(𝒁𝒁) 𝛼𝛼22(𝒁𝒁)

𝛼𝛼13(𝒁𝒁) 𝛼𝛼14(𝒁𝒁)
𝛼𝛼23(𝒁𝒁) 𝛼𝛼24(𝒁𝒁)

0          0
0          0

𝛼𝛼33(𝒁𝒁) 𝛼𝛼34(𝒁𝒁)
0 0

� 

Here 𝒁𝒁 is the vector of above risk factors, namely Bage, Female, LowEdu, and APOE4. 

Since all patients were over 60 years old at baseline, we centered the original baseline age 

at 60 to use as the age covariate in the model. Since the effects of risk factors on the 

backward transition from state MCI to state Cognitively Intact are not of interest in this 

study, we didn’t add covariates on the transition intensity function for this path. Thus, the 

non-zero intensity functions in the transition intensity matrix Q(𝐙𝐙) have the following 

Cox-type regression form: 

𝛼𝛼𝑙𝑙𝑙𝑙(𝒁𝒁) =

⎩
⎪
⎨

⎪
⎧𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0�                                  𝑑𝑑𝑖𝑖 𝑙𝑙 = 2,𝑚𝑚 = 1
𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑇𝑇 𝒁𝒁�                   𝑑𝑑𝑖𝑖 𝑙𝑙 < 𝑚𝑚             

−�𝛼𝛼𝑙𝑙ℎ(𝒁𝒁)
ℎ≠𝑙𝑙

                              𝑑𝑑𝑖𝑖 𝑙𝑙 = 𝑚𝑚
 

We considered five methods to deal with the missing covariate data, the AC 

method, the CC method, the PIT method, the proposed OL method, and the MI method. 

For each method, a backwards algorithm was used for model selection. A basic model 

was fit to the data with all risk factors modeled on all possible transitions. At each step 
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the coefficient with the largest 𝑝𝑝 value was eliminated from the model until all 

coefficients remaining in the model were significant at the 0.05 level.   

First, we fitted the model without APOE4. With APOE4 excluded from the 

model, the data were completely observed. Table 2.4 lists the hazard ratios and the 

corresponding 95% confidence intervals for all the significant risk factors (P<0.05). We 

use these results to see how the missing APOE4 data affected the results of our proposed 

OL method as well as the results of the CC, the PIT, and the conventional MI methods. 

For the proposed OL method, the distribution of APOE4 is constructed by the 

logistic regression model based on the fully observed covariates, which are Bage, Female 

and LowEdu. The regression model has the following form: 

 𝑙𝑙𝑙𝑙𝑑𝑑 �
𝑃𝑃(𝐴𝐴𝑃𝑃𝐴𝐴𝐸𝐸4 = 1)

1 − 𝑃𝑃(𝐴𝐴𝑃𝑃𝐴𝐴𝐸𝐸4 = 1)� = 𝜑𝜑0 + 𝜑𝜑1𝐵𝐵𝑑𝑑𝑑𝑑𝑒𝑒 + 𝜑𝜑2𝐹𝐹𝑒𝑒𝑚𝑚𝑑𝑑𝑙𝑙𝑒𝑒 + 𝜑𝜑3𝐿𝐿𝑙𝑙𝐿𝐿𝐸𝐸𝑑𝑑𝑢𝑢. 

The results generated by the OL method are listed in Table 2.5.  

Table 2.6 lists the results by using the PIT method. In the PIT method, missing 

APOE4 values are imputed by its percentage based the observed data, which is 21.6% in 

our data (see Table 2.3).  

Since the likelihood function contained as many as 30 parameters in the initial 

model and 42.4% of the subjects had missing data, the model failed to converge using the 
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CC method. We refitted CC method on the reduced model based on the results of the PIT 

method and the proposed OL method. The results are listed in Table 2.7.  

When applying the MI method, we imputed the missing APOE4 by logistic model 

using the fully observed covariates Bage, Female and LowEdu as predictors. The 

combined results showed that APOE4 is not significant on any of the transition paths. 

Thus the final model reduces to the one of the AC method. In order to compare to the 

proposed OL method, we refitted the MI method on the reduced model based on the 

results of the PIT method and the OL method. The results are listed in Table 2.8. 

The PIT method and the proposed OL method provide very similar results. The 

effects of baseline age (Bage), female gender (Female), and low education (LowEdu) on 

each path by both methods are also very close to those by the AC method. In general, a 1-

year increase in baseline age increased the transition intensities from Cognitively Intact to 

MCI and MCI to Dementia. Cognitively Intact women had a lower mortality rate than 

Cognitively Intact men. Cognitively Intact subjects with low education level had a higher 

risk for the transition to MCI. And both the PIT method and the OL method showed that 

APOE4 increased the transition intensities from Cognitively Intact to MCI. These 

findings are much in line with other similar studies [10, 47]. The CC method fails to 

indicate that Female gender has a significant effects on the transition intensity from 

Cognitively Intact state to Death, while the effects of baseline age, low education level 
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and APOE4 agree with the results by PIT method and OL method. The MI method, by 

ignoring the longitudinal outcome data, fails to indicate APOE4 is significant in the 

model. 

We used the length of the 95% confidence intervals to compare the efficiency 

among the methods which are considered here. The results showed that the CC method is 

the least efficient method among the three. It has the largest length of each hazard ratio 

95% confidence interval. The proposed OL method shows a small advantage over the PIT 

method. Its length of the 95% confidence interval of the hazard ratio for the missing 

covariate APOE4 on the path from state Cognitive Intact. to state MCI is less than the 

length provided by the PIT method (0.66 vs. 0.70). The MI method considered here has 

similar efficiency to the proposed OL method. However, MI method showed bias on the 

estimation of the effect of APOE4, which results in APOE4 not being significant in the 

model.   

2.5 Discussion 

Multi-state models have become a popular tool to study transitions in studies of 

chronic disease. But, most model estimation methods and applications require fully 

observed data. We proposed a likelihood-based method that would handle missing 

covariate data in continuous-time Markov multi-state models. The proposed method 
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works for dataset with one missing categorical covariate and several other completely 

observed covariates. The completely observed covariates are allowed to be either 

continuous or discrete.  

Compared to the CC method, which is commonly used in multi-state models with 

missing covariate data, our method has three major advantages. First, when the data are 

MCAR our method was more efficient, especially when the data contained a large portion 

of cases with missing covariate data. Second, our method worked for both MCAR data 

and MAR data, while the CC method could provide biased estimates if the data are not 

MCAR. Third, when the dataset contains a large portion of missing covariate cases, the 

CC method might fail due to a convergence problem. In this case, the proposed method 

would be an alternative for the analysis.  

From our simulation studies, the PIT method proposed by Schemper and Smith 

would also produce biased results when the data is not MCAR. The covariate 

distributions of the missing covariates for the missing cases and observed cases would be 

different when the missingness is dependent on other observed data. Thus the PIT method 

is not recommended when the data is MAR not MCAR in estimation of multi-state 

models with missing categorical covariate.  

The MI method has become a widely used tool to deal with missing data. It is an 

efficient method and is also easy to carry out in many statistical modeling area with 
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missing data. However, in the area of multi-state models with missing covariates data, the 

proper MI method is often not easy to carry out. Our study found out that the 

conventional method of imputing the missing covariate by a model based only on the 

other observed covariates is biased even when the data is MCAR. 

In our application to the EAS dataset, CC is inferior since it has the widest CIs 

and since it fails to find female to be protective for transitions from cognitive intact to 

death. Methods OL and PIT give the same results in the application, which were our 

expectation since the EAS dataset is more MCAR than MAR. The MI method based on 

observed covariates showed bias in the estimation of the effect of APOE4 in the model.  

If the missing covariate is continuous, the observed data log-likelihood involves 

integration. In this circumstance calculation of the log-likelihood would be difficult, since 

there is never a closed form for the integration. Numerical integration methods, such as 

Gaussian quadrature, Monte Carlo simulations, quasi-Monte Carlo, etc., can be used to 

approximate observed data log-likelihood.  We will explore this type of method in the 

next chapter.  

The proposed method could also be extended to data with multiple categorical 

covariates with missing data. However, if the data contain too many covariates with 

missing values, this method might encounter programming difficulties or convergence 

problems when fitting the model. Modeling multiple covariates with missing data would 
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introduce many nuisance parameters into the likelihood function. With too many 

nuisance parameters in the likelihood function, there might be difficulties computing 

estimates using the usual maximization techniques, like the Newton-Raphson method. 

One possible solution to the problem discussed above is to use the EM algorithm as 

discussed by Ibrahim et al.[36]. By applying the EM algorithm, the nuisance parameters 

associated with the covariates model can be estimated separately from the model 

parameters associated with the multi-state model. In Chapter 4, we will have a detailed 

discussion about this method.   
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Figure 2.1: Multi-State Model Structure 
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Table 2.1: Simulation Results for four different types of missing covariate datasets  
    𝛽𝛽1 (0.8) 𝛽𝛽2 (0.4) 
MissMech Method % bias SE 95% CP % bias SE 95% CP 

0 FULL 0.15% 0.064 94.6% 1.61% 0.056 94.4% 
MCAR1 CC 0.27% 0.077 94.6% 2.05% 0.067 95.0% 

PIT 0.74% 0.071 93.8% 1.51% 0.056 94.0% 
OL 0.22% 0.071 94.2% 1.59% 0.056 94.0% 
MI -14.37% 0.073 69.8% -0.01% 0.056 94.8% 

MCAR2 CC 0.59% 0.118 95.4% 2.54% 0.102 93.6% 
PIT 1.96% 0.084 92.2% 1.42% 0.056 94.2% 
OL 0.31% 0.085 94.4% 1.57% 0.056 94.4% 
MI -33.78% 0.083 6.2% -2.13% 0.056 93.8% 

MAR1 CC -51.56% 0.081 0.0% -4.89% 0.071 93.4% 
PIT -12.15% 0.069 73.8% -0.80% 0.056 95.2% 
OL 0.23% 0.068 94.2% 1.65% 0.056 94.0% 
MI -13.33% 0.074 75.4% -0.43% 0.056 95.0% 

MAR2 CC -118.32% 0.128 0.0% -11.41% 0.119 93.8% 
PIT -18.36% 0.082 57.8% -2.74% 0.056 94.0% 
OL 0.13% 0.072 94.8% 1.60% 0.056 94.4% 
MI -30.65% 0.091 17.6% -3.14% 0.056 93.6% 

Note: MissMech=Missing Mechanism; FULL=Full Data Analysis; CC=Complete Case; 
PIT=Probability Imputation Technique; OL=Observed-data Likelihood; MI=Multiple 
Imputation; 95% CP=95% Confidence Interval Coverage Rate.   
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Table 2.2: Observed frequency of transitions. 

From To (Full Data)   To (Complete Case) 
Co.I. MCI Dementia Death  Co.I. MCI Dementia Death 

Co.I. 3027 328 37 454  2260 236 24 185 
MCI 151 126 42 47  121 97 32 21 
Dementia . . 48 42   . . 30 27 

Note: Co.I. =Cognitive Intact; Left panel: Full data; Right panel: Complete Case. 
 
 
Table 2.3: Summary statistics of baseline risk factors (N=1,202). 
Baseline Risk Factor N Missing (%) N Percent (%) or mean ± st. dev. 
Baseline age 0 (0) 78.88 ± 5.34 
Female 0 (0) 724 (60.2) 
Low Education (≤12 years) 0 (0) 593 (49.3) 
APOE4 (≥ 1 e4 allele) 509 (42.4) 150 (21.6) 
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Table 2.4: Hazard ratios (HR) for risk factors using Available Case method.  

Risk Factor Path HR 
95% Confidence Interval 
 L U Length 

Baseline Age  Co.I. to MCI 1.07 1.05 1.08 0.03 
 MCI to Dementia 1.04 1.00 1.07 0.07 

Female Co.I.  to Death 0.43 0.22 0.86 0.64 
Low Education  Co.I.  to MCI 1.54 1.30 1.82 0.52 

Note: Co.I. =Cognitive Intact 

 

Table 2.5: Hazard ratios (HR) for risk factors using Observed-data Likelihood method. 

Risk Factor Path HR 
95% Confidence Interval 
 L U Length 

Baseline Age  Co.I. to MCI 1.07 1.05 1.08 0.03 
 MCI to Dementia 1.04 1.01 1.07 0.06 

Female Co.I.  to Death 0.45 0.24 0.85 0.61 
Low Education  Co.I.  to MCI 1.54 1.30 1.83 0.53 
APOE4 Co.I.  to MCI 1.44 1.15 1.81 0.66 

Note: Co.I. =Cognitive Intact 

 

Table 2.6: Hazard ratios (HR) for risk factors using Probability Imputation Technique 
method.  

Risk Factor Path HR 
95% Confidence Interval 
 L U Length 

Baseline Age  Co.I. to MCI 1.07 1.05 1.09 0.03 
 MCI to Dementia 1.04 1.01 1.07 0.06 

Female Co.I.  to Death 0.44 0.23 0.84 0.61 
Low Education  Co.I.  to MCI 1.54 1.30 1.83 0.53 
APOE4 Co.I.  to MCI 1.47 1.16 1.86 0.70 

Note: Co.I. =Cognitive Intact 
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Table 2.7: Hazard ratios (HR) for risk factors using Complete Case method on the reduced 
model 

Risk Factor Path HR 
95% Confidence Interval 
 L U Length 

Baseline Age  Co.I. to MCI 1.07 1.05 1.09 0.04 
 MCI to Dementia 1.05 1.01 1.10 0.09 
Female Co.I.  to Death 0.25 0.05 1.25 1.20 
Low Education  Co.I.  to MCI 1.59 1.29 1.97 0.68 
APOE4 Co.I.  to MCI 1.52 1.19 1.95 0.76 

Note: Co.I. =Cognitive Intact 

 

Table 2.8: Hazard ratios (HR) for risk factors using Multiple Imputation method on the 
reduced model 

Risk Factor Path HR 
95% Confidence Interval 
 L U Length 

Baseline Age  Co.I. to MCI 1.07 1.05 1.09 0.03 
 MCI to Dementia 1.04 1.01 1.07 0.07 
Female Co.I.  to Death 0.43 0.22 0.85 0.62 
Low Education  Co.I.  to MCI 1.54 1.30 1.82 0.53 
APOE4 Co.I.  to MCI 1.25 0.98 1.56 0.58 

Note: Co.I. =Cognitive Intact 
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Chapter 3 Estimation of Multi-State Models with Missing Continuous Covariate 
using Maximum Simulated Likelihood 

3.1 Introduction 

Multi-state models are very useful tools to model chronic disease processes in 

which patients might go through several different states. The common way to account for 

interpersonal difference in the disease process in multi-state models is to add covariates 

in the transition intensity functions. In the current literature, covariates have to be 

completely observed. However, missing covariate data is very common in practice.  

In Chapter 2, we discussed how to deal with discrete missing covariate data in the 

framework of multi-state models. In this chapter, we propose a maximum simulated 

likelihood method for estimation of multi-state models with missing continuous covariate 

data. The method works for datasets with one missing continuous covariate. The dataset 

can also contain several other completely observed covariates and the completely 

observed covariates can be either discrete or continuous. The method is based on the 

assumption that the corresponding missing covariate follows a normal distribution. 

Through simulation studies, we showed that the proposed method is actually robust to the 

normal assumption. The method still works with moderate violation of the normal 

distribution assumption, and it works well for both MCAR and MAR type of missing 

data.   
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The rest of the chapter is organized as follows. In Section 2, we present the 

method of maximum simulated likelihood in the framework of multi-state models with 

missing continuous covariate data. In Section 3, the results of simulation studies are 

presented. In this section we check the robustness of the distribution assumption of the 

covariate. In Section 4, we apply the proposed method to a real data, the MAPWU dataset 

from the SMART database. In the discussion section, we discuss the advantages as well 

as limitations of the proposed method and lay out some possible future work. 

3.2 The Maximum Simulated Likelihood Method  

Covariates in multi-state models are often incorporated through the transition 

intensity functions to explain differences among individuals in the course of the disease 

progression. One popular choice is the proportional hazards model, which has the 

following form for a time-homogenous model: 

𝛼𝛼𝑙𝑙𝑙𝑙(𝒁𝒁|𝜷𝜷) = 𝛼𝛼𝑙𝑙𝑙𝑙,0 𝑒𝑒𝑒𝑒𝑝𝑝(𝜷𝜷𝒍𝒍𝒍𝒍𝑇𝑇 𝒁𝒁) = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝜷𝜷𝒍𝒍𝒍𝒍𝑇𝑇 𝒁𝒁�. 

Here 𝛼𝛼𝑙𝑙𝑙𝑙,0 = 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽𝑙𝑙𝑙𝑙,0) is called the baseline intensity from state 𝑙𝑙 to state 𝑚𝑚, 𝒁𝒁 =

(𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑝𝑝) is a vector of baseline covariates whose values do not change over time, 

and 𝜷𝜷 = �𝛽𝛽𝑙𝑙𝑙𝑙,0,𝜷𝜷𝑙𝑙𝑙𝑙; 𝑙𝑙 = 1,⋯ ,𝐾𝐾;  𝑚𝑚 = 1,⋯ ,𝐾𝐾;𝑚𝑚 ≠ 𝑙𝑙�, which represents all the 

parameters associated with the multi-state model.  
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Let  𝒕𝒕𝒎𝒎 = �𝑡𝑡𝑝𝑝,1, 𝑡𝑡𝑝𝑝,2, … , 𝑡𝑡𝑝𝑝,𝑙𝑙𝑖𝑖� be the scheduled observation time points, and 𝒙𝒙𝒎𝒎 =

�𝑒𝑒𝑝𝑝,1, 𝑒𝑒𝑝𝑝,2, … , 𝑒𝑒𝑝𝑝,𝑙𝑙𝑖𝑖� be the corresponding occupied states for subject 𝑑𝑑. We view the 

observation time points 𝒕𝒕𝒎𝒎 as given. Suppose 𝑧𝑧𝑝𝑝1 is continuous and is missing for a subset 

of subjects, and covariates 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠 = �𝑧𝑧𝑝𝑝2, … , 𝑧𝑧𝑝𝑝𝑝𝑝� are completely observed for all subjects. 

Components of 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠 can be either continuous or discrete. Define an indicator variable 𝑟𝑟𝑝𝑝 

such that 

 𝑟𝑟𝑝𝑝 ∶= �1           if 𝑧𝑧𝑝𝑝1 is observed
0           otherwise            

 

Assume the data is MAR, which assumes that 𝑃𝑃�𝑟𝑟𝑝𝑝|𝒙𝒙𝒎𝒎, 𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠� =

𝑃𝑃�𝑟𝑟𝑝𝑝|𝒙𝒙𝒎𝒎, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠�. The likelihood function is based on the conditional joint distribution 

of �𝑟𝑟𝑝𝑝,𝒙𝒙𝒎𝒎, 𝑧𝑧𝑝𝑝1| 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎 �, which can be written as 

𝑃𝑃�𝑟𝑟𝑝𝑝,𝒙𝒙𝒎𝒎, 𝑧𝑧𝑝𝑝1| 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎 � = 𝑃𝑃�𝑟𝑟𝑝𝑝|𝒙𝒙𝒎𝒎, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝝓𝝓�𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷�𝑃𝑃�𝑧𝑧𝑝𝑝1|𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠;𝜸𝜸�. 

In the above formula, we assume 𝑃𝑃�𝑧𝑧𝑝𝑝1|𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠;𝜸𝜸� has a normal distribution with 

mean 𝜇𝜇 = 𝜇𝜇0 + 𝝋𝝋𝑇𝑇𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠 and standard deviation 𝜎𝜎. Here 𝜸𝜸 = (𝜇𝜇0,𝝋𝝋,𝜎𝜎 ). The term 

𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷� is the same as in a multi-state model with completely observed 

covariates data. Give the baseline state 𝑒𝑒𝑝𝑝,1, we have 

𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1,𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷� = �𝑃𝑃�𝑒𝑒𝑝𝑝,𝑗𝑗|𝑒𝑒𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗, 𝒛𝒛𝑝𝑝,𝜷𝜷�
𝑙𝑙𝑖𝑖

𝑗𝑗=2

 

Assume the exact time of death is recorded but the state just before death is 

unknown. Define index of death 𝛿𝛿𝑝𝑝 = 𝐼𝐼�𝑒𝑒𝑝𝑝,𝑙𝑙𝑖𝑖 = 𝐾𝐾�, here state 𝐾𝐾 means death. Thus we 
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have 𝛿𝛿𝑝𝑝 = 1 if subject 𝑑𝑑 died at time 𝑡𝑡𝑝𝑝,𝑙𝑙𝑖𝑖, and 𝛿𝛿𝑝𝑝 = 0 otherwise. In this type of 

observation scheme, we have 

 𝑃𝑃�𝑒𝑒𝑝𝑝,𝑗𝑗|𝑒𝑒𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗, 𝒛𝒛𝑝𝑝,𝜷𝜷�

=

⎩
⎪
⎨

⎪
⎧𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�                                                                                          if 𝑗𝑗 ≠  𝑚𝑚𝑝𝑝

�𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷��
1−𝛿𝛿𝑖𝑖

�� 𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑙𝑙�𝑡𝑡𝑝𝑝,𝑗𝑗 , 𝑡𝑡𝑝𝑝,𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�𝛼𝛼𝑙𝑙𝐾𝐾(𝒛𝒛𝒎𝒎|𝜷𝜷)
𝑙𝑙≠𝐾𝐾

�
𝛿𝛿𝑖𝑖

  if 𝑗𝑗 =  𝑚𝑚𝑝𝑝
 

Here, 𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷� is the one-step transition probabilities, which is defined 

as 

 𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�  = 𝑃𝑃�𝑋𝑋�𝑡𝑡𝑝𝑝𝑗𝑗� = 𝑒𝑒𝑝𝑝,𝑗𝑗�𝑋𝑋�𝑡𝑡𝑝𝑝𝑗𝑗−1� = 𝑒𝑒𝑝𝑝,𝑗𝑗−1; 𝒛𝒛𝒎𝒎,𝜷𝜷� . 

It can be calculated from the intensities by solving the forward Kolmogorov differential 

equation [4].  

The log-likelihood for all subjects can be written as 𝑙𝑙 = 𝑙𝑙(𝝓𝝓) + 𝑙𝑙(𝜷𝜷,𝜸𝜸). Here 

𝑙𝑙(𝝓𝝓) = �𝑙𝑙𝑙𝑙𝑑𝑑 �𝑃𝑃�𝑟𝑟𝑝𝑝|𝒙𝒙𝒎𝒎,𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝝓𝝓�� 
𝑛𝑛

𝑝𝑝=1

 

and 

𝑙𝑙(𝜷𝜷,𝜸𝜸) = �𝑟𝑟𝑝𝑝 �𝑙𝑙𝑙𝑙𝑑𝑑 ��𝑃𝑃(𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷)��+ log �𝑃𝑃�𝑧𝑧𝑝𝑝1|𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠;𝜸𝜸���
𝑛𝑛

𝑝𝑝=1

+ (1 − 𝑟𝑟𝑝𝑝)�𝑙𝑙𝑙𝑙𝑑𝑑 ��𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷�𝑃𝑃�𝑧𝑧𝑝𝑝1|𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠;𝜸𝜸� 𝑑𝑑𝑧𝑧𝑝𝑝1�� 

Here 𝜷𝜷 represents the parameters associated with the multi-state model and both 𝝓𝝓  and 𝜸𝜸 

are nuisance parameters whose estimations are not the main interest. Assume 𝝓𝝓 

and (𝜷𝜷,𝜸𝜸) are distinct, thus we have 𝑙𝑙 ∝  𝑙𝑙(𝜷𝜷,𝜸𝜸). The likelihood 𝑙𝑙(𝜷𝜷,𝜸𝜸) cannot be 
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calculated directly since it involves integrations which have no closed forms. We propose 

to approximate the log likelihood using Monte Carlo simulation method. 

First, simulate 𝐻𝐻 independent random variables from the standard normal 

distribution, 𝑧𝑧𝑝𝑝1,1, 𝑧𝑧𝑝𝑝1,2,⋯ , 𝑧𝑧𝑝𝑝1,𝐻𝐻. Then calculate 𝑧𝑧𝑝𝑝1,𝑟𝑟
∗ = 𝜇𝜇0 + 𝝋𝝋𝑇𝑇𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠 + 𝑧𝑧𝑝𝑝1,𝑟𝑟𝜎𝜎, thus 𝑧𝑧𝑝𝑝1,𝑟𝑟

∗  

follows a normal distribution with mean 𝜇𝜇 = 𝜇𝜇0 + 𝝋𝝋𝑇𝑇𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠 and standard deviation  𝜎𝜎. 

Thus, we have 

�𝑃𝑃�𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷�𝑃𝑃�𝑧𝑧𝑝𝑝1|𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠;𝜸𝜸� 𝑑𝑑𝑧𝑧𝑝𝑝1 ≈
1
𝐻𝐻
�𝑃𝑃�𝒙𝒙𝒎𝒎�𝑧𝑧𝑝𝑝1,𝑟𝑟

∗ ,𝒛𝒛𝑝𝑝𝑜𝑜 , 𝒕𝒕𝒎𝒎;𝜷𝜷�
𝐻𝐻

𝑟𝑟=1

 

Define the simulated log-likelihood function as 

𝑙𝑙𝐻𝐻(𝜷𝜷,𝜸𝜸) = �𝑟𝑟𝑝𝑝 �𝑙𝑙𝑙𝑙𝑑𝑑 ��𝑃𝑃(𝒙𝒙𝒎𝒎|𝑧𝑧𝑝𝑝1, 𝒛𝒛𝑝𝑝𝑜𝑜𝑜𝑜𝑠𝑠, 𝒕𝒕𝒎𝒎;𝜷𝜷)�� + log �𝑃𝑃�𝑧𝑧𝑝𝑝1|𝒛𝒛𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠;𝜸𝜸���
𝑛𝑛

𝑝𝑝=1

+ (1 − 𝑟𝑟𝑝𝑝)�𝑙𝑙𝑙𝑙𝑑𝑑 �
1
𝐻𝐻
�𝑃𝑃�𝒙𝒙𝒎𝒎�𝑧𝑧𝑝𝑝1,𝑟𝑟

∗ ,𝒛𝒛𝑝𝑝𝑜𝑜 , 𝒕𝒕𝒎𝒎;𝜷𝜷�
𝐻𝐻

𝑟𝑟=1

�� 

We have 𝑙𝑙𝐻𝐻(𝜷𝜷,𝜸𝜸)
𝑎𝑎.𝑠𝑠.
�� 𝑙𝑙(𝜷𝜷,𝜸𝜸) 𝑑𝑑𝑠𝑠 𝐻𝐻 → ∞ by the law of large numbers when the 

normal distribution assumption of 𝑧𝑧𝑝𝑝1 is correct. Estimates of the parameters can be 

achieved by maximizing the above simulated likelihood function 𝑙𝑙𝐻𝐻(𝜷𝜷,𝜸𝜸) instead of the 

true log-likelihood 𝑙𝑙(𝜷𝜷,𝜸𝜸)  by a numerical method such as the Newton-Raphson method.  

3.3 Simulations 

There are two purposes of the simulation study in this section. First, we will 

examine the sensitivity of the MLEs to the violations of the Normal distribution 
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assumption on the missing covariate. Second, we will compare the proposed method 

(referred to as MSL throughout) to the widely used complete case (CC) method and the 

method of mean substitution (MS). The criteria used for the comparison are the percent 

bias and the standard errors of the model parameter estimates. Estimations from the 

original complete datasets (without setting the covariate missing, marked as FULL in the 

tables) are also generated for comparisons. 

Datasets are generated from the following true model 

𝑸𝑸 = �
𝛼𝛼11 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽12,0+,𝛽𝛽12,1𝑍𝑍1) 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽13,0)
0 𝛼𝛼22 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽23,0 + 𝛽𝛽23,1𝑍𝑍1)
0 0 0

� . 

Here, 𝑍𝑍1 is a continuous covariate and will be set to be missing for some subjects. The 

true value of �𝛽𝛽12,0,𝛽𝛽13,0,𝛽𝛽23,0,𝛽𝛽12,1,𝛽𝛽23,1� are set to  (−2.8,−2.7,−3, 0.8,−0.6) 

correspondingly. Observations are taken annually. The death times are recorded exactly 

but the state just before death is unknown. The observations will be right censored at time 

25.  

The values 𝑍𝑍1 are generated from one of the following distributions:  

(1) Standard normal distribution: 𝑁𝑁𝑙𝑙𝑟𝑟𝑚𝑚𝑑𝑑𝑙𝑙(1,1).  

(2) Uniform distribution with lower bound -1.5 and upper bound 1.5: 

𝑈𝑈𝑈𝑈𝑑𝑑𝑖𝑖𝑙𝑙𝑟𝑟𝑚𝑚 (−1.5,1.5). 
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(3) Weibull distribution with shape parameter 1.5 and scale parameter 1: 

𝑊𝑊𝑒𝑒𝑑𝑑𝑊𝑊𝑢𝑢𝑙𝑙𝑙𝑙(1.5,1). 

In case (1), the normal assumption on the distribution form of the covariate is 

correct. In case (2), the normal assumption on the covariate is violated but true 

distribution is still symmetric. In case (3), the normal assumption on the covariate is 

violated and true distribution is not symmetric. 

Both MCAR and MAR datasets are studied in this simulation study. In the MCAR 

datasets, we randomly set about 30% or 60% subjects with missing 𝑍𝑍1 value. In the MAR 

datasets, we set 𝑍𝑍1 missing according to the time of its first transition. In Case (1), we set 

the covariate missing if the first transition happens within the first 5 years. In this setting, 

the datasets contain about 30% subjects with missing covariate values. In Case (2), we set 

the covariate missing if the first transition happens in 15 years. In this setting, the datasets 

contain about 60% subjects with missing covariate values 

Simulations were set to have 500 iterations for each combination of the above 

mentioned cases, and each dataset contains 700 subjects. The sample size was chosen to 

correspond to the number of subjects we have in the MAPWU dataset. All the 

calculations were done using PROC IML in SAS 9.3 system [45]. We set 𝐻𝐻 = 50 for the 

maximum simulated likelihood method. The results are listed in Table 3.1 and Table 3.2.  
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From the results listed in Table 3.1, we can see that when the data is MCAR all 

three methods work relatively well. The CC method provides relatively larger standard 

errors for parameters estimates than the MS method and the proposed MSL method. The 

MS method is relatively sensitive to the datasets, and it has around 5% bias in certain 

cases. The proposed MSL method has the best performance among the three, the 

estimates provided by the MSL method is close to these we get from the original full 

dataset.  

When the data is MAR, both the CC method and MS method have large biases. In 

the results listed in Table 3.2, the percentage bias (% Bias) can be as large as 90% for the 

CC method and 27% for the MS method. The proposed MSL method still performs well 

in our study. 

The simulation studies also show that the estimations are relatively robust to the 

violation of the normal assumption on the missing covariate. The largest percentage bias 

in our simulation results was 6.2 % when the true covariate values were generated from a 

𝑈𝑈𝑈𝑈𝑑𝑑𝑖𝑖𝑙𝑙𝑟𝑟𝑚𝑚 (−1.5,1.5) distribution and the data is MAR with about 60% subjects with the 

missing covariate. 
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3.4 Application to the MAPWU Data from the SMART project   

The Statistical Models of Aging and Risk of Transition (SMART) project is a 

multi-center dementia study. This project aggregates data from 11 mature, extremely 

data-rich, and well-known longitudinal cohorts of older adults with high autopsy rates 

[5]. In section, we apply the proposed method to the MAPWU data from the SMART 

project database. The MAPWU enrolls healthy volunteers from the community; 

exclusion criteria include existing neurological disorders (e.g., Parkinson’s, Huntington’s, 

or Alzheimer’s disease) and psychiatric disorders (e.g., schizophrenia, substance abuse), 

as well as any active medical condition or treatment that impairs cognitive function [5, 

48]. Cognitive function status of participants is assessed annually. Subjects included in 

the current study (n=732) were all cognitively normal at baseline and assessed at least 

two times.  

Annual cognitive assessments are administered to each participant and used to 

classify them into either Cognitively Normal or Cognitive Impairment (including mild 

cognitive impairment and dementia). The state of death is also included in the model as a 

competing risk. A cognitively normal person would transition to either Cognitive 

Impairment state or die without Cognitive Impairment. A cognitive impairment person 

could recover to cognitively normal or die with cognitive impairment. Figure 3.1 shows 

the model transition structure. 
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Each subject was scheduled to have cognitive assessments annually, while the 

true time intervals between two consecutive assessments vary among different patients 

and across time. The time intervals vary from 0.27 years to 12.08 years with mean ± SD 

1.25 ± 0.68. The number of total longitudinal observations of each patient ranges from 2 

to 31 with an average of 6.3 ± 4.7 observations. 

Between two consecutive assessments, subjects in the Cognitive Normal state at 

prior assessment may remain at Cognitive Normal state or transition to Cognitive 

Impairment state at the next assessment. Subjects at Cognitive Impairment state at the 

prior assessment may remain at Cognitive Impairment state or reverse back to Cognitive 

Normal state at the next assessment. All subjects may die at any time with or without 

Cognitive Impairment. The exact death time could be retrieved, while the cognitive state 

just before death is unknown. Table 3.3 lists the transition frequencies among these 3 

states.  

Our main goal was to study the effects of possible risk factors on the transitions 

among the three states. We focus on 4 risk factors in this study, namely baseline age 

(Bage), gender (Female), education level (Educ) and baseline BMI. Baseline age and 

BMI are continuous variables, and Female and Educ are binary variables. Educ is defined 

as less than 16 years of education, which is about below the college level. Bage, Female 
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and Educ are all completely observed. The values of Baseline BMI are missing for 521 

(71.2%) participants. Table 3.4 presents summary statistics for these baseline risk factors.  

Figure 3.2 presents the histogram of the observed BMI values. The shape of this 

plot shows that the distribution of baseline BMI has a normal bell shape. Exploratory 

analyses based on the complete data show baseline BMI is independent with Female and 

Educ. Thus we assumes BMI follows a normal distribution with mean 𝜇𝜇 = 𝜇𝜇0 + 𝜑𝜑1𝐵𝐵𝑑𝑑𝑑𝑑𝑒𝑒 

and standard deviation 𝜎𝜎. 

Since all participants were at least 60 years old at baseline, we centered the 

original baseline age at 60 in the model. We only considered patients with BMI>25 as 

overweight, so we defined a new variable 𝐵𝐵𝑀𝑀𝐼𝐼∗ = max {(𝐵𝐵𝑀𝑀𝐼𝐼 − 25) 5⁄ , 0} as the risk 

factor. Effects of risk factors on the backward transition from cognitive impairment to 

cognitive normal was not of interest in this study, thus we have the following transition 

intensity functions for the multi-state model: 

𝛼𝛼𝑙𝑙𝑙𝑙(𝐵𝐵𝑑𝑑𝑑𝑑𝑒𝑒,𝐹𝐹𝑒𝑒𝑚𝑚𝑑𝑑𝑙𝑙𝑒𝑒,𝐸𝐸𝑑𝑑𝑢𝑢𝐸𝐸,𝐵𝐵𝑀𝑀𝐼𝐼∗)

= �
𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0�                                                                                                       𝑑𝑑𝑖𝑖 𝑙𝑙 = 2,𝑚𝑚 = 1
𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝛽𝛽𝑙𝑙𝑙𝑙,1𝐵𝐵𝑑𝑑𝑑𝑑𝑒𝑒 + 𝛽𝛽𝑙𝑙𝑙𝑙,2𝐹𝐹𝑒𝑒𝑚𝑚𝑑𝑑𝑙𝑙𝑒𝑒 + 𝛽𝛽𝑙𝑙𝑙𝑙,3𝐸𝐸𝑑𝑑𝑢𝑢𝐸𝐸 + 𝛽𝛽𝑙𝑙𝑙𝑙,4𝐵𝐵𝑀𝑀𝐼𝐼∗�    𝑑𝑑𝑖𝑖 𝑚𝑚 > 𝑙𝑙

.  

Table 3.5 lists the hazard ratio and the corresponding 95% confidence interval of 

each risk factor on each transition path using the proposed MSL method, the MS method 

and the CC method. The proposed MSL method and the MS method generated similar 
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results for the risk factors Bage, Female and Educ. Both methods show that female 

gender and education level have no significant effects on the transitions among these 

states. And both methods show baseline age is significant on all three transitions, which 

makes sense intuitively. Old people are likely to have higher risk of both cognitive 

impairment and death. The results of the two methods differ for BMI. The MSL method 

shows BMI is a significant risk factor of death for cognitively normal, and prevents 

cognitively normal people from transitioning to cognitive impairment. This finding 

indicates that the risk of death related to high body mass index (BMI) competes with the 

risk of progressing to cognitive impairment. The MS method failed to show BMI has 

significant effects on any of three possible transitions.  The CC method showed less 

conclusive results. It only showed the significant effect of baseline age on transitions 

from Cognitively Normal to Cognitive Impairment, while failing to identify other 

significant effects.   

3.5 Discussion 

Multi-state models have been widely used in recent years, and several software 

packages have been available to fit various versions of multi-state models. Jackson[27] 

developed the R package “msm” for time homogenous and piece-wise time homogenous 

model. Meira-Machado et al. [4] developed an easy to use R library, call “tdc.msm”. The 

package fits 5 different multi-state models, including time homogenous Markov model 
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(THMM), non-homogenous Markov model (NHM), Cox Markov model (CMM), etc. Wu 

et al. [49]developed a SAS macro program for a non-homogeneous three-state 

progressive Markov multi-state model. Missing covariate data has been an issue in 

practice. No efficient methodology has been proposed to address the problem in this area 

so far. The maximum simulated likelihood method proposed in this manuscript provide a 

solution for data with missing continuous covariate data.  

The proposed method requires 𝐻𝐻 draws for each subject with missing covariate in 

construction of the simulated likelihood. In practice, the number of draws 𝐻𝐻 has to be 

dependent on the sample size of the dataset, the proportion of subjects with incomplete 

covariate measurements, and also the complexity of the multi-state model being used. 

The way we select the number of draws in our study is that we try a sequence of numbers 

of 𝐻𝐻 and see how the estimate convergences.  

In this dissertation, we assume that the continuous partially missing covariate 

follows a normal distribution. Our simulation study showed that the proposed method is 

relatively robust to the violation of this assumption. Additional studies have to be 

conducted if we want to apply the method to a dataset in which the missing continuous 

covariate has a density much different from the normal distribution. In situations where 

the missing covariate does not have a normal shaped density, the method can be easily 
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modified by drawing values from the corresponding distribution. Again, we need to 

check the validity of the covariate distribution assumption.  

The method is limited to data with univariate missing pattern, in which there’s 

only one covariate with missing value. In a case where the data has a general missing 

data pattern with mixture of discrete and continuous covariates, we need to generate 

random values from the joint distribution of the covariates. Future works would focus on 

the construction of the joint distribution of covariates and the method that could draw 

random values from the joint distribution efficiently.      
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Figure 3.1: Three state model with backward transition 

 

 

Figure 3.2: Histogram of the observed values of BMI from the MAPWU cohort with 
density curves. Solid curve is the fitted normal density curve and the dotted line is the 

kernel estimate 
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Chapter 4 Estimation of Multi-State Models with Missing Covariates by EM 

algorithm 

4.1 Introduction 

Multi-state models have been widely used to analyze longitudinal event history 

data obtained in medical and epidemiology studies. The tools and methods developed 

recently in this area require the dataset to be complete. However, missing covariates data 

is very common in practice, and it has been an issue in applications. In the last two 

chapters, we discussed how to deal with univariate discrete or continuous missing 

covariate data. In this chapter, we propose an Expectation-Maximization (EM) algorithm 

when applying multi-state models to datasets containing multiple missing categorical 

covariates. The missing data are allowed to have the general missing pattern [30].  Our 

simulation studies and real data application showed that the proposed EM algorithm 

performs well for both MCAR and MAR data. 

The remainder of this chapter is organized as follows. In Section 2 we describe 

the EM method in detail. In Section 3, simulation studies are carried out to compare the 

performance of the proposed method with the widely used CC method. We applied our 

method to the Klamath Exceptional Aging Project (KEAP) cohort in Section 4. In the 

concluding section, we discuss the advantages and limitations of the EM Algorithm.  

4.2 The Method 

To detail the method, we will begin with time-homogenous multi-state model 

with compete covariates data. Then we will emphasize the EM algorithm in the case of 
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multiple missing categorical covariates. At the end of this section, we discuss the 

asymptotic variance-covariance matrix estimation.   

4.2.1 Time-homogenous Multi-State Model 

Suppose we have a baseline covariate vector 𝒁𝒁 = �𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑝𝑝�, a time-

homogenous multi-state model with proportional intensities has the following form: 

𝛼𝛼𝑙𝑙𝑙𝑙(𝒁𝒁|𝜷𝜷) = 𝛼𝛼𝑙𝑙𝑙𝑙,0 𝑒𝑒𝑒𝑒𝑝𝑝(𝜷𝜷𝒍𝒍𝒍𝒍𝑇𝑇 𝒁𝒁) = 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝜷𝜷𝒍𝒍𝒍𝒍𝑇𝑇 𝒁𝒁�.   

Here 𝛼𝛼𝑙𝑙𝑙𝑙,0 = 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽𝑙𝑙𝑙𝑙,0) is called the baseline intensity for the transition from state 𝑙𝑙 to 

state 𝑚𝑚, and 𝜷𝜷 = �𝛽𝛽𝑙𝑙𝑙𝑙,0,𝜷𝜷𝑙𝑙𝑙𝑙; 𝑙𝑙 = 1,⋯ ,𝐾𝐾;  𝑚𝑚 = 1,⋯ ,𝐾𝐾;𝑚𝑚 ≠ 𝑙𝑙�, which represents all the 

parameters associated with the multi-state model.  

4.2.2 Joint Modeling of the Response Data and the Partially Missing Covariates  

Denote 𝑻𝑻 = (𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑀𝑀) and 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀), here 𝑀𝑀 is a random variable 

indicating the number of observations,  𝑇𝑇𝑗𝑗 is the time of 𝑗𝑗𝑡𝑡ℎ observation and 𝑋𝑋𝑗𝑗 is the 

corresponding state of the process 𝑋𝑋(𝑡𝑡) at time 𝑇𝑇𝑗𝑗. Assume the observation process is 

ignorable [20], which means the observation time points 𝑇𝑇𝑗𝑗 is determined by a process 

that is independent of the response 𝑋𝑋(𝑡𝑡). Thus, we view the observation time points 𝑻𝑻 as 

fixed. Rearrange the vector of covariates such that we have 𝒁𝒁 = �𝒁𝒁𝒑𝒑𝒍𝒍,𝒁𝒁𝒄𝒄𝒄𝒄�. Here 𝒁𝒁𝒑𝒑𝒍𝒍 is 

the components whose values might be partially missing for some subjects, and 𝒁𝒁𝒄𝒄𝒄𝒄 is the 

observed components whose values are recorded for all subjects.  

We assume that the covariates are MAR. If a covariate is MAR, it means that the 

probability of observing this covariate (conditional on the response and the other 

observed covariates) does not depend on the underlying value of the covariate, but may 
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depend on the response and the other observed covariates. Rubin [41] showed that if the 

data is MAR, likelihood-based inferences do not depend on the missing data mechanism. 

We also assume that each component of 𝒁𝒁𝒑𝒑𝒍𝒍 is discrete. However, the completely 

observed covariates 𝒁𝒁𝒄𝒄𝒄𝒄 are allowed to be a mixture of both continuous and discrete 

variables. 

To deal with the missing covariates, we will view the partially missing 

covariates 𝒁𝒁𝒑𝒑𝒍𝒍 as random variables. The likelihood will be based on the conditional joint 

distribution of �𝑿𝑿,𝒁𝒁𝒑𝒑𝒍𝒍� given (𝑻𝑻,𝒁𝒁𝒄𝒄𝒄𝒄 ), which can be modeled as 

𝑃𝑃�𝑿𝑿,𝒁𝒁𝒑𝒑𝒍𝒍|𝑻𝑻,𝒁𝒁𝒄𝒄𝒄𝒄,𝜷𝜷,𝜸𝜸� = 𝑃𝑃(𝑿𝑿|𝑻𝑻,𝒁𝒁,𝜷𝜷)𝑃𝑃�𝒁𝒁𝒑𝒑𝒍𝒍|𝒁𝒁𝒄𝒄𝒄𝒄,𝜸𝜸� 

Here 𝜷𝜷 is the vector of parameters associated with the multi-state model and 𝜸𝜸 is a 

vector of the nuisance parameters associated with the distribution of the partially missing 

covariates.  

4.2.3 Likelihood under Interval-censored Data and Missing Covariates 

Let 𝑡𝑡𝑝𝑝,𝑗𝑗 be the time point of 𝑗𝑗th observation and 𝑒𝑒𝑝𝑝,𝑗𝑗 be the corresponding 

observed state at  𝑡𝑡𝑝𝑝,𝑗𝑗  point for subject 𝑑𝑑.Write 𝒕𝒕𝒎𝒎 = �𝑡𝑡𝑝𝑝,1, 𝑡𝑡𝑝𝑝,2, … , 𝑡𝑡𝑝𝑝,𝑙𝑙𝑖𝑖�, and 𝒙𝒙𝑝𝑝 =

�𝑒𝑒𝑝𝑝,1, 𝑒𝑒𝑝𝑝,2, … , 𝑒𝑒𝑝𝑝,𝑙𝑙𝑖𝑖�. Since we only make observations at a finite number of distinct time 

points, the transition times are interval-censored. Usually, the exact death time can be 

retrieved but the state just before death is unknown. We define 𝛿𝛿𝑝𝑝 = 1 if the last observed 

state is death and 𝛿𝛿𝑝𝑝 = 0 otherwise. Write 𝒛𝒛𝒎𝒎 = �𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍,𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄� and 𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍 = (𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎), 

where 𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎 and 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎 are missing and observed components of 𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍 respectively. If the 

data is MAR, then the likelihood for subject 𝑑𝑑 based on the observed data of 𝒙𝒙𝑝𝑝, 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄 
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and 𝒛𝒛𝒎𝒎.𝒐𝒐𝒐𝒐𝒎𝒎 can be written as 

𝐿𝐿𝑝𝑝�𝜷𝜷,𝜸𝜸�𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎� = � 𝑃𝑃(𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎,𝜷𝜷)𝑃𝑃�𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍�𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜸𝜸�
𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎

, 

where the summation is over all possible underlying values of 𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎.  

Under the Markov assumption, we have 

 𝑃𝑃(𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎,𝜷𝜷) = 𝑃𝑃�𝑒𝑒𝑝𝑝,1|𝑡𝑡𝑝𝑝,1��𝑃𝑃�𝑒𝑒𝑝𝑝,𝑗𝑗|𝑒𝑒𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗 , 𝒛𝒛𝒎𝒎,𝜷𝜷�
𝑙𝑙𝑖𝑖

𝑗𝑗=2

. 

where, 𝑃𝑃�𝑒𝑒𝑝𝑝,1|𝑡𝑡𝑝𝑝,1� is the distribution for the baseline state and the transition probabilities 

have the following form  

𝑃𝑃�𝑒𝑒𝑝𝑝,𝑗𝑗|𝑒𝑒𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗−1, 𝑡𝑡𝑝𝑝,𝑗𝑗, 𝒛𝒛𝒎𝒎,𝜷𝜷� =

                  �
𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�                                                                                          if 𝑗𝑗 ≠  𝑚𝑚𝑝𝑝

�𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑥𝑥𝑖𝑖,𝑗𝑗�𝑡𝑡𝑝𝑝𝑗𝑗−1, 𝑡𝑡𝑝𝑝𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷��
1−𝛿𝛿𝑖𝑖

�∑ 𝑝𝑝𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑙𝑙�𝑡𝑡𝑝𝑝,𝑗𝑗 , 𝑡𝑡𝑝𝑝,𝑗𝑗|𝒛𝒛𝒎𝒎,𝜷𝜷�𝛼𝛼𝑙𝑙𝐾𝐾(𝒛𝒛𝒎𝒎|𝜷𝜷)𝑙𝑙≠𝐾𝐾 �
𝛿𝛿𝑖𝑖

  if 𝑗𝑗 =  𝑚𝑚𝑝𝑝

  

Since all components of 𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍 are discrete, we propose a multinomial logit model 

for 𝑃𝑃�𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍�𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜸𝜸�. Suppose 𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍 has two components �𝑧𝑧𝑝𝑝,𝑝𝑝1, 𝑧𝑧𝑝𝑝,𝑝𝑝2�. Assume 𝑧𝑧𝑝𝑝,𝑝𝑝1 has A 

possible categories and 𝑧𝑧𝑝𝑝,𝑝𝑝2 has B possible categories, we have 

𝑙𝑙𝑙𝑙𝑑𝑑 �
𝜋𝜋𝑎𝑎𝑜𝑜
𝜋𝜋00

� = 𝛾𝛾𝑎𝑎𝑜𝑜,0 + 𝜸𝜸𝑎𝑎𝑜𝑜𝑇𝑇 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,

𝑑𝑑 ∈ {0,1, … ,𝐴𝐴 − 1}, 𝑊𝑊 ∈ {0,1, … ,𝐵𝐵 − 1}, (𝑑𝑑, 𝑊𝑊) ≠ (0,0)  

Here 

𝜋𝜋𝑎𝑎𝑜𝑜 = 𝑃𝑃�𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍 = (𝑑𝑑, 𝑊𝑊)|𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜸𝜸�,��𝜋𝜋𝑎𝑎𝑜𝑜

𝐵𝐵−1

𝑜𝑜=0

𝐴𝐴−1

𝑎𝑎=0

= 1 

and 

 𝜸𝜸 = �𝛾𝛾𝑎𝑎𝑜𝑜,0,𝜸𝜸𝒂𝒂𝒐𝒐;𝑑𝑑 ∈ {0,1, … ,𝐴𝐴 − 1}, 𝑊𝑊 ∈ {0,1, … ,𝐵𝐵 − 1} and (𝑑𝑑, 𝑊𝑊) ≠ (0,0)� . 
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The idea can be easily generalized to model 𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍 with more than two components. 

The log likelihood for all subjects is 

 𝑙𝑙(𝜷𝜷,𝜸𝜸) = �𝑙𝑙𝑙𝑙𝑑𝑑 �𝐿𝐿𝑝𝑝�𝜷𝜷,𝜸𝜸�𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎��
𝑛𝑛

𝑝𝑝=1

. 

In most cases, the log likelihood function  𝑙𝑙(𝜷𝜷,𝜸𝜸) does not have a closed form, so directly 

maximizing the log likelihood is not straightforward, especially when nuisance 

parameter 𝜸𝜸 has a high dimension. To facilitate the estimation, we propose using an EM 

algorithm to obtain MLEs. 

4.2.4 The EM algorithm.  

The E-step of EM would be 

 𝑄𝑄𝑝𝑝�𝜷𝜷,𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� = 𝐸𝐸�𝑙𝑙𝑝𝑝(𝜷𝜷,𝜸𝜸|𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎)|𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)�

= � 𝑙𝑙𝑝𝑝(𝜷𝜷,𝜸𝜸|𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎)𝑃𝑃�𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎�𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)�
𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎

. 

Here 𝑙𝑙𝑝𝑝(𝜷𝜷,𝜸𝜸|𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎) is the complete data log likelihood for subject 𝑑𝑑 and it has the form: 

 𝑙𝑙𝑝𝑝(𝜷𝜷,𝜸𝜸|𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎) = 𝑙𝑙𝑙𝑙𝑑𝑑 �𝑃𝑃(𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎,𝜷𝜷)𝑃𝑃�𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍�𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜸𝜸�� = 𝑙𝑙𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎(𝜷𝜷) + 𝑙𝑙𝒛𝒛𝒎𝒎|𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄(𝜸𝜸) 

Denote 𝐿𝐿𝑝𝑝,(𝑠𝑠) = 𝑃𝑃�𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎�𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)�, then we have  

𝑄𝑄�𝜷𝜷,𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� = �𝑄𝑄𝑝𝑝�𝜷𝜷,𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)�
𝑛𝑛

𝑝𝑝

= � � 𝐿𝐿𝑝𝑝,(𝑠𝑠)
𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎

𝑛𝑛

𝑝𝑝=1

𝑙𝑙𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎(𝜷𝜷) + � � 𝐿𝐿𝑝𝑝,(𝑠𝑠)
𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎

𝑛𝑛

𝑝𝑝=1

𝑙𝑙𝒛𝒛𝒎𝒎|𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄(𝜸𝜸) 
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Write 

𝑄𝑄𝒙𝒙|𝒛𝒛�𝜷𝜷�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� = � � 𝐿𝐿𝑝𝑝,(𝑠𝑠)
𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎𝑝𝑝

𝑙𝑙𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎(𝜷𝜷) 

and 

 𝑄𝑄𝒛𝒛�𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� = � � 𝐿𝐿𝑝𝑝,(𝑠𝑠)
𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎𝑝𝑝

𝑙𝑙𝒛𝒛𝒎𝒎|𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄(𝜸𝜸), 

now the “Q function” presented above is separated into two parts. Note that 

𝑄𝑄𝒙𝒙|𝒛𝒛�𝜷𝜷�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� is a function of the multi-state model parameter 𝜷𝜷 and does not contain 

the nuisance parameter 𝜸𝜸. And Q𝒛𝒛�𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� is a function of only the nuisance 

parameter 𝜸𝜸. The calculation of weights 𝐿𝐿𝑝𝑝,(𝑠𝑠) can be done by using Bayes theorem. For 

subject 𝑑𝑑, we have 

𝐿𝐿𝑝𝑝,(𝑠𝑠) = 𝑃𝑃�𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎�𝒙𝒙𝒎𝒎,𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎,𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� =  
𝑃𝑃(𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎,𝜷𝜷

(𝒎𝒎)) ∗ 𝑃𝑃(𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍|𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜸𝜸(𝒎𝒎))
∑ 𝑃𝑃(𝒙𝒙𝒎𝒎|𝒛𝒛𝒎𝒎,𝜷𝜷

(𝒎𝒎)) ∗ 𝑃𝑃(𝒛𝒛𝒎𝒎,𝒑𝒑𝒍𝒍|𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝜸𝜸(𝒎𝒎))𝒛𝒛𝒎𝒎,𝒍𝒍𝒎𝒎𝒎𝒎

 . 

For the M-step, maximization of the function Q�𝜷𝜷,𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� can be achieved 

by maximizing 𝑄𝑄𝒙𝒙|𝒛𝒛�𝜷𝜷�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� and 𝑄𝑄𝒛𝒛�𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� separately. The maximization 

of Qz�𝜸𝜸�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� and 𝑄𝑄𝒙𝒙|𝒛𝒛�𝜷𝜷�𝜷𝜷(𝒎𝒎),𝜸𝜸(𝒎𝒎)� do not have closed forms.  We use the Newton-

Raphson method for the maximization. 

4.2.5  Asymptotic Variance-Covariance Matrix Estimation 

The EM algorithm does not provide the estimates of asymptotic variances as its 

byproduct. Here we obtain the variance estimates by finding the observed information 

matrix. One way to derive the observed information matrix is to take the derivatives 

directly from the observed data log likelihood. Note that the observed data log likelihood 

has the form 
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𝑙𝑙(𝜽𝜽,𝜸𝜸) = �𝑙𝑙𝑙𝑙𝑑𝑑 �𝐿𝐿𝑝𝑝�𝜽𝜽,𝜸𝜸�𝒙𝒙𝒎𝒎, 𝒛𝒛𝒎𝒎,𝒄𝒄𝒄𝒄,𝒛𝒛𝒎𝒎,𝒐𝒐𝒐𝒐𝒎𝒎��
𝑛𝑛

𝑝𝑝=1

 

and it does not have a closed form. We use the forward difference method to compute the 

Hessian matrix of 𝑙𝑙(𝜽𝜽,𝜸𝜸). Suppose 𝑖𝑖(𝒙𝒙) is a real function and twice differentiable 

regarding to a p-dimensional vector 𝒙𝒙, then the Hessian matrix of 𝑖𝑖(𝒙𝒙) at 𝒙𝒙𝟎𝟎 can be 

approximated as follow: 

𝜕𝜕2𝑖𝑖
𝜕𝜕𝑒𝑒𝑝𝑝𝜕𝜕𝑒𝑒𝑗𝑗

|𝒙𝒙=𝒙𝒙𝟎𝟎 =
𝑖𝑖�𝒙𝒙𝟎𝟎 + ℎ𝑝𝑝𝒆𝒆𝒎𝒎 + ℎ𝑗𝑗𝒆𝒆𝒋𝒋� − 𝑖𝑖(𝒙𝒙𝟎𝟎 + ℎ𝑝𝑝𝒆𝒆𝒎𝒎) − 𝑖𝑖�𝒙𝒙𝟎𝟎 + ℎ𝑗𝑗𝒆𝒆𝒋𝒋� + 𝑖𝑖(𝒙𝒙𝟎𝟎)

ℎ𝑝𝑝ℎ𝑗𝑗
 

Here 𝒆𝒆𝒎𝒎 is the 𝑑𝑑th coordinate vector, a vector with its 𝑑𝑑th component equal to 1 and all 

others equal to 0, and ℎ𝑝𝑝 is the step size.  

4.3 Simulations 

In this section, we study the performance of the proposed EM method through 

simulation studies. Datasets were generated from an “illness-death” model with backward 

transitions. Four cases are considered here: 

1) MCAR data with about 45% of subjects having missing covariates.  

2) MCAR data with about 70% of subjects having missing covariates.  

3) MAR data with about 45% of subjects having missing covariates.  

4) MAR data with about 70% of subjects having missing covariates.  

To see the advantages of the proposed method (EM), we compare it to the widely 

used CC method as well as to the full data analysis (FULL). In the full data analysis, all 

covariate values are preserved and there is no missing data. It is a benchmark for 

evaluating our method’s performance in general.  The comparisons were made through 
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percent bias (% Bias), empirical standard error (ESE), asymptotic standard error (SE) and 

95% confidence interval coverage probability (95% CP).   The total number of subjects in 

each simulated dataset is 500 or 1000. All results are based on 500 simulation datasets,  

and calculations are made by using PROC IML in SAS 9.3® [45].  

4.3.1 Generating the Dataset 

Datasets were generated from an “illness-death” model with backward transitions. 

The model has the following transition intensity matrix: 

𝑄𝑄(𝑍𝑍1,𝑍𝑍2) = �
𝛼𝛼11 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽12,0 + 𝛽𝛽12,1𝑍𝑍1� 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽13,0 + 𝛽𝛽13,2𝑍𝑍2�

𝑒𝑒𝑒𝑒𝑝𝑝 �𝛽𝛽21,0� 𝛼𝛼22 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽23,0 + 𝛽𝛽23,1𝑍𝑍1�
0 0 0

� . 

Here 

 𝛼𝛼11 = −�𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽12,0 + 𝛽𝛽12,1𝑍𝑍1� + 𝑒𝑒𝑒𝑒𝑝𝑝 (𝛽𝛽13,0 + 𝛽𝛽13,2𝑍𝑍2)� 

and 

 𝛼𝛼22 = −�exp�𝛽𝛽21,0� + 𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽23,0 + 𝛽𝛽23,1𝑍𝑍1��. 

There are 7 parameters , �𝛽𝛽12,0,𝛽𝛽13,0,𝛽𝛽21,0,𝛽𝛽23,0,𝛽𝛽12,1,𝛽𝛽23,1,𝛽𝛽13,2�, in this model. The 

first four parameters measure the baseline transition intensities, and the last three 

parameters measure the effects of covariates on the transition intensities. We set the true 

values of these parameters to be (2,−2.5,−3,−2, 0.5, 0.3, 0.4) respectively. Covariates 

(𝑍𝑍1,𝑍𝑍2)  are both binary variables with the following joint mass function： 

𝑃𝑃(𝑧𝑧1, 𝑧𝑧2) = �

0.1 𝑑𝑑𝑖𝑖 𝑧𝑧1 = 0, 𝑧𝑧2 = 0 
0.4 𝑑𝑑𝑖𝑖 𝑧𝑧1 = 0, 𝑧𝑧2 = 1
0.3 𝑑𝑑𝑖𝑖 𝑧𝑧1 = 1, 𝑧𝑧2 = 0
0.2 𝑑𝑑𝑖𝑖 𝑧𝑧1 = 1, 𝑧𝑧2 = 1

 . 
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Observations of the process are taken annually.  State 3 means death in this 

model, thus the transition time into state 3 is recorded exactly, while state just before 

death is unknown. A common censoring time of 25 years is used, which results in right 

censored transition time for those who remain in state 1 or state 2 at that time. The 

covariates are baseline covariates; their values do not change over time.  

4.3.2 Estimations with MCAR data 

We study two MCAR data cases. In the first case, we randomly set covariate 𝑍𝑍1 

and 𝑍𝑍2 missing.  𝑍𝑍1 is missing with probability 0.2 and  𝑍𝑍2  is missing with probability 

0.3. Thus, there are about 6% of subjects with both Z1 and Z2 missing, and about 45% of 

subjects with at least one covariate missing. We denote this type of missing data MCAR 

1. In the second case, we set 𝑍𝑍1 missing with probability 0.4 and Z2 missing with 

probability 0.5. In these data, there are about 70% subjects with at least one covariate 

value unobserved. We denote this type of data MCAR 2. Note that the data are MCAR 

data, since the probability of the covariates being missing is independent of both the 

observed data and the underlying values of missing covariates.  

The results for the two MCAR cases are presented in Table 4.1. When the data are 

MCAR, it shows that both CC method and the proposed EM method work well. The 

percent bias (% Bias) is relatively small. The 95% confidence interval coverage 

probabilities (95% CP) hover around 95% and the estimated asymptotic standard errors 

are close to the empirical standard error for all 7 parameters. Moreover, the results are 

close to those provided by the FULL data analysis. We note that the proposed EM 

method is more sufficient than the CC method since estimates provided by the EM 

method have smaller standard errors than those provided by the CC method.  
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4.3.3 Estimations with MAR data 

In the first case of MAR data, we set covariate Z1 missing if the first transition 

happens in the first year, and set covariate Z2 missing if the second transition happens 

after year 8. Thus, approximately 45% of subjects have at least one covariate missing. In 

the second case, we set covariate Z1 missing if the first transition happens in the first 3 

years, and set covariate Z2 missing if the second transition happens after year 6. This 

results in a dataset with approximately 70% subjects having at least one covariate 

missing. Both of these two types of data are MAR but not MCAR, since the missingness 

of covariates is dependent on the observed data but independent of the underlying values 

of the missing data.  

The results for the MAR data are presented in Table 4.2. When the data are MAR 

but not MCAR, in general the CC method fails.  The bias of the estimates provided by the 

CC method can be very large, as large as 105% in our simulation studies. And the 95% 

confidence interval coverage probability (95% CP) could be far away from 95%. The 

proposed EM method still works well in both of these MAR cases.  

4.4 Application 

In this application, we used the KEAP cohort from the SMART database. KEAP 

is a population-based study of the oldest-old residents of the Klamath Basin, which is a 

rural area of Oregon. Subjects enrolled in this study were at least 80 years old. Subjects 

are visited in their homes by a geriatric research nurse every six months for 

neuropsychiatric testing and structured clinical interview [50]. 
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The cognitive functions of each patient were classified into the following two 

states: No Dementia (ND) and Dementia. A third state Death is also added to the model 

to account the competing risk for Dementia. State ND includes both normal cognition and 

mild cognitive impairment (MCI).  Subjects who were in state ND at the previous visit 

may die before the next scheduled assessment or may transition to Dementia at the next 

scheduled assessment. Subjects who were in state Dementia may die before the next 

assessment. There are no backward transitions from state Dementia to state ND. Figure 

4.1 presents the model state structure. 

The dataset contains 419 subjects. At baseline, there were 351 (83.8%) subjects in 

state ND and 68 (16.2%) subjects in state Dementia. The number of observations for each 

subject ranges from 2 to 22 with mean±SD of 7.7 ± 4.9.  Cognitive assessments are 

administered to each subject with mean time interval between consecutive 

assessments 0.58 ± 0.46 years.  

Covariates to be examined as potential risk factors for transitions among the 3 

states in Figure 4.1 are: baseline age (Bage), female gender (Female), low education 

(LowEdu; defined as high school or less), APOE4  (with or without an ε4 allele), and 

baseline high blood pressure (HBP). Bage, Female and LowEdu are all fully observed. 

APOE4 and HBP are missing for some subjects. There are 80 (19%) subjects with 

missing APOE4 and 206 (49%) subjects with missing HBP. 34 (8%) subjects have both 

APOE4 and BHP missing, and 252 (60%) subjects have at least one of these missing. 

Table 4.3 lists a summary of these 4 risk factors.  
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Table 4.4 lists the observed transition frequency and row percentage for the 

original 419 subjects as well as the 167 subjects with complete data. In the original data, 

4.1% ND subjects transitioned to Dementia state, and 6.9% ND subjects died without 

Dementia, 26.8% Dementia subjects died at the end of the study. In contrast for the CC 

data, only 3.2% of ND subjects developed Dementia and 3.4% of them died without 

Dementia. Among Dementia subjects, 19.8% died at the end of the study.  

We used a time-homogenous Cox Markov model to investigate the effects of 

potential risk factors on these transitions, which have the following forms: 

𝛼𝛼𝑙𝑙𝑙𝑙(𝒁𝒁) = �
𝑒𝑒𝑒𝑒𝑝𝑝�𝛽𝛽𝑙𝑙𝑙𝑙,0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑇𝑇 𝒁𝒁� , 𝑑𝑑𝑖𝑖 𝑙𝑙 ≠ 𝑚𝑚

−�𝛼𝛼𝑙𝑙ℎ(𝒁𝒁)
ℎ≠𝑙𝑙

,           𝑑𝑑𝑖𝑖 𝑙𝑙 = 𝑚𝑚  

.Here 𝒁𝒁 = (𝐵𝐵𝑑𝑑𝑑𝑑𝑒𝑒,𝐹𝐹𝑒𝑒𝑚𝑚𝑑𝑑𝑙𝑙𝑒𝑒, 𝐿𝐿𝑙𝑙𝐿𝐿𝐸𝐸𝑑𝑑𝑢𝑢,𝐴𝐴𝑃𝑃𝐴𝐴𝐸𝐸4,𝐻𝐻𝐵𝐵𝑃𝑃). Bage were centered at 80 in the 

model. 

First, we conducted an available-case (AC) analysis, in which we dropped the two 

covariates with missing values, APOE4 and HBP, out of the model. Without APOE4 and 

HBP in the model, the data is fully observed, thus standard estimation methods, for 

example the “msm” R-package [27], could be used to fit the model without dropping any 

subjects. Then, we fitted the data with the proposed EM method after adding APOE4 and 

HBP in the model. At last, we also conducted a CC analysis for the model.  

Table 4.5 lists the hazard ratios (HR) and the corresponding 95% confidence 

intervals (95% CI) for risk factors on each transition path by these three method. The 

results obtained from the AC method show that the baseline age would increase the 

hazard ratio for all three paths, from ND to Dementia and Death, and from Dementia to 
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Death. Its effect on paths from ND to Dementia and from Dementia to Death are 

significant (P value<0.05). The effects of Female gender and low education level on all 

three paths are not significant. The estimated effects of baseline age, female gender and 

low education level by applying the proposed EM method are close to these of the AC 

analysis. And we also find out that APOE4 has significant effect (P Value<0.05) of 

increasing the HR for transition path from ND to Dementia. High blood pressure has 

significant effects on paths from ND to Dementia and to Death. Subjects at ND with 

baseline high blood pressure have lower hazard ratio of developing dementia, while they 

have higher mortality rate than those without high blood pressure at baseline. Comparing 

to the results of the AC analysis and the proposed EM method, the CC method is less 

efficient. The lengths of 95% confidence intervals of the hazard ratio are generally larger 

than those provided by the AC method and the EM method. Also, the CC method failed 

to indicate the significant effects of baseline age on transition path from Dementia to 

Death and of APOE4 on path from ND to Dementia. The significant effect on baseline 

age on path from Dementia to Death was indicated by both the AC method and the 

proposed EM method. And the effect of APOE4 on path from ND to Dementia was well 

studied in literature [10, 51, 52].  

4.5 Discussion  

Multi-state models are useful tools to analyze longitudinal event history data, and 

have been widely applied in medical studies. Missing covariates in data has been an issue 

in practice. Most of the currently available methods and software packages use the CC 

method in the case of missing covariates data. The problem associated with the CC 

method is that it will provide biased estimates if the data are not MCAR. Even if the data 
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are MCAR, dropping all cases with missing covariates is inefficient and might cause 

convergence problems in particular applications.  In contrast, the proposed EM method 

worked well for both MCAR and MAR data.  In the case of MCAR data, the proposed 

EM method was also more efficient than the CC method.  

Standard multiple imputation methods are also very difficult to carry out in the 

estimation of multi-state model in analyzing longitudinally collected event history data 

with multiple missing baseline categorical covariates data.  Constructing an appropriate 

imputation model for the missing categorical covariates data is difficult when the 

observed data contains longitudinal response data with random lengths and unequal 

spaces.  

Likelihood-based methods are common approaches to the analysis of missing data 

[30]. The observed data likelihood contains both model parameters and nuisance 

parameters used to model the distribution of missing covariates. When data have the 

general missing pattern with multiple missing data covariates, we would need a relatively 

large number of nuisance parameters to model the missing covariates, and directly 

maximizing the observed data likelihood is difficult. By using the EM algorithm, we 

were able to separate the model parameters and the nuisance parameters and make the 

maximization of the likelihood possible.  

EM algorithms have been used to deal with missing data problems in other areas. 

Ibrahim [34] provided an EM algorithm for generalized linear model with incomplete 

covariates measurements. Lin et al. [28] also used EM algorithm in the Cox regression 

model with missing covariates data. Applying EM algorithm in the multi-state model 

framework is more difficult than in the above mentioned areas. First, closed formulas 
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usually do not exist for both the expectation step and the maximization step when 

applying EM algorithm to multi-state models with missing covariates data. Numerical 

methods have to be used to get the expectation log-likelihood function and to maximize 

of the expected complete data log likelihood.  Another issue encountered with missing 

covariates data in the multi-state model is the usually large number of unknown 

parameters. In applying maximum likelihood type methods to deal with missing 

covariates data, a probability model with nuisance parameters has to be constructed for 

the missing covariates. Plus, each covariate would have different coefficient parameters 

on different transition paths. These two factors lead to a relatively larger numbers of 

parameters compared to other situations.  Our proposed EM algorithm would enable 

researchers to estimate the nuisance parameters and model covariates coefficients 

separately.  

Our study showed that the proposed EM algorithm is efficient in dealing with 

missing covariates data with a general missing pattern. However, this method is limited 

to only missing discrete covariates. In the case of the missing continuous covariate, the Q 

function in the E-step cannot be written as a weighted sum of the complete data log 

likelihood. One possible solution to deal with missing continuous covariates in multi-

state models is to approximate the E-step using Gaussian quadrature or Monte Carlo 

integration techniques.  
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Figure 4.1: Transition flow diagram for the model 
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Chapter 5 Discussions and Future Research 

In this dissertation, we proposed several methods for dealing with different types 

of missing covariates data in the framework of multi-state models. The methods 

discussed in the previous several chapters are all likelihood-based methods. The 

likelihood-based methods are one of most frequently used methods in the literature of 

missing data. Another popular method is imputation-based methods. However, the 

imputation-based methods are not feasible in the framework of multi-state model. The 

observed response data for most multi-state model analysis is longitudinal data with 

random length, thus it is a difficult to come up with an appropriate imputation model for 

the missing covariates conditioned on the observed covariates and the observed response 

longitudinal data. Our study also showed that the multiple imputation method 

conditioning only on the observed covariates is biased  

Because of the unique features of multi-state models, calculating and maximizing 

the log likelihood function with missing covariates data directly would be very 

complicated and difficult. However, in cases that the multi-state models have relative 

simple state structures and the data has a univariate missing pattern with only one missing 

discrete covariate, the direct MLE method becomes feasible.  

In situations where the data has a continuous missing covariate, the MSL would 

be an alternative for estimation. The MSL method replaces the true log likelihood 

function with a simulated one, thus we avoiding the integration in the calculation of the 

log likelihood, which often does not have a closed form for the integrand. One limitation 
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of the method is that a parametric model or a distribution form of the missing covariate 

has to be provided, which might be difficult to do in some applications.  

When the data has a general missing pattern but the all missing covariates are 

discrete variables, the EM method would be a good choice for estimation of the multi-

state model. The EM algorithm would allow us to estimate the model parameters 

associated with the multi-state model and the nuisance parameters associated with the 

covariates data separately in each iteration.  And estimation of the nuisance parameters 

would be easier since there are closed form estimates in some circumstances. The 

limitation of the method lie in the slow convergence in some situations.  

Despite the constraints and limitations of the methods we proposed in the 

previous several chapters, we are satisfied with the results to date. The method we 

proposed could help us deal with most cases of missing covariates data problems in 

practice. However, there are some potential extensions of future research in this area.  

Throughout the methods discussed in this dissertation, we assume the data is 

either MCAR or MAR. Relaxing this assumption would help deal with a more general 

type of missing data, the NMAR data. Possible solution for this topic is to provide an 

appropriate model of missing mechanism for the data.  For the EM algorithm, one could 

use more advanced maximization algorithms to speed up the convergence of estimation, 

and make this method feasible for more complicated multi-state models. More robustness 

studies on the assumption of the distribution form of the missing continuous covariate 

might be needed for more complicated models when using the MSL method for 

estimation. Another area of possible future research lies in mixture of missing continuous 

and discrete covariate variables. The likelihood-base method could still be feasible for the 
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mixture continuous and discrete missing covariates data, while more advanced methods 

have to be used to calculate and maximize the corresponding log likelihood function. 
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Appendices 

A. SAS/IML modules for the Observed Data Likelihood Method 

PROC IML; RESET storage= D.OLapp;  
/**********************************************************************/ 
/*A.1: Calculate the transition probability p(xi|zi) for subject i*/ 
/**********************************************************************/ 
START ProbSubj(Z) global(Xi,GNZ,GNstate,Gmsmparms,Gdeath);   

n=nrow(Xi); logQ=J(GNstate,GNstate,0); 
 do nc=1 to GNZ; logQ=logQ+Gmsmparms[,Gnstate*(nc-1)+1:Gnstate*nc]*Z[nc]; end; 

Q=exp(logQ); Q[loc(logQ=0)]=0; 
 do ns=1 to GNstate; Q[ns,ns]=-Q[ns,+]; end; 
 A=teigvec(Q); V=teigval(Q); L=1.0; 
 do j=2 to n; 

from=Xi[j-1,2]; to=Xi[j,2]; ft=Xi[j-1,3]; tt=Xi[j,3]; timelag=tt-ft; 
D=diag(exp(V[,1]#timelag)); P=A*D*inv(A);  

  if to=Gdeath then do; 
pdj=0.0; do h=1 to GNstate; if h^=Gdeath then pdj=pdj+P[from,h]*Q[h,Gdeath];end; 
L=L*pdj;  

  end; 
  else L=L*P[from,to]; 
 end; Return(L); 
FINISH ProbSubj; 
 
/**********************************************************************/ 
/*A.2: Calculate the Observed Data Log-likelihood*/ 
/**********************************************************************/ 
START llObs(parms) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GZmisCovs, 
GNZmis, GNZful, GNZ, GNstate, Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob); 

pmsm=parms[1:Gnpmsm]; Gmsmparms[loc(Gmsmparms^=0)]=pmsm; 
gamma=parms[Gnpmsm+1:Gnp]; logL=0.;   
do  id=1 to GNSubj;  
 h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis]; 
 Zful=Gmsmdata[h[1],GZful]; ZmisCovs=Gmsmdata[h[1],GZmisCovs]; 
 exp1=exp(ZmisCovs*gamma); p1=exp1/(1+exp1);  
 if Zmis=0 then Li=ProbSubj(Zful||0)*(1-p1);  
 else if Zmis=1 then Li=ProbSubj(Zful||1)*p1; 
 else Li=ProbSubj(Zful||0)*(1-p1)+ProbSubj(Zful||1)*p1; 
 if Li>0 then logL=logL+log(Li); else Gprob=1+Gprob;  
end; return(logL); 

FINISH llObs; 
 
/**********************************************************************/ 
/*A.3: Estimation using Observed Data Log-likelihood*/ 
/**********************************************************************/ 
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START Est_OL_App(Nsubj,parmsM0,gamma0,Zful,Zmis,ZmisCovs, death=0) 
global(Gmsmdata,GNSubj,Xi,GZmis,GZful,GZmisCovs,GNZmis,GNZful,GNZ,GNstate,
Gmsmparms,Gdeath,GNp,Gnpmsm,Gnpz,Gprob); 
 GNsubj=Nsubj;GZmis=Zmis;GZful=Zful; GZmisCovs=ZmisCovs; 
 GNZmis=ncol(Zmis);GNZful=ncol(Zful); GNZ=GNZmis+GNZful; 
 GNstate=nrow(parmsM0); Gmsmparms=parmsM0; Gdeath=death;  Gprob=0; 
 parms_crt=parmsM0[loc(parmsM0^=0)]`; h0=parms_crt||gamma0; GNp=ncol(h0); 
 Gnpmsm=ncol(parms_crt); optn={1 0 1 3};   
 call NLPnra(rc,xres,"llObs",h0,optn); estimate=xres` ; 
  call nlpfdd(f,g,hes,"llObs",estimate); cov=-ginv(hes); stderr=sqrt(vecdiag(cov)); 
 norqua=probit(1-0.05/2); low=estimate-norqua*stderr; up=estimate+norqua*stderr;  
 z=abs(estimate/stderr); p=2*(1-probnorm(z)); 
 EstCoef=parmsM0; EstCoef[loc(parmsM0^=0)]=estimate[1:Gnpmsm]); 
 EstGamma=estimate[Gnpmsm+1:GNp];Pgamma=p[Gnpmsm+1:GNp]; 
 print EstCoef; print EstGamma pGamma; 
 EstHR=parmsM0; EstHR[loc(parmsM0^=0)]=exp(estimate[1:Gnpmsm]); 
 HR_low=parmsM0; HR_low[loc(parmsM0^=0)]=exp(low[1:Gnpmsm]);   
 HR_up=parmsM0; HR_up[loc(parmsM0^=0)]=exp(up[1:Gnpmsm]);  
 EstP=parmsM0; EstP[loc(parmsM0^=0)]=p[1:Gnpmsm]; Zs=Zful||Zmis; 
 do iz=1 to GNZ; 
  Covname=Zs[iz]; HRiz=EstHR[,(iz-1)*GNstate+1:iz*GNstate];  
  Piz=EstP[,(iz-1)*GNstate+1:iz*GNstate];  
  Lowiz=HR_low[,(iz-1)*GNstate+1:iz*GNstate];  
  Upiz=HR_UP[,(iz-1)*GNstate+1:iz*GNstate];  
  print Covname "From" "To" "HR" "Low" "UP" "Pvalue";  
  do ir=1 to GNstate; do ic=1 to GNstate;  
   HR=HRiz[ir,ic]; Low=Lowiz[ir,ic]; Up=Upiz[ir,ic]; pv=Piz[ir,ic];  
   if HR^=0 then do; print ir ic HR Low Up pv; end;  
  end;end; 
 end; Ests=(estimate`)||(stderr`)||Gprob;  
 create Results from Ests; Append from Ests; close Results; 
FINISH Est_OL_App;  STORE module=_all_;  
QUIT; 

B. SAS/IML modules for the Maximum Simulated Likelihood method  

PROC IML; RESET storage=D.SLapp ;  
/**********************************************************************/ 
/*B.1: Calculate the transition probability p(xi|zi) for subject i*/ 
/**********************************************************************/ 
START ProbSubj(Z) global(Xi,GNZ,GNstate,Gmsmparms,Gdeath);   
 n=nrow(Xi);  logQ=J(GNstate,GNstate,0); 
 do nc=1 to GNZ; logQ=logQ+Gmsmparms[,Gnstate*(nc-1)+1:Gnstate*nc]*Z[nc]; end;  
 Q=exp(logQ); Q[loc(Q=1)]=0; do ns=1 to GNstate; Q[ns,ns]=-Q[ns,+]; end; 
 A=teigvec(Q); V=teigval(Q); L=1.0; 
 do j=2 to n; 
  from=Xi[j-1,2]; to=Xi[j,2]; ft=Xi[j-1,3]; tt=Xi[j,3]; timelag=tt-ft; 
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  D=diag(exp(V[,1]#timelag)); P=A*D*inv(A);  
  if to=Gdeath then do; pdj=0.0;  
   do h=1 to GNstate;  
    if h^=Gdeath then pdj=pdj+P[from,h]*Q[h,Gdeath]; end; L=L*pdj;  
   end; 
  else L=L*P[from,to]; 
 end; Return(L); 
FINISH ProbSubj; 
 
/**********************************************************************/ 
/*B.2: Calculate the Simulated Log-likelihood*/ 
/**********************************************************************/ 
START llSL(parms) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GZmisCov, 
GNZmis, GNZful, GNZ, GNstate, Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob, 
GNR); 
 pmsm=parms[1:Gnpmsm]; Gmsmparms[loc(Gmsmparms^=0)]=pmsm;  
 intcept=parms[Gnpmsm+1]; gamma=parms[Gnpmsm+2]; sigma=parms[Gnpmsm+3]; 
 logL=0.; 
 do  id=1 to GNSubj;  
  h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis]; 
  Zful=Gmsmdata[h[1],GZful]; ZmisC=Gmsmdata[h[1],GZmisCov]; 
  mu=intcept+gamma*ZmisC; 
  if Zmis=. then do; simL=j(1,GNR,.); 
   Zs = j(1,GNR,.); call randseed(id,1); call randgen(Zs,'NORMAL',mu,sigma); 
   do mi=1 to GNR;  
    if Zs[mi]<0 then Zsmi=0; else Zsmi=Zs[mi]; simL[mi]=ProbSubj(Zful||Zsmi);end;  
    Li=simL[:]; if Li>0 then logL=logL+log(Li); else Gprob=1; 
   end; 
  else do; 
   if Zmis<0 then Zmisabs=0; else Zmisabs=Zmis; Li=ProbSubj(Zful||Zmisabs); 
   if Li>0 then logL=logL+log(Li)+logpdf('NORMAL',Zmis,mu,sigma); else Gprob=1; 
  end; 
 end; return(logL); 
FINISH llSL; 
 
/**********************************************************************/ 
/*B.3: Estimation using Simulated Log-likelihood*/ 
/**********************************************************************/ 
START EstSL(Nsubj,parmsM0,gamma0,Zmis,Zful,ZmisCov,death=0,NR=30) 
global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GZmisCov, GNZful, GNZ, GNstate, 
Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob, GNR); 
 GNsubj=Nsubj;GZmis=Zmis;GZful=Zful; GZmisCov=ZmisCov; GNZmis=ncol(Zmis); 
 GNZful=ncol(Zful); GNZ=GNZmis+GNZful; GNstate=nrow(parmsM0); 
 Gmsmparms=parmsM0; Gdeath=death; Gprob=0;GNR=NR; 
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 parms_crt=parmsM0[loc(parmsM0^=0)]`; h0=parms_crt||gamma0; GNp=ncol(h0); 
 Gnpz=ncol(gamma0); Gnpmsm=GNp-GNpz;con=J(2,Gnp,.); con[1,GNp]=0.01; 
 optn={1 0 1 3}; call NLPnra(rc,xres,"llsl",h0,optn,con); estimate=xres` ; 
 call nlpfdd(f,g,hes,"llsl",estimate); cov=inv(hes); stderr=sqrt(vecdiag(cov)); 
 norqua=probit(1-0.05/2); low=estimate-norqua*stderr; up=estimate+norqua*stderr;  
 z=abs(estimate/stderr); p=2*(1-probnorm(z)); 
 EstHR=parmsM0; EstHR[loc(parmsM0^=0)]=exp(estimate[1:Gnpmsm]); 
 HR_low=parmsM0; HR_low[loc(parmsM0^=0)]=exp(low[1:Gnpmsm]);   
 HR_up=parmsM0; HR_up[loc(parmsM0^=0)]=exp(up[1:Gnpmsm]);  
 EstP=parmsM0; EstP[loc(parmsM0^=0)]=p[1:Gnpmsm];  
 Zs=Zful||Zmis; 
 do iz=1 to GNZ; 
  Covname=Zs[iz]; HRiz=EstHR[,(iz-1)*GNstate+1:iz*GNstate];  
  Piz=EstP[,(iz-1)*GNstate+1:iz*GNstate];  
  Lowiz=HR_low[,(iz-1)*GNstate+1:iz*GNstate];  
  Upiz=HR_UP[,(iz-1)*GNstate+1:iz*GNstate];  
  print Covname "From" "To" "HR" "Low" "UP" "Pvalue";  
  do ir=1 to GNstate; do ic=1 to GNstate;  
   HR=HRiz[ir,ic]; Low=Lowiz[ir,ic]; Up=Upiz[ir,ic]; pv=Piz[ir,ic];  
   if HR^=0 then do; print ir ic HR Low Up pv; end;  
  end; end; 
 end; Ests=(estimate`)||(stderr`)||Gprob; 
 Create Results from Ests; Append from Ests; Close Results; 
FINISH EstSL;  Store module=_all_;  
QUIT; 

C. SAS/IML modules for the EM method 

PROC IML; RESET storage=D.SLapp ; 
/**********************************************************************/ 
/*C.1: Calculate the transition probability p(xi|zi) for subject i*/ 
/**********************************************************************/ 
START ProbSubj(Z) global(Xi,GNZ,GNstate,Gmsmparms,Gbsparms,Gdeath); 
 n=nrow(Xi);  logQ=J(GNstate,GNstate,0); 
 do nc=1 to GNZ; logQ=logQ+Gmsmparms[,Gnstate*(nc-1)+1:Gnstate*nc]*Z[nc]; end;  
 Q=exp(logQ); Q[loc(Q=1)]=0; do ns=1 to GNstate; Q[ns,ns]=-Q[ns,+]; end; 
 A=teigvec(Q); V=teigval(Q); L=1.0; 
 do j=2 to n; 
  from=Xi[j-1,2]; to=Xi[j,2]; ft=Xi[j-1,3]; tt=Xi[j,3]; timelag=tt-ft; 
  D=diag(exp(V[,1]#timelag)); P=A*D*inv(A); 
  if to=Gdeath then do; pdj=0.0; 
   do h=1 to GNstate; if h^=Gdeath then pdj=pdj+P[from,h]*Q[h,Gdeath]; end; 
L=L*pdj;  
  end; 
  else L=L*P[from,to]; 
 end; Return(L); 
FINISH ProbSubj; 
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/**********************************************************************/ 
/*C.2: Calculate the Weights using Bayes Theorem*/ 
/**********************************************************************/ 
START MisDWeit(parms,pz) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GNZmis, 
GNZful, GNZ, GNstate, Gmsmparms, Gdeath, Gnpmsm, Gnpz, Gprob); 
 wet=J(GNSubj,Gnpz+1,0); Gmsmparms[loc(Gmsmparms^=0)]=parms; 
Fpz=J(1,Gnpz+1,0);  Fpz[1:Gnpz]=pz; Fpz[Gnpz+1]=1-Fpz[+]; 
 do id=1 to GNSubj;  
  h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis]; 
  Zful=Gmsmdata[h[1],GZful]; Covs=Zmis; 
  do zj=GNZmis to 1 by -1; 
   if Zmis[,zj]=. then do;  
    Cov0=Covs; Cov1=Covs; Cov0[,zj]=0; Cov1[,zj]=1; Covs=Cov0//Cov1; 
   end;   
  end; 
  Nmis=nrow(Covs); *Number of mis patterns; Li=0; Weti=J(1,Gnpz+1,0); 
  do j=1 to Nmis; 
   Z=Covs[j,]; idxp=1; do jj=1 to GNZmis; idxp=idxp+Z[jj]*2**(GNZmis-jj); end; 
   weti[idxp]=ProbSubj(Zful||Z)*Fpz[idxp]; 
  end; 
  do wj=1 to Gnpz+1; wet[id,wj]=weti[wj]/weti[+]; end;   
 end; return(wet); 
FINISH MisDWeit;  
 
/**********************************************************************/ 
/*C.3: Calculate the Expected Log Likelihood using Weights*/ 
/**********************************************************************/ 
START llWeit (parms) global (Gmsmdata, GNSubj, Xi, GZful, GZmis, GNZmis, 
GNZful, GNZ, GNstate, Gmsmparms, Gnpmsm, Gdeath, Gnpz, Gwet, Gprob); 
 logL=0.; Gmsmparms[loc(Gmsmparms^=0)]=parms;  
 do id=1 to GNSubj;  
  h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis]; 
  Zful=Gmsmdata[h[1],GZful];  Covs=Zmis; 
  do zj=GNZmis to 1 by -1; if Zmis[,zj]=. then do;  
    Cov0=Covs; Cov1=Covs; Cov0[,zj]=0; Cov1[,zj]=1; Covs=Cov0//Cov1;  
  end; end; 
  Nmis=nrow(Covs); *Number of mis patterns; Li=0; 
  do j=1 to Nmis; 
   Z=Covs[j,]; idxp=1; do jj=1 to GNZmis; idxp=idxp+Z[jj]*2**(GNZmis-jj); end; 
   Li=ProbSubj(Zful||Z);  
   if Li>0 then logL=logL+log(Li)*Gwet[id,idxp]; else Gprob=1+Gprob; 
  end; 
 end; return(logL); 
FINISH llWeit; 
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/**********************************************************************/ 
/*C.4: Calculate the Observed Data Log Likelihood for Variance-Covariance Matrix*/ 
/**********************************************************************/ 
START llObs (parms) global(Gmsmdata, GNSubj, Xi, GZmis, GZful, GNZmis, GNZful, 
GNZ, GNstate, Gmsmparms, Gdeath, GNp, Gnpmsm, Gnpz, Gprob); 
 pz=j(1,GNpz+1,0); pz[1:Gnpz]=parms[Gnpmsm+1:Gnp]; pz[Gnpz+1]=1-pz[+]; 
 pmsm=parms[1:Gnpmsm]; Gmsmparms[loc(Gmsmparms^=0)]=pmsm;  logL=0.; 
 do id=1 to GNSubj;  
  h=loc(Gmsmdata[,1]=id); Xi=Gmsmdata[h,1:3]; Zmis=Gmsmdata[h[1],GZmis]; 
  Zful=Gmsmdata[h[1],GZful]; Covs=Zmis; 
  do zj=GNZmis to 1 by -1; if Zmis[,zj]=. then do;  
   Cov0=Covs; Cov1=Covs; Cov0[,zj]=0; Cov1[,zj]=1; Covs=Cov0//Cov1; 
  end; end; 
  Nmis=nrow(Covs); *Number of mis patterns; Li=0; 
  do j=1 to Nmis; 
   Z=Covs[j,]; idxp=1; do jj=1 to GNZmis; idxp=idxp+Z[jj]*2**(GNZmis-jj); end; 
   Li=Li+ProbSubj(Zful||Z)*pz[idxp]; 
  end; 
  if Li>0 then logL=logL+log(Li); else Gprob=1+Gprob;  
 end; return(logL); 
finish llObs; 
 
/**********************************************************************/ 
/*C.5: Estimation using Expectation Maximization (EM) method*/ 
/**********************************************************************/ 
START MisDEM(Nsubj,parmsM0,pz0,Zmis,Zful,death=0,Cvg=1.e-4) global(Gmsmdata, 
GNSubj, Xi, GZful, GZmis, GNZmis, GNZful, GNZ, GNstate, Gmsmparms, Gnpmsm, 
Gdeath, Gnpz, Gnp, Gwet, Gprob); 
 Gprob=0; GNsubj=Nsubj; GZful=Zful; 
GZmis=Zmis;GNZful=ncol(Zful);GNZmis=ncol(Zmis);  GNZ=GNZful+GNZmis; 
GNstate=nrow(parmsM0); Gmsmparms=parmsM0; Gdeath=death;  
 parms_crt=parmsM0[loc(parmsM0^=0)]`; GNpmsm=ncol(parms_crt); 
 pz_crt=pz0; Gnpz=ncol(pz0); Gnp=Gnpmsm+Gnpz; Ntr=0; optn={1 0 1 3}; 
 do until(conv< cvg); 
  Gwet=MisDWeit(parms_crt,pz_crt);  
  call nlpnra(rc,curparms,"llweit",parms_crt,optn); curpz=Gwet[:,1:Gnpz];  
  conv=sqrt((curparms-parms_crt)*(curparms-parms_crt)` 
   +(curpz-pz_crt)*(curpz-pz_crt)`); 
  parms_crt=curparms; pz_crt=curpz; 
  file testfile;put Ntr;put conv;closefile testfile; 
  Ntr=Ntr+1; 
 end; 
 estimate=curparms||curpz; call nlpfdd(f,g,hes,"llObs",estimate); 
 cov=inv(hes); stderr=sqrt(vecdiag(cov)); norqua=probit(1-0.05/2); 
 low=estimate`-norqua*stderr; up=estimate`+norqua*stderr; 
 z=abs(estimate`/stderr); p=2*(1-probnorm(z)); 
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 Est=parmsM0; Est[loc(parmsM0^=0)]=estimate[1:Gnpmsm]; 
 MStd=parmsM0; Mstd[loc(parmsM0^=0)]=stderr[1:Gnpmsm];  
 MCI_low=parmsM0; MCI_low[loc(parmsM0^=0)]=low[1:Gnpmsm];  
 MCI_up=parmsM0; MCI_up[loc(parmsM0^=0)]=up[1:Gnpmsm];  
 Pvalue=parmsM0; Pvalue[loc(parmsM0^=0)]=p[1:Gnpmsm]; 
 Estp=curpz; Pp=p[Gnpmsm+1:GNpmsm+Gnpz]; 
 Stdp=stderr[Gnpmsm+1:GNpmsm+Gnpz]; 
 Lowp=low[Gnpmsm+1:GNpmsm+Gnpz];upp=up[Gnpmsm+1:GNpmsm+Gnpz]; 
 EstHR=parmsM0; EstHR[loc(parmsM0^=0)]=exp(estimate[1:Gnpmsm]); 
 HR_low=parmsM0; HR_low[loc(parmsM0^=0)]=exp(low[1:Gnpmsm]);   
 HR_up=parmsM0; HR_up[loc(parmsM0^=0)]=exp(up[1:Gnpmsm]);  
 Zs=Zful||Zmis; 
 do iz=1 to GNZ; 
  Covname=Zs[iz]; HRiz=EstHR[,(iz-1)*GNstate+1:iz*GNstate];  
  Piz=Pvalue[,(iz-1)*GNstate+1:iz*GNstate];  
  Lowiz=HR_low[,(iz-1)*GNstate+1:iz*GNstate];  
  Upiz=HR_UP[,(iz-1)*GNstate+1:iz*GNstate];  
  print Covname "From" "To" "HR" "Low" "UP" "Pvalue";  
  do ir=1 to GNstate; do ic=1 to GNstate;  
   HR=HRiz[ir,ic]; Low=Lowiz[ir,ic]; Up=Upiz[ir,ic]; pv=Piz[ir,ic];  
   if HR^=0 then do; print ir ic HR Low Up pv; end;  
  end; end; 
 end; Ests=(estimate`)||(stderr`)||Estp||stdp||Gprob; 
 Create Results from Ests; Append from Ests; Close Results; 
FINISH MisDEM; 
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