

Frontiers in Public Health Services and Systems Research

Volume 3 | Number 3

Article 2

August 2014

Developing a Tool to Assess Administrative Evidence-Based Practices in Local Health Departments

Rodrigo S. Reis Pontifícia Universidade Católica do Paraná, reis.rodrigo@pucpr.br

Kathleen Duggan Prevention Research Center in St. Louis, Brown School, Washington University in St. Louis, Katewduggan@gmail.com

Peg Allen Prevention Research Center in St. Louis, Brown School, Washington University in St. Louis, pegallen@wustl.edu

Katherine A. Stamatakis Prevention Research Center in St. Louis, Brown School, Washington University in St. Louis, kstamata@slu.edu

Paul C. Erwin Department of Public Health, University of Tennessee, perwin@utk.edu Follow this and additional works at: https://uknowledge.uky.edu/frontiersinphssr Poss C. Brownson Partiof these arcm centre in the todis, Brown school, washington and estity Sarstice did, ministration torownson @gd/theatlewustbeduces Research Commons

Recommended Citation

Reis RS, Duggan K, Allen P, Stamatakis KA, Erwin PC, Brownson RC. Developing a Tool to Assess Administrative Evidence-Based Practices in Local Health Departments. Front Public Health Serv Syst Res 2014; 3(3). DOI: 10.13023/FPHSSR.0303.02

This Article is brought to you for free and open access by the Center for Public Health Systems and Services Research at UKnowledge. It has been accepted for inclusion in Frontiers in Public Health Services and Systems Research by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Developing a Tool to Assess Administrative Evidence-Based Practices in Local Health Departments

Abstract

There is need for assessing the practices undertaken by local health departments in order to improve the implementation of evidence-based actions. This paper describes the development and testing of a survey instrument for assessing Administrative Evidence-Based Practices (A-EBPs) in Local Health Departments. A-EBPs identified through a review of the literature were used to develop a survey composed of nine sections and tested in a sample of local health department practitioners. The resulting tool showed adequate test-retest reliability and internal consistency. Practitioners and researchers may apply this tool in practice-based and evaluation research.

Keywords

evidence-based practice, public health practice, trasnlational research, public health services and systems research

Cover Page Footnote

This study was supported in part by Robert Wood Johnson Foundation's grant no. 69964 and by Cooperative Agreement Number U48/DP001903 from the Prevention Research Centers Program at the CDC. The authors are thankful for the contribution of Dr. Jenine Harris (questionnaire inputs), Carolyn Leep and National Association of County & City Health Officials (survey and sampling), Carson Smith and Robert Fields (Qualtrics programming and data collection). We also appreciate the support from the Center for Public Health Systems & Services Research at the University of Kentucky.

The body of evidence on effective interventions to increase population health is rich and increasingly accessible. Nonetheless, a gap between knowledge and action (implementation) ▲ is still a matter of concern for public health practice.¹ The use of evidence-based management practices is recognized as an important process to improve public health performance at the local level. This process is also in accordance with the Public Health Accreditation Board Standards that highlight the importance of using the best available evidence by health departments.² To address this need, a recent literature review has identified administrative evidence-based practices (A-EBPs) that might be used to improve practice.³ This set of practices, classified as moderate to high priority, was examined according to their potential for implementation within a few years at a relatively low cost. ³ The high priority A-EBPs covered five major domains including workforce development, leadership, organizational climate and culture, relationships and partnerships, and financial processes. A-EBPs deemed moderate priority because they are more costly, may take longer to implement, or are outside the control of local health departments covered four domains (e.g. workforce size and composition, health department oversight and infrastructure, interorganizational relationships, and financial characteristics). To advance understanding of A-EBPs there is a need for practical and reliable measures that could be used in practice-based and evaluation research. This paper describes the development and testing of a survey tool for assessing A-EBPs.

METHODS

The A-EBPs online survey was developed and tested from March to June 2012 and included nine sections (Table 1) with a total of 54 questions that were new and based on a framework developed through a literature review.³ Two sections included questions with a dichotomous response (yes or no) and seven sections included Likert scale type questions (seven or eleven points). The draft survey was reviewed by the core research team (n=11) at the Prevention Research Center in St. Louis and by experts (n=2) from the National Association of County & City Health Officials (NACCHO) and the National Coordinating Center for Public Health Systems and Services Research. After three rounds of reviews the survey underwent cognitive response testing (CRT) with twelve experts in the field. The survey was then refined by the core research team based on input received from the CRT and programmed into Qualtrics for web-based data collection.

A random sample of practitioners (n=90) from local health departments, draw from a national sample provided by NACCHO, was selected for a test-retest study (Table 2). The sample was predominantly comprised of women, with 50 years of age or more, and having at least a master's degree. Overall the sample was well experienced in their position and was largely composed of top executives or coordinators. Thirty-eight participants from the sample group completed the online survey a second time (42.2% of the original sample) at an interval of at least 14 days (average 24.5± 10.3 days). To examine test-retest reliability, Cohen's kappa statistics were calculated for dichotomous questions and one-way model intra-class correlation coefficients (ICC) were used for the Likert scale questions. Internal consistency was also examined in the sections composed by Likert scales through Cronbach's alpha. Finally, agreements for each section were examined using adjectival ratings with the following suggested categories: 1.0–0.8 (almost perfect), 0.8–0.6 (substantial), 0.6–0.4 (moderate), 0.4–0.2 (fair), 0.2–0.0 (poor)⁴. The questionnaire is available at: http://prcstl.wustl.edu/Documents/LEAD-PH_National_Survey.pdf

RESULTS

Table 1 summarizes the reliability coefficients for the A-EBP survey items by each section of the tool. Overall, the large majority (41/54=76%) of the items demonstrated substantial to nearly perfect reliability, and no items had poor reliability. Mean test-retest reliability was above .64 among all sections but one (Workforce development= .41). Section 1 had the lowest item performance with two out of four questions presenting fair reliability. Section 4 (Relationship & partnerships) presented the highest item reliability values with all items being classified as substantial. For all other sections the individual item performances were largely classified as substantial or nearly perfect with 70% of all items on these categories.

Regarding internal consistency, Cronbach's Alpha ranged from .67 to .94 in the 7 Likert scale sections. Of the 7 Likert scale sections, 5 presented at least acceptable internal consistency (\geq .70) with 3 of the 5 classified as good (\geq .80). The sections "Diffusion attributes" and "Views related to EBDM" presented slightly lower internal consistency, which was likely influenced by the small number of questions forming the subdomains within these sections. The median administration time was 14 minutes.

IMPLICATIONS

We developed a reliable easy-to-use questionnaire that may help to advance the knowledge and support local health departments' quality improvement efforts. The instrument described in this paper is available in a user-friendly fashion allowing practitioners to measure their health department's progress towards the implementation of A-EBPs. Because administrative and management practices play a key role in the quality and improvement of local public health systems ^{2, 3, 5} it is critical for LHD to understand their practices and capacity. Hence, the use of this tool will may help practices influence workforce development, organizational climate, use of resources, partnerships, and of EBDM (application of evidence-based decision making) including implementation of evidence-based programs and policies.¹ Since little is known about feasibility and implementation of A-EBPs in local health systems, it is important to measure A-EBPs. Local assessment and implementation of A-EBPs may help health departments improve the accreditation process and also optimize resources through likely synergy between A-EBP elements.⁴ By advancing the implementation of A-EBPs local health departments may improve public health practice thereby benefiting the populations they serve. Use of this survey tool will further the understanding of factors that are more likely to affect local public health performance and contribute to a better translation of science into evidence-based practices.

SUMMARY BOX

What is already Known About this Topic? Administrative evidence-based practices (A-EBPs) that may improve practice have been recently identified in the literature but little is known about measurement and implementation of such practices at the local level.

What is Added by this Report? An easy-to-use tool to measure administrative evidence-based practices in local health departments was found to have good reliability and internal consistency. This tool may be useful for local health department performance improvement planning and evaluation.

What are the Implications for Public Health Practice, Policy and, Research? Creation of reliable easy-to-use measurement tools can advance knowledge and support local health departments' quality improvement efforts.

REFERENCES

1. Brownson RC, Colditz GA, Proctor EK. Dissemination and Implementation Research in Health: Translating Science to Practice. Oxford University Press; 2012.

2. Riley WJ, Bender K, Lownik E. Public health department accreditation implementation: transforming public health department performance. Am J Public Health 2012;102(2):237-42.

3. Brownson RC, Allen P, Duggan K, Stamatakis KA, Erwin PC. Fostering more-effective public health by identifying administrative evidence-based practices: a review of the literature. Am J Prev Med 2012;43(3):309-19.

4. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159-74.

5. Dilley JA, Bekemeier B, Harris JR. Quality improvement interventions in public health systems: a systematic review. Am J Prev Med 2012;42(5 Suppl 1):S58-71.

Section	Number of questions	Scale	Reliability Coefficient		Number of Items in Reliability Range**				Cronbach's Alpha	
			Mean	Min, Max	.0019 Poor	.2039 Fair	.4059 Moderate	.6079 Substantial	.80-1.00 Nearly Perfect	
1.Workforce development	4	Dichotomous (yes/no)	.44†	.23-63	0	2	1	1	0	n.a.¶
2.Leadership	5	Likert - 7 points (strongly disagree to strongly agree)	.73§	.5492	0	0	1	3	1	.75
3.Organizational climate & culture	4	Likert - 7 points (disagree to agree)	.65§	.5672	0	0	1	3	0	.81
4.Relationships & partnerships	3	Likert - 7 points (strongly disagree to strongly agree)	.70§	.6076	0	0	0	3	0	.75
5.Financial Processes	2	Dichotomous (yes/no)	.85†	1.0070	0	0	0	0	2	n.a.¶
6.Diffusion attributes	10	Likert - 7 points (strongly disagree to strongly agree)	.66§	.4381	0	0	1	8	1	.69
7.Views related to EBDM	6	Likert - 7 points (strongly disagree to strongly agree)	.68§	.5183	0	0	2	3	1	.67
8.Importance of EBDM	10	Likert - 11 points (unimportant to very important)	.64§	.4277	0	0	2	8	0	.94
9.Availability of EBDM	10	Likert - 11 points (not available to very available)	.66§	.3583	0	1	2	3	4	.89

Table 1. Description and reliabili	v coefficients of the Items in the Administrative Evidence-Based	(EBDM)	Practices Survey*

*Chronbach's Alpha was calculated using the whole sample (n=90) whereas test-retest coefficients were calculated using inly the participants of the second interview (n=38)

**Kappa and ICC values were used to calculate test-retest reliability coefficients

+ Kappa values were used in this calculation

Variable	Characteristic	n*	%	n†	%
Gender	Men	37	41.1	14	36.8
	Women	53	58.9	0	63.2
Age	20-29	3	3.3	1	2.6
	30-39	4	4.4	1	2.6
	40-49	14	15.6	4	10.5
	50-59	44	48.9	24	63.2
	≥ 60	25	27.8	8	21.1
Education	BSc/Other	36	40.0	12	31.6
	MSc/MPH/other	46	51.1	22	57.9
	PhD/MD/Other	8	8.9	4	10.5
Position in the local health agency	Top executive. health director or equivalent	66	73.3	25	65.8
	Administrator. deputy or assistant director	21	23.3	9	23.7
	Division/Program Manager	2	2.2	3	7.9
	Technical expert position (e.g. epidemiologist)	1	1.2	1	2.6
Years working in the current position	\leq 5 years	24	26.7	10	26.3
	6 to 10 years	25	27.8	12	31.6
	\geq 11 years	41	45.5	16	42.1
Years working in public health	\leq 5 years	6	6.7	2	5.3
	6 to 10 years	11	12.2	6	15.8
	\geq 11 years	73	81.1	30	78.9

Table 2. Descriptive characteristics of test-retest participants at baseline and repeated survey completion

*Participants at the baseline (n=90); †Participants in the second interview or re-test (n=38)