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ABSTRACT OF THESIS 

 

FLOW VISUALIZATION OF  
BUOYANT INSTABILITY IN A CROSS-FLOW:  

AN IMPLICATION FOR FLAME SPREAD OVER FOREST FUEL BEDS 
 

This thesis reports small-scale laboratory experiments designed to visualize the 
flow over a heated plate. A low-speed wind tunnel was built, and a heating plate was 
flush mounted on the wind tunnel floor to provide a uniform heat flux over its surface. A 
paper thin cloth soaked with commercially available Vaseline was placed on top of the 
heating plate to produce thick smoke streaks that were carried downstream by a 
horizontal airflow. Both LED light and a laser sheet of approximately 30-degrees open 
angle were separately used to illuminate this flow, the latter advanced downstream with 
1-cm interval from the heated plate’s upstream edge. A camera with full-frame CMOS 
sensor recorded time series of flow patterns from four different angles. From these 
images, the following four flow structures were identified: (1) organized horizontal flow 
of vortex tubes, (2) weak vortex tubes interactions, (3) strong vortex tubes interactions 
(transition regime), (4) chaotic turbulent flow. Flow structure analysis showed that smoke 
flow height increased with horizontal distance from the heated plate and reduced with 
flow velocity. Scaling analysis was conducted to assess the validity of observed scale 
model flow structure to the USDA Forest Service medium scale wind tunnel burns.  

KEYWORDS: Fire Research, Flow Visualization, Fire Spread, Scaling Laws, Vortices 
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𝑢𝑢 horizontal wind velocity 

v vertical velocity component of gas flow 

𝐿𝐿𝑤𝑤 depth of the flame zone 
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𝐿𝐿𝑎𝑎 average plume height 
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∆ρ1 density change of combustible gases and air 
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𝐻𝐻 height of discrete fuel particles (fuelbed) 

𝐿𝐿𝑒𝑒 preheating length (distance ahead the flame where significant heat transfer 

occurs) 

𝜔𝜔 frequency factor (represents time dependent behavior/instability such as 

vortex shedding) 

l2 distance between two valleys or width of a flame tower 

lc length of crib sticks 

bc thickness of crib sticks 

bo space between crib sticks 

Ө1 temperature of combustible gases and air 

∆Ө1 temperature change of combustible gases and air 

Ө2 temperature of burning materials 

∆Ө2 temperature change of burning materials 

qf heat value per unit mass of crib materials 

Qλ latent heat per unit mass of crib materials 

cp specific heat of combustible gases and air at atmospheric pressure 

c2 specific heat of crib materials 

t time scale 

g acceleration due to gravity 

E irradiance received by radiometer 

J mechanical equivalent of heat 
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Fi inertial force of air and gas 

Fb buoyant force of air and gas 

Q heat generated 

Qr radiant heat received by unburnt fuel 

Qc1 heat stored in air and gas associated with temperature rise 

Qc2 heat stored in unburnt fuel 

I fire intensity 

λ latent heat per unit mass of fuel 

Ø ratio of consumed fuel to the total fuel available 

R horizontal fire spread velocity 

w downstream pulsing frequency 

Fi,up inertial force in the upstream location 

Fi,down inertial force in the downstream location 
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ɑ thermal diffusivity 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation for research 

Wildland fire is a general term describing any non-structure fire that occurs in a 

natural landscape. These fires can be extremely destructive events leading to significant 

social and economic losses, especially at wildland-urban interfaces where large amounts 

of resources are utilized to protect people’s property. Expenses related to wildland fires, 

including preventative measures such as early fuel management strategies (thinning, 

harvesting, mechanical treatments and prescribed burning), are continuously growing 

[11]. Fire suppression is the most obvious cost associated with wildfires; between 1991 

and 2000 the U.S. Forest Service spent an average of $580 million annually while from 

2001 to 2010 this figure doubled to $1.2 billion. Moreover, state budgets related to 

wildland fire fighting have also increased; according to the National Association of State 

Foresters (NASF), the annual expenses by state forestry agencies in 2008 exceeded $1.6 

billion [1]. In addition, considerable costs are incurred to restore the losses and damage 

caused by wildfires. However, money is unimportant compared to human injuries or 

death; life lost is the most tragic consequence of fires.  

In reality, wildland fires are an integral part of establishing and maintaining a 

healthy ecological balance in forests and grasslands. This enlightenment was a result of 

research started in 1920’s; it identified changes in ecological conditions in the western 

US which were ascribed to fire suppression efforts and in which considerable changes in 

the structure, composition and fuel loads in forests were documented to adversely 

influence fire severity in comparison to previously experienced frequent but low-to-

moderate-intensity wildfires [2]. In 1910 Hoxie proposed control burns in California 

forests every 1-3 years [7]. Later, in 1924, Lee supported this idea by proposing “If the 

fire is not too severe, the burning may be beneficial to forest succession, as light fires 

usually help to kill back the underbrush, open resinous cones, stimulate germination and 

encourage the development of the major forest tree species” [3]. Others also found 

ecological and financial advantages of more frequent and less intense wildland fires that 

could be considered to be part of nature [4-6, 8]. Almost twenty years later in the 1940’s, 

the US Department of Forestry started using controlled fires as a silviculture tool in 



2 
 

Southwest US where Native American culture, which supported light fires, was dominant 

[9]. Any fire is potentially dangerous; even a controlled fire can lead to a disaster. 

However, nowadays, forestry agencies don’t only fight wildfires but also use them to 

maintain ecological balance. As a result, controlled burns and even wildland fires have to 

be assessed relative to their design or impact and then controlled in a manner providing 

ecological, safety and economic benefits. 

Even with large expenditures and the substantial infrastructure dedicated to fire 

suppression in the US, the amount of area burned annually by wildfires has increased 

during the last decade [10]. Furthermore, despite the fact that people have been dealing 

with wildfires for centuries, the mostly unpredictable and extreme behavior of wildfires 

significantly complicates assessments of how to respond and then the impact of any 

response. This difficulty motivates research into wildland fires even more because 

predicting the path of wildfires is extremely important in the efforts of forestry services 

and fire managers. Reliable predictions of wildland fires’ behaviors could save lives as 

well as reduce costs of such events; needed within such predictions are improved fire 

spread models which can improve firefighting strategies [12]. Also, understanding 

wildfire spread mechanisms is paramount because, although the heat transfer mechanism 

controlling fire spread are generally well-studied, they are still under question for 

wildland fires. To answer this question, the mechanisms that govern ignition and flame 

spread under different conditions have to be investigated and the role of radiation and 

convection must be identified [13, 14]. 

With a deeper knowledge in the basic fire spread mechanisms and combustion 

principles controlling them, predictive capabilities would be enhanced which will result 

in an improvement in the efficacy, efficiency and safety associated with strategies used to 

control prescribed fires and wildfires. However, the measurement data needed for a better 

understanding of wildfire behavior are typically not accessible because it is not possible 

to instrument these fires. Nevertheless, laboratory-scale fire experiments under certain 

conditions have showed behavior similar to real wildland fires [59]; this correspondence 

means that both of them are governed by the same physics and, importantly, perhaps 
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carefully planned and studied laboratory-scale fires can offer the insight needed to 

improve understanding the mechanisms of wildfire spread. 

1.2 Fire research  

1.2.1   Ignition and fire spread 

Initially, investigations of fire spread were motivated by a need of improving fire 

suppression strategies [14, 15]. Significant amounts of data are available that relate to 

wildfire behavior, however most studies have been limited by uncertainties in conditions, 

like type of fuel, moisture contents and weather conditions. Mathematical models have 

been developed to predict fire behavior that use known fuel properties such as load, bulk 

density, fuel particle size, heat content and moisture. For instance, Rothermel’s surface 

fire spread model utilized its own fuel model [16, 17] but the variety of wildland fuels 

that exist and the possibility of rather quick changing weather patterns can dramatically 

reduce the predictive capabilities of such a model. In fact, most current wildfire behavior 

models are based on full-scale observations which correlate, for instance, fire spread rates 

with the fuel type and weather conditions instead of dealing with the fundamental physics 

controlling behavior. Hence, an extreme need yet exists for investigating and 

understanding the fundamental physics governing wildfire spread [14].  

Since wildfires normally consume solid fuels such as wood, this particular type of 

fuel was considered in this thesis. To start the oxidation reaction, i.e. ignition, enough 

thermal energy must be transferred to the fuel particle. This energy or heat stimulates the 

emission of combustible pyrolysis gases from the particle’s surface which then react with 

oxygen from surrounding air and ignites, burning with a heat release rate larger than the 

rate of heat loss to the environment [13, 14]. Part of the released heat is transferred to the 

unburnt fuel particles and the ignition cycle, which then creates conditions for continuous 

fire spread [18].  

Fuel ignitability is crucial for initiating and sustaining wildfires [19], and is 

started through either spontaneous or piloted ignition. Spontaneous ignition occurs 

without interaction between an external pilot flame and unburnt fuel; this type of ignition 

requires intense heat flux to sustain burning and therefore is rare. In contrast, piloted 

ignition is the dominant mechanism because of the presence of radiation and convection 
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heating of unburnt fuel plus its interaction with open flame [20].  Due to the contact 

between the flame and the unburnt fuel, piloted ignition can occur at lower temperatures 

and is responsible for wildfire spread.  

Figures 1.1 presents a pictorial scene of fire spread through a fuelbed made of 

cardboard tines that are oriented vertically and evenly distributed along a horizontal 

surface; Figure 1.2 shows a temperature-versus-time plot of the tines in the fuelbed. 

Flame propagation through the discrete fuelbed in Figure 1.1 is through a series of 

ignitions of spatially separated but consecutive fuel particles. The process of preheating 

of a single particle (tine) to its ignition temperature can be divided into three stages.  

• During the first stage, the flame approaches a particle (circled in blue). Due to 

low-intensity heat transfer at this stage, temperature of the particle increases by 

only a few degrees. 

• During the second stage, the fire front is closer to the particle with a distance that 

enables the flame to occasionally touch or lick the particle. Flame licking causes 

temperature peaks during this stage but the temperature of the air between the 

licking events tends to be lower than temperature of the particle (Figure 1.2). 

Therefore, the average temperature of the particle increases gently because 

convective cooling of the particle takes place between peaks. 

• During the third stage, the last stage prior to ignition, the average temperature of 

air is higher than particle’s temperature because flame licking occurs more and 

more often and the time between peaks is smaller than the width of the 

temperature peaks shown in the Figure 1.2. While convective cooling still occurs 

during stage 3, convective heating of the particle is dominant. As a result of the 

temperature rise, combustible pyrolysis gases accumulate around the leeward side 

of the particle.  

• Ignition takes place after the concentration of pyrolysates attain a critical level; 

the flame initially attaches to the top of the leeward side of the particle and then 

propagates downward [14, 51].  
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Figure 1.1 The three stages leading to ignition of a fuel particle in a discrete fuelbed [90]. 

Stage 2 

Stage 1 

Stage 3 

Ignition  
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Figure 1.2 Temperature history of a particle and air surrounding it in a fuelbed [90]. 

It is a common practice to assume that ignition of a fuel takes place at a fixed 

temperature [14] if a specific, controlled condition for ignition and a particular fuel are 

used. However, application of a fixed ignition temperature for wildfires may not be 

possible due to the complexities of the heating regime, and environmental and fuel 

conditions [21, 22].  

1.2.2   Governing heat transfer mechanisms  

The transfer of heat from a source to an unburnt fuel is one of the main governing 

phenomena in fire spread. Defined as the energy exchange within or between media 

caused by temperature gradients, heat transfers from hot to cold but not reverse. The three 

modes of heat transfer include conduction, convection and radiation. Temperature 

gradients within fluids drive the so-called buoyancy force which leads to fluid motion. In 

fluid mechanics this motion is called convection which represents mass transfer within a 

fluid. However, in thermodynamics term “convection” normally means convective heat 

transfer. Heat transfer by convection occurs either on a large scale by a moving heated 

fluid (advection) or on a small scale through thermal diffusion associated with the 

random motion of molecules and their interactions which transfers kinetic energy. 
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Convective heat transfer is tied with fluid mechanics, and if gas flow efficiently transfers 

thermal energy from a source to an unburnt fuel, flame propagation will occur. All three 

modes of heat transfer (radiation, conduction and convection) contribute to wildfire 

spread but in different ways [23].     

Because wildland fuel is normally considered to be discrete, conduction is usually 

assumed to be negligible due to a lack of contact between fuel particles [13]. 

Additionally, the interior of large fuel pieces such as trees acts as a heat sink which takes 

heat from the particle’s surface and reduces emission of pyrolysis gasses and its burning 

potential [24]. In contrast, both radiation and convection are responsible for heat transfer 

from flames to the unburnt fuel, and thereby contribute to fire spread. Generally, it has 

been assumed that radiation provides the energy needed to sustain pyrolysis reactions and 

burning, while convection supplies the energy required to preheat unburnt fuel ahead of 

the flame front to its ignition point and to bring new fuel to the fire [24]. 

Historically, a majority of scientists assumed radiation to be the main heat transfer 

mechanism for wildfire spread [25-35]. Radiation was also assumed to be dominant for 

upward flame spread along a vertical wall under natural convection and fire propagation 

through a horizontal, continuous fuel bed under a high horizontal wind [36-38]. A 

rational for this assumption [25] was that a well-developed flame zone would block 

surrounding winds and therefore prevent the ignition of adjacent fuel from convective 

heating. However, fire spread models introduced by Weber and Sullivan included both 

radiative and convective heat transfer modes [39-46]. Butler et al. [49] proposed that 

convective cooling of the fuel particle’s surface tends to be significant as fire approaches 

and, as a result, convective heating could be extreme immediately before and at the 

ignition time. Emori and Iguchi et al. [47], studying flame spread through horizontal and 

inclined fuel beds made of excelsior and vertically oriented paper strips coated with 

candle wax, showed that flame spread in these cases was governed by convection. 

Additionally, Emori and Saito focused on understanding how the spread of convection 

driven fires was different than the spread of radiation driven fires [50]. They showed that 

a pool fire is driven by radiation whereas a wooden crib fire is driven by convection, and 

that these differences have to be considered in the governing principles of flame 
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propagation. Recently, Finney et al. [14, 58] further developed the idea that, before 

ignition, convective heat transfer either from direct flame impingement or natural 

convective heating circulation played a more substantial role than previously believed in 

wildland fire spread. For example, laboratory ignition tests [59] on live pine needles in 

which heating was accomplished by radiation or convection showed that the pine needles 

could not be ignited by radiation alone even at heat fluxes as high as 80 kW/m2 for 

periods of 10 minutes [59, 60]. In contrast, these live pine needles exposed to a 

convective heating flux of 25 kW/m2, a value less than 1/3rd of that used during the 

radiation heating tests, ignited in less than 10 seconds. Based on these and other test 

results, the following was concluded: “Convective cooling of the fine-sized fuel particles 

in wildland vegetation is observed to offset efficient heating by thermal radiation until 

convective heating by contact with flames and hot gasses occurs.” [59] 

1.3 Present research objectives  

The goal of this study was to determine the applicability of non-reactive flow 

experiments in fire research and apply scaling laws to correlate three different scales of 

experimentation (small-scale non-reactive flow, middle-scale burning in a wind tunnel 

and full-scale wildfire). Additionally, infrared visualization of convective-driven ignition 

of a wood sample was of strong interest.  

1.3.1   Advantages of using infrared thermography 

Figures 1.1 and 1.2 show the three stages of heating a fuel particle to its ignition 

temperature. However, a particle’s response to an approaching fire during stages 1 and 2 

is invisible to the human eye. Even during the stage 3, when a particle surface turns 

black, the vision offered by the human eye cannot offer information about processes 

which occur on the particle surfaces because temperature changes have to be understood. 

Thermocouples can be used to measure temperature changes but have severe limitations 

because it is necessary to attach the thermocouple to the surface of the particle if accurate 

temperatures are to be acquired. The need of the attachment of thermocouples makes 

utilization in fire experiments difficult because solid fuel particles change shape (bend, 

expand or shrink) during heating and ignition. Thermocouples also measure temperatures 

at the point of attachment, a very small area relative to the total area of a particle. 
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Therefore, if heat propagation through a fuel particle is to be tracked during heating and 

ignition with thermocouples it would be necessary to attach a number of thermocouples 

along the body of each particle. This requirement significantly complicates experimental 

procedures.  

Infrared thermography is a possible alternative to thermocouples. It has already 

become popular in heat transfer and fluid dynamics research mainly because of its non-

contact capabilities for measuring temperature [52] and allows visualization of infrared 

radiation emitted from the surface of objects. The emitted thermal energy is affected by 

the surface characteristics (emissivity) as well as its temperature [53]. Relative to wildfire 

research, infrared thermography is particularly beneficial in investigating heat transfer 

processes within a fuelbed during fire propagation [54]. It was successfully applied to 

investigate the transient pyrolysis location in upward spreading flame along wood and 

PMMA samples [55, 56] and sub-surface layer defects [57]. 

Naturally, there are limitations in applying infrared thermography in fire research. 

Some properties of solid fuels such as emissivity change during combustion and these 

changes complicate the measurement of accurate temperatures. Infrared cameras are 

usually calibrated using a “black” body of known temperature; the emissivity of a 

“black” body is one. The emissivities of other surfaces are normally lower than one and 

this difference between the value of one for an ideal “black” body and the actual 

emissivity of a surface has to be considered to obtain accurate temperature readings.  

Wood is one of the main types of fuel consumed by wildfire and wood samples 

have been used in fire experimentation. According to variety of sources, emissivity of 

wood is between 0.65 and 0.95 [124–126], depending on type of wood. This range of 

emissivity values gives certain inaccuracy in temperature readings when different types 

of wood are burned. The effect of emissivity variation was studied during the research for 

this thesis, as is described in Chapter 3.  

1.3.2   Elimination of chemical reaction to visualize and study gas motion 

caused by the interaction of horizontal flow and buoyancy-induced flow  

While some studies are focused on chemistry of combustion or heat transfer 

mechanisms, fluid dynamic aspect of fire behavior was of particular interest for this 
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thesis. Depending on ambient conditions, gas flow around flames can be laminar, 

transitional or turbulent; these flow regimes result in different gas behavior within the 

flame [61]. In wildfire applications, the flow is normally considered to be turbulent [62]. 

Because the oxidizer (air) and the fuel (pyrolysis gases) are not initially premixed, 

wildfire flames are classified as a diffusion type. In laminar diffusion flames, buoyant 

convection is an agent which transports burn products from the flame and replaces them 

with oxygen (fresh air) to sustain the reaction [64]. Recently, Finney et al. [14, 58] stated 

that wildfires are essentially dynamic but the causes and mechanisms of their nature are 

yet not well investigated. The dynamic interactions between the flame, fuel and the gas 

flow field instill difficulties in wildfire research that may not be present in other types of 

fires [65].  

Unsteady flame behaviors, such as flickering, pulsing and vortex shedding, that 

are caused by the interaction between the diffusion flame and gas flow has been observed 

many times in flames originating from circular nozzles or jets, as well as in wildfires [66-

71]. The presence of wind has a critical effect on wildland fire behavior - it causes time 

dependent vortex shedding which improves convective heat transfer capabilities [72-74]. 

Therefore, the study of convective heat transfer from a static, or time-averaged, 

perspective cannot address important questions and, as a result, would prevent accurate 

predictions of wildfire behaviors.     

A series of wind tunnel, fire spreading experiments using engineered cardboard 

fuelbeds have been conducted [59] in which two dynamic features were identified within 

the flame zone, including convective peaks and valleys separated by regular spacings that 

moved back-and-forth in a span-wise direction in the flame (Figure 1.3); the number of 

columns depended on the fuel properties and fuelbed geometry. The same type of 

behavior was observed in the progressing front of a wildfire when the flame split into 

columns. This behavior is of paramount interest in this thesis because, although most 

previous laboratory fire studies have used a well-defined fuel under controlled 

environments in conjunction with the use of scaling laws [90], no results have been 

reported in which the complicating effects of chemical reactions associated with flames 

have been eliminated from the investigations. Hence, this work focuses mainly on fluid 
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dynamic aspects of fire spread by eliminating the chemical reactions of flames by using 

an electrical heater as the thermal energy source. 

Eliminating the chemical reaction significantly simplifies the study of dynamics; 

additionally, the use of electrical heater allows precise temperature control. Moreover, 

investigating and understanding the role of buoyancy forces becomes easier when 

temperatures are known precisely without chemical reactions and makes it possible to 

apply scaling laws with variable temperatures and heat fluxes. Hence, Chapter 2 includes 

an overview of scaling laws used in fire research plus assumptions that are made for the 

current study.   

Importantly, the absence of a flame permits visualization of the flow field which 

is normally masked by it. While other fire experiments mostly have concentrated on the 

flame itself, the objective of the present work is to study fluid dynamic mechanisms in 

the absence of a flame, using visualization as one of the main tools of investigation. 

Therefore, this thesis introduces a new approach for investigating the time-dependent 

nature of fire behavior and the role of convection heat transfer in fire spread with a main 

motivation to define the distance ahead of a fire front where convective heat transfer is 

effective.  

Detailed experimental method and results are discussed in Chapter 4, plus 

suggestions for the future study are given in Chapter 5.  

 

Figure 1.3 Peaks and valleys in propagating fire front [90].  
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CHAPTER 2: SCALE MODELING IN FIRE RESEARCH 

2.1 Introduction to Scale Modeling  

Scale modeling has been developed to study and provide insight into physical 

phenomena. The idea is to identify the physics governing a phenomenon, such as force, 

energy, inertia and momentum, and then to develop dimensionless numbers called Pi-

numbers or Pi-groups which represent relationships between characteristic parameters of 

the phenomenon. A scale model is an experimental model of a full-scale or prototype 

system that is designed to represent the essential physical behavior of a full-scale or 

prototype system; scale models enable the demonstration of behaviors or properties of an 

original system without examining it in its full-scale. Scale modeling identifies governing 

mechanisms of a phenomenon and then helps to expand the understanding of it. Scale 

modeling also allows experiments to be conducted in a representative manner by using a 

usable scale or size when prototypes or full-scale are either too large or small to be 

readily studied [83]. A common practice is to use scale modeling for simplifying a 

phenomenon and for studying its essential physics [84].  

A fundamental requirement of scale modeling is that the model and the prototype 

are governed by the same physics [85]. First, a detailed analysis of the original 

phenomena is required to define the important governing mechanisms and those which 

may be insignificant and can be ignored. This analysis step is essential and is the most 

challenging step in scale modeling [86]. Second, accurate relationships between 

parameters which characterize the original phenomenon must be developed [87]. These 

relationships are a set of dimensionless products of the governing parameters (Pi-

numbers) and are called the function relationships [50, 84, 88, 89]. A scale model can be 

considered to be valid if each Pi-number associated with it has a corresponding prototype 

Pi-number that is related to the scale model via a multiplicative constant (scale factor).  

Unfortunately, it is exceedingly difficult to scale a physical phenomenon 

considering all parameters involved. Therefore, partial modeling is normally applied 

which considers parameters of primary importance [85]. As depicted in Figure 2.1, 

during partial modeling, a limited set of assumptions are developed which then have to be 

validated through an experimental scale modeling study to compare experimental 
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outcomes with the prototype. Additional validation may be accomplished via 

computational techniques [114]. Overall, if similarities between the prototype and scale 

model are not strong, then the assumptions used during the development of the important 

parameters and relationships must be reviewed.  

 

Figure 2.1 Steps in scale model development [83, 84, 90]. 

According to Saito [91], there are three approaches in developing scaling laws, 

including: 

1. Parameter approach;  

2. Equation approach;  

3. Law approach.  

The parameter approach is based on Buckingham's Pi theorem [92, 93] and is 

sometimes referred as the “Pi-theorem” or “method of repeating variables” [90]. It was 
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initiated by Aimé Vaschy, Dimitri Riabouchinsky, and Lord Rayleigh (John William 

Strutt), but comprehensively presented by E. Buckingham in 1914 [90, 93-96]. This 

approach involves a number of parameters which characterize the phenomenon and form 

dimensionless groups (Pi-numbers) which are used to accomplish scaling.  

The equation approach starts with derivation of governing equations and 

specification of the boundary conditions of the phenomenon. Since governing equations 

are dimensionally homogeneous, the involved parameters can be arranged in 

dimensionless groups [84, 94]. Williams used this approach in 1969 to form 28 Pi-groups 

related to fire scaling [97]. The inherent beauty of this approach is that the governing 

equations can completely describe the phenomenon and, therefore, all components are 

conserved during formation of the dimensionless Pi-groups [7]. However, the 

applicability of the equation approach is limited to cases where the governing equations 

are either well known or can be accurately stated.  

The law approach begins with a quantitative analysis of forces, energies and 

masses involved in the phenomenon [84]. Hottel advocated for the law approach in 1959 

because he believed that the parameter approach and Buckingham’s Pi theorem led to 

misunderstandings in scale modeling that introduced variables without identifying their 

physical meaning [85]. Hottel also expressed his disappointment in the equation method 

because it requires well-developed governing equations to derive the scaling laws even 

though these governing equations are not a fundamental requirement for scaling [85].  

The use of the law approach in scaling fires has been supported by numerous 

studies [85, 99, 100]. Moreover, wildfire scientists who have studied the role of buoyancy 

forces in fire front behavior have also established initial sets of laws for such wildfire 

investigations. Nevertheless, a number of examples exist in which both parameter and 

equation approaches have been successfully applied to fire research [101, 50, 100]. 

Although Emori was the pioneer of the law approach, he used the parameter approach in 

his fire research because the audience in this arena was familiar with it. Importantly, he 

developed the same Pi-groups using law and parameter approaches which suggested that, 

once the assumptions are correct, reliable scaling laws can be derived using any of the 

approaches [83].  
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2.2 Scale modeling in fire research  

As discussed in Chapter 1, instrumenting of large scale fire is complicated or even 

impossible due to lack of control and the danger of the event. In contrast, laboratory 

environments are much easier to control and safer. Hence, many scale model methods 

have been established that use a variety of fuels, including match sticks, excelsior, 

plywood, cardboard, paper, live and dead fuels, wood cribs of different packing densities 

and liquid fuels. Additionally, multiple experimental equipment like burn chambers, wind 

tunnels, and designated, open control fields and forests have been studied [13, 58, 76-82].  

Spalding [102] and Williams [97] used scaling laws to study fires and realized 

that the total number of Pi-groups exceeded the number of degrees of freedom. Hence, 

the initial 28 Pi-numbers developed by Williams to scale fire phenomenon were 

extremely impractical. Therefore, the number of Pi-groups was reduced to 11 and finally 

to one or two, and proved ultimately to be sufficient for determining useful scaling 

relations [105]; one of these useful relations was the Froude number (Fr) which includes 

inertial and buoyant forces of importance in fires [105].  However, at this period of time 

in fire research, no specific, proven method was available to reliably reduce 28 Pi-

numbers to just a few.  Fortunately, Emori and Schuring [84] developed a relaxation 

theory to achieve this goal.  

Emmons [103, 104] worked with pool fires and paper strips arrays, and Emori and 

Saito [50] investigated pool fires concluding that they were radiative-driven while crib 

fires were convective-driven. Then, cooperative work between Emori and Saito 

established useful and reliable methods for fire scaling [50, 101, 47] in which two 

separate methods for scaling of radiative-driven and convective-dominated fires were 

developed. Initially, 17 Pi-groups were identified for scaling convective-driven crib fires 

and 14 for pool fires [50].  

2.3 Assumptions for the current study 

This study is based on non-reactive flow experiments investigating flow 

instabilities caused by the interaction between buoyant and inertia forces. Elimination of 

chemical reactions, i.e. flames, significantly reduces the quantity of Pi-numbers required 

for scaling. However, a maximum possible similarity is required and used to validate the 
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experimental approach. Strong relations must be achieved between small–scale, non-

reactive experiments, middle-scale fire experiments in a wind tunnel [59] and full-scale 

wildfires. The following assumptions were made for the present study. 

First, it was assumed that air and gas flows within and around flames are 

turbulent, i.e. turbulent fire spread [47, 62, 106]. This means that inertial and buoyant 

forces dominate the viscous force [107]. This assumption was supported by critical 

assessments of previous studies which classified flow fields within crown [110, 111], 

grass [108], crib [50, 109] and wind tunnel fires [83, 98] as turbulent. Figure 2.2 shows 

turbulent fire spread in two different environmental conditions:  a – wind tunnel 

experiments with cardboard fuels; and, b – grassland fires [90]. 

 

Figure 2.2 Turbulent flame zone in:  a – wind tunnel burn, b – grassland wildfire [90]. 

Second, it was assumed that heat transfer from the flame to unburnt fuel is mainly 

due to convection. According to literature, the dominant heat transfer mode in large grass 

fires, crib fires and wind tunnel experiments is convection [50, 112, 113]. 

Third, it was assumed that fire propagates along a horizontal surface with 

horizontal wind in the direction of fire spread. Hence, fire spread in a single direction was 

considered. The horizontal airflow (wind) is assumed to be constant and controlled in two 

cases (wind tunnel burns and non-reactive flow experiments).  

Fourth, it was assumed that the vertical (upward) component of the flow velocity 

is mainly due to buoyancy.  

Fifth, it was assumed the fuelbeds were continuous and uniform, consisting of 

discrete fuel particles. Since one scale model did not include combustion, any fuel 

dependences in other two models were neglected. In other words, the same fuel 

b a 



17 
 

properties were assumed for wind tunnel experiments and wildland fires. Therefore, all 

Pi-numbers associated with fuel properties were automatically satisfied. However, heat 

fluxes were used in the models that represented heat from the flames.  

2.4 Scaling of convective-driven fires 

Recent studies on wildland fires [58, 59] have demonstrated that fire spread 

through wildland fuel beds is turbulent and governed by convective heat transfer from the 

fire front and hot combustion products. Therefore, the scaling laws for convective-driven 

fires were taken as the foundation for this study [47]. 

Previous studies by Finney et al. [58] established that the flame front of a 

progressing fire splits into towers separated by valleys, as depicted in Figure 2.2. The 

widths of the towers and valleys have been shown to remain nearly constant despite the 

fact that they are moving back and forth in span-wise direction along the flame front [83, 

59, 90]. Figure 2.3 schematically shows behavior of a flame propagating to the right. 

 

Figure 2.3 Schematic of flame spread over a fuelbed [90]. 
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As shown in Figure 2.3, the parameters used in the scaling were:  

• 𝑢𝑢 – horizontal wind velocity;  

• 𝐿𝐿𝑤𝑤 – depth of the flame zone (where combustion takes place); 

• 𝐿𝐿𝑓𝑓 – average flame height;  

• 𝐿𝐿𝑎𝑎 – average plume height;  

• 𝜌𝜌1 – density of hot gases in the plumes; 

• 𝜌𝜌2 – density of unburnt fuel; 

• 𝐻𝐻 – height of the discrete fuel particles (fuelbed); 

• 𝐿𝐿𝑒𝑒 – preheating length (distance ahead the flame where unburnt fuel experiences 

significant heat transfer from the flame); 

• 𝜔𝜔 – frequency factor (represents a time dependent behavior/instability such as 

vortex shedding); 

• l2 – distance between two valleys or width of a tower (it also represents wave 

length within a fire front). 

All 17 Pi-numbers for convective-driven crib fires developed by Emori and Saito 

[50] are presented below. They were adapted for the type of fire depicted in Figure 2.3. 

Table 2.1 Pi-numbers for convective-driven crib fires [50]. 

𝜋𝜋1 =
∆𝜌𝜌1
𝜌𝜌1

 
𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐ℎ𝑎𝑎𝐷𝐷𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎 

𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎
 

𝜋𝜋3 =
𝑣𝑣
𝑢𝑢

 𝑉𝑉𝑒𝑒𝑎𝑎𝐷𝐷𝐷𝐷𝑐𝑐𝑎𝑎𝑐𝑐 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝐷𝐷 𝑓𝑓𝑐𝑐𝑜𝑜𝑤𝑤
𝐿𝐿𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝑐𝑐 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝐷𝐷 𝑓𝑓𝑐𝑐𝑜𝑜𝑤𝑤

 

𝜋𝜋7 =
Ө2
Ө1

 
𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑢𝑢𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎 𝑐𝑐𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑐𝑐𝐷𝐷 

𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎
 

𝜋𝜋8 =
∆Ө1
Ө1

 
𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝐷𝐷𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎 

𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎
 

𝜋𝜋9 =
∆Ө2
Ө1

 
𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑐𝑐ℎ𝑎𝑎𝐷𝐷𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑢𝑢𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎 𝑐𝑐𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑐𝑐𝐷𝐷 
𝑇𝑇𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎

 

𝜋𝜋15 =
𝜌𝜌1
𝜌𝜌2

 𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑒𝑒 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑎𝑎 𝑎𝑎𝐷𝐷𝑎𝑎 
𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑎𝑎𝐷𝐷𝑐𝑐 𝑐𝑐𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑐𝑐𝐷𝐷
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Table 2.1 (continued) 

𝜋𝜋16 =
𝐿𝐿𝑓𝑓
𝑐𝑐𝑐𝑐

 
𝐹𝐹𝑐𝑐𝑎𝑎𝑐𝑐𝑒𝑒 ℎ𝑒𝑒𝐷𝐷𝑎𝑎ℎ𝐷𝐷
𝐿𝐿𝑒𝑒𝐷𝐷𝑎𝑎𝐷𝐷ℎ 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠

 

𝜋𝜋17 =
𝐻𝐻
𝑐𝑐𝑐𝑐

 
𝐻𝐻𝑒𝑒𝐷𝐷𝑎𝑎ℎ𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑎𝑎𝐷𝐷𝑐𝑐 (𝑓𝑓𝑢𝑢𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎)

𝐿𝐿𝑒𝑒𝐷𝐷𝑎𝑎𝐷𝐷ℎ 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠
 

𝜋𝜋18 =
𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐

 
𝑇𝑇ℎ𝐷𝐷𝑐𝑐𝑠𝑠𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠𝐷𝐷
𝐿𝐿𝑒𝑒𝐷𝐷𝑎𝑎𝐷𝐷ℎ 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠

 

𝜋𝜋19 =
𝑐𝑐0
𝑐𝑐𝑐𝑐

 
𝑆𝑆𝑐𝑐𝑎𝑎𝑐𝑐𝑒𝑒 𝑐𝑐𝑒𝑒𝐷𝐷𝑤𝑤𝑒𝑒𝑒𝑒𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠𝐷𝐷
𝑇𝑇ℎ𝐷𝐷𝑐𝑐𝑠𝑠𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠𝐷𝐷

 

𝜋𝜋20 =
𝑞𝑞𝑓𝑓
𝑄𝑄𝜆𝜆

 𝐻𝐻𝑒𝑒𝑎𝑎𝐷𝐷 𝑣𝑣𝑎𝑎𝑐𝑐𝑢𝑢𝑒𝑒 𝑐𝑐𝑒𝑒𝑎𝑎 𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑎𝑎𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑎𝑎𝐷𝐷𝑐𝑐 𝑐𝑐𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑐𝑐
𝐿𝐿𝑎𝑎𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 ℎ𝑒𝑒𝑎𝑎𝐷𝐷 𝑐𝑐𝑒𝑒𝑎𝑎 𝑢𝑢𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑎𝑎𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑎𝑎𝐷𝐷𝑐𝑐 𝑐𝑐𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑐𝑐

 

𝜋𝜋21 =
𝑐𝑐2
𝑐𝑐1

 𝑆𝑆𝑐𝑐𝑒𝑒𝑐𝑐𝐷𝐷𝑓𝑓𝐷𝐷𝑐𝑐 ℎ𝑒𝑒𝑎𝑎𝐷𝐷 𝑜𝑜𝑓𝑓 𝑐𝑐𝑎𝑎𝐷𝐷𝑐𝑐 𝑐𝑐𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑐𝑐𝐷𝐷 
𝑆𝑆𝑐𝑐𝑒𝑒𝑐𝑐𝐷𝐷𝑓𝑓𝐷𝐷𝑐𝑐 ℎ𝑒𝑒𝑎𝑎𝐷𝐷 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷 𝑎𝑎𝐷𝐷𝑐𝑐𝑜𝑜𝐷𝐷𝑐𝑐ℎ𝑒𝑒𝑎𝑎𝐷𝐷𝑐𝑐 𝑐𝑐𝑎𝑎𝑒𝑒𝐷𝐷𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒

 

𝜋𝜋22 =
𝑐𝑐𝑐𝑐
𝑢𝑢𝐷𝐷

 
𝐿𝐿𝑒𝑒𝐷𝐷𝑎𝑎𝐷𝐷ℎ 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑠𝑠 

𝐿𝐿𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝑐𝑐 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝐷𝐷𝐷𝐷𝑐𝑐𝑒𝑒 𝐷𝐷𝑐𝑐𝑎𝑎𝑐𝑐𝑒𝑒
 

𝜋𝜋23 =
𝑐𝑐𝑐𝑐𝑎𝑎
𝑢𝑢2

 ≈
𝐵𝐵𝑢𝑢𝑜𝑜𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷 𝑓𝑓𝑜𝑜𝑎𝑎𝑐𝑐𝑒𝑒
𝐼𝐼𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝐷𝐷𝑎𝑎𝑐𝑐 𝑓𝑓𝑜𝑜𝑎𝑎𝑐𝑐𝑒𝑒

 

𝜋𝜋24 =
𝐸𝐸𝐷𝐷

𝜌𝜌2𝑐𝑐𝑐𝑐𝑞𝑞𝑓𝑓
 ≈

𝐻𝐻𝑒𝑒𝑎𝑎𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎 𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝑐𝑐𝑢𝑢𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎 
𝐻𝐻𝑒𝑒𝑎𝑎𝐷𝐷 𝑎𝑎𝑒𝑒𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎

 

𝜋𝜋25 =
𝑐𝑐1∆Ө1
𝑞𝑞𝑓𝑓

 ≈
𝐻𝐻𝑒𝑒𝑎𝑎𝐷𝐷 𝐷𝐷𝐷𝐷𝑜𝑜𝑎𝑎𝑒𝑒𝑎𝑎 𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝐷𝐷 𝑎𝑎𝑢𝑢𝑒𝑒 𝐷𝐷𝑜𝑜 𝐷𝐷𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑢𝑢𝑎𝑎𝑒𝑒 𝑎𝑎𝐷𝐷𝐷𝐷𝑒𝑒 

𝐻𝐻𝑒𝑒𝑎𝑎𝐷𝐷 𝑎𝑎𝑒𝑒𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎
 

𝜋𝜋26 =
𝑐𝑐𝑐𝑐𝑎𝑎
𝑞𝑞𝑓𝑓𝐽𝐽

 ≈
𝑊𝑊𝑜𝑜𝑎𝑎𝑠𝑠 𝑎𝑎𝑜𝑜𝐷𝐷𝑒𝑒 𝑐𝑐𝐷𝐷 𝑐𝑐𝑢𝑢𝑜𝑜𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷 𝑓𝑓𝑜𝑜𝑎𝑎𝑐𝑐𝑒𝑒 

𝐻𝐻𝑒𝑒𝑎𝑎𝐷𝐷 𝑎𝑎𝑒𝑒𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎
 

 

It was clear that satisfying all 17 Pi-numbers simultaneously would be 

impractical.  Hence, the relaxation technique of Emori et al. [47] was used that simplified 

the above scaling requirements into the following seven physical parameters entailing 

two forces and five heats. 

• Fi = ρ1l2Lau2 = inertial force of air and gas; 

• Fb = ∆ρ1l2LwLag = buoyant force of air and gas; 
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• Q = Øqfρ2l2HLw = ILwt = heat generated; 

• Qr = El2Let = radiant heat received by unburnt fuel;  

• Qc1 = cpρ1Lal2Le∆Ө1 = heat stored in air and gas associated with temperature rise; 

• Qc2 = c2ρ2l2HLe∆Ө2 = heat stored in unburnt fuel; 

• Qλ = λρ2l2HLe = latent heat of fuel. 

Where [47]: cp – specific heat of gas at atmospheric pressure;  

c2 – specific heat of fuel;  

E – irradiance received by radiometer; 

g – gravitational acceleration;  

H – fuelbed height;  

I – fire intensity; 

l2 – width of fuelbed [47] - was replaced as flame tower width (Figure 2.3);  

qf – heat value per unit mass of fuel; 

t – characteristic time;  

∆Ө1 – temperature change of air and gas;  

∆Ө2 – temperature change of fuel; 

λ – latent heat per unit mass of fuel;  

Ø – ratio of consumed fuel to the total fuel available.  

These seven physical parameters were used to form six independent Pi-numbers, 

as follows [47]: 

𝜋𝜋1 =
𝐹𝐹𝑖𝑖
𝐹𝐹𝑏𝑏

=
𝜌𝜌1𝑢𝑢2

∆𝜌𝜌1𝐿𝐿𝑤𝑤𝑎𝑎
= 𝐹𝐹𝑎𝑎𝑜𝑜𝑢𝑢𝑎𝑎𝑒𝑒 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

𝜋𝜋2 =
𝑄𝑄𝑟𝑟
𝑄𝑄

=
𝐸𝐸𝑐𝑐2𝐿𝐿𝑒𝑒
𝐼𝐼𝐿𝐿𝑤𝑤

 

𝜋𝜋3 =
𝑄𝑄𝑐𝑐1
𝑄𝑄

=
𝑐𝑐𝑝𝑝𝜌𝜌1𝑐𝑐2𝐿𝐿𝑎𝑎𝑅𝑅∆Ө1

𝐼𝐼𝐿𝐿𝑤𝑤
 

𝜋𝜋4 =
𝑄𝑄𝑐𝑐2
𝑄𝑄

=
𝐿𝐿𝑒𝑒
𝐿𝐿𝑤𝑤
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𝜋𝜋5 =
𝑄𝑄𝜆𝜆
𝑄𝑄

=
𝜆𝜆𝐿𝐿𝑒𝑒

Ø𝑞𝑞𝑓𝑓𝐿𝐿𝑤𝑤
 

𝜋𝜋6 =
𝐹𝐹𝑖𝑖𝑢𝑢𝐷𝐷
𝑄𝑄

=
𝜌𝜌1𝑐𝑐2𝐿𝐿𝑎𝑎𝑢𝑢3

𝐼𝐼𝐿𝐿𝑤𝑤
 

Where: R = Le/t = horizontal fire spread velocity; 

I = Øqfρ2l2H/t = fire intensity.  

Recent research by Finney’s group has shown a strong correlation between 

Froude (Fr) and Strouhal (St) numbers. This correlation was established through research 

and observations of a variety of fuel types and burning conditions including full-scale 

crown fires, control burns over grassland, large-scale crib fires and wind tunnel burns of 

engineered cardboard [83]. The temperature of combustion gases can easily be above 

overcome 1000K regardless of burning conditions, indicating that fires generate strong 

buoyant forces which interact with the inertia force of air. In an upstream location of a 

fire, external wind and fire-induced flow are also present, both of which are governed by 

inertia [83]. The interaction between the buoyant and inertial forces causes flame 

instabilities with a repeating pattern which then lead to the formation of Gorlter vortices 

in the downstream direction [83]. Hence, it was concluded that, in the present 

investigation, the inertial force in the upstream direction (Fi,up) had to be considered 

separately from inertial force in the downstream direction (Fi,down). This distinction 

resulted in the following Pi-number [83, 47] which represents the relationship between 

the inertial force causing vortex shedding downstream of a flame and inertial force of air 

flow upstream of a flame [83]. It can be used to scale pulsing frequency of a fire front.  

𝜋𝜋7 =
𝐹𝐹𝑖𝑖,𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑
𝐹𝐹𝑖𝑖,𝑢𝑢𝑝𝑝

=
𝐿𝐿𝑒𝑒𝑤𝑤
𝑢𝑢

= 𝑆𝑆𝐷𝐷𝑎𝑎𝑜𝑜𝑢𝑢ℎ𝑎𝑎𝑐𝑐 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

Where: w – downstream pulsing frequency.  

Because fire spread velocity is also important for appropriate scaling, another Pi-

number was introduced, as defined in the following. With this addition, the total number 

of relevant Pi-numbers to be assessed for use in the current study was eight.  

𝜋𝜋8 =
𝑅𝑅
𝑢𝑢

=
𝐹𝐹𝐷𝐷𝑎𝑎𝑒𝑒 𝐷𝐷𝑐𝑐𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷

𝐿𝐿𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝑐𝑐 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝐷𝐷 𝑓𝑓𝑐𝑐𝑜𝑜𝑤𝑤
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2.5 Scaling laws for the current study 

The first step in the present work was to validate the wind tunnel fire scale model, 

using as a basis the already-developed scaling laws [83] that were adapted and modified 

for application to the experiments under study herein. For example, π5 was ignored 

because its fuel dependence [83] was assumed to be the same in all models; therefore, it 

was automatically satisfied. Additionally, π6 was neglected because the u3 term would 

have caused very high wind velocity for the scale model and that would have changed the 

nature of the phenomenon under investigation.  

 Thus, the following Pi-numbers were used to perform scaling analysis.  

𝜋𝜋1 =
𝐹𝐹𝑖𝑖
𝐹𝐹𝑏𝑏

=
𝜌𝜌1𝑢𝑢2

∆𝜌𝜌1𝐿𝐿𝑤𝑤𝑎𝑎
= 𝐹𝐹𝑎𝑎𝑜𝑜𝑢𝑢𝑎𝑎𝑒𝑒 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

𝜋𝜋2 =
𝑄𝑄𝑟𝑟
𝑄𝑄

=
𝐸𝐸𝑐𝑐2𝐿𝐿𝑒𝑒
𝐼𝐼𝐿𝐿𝑤𝑤

 

𝜋𝜋3 =
𝑄𝑄𝑐𝑐1
𝑄𝑄

=
𝑐𝑐𝑝𝑝𝜌𝜌1𝑐𝑐2𝐿𝐿𝑎𝑎𝑅𝑅∆Ө1

𝐼𝐼𝐿𝐿𝑤𝑤
 

𝜋𝜋4 =
𝑄𝑄𝑐𝑐2
𝑄𝑄

=
𝐿𝐿𝑒𝑒
𝐿𝐿𝑤𝑤

 

𝜋𝜋7 =
𝐹𝐹𝑖𝑖,𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑
𝐹𝐹𝑖𝑖,𝑢𝑢𝑝𝑝

=
𝐿𝐿𝑒𝑒𝑤𝑤
𝑢𝑢

= 𝑆𝑆𝐷𝐷𝑎𝑎𝑜𝑜𝑢𝑢ℎ𝑎𝑎𝑐𝑐 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

𝜋𝜋8 =
𝑅𝑅
𝑢𝑢

=
𝐹𝐹𝐷𝐷𝑎𝑎𝑒𝑒 𝐷𝐷𝑐𝑐𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷

𝐿𝐿𝑎𝑎𝐷𝐷𝑒𝑒𝑎𝑎𝑎𝑎𝑐𝑐 𝑣𝑣𝑒𝑒𝑐𝑐𝑜𝑜𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 𝑜𝑜𝑓𝑓 𝑎𝑎𝑎𝑎𝐷𝐷 𝑓𝑓𝑐𝑐𝑜𝑜𝑤𝑤
 

Table 2.2 shows scaling predictions for the full-scale fire based on parameters of a 

wind tunnel burn. The original form of this table was interactive and could be used to 

predict parameters of the full-scale fire by entering parameters for the scale model. For 

example, parameters of the scale model entered on the left hand side of Table 2.2 

predicted the parameters on the right hand side of the table; only the wind velocity for the 

real fire had to be assumed and, in general, is the only factor which can be easily 

measured even before a fire is initiated. It was concluded that most of the predicted 

parameters were reasonable, based on previous observation [75], except for the width of 

flame peak which had not been scaled; it will be dropped from further consideration in 
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this thesis with the recommendation that additional investigations of scaling laws for fires 

should include this parameter.  

Table 2.2 Parameters and their relations used to correlate wind tunnel experiments to 

wildfire (primed symbols represent a real fire and unprimed symbols represent the scale 

model). The row labeled “width of flame peak” is bolded to indicate it was not scaled in 

this study and is to be dropped from further consideration herein. 

Scaling 
Parameter Scale Model Relation Real Fire 

Horizontal 
wind velocity u [m/s] 1.00 u' must be assumed u' [m/s] 10.00 

Flame depth Lw [m] 0.50 𝐿𝐿𝑤𝑤′ = �
𝑢𝑢′
𝑢𝑢
�
2

∗ 𝐿𝐿𝑤𝑤    𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋1 Lw' [m] 50.00 

Preheating 
length Le [m] 0.10 𝐿𝐿𝑒𝑒′ = �

𝐿𝐿𝑤𝑤′
𝐿𝐿𝑤𝑤

� ∗ 𝐿𝐿𝑒𝑒   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋4  Le' [m] 10.00 

Flame burst 
frequency w [1/s] 0.50 𝑤𝑤′ = �

𝐿𝐿𝑒𝑒𝑢𝑢′

𝐿𝐿𝑒𝑒′𝑢𝑢
� ∗ 𝑤𝑤   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋7 w' [1/s] 0.05 

Velocity of 
flame spread R [m/s] 0.10 𝑅𝑅′ = �

𝑢𝑢′
𝑢𝑢
� ∗ 𝑅𝑅   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋8  R' [m/s] 1.00 

Width of 
flame peak l2 [m] 0.50 𝒍𝒍𝟐𝟐′ = �

𝑳𝑳𝒆𝒆𝑳𝑳𝒘𝒘′
𝑳𝑳𝒆𝒆′𝑳𝑳𝒘𝒘

� ∗ 𝒍𝒍𝟐𝟐   𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝝅𝝅𝟐𝟐 l2' [m] 0.50 

Height of fire 
plume La [m] 1.20 𝐿𝐿𝑎𝑎′ = �

𝐿𝐿𝑒𝑒′𝑉𝑉
𝐿𝐿𝑒𝑒𝑉𝑉′

� ∗ 𝐿𝐿𝑎𝑎   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋3 La' [m] 12.00 

 

Table 2.3 is similar to Table 2.2 except that it shows relations for reverse scaling 

calculations. The geometrical similarity requirement demands flame depth (Lw) to be 

scaled in the same manner as the other lengths. However, this demand is not practical 

because Lw has to be significantly smaller than fuelbed length if the experimentation is 

realistic and has burnt fuel behind the flame zone and unburnt fuel ahead of the flame 

zone. All parameters were scaled based on the scaling laws and gave reasonable values 

confirmed by wind tunnel burns [59].  
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Table 2.3 Parameters and their relations used to correlate wildfire to wind tunnel 

experiments. Where prime represents a real fire while no prime stands for a scale model. 

Scaling 
Parameter Real Fire  Relation Scale Model 

Horizontal 
wind velocity u' [m/s] 8.00 𝑢𝑢 = ��

𝐿𝐿𝑤𝑤
𝐿𝐿𝑤𝑤′

� ∗ 𝑢𝑢′  𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋1 u [m/s] 1.79 

Flame depth Lw' [m] 10.00 𝐿𝐿𝑤𝑤  𝑐𝑐𝑢𝑢𝐷𝐷𝐷𝐷 𝑐𝑐𝑒𝑒 𝑎𝑎𝐷𝐷𝐷𝐷𝑢𝑢𝑐𝑐𝑒𝑒𝑎𝑎 Lw [m] 0.50 

Preheating 
length Le' [m] 6.00 𝐿𝐿𝑒𝑒 = �

𝐿𝐿𝑤𝑤
𝐿𝐿𝑤𝑤′

� ∗ 𝐿𝐿𝑒𝑒′   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋4  Le [m] 0.30 

Flame burst 
frequency w' [1/s] 0.05 𝑤𝑤 = �

𝐿𝐿𝑒𝑒′𝑢𝑢
𝐿𝐿𝑒𝑒𝑢𝑢′

� ∗ 𝑤𝑤′   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋7 w [1/s] 0.22 

Velocity of 
flame spread R' [m/s] 0.60 𝑅𝑅 = �

𝑢𝑢
𝑢𝑢′
� ∗ 𝑅𝑅′   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋8  R [m/s] 0.13 

Height of fire 
plume La' [m] 5.00 𝐿𝐿𝑎𝑎 = �

𝐿𝐿𝑒𝑒𝑉𝑉′
𝐿𝐿𝑒𝑒′𝑉𝑉

� ∗ 𝐿𝐿𝑎𝑎′   𝑓𝑓𝑎𝑎𝑜𝑜𝑐𝑐 𝜋𝜋3 La [m] 1.12 

 

To correlate the non-reactive flow experiments to wind tunnel burns [59, 83] and 

wildfires, it is necessary that strong similarities in behavior are confirmed by the scaling 

laws, i.e. the scale models and prototype must satisfy the same set of Pi-numbers. 

However, because of the non-reactive nature of the experiments, some of the Pi-numbers 

described above can be eliminated from consideration. The reasons for eliminating these 

Pi-numbers are given in the following. 

• 𝜋𝜋2 was ignored because it involves irradiance received by a radiometer (E). When 

wind tunnel fire experiments are compared to wildfire this value is similar for 

both, i.e. E ≈ E’. However, in non-reactive flow experiments the irradiance is 

much smaller due to the use of a lower temperature, an absence of flame and the 

horizontal location of a heater which prevented radiative heat transfer downstream 

to where potential unburnt fuel would be located. Therefore, 𝜋𝜋2 was considered 

not to be applicable and was ignored.  

• 𝜋𝜋4 was assumed to be automatically satisfied. It was not applicable for the non-

reactive flow experiments because Lw represents heater width which was constant 

for any wind speed which would have affected preheating length (Le). 
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• 𝜋𝜋5 was ignored because it includes a fuel dependence (Ø) which was not 

applicable for the non-reactive, no-fuel, experiments. 

 

In addition, in personal discussions with Saito [115] it was suggested that π2, π4, 

π5, and  π6 could be ignored because they were either automatically satisfied or had 

minor influence on the outcomes. Therefore, the following Pi-numbers were selected as 

primary ones for the research conducted herein. 

𝜋𝜋1 =
𝐹𝐹𝑖𝑖,𝑢𝑢𝑝𝑝
𝐹𝐹𝑏𝑏

=
𝜌𝜌1𝑢𝑢2

∆𝜌𝜌1𝐿𝐿𝑤𝑤𝑎𝑎
= 𝐹𝐹𝑎𝑎𝑜𝑜𝑢𝑢𝑎𝑎𝑒𝑒 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

𝜋𝜋3 =
𝑄𝑄𝑐𝑐1
𝑄𝑄

=
𝑐𝑐𝑝𝑝𝜌𝜌1𝑐𝑐2𝐿𝐿𝑎𝑎𝑅𝑅∆Ө1

𝐼𝐼𝐿𝐿𝑤𝑤
 

𝜋𝜋7 =
𝐹𝐹𝑖𝑖,𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑
𝐹𝐹𝑖𝑖,𝑢𝑢𝑝𝑝

=
𝐿𝐿𝑒𝑒𝑤𝑤
𝑢𝑢

= 𝑆𝑆𝐷𝐷𝑎𝑎𝑜𝑜𝑢𝑢ℎ𝑎𝑎𝑐𝑐 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

These Pi-numbers were used to validate applicability of non-reactive flow 

experiments in fire research. The results are discussed in Chapter 4. 
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CHAPTER 3: INFRARED THERMOGRAPHY - VISUALIZATION OF 

CONVECTIVE-DRIVEN IGNITION OF WOOD PARTICLES   

3.1 Experimental methods and results   

Infrared (IR) thermography is a technique based on the detection of infrared 

radiation and its visualization through thermograms. Any object with temperature above 

absolute zero emits infrared radiation and the amount of this radiation increases with an 

object’s temperature [117-119]. An IR camera detects warmer objects which stand out 

against a cooler background; different levels of IR emission correspond to different 

temperatures. Thus, an IR camera can be used to detect temperatures of objects, the 

accuracy of which depends on appropriate calibration of the camera and on the surface 

properties of the objects.  

A surface behavior with regard to thermal radiation depends on its reflection, 

absorption and transmission. The sum of all three parameters’ coefficients is equal to one 

for all surfaces; however, the value of each parameter depends on the surface. The 

following five examples are idealized types of behavior [120-122]. 

• An opaque body does not transmit any radiation that is incident upon it, but some 

of the radiation can be reflected from its surface and/or absorbed by it, i.e. 

transmission = 0 and reflection + absorption = 1. 

• A transparent body transmits all radiation that is incident upon it, i.e. transmission 

= 1 and reflection = absorption = 0. 

• A white body reflects all incident radiation uniformly in all directions, i.e. 

reflection = 1 and transmission = absorption = 0. 

• A black body absorbs all radiation that is incident upon it regardless of frequency 

or angle of incidence, i.e. reflection = transmission = 0 while absorption = 1.  

• A gray body has uniform reflection, absorption and transmission at all 

wavelengths.  

The surface emissivity of an object characterizes its effectiveness in emitting 

energy as thermal radiation. Quantitatively, emissivity represents the ratio of the thermal 

radiation from a surface to the radiation from the “black” body’s surface at the same 

temperature; hence, emissivity has values between 0 and 1. The surface of the “black” 
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body emits thermal (IR) radiation at the rate of 448 W/m2 at a temperature of 25oC [123]; 

any object with an emissivity less than one emits thermal radiation at a lower rate.  

IR thermography has been used in fire research [116], but the accuracy of the 

temperatures that are measured is still under question because of the variation of the 

values of transmission, absorption and reflection during burning [120-122]. A large 

number of infrared detectors (IR cameras) are available commercially and an even larger 

number of lenses and filters can be purchased. Indeed, it is possible to calibrate an IR 

camera with respect to its use and image post-processing can be applied to enhance 

results.  

IR cameras were recently introduced in wind tunnel fire experiments [90, 116]. 

Because wood is one of the main fuels consumed by wildfires, it is often used as the fuel 

particles in fire experiments [90, 116]. It was also used during the current research, one 

goal of which was to use IR thermography to accurately visualize the ignition of wood 

particles which were subjected to only convective heat transfer. Although accomplishing 

this goal may seem to be relatively easy, it is to be realized that the heating of wood 

changes its surface texture and color (gets darker), which leads to changes in surface 

emissivity. Hence, image post-processing was a step taken to improve accuracies of the 

temperature readings; one requirement for accurate post-processing is an understanding 

of the differences between actual emissivity of a surface and the emissivity of a “black” 

body to which the camera was calibrated.  

The IR camera used during the experimentation was a FLIR SC4000 with 

resolution of 320 x 256 pixels and a spectral range of 3 - 5 μm. It was fitted with a 

broadband filter having a spectral range of 3.7 - 4.2 μm to eliminate flame emission and 

enable the solid, wood surface to be imaged [116]. A super-framing algorithm was 

employed to reduce the amount of noise and saturation, and to improve the quality of 

images; it recorded a set of four images (or sub-frames) at progressively shorter exposure 

times in rapid sequence and then repeated this cycle throughout each IR data acquisition 

trial. The sub-frames from each cycle were then merged into a single super-frame to 

combine the best features of all four sub-frames. This process, known as collapsing [116], 

provided thermal images with high contrast and accurate temperatures over a wide range. 
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A black ceramic plate with known surface emissivity of 0.96 was used as the 

“black” body to compare samples with, i.e. its transmission = 0, absorption = 0.96 and 

reflection = 0.04 (negligible). Wood craft sticks from Creativity Street were used as the 

wood particle samples. Because their texture and color varied, which could potentially 

affect their emissivity, ten sticks having different textures and colors were used during 

the experimentation. The sticks were cut into 50x17x1.5 mm pieces. As shown in Figure 

3.1, after painting with a high temperature, flat black paint by Rust-Oleum, either one-

half of the wood surface was black with the other half the wood’s original color (left hand 

side of Figure 3.1) or 2 mm black stripes were painted that alternated with 2 mm of the 

original wood surface (right hand side of Figure 3). 

 

Figure 3.1 Wood particle samples. 

The half painted surfaces were used to assess whether the black paint had 

reflection, absorption and transmission values close to that of the reference “black” body. 

They were placed next to the “black” body while a high-power light source irradiated the 

entire surface of the wood particles and the “black” body, simultaneously, at a 35o angle 

of incidence from vertical; the IR camera was positioned to view the particles and the 

“black” body at the same angle from vertical – see Figure 3.2, left side. Infrared radiation 

from the light source that reflected from both the particles and “black” body was 

measured to determine temperatures while the surface temperatures were also measured 

using thermocouples attached to them. The difference between the IR radiance and the 

thermocouple temperatures of the “black” body versus those of the unpainted and painted 

wood surfaces would signify differences in reflectivities and, consequently, differences in 

absorption because the transmission values are zero for these surfaces. Ten data 

acquisition periods were accomplished with different wood samples but no significant 

differences in the IR data were detected between the black side of the particles and the 

“black” body. Hence, the black painted wood surface acted as a representative “black” 

body. Simultaneously it was discovered that the unpainted sides of the wood particles 
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gave slightly higher radiance readings than the painted surfaces; in other words, the 

unpainted wood had higher reflectivity and lower absorption than the painted wood 

surfaces.   

The wood particles with painted black stripes were placed on an electrical heater 

(Figure 3.2, right side) and heated to their ignition temperature; the particles were firmly 

attached to the heater to sustain intimate contact between the heater and entire surface of 

the particles. The IR camera was used to record radiance and temperature as the particles 

were heated at 3 points on the black stripes and 3 points on the unpainted areas between 

the black stripes. These points were near each other to prevent any inaccuracy due to 

potential temperature gradients that were on the heater surface. Heater measurements 

were obtained from the black heating element surface near the wood particles. The 

temperature of the heater was also monitored using thermocouples.  

 

Figure 3.2 Experimental setup for IR imaging. 

The graphs in Figures 3.3 and 3.4 summarize the data acquired during these tests. 

The IR camera measurements were acquired from black stripes, unpainted wood and 

from the heater surface, and are labeled accordingly in the Figures. Figure 3.3 displays 

radiance versus time of heating; as the heating time increased, the differences between 

the radiance of the black painted and unpainted wood particles increased. For example, at 

room temperature, i.e. time = 20 seconds, the radiances from black and unpainted areas 

were equal whereas at the end of the heating at 110 seconds the difference between these 

radiances attained their maximum value. While unpainted wood experienced pyrolysis 
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during these tests, it is also to be expected that charring of the black stripes could have 

caused paint decomposition which also would affect radiance measurements. However, 

as can be seen in Figure 3.4, differences in radiances of unpainted and painted black 

surfaces did not create significant temperature differences between these surfaces. In fact, 

between 25oC and almost 500oC, the differences between the temperature of black 

painted and unpainted areas were less than 5% for all wood particles tested.  

Therefore, it was concluded that reflection from the black and unpainted areas on 

the wood caused the differences in both radiance and temperature whereas the emissivity 

was similar for them. Moreover, the temperature rise and the charring of the surfaces did 

not significantly affect surface emissivity. Thus, for this particular study, the IR camera 

could be used to measure wood surface temperatures without the need to consider 

emissivity adjustments.  

 

Figure 3.3 Radiance from black and unpainted wood surfaces, and heater surface (IR 
measurements). 
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Figure 3.4 Temperature of black and unpainted wood surfaces, and heater surface (IR 
measurements). 

3.2 Experimental setup and results for convective-driven ignition of fuel 
particles  

Figures 3.5 and 3.6 show the experimental setup used for visualizing fuel particle 

ignition under convective-driven heating. An electrical heater (1.5 kW) coupled with a 

fan driven by a DC motor induced airflow over the particles with controlled temperatures 

and velocities. This airflow was directed by two wooden walls thermally insulated with 

cement boards. The fuel particles were placed downstream of the heating element, and 

were symmetrically positioned between the side walls. The entire setup was coated with 

high temperature, flat black paint sprayed from a Rust-Oleum container. The temperature 

of the hot airflow was controlled using a rheostat and measured using a thermocouple. 

Both the IR camera and thermocouples measured the temperatures of the wood particles 

as they were convectively heated on the side facing the hot airflow. Representative 

temperature histories during an experimental test are displayed in Figures 3.7 and 3.8. 
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Figure 3.5 Diagram of the experimental setup for studying convective-driven ignition of 
wood and cardboard particles. 

 

 

Figure 3.6 Experimental setup for studying the convective-driven ignition of wood and 
cardboard particles. 

The following experimental materials and conditions were used: 

Fuel particle 



33 
 

• Cardboard particles with variable sizes and moisture content of 5.5 ± 0.5 % by 

weight.  Although cardboard particles were also studied, the focus of this thesis 

will be the wood particles.  

• Wood particles (50x17x1.5 mm) with moisture content of 5.2 ± 0.2 % by weight.  

• Distance between the heating element and fuel particles was kept constant at 5 

cm. 

• Hot airflow velocities measured at the fuel particle location were 0.1, 0.3 and 0.8 

m/s. These velocities were the result of 4.5, 6 and 9 volts applied to the DC driven 

fan, respectively. Voltages lower than 4.5 resulted in nearly zero air flow at the 

particles and hence were not used; voltages higher than 9 volts were not used 

because they caused a lowering in the air flow temperature as air velocities 

became higher than 0.8 m/s.  

Figures 3.7 and 3.8 display temperatures of wood particles during their heating. In 

general, and as displayed in Figure 3.7, the thermocouple and IR results for temperatures 

were very similar. Hence, Figure 3.8 shows the temperature histories using the IR camera 

of wood particles heated under different air flows.  

 

Figure 3.7 Temperature history of a wood particle heated and then ignited by purely 
convective heat flux, recorded by using an IR camera and thermocouples. 
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Figure 3.8 Temperature history of wood particles ignited by convective heat flux with 
different flow velocities, recorded by IR camera. The hot airflow source had similar 

temperatures for all three flow rates. 

As expected, the highest flow velocity resulted in the fastest ignition of the 

particles when their temperature attained ~400oC. This result supports the following 

relations, assuming a constant hot airflow temperature. 

Convective heat flux     𝑞𝑞 ∼ 1
𝛿𝛿𝑇𝑇

 

Thermal boundary layer     𝛿𝛿𝑇𝑇 ∼
𝐷𝐷
√𝑃𝑃𝑒𝑒

  

Peclet number     𝑃𝑃𝑒𝑒 = 𝑣𝑣𝐷𝐷
ɑ

 

Thus:     𝑞𝑞 ∼ √𝑣𝑣 

Where: D - dimension of the wood particles, v - airflow velocity and ɑ - thermal 

diffusivity of air.  
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The data in Figure 3.8 show higher airflow flow velocities caused the wood 

particles to ignite faster and then burn for a shorter time duration. Flames were first 

observed to be attached onto the side edges of each particle and then, at airflow velocities 

of 0.1 and 0.3 m/s, covered the entire surface of the particles that faced the heater. In 

contrast, at an airflow velocity of 0.8 m/s, flames were not observed on the front side of 

the particles facing the heater; rather, they were attached onto the back side of the 

particles, seemed unstable and were less bright in comparison to the lower airflow 

velocities.  

For the 0.8 m/s flow rate, it was surmised that concentration of pyrolysis gases 

along the front side of the samples was low and stable chemical reactions (flame) could 

not be established. Pyrolysis gases were transported by the hot airflow to the back side of 

the particle, where a local stagnation point appeared due to flow separation, and flame 

was established. Further rise of airflow velocity after ignition resulted in flame detaching 

from the particle’s surface and even it’s extinguishing before the samples were 

completely burned. This behavior is in agreement with heat transfer assessments in 

which, during preheating, the airflow temperature was hotter than particle’s surface and 

heat was transferred from the air to the particles. In contrast, after ignition, the heat 

transfer direction was reversed. Therefore, at higher flow velocity with thinner boundary 

layer, particles firstly experienced higher convective heating and then, after ignition, 

higher convective cooling which would destabilize or even extinguish the flame. It was 

thereby concluded that thickness of the boundary layer around the fuel particles played a 

crucial role in the ignition and combustion of the fuel particles.  

At the two lower flow velocities, the flames were stable and bright, and covered 

the entire surface of the fuel particles. This situation would stimulate high radiative heat 

fluxes from the particles. Therefore, when considering both convective and radiative heat 

fluxes from an ignited fuel to an unburnt one, an optimal flow velocity exists which 

stimulates the highest combined heat transfer. Also, the effective distance for heat 

transfer via convective or radiative mechanisms could be a function of the horizontal 

flow rate or wind velocity.  

  



36 
 

CHAPTER 4: FLOW VISUALIZATION 

4.1 Experimental methods and setup for visualization of non-reactive flows  

Flow visualization studies were conducted using a specially constructed low-

speed wind tunnel with the experimental, visualization section having a transparent 

acrylic panel through which images were acquired (Figure 4.1). A digital camera, a 

Canon EOS 5D Mark II, with Canon EF 50 mm f/1.8 lens was used to acquire images. 

An electrical heater (1.5 kW) coupled with temperature feedback controller were used to 

generate buoyant-driven upward airflow. To produce white smoke, a paper towel strip 

soaked uniformly with petroleum jelly (Vaseline) was placed on the heater and, as it 

became hotter than ~200oC, uniform, thick white smoke was produced.  

 

Figure 4.1 Flow visualization experimental setup consisting of a low-speed wind tunnel, 
heater, a digital camera, and a 300-mW diode pumped, solid state laser with a cylindrical 
lens and a LED light. Also shown is an image of smoke flowing through the visualization 

section, illuminated using the LED. 

Horizontal airflow was induced in the laboratory wind tunnel using an AC fan. To 

ensure the uniform air flow throughout the cross section of the wind tunnel, two double 

mesh sheets with 2x2 mm holes were placed between the fan and the test section, and one 

double mesh sheet was placed downstream of this section. Both the back and bottom 
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sides (the base) of the test section were painted low luster (flat) black to reduce light 

reflection and increase the contrast between the white smoke and the background. More 

than 300,000 digital images were acquired during the tests while using this set-up. 

The heater had an effective surface area of 3.5 cm by 33 cm and was mounted 

perpendicular to horizontal airflow, flush with the base of the test section; Figure 4.2 

gives an infrared (IR) image of the heater element. The top surface of the wind tunnel 

was open to air, and the other three sides were formed by cement board, used as an 

insulator, mounted onto wood. The temperature controller provided precisely-controlled 

temperatures of the air output from the heater. Because the heater’s dimensions were 

much smaller than the size of the wind tunnel test section, the heater was placed 

symmetrically in the middle, resulting in little-to-no side wall effects on the air flow.   

After a paper strip soaked with Vaseline was placed on the heater’s top side, the 

heater controller, which used a thermocouple for continuous temperature monitoring, was 

set to a temperature of interest and then the heater was turned ON. Once the heater’s top 

surface achieved desired temperature, images were acquired using the camera.  

 

Figure 4.2 Infrared image (top view) of the electrical heater at temperature of 260oC. 

Besides illumination using the laser sheet, the smoke streaks were also 

illuminated using a LED compact light placed inside the test section and mounted on its 

top side at different locations depending on angle of image acquisition. The LED did not 

affect the air flow through the test section. This illumination allowed 3D visualization of 

smoke streaks from different angles, the results of which are presented in the following 

sections. Interpretations of the complicated 3D flow patterns imaged with LED 

illumination were assisted by use of the laser sheet illumination which effectively enabled 

flow visualization in 2D, the locations of which were moved along horizontal positions 

3.5 cm 
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perpendicular to the flow and the images of which were sequentially examined relative to 

the 3D images.   

The diode pumped, solid state laser produced a wavelength of 532 nm (green) and 

output power of 300 mW. It was coupled with a cylindrical lens the produced a 2D laser 

sheet with vertical orientation (z direction) and directed parallel to the heater and 

perpendicular to the flow (x-y direction); the width of the laser beam after exiting the lens 

was 2 mm and it had an opening angle of 30o The position of the laser, placed in front of 

the test chamber as shown in Figure 4.1, was changed in increments of one centimeter 

from the front (upstream) edge of the heater to 30 cm downstream from that point. The 

camera was mounted downstream of the test section and captured images of the flow 

approaching the camera. The camera and the laser were moved simultaneously to 

maintain a constant distance between them. 

A series of preliminary tests showed that 200oC was the minimal temperature of 

the heater’s surface which gave smoke streaks thick enough for visualization. However, 

as temperature increased above 200oC the time of smoke generation was reduced 

dramatically; as discussed in Section 4.2, several experiments were performed at 

temperature between 200-500oC with no horizontal flow. At 200oC, stable smoke 

generation continued for approximately 20 minutes while at 300oC the duration of smoke 

generation dropped to about 3 minutes; ignition of the Vaseline soaked paper occurred 

when temperatures were greater than 400oC. Because establishing appropriate camera 

focus settings took up to a few minutes and was the main difficulty at the beginning of 

each test for imaging the approaching smoke flow, it was decided to use a constant 

temperature of 200oC for all visualization tests involving external horizontal flow. 

However, several temperatures were used during the visualization of upward motion 

when no horizontal flow was imposed (see Section 4.2).  

The horizontal air flow generated by the fan had three controlled velocity regimes 

of 8, 11 and 15 cm/s (±15%). These three velocities were chosen during preliminary 

experimentation in which it was found that the 8 cm/s flow speed was the lowest possible 

for the setup while velocities above 15 cm/s were too high and caused erratic flow 

behavior. These flow velocities were measured inside the test section at heights of 1.5 - 



39 
 

30 cm above the base. Smoke streaks were also tracked through the test section when the 

heater was OFF to ensure uniformity and steadiness.  

At a temperature of 200oC, the convective heat flux from the heater surface was 

estimated based upon a boundary layer thickness of 2.0 ± 0.3 kW/m2, depending on the 

flow speed. Parameters used for scaling calculation included: Lw, which represents fire 

zone depth (Figure 2.3) and was taken as the heater width perpendicular to the horizontal 

air flow = 3.5 cm; Lf, the flame height; and Le, the preheating length. The values of Lf 

and Le were measured using an IR camera, and both represent a region with temperatures 

significantly above ambient.  

4.2 Visualization of buoyant induced upward flow  

The first step in investigating flow behavior was visualization of buoyant driven, 

upward flow. During these tests, the mesh sheets described for the experimental set-up in 

Figure 4.1 were replaced by acrylic sheets to establish an enclosed, transparent box with 

no horizontal flow entering or leaving it. The images of smoke flow during these tests, 

displayed in Figures 4.3 - 4.5, show in detail the upward flow structure from smoke 

arising from the heated Vaseline soaked paper on the heater at different temperatures.  

 

Figure 4.3 Smoke streaks arising from the heated surface at a temperature of 200oC 
under no horizontal flow:  a – front view, and b – side view. 
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Figure 4.4 Smoke streaks arising from the heated surface at a temperature of 250oC 
under no horizontal flow:  a – front view, and b – side view. 

 

Figure 4.5 Smoke streaks arising from the heated surface under no horizontal flow at a 
temperature of 400oC (a) and 500oC (b). Cross section A-A is schematically shown at the 

Figure 4.8. 

Generally, the buoyant-induced flow patterns were similar regardless of the 

temperature of the heater. In all cases, the rising smoke formed discrete vertical columns 

organized along the length of heater surface, and the locations of these columns remained 

constant during each test. Additionally, as seen in the side view images of Figures 4.3 and 

4.4, the smoke columns emanated from the middle and along the length of the heater. 

They consisted of laminar upward flow, which after a certain distance of travel evolved 



41 
 

into turbulent flow. As the temperature of the heater was increased, the number of 

columns (Figure 4.6) decreased and their diameters increased. Also, the data in Figure 4.6 

show that the average distance at which turbulent flow was established above the heater 

became smaller as the heater temperatures were increased; the error bars in Figure 4.6 

represent minimum and maximum measured values. Fluctuations in the upward laminar 

flow increased with increasing temperature, example of which is presented in Figure 4.7. 

The same trend was observed in the variations in the number of columns: at higher 

temperature, the variation in the number of columns became larger. This behavior could 

be explained by ignition and the appearance of flames at temperatures above 400oC that 

introduced additional heat flux and uncontrolled temperatures at the Vaseline soaked 

paper.  

 

Figure 4.6 Number and height of smoke columns depending on temperature. 

These results were confirmed in several repeated experiments and the formation 

of the buoyant-driven smoke columns was considered as a natural phenomenon. An 

analogy was drawn between this behavior and that of actual flames with no horizontal 

flow in which the flames split into towers separated by valleys. Assuming that the heater 

represented a fire zone, the smoke from it would represent the flow field above a flame.    
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Figure 4.7 Fluctuations of the laminar upward flow at 200oC. 

The smoke columns formed along the entire surface of the Vaseline soaked paper 

on the heater (Figure 4.3-4.7) were schematically shown at the Figure 4.8. With 

increasing temperature, higher smoke generation rates and even ignition occurred, the 

smoke columns became wider and their average quantity per unit length fewer. Higher 

temperature resulted in larger vertical flow velocity which stimulated instability and 

transition to the turbulent regime. 

 

Figure 4.8 Schematic diagram of buoyant-induced flow. 

 



43 
 

4.3 Visualization of the interaction between horizontal and buoyant-driven 

upward flows 

4.3.1   Illumination using LED light  

The second step in the visualization work was to capture images of the dynamic 

interaction between buoyant-induced upward flow and horizontal airflow. Smoke from 

the Vaseline soaked paper on the heater was blown horizontally into the test section and 

illuminated with the LED light. Images of the flow are presented in Figure 4.9, showing 

horizontal and slightly upward flow. Visualization was accomplished from four main 

views: Figure 4.9a is a top view, Figure 4.9b is a frontal view looking into the 

approaching flow, and 4.9c and 4.9d are side views at locations downstream and 

upstream of the heater. The smoke formed discrete streaks moving downstream at a small 

upward relative to the horizontal.  

 

Figure 4.9 Flow visualization using LED light at 200oC; a – top view, b – front view of 
approaching flow, c – side view downstream of the heater and d – side view upstream of 

the heater. 

It was concluded, after carefully examining the images, that the structures of the 

individual smoke streaks were vortex tubes. They are discussed in a following.     
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The entire heater’s surface was covered by 3.5 cm width paper strip soaked with 

Vaseline during initial experiments. From these, the side view images in Figure 4.9c and 

4.9d show the vortex tubes occasionally formed multiple-level structures where tubes that 

originated close to the upstream edge of the heater were generally higher above the base 

than tubes formed closer to tail edge of the heater. This observation initiated 

investigations into whether it would be possible to use thinner paper strips that would 

produce more well-organized and single-level smoke flow structures consisting of 

discrete vortex tubes of the same height. Hence, studies were conducted in which 1 cm 

width paper strips were placed at three different locations on the heater; images acquired 

while producing smoke from these positions are presented in Figure 4.10, and labeled as 

upstream, middle and downstream. No differences in the flow structure could be detected 

for these three locations, and the flow patterns stayed approximately constant 

independent of whether the strips were 3.5 cm wide or 1 cm wide at any location on the 

heater. The only difference was in the amount of smoke - wider stripe gave more smoke. 

It was impossible to constantly sustain a single-level and stable smoke flow pattern 

because the flow remained unchanged even if the smoke was not visually seen along the 

entire heater’s surface. In other words, even if vortex tubes were initiated ahead or behind 

the 1 cm paper strips but could not be observed, the flow structures downstream indicated 

they still existed and affected the flow, and interactions between the vortex tubes resulted 

in identical visualization results for all three locations and widths of the Vaseline soaked 

strips. 
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Figure 4.10 Visualization of smoke generated by 1 cm paper strips at three different 
locations along the heater (flow velocity = 8 cm/s). 

The effects of varying the horizontal air velocity were studied while the heater 

temperature was maintained at 200oC. Figure 4.11 shows that the flow behavior was 

similar for the three velocities, 8, 11 and 15 cm/s, tested. Smoke formed vortex tubes at 

the heater surface, continued to flow downstream, and then interacted with each other 

with an eventual transition into turbulent flow. The main differences were in the length of 

the vortices, in the direction, x, of the horizontal flow and height above the base, y, of the 

test section at various locations along the x direction. Increased horizontal airflow 

velocities resulted in longer vortices at lower heights. As can be seen from top views of 

Figure 4.11, at an airflow velocity of 15 cm/s the flow of discrete vortices was well-

organized and remained intact for greater distances than did at 8 and 11 cm/s. This 

behavior may be related to decreased interactions between the vortices at the higher 

velocity.   
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Figure 4.11 Visualization of smoke streaks’ behavior at three airflow velocities. 

Figure 4.12 gives the range of, and averaged values for, the lengths and heights of 

the vortices. The smoke flow height and its variance decreased with increased horizontal 

velocity; as was predicted because of higher horizontal air velocities, smoke streaks 

moved at a smaller angle with respect to the horizontal as the air velocities were 

increased.  

At an air velocity of 8 cm/s, the well-organized vortex region had a length up to 

14 cm, and at larger lengths the flow transitioned to turbulent. The flow height and its 

variance increased with distance x, i.e. in the direction of air flow. Dramatic increases in 

flow height were noted when the x distance was between 0 - 5 cm (where vortices were 

formed), and between 14 - 18 cm (transition to turbulent flow) while flow was almost 

horizontal between the x distances of 5 - 14 cm.  

An air flow velocity of 11 cm/s shifted the turbulent transition region to a distance 

x between 16 - 20 cm; it produced well-organized vortex flow for an average distance up 

to 16 cm.  
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The even higher air flow velocity of 15 cm/s resulted in formation of vortices with 

average length of around 19 cm and the turbulent transition region was between 19 and 

25 cm. 

 

Figure 4.12 Smoke flow height as a function of distance x and horizontal airflow 
velocity. 

Figure 4.13 presents some height variations when using an air velocity of 8 cm/s; 

it can be seen that the images on the left side of the figure (both front and side views) 

demonstrated flow which was much closer to the base of the test section, i.e. smaller y 

distance, than the images on the right side of the figure.  
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Figure 4.13 Variations in flow height at an air velocity of 8 cm/s. 

In addition to vortex tubes, Figures 4.13, 4.14 and 4.15 show other often observed 

flow features (in the circled areas). The “mushroom shape” upward motion circled on the 

Figures 4.13 and 4.14 were often observed at a horizontal distance x close to and within 

the turbulent transition region, however, it also occasionally appeared at smaller x 

distances. This type of motion was the main contributor to the variations in smoke flow 

height and is represented by the upper dotted lines in Figure 4.12.  

Variations in the length of vortex tubes were usually a consequence of upward 

motion of the “mushroom shape”; they destabilized and then broke the vortex tubes. 

After the formation of the “mushroom shapes”, vortices could re-establish, as shown at 

the Figure 4.14d. “Mushroom shape” motions never were present simultaneously along 

the entire length of the heater; rather, they normally were observed at random locations 

and, thus, some vortex tubes became longer than others (Figure 4.14c).   

Rotational motion of the bulk flow was also observed in the transition between 

laminar-to-turbulent flow and in the turbulent regime. This rotational motion formed 

smoke peaks and valleys as shown at the figure 4.14a. Sometimes, when this motion 
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appeared closer to the heater, i.e. at smaller distance x, individual vortex tubes were 

involved, as demonstrated in Figure 4.15.  

 

Figure 4.14 Flow features of interest (circled):  a – bulk rotational motion; b – upward 
“mushroom shape” motion; c – vortex tubes; and d – variation in vortex tubes length. 

 

Figure 4.15 Interaction between vortex tubes and bulk rotational motion. 
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The main difficulty during imaging was to focus the camera on dynamic flow 

features. Smoke was always present between the camera and focus plane which hid some 

flow patterns; smoke behind the focus plane also complicated the acquisition of clear 

images. Hence, 2D illumination of the smoke using a laser with a cylindrical lens was 

used to provide greater detail of flow characteristics. This approach transformed the 3D 

imaging approach into sequences of 2D snapshots at different locations.    

4.3.2   Illumination using a green laser 

Considering that the flow behavior was similar for the three velocities studied, the 

2D laser sheet illumination and data collection were accomplished using only an airflow 

velocity of 8 cm/s. Flow characteristics were recorded using 28 slices within a range of 

3 ≤ x ≤ 3 0 cm from the leading edge of the heater. The frontal view of assessing the 

approaching flow was of main interest, some image of which are shown at the Figure 

4.16. More images can be found in the Appendix A.   
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Figure 4.16 A collection of images taken at all 28 laser sheet locations with flow velocity 

of 8 cm/s. 

Recorded images confirmed that, at a distance x of up to 14 cm, the smoke 

appeared as vortex tubes; additionally, they clearly showed these tubes were always in 

pairs. The vortex pairs consisted of two vortex tubes with opposite directions of rotation, 

as shown at the figure 4.17.  
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Figure 4.17 Vortex pairs at x = 8 cm. 

Four different flow regimes were identified:  Regime (1) included the formation 

of vortex tube pairs; Regime (2) was where vortex tubes began to actively interact; 

Regime (3) was a transition region from an organized flow of vortex pairs to convective-

driven chaotic motion; and Regime (4) included convective-driven chaotic flow. These 

regimes are identified in Figure 4.18. 

 
Figure 4.18 Flow structures along the horizontal distance x from the upstream edge of 
the heater identified from laser sheet illumination and visual images taken at seventeen 

different locations.  

Regime (1) was identified within the location 3 ≤ x ≤ 8 cm. In it, the well-

organized flow structures consisted of several vortex tube pairs, with some tubes 

interacting with each other and all moving almost horizontally along the base of the test 

section. Regime (2) was observed at 9 ≤ x ≤ 14 cm and was 5.5 - 10.5 cm from the 

trailing edge of the heater. In this regime, the average diameter of vortex tubes increased 

which caused greater interactions between adjacent tubes plus the generation of 
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“mushroom shape” upwardly moving flow structures; in this regime the flow direction 

was mostly along the base of the test section.  Regime (3) was located 15 ≤ x ≤ 18 or 11.5 

- 14.5 cm from the trailing edge of the heater; this regime was characterized by a 

transition from organized vortex flow structures to chaotic flow, included frequent 

“mushroom shape” and bulk rotational motions. Regime (4) was identified to be between 

19 ≤ x ≤ 30 cm, i.e. 15.5 - 26.5 cm from the trailing edge of the heater. This regime 

included turbulent flow that was separated from the base. Additional images of the flow 

structure can be found in Appendix B.  

Distances from the leading edge of the heater with a range of 3 ≤ x ≤ 14 cm was 

of particular interest because the flow was horizontal along the base of the test section 

and could potentially be associated with preheating length in a real fire. In particular, 

vortex pairs plus their interactions were examined intensely. Figure 4.19 gives some 

examples in this region of organized flow that consisted of individual vortex pairs imaged 

between 3 ≤ x ≤ 12 cm; it can be clearly seen that the average diameter of vortex tubes 

increased with the distance x, which then could stimulate more frequent interactions 

between vortices at larger distances. At distances between 10 ≤ x ≤ 12 cm, the vortex 

tubes “pushed” on each other and consequently experienced deformation. The vortex 

interactions at 10 ≤ x ≤ 14 cm led to formation of flow structures where some vortex 

pairs were above others, which increased the smoke flow height. Figure 4.20 displays 

some examples of vortex pairs’ interactions at different x locations. Some additional 

images can be found in Appendix C.  
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Figure 4.19 Examples of organized flow of vortex pairs between 3 ≤ x ≤ 12 cm. 



55 
 

 

Figure 4.20 Examples of vortex pairs’ interactions between 4 ≤ x ≤ 12 cm. 
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4.4 Comparison of wind tunnel burn results and non-reactive flow experiments  

The visualized flow patterns were studied from a fire research perspective, with a 

vision to develop a new method which could potentially assist fire spread investigations. 

Hence, these non-reactive flow results were compared to data from wind tunnel burns 

that were conducted at Missoula Fire Sciences Laboratory [75]; scaling and the scaling 

laws that were discussed in Section 2.5 were also used in this assessment.  

Figure 4.21 shows two images of the same test but with a difference in time of 

1/15 sec. In these images, the rotational motion in a specific region is highlighted which 

leads to a down-wash flow (Figure 4.21b), in agreement with observations made by 

Finney’s team, as depicted in Figure 4.22 [59]. In their research it was noted that this type 

of down-wash motion stimulated fire spread [59]. In the current results, as shown in 

Figure 4.21, the down-wash motion is a purely hydrodynamic effect driven by convection 

because no fire or chemical reactions were present. 

 

Figure 4.21 Time evolution of rotational flow within the transition region: a – 0 sec; b – 
1/15 sec. 
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Figure 4.22 Schematic representation of flame propagating through a cardboard fuel bed 
[59] showing the down-wash motion that was associated with flame spread. 

As a fire front propagates through a fuel bed in a wild land fire, its flame forms 

towers that are separated by valleys. Additionally, the flames form “mushroom shape” 

upwardly moving peaks (Figure 4.23c) which are the main contributor to upward 

fluctuations in the fire front. The behavior was observed during the current laboratory 

visualization testing (Figures 4.23 a and b) in all of the organized, transition and turbulent 

regimes. It is a common assumption that fire fronts propagate within a turbulent regime, 

for both wind tunnel and field burns. This assumption can be validated by careful 

examination of a propagating, large-scale fire by considering regions ahead of and behind 

the fire front (Figures 4.23c, 4.24 b and d). However, it is not clear if this assumption 

holds within the fire zone. 

In addition to the “mushroom shape” structures circled in white on Figures 4.23 a 

and b, the vortex tubes circled in red represent horizontal flow which persisted until the 

transition region where it begins to rise. These types of vortex pairs were observed within 

the flame zone from a top, upstream view, shown in Figure 2.24a, but the inner flow 

structure within the fire zone could not be imaged because of being masked by the flame 

itself.  
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Figure 4.23 Comparison of non-reactive flow behavior (a and b) and wind tunnel fire (c). 

 

Figure 4.24 Similarities between non-reactive flow behavior and wind tunnel burns [59]. 
Where a* and d* present flow behavior similar to fire shown at a and d. 

Figure 4.19 at distances between 3 ≤ x ≤ 8 cm shows behavior similar to the well-

known phenomena called Görtler vortices which have been observed in wind tunnel 

burns [59]; this Görtler behavior is represented by well-organized flow of discrete vortex 

pairs moving parallel to each other. At distances larger than 8 cm in the current study, 
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interactions between vortex tubes were initiated and created flow instabilities and vertical 

fluctuations; this type of behavior was also detected in wind tunnel burns [59, 90, 116].  

 

Figure 4.25 a – present research result, b – large scale wildland fire in Alaska [75]. 

As can be seen in Figure 4.25 a and b, distinct similarities exist between the 

behavior of smoke motion in the current laboratory-based images and those from large–

scale, wild land fires. In both cases, the smoke moved parallel to the experimentation 

base or the ground and then began to rise. Despite the fact that, in a wild land fire, the 

temperature of the fire zone, would be much higher than the surrounding the smoke flow, 

the smoke remained in almost horizontal flow and then downstream it transitioned into 

convective–driven, upward moving flow. This behavior is similar to the current 

laboratory results. The horizontal flow ahead the fire front for the wild land fire may 

potentially be associated with piloted ignition because it can carry hot gases and ignited 

particles downstream to the unburnt fuel.    

To assess comparisons between the current research and wind tunnel burns, the 

following scaling laws were applied.  

𝜋𝜋1 =
𝐹𝐹𝑖𝑖,𝑢𝑢𝑝𝑝
𝐹𝐹𝑏𝑏

=
𝜌𝜌1𝑢𝑢2

∆𝜌𝜌1𝐿𝐿𝑤𝑤𝑎𝑎
= 𝐹𝐹𝑎𝑎𝑜𝑜𝑢𝑢𝑎𝑎𝑒𝑒 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 

𝜋𝜋3 =
𝑄𝑄𝑐𝑐1
𝑄𝑄

=
𝑐𝑐𝑝𝑝𝜌𝜌1𝑐𝑐2𝐿𝐿𝑎𝑎𝑅𝑅∆Ө1

𝐼𝐼𝐿𝐿𝑤𝑤
 

𝜋𝜋7 =
𝐹𝐹𝑖𝑖,𝑑𝑑𝑑𝑑𝑤𝑤𝑑𝑑
𝐹𝐹𝑖𝑖,𝑢𝑢𝑝𝑝

=
𝐿𝐿𝑒𝑒𝑤𝑤
𝑢𝑢

= 𝑆𝑆𝐷𝐷𝑎𝑎𝑜𝑜𝑢𝑢ℎ𝑎𝑎𝑐𝑐 𝐷𝐷𝑢𝑢𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎 
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where ρ1 = density of air and gas at ambient temperature, Δρ1 = density change of air and 

gas associated with temperature rise, u = horizontal velocity of air and gas, Lw = flame 

depth, g = gravitational acceleration, Le = effective length where a major heat transfer 

occurs, w = flame burst frequency, cp = specific heat of gas at atmospheric pressure, La = 

height of fire plume, R = velocity of flame spread, ΔӨ1 = temperature rise of air and gas, 

l2 = width of the fuel bed, I = fire intensity, Fb = buoyant force, Fi,up = inertial force 

upstream the flame zone, Fi,down = inertial force downstream the flame zone, Q = heat 

generated, and Qc1 = heat stored in air and gas associated with temperature rise.  

These three pi-numbers were calculated for the current laboratory experiments - 

considered the model, and the wind tunnel fire experiments - considered the full scale, 

using the following relationships where prime symbol represents the laboratory 

experiments and those without the symbol represent wind tunnel experiments. 

• cp = cp’ 

• ρ1 = ρ1’ 

•  La/La’ ≈ 38, La ≈ 1.5 m and La’ ≈ 0.04 m:  La was approximated by examining 

previously published data [116]. La’ was the height estimated by using the IR 

camera and represented the distance at which the smoke temperature was 

significantly higher than ambient temperature. 

• R/R’ ≈ 12.5, R ≈ 1 m/s based on previously published data [90]. In this particular 

case R’ was assumed to be equal to horizontal flow velocity (0.08 m/s).  

• Δθ/Δθ’ ≈ 1000/200 = 5 

•  Ɩ2/Ɩ2’ ≈ 2/0.33 ≈ 6, where Ɩ2 was from previously published data [90, 116, 75]; Ɩ2’ 

was the heater length (0.33 m). 

• Lw/Lw’ ≈ 1/0.035 ≈ 29, where Lw was taken from previously published data [90, 

116, 75]; Lw’ was the heater width (0.035 m). 

• Le/Le’ ≈ 1/0.02 ≈ 50, where Le was taken from previously published data (using 

thermocouples) [90, 116]; Le’ was the distance estimated by using the IR camera 

and represented distance at which the smoke temperature was significantly higher 

than ambient temperature.   

• u/u’ = 1/0.08 = 12.5. 
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• w/w’ = 0.5/2, where w was based on previously published data [90]; w’ was 

approximated from the visualization results.    

• I/I’ = 25/0.08 = 312.5, I’ = 2 kW/m2*0.04m = 0.08 kW/m, where the value of I 

was from previously published data [90].   

The scaling resulted in the following relations: 

π1 = k1*π1’   k1 ≈ 1;       π2 = k2*π2’   k2 ≈ 1;       π4 = k4*π4’   k4 ≈ 2. 

Where: k1, k2 and k3 were the scaling constants. 

All three Pi-numbers were satisfied, which confirmed that both phenomena were 

governed by the same physics.    
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CHAPTER 5: CONCLUSIONS  

The goal of the research was to develop a new approach for assessing fire spread 

that is based on experimentation in which the chemical reaction of fire, i.e. the flame, is 

eliminated; in the current research, a flame was replaced by using a precisely controlled 

electrical heater. Significant advantages were envisioned in this approach because it 

simplified attributes for examining fire spread and enabled precise visualization studies 

for the fluid dynamic aspects of fire spread which previously have been mostly masked 

by flames. Furthermore, convective-driven fire spread was the main interest; hence, 

experimental procedures were established in which radiative heat transfer was negligibly 

small.  

A low speed wind tunnel was constructed and used in which the fire zone was 

represented by convective heat flux from a heater’s surface and visualization of smoke 

flow from it. Interactions between buoyant and inertia forces, which were considered to 

be the main hydrodynamic forces governing convective-driven fire spread, were 

identified within vortex pairs of smoke streaks that were formed initially at the heater’s 

surface. These interactions were visualized in both 3D and 2D structures illuminated by 

LED lighting and a sheet of light from a green emitting laser, respectively. These images 

provided detailed flow behaviors which were then carefully studied and compared to both 

wind tunnel and field burn results. Strong similarities in behavior were found between the 

laboratory data and the wind tunnel and field burn data even though the laboratory 

experimentation was accomplished with no flame. Appropriate scaling laws were 

established and they were used to quantitatively correlate the non-reactive flow data with 

data from wind tunnel burns; the three Pi-numbers that had been developed were 

satisfied. Therefore, the non-reactive flow approach is seen as applicable for studying and 

understanding fire spread. 

5.1 Current results and future work from a fire research perspective  

The results of the current work were mostly compared to the wind tunnel burns 

because of similarities in experimental environments for both cases. Horizontal airflow 

velocities can be well controlled in both cases and assumed to be predominantly 

unidirectional because of the wind tunnel designs; in the wind tunnel burns to which the 
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current data were compared, the airflow direction was in the direction of the fire spread. 

Fuel properties, and consequently temperature and heat fluxes, were known for the burns 

as were the temperatures and convective heat fluxes during the current research. These 

aspects enabled the application of appropriate scaling laws with variable flux and 

temperature, a feat previously impossible to accomplish because combustion 

temperatures were almost independent of fuelbed size. This aspect of the current results 

opens new opportunities in fire scaling.  

The scaling laws were firstly applied to correlate results from wind tunnel burns 

to those of full-scale wild fires and then matched them with results from the non-reactive 

flow experiments. As was discussed in Section 2.5, all scaling parameters were satisfied 

in the correlation between wind tunnel burns and wild fires except for the parameter 

representing flame tower width (Ɩ2); existing scaling laws did not give predictability for 

this parameter. Hence, it was replaced by the ratio of the fuelbed width to heater length, 

which then enabled a match between the wind tunnel burns and the current flow 

visualization results. However, the fuelbed width is not always an appropriate representor 

of scale length because flame heights, depths and pulsing frequencies may not depend on 

the width whereas it will depend on fuel properties like their dimensions. Unfortunately, 

as in was mentioned in Chapter 2, a consideration of all fuel properties is an extremely 

complicated task. Perhaps flame tower width, which represents a wavelength normal to 

the direction of fire spread (see Figure 2.3), could be an appropriate length of scale 

because it can be easily measured and correlated to other parameters such as flame 

height. Therefore, it is suggested that future research assess whether appropriate scaling 

laws can be developed using the flame tower width as a length of scale.  

The visualization research that was accomplished showed that the behaviors of a 

flame propagating through a fuel bed and of smoke flow above and downstream of a 

heater were very similar. The heater’s surface was considered to be representative of a 

flame zone, and was particularly useful for the scaling analysis. Indeed, differences in 

flow behaviors from a fire versus from the non-reactive heat transfer experiments do exist 

because of the significantly lower temperature of the heater (200oC versus approximately 

1000oC in a fire) and the fact that the heater provided heat flux from the horizontal 

surface while in real fires the heat flux is from the entire height of a flame. This latter 
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difference may be crucial because in the current setup the hottest point was on the 

heater’s surface while in the case of a fire the flame tip is the hottest spot which is usually 

at some distance from a floor or ground. However, the non-reactive flow visualization 

setup can be used to investigate flow behavior upstream of a flame zone in a real fire. For 

example, assume a horizontal wind in the direction of fire spread; in this case, the burned 

fuel behind the flame zone still has a relatively high temperature which would induce 

buoyant driven upward air motion. This upward motion interacts with the horizontal wind 

and creates vortices, described in Chapter 4, which then interact with the fire zone. 

Therefore, the fire zone would experience a rotational upward flow which could affect 

fire front structure. This rotational smoke motion, passing into the flame zone from 

behind, was observed by Finney’s team during wind tunnel burns. As described in 

Section 4.3.1, the effect of such flow is a function of wind velocity; it will be necessary to 

conduct visualization studies of flow fields upstream of a flame zone to confirm these 

possibilities.  

Extensive similarities were discovered to exist in wind tunnel burns and non-

reactive smoke flow experiments; the latter experimentation showed detailed flow 

structures which, potentially, could be masked by flames in fire experiments. Therefore, 

an extreme need exists to develop advanced visualization techniques applicable to flame 

zones. Perhaps both IR and visual cameras, fitted with appropriate filters, and coupled 

with PIV techniques (Particle image velocimetry) could be further adapted for such 

investigations.     

5.2 Current results and future work from the fluid dynamics perspective 

Flow visualization results demonstrated flow features which deserve additional 

attention from a fire research perspective and from a fluid dynamics point of view. Both 

3D and 2D visualization results showed that vortex pairs were initiated at the heater’s 

surface, they continued to flow downstream in an organized manner at a small angle 

relative to the horizontal, i.e. base of the test section, and then, within the transition 

region, the flow direction moved upwards (Figures 4.18 and 4.23 a, b). The only possible 

cause of upward motion was the buoyant force which was due to a temperature 

difference. Although the largest temperature difference and, consequently, the largest 
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buoyant force should have been above the heater, the flow above it remained almost 

horizontal. Further downstream, the smoke temperature was near the ambient temperature 

but the vertical velocity was larger than above the heater; in contrast, the horizontal 

velocity remained approximately constant along the entire test section. Additionally, the 

duration of the transition region was much shorter than the durations of other regions 

whereas its location and length depended on the horizontal airflow velocity. To discover 

reasons for such flow behavior, it would be worthwhile to conduct experiments similar to 

those within the current study but in a better designed and controlled wind tunnel having 

a different size with a precise variation of a heater’s temperature and the wind velocity.  

The 2D visualization data provided detailed flow structure information and the 

identification of discrete vortex tube pairs that continued to flow downstream and parallel 

to each other at distances between 3 ≤ x ≤ 8 cm (Figure 4.19). At larger distances 

between 9 ≤ x ≤ 14 cm, these vortex tubes interacted intensively with each other. These 

interactions strongly deformed the vortex tubes, as shown in Figure 4.20; however, no 

mixing or merging of vortices was observed in this region. Instead, mixing and vortex 

merging occurred at distances greater than 14 cm from the heater as the flow transitioned 

into a turbulent regime. Because these research data were correlated to data from fire 

experiments, which have large Reynold’s number flows and therefore negligible viscosity 

effects, some of the flow features from the current research could not be explained. 

Although the current work described flow structures in detail, a lack of 

quantitative data about them still exists. Therefore, in future research it would be 

worthwhile to use PIV techniques to measure flow fields in non-reactive flow 

experimentation. Rotational velocities of vortex tubes must be measured at different 

locations to further investigate flow evolution. Reynold’s numbers based on rotational 

velocity and vortex diameters must be evaluated and compared to ones based on airflow 

velocity and test section dimensions to quantify viscosity effects. Reynold’s number 

analysis might potentially explain the nature of the transition regime and interaction 

between vortices. 
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APPENDICES 

Appendix A: Time Sequences of Approaching Flow (200oC, 8 cm/s) 

• x = 3 cm: 

 

 

• x = 4 cm: 
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• x = 5 cm: 

 

 

• x = 6 cm: 
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• x = 7 cm: 

 

 

• x = 8 cm: 
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• x = 9 cm: 

 

 

• x = 10 cm: 
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• x = 11 cm: 

 

 

• x = 12 cm: 
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• x = 13 cm: 

 

 

• x = 14 cm: 
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• x = 15 cm: 

 

 

• x = 16 cm: 
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• x = 17 cm: 

 

 

• x = 18 cm: 
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• x = 19 cm: 

 

 

• x = 20 cm: 
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• x = 21 cm: 

 

 

• x = 22 cm: 

 

 

 

 

 

 

 



76 
 

• x = 23 cm: 

 

 

• x = 24 cm: 
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• x = 25 cm: 

 

 

• x = 26 cm: 
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• x = 27 cm: 

 

 

• x = 28 cm: 
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• x = 29 cm: 

 

 

• x = 30 cm: 
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Appendix B: Flow Evolution (200oC, 8 cm/s) 

 

 

 

 

  



81 
 

Appendix C: Vortex Pairs and Their Interactions (200oC, 8 cm/s) 

• x = 3 cm: 

 

 

• x = 4 cm: 
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• x = 6 cm: 

 

 

• x = 8 cm: 
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• x = 10 cm: 

 

 

• x = 12 cm: 
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