

University of Kentucky UKnowledge

Markey Cancer Center Faculty Patents

Cancer

5-25-2010

Organic Cation Transporter Preferentially Expressed in Hematopoietic Cells and Leukemias and Uses Thereof

Jeffrey A. Moscow University of Kentucky, jmoscow@uky.edu

Xin Lu University of Kentucky, xin.lu@uky.edu

Craig Jordan University of Kentucky, jordan.craig@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/markey patents

Part of the Oncology Commons

Recommended Citation

Moscow, Jeffrey A.; Lu, Xin; and Jordan, Craig, "Organic Cation Transporter Preferentially Expressed in Hematopoietic Cells and Leukemias and Uses Thereof" (2010). Markey Cancer Center Faculty Patents. 1. https://uknowledge.uky.edu/markey_patents/1

This Patent is brought to you for free and open access by the Cancer at UKnowledge. It has been accepted for inclusion in Markey Cancer Center Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

LIS007723019B2

(12) United States Patent

Moscow et al.

(10) Patent No.: US 7,723,019 B2 (45) Date of Patent: May 25, 2010

(54) ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN HEMATOPOIETIC CELLS AND LEUKEMIAS AND USES THEREOF

 $(75) \quad \text{Inventors: } \textbf{Jeffrey Moscow}, \text{Lexington, KY (US)};$

Xin Lu, Shanghai (CN); Craig Jordan,

Rochester, NY (US)

(73) Assignee: University of Kentucky Research

Foundation, Lexington, KY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 451 days.

(21) Appl. No.: 11/521,487

(22) Filed: Sep. 15, 2006

(65) Prior Publication Data

US 2007/0269846 A1 Nov. 22, 2007

Related U.S. Application Data

- (62) Division of application No. 10/849,551, filed on May 20, 2004, now abandoned.
- (60) Provisional application No. 60/471,709, filed on May 20, 2003.

(51)	Int. Cl.	
	C12Q 1/00	(2006.01)
	G01N 33/53	(2006.01)
	C07K 14/435	(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

7,045,316	B2 *	5/2006	Nezu et al	435/69.1
2003/0009024	A1*	1/2003	Curtis	536/23.5

FOREIGN PATENT DOCUMENTS

WO WO-0246415 A2 * 6/2002

OTHER PUBLICATIONS

Gong et al. Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias. Exp Hematol 30: 1162-1169, 2002.*

Strober, W. Trypan Blue Exclusion Test for Cell Viability. Curr Prot Immunol Supplement 21: A.3B.1-A.3B.2, Mar. 1997.*

Okabe et al. Genbank Accession No. AAK58593, Jun. 2, 2001; 2 pages.**

Fischer G., Biochem. Pharmacol. "Short Communications" vol. 11: pp. 1233-1234, Pergamon Press Ltd., 1962.

Moscow, et al., "Isolation of a Gene Encoding a Human Reduced Folate Carrier (RFC1) and Analysis of Its Expression in Transport-deficient, Methotrexate-resistant Human Breast Cancer Cells" Cancer Res. 55: pp. 3790-3794, 1995.

Moscow et al., "Reduced Folate Carrier Gene (RFC1) Expression and Anti-Folate Resistance in Transfected and Non-Selected Cell Lines" Int J Cancer. 72: pp. 184-190, 1997.

Koepsell et al., "Organic Cation Transporters in Intestine, Kidney, Liver, and Brain" Ann. Rev. Physiol. 60: pp. 243-266, 1998.

Burckhardt, et al., "Structure of renal organic anion and cation transporters" Am J Physiol Renal Physiol. 278: pp. F853-F866., 2000.

Wu, et al., "Identity of the Organic Cation Transporter OCT3 as the Extraneuronal Monoamine Transporter (uptake₂) and Evidence for the Expression of the Transporter in the Brain" J Biol Chem. 273: pp. 32776-32786, 1998.

Dhillon et al. Clin Pharmacol Ther. 65: p. 205, 1996.

Koyama et al., "CD63, a Member of Tetraspan Transmembrane Protein Family, Induces Cellular Spreading by Reaction with Monoclonal Antibody on Substrata" Biochem Biophys Res Commun. 246: pp. 841-846, 1998.

Moscow, J. A., Schneider, E. S., Ivy, S. P., and Cowan, K. H. "Multidrug resistance" In: H. M. Pinedo, D. L. Longo, and B. A. Chabner (eds.), Cancer chemotherapy and biological response modifiers. Annual 17. New York: Elsevier, pp. 139-177, 1997.

Okabe et al., GenBank AF268892, Jun. 2, 2001.

Waterston et al., GenBank AC002464, Feb 4, 2000

NCI-CGAP et al., GenBank AI040384, Aug 28, 1998.

Hillier et al., GenBank AA033971, May 9, 1997.

Hillier et al., GenBank H70190, Oct 24, 1995.

Tannock and Hill, The Basic Science of Oncology, 1998, New York: McGraw-Hill, pp. 53-70 and 396-410.

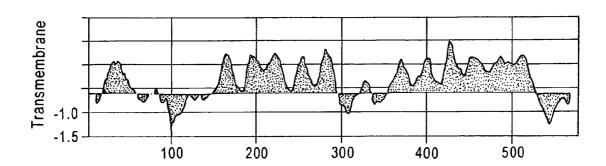
Hirose et al. Multidrug resistance in hematological malignancy, J. Med. Invest. 50: 126-135, 2003.

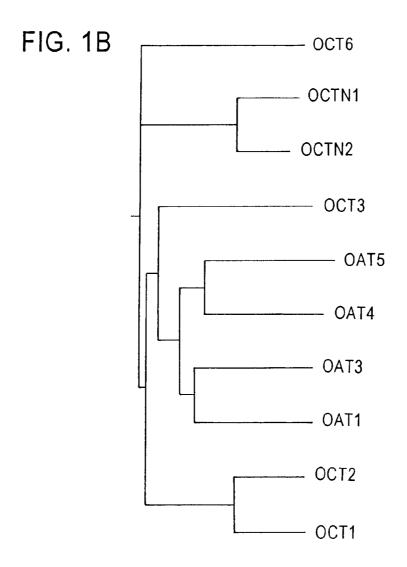
Vogelstein et al. The multistep nature of cancer, Trends Genet 9(4):138-141, 1993.

Voliotis et al. Challenge in treating hematologic malignancies, Semin Oncol 29(3 Suppl 8): 30-39, 2002.

* cited by examiner

Primary Examiner—Bridget E Bunner (74) Attorney, Agent, or Firm—McDermott Will & Emery LLP


(57) ABSTRACT


A novel organic cation transporter (OCT) gene, OCT 6, and use thereof is described. The OCT6 gene is preferentially expressed in human hematopoietic tissues, including CD34+cells and leukemia cells. Its narrow tissue distribution, substrate specificity, and close homology to other cell membrane transporters make OCT6 an attractive target for the treatment of myeloid diseases.

7 Claims, 10 Drawing Sheets

FIG. 1A

May 25, 2010


```
エスののひびほずほぼ
 FHUFFHFFF
 <u>>514554444</u>
 ドンドンコリースSTL
 >>>>>>>
 OO H H H H H OO
LLLGGSASA &
 レダドレッシンシンド
 NZZ-CKOHOK
 HINTHHHOHH
 H H H H A A A S Z S
 9 P P P P P G P G G
 OZ S Z F F I F Z Z
 C Z Z C P T P C P S
 HHHHA A<u>M</u>HHH
 Z-Z-SS<del>JO-J</del>
T 4 > 4 I I A I I I I
 <u> ココココード F i コ</u>
   ドードドレッし女工
 アドニドド リンソン
 J-J-MAHOHO
 DUQUODUT-
 K K L K K K Z T F O
200000000000
 FBFBFSJ>Z>
 ><u>____</u>_____> > <u>____</u> > > ____
 HEEETCOOKO
 O A A A H H N H D O
 >--------
 G m Q m A A B m M m A
 E O D O O E S S Z
 F>FYPY
 HUQULFAAFA
 RRARFFZZZZ
 \infty \Xi \Xi \Xi \sigma \Xi
       Σ
 Ç
  OCTN1
OCT3
OCT2
OCT1
OCT1
OAT5
OAT4
 SEQ ID NO. 2
SEQ ID NO. 4
SEQ ID NO. 5
SEQ ID NO. 6
SEQ ID NO. 7
SEQ ID NO. 9
SEQ ID NO. 9
SEQ ID NO. 10
SEQ ID NO. 11
SEQ ID NO. 11
```

```
の関うようのひはり見ら
 マラウィ よりくりん
 - M A M A A Z Z Z O
 臣及下及臣臣兮予户及
 0000000000000
 N Z L L A A L L D X
 S < S S L L S S S S S
 > 1 1 1 0 0 - - × >
 TEVERNER
 ファントレー
 G · CCHHHOSK
 G - AAKKHEND
 YZ Z Z Z Z Z X · Z
 0. . . . . . . . . .
 5 . . . . . . . . .
 . BECC. A· C
 - HSEE SIL
 A - 1 . B B B - 1 .
 0 - - - A 4 - Z - -
 - 1 - 1 - 1 - 1 - 1 - 1
 DK · KSSFS · ·
 H B · B B B B D · ·
 14 . 40024 · ·
* · Z · Z Z Z Z S · · ·
 Z S I S I O C I B
 N N H N N N H N D N N
 用し用ししして区でし
 TA > A > D I I I
  900 - - - - -
 21111111111
 PUATHERN
 # > > > × × × > + A A
 K K K K C X X X X X X X
 00000000000
 > K H K K H K K H H
<u> Знанинин</u>и
```

FIG. 2A

```
L C K K G H C P P P
                     Wドンドンしたらてっ
 XUUUDDUENA
                     ココーココココココココ
 >>H>OO-X->
                     Y Z A Z L L L A A A X
 ナッスッナナッット
                     RXXXXXXXXXX
 N · SODEDED
                    00,01,02,2
                     0000000000000
 DYDD: DDZD
                     人人人人人人 カイオス ゴス
 --||日日日|>>>> --
                     R R R R R R R R R R R
                     ◩◬◬◬◬◬◬◬▮◬
                     NA NO NA A NO NA NA
 |෮෮<u>෮</u>෮෮෮෮෮෮෮෮
                     F コココー F > ココココ
 V V CONTRO
                     K D L G K K O P D K
                    00000000000
                     FE OE OE E E E
                     ZETEZT-ET Z
 · OHOUNDHH · ·
8日日日日 10日以下
                     NA FON SONDAN
 000000<u>0</u>00000
 X O F O R H E E R C
                     エコマユー匠 マットコ
                     HON W W CO H
 O L H L R R L M L O
                     0000000000
 FONDZZNNDZ
 マンコンエエエフス
                     ZFZF Z ZFZZ
 E P A I D D I D E
 とまわれ しょっけしょ
                     HH HH> JJH H>
                     0 0 0 0 0 0 0 0 0 0 0 0 0
                     AN SON SOFT SON SON
NANNAARIAIN
 L. PLLLESES
                    区下の団のひりりりりり
 F DHPPLATS
                      T T H H A > S A A
                    日コーレココンコダコ
 F · F F D D G Z G H
 - L L C C C P L -
                     SHOUDDSHE
 · 4 · 40000 · 6
                     A > X A LI LI X X X X
                    EXEXERE
 8 x x x a a a a a a a a
 'Z'ZF4'''
                    H S S K D K D K D K D K F
 - 4 - 4 S S - - - -
                    SZSDPAEDED
 · H · H Ø Ø · · · · ·
                    000000000000
  . . . Z Z . . . . .
 ZHAHBBOOAO
                    |>>>>>>
                    H A A A D D A A A A
                    ZZZZZZQQQQZ
 と 日 ひ 日 く 田 く 田 く 田 く
 K R R R B B > R > F
                    Z > L > > > L L L L
                    QHHHHHKKHHHH
                    HHZHHHEVHH
XXXXXEXXXX
                       M>>>>>>
                   <u>∞</u>|≥>
 SSTREETI
                    ৰ]>'⊐
00000000000
                    FLATASHTAF
  0CTN
0CT3
0CTN2
0CT2
0CT1
0AT3
0AT3
                    6
7
8
8
8
10
11
12
SEQ ID NO. 2
SEQ ID NO. 4
SEQ ID NO. 5
SEQ ID NO. 6
SEQ ID NO. 7
SEQ ID NO. 10
SEQ ID NO. 11
SEQ ID NO. 11
SEQ ID NO. 11
SEQ ID NO. 11
```

FIG. 2B

```
のこくにエエーひょぬ
STIPE K KAAAA
 KKKKKXKKK
  K S S S R B Z S R H
 ZXAXXXAHHI
 0 0 0 0 0 0 0 0 × F a a 0
 - 1 > 1 > 5 H > Z
 H-8-HHB888
 日日日日日日日日日日日
 444444
N N M H H H G L G C K
 O 4 Z 4 O O Z S F O
 マッチマンMSコココ
 アフィフロフィート
00000 ₹00000
 <u>ASAZXASA</u>
 LIESSS ZII
300 A A Q Q C C
 FICTUITY
 エリエソエリエオドエ
220
MAAAR
MALRI
L I FRI
L L FRI
C C L R R
MAFRI
C A F R
 HZJZXXVIII
 <u>- □□□□</u>E
 ONNIZHZHHHZI -
 > - 0 % 0 0 0 0 0 0 0 0
 ANANONKANA
 CGSCLLLALA
 L F U F > > T F S F
 0000000000000
 SATS
THERARARA V
 ZOHOZZHHHH
 0CT6
0CTN1
0CT3
0CT1
0CT1
0CT1
0AT3
 NO.
          SEQ ID NO. 1
SEQ ID NO. 1
SEQ ID NO. 1
 SEQ ID N
```

```
レーレート><u>フ</u>レアー・
      ViAFCCWWWF
     888822888
     SSSOKKERCO
     DEFECTION A STANCE AND A STANCE
     ->F>7178FF
     H I L H H C L C H
     よしししましむなり本
HEFFLFFCCVV
     STTTASSSSSS
     ZULVEUVUU
     QTOTO OHOO
XXXXXXXXXX
    8888888888
     FOZOEEDOOE
    RRRRPPRKPP
     XTELTITION ·
    トピコロンココココン
A P G G H A P P P P
     11>>>
    L Z Z Z L > L < F F
     000<u>0664004</u>
    00000000000
     ママコ匠ママー内匠し
     V H S O H H S O H S
ススコフェススココリの
     CCAPAPARAE
     タエリーマ M むり アマ
    #0000000000
   CONTANT
     ヘドヘドVVVTMV
```

FIG. 2C

```
SNDNNDDDN 400
  5 H O H O J J J Z P J J
   g \sigma 	imes 	ime
                                                                                                                ひひしひひひられりり
       SLEKKEEEKK
                                                                                                              Z A A O D F O X O O
                                                                                                               JURUAL DURE
        C L C Z C H O C Z N
                                                                                                               CHCHALLORY
        > J J J H Q H S Z S
                                                                                                                Vょらずらららりょり
       ALSSEEDOEP
ALSSEEDOEP
                                                                                                               L < L L Z Z J Z > J
       G E Z Q E E E Z Z E E
                                                                                                               ZOOHHZOOO
       ○▽MLLVLLLL
                                                                                                              レンレンダルンドが以
346
DOSENSED EN SERVICES OF SE
                                                                                                            N T T T T T Z
                                                                                                               S 4000000000000
       SOUZZZESS
                                                                                                              ロドロド 〇× ロリロリト
                                                                                                                     人人人人士人人人人人
       LH I H L L R K
                                                                                                              AASTICGGGG
       A H Z H D S H - < H
                                                                                                              NOO CHHONONON
       .........
                                                                                                             🔀 . . . . . . . . .
      EEPP P P P P P
                                                                                                              HEEN PIC COS
       T-ION NEW 가고
       MZMOOOOOOO
                                                                                                             ZZZZZZZZZZZ
       マばく 丸足足 エードー
                                                                                                              X X S X X O K X > K
                                                                                                              ゴーユー MFF C C FF D ·
        ব<u>ৰৰৰ</u>ৰৰবৰৰ
                                                                                                              HHHHHHH-WHHH
     MARALES >>>
                                                                                                              OORADARKO
IXXXHHXXKK
                                                                                                       ---<u>X</u>7271
                                                                                                             N Z O Z O Z O Z F
     XDODXXXXXXX.
                                                                                                              > x = > = = = = = = = = =
       Q m - m Z - J J J J
                                                                                                             ZHEHHZDHO
     YKKKKKKCKK
     ы ы ы ы <u>ы ы ы о</u> ы <u>ы ы</u>
                                                                                                             ERRENT SERVITE
     ENDEVELOPING ·
                                                                                                            > H Z H Z Z J A O L
                                                                                                              R R R R R R R R R R R R
                                                                                                       CEC C ZEZ C CEC
     POR OCOLANON
                                                                                                             ZHZZSSHSHS
     SSTSSSTINSS
                                                                                                             A KRIPPEGAH
                                                                                                              シンししししししし 耳し
                                                                                                              . . . . . . Н H 4 Ф
     X · · · · · OXXX
     占我我我我我我我
                                                                                                             0.8...4440
     4 4 4 A A A A H A
                                                                                                             MESA - · SPK<
                                                                                                             TO PO N N O P O P
     F 8 8 8 8 8 8 8 8 8
     шпппппппппп
          0CTN1
0CTN2
0CTN2
0CTI
0CTI
0AT3
     NO. 2
NO. 3
NO. 3
NO. 3
NO. 1
NO. 1
NO. 1
NO. 1
NO. 1
NO. 1
NO. 3
     SEQ ID N
```

FIG. 2D

```
QVAPGPKOLO
 CHERRIO SEREEL
  >->-->
 > エキエギキギンド>
  0 - 0 > - - F M F 5
 01-1111111
 070700---
 CAA SAA CX CA
 IGULAA OLG L
 ₹∪∪∪∪∪∪∪∪∪
 O MILI X LI X LI
 ドドマドMLF ALL
 LILOZXZICICI
 AASHSAA
 ヤマのてMVLのPA
 1-02820000
 ATHOPPOSIT
 RRKKT-RKHK
 XXXXXXXXXXX
 0 0 0 0 0 0 0 0 0 0
 >コドコー> X コココ
 X H X Y X X H L Y X
 DKOODDZOSZ
 ※ コピコーココココー
 AUZIFFFIS
2-1-1-1-1-1
 K L S L Z L L L S
  L T A C F F C C I
  <u> বৰৰৰ©</u>>৩ৰব
 ->>田一丁下>コ
 |>->>><del>></del>>>>|
 VSPVTTMVTA
0 4 0 4 4 0 0 0 0
 1 S H S S S N H H H
コココススココココ
 ドドレドドドレンターン
 し し り じ F F り り り り
 ZZFZDDJJJ
 コココンコココココニコ
  人人人山山人人山山人人
 0CT6
0CTN1
0CTN2
0CTN2
0CTI
0AT5
SEQ ID NO. 2
SEQ ID NO. 4
SEQ ID NO. 5
SEQ ID NO. 6
SEQ ID NO. 7
SEQ ID NO. 9
SEQ ID NO. 10
SEQ ID NO. 10
SEQ ID NO. 11
SEQ ID NO. 11
```

```
エマエエエエスで
K K K K O O K K K K K
 ATGSCCSS
 24421424
 HLHTSSHTH
NONTHINN
 Q S L D C C S < T G
 X < 1 I < I < X
0000EE00000
>>>>>>> Z
9 4 4 0 0 0 0 A 4 0 0 0
レダエダレンRT<u>TT</u>
 SSSSSSSSS
RRRRRRRRR
 ------
  ユェッドドンピッド
ппппппппппп
 てて エスて へくくて
THECOXXXX
C C C C Z - Z - Z C C C
 D N T N E O N T N G
Errry—run
 A A A A A T A S A A A
 A S A A M T A A S A
 ASGATTAPIG
 <u> ∢७₹७७७७०</u>००
XXXXXX—XXXX
0000000000000
マエマストスト
Z Z > ZOOO > > >
S AD A DO M A A A A
© ≥ > - - € > > \
 ---->>
```

FIG. 2E

```
200
```

May 25, 2010

```
X F O D A A A A A A
                      Ö
                      GL
 よがなすまソレンのな
                                 S \rightarrow
 000000202000
                    590
D S
                     S
                                 S (2)
 ししHFKKKKOしし
                                 UZ
 H S H S H H H H H H
                                 \neg
                      ĸ
 ип и и и и и и и и и и и
                                 OB
                      Д
                        S
 <u>م</u> 0
                        SIL
 し匠しししししししし
                     A < F
                                 0 A
 K K H H
                                 HS
 SYLE
                                ₽ ¥
                     チェンゼスト
                                00
 7777<u>7</u>><u>+>4</u>>
                     比しはししら
                                \Box
 580
L E
K V
S P
T I
I P
S P
                                4
                               J ->
 E D P S P G
                               SEN
\vdash \circ >
                     SIMIS
                     ZEKEKE
                               SSX
                     ZEGOOO EI
                     で下文はマッ
                               N X H
 下田

A D O X
                               ΕЩΗ
 FUSUS EL KINDE
                     EAAYYEMU

KEAEMU
 カカススコス 1人人
                     10m×I-KEPO
   ---------
                     XXXXX TEQEO
 HY1Y171F
                      STEPXZXXOO
- - S H - - - - - -
                      - Zur m Auu - Z
                      . . > 6. . . . . . .
 SHLHOLKARH
                     SKSTEEETZKK
 -Z 4D B B F A A A
                     XXXXXXXDPFX
 火の円式のこれに
                     S D P R Z P R O R O
 ームアカロヨテムマル
                     EEO <R H CECS
                    AGRACCCGCS
 ム・ム・政策 1 8 下下
                     RLS - RRGHKS
メー<u>メ</u>エゴススコスロの
                     玉 文 P M M O O S M M S S S S
 ママエリマッガニスの
                     」>は>対」○○▼・
 N H N H I I I N N
                     XXXXXXXXX
 すびしてすぎょししてし
                     AQ田T田田田田田田田
 A Z J Z A A D J J J
 A A L S L T D S S
                     S S A A G G S G S
                     HHHHHHHHH
 <u>ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼</u>
                     0CTNI
0CT3
0CTN2
0CT2
0CTI
0AT5
                     SEQ ID NO. 2
SEQ ID NO. 4
SEQ ID NO. 6
SEQ ID NO. 7
SEQ ID NO. 7
SEQ ID NO. 16
```

FIG. 3A

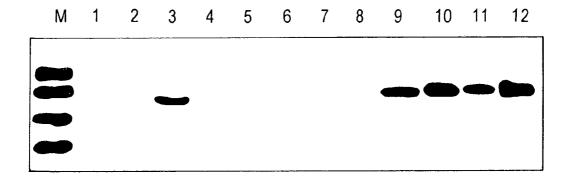


FIG. 3B

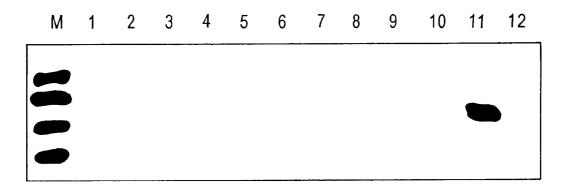
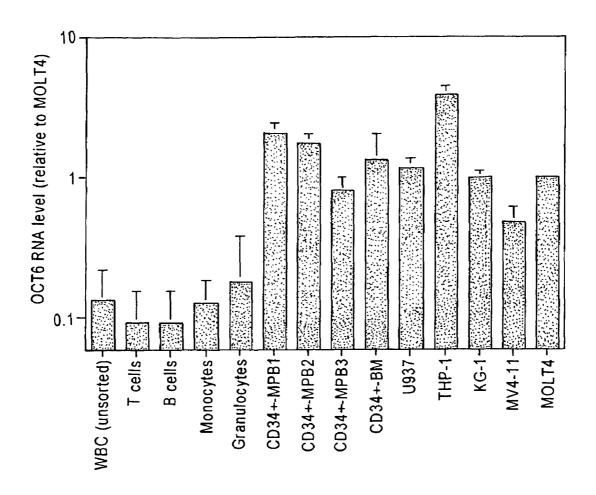
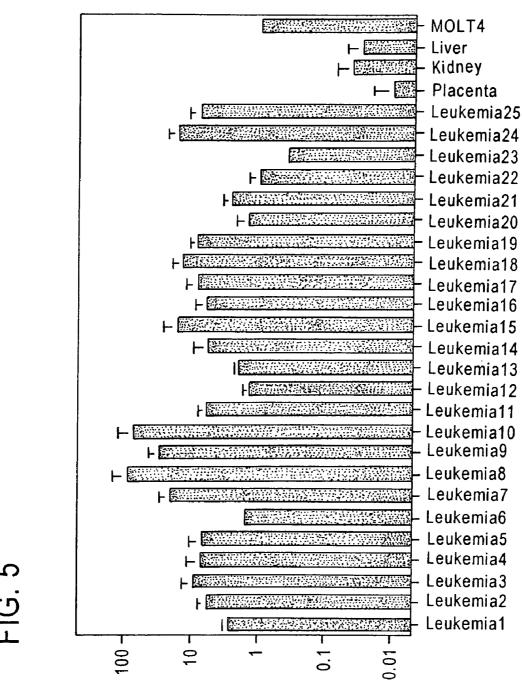




FIG. 4

OCT6 RNA levels (relative to MOLT4)

ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN HEMATOPOIETIC CELLS AND LEUKEMIAS AND USES THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of and claims the benefit of application Ser. No. 10/849,551, filed May 20, 10 2004 now abandoned, which claims the benefit of U.S. Provisional Application No. 60/471,709, filed May 20, 2003.

FIELD OF THE INVENTION

The invention relates to a gene encoding an organic cation transporter, OCT6, and its use as a target for the treatment of hematological malignancies, and in particular, leukemia. The invention further relates to screening methods for identifying agonists and antagonists/binding partners of OCT6 transport 20 activity.

BACKGROUND OF THE INVENTION

The lipid bilayer of the cellular membrane insulates the intracellular milieu from exposure to hydrophilic compounds. Unlike lipophilic compounds that can diffuse through cellular membranes, water-soluble compounds usually require specific transport mechanisms to gain access to the intracellular space. The regulation of the traffic of polar compounds in both directions across the cellular membrane is a complex process involving several large families of transport proteins.

Most often in cancer research, drug transport is thought of as a mechanism of cellular drug resistance, as drug efflux 35 pumps such as the products of the MDR1 and MRP genes have been shown to be mechanisms of resistance to lipid-soluble anticancer drugs. However, drug transport is a two-way street, and mechanisms also exist for pumping drugs into cells. For polar, water-soluble anticancer agents, drug uptake, and not drug efflux, is the critical determinant of cellular drug accumulation.

Most cancer chemotherapy employs drugs that are lipid-soluble that can easily penetrate the cell membrane of cancer cells. One advantage of using lipid-soluble drugs is that they 45 easily gain intracellular access to different types of cancer cells, so many cancer cells appear to be initially sensitive to these drugs. The disadvantage is that cancer cells learn to increase the activity of drug efflux pumps in the cell membrane to pump lipid-soluble drugs out of the cell, resulting in 50 drug resistance.

In contrast, potential water-soluble anticancer drugs may not survive the preclinical screening process since there is a great deal of variability in the expression of drug transport genes in different types of cancer cells. Variability in transport 55 gene expression may result in variability in accumulation of polar, water-soluble drugs. One approach to more effectively utilize water-soluble anticancer drugs is to identify which of the dozens of transport genes are actually expressed in tumors.

The importance of carrier-mediated anticancer drug uptake is exemplified in reduced folate carrier (RFC) mediated uptake of methotrexate (MTX). Methotrexate (MTX), a reduced folate analogue, is scavenged and retained in cells by mechanisms designed to secure folates from the environment. 65 The major mechanism of MTX uptake at pharmacologic concentrations is the reduced folate carrier (RFC), an OAT trans-

2

porter with a Km for MTX between approximately 0.8-26 μM. Decreased RFC activity has been observed in several in vitro models of transport-mediated MTX resistance (Biochem. Pharmacol. 11: 1233-1234, 1960). Once rodent and human genes encoding proteins with RFC activity were isolated, the molecular explanations for decreased RFC activity emerged. RFC1 transfection into the transport-deficient MTX^R ZR75 cell line resulted in a 20-fold increase in 6-hour MTX uptake and a concomitant 250-fold increase in sensitivity to MTX relative to control cell clones, showing that the RFC1 gene reconstitutes RFC activity and has a significant impact on MTX cytotoxicity (Moscow, et al., Cancer Res. 55: 3790-3794, 1995).

In different cell lines, MTX transport deficiency has been ascribed either to mutations in the RFC gene or in decreased expression of the RFC gene product. Several studies have demonstrated that RFC1 gene expression is an important determinant of sensitivity to MTX. In in vitro studies, we have found that RFC1 RNA levels correlate with MTX sensitivity in a panel of non-selected cell lines, including breast cancer cell lines (Moscow et al., Int J Cancer. 72: 184-190, 1997).

A plethora of genes with the ability to transport MTX out of the cell have been reported, including MRP1, MRP2, MRP3, MRP4, the organic anion transporters hOAT2 and hOAT3, and the mitoxantrone-resistance protein (BCRP/MXR). However, despite the multitude of MTX export genes, clinical studies have shown a relationship between the expression of RFC1, the mechanism of MTX uptake, and prognosis in Acute Lymphoid Leukemia (ALL) and osteosarcoma. As a result, RFC1 expression and MTX uptake are now implicated as determinants of clinical sensitivity in several types of tumors. Thus, the role of RFC1 in mediating sensitivity of its cytotoxic drug substrates has become a prototype that illustrates the potential role of transporters, like OAT and OCT genes, in determination of anticancer drug selectivity and toxicity.

However, there is a need to identify additional channels, or transporters, that are found in specific cancers, to enable the targeting of different cancers with anticancer agents that are substrates for those transporters.

SUMMARY OF THE INVENTION

The present invention is directed towards a membrane protein that functions to transport hydrophilic substances across cellular membranes. The protein, OCT6, is a new member of the organic cation transporter (OCT) family (SLC22 gene family). Tissue distribution of this protein is distinct from other OCT protein family members; being detected in leukemia, leukemia blast cells and CD34+ cells.

In one aspect, the present invention provides a novel target for hematological malignancies such as leukemia, an OCT6 transporter.

In another aspect of the present invention there is a method for screening potential substrates that selectively bind the OCT6 transporter. The method involves contacting a cell which overexpresses an OCT6 transporter gene with a test compound and determining whether the test compound is a substrate for the OCT6 transporter.

In another aspect, there is a method for screening potential anti-cancer agents in a cell overexpressing an OCT6 transporter gene. The method comprises determining viability of a cell which expresses OCT6 transporter gene incubated in the presence and absence of a test compound and identifying the test compound as a potential anti-cancer agent if there is cellular influx of the test compound and cell death.

In another aspect of the invention, a test kit is provided for screening candidate drugs for hematologic malignancies comprising a mammalian cell line or cells which overexpress OCT6, a control substrate and a detectable substance.

In still another aspect of the invention, there are immunogenic compositions for treating hematological malignancies. In a preferred embodiment, immunogenic compositions for treating leukemia comprise a substrate that binds selectively to a leukemia cell expressing the OCT6 transporter gene. In another preferred embodiment of the invention, the substrate comprises an antibody that selectively binds to the OCT6 transporter protein. Preferably, the OCT6 transporter protein allows cellular uptake of the substrate which then causes cell death. In one embodiment the substrate is cytotoxic and in another preferred embodiment the substrate is coupled with a 15 cytotoxic agent.

In still another aspect, the present invention provides a method for impairing a leukemia cell comprising contacting the cell with a cytotoxic OCT6 transporter protein. In one embodiment the substrate is a cytotoxin and in another 20 embodiment the substrate is coupled to a cytotoxic agent.

In yet another aspect, the present invention provides a method for treating hematological malignancies comprising administering to a subject in need thereof an immunogenic composition comprising a substrate that binds selectively to a 25 cell expressing the OCT6 transporter gene. In a preferred embodiment the OCT6 transporter protein allows cellular uptake of the substrate which then causes cell death. In another preferred embodiment the substrate is cytotoxic. In another preferred embodiment, the substrate is coupled with 30 a cytotoxic agent.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. A. shows the predicted hydropathy profile of $_{35}$ OCT6.

FIG. 1. B. is a dendrogram showing phylogenic relationship between OCT6 (SEQ ID NO:2) and other OCT and OAT proteins, including, OCTN1 (SEQ ID NO:4), OCT3 (SEQ ID NO:5), OCTN2 (SEQ ID NO:6), OCT2 (SEQ ID NO:7), 40 OCT1 (SEQ ID NO:8), OAT5 (SEQ ID NO:9), OAT4 (SEQ ID NO:10), OAT3 (SEQ ID NO:11), and OAT1 (SEQ ID NO:12).

FIG. **2**A-F. is the CLUSTLAW alignment of OCT6 and other OCT and OAT proteins. The bottom row represents $_{45}$ areas of consensus.

FIG. 3. shows the normal tissue distribution of OCT6 RNA determined by RT-PCR using a cDNA panel. Only 1000× (highest) cDNA concentration is shown. Panel A. 1, salivary gland; 2, thyroid; 3, adrenal; 4, pancreas; 5, ovary; 6, uterus; 507, prostate; 8, skins; 9, peripheral blood leukocytes; 10, bone marrow; 11, fetal brain; 12, fetal liver. Panel B. 1, brain; 2, heart; 3, kidney; 4, spleen; 5, liver; 6, colon; 7, lung; 8, small intestine; 9, muscle; 10, stomach, 11, testis; 12, placenta.

FIG. 4. shows quantitative RT-PCR for the transporter gene 55 OCT6 performed with RNA extracted from peripheral blood leukocytes, CD34+ cells and additional hematopoietic cell lines. Fresh discarded buffy coats that were twice sorted by FACS using CD14 (monocytes), CD15 (granulocytes), CD3 (T-cells) and CD20 (B-cells). Purities of 99% or better were 60 obtained. For peripheral WBC and sorted subsets, the average±SD represent pooled results from samples from 2 individuals performed in triplicate or quadruplicate. For CD34-selected mobilized peripheral blood (MPB), the results from each of 3 individuals are shown. For CD34-selected bone marrow (CD34+-BM), the results are from one individual. OCT6 levels were normalized to the expression of

4

actin RNA, as a control for equivalence of mRNA template. The units, in log scale, are arbitrary and based on a standard curve of OCT6 RT-PCR in serially diluted HL60 RNA. Unity is defined as the level of OCT6 RNA found in MOLT4 cells.

FIG. 5. shows quantitative RT-PCR for the gene OCT6 using RNA extracted from leukemic blasts obtained from patients at the time of initial diagnosis. OCT6 levels were normalized to the expression of actin RNA, as a control for equivalence of mRNA template. The OCT6 RNA levels in placenta, liver, kidney and MOLT-4 cell line were determined concurrently and shown for comparison. The units, in log scale, are arbitrary and based on a standard curve of OCT6 RT-PCR in serially diluted HL60 RNA. Unity is defined as the level of OCT6 RNA found in MOLT4 cells.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the discovery and isolation of a new member of the SLC22 gene family (the OCT family of proteins) that is unusual for its distinct pattern of tissue distribution. Rather than the typical high levels of expression in liver, kidney or placenta, high levels of RNA for this transporter were found in some leukemia cell lines, in CD34+ cells, and in circulating leukemia blast cells.

All patents, patent applications and literature cited in this description are incorporated herein by reference in their entirety. In the case of inconsistencies, the present disclosure, including definitions, will prevail.

OCT Family

Two families of proteins involved in maintaining homeostasis of charged organic compounds are the organic anion transporters (OATs) which carry the SLC21 designation and the organic cation transporters (OCTs), which carry the SLC22 designation (See Table 1). OATs and OCTs each have characteristic patterns of tissue expression, with predominant expression in a tissue involved in the transport of xeriobiotics, i.e., liver, kidney or placenta.

TABLE 1

Organic anion and cation transported genes							
Gene Family	Gene Name	Locus Link	Alternative Names				
SLC21	SLC21A1	6577					
	SLC21A2	6578	PGT				
	SLC21A3	6579	OATP, OATP1, OATP1b,				
			OATP-A				
	SLC21A4	28237	OAT-K1, OAT-K2				
	SLC21A5	28236	OATP2, OATP-2				
	SLC21A6	10599	LST-1, OATP-C				
	SLC21A7	28235	OATP3, OATP-3				
	SLC21A8	28234	LST2, OATP8, SLC21A8,				
			OATP-8				
	SLC21A9	11309	OATP-B				
	SLC21A10	28233	OATP4				
	SLC21A11	28232	OATP-D				
	SLC21A12	28231	LOC51737, OATP-E, POAT				
	SLC21A13	28230	OATP5, OATP-5				
	SLC21A14	53919	OATP-F				
SLC22	SLC22A1	6580	OCT1				
	SLC22A2	6582	OCT2				
	SLC22A3	6581	OCT3				
	SLC22A4	6583	OCTN1				
	SLC22A5	6584	OCTN2, CDSP, SCD				
	SLC22A6	9356	NKT, OAT1, OAT-1				
	SLC22A7	10864	NLT, OAT2, OAT-2				
	SLC22A8	9376	OAT3, OAT-3				
	SLC22A9		OAT4, OAT-4				

The OAT and OCT carriers result in increased cellular accumulation of their respective substrates, despite the fact

that they are carriers that mediate facilitative diffusion. For carriers, the degree of intracellular accumulation may not exceed the extracellular concentration. However, the presence of the carrier allows uptake in comparison to no uptake in the absence of the carrier, and drugs that bind an intracellular target or which are chemically modified in the cells, e.g., by phosphorylation or polyglutamylation, may be eliminated from the substrate pool and not available for transport back across the cellular membrane.

The first five members of the SLC22 family of transporters, OCT1, OCT2, OCT3, OCTN1, and OCTN2, have been characterized as organic cation transporters. The uptake of many cations, such as tetraethylammonium (TEA), N-1-methylnicotineamide (NMN), choline, procainamide, amantadine and morphine are mediated by these polyspecific transporters. In general, these transporters are potential-dependent, but independent of sodium and proton gradients. These genes are all characterized by the presence of 11 or 12 transmembrane domains, as predicted by hydrophobicity analysis, and all have a large hydrophilic loop between transmembrane domain (TMD) 1 and TMD2.

OCT substrates are shown below in Table 2. Tetraethyl ammonium (TEA) is the classic substrate for OCT transporters. In addition, OCT1, OCT2 and OCT3 transport 1-methyl-4-phenylpyridinium (MPP). Compared to OCT2, OCT1 has a higher affinity for some cations (for example mepiperphenidol and procainamide), a similar affinity for others (for example, decynium 22 and quinidine), and a lower affinity for corticosterone (See Koepsell et al., Ann. Rev. Physiol. 60: 243-266, 1998.). OCT3 is an electrogenic transporter for TEA and guanidine. Other physiologic substrates for OCT transporters include dopamine, histamine, epinephrine and norepinephrine, acetylcholine and 5-hydroxytryptamine (Burckhardt, et al., Am J Physiol Renal Physiol. 278: F853-66., 2000.), suggesting an important role for these transporters in the central nervous system, in addition to their role in hepatic and renal clearance. Interestingly, despite its cationic nature, recent studies have identified cimetidine as a selective inhibitor, but not a substrate for several organic cation transporters, including rOCT1, rOCT2, rOCT3, hOCTN1, and hOCTN2.

TABLE 2

	OCT Substrates							
Common Name	Gene Name	Cell Type	Substrate	KT (uM)				
OCT1	SLC22A1	HeLa	TEA	229				
OCT1	SLC22A1	Xenopus	MPP	14.6				
OCT2	SLC22A2	Xenopus	Norepinephrine	1900				
OCT2	SLC22A2	Xenopus	Histamine	1300				
OCT2	SLC22A2	Xenopus	Dopamine	390				
OCT2	SLC22A2	Xenopus	Serotonin	80				
OCT2	SLC22A2	HEK293	MPP	16				
OCT2	SLC22A2	HEK293	Dopamine	330				
OCT2	SLC22A2	Xenopus	Amantadine	27				
OCT2	SLC22A2	Xenopus	Memantine	34				
OCT3	SLC22A3	HeLa	TEA	2500				
OCT3	SLC22A3	HRPE	MPP	47				
OCTN1	SLC22A4	Fibroblasts	L-Carnitine	6.6				
OCTN2	SLC22A5	HEK293	L-Carnitine	4.34				
OCTN2	SLC22A5	HEK293	L-Carnitine	4.3				
OCTN2	SLC22A5	HEK293	D-Carnitine	10.9				
OCTN2	SLC22A5	HEK293	Acetyl-L-carnitine	8.5				
OCTN2	SLC22A5	Xenopus	L-Carnitine	4.8				
OCTN2	SLC22A5	Xenopus	D-Carnitine	98				
OCTN2	SLC22A5	JAR	L-Carnitine	3.5				

6

OCT1 and OCT2 are predominantly expressed in the kidney and liver. These transporters are located on the basolateral surface of renal tubules and, therefore, play a role in the removal of organic cations from the blood. OCT3 is most abundantly expressed in placenta. In addition, other tissue-specific roles have been implicated for these transporters. As noted above, OCTs may play a role in transport of endogenous neuroleptic substrates, and OCT3 has been implicated in the disposition of cationic neurotoxins and neurotransmitters in the brain (Wu, et al., J Biol Chem. 273: 32776-86, 1998). Dhillon et al. (Clin Pharmacol Ther. 65: 205, 19996) used RT-PCR followed by functional transport studies (TEA) to identify OCT1 expression in a human mammary epithelial cell line (MCF12A). Further, the OCT1 gene has been shown to be up regulated in lactating mammary epithelial cells.

The OCTN1 gene, cloned from a cDNA, shows sequence similarity to organic cation transporter genes, which is highly expressed in kidney as well as trachea, bone marrow and fetal liver. Recombinant OCTN1 expressed in mammalian cells exhibited saturable uptake of TEA that was pH sensitive. Several others suggest that OCTN1 is a renal proton/organic cation antiporter functioning at the epithelial apical membrane. The uptake of pyrilamine, quinidine, verapamil and L-carnitine were increased by expression of OCTN1 in *Xenopus* oocytes.

Another OCT protein family member, OCTN2, cloned from a human placental trophoblast cell line, is expressed widely in human tissues including kidney, placenta and heart. OCTN2 is more closely related to OCTN1 than to OCT1, OCT2 and OCT3 (Biochem Biophys Res Commun. 246: 589-95, 1998). Transfection of OCTN2 has demonstrated its role in the transport of TEA and carnitine. OCTN2-mediated transport of TEA is sodium independent, whereas transport of carnitine is sodium-dependent. The role of sodium in OCTN2-mediated carnitine transport not only involves the electrogenic gradient, but the presence of sodium also alters the affinity of OCTN2 for carnitine. Germline mutations of OCTN2 result in primary carnitine deficiency, a syndrome of progressive cardiomyopathy and skeletal myopathy. The symptoms associated with this syndrome are thought to result not only from generalized carnitine deficiency from decreased renal carnitine reabsorbtion, but also from inability of cardiac and skeletal myocytes, which ordinarily express OCTN2, to accumulate carnitine. This syndrome demonstrates that tissue-specific OCT-mediated transport is essential for accumulation of required cations in specific tissues.

The present invention identifies a new transport protein in the OCT family, OCT6, preferentially expressed in leukemia cell lines, leukemia blast cells and CD34+ cells. The cell surface localization and the transporter function of the OCT6 gene product suggest its usefulness as a target in the diagnosis and treatment of hematologic malignancies.

As used herein, the term "antibody" refers to an immunoglobulin molecule with a specific amino acid sequence 55 evoked in by an antigen, and characterized by reacting specifically with the antigen in some demonstrable way.

As used herein, the term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compositions of the present invention are administered.

As used herein, "compound" refers to any agent, chemical, substance, or substrate, whether organic or inorganic, or any protein including antibodies, peptides, polypeptides, peptoids, and the like.

As used herein, the term cytotoxin" or cytoxic agent includes any specific substance, which may or may not be antibody, that inhibits or prevents the functions of cells, causes destruction of cells, or both.

As used herein, the term "derivative" refers to something produced by modification of something pre-existing; for example, a substance or chemical compound that may be produced from another substance or compound of similar structure in one or more steps.

As used herein, the term "fragment" refers to a part of a larger entity, said larger entity comprising by non-limiting example, an antibody, compound or substance.

As used herein, the term "leukemia blast" or "leukemic blast" refers to lymphoblasts, the abnormal immature white 10 blood cells associated with leukemia.

As used herein, the term "monoclonal antibody" is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, 15 prokaryotic, or phage clone, and not the method by which it is produced.

As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier that may be administered to a subject, together with one or more liver protecting agents and one or 20 more mushroom powder or extract of the present invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

As used herein, the term "substrate" refers to a substance, 25 compound, agent, antibody or derivatives and/or fragment thereof, acted upon by the OCT6 transporter protein (e.g., a substance that is taken across the cellular membrane by action of the OCT6 transporter protein).

8

OCT6 (SEQ ID NO:1) was first identified as a potential OCT gene by assembling and sequencing ESTs as described in Example 1 (amino acid sequence of OCT6 is SEQ ID NO:2). The gene sequence proved to be identical to the recently submitted cDNA OKB1 (GenBank AF268892) submitted by M. Okabe and T. Abe, incorporated herein in its entirety. It is also contained within the submitted BAC clone CTA-331P3 (SEQ ID NO: 3) (GenBank AC002464) located at chromosome 6q21, incorporated herein in its entirety. The gene has a predicted protein structure typical of transport proteins with two groups of six transmembrane domains separated by a hydrophilic region (FIG. 1A). CLUSTALW alignment produced a dendrogram showing the phylogenic relationship between OCT6 and other OAT and OCT proteins (FIG. 1B). This dendrogram suggests that the distinction between OAT and OCT genes, based on functional studies, obscures the common origin of both families of transporters. The actual CLUSTALW alignment of these genes is shown in FIG. 2 and demonstrates multiple regions of conservation among all of these genes.

Next, according to the methods described in Example 3, quantitative RT PCR analysis of the expression of OCT6 was performed, along with the expression of other OCT genes, in 50 cell lines. The results are shown in Table 3. The two highest expressing cell lines for OCT6 in this panel were two leukemia cell lines, HL60, a human promyelocytic leukemia cell line, and MOLT4, a human acute lymphoblastic leukemia (T-cell) cell line. There was only a low level of expression detected in most of the other cell lines.

TABLE 3

	TADLE 3										
	OCT expression in 50 cell lines of the NCI Drug Screen										
No.	Cell Line	source	OCT1	OCT2	OCT3	OCTN 2	OCT6				
1	CCRF-CEM	Leukemia	0.7	0.7	0.2	0.1	5.7				
2	HL-60	Leukemia	0.5	1.3	0.0	0.4	716				
3	K-562	Leukemia	1.4	1.2	0.2	1.4	5.2				
4	MOLT-4	Leukemia	0.1	1.1	0.5	0.6	46.8				
5	RPMI-8226	Leukemia	2.8	2.0	0.1	3.7	6.02				
6	SR	Leukemia	1.9	1.1	0.0	0.3	2.6				
7	A549/ATCC	Lung cancer	1.7	1.2	161	4.3	1.2				
8	HOP-62	Lung cancer	0.8	4.8	0.6	2.4	4.1				
9	NCI-H226	Lung cancer	4.8	0.5	0.1	21.1	4.8				
10	NCI-H23	Lung cancer	0.5	0.7	0.0	0.3	5.2				
11	NCI-H460	Lung cancer	0.7	1.0	0.0	1.7	1.8				
12	COLO205	Colon Ca.	4.9	5.3	30.9	2.2	3.6				
13	HCC-2998	Colon Ca.	1.5	1.0	0.0	2.6	5.4				
14	HCT-116	Colon Ca.	1.7	2.1	0.1	2.8	9.7				
15	HCT-15	Colon Ca.	0.9	1.7	0.1	3.5	4.2				
16	HT-29	Colon Ca.	1.9	1.2	18.1	1.5	1.5				
17	KM-12	Colon Ca.	0.6	1.0	12.2	0.7	2.1				
18	SW-620	Colon Ca.	1.0	2.6	40.4	1.9	3.7				
19	SF-268	CNS Tumor	0.4	0.8	0.0	0.9	2				
20	SF-295	CNS Tumor	0.5	1.2	0.2	1.1	2.5				
21	SF-539	CNS Tumor	0.5	0.6	2.3	0.2	5.3				
22	SNB-75	CNS Tumor	0.8	1.8	0.0	0.6	2.3				
23	U251	CNS Tumor	0.8	0.9	0.0	0.6	7.4				
24	LOCIMVI	Melanoma	2.9	2.1	0.1	0.4	3.6				
25	MALME-3M	Melanoma	1.5	1.5	0.0	2.3	3				
26	M14	Melanoma	1.9	1.4	0.0	1.9	4.7				
27	SK-MEL-2	Melanoma	2.1	1.9	0.0	2.2	3.9				
28	SK-MEL-5	Melanoma	2.6	1.5	0.0	1.9	2.7				
29	UACC-257	Melanoma	3.2	3.6	0.0	1.1	5.4				
30	IGROV1	Ovarian Ca.	4.9	5015	17.9	1.8	2.5				
31	OVCAR-3	Ovarian Ca.	1.4	0.1	0.0	2.2	14				
32	OVCAR-4	Ovarian Ca.	2.6	1.4	0.0	8.9	3.4				
33	OVCAR-5	Ovarian Ca.	3.5	2.7	105	10.0	4.8				
34	OVCAR-8	Ovarian Ca.	1.1	1.0	0.0	0.8	1.6				
35	SK-OV-3	Ovarian Ca.	3.9	1995	9.2	8.5	9.8				
36	A498	Renal Ca.	2.2	13.4	180	4.7	1.3				
37	ACHN	Renal Ca.	1.1	1.1	0.7	1.2	1.1				
38	CAKI_1	Renal Ca.	3.5	2.5	4.8	1.8	2.8				

TABLE 3-continued

	OCT expression in 50 cell lines of the NCI Drug Screen											
No.	Cell Line	source	OCT1	OCT2	ОСТ3	OCTN 2	OCT6					
39	RXF-393	Renal Ca.	1.7	1.2	3.0	0.6	1.2					
40	TK-10	Renal Ca.	3.6	5.0	16.8	2.5	8					
41	UO-31	Renal Ca.	4.4	1.6	31.2	1.2	2.3					
42	PC-3	Prostate Ca.	2.1	0.8	9.6	3.3	4.7					
43	DU-145	Prostate Ca.	1.1	1.1	3.4	1.6	3					
44	MCF-7	Breast Ca.	0.8	1.8	0.0	10.4	3.5					
45	NCI/ADR-RES	Breast Ca.	1.4	1.3	1.1	2.0	2.1					
46	MDA-MB-231	Breast Ca.	1.2	0.4	3.9	4.8	1.8					
47	HS578T	Breast Ca.	1.0	1.5	0.0	1.2	8.3					
48	MDA-MB-435	Breast Ca.	1.9	0.6	0.1	0.7	2.7					
49	BT-549	Breast Ca.	1.2	0.8	0.1	0.3	2.6					
50	T-47D	Breast Ca.	0.7	1.1	0.1	4.2	8.7					

OCT6 is unique among the known members of OCT and OAT genes because of its pattern of tissue distribution. The pattern of expression of the OCT6 gene in the 50 cell lines suggested that its expression might be restricted to hematopoietic tissues. The restricted pattern of expression observed 25 for OCT6 also suggests that therapies using OCT6-specific substrates are unlikely to have widespread toxicity to normal tissues. Therefore, we examined OCT6 expression in a cDNA panel representing a wide cross-section of normal tissues according to the methods of Example 4 (FIG. 3). This study 30 revealed that OCT6 RNA levels are highest in testis and fetal liver, with lower but detectable levels in peripheral blood leukocytes and bone marrow. Since fetal hematopoiesis occurs in the liver, it is possible that the fetal liver sample may have included both hepatocytes and hematopoietic cells. OCT6 RNA levels were also barely detectable in pancreatic and adrenal tissue. Unlike other OCT genes, expression was not detectable in liver, kidney or placenta.

To determine whether OCT6 RNA expression in hematopoietic cells was lineage-specific, leukocytes were sorted from discarded buffy coat specimens by flow cytometry, and purified subpopulations were examined for OCT6 RNA expression according to the methods described in Example 5. OCT6 expression was also examined in a population of 45 CD34+ cells. As can be seen in FIG. 4, the expression of OCT6 was highly enriched in CD34+ cells in comparison to the other cell populations. Also, significant levels of OCT6 expression (relative to MOLT4) were found in other hematopoietic cell lines: U937, a human histiocytic lymphoma cell line; THP-1, a human acute monocytic leukemia cell line; KG-1, a human erythroleukemia cell line; and MV-4-11, a human biphenotypic (B-cell and myelomonocytic) leukemia cell line

The high levels of OCT6 RNA in some leukemia cell lines and CD34+ cells also raised the question as to whether this gene was highly expressed in actual leukemias. To address this issue, the RNA levels of OCT6 in 25 samples of peripheral leukemic cells were measured according to the methods set out in Example 6. The FAB classification of these samples are shown in Table 4. These results are shown in FIG. 5, and demonstrate that the majority of specimens contained RNA levels for OCT6 that exceeded the level found in MOLT4 cell line, the second highest expressing cell line among those examined, and exceed by orders of magnitude the levels found in placenta, kidney and liver.

TABLE 4

Phenotypes of leukemia specimens								
Sample Number	Description							
1	CML, blast crisis							
2 3	CML, blast crisis							
3	CML, stable phase							
4	CML, probably stable phase							
5	CML, accelerated phase							
6	ALL							
7	ALL							
8	AML							
9	ALL							
10	ALL							
11	ALL							
12	AML							
13	AML							
14	AML							
15	AML							
16	ALL, biphenotypic							
17	ALL, biphenotypic							
18	AML							
19	AML, M2							
20	AML, M2							
21	AML, M4							
22	AML, M4							
23	AML, M1							
24	AML							
25	AML, M4							

Due to the OCT6 protein's location on the cellular membrane and its function as an intracellular transporter, the OCT6 transporter protein has been identified as a therapeutic target. Basic principles of cellular pharmacology suggest that increase in intracellular accumulation will lead to increased intracellular effect. For anticancer drugs, this principle has been studied extensively in the context of lipophilic drugs, which require no specific mechanism for cellular uptake, and export pumps such as the product of the multidrug resistance gene, MDR1, whose overexpression of MDR1 leads to increased cellular resistance by decreasing intracellular concentrations of drug (Moscow, J. A., Schneider, E. S., Ivy, S. P., and Cowan, K. H. Multidrug resistance. In: H. M. Pinedo, D. L. Longo, and B. A. Chabner (eds.), Cancer chemotherapy and biological response modifiers. Annual 17. New York: Elsevier, 1997). The same principle applies to charged, hydrophilic drugs of the present invention, except that the determinants of sensitivity depend on uptake as opposed to efflux. As such, cells overexpressing an OCT6 transporter are likely to be highly sensitive to cytotoxic OCT6 substrates.

Drug Screening

Accordingly, the present invention provides methods for screening potential substrates of, and potential therapeutic agents against hematological malignancies like leukemia that overexpress, the OCT6 transporter. In particular, potential 5

11

therapeutic agents are screened for the ability to be a substrate recognized by an OCT6 transporter protein. Preferably, potential substrates are screened for the ability to confer cytotoxic effects on a cell overexpressing OCT6 transporter protein. More preferably, agents are screened for the ability to 10 preferentially cause cellular uptake into, and cell death of, cells overexpressing the OCT6 transporter. Most preferably, the agents are screened for the ability to cause cell death of cancer cells such as leukemia overexpressing the OCT6 transporter as compared to normal cells.

A method for screening potential substrates of the OCT6 transporter protein comprises providing a cell or cell line which expresses OCT6 and a test compound, incubating the test compound and cell line and analyzing the cell or cell line to determine if there was a cellular influx of the test com- 20 pound. Analysis of the cell line to determine whether cellular uptake of the test compound occurred can be accomplished by any means known in the art. For example, a test compound can be tagged with a detectable label prior to contact with a cell and then observed under microscopy or by other means 25 microscopy. for its location. Non-limiting examples of labels include green fluorescent protein, alkaline phosphatase, horseradish peroxidase, rease, f3-galactosidase, CAT, luciferase, an immunogenic tag peptide sequence, an extrinsically activatable enzyme, an extrinsically activatable toxin, an extrinsi- 30 cally activatable fluor, an extrinsically activatable quenching agent, a radioactive element or an antibody.

A method for screening candidate anti-cancer agents comprises determining the viability of a mammalian cell which expresses OCT6 incubated in the presence and absence of a 35 test compound and identifying the test compound as a potential anti-leukemia agent if there is a cellular uptake of the test compound and cell death. Analysis of cell viability can be accomplished by any means known in the art.

It is well known in the art that viability of a cell can be 40 determined by contacting the cell with a dye and viewing it under a microscope. Viable cells can be observed to have an intact membrane and do not stain, whereas dying or dead cells having "leaky" membranes do stain. Incorporation of the dye by the cell indicates the death of the cell. The most common 45 dye used in the art for determining viability is trypan blue. Viability of cells can also be determined by detecting DNA synthesis. Cells can be cultured in cell medium with labeled nucleotides (e.g., ³H thymidine). The uptake or incorporation of the labeled nucleotides indicates DNA synthesis and cell 50 viability. In addition, colonies formed by cells cultured in medium indicate cell growth and is another means to test viability of the cells.

Identification and/or observation of cells undergoing apoptosis can be another method of determining cell viability. 55 Apoptosis is a specific mode of cell death recognized by a characteristic pattern of morphological, biochemical, and molecular changes. Cells going through apoptosis appear shrunken, and rounded; they also can be observed to become detached from culture dish. Thermophological changes 60 involve a characteristic pattern of condensation of chromatin and cytoplasm which can be readily identified by microscopy. When stained with a DNA-binding dye, such as H33258, apoptotic cells display classic condensed and punctate nuclei instead of homogeneous and round nuclei.

The hallmark of apoptosis is the endonucleolysis, a molecular change in which nuclear DNA is initially degraded 12

at the linker sections of nucleosomes to give rise to fragments equivalent to single and multiple nucleosomes. When these DNA fragments are subjected to gel electrophoresis, they reveal a series of DNA bands which are positioned approximately equally distant from each other on the gel. The size difference between the two bands next to each other is about the length of one nucleosome (i.e., 20 base pairs). This characteristic display of the DNA bands is called a DNA ladder and it indicates apoptosis of the cell. Apoptotic cells can be identified by flow cytometric methods based on measurement of cellular DNA content, increased sensitivity of DNA to denaturation, or altered light scattering properties. These methods are well known in the art and are within the contemplation of the invention.

Abnormal DNA breaks are also characteristic of apoptosis and can be detected by any means known in the art. In one embodiment, DNA breaks are labeled with biotinylated dUTP (b-dUTP). Cells are fixed and incubated in the presence of biotinylated dUTP with either exogenous terminal transferase (terminal DNA transferase assay; TdT assay) or DNA polymerase (nick translation assay; NT assay). The biotinylated dUTP is incorporated into the chromosome at the places where abnormal DNA breaks are repaired, and are detected with fluorescein conjugated to avidin under fluorescence

Kits

The present invention provides kits that can be used in the above screening methods. In one embodiment, a kit comprises a substantially isolated polypeptide comprising an OCT6 epitope which is specifically immunoreactive with only test compound(s) that are substrates of the OCT6 transporter protein. Binding of a test compound to the OCT6 epitope is indicative that the test compound is a OCT6 substrate. In another embodiment, a kit comprises a cell line that overexpresses an OCT6 transporter protein. Binding and/or cellular uptake of a test compound via the OCT6 protein is indicative that the test compound is a OCT6 substrate. Preferably, the kits of the present invention further comprise a control compound or antibody which does not react with the OCT6 transporter protein. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of a test compound to an OCT6 epitope and/or cellular uptake of a test compound. For example, the test compound may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate.

The detectable substance may be coupled or conjugated either directly to the test compound (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Further non-limiting examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, nonradioactive paramagnetic metal ions, immunogenic tag peptide sequences, extrinsically activatable toxins, extrinsically activatable quenching agents, or antibodies. Non-limiting examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/bi-

otin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials 5 include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125 I, 131 I, 111 In or 99 Tc.

Immunogenic Compositions

The present invention also provides immunogenic compositions for the treatment of hematological malignancies. Non-limiting exemplary hematological malignancies include, but are not limited to, Hodgkin's disease, leukemia such as, acute lymphoid (lymphocytic or lymphoblastic) leukemia (ALL), acute myeloid (myelogenous or myeloblastic) leukemia 15 (AML), acute lymphoid leukemia, biphenotypic (ALL, biphentoypic), acute undifferentiated leukemia (AUL), chronic myeloid (myelogenous or granulocytic) leukemia (CML), erythroleukemia, granuloxytic leukemia, lymphoma, monocytic leukemia, myleoma, myelomonocytic leukemia, 20 myelodysplastic syndromes, non-Hodgkin lymphoma, progranulocytic leukemia.

According to the invention immunogenic compositions for the treatment of hematological malignancies comprise a substrate recognized by an OCT6 transporter protein. Preferably, the substrate is a compound that binds selectively or specifically to a OCT6 transporter protein. In a preferred embodiment, the compound binds selectively to the OCT6 transporter protein encoded by a nucleotide sequence of SEQ ID NO:1. The compound may be a cytotoxin or coupled or conjugated with a cytoxic agent. Preferably the cytoxin or cytotoxic agent is a chemotherapeutic agent.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier.

Cell surface proteins like the OCT6 transporter can be utilized in antibody-based targeting strategies. In still another aspect of the invention, antibodies can be developed by known methods in the art against the external epitope of OCT6 transporter protein. In a preferred embodiment, antibodies are substrates of the OCT6 protein. The antibodies may be polyclonal antibodies or monoclonal antibodies.

Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and *corynebacterium parvum*. Such adjuvants are also well known in the art.

Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., 65 Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in:

14

Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).

The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate, such as, for example, a linker known in the art, using techniques known in the art. (See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention.) Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ¹¹¹In or ⁹⁹Tc.

Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, ²¹³Bi. Non-limiting examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response such as inducing cell death for the treatment and prevention of hematological malignancies like leukemia. The therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity for inducing cell death. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g.,

TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int. Immunol., 6:1567-1574 (1994)), VEGI (See, International Publication No. WO 99/23105), a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-10 CSF"), or other growth factors.

Therapeutic Treatment

The present invention is further directed to methods for preventing and treating hematological malignancies such as leukemia. According to the invention, hematological malignancies comprise without limitation, Hodgkin's disease, leukemia such as, acute lymphoid (lymphocytic or lymphoblastic) leukemia (ALL), acute myeloid (myelogenous or myeloblastic) leukemia (AML), acute lymphoid leukemia, biphenotypic (ALL, biphentoypic), acute undifferentiated leukemia (AUL), chronic myeloid (myelogenous or granulocytic) leukemia (CML), erythroleukemia, granuloxytic leukemia, lymphoma, monocytic leukemia, myleoma, myelomonocytic leukemia, myelodysplastic syndromes, non-Hodgkin lymphoma, progranulocytic leukemia.

Methods of treatment of the present invention comprise administering to a subject in need thereof an immunogenic composition of the present invention. The compositions may be administered with a pharmaceutically acceptable carrier.

Such pharmaceutical carriers can be sterile liquids, such as 30 water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The com- 40 position, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated 45 as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate. etc. Examples of suitable pharmaceutical 50 carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.

16

Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of hematological malignancies can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

Various other delivery systems are known and can be used to administer a composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptormediated endocytosis (See, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.

In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (See Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)

In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one

17

embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321: 574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228: 190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J. Neurosurg. 71:105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).

In a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

EXAMPLES

The following examples are presented for the illustrative 35 purposes and it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention as defined by the appended claims.

Example 1

OCT6 Nucleotide Sequence Identification and Analysis

OCT6 was first identified as a potential OCT gene by assembling and sequencing ESTs. BLAST searches of human ESTs in GenBank data base identified AI040384 (654 bp), AA033971 (714 bp) and H70190 (474 bp) sequences 50 from three fetal liver IMAGE clones, 1656502, 429904 and 212935 respectively. IMAGE clone 1656502 (3', insert 1337 bp) ended the predicted 3' stop codon, whereas IMAGE clone 429904 (5', insert 996 bp) and IMAGE clone 212935 (5', insert 966 bp) aligned with the 5'-coding region. All clones were obtained from the IMAGE Consortium through the American Type Culture Collection (Manassas, Va.). Each clone was sequenced in both directions. The sequences were determined using ABI PrismTM 377 DNA sequencer (Perkin-Elmer). Our assemblage proved to be identical to the recently submitted cDNA OKB1 (AF268892) submitted by M. Okabe 60 and T. Abe. We have dubbed this gene OCT6 as OCTN1 and OCTN2 may be considered as OCT4 and OCT5 respectively.

The OCT6 gene (SEQ ID NO:1) is also contained within BAC clone CTA-331P3 (SEQ ID NO:3) (GenBank AC002464) located at chromosome 6q21. It is divided into 6 exons that span 42 kb on the human genome, from nucleotide 79,570 to nucleotide 120490 on CTA-331P3.

18

The gene has a predicted protein structure typical of transport proteins with 2 groups of 6 transmembrane domains separated by a hydrophilic region (FIG. 1A). The large hydrophilic region between TMD1 and TMD2 is typical of OCT and OAT genes and is presumed to be located on the outside surface of the cell membrane. The OCT6 protein contains potential sites for N-glycosylation and phosphorylation, which will be described below in Methods. Of interest, the protein sequence also contains a 22 amino acid leucine zipper motif, starting at amino acid 146, suggesting that there may be a physical interaction between OCT6 and ion channels or other membrane-associated proteins.

CLUSTALW alignment produced a dendrogram showing the phylogenic relationship between OCT6 and other OAT and OCT proteins (FIG. 1B). This dendrogram suggests that the distinction between OAT and OCT genes, based on functional studies, obscures the common origin of both families of transporters. The actual CLUSTALW alignment of these genes is shown in FIG. 2 and demonstrates multiple regions of conservation among all of these genes.

The hydropathy profile analysis, multiple sequence alignments of amino acid sequences using CLUSTALW and the phylogenetic tree were all produced with MacVector software.

Example 2

Molecular Cloning of OCT6

BLAST searches of human ESTs in GenBank data base identified AI040384 (654 bp), AA033971 (714 bp) and H70190 (474 bp) sequences from three fetal liver IMAGE clones, 1656502, 429904 and 212935 respectively. IMAGE clone 1656502 (3', insert 1337 bp) ended the predicted 3' stop codon, whereas IMAGE clone 429904 (5', insert 966 bp) and IMAGE clone 212935 (5', insert 966 bp) aligned with the 5'-coding region. All clones were obtained from the IMAGE Consortium through the American Type Culture Collection (Manassas, Va.). Each clone was sequenced in both directions. The sequences were determined using ABI PrismTM 377 DNA sequencer (Perkin-Elmer).

Example 3

Quantitative RT-PCR of OCT6 RNA Levels in Cancer Cell Lines

Total RNA isolated from 50 cell lines used in the NCI drug screen program was provided by the Developmental Therapeutics Program, NCI. Quantitative RT-PCR for detecting OAT-X transporter gene expression was performed by using a Roche LightCycler, which uses real time fluorescence detection for quantitative measurement of PCR products. A genespecific primer pair was designed with Oligo 4.0 software and purchased from Integrated DNA Technologies, Inc. (Coralville, Iowa) (F: 5'-GGCACATTTATTCACCAAGACCAG-3') (SEQ ID NO: 13) and (F: 5'-TGTGGACCTCAGCAG-CATTTGGAT-3') (SEQ ID NO:14). The specificity of the PCR reaction was confirmed by directly determining the DNA sequence of the PCR product. First, cDNA was synthesized from total RNA using SuperScript First-Strand Synthesis System (GIBCO/BRL) in a 20 µl volume following the instructions supplied by the manufacturer. The cDNA treated with RNAse H for 20 minutes at 37° C. and stored at -20° C. Then, 2 ul of cDNA reaction was amplified in a standard PCR reaction condition, using 0.3 µM primer concentration, with the addition of SYBR Green I Dye. After 30 seconds denature at 95° C., the amplification reaction proceeded through 45-50 cycles of 95° C. denature for 0 second, 62-65° C. annealing

for 10 seconds and a 72° C. extension for 40 seconds, with slopes of 20° C./s, 20° C./s and 2° C./s, respectively.

Fluorescence was acquired during each cycle after heating to a temperature just below the product melting temperature. Quantification was performed using the LightCycler analysis software. The log-linear portion of the standard amplification curve was identified, and the 'crossing point', a threshold of relative fluorescence, was determined as the best fit through the log-linear region above the background fluorescence (noise) band. The quantification of PCR product then was derived by plotting fluorescence data in the log linear region of each sample to determine a calculated number of cycles needed to reach the fluorescence crossing point. The calculated number of cycles required to reach the crossing point is proportional to the amount of target RNA in the sample. The relative amount of product was described in arbitrary units by interpolation of the data using a standard curve of a series of dilutions of a standard cell line RNA. The quantitative measurement of each gene in each cell line was normalized to the relative amount of actin RNA in each cell line, as a control for equivalent cDNA loading in each sample. The results repre- 20 sent the average of 3 independent determinations performed in duplicate.

A melting curve analysis was performed with positive control RNA prior analysis of the cell lines to enhance sensitivity and the specificity of the data. Amplified products usually melt quickly at a temperature characteristic for the products. The fluorescence signal was acquired at a temperature just below the Tm of the specific PCR product and above the Tm of the primer dimers. All specific PCR product displayed a single, sharply melting curve with a narrow peak. In addition, PCR products were confirmed for specificity and correct size by visualization of the LightCycler products on a 1% agarose gel.

Example 4

Tissue Distribution

First strand cDNAs derived from 24 adult and fetal tissues (RAPID-SCAN gene expression panel, OriGene Technologies, Rockville, Md.). The PCR primers used in this study

20

were the same as used in the quantitative RT-PCR studies. The PCR reaction samples were denatured at 94° C. for 30 seconds, annealed and extended at 64° C. for 30 sec for 35 cycles. The PCR products were then visualized on 1% agarose gels.

Example 5

Cell Sorting

All human specimens were obtained in accordance with institutional IRB guidelines. Leukocytes from fresh discarded buffy coats were isolated after RBC lysis with ammonium chloride and labeled with lineage specific antibodies (CD14, monocytes; CD15, granulocytes; CD3, T-cells; and CD20, B-cells), and isolated using a FACSVantage flow cytometer. Each population was sorted twice to ensure purities of at least 99%. CD34 cells were obtained from discarded aliquots of G-CSF-mobilized peripheral blood stem cell collections from cancer patients. For each sample, the PCR results represent the pooled average of cells from 2 individuals performed in triplicate or quadruplicate.

Example 6

OCT6 RNA Levels in Leukemic Blasts

Total RNA was extracted from leukemia specimens using QIAGEN RNeasy midi kit. 150 ng of total RNA were used as a template for the first strand cDNA synthesis with the Oligo (dT) primer using the super script system (GIBCO BRL) according to the manufacturer's protocol. Quantitative real-time RT-PCR was performed using an iCycler thermal cycler with methods similar to those described above for the Roche LightCycler. The results represent the average of 3 independent determination performed in duplicate.

Although illustrative embodiments of the present invention have been described in detail, it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention as defined by the appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 14
<210> SEQ ID NO 1
<211> LENGTH: 1734
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
                                                                       60
atggggtccc gccacttcga ggggatttat gaccacgtgg ggcacttcgg cagattccag
agagteetet attteatatg tgeetteeag aacatetett gtggtattea etaettgget
                                                                      120
tetgtgttca tgggagtcac ccctcatcat gtctgcaggc ccccaggcaa tgtgagtcag
                                                                      180
gttgttttcc ataatcactc taattggagt ttggaggaca ccggggccct gttgtcttca
                                                                      240
ggccagaaag attatgttac ggtgcagttg cagaatggtg agatctggga gctctcaagg
                                                                      300
tgtagcagga ataagaggga gaacacatcg agtttgggct atgaatacac tggcagtaag
                                                                      360
aaagagtttc cttgtgtgga tggctacata tatgaccaga acacatggaa aagcactgcg
                                                                      420
gtgacccagt ggaacctggt ctgtgaccga aaatggcttg caatgctgat ccagccccta
                                                                      480
```

-continued

Concinaca										
tttatgtttg gagtcctact gggatcggtg acttttggct acttttctga caggctagga 540										
cgccgggtgg tcttgtgggc cacaagcagt agcatgtttt tgtttggaat agcagcggcg 600										
tttgcagttg attattacac cttcatggct gctcgctttt ttcttgccat ggttgcaagt 660										
ggctatcttg tggtggggtt tgtctatgtg atggaattca ttggcatgaa gtctcggaca 720										
tgggcgtctg tccatttgca ttcctttttt gcagttggaa ccctgctggt ggctttgaca 780										
ggatacttgg tcaggacctg gtggctttac cagatgatcc tctccacagt gactgtcccc 840										
tttatcctgt gctgttgggt gctcccagag acaccttttt ggcttctctc agagggacga 900										
tatgaagaag cacaaaaaat agttgacatc atggccaagt ggaacagggc aagctcctgt 960										
aaactgtcag aacttttatc actggaccta caaggtcctg ttagtaatag ccccactgaa 1020										
gttcagaagc acaacctatc atatctgttt tataactgga gcattacgaa aaggacactt 1080										
accgtttggc taatctggtt cactggaagt ttgggattct actcgttttc cttgaattct 1140										
gttaacttag gaggcaatga atacttaaac ctcttcctcc tgggtgtagt ggaaattccc 1200										
gcctacacet tegtgtgcat egccaeggae aaggteggga ggagaacagt cetggcctae 1260										
tetettttet geagtgeact ggeetgtggt gtegttatgg tgateceeca gaaacattat 1320										
attttgggtg tggtgacagc tatggttgga aaatttgcca tcggggcagc atttggcctc 1380										
atttatettt atacagetga getgtateea accattgtaa gategetgge tgtgggaage 1440										
ggcagcatgg tgtgtcgcct ggccagcatc ctggcgccgt tctctgtgga cctcagcagc 1500										
atttggatet teataceaea gttgtttgtt gggaetatgg eeeteetgag tggagtgtta 1560										
acactaaagc ttccagaaac ccttgggaaa cggctagcaa ctacttggga ggaggctgca 1620										
aaactggagt cagagaatga aagcaagtca agcaaattac ttctcacaac taataatagt 1680										
gggctggaaa aaacggaagc gattaccccc agggattctg gtcttggtga ataa 1734										
<pre><210> SEQ ID NO 2 <211> LENGTH: 578 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (264)(264) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (268)(269) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (268)(269) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (274)(275) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (410)(410) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid</pre>										
<pre><400> SEQUENCE: 2 Met Gly Ser Arg His Phe Glu Gly Ile Tyr Asp His Val Gly His Phe</pre>										
1 5 10 15										
Gly Arg Phe Gln Arg Val Leu Tyr Phe Ile Cys Ala Phe Gln Asn Ile 20 25 30										
Ser Cys Gly Ile His Tyr Leu Ala Ser Val Phe Met Gly Val Thr Pro 35 40 45										
His His Val Cys Arg Pro Pro Gly Asn Val Ser Gln Val Val Phe His 50 55 60										

Asn His Ser Asn Trp Ser Leu Glu Asp Thr Gly Ala Leu Leu Ser Ser

												0011	O 1111		
65					70					75					80
Gly	Gln	Lys	Asp	Tyr 85	Val	Thr	Val	Gln	Leu 90	Gln	Asn	Gly	Glu	Ile 95	Trp
Glu	Leu	Ser	Arg 100	CAa	Ser	Arg	Asn	Lys 105	Arg	Glu	Asn	Thr	Ser 110	Ser	Leu
Gly	Tyr	Glu 115	Tyr	Thr	Gly	Ser	Lys 120	Lys	Glu	Phe	Pro	Cys 125	Val	Asp	Gly
Tyr	Ile 130	Tyr	Asp	Gln	Asn	Thr 135	Trp	Lys	Ser	Thr	Ala 140	Val	Thr	Gln	Trp
Asn 145	Leu	Val	Cys	Asp	Arg 150	Lys	Trp	Leu	Ala	Met 155	Leu	Ile	Gln	Pro	Leu 160
Phe	Met	Phe	Gly	Val 165	Leu	Leu	Gly	Ser	Val 170	Thr	Phe	Gly	Tyr	Phe 175	Ser
Asp	Arg	Leu	Gly 180	Arg	Arg	Val	Val	Leu 185	Trp	Ala	Thr	Ser	Ser 190	Ser	Met
Phe	Leu	Phe 195	Gly	Ile	Ala	Ala	Ala 200	Phe	Ala	Val	Asp	Tyr 205	Tyr	Thr	Phe
Met	Ala 210	Ala	Arg	Phe	Phe	Leu 215	Ala	Met	Val	Ala	Ser 220	Gly	Tyr	Leu	Val
Val 225	Gly	Phe	Val	Tyr	Val 230	Met	Glu	Phe	Ile	Gly 235	Met	Lys	Ser	Arg	Thr 240
Trp	Ala	Ser	Val	His 245	Leu	His	Ser	Phe	Phe 250	Ala	Val	Gly	Thr	Leu 255	Leu
Val	Ala	Leu	Thr 260	Gly	Tyr	Leu	Xaa	Arg 265	Thr	Trp	Xaa	Xaa	Tyr 270	Gln	Met
Ile	Xaa	Xaa 275	Ser	Thr	Val	Thr	Val 280	Pro	Phe	Ile	Leu	Cys 285	Cys	Trp	Val
Leu	Pro 290	Glu	Thr	Pro	Phe	Trp 295	Leu	Leu	Ser	Glu	Gly 300	Arg	Tyr	Glu	Glu
Ala 305	Gln	Lys	Ile	Val	Asp 310	Ile	Met	Ala	Lys	Trp 315	Asn	Arg	Ala	Ser	Ser 320
CÀa	ГÀа	Leu	Ser	Glu 325	Leu	Leu	Ser	Leu	330	Leu	Gln	Gly	Pro	Val 335	Ser
Asn	Ser	Pro	Thr 340	Glu	Val	Gln	ГЛа	His 345	Asn	Leu	Ser	Tyr	Leu 350	Phe	Tyr
Asn	Trp	Ser 355	Ile	Thr	ГЛа	Arg	Thr 360	Leu	Thr	Val	Trp	Leu 365	Ile	Trp	Phe
Thr	Gly 370	Ser	Leu	Gly	Phe	Tyr 375	Ser	Phe	Ser	Leu	Asn 380	Ser	Val	Asn	Leu
Gly 385	Gly	Asn	Glu	Tyr	Leu 390	Asn	Leu	Phe	Leu	Leu 395	Gly	Val	Val	Glu	Ile 400
Pro	Ala	Tyr	Thr	Phe 405	Val	Càa	Ile	Ala	Xaa 410	Asp	Lys	Val	Gly	Arg 415	Arg
Thr	Val	Leu	Ala 420	Tyr	Ser	Leu	Phe	Сув 425	Ser	Ala	Leu	Ala	Cys 430	Gly	Val
Val	Met	Val 435	Ile	Pro	Gln	Lys	His 440	Tyr	Ile	Leu	Gly	Val 445	Val	Thr	Ala
Met	Val 450	Gly	Lys	Phe	Ala	Ile 455	Gly	Ala	Ala	Phe	Gly 460	Leu	Ile	Tyr	Leu
Tyr 465	Thr	Ala	Glu	Leu	Tyr 470	Pro	Thr	Ile	Val	Arg 475	Ser	Leu	Ala	Val	Gly 480
Ser	Gly	Ser	Met	Val 485	CÀa	Arg	Leu	Ala	Ser 490	Ile	Leu	Ala	Pro	Phe 495	Ser

-continued

 Val
 Asp
 Leu
 Ser
 Ser
 Ile
 Trp
 Ile
 Phe
 Ile
 Pro
 Gln
 Leu
 Phe
 Val
 Gly

 Thr
 Met
 Ala
 Leu
 Leu
 Ser
 Gly
 Val
 Leu
 Thr
 Leu
 Leu
 Leu
 Leu
 Thr
 Thr

 Leu
 Gly
 Lys
 Arg
 Leu
 Ala
 Thr
 Thr
 Trp
 Glu
 Glu
 Ala
 Lys
 Leu
 Leu
 Leu
 Thr
 Asn
 Asn

<210> SEQ ID NO 3 <211> LENGTH: 123805 <212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 3

aagettgtee aacceatgge ceaegggeea catgtggeet aagatggett tgaatgeage 60 ccaacacaaa tttgtaaact ttcttaaagc attgagatat ttttgcaatt ttcttttta 120 gctcatcagc tatcgttagt gttagtgtat tttatatgtg gtgcaagaca attcgtcttc ttccaatgtg gcccagggaa gccaaaagat tggacacccc gtgagatctt ctaggcgact 240 ggcccccagt gaaattgtga tcacggagga tagtagagtc ccggtagtac acataggaga 300 tgttccacaa actccatatg atcagcaccg ttttcgggag gccccacact gtgccgaaca 360 420 tcatgaatca gtgagggttt aggaagcaca tcaacctccc agtgtttggg agctgctgtt 480 ttaagaaggt cccgtttacc attctactgc ccacatgaag agtgaagact aatccgtgga caqqatqcct ctccaqtcta qctqtqcccc qctccctctt tctcatctaa atcqaaccct 540 tttcctqtqq attqaqatqa aaaqtccttq aacqcaccac cttqtqctqc taqqtcaqtc 600 tagacaatat taagtcacat ccattaagtt ttccttaaag aaaatgtttg aaatatttct 660 teetteagtt egatactaag tgtattttge cacaagacae tteetgatga eccaatttea 720 ggtccccatt cttttatcta tgtgagaatt ctccactttc agactctgct taatttaact 780 ctctctgaaa atgtgcaagt tcataaaaga aggtgaaata attactacgg tacatacaaa 840 gaggtgaaca tttcttttt atgtacaaat tgtgtgttac cccaagtgga ctttcctggg 900 cccgcctcct ccttctgtcc caggatcctg gcccagctct gtcccccaat gaactgcaga 960 ggtagagggg taaagaagag cagttgagtg gctcagattg ctgcctgaac tctggaccga 1020 ggagcaatca cgagtaaccc caaaaactgc ccattggttt gcgcactcat agcatgaaaa 1080 caagttccgt tcttttgtgc tgtcctggaa catcagccag ctcttaagtc acgttgcccg 1140 gattcatgtg ctcctgcaat gaaaggccct attgtcaaca aggctggtca acaaggcaaa 1200 gcaaagtttg acccgtgcat caaaacctgg aacatcctga cttgttacgt gctgagaaat 1260 gtgtgcttag tattgtatta aagtaaatgg ggaggggcag tgtctttaaa aatacccaaa 1320 gcaaagaaaa atagatacta tctgctcaat gtcccagagt agaagttttt aaaatgacct 1380 gagaaatagg tttattgctt tcattgcttc cttccttctt cttcctcctt ctctgacatt 1440 tggccctcct ctctaaaaac ttcccctcat agtgacccca ggctcctgtt gggaagtctc 1500 acccactgtg tgggtgaaca agcaaagcaa ctgttaaaag tgttcagata acatggacaa 1560 aaaacacatg gaaaagctga tatcgagttc cattgggttt ggagtggttc ttgcgggcaa 1620

aggatgcagt	gagctgaaca	tacattaaaa	atacaaaccc	ttaagagctg	actgggtaag	1680
acttaagccc	agtatctttc	agagatgagt	gtctaggtgc	atcacccaga	tcttagcctg	1740
cctgagtgta	ccagtgaacc	tgcccaggtt	ttagtttcct	tttctataaa	atgatagctt	1800
ggttctgatg	atcttcaggc	tcccttggga	ggtccttgag	gcttcagctc	aaaccctagc	1860
tctgctatct	acctcttctt	ggtgctgaga	ttccatgata	tccttcaatt	attgtgggac	1920
tgacttagta	gaaggcatca	gagggaatgg	aagcctctac	attatcaatg	cagaaattga	1980
ggcaagaggc	caacattatt	gcacaaaaca	tggcagatgt	tggaatgaag	aagacagtga	2040
gacacaggca	gcaacagagc	ctccttaatc	tctgacccaa	aagagtcttg	acttgaagtt	2100
ccccaagctc	cttcttttct	cccaggcact	cactgctttc	aaagcgactt	caatctcaag	2160
ttgggagatg	tggcccagtt	cagggtctgc	cgcagactca	ggcaccatcc	cttctcctat	2220
ctcagtttct	tcactggcaa	atggaaggta	tacaattaga	tgatttttaa	agccaagctc	2280
agagctaaca	tccacaattc	caggaattcc	aggaaatgca	cactaaaact	aaggttctga	2340
aacaagtaaa	aaaacagacc	aaatgttcga	accaacgatt	ttcagacatt	ggagcacagg	2400
tggcacagga	aacaagtgag	gtgagtcctg	tgattgcccc	agcttgctgc	ctggagagac	2460
tttccaggcc	atggaacagg	gacatggaat	acaggtggag	cacagccata	tccctgtgta	2520
gaaggatggg	getggggtee	cagggacact	tgtgcaccta	gaactcacag	gagagaatac	2580
tggagagaag	aaagctgcac	acggagagaa	ctctgggctc	tgcagagtgt	catctttggg	2640
tcttcagcaa	agtattgatc	agcacatgca	tgtgaggaaa	agaaatgagg	ccagaaaaag	2700
aatcacccaa	aaagattaga	gggaaccatt	cctagagctc	ccaccagcca	gagaatagcc	2760
cctgtggcca	ccaaccacag	ttgaaaacct	tctaattcat	cgggcactga	gtagaacact	2820
ctgagtattg	tctcagtaat	gcagcccaat	tcagcttact	ctaaagtctc	ctgtggtccc	2880
tcctgacaag	gcttaaaagc	aagtettgge	tggcacggtg	gtgcgtgcct	gcagtcccag	2940
ctatccagga	gggtgagggc	tgaggcagca	tgacgactgt	tcaagccagg	agttcaagac	3000
cagcctgggc	aacatagtga	gattctgtat	ctttttttt	tttttttt	tttaaaaaaa	3060
aaggccgggc	acggtgtgtc	aaccctgtaa	teccageact	ttgggaggcc	gaggtgggta	3120
gatcatctga	ggtcgggagt	ttgagacaag	cctgaccaac	atggagaaac	cctgtctcta	3180
ctaaaaacac	aaaattagtc	gggcgtggtg	gcacaggcca	gtaatcccag	ctactcgcga	3240
ggctgcggca	ggagaatcgc	ttgaacctag	gaggcagagg	ttgcagtgaa	tggagatcgc	3300
gcatcgctgt	ccagcctggg	caacaagagg	gaaactccat	ctaaaaaaca	aaacaaacaa	3360
acaaacaaaa	aacaagtcat	gaaaggatcg	aactgttttc	aagtaaatta	actgtgttct	3420
agaacaacac	tcaaaagttt	ttttgtgtgt	ttgtttgttt	tttaaagaat	atccaggcca	3480
ggcatggtgg	ctcacaccta	taatcccagc	actttgggag	accgaggaag	gtggatcact	3540
tgaggttagg	attttgagac	cagactggcc	tcaaacatgg	tgaaactctg	tgtcttctaa	3600
aaatacaaaa	attagccagg	tgtggtgggg	gaggtgctgt	agtcccagtt	actcaggagg	3660
ctgaggcagg	agaatcgttt	gaacctggga	ggaagaggtt	atactgagct	gagattacgc	3720
cactgaactc	cagcctggga	gacaaagtga	gactccgtct	caaaaaaata	aaaagaaaaa	3780
gaatatccag	cactcagcaa	gataaaattc	aagcaagaga	aacatgaagg	aaattataac	3840
aagacacatc	ataatcaaat	tgctcaatac	cagtgataaa	gagaaaatct	taaaattaac	3900
aacaggaaaa	aaattatgtt	agaaacagga	gaacaaagat	aagaatggca	gcagagttca	3960

tgtcagaagc	aagcaagtga	gaagacagag	gaacaataat	ctttaaagta	atcagagaaa	4020
aatattgtca	acctagaatt	ctaggttttt	gggtgttttt	tttttttgt	ctttcacatg	4080
aaatggccac	taattctata	cccagcaaaa	atgtctttca	aaaacaaatg	caaaatactt	4140
tttcaaacat	acaaaagctt	aaaaaatgat	cctctgagga	cctatactat	aagaaatgtt	4200
aagggatgtc	cttcaagcag	aaggacaatg	ataccagata	aaattctggc	tctacaaaaa	4260
gaatgaagag	ttctggaagt	ggaacttcaa	ctactctaaa	catgcaacaa	gctatgaatg	4320
gggagtcttt	ctgtggaggc	ttccaggacc	caaaagtgag	gacagagaag	tactctttgc	4380
ctgagctgac	acccaccaga	gctgagaacc	aaggattcct	aagaggtgac	atatgtggct	4440
gtgttaccgc	caactccacc	ttctacccag	taagactggg	aaggagggag	agagagaaat	4500
aagtctaagg	gtcactggag	cacaggacgt	gtgaggagag	gggacttcct	gcccttcctg	4560
tggttatggg	aaatggggtg	gctgtgcttt	cctccctagt	aaggttctaa	taaaatgatt	4620
ccacaaatat	tggaatgtaa	agtagctccc	ctgttggaca	tttgattagg	aaaaggattt	4680
gctggcttat	tcatacatca	ttagggatag	aggagggtct	tggagaaaga	agaaagggca	4740
caaagaagag	ctgcaggggc	agtctgaact	cacccagttg	gtcagggcca	gaaaacgcat	4800
ttcctgcagt	tcaagtggat	gctacttaga	aggcagctgg	atttgttcca	tccctacccc	4860
aacagggttc	tctctcctat	ttaccgggga	gctcaaagag	tccgtagagt	acatatccag	4920
tcatgggagt	tgaggggcat	ggaggtggtt	gagcctggat	ttaccatatc	cgtgccctgc	4980
aagtctctct	aaaagaaccc	agatgtgtct	tccagagaag	gctagcacgt	cgatgcctgc	5040
ctcacagcca	gtcccagtgg	gacaccgcta	gagagaaggc	taccactaga	gagaaggcta	5100
ccactagaga	gaaggetace	getgeeetgt	tagtttacga	ccctctgccc	tttctctgtc	5160
ctacctctca	gcccagcgca	ctagaggaac	tatttcccaa	agcggaaagc	gagagtggag	5220
gagtgtccca	gaaatagacc	tccctcattc	agggtccagg	tccaagcttg	cactggaccg	5280
ggagagggca	gtggcgctgg	gagatgaggt	gagagtagaa	tcgtttggaa	ttaatgtttt	5340
aaagtggact	gagggttaat	acctgaaaac	agtggtaaaa	ttttggaccc	gcccaagatg	5400
taattaacag	atctgctacc	ctctggataa	ggttgagcac	atttgaaagg	gcttcagaaa	5460
atgaaaaagc	cttttctgtc	tttaagaaaa	caaacaaaca	aaaaaaaca	aaacaaaaga	5520
acaaaaaacc	tgtcttcccc	caacaggcac	aattacattt	gtaaagatgg	ttcccagcag	5580
atggtgaggt	gctaatgagt	cccaggaggg	gctcaggaga	aaactcacct	tcaccacctt	5640
gctcctggtg	actcccagca	cacctggtcc	agcettteet	ctgcagctgt	tttttagtgc	5700
atggcctgtc	ctcctggaag	gaaaactgga	gagcgtgacc	tgatccaggg	agcaaaggct	5760
tcatgtgccc	tgtggccttt	ttcagcatgg	ttagcggggt	gggactctgg	gcccactctc	5820
aggtttgggg	ccatcactag	gtcctggcag	ctgcagtcca	ggctggcccc	acaggaggcc	5880
acaggcggtg	gctccacctg	aggagaaggt	ggcatgtggg	taccccacct	ggctctcccg	5940
ggaagggccc	ttggcaacat	ccgcagcagc	ttggctccac	cccagttgca	gtcttgacat	6000
ttggttattt	tctattcttt	ttactctgca	aataatacat	gttcgttata	caatcaggta	6060
gaatgtacaa	ataagcaaat	aaataaacaa	atacttctca	taatctcact	accaaacagc	6120
cactgttaat	aacatttttg	tgtatttcct	ctaagatcga	gtatgaaata	tttatatata	6180
tacatatata	tatgtatata	caaacaaaat	ggattaatat	tccatacgca	tatgtgggac	6240
atttatattg	tttacaactt	tctgttatct	taaataaggt	gtgatgaaca	cctttactca	6300
taattttttg	tgcataattt	ataattcctt	cgaataactt	cccaaaagga	agctatacca	6360

gggaagttgc	aagtttttaa	actctagtag	ctgaatttct	agctagtagt	ggtggaggag	6420
gaggaccttg	agaaggaggt	ggaggcatgg	gaggagctgg	gcctcagggg	aggctcggga	6480
ggctgctcct	ctcctttgcc	tccttcggtt	tccctgttta	atccttccct	ccgttctcag	6540
gctcctcttc	ccctggtctt	ctctttcatc	ctttaattcc	ttcacccttt	gccccttctg	6600
ctatttcaac	tctggatttt	tcctccagtg	ctcaaacctc	attctgttcc	attgaatgtc	6660
cctcattgaa	tgtcgctcac	tgcttggcct	gccttcctac	ctgtgtcccc	accaggetee	6720
ctgtggtgac	cccgtggtgg	cagcgtggac	tteetgeeet	ctcaggtttg	tgtcctgcag	6780
ggaagagtga	aggtetttte	tagtggctcc	cacaatgccc	tagggactct	ctgattggct	6840
tggtgtaggt	cacatgccca	tctctgaacc	aatgactatg	cccgatcttc	actgtggcct	6900
catctgggcc	acctggtgga	tecetggagt	tgggatgaag	cctcacccag	cccacaggaa	6960
gtaaaagtgg	gggcagagga	gggcccttgg	atgaaggtcg	agctctgttc	tgggaatagt	7020
gggaatatcc	ttgaggcatt	catctcccat	agacagtgaa	actctccttg	cctatggaag	7080
gatatgacaa	acgtgaagat	tttgctttta	aatgtaagaa	ttgtcagtgt	catacctaag	7140
aaatgacgga	aaataatatt	aaaaatttaa	gagtgttaaa	atagatcaac	tgcaaacgtg	7200
tgttcccagg	acacaaatct	gaagggtata	cattaactaa	tagacgggtt	atttttcttt	7260
aaagaaaaat	cccttatatc	ttatatatac	acaagggatt	cttaaggaag	gacaacctag	7320
tcttcctttt	cacccaaaat	ttacagtgtt	aaaaataatt	ttatggccgg	gtgtggtggc	7380
tcacatctgt	aatcccagca	ctttgggatg	ccgaggtgga	aggatcactt	gaggtcagga	7440
gtttgagacc	agcctggcca	acatgctgaa	accccatttc	tactaaaaat	acaaaaatta	7500
actgggcttg	gtggagcact	tctgtaatcc	cagctattca	ggaggctgag	gcaagagaat	7560
catttgaaac	tgggaagcag	aggttgcagt	gagccaagat	tctgccactg	cactccagcc	7620
tggcgacaga	gtgagtggga	ctccatctca	aaaaaataaa	ataaatagat	gaataaataa	7680
ataaataaat	aaataaataa	ataaataaat	aaacaatttt	actattaact	gagaaccttt	7740
tcagtgccag	atcctgagct	aggetettga	tgtgttgtta	tttttaatcc	ttacaacaac	7800
tctacaaagc	aatcttagta	ctcttcattt	ccaaaggagg	aaaaagaggc	tgagagagat	7860
tgtataacct	tccaacagtg	acagcactag	tagtgcccac	caagtggtca	agcccaggtt	7920
gtatgtaccg	gagtgccctt	cttggctaag	aaaacctaaa	attccctaac	ttgtgtttgg	7980
ctgaatttct	gagggetttg	agtgcccaga	gtgeteetge	tgcttcaaaa	gctgcagctt	8040
cagctgcttt	tgaacatctc	agcgactgca	gggacagaaa	tagcactaag	tggaaaaagg	8100
atccaaaaga	agaatctaaa	acttcagcta	ttatatagac	acaaagatat	actacttagg	8160
tctttccaaa	tggatgaaag	gatgccacac	ctaggttttc	caaagaattc	attccttttg	8220
gtgtggctga	actggtgaga	tgtaggggct	tcttaaaagc	attctgatgt	catctcctgg	8280
taaagcctag	ggcttgggaa	ctgaaatgta	caagaaataa	acatgcagtg	aaacacctga	8340
gagtctatcc	tctttgtgtc	tcccatcatt	tctgcaggct	gaagtttcca	tttaattttt	8400
gcatcacatc	tttagcacta	ttggacatcc	tagaaacctc	attcacaaga	tttcaagttt	8460
gaagtgatag	tgtttgctac	cagageceet	tttctgtcaa	agaaattaga	agcaggaagg	8520
ttgatgcatt	ccccacagg	tgagtcacca	agaaaatgtt	tgagtcttca	aaaggcgatg	8580
gttccactct	tagctggtga	attccatgag	catacaaagc	tctgtttgta	accctgtcac	8640
agaagaagaa	tctgggatgt	gttttttatt	tggtacagga	aataagaggt	ggatgattcc	8700

agtttgtgga	atttgacagt	cttctgttca	gtcagtatct	cttattttgt	tatgcttatt	8760
ttaacagaaa	gaaaagaggt	cttttagaat	aatgtgaaac	tcacactctg	catggggaca	8820
ggtaaggagg	gaagcctggg	atgtgtgcag	agaaaaggca	gcatggctgt	ttgactggag	8880
caaaggaaat	gtggcatggg	ggtggaggga	cagggccacc	tcagggagca	ttgaaggttc	8940
agccatggag	ttcaggcttt	attctcaaag	tagtgggagt	taatgaaggt	ttttgactag	9000
atgtatcaga	attgtgtttt	ctgtttgttt	gtctgtctgt	ttgtttgttt	gtttgtttga	9060
gacagagtct	ctctcagttg	cccaggctgg	agtgcggtgg	tacgatctca	gcttactgcg	9120
atctctgcct	cctgggctta	agccatccat	cttcccaccc	cagcctcccg	agtagctggg	9180
gtcacaggtg	catgccacca	agtctggctt	atttttgtac	tttttttt	ttttttttgt	9240
agaaaagggg	gtttcgccat	gttgtccagg	ctggtcttga	gctcctgggc	tcaagtgatc	9300
cacccacctc	agcctcccaa	agtgctggga	ttataggtgt	gagccactgt	gcctggccag	9360
aactgtttta	gggagaacaa	tttattaaca	atataggaaa	tagaacagaa	acagagggtg	9420
gacataggca	agcctgtgag	atgtctacta	tagagtccca	ggctgacact	ggaaggcagg	9480
cgttagcatc	aagagtcaga	atggaaaaga	cgtcaggagg	gagaagctac	tatagagatg	9540
gaagttatgg	gtcagagtgg	ataacgaagg	acaagatggt	gctgcactgg	gtgactgcat	9600
gggtggtggt	gctgtgtaca	gattggggcg	aacgtggagg	aagcacaagt	gttgaaagaa	9660
gggatcatgg	gtccactttt	gaacatactg	agtttgaggt	ttcaatagga	catctttgta	9720
gggatgcgta	gaagacagtt	ggaaatacaa	atgtggattc	agagacaagt	ccagccttca	9780
gtggaactca	gacaagtcca	ggaagatgag	gaggaagggg	gctagagaaa	tagtagagga	9840
agggggctag	agaaatagta	gagaaaggaa	aggacagaga	tctgcgaagc	tgagggagga	9900
gttttaagaa	aagggtgggc	caggtgtggt	ggctgtaatc	tcaacacttt	gggaggccaa	9960
ggcacagggg	gatcacttga	ggccaggagt	ccaagaccag	cctgagcaag	atactgagac	10020
cacatttcta	caaaaaaaaa	aaaaaaaaa	aaaaaaaaa	agttatctgg	ggcagtggtg	10080
ggcacctgta	gtcccagcta	ctcaggagac	tgaggcaaga	ggcttgcttg	agcccaggag	10140
gtcgaggctg	cagtgagcca	tcataccact	gcactccagc	ttgggtgaca	taatgagacc	10200
ttgtctcagg	aaaaaaaaa	aaagagtggt	gtggttagca	gtatctgatt	tagtaaaggg	10260
ctgagaaggt	tgaggatgga	cactggcaga	ctttggcttt	taccctcatc	cctgtccagt	10320
aagagttctc	tcaattccaa	acatttaaaa	gtgagtggga	atcattaatg	gaaccataca	10380
tttcaaaatg	attaaaatgg	aaaattctat	gttatatttc	tctataaatg	agtaaatgag	10440
agaaaaacat	taacatttaa	aaaaatcata	ttgttctcta	catgtttctg	tatgcttaaa	10500
acataataaa	ttgctttgaa	aagtaagtgg	taggtcaaaa	acagaagtat	tgatacaaac	10560
cacactttgg	agaaatgtga	tagctaagtg	aaggagggaa	agcatgagtg	actcagctta	10620
acgggtaaca	ggaaagaaag	aacttgtttt	ttcgtttgtt	tcgatgaggc	aacttgttta	10680
tetttetggg	ggccatcgct	tacccaccag	ctgcccccta	cctttgttcc	cgccttcatt	10740
gtggagtctc	acactcaact	caacctggaa	acaactcaac	ctagaaacaa	cacggtgaag	10800
gtgagactga	agatgggggc	caggtggtgg	gtaagtgatg	gcccccaaaa	aggtacgtcc	10860
acgtcctagc	tcctggaact	gtggatgtga	ccttatttag	aaagaggatc	tttgcagagg	10920
taattcataa	ggatcttgag	atgagatcat	ctggattatc	caggtgggtc	ctgaatccaa	10980
tgacaagtgt	ccttataaag	ggcagaagag	gagaagacag	agagaatagg	aggagcccat	11040
gtgaagataa	aggcaaagtt	ggcagcgatg	cagccacaag	ccaaggaaag	ctgggtatca	11100

ccaaaagctg	gaaaggacag	gaaggattct	cccctagagc	ctttggagga	agcatggcac	11160
agctgacgcc	ttgatttcag	acctctgccc	tctcagaacc	gtgggagagt	gtatttctgt	11220
ggtctgcagc	caccatattt	gttgtggtga	tttgttaaag	cagccctagg	aatctaacag	11280
gggtggggag	cttggccaca	gtctgaggtc	ctgagcagtg	gggctgtgtc	tcaggcttct	11340
cattttccac	accccacccg	gggccaacac	aatcatttat	tatgagttta	ttcacttggg	11400
gcttaaattc	acaggacagt	atttctctca	tagtgataac	tttgtcttca	ttttttcct	11460
gtctcgttcc	cagtgggttt	tagaaaatcc	acagatattt	tatttctttt	taaattttt	11520
tctcacactt	ttaccccaga	agatagaaag	tcaacaaata	ttttcgtact	gatatctttc	11580
tcttttactt	tcatttttta	agctgggaca	ttggcgccag	cggggcccag	ggcttgcaag	11640
gggagctcct	ccctggagtc	ccactcctgc	cctggcacac	agaccaggtg	acggggggcc	11700
tgtgaccgag	cagggcagca	tgtggcaaag	ggcagggtgc	cagggagacc	tccctctgat	11760
aactgctgtg	catttgagct	gctgatgggg	attgtcccaa	cccttctaag	ggtcatgagg	11820
tgtcagctct	cagcaaccag	ggagactgga	ctgcacaggg	gacctcaggg	ccaggcacct	11880
gaggaatggc	gatccctgtc	ttccccctga	ctctgcctgg	gtggagatag	gtgttgctct	11940
ggctgagatc	ctcctccaag	ccagacctga	ggttctattt	ttgaggacca	aaggaggtga	12000
gggatcttgg	tctagggaga	gctgacatag	ctgccctccc	tcctgtgcct	gggaaacatt	12060
tttccttggg	gactttcaag	gtgtaagaac	ctccaggagc	cgctccagtc	ctcttgtgtg	12120
ctgttgtctg	gcagccctag	gggagactgc	tgggcagggt	ggccctggga	gagactgcag	12180
cagggttctg	cgctgccaac	actgtcactt	cccagccacc	cagacccagc	ctcactggtc	12240
ctggtgcctg	cctttctctt	ccatcttccc	cgggccagcg	aggcactgag	tcctttgctt	12300
ctttctcact	tcatgcacct	ctgcccttct	ttctcgagct	ggcttgccca	agagtcctta	12360
tetggaacet	ctggtctttg	tacctcctgg	cctgccctca	getgeteegt	tgcctgggtc	12420
ccagtgcttg	cccaccatat	tcaggggaca	tcctggactc	cttggccacc	acccagaccc	12480
ttctgtattc	tgeteeceet	aatacctcct	ggtctctgca	tgaacctccc	actctgacca	12540
cactgcactg	ttgtttcctg	gacacacggc	acccactcct	gcctccatgc	tcctgcttcc	12600
tccacctgga	atgecetete	tgctgaccta	ccacacactc	ctttaagaac	gaactttcct	12660
tcttccccca	tagagccact	tccacttgct	ccaggccaca	gagttctctc	tcccgtgaca	12720
gtttccttcc	tgtgcaatag	tategeetet	ggaacttcct	cacctgccac	ctggtgctgc	12780
tacatgtcca	cgtatgtatg	tacgctttca	ttcattcttt	ctttctaaca	tttgttctga	12840
aaaaaataca	tcatgtgcca	ttatgcacca	ggctctagaa	tataaagatg	agtaaaacct	12900
agtccctgag	ttctagacgt	ctccaggtgt	ggtgtgtatg	ctgcgtgcct	cccactggct	12960
cttccagatc	cagcetetge	tctgctcatg	ccctgggcaa	aatggcccaa	agccaaaaca	13020
agcaaactgg	ttcccctata	accaaaccag	acagcttggg	gcctggcagt	gccaggggag	13080
agctggcatg	agcagggcag	aggetgaete	gtatggcgcc	atccacaggc	cccattgccc	13140
tetggettet	ggtgggctgt	ggctagggag	cccccccag	gagagcagag	gttgaagctg	13200
caggggctgg	attcccctgc	acctcgctgt	ggggtcaccc	tgtcggctgt	gtcacgattc	13260
ctgttagttc	ccactctgct	gtctctggat	ctagtgcctg	ttcccttcac	cctcaggcca	13320
ggggtggagc	cctccccca	gccccaacc	ccataccctg	ctcacacctt	tgcaaatagc	13380
gtctttacta	aactctccca	agtgtctata	tgtgccattt	cctttccgcc	cagcaccctg	13440

agtgaaagtg	ttttgaaacc	agggagaagc	tggaggacag	aggcacataa	ggtgccgagg	13500
acaggagaga	ctgcacactc	tttgtagctt	tcacacaacc	agagtccagt	gcacagagtg	13560
cgtactcatg	tctacaaaag	acacttcact	cttcttaatt	caacccatat	cccactctag	13620
tgcccatgtg	gatcttttta	tcattgcagg	atgaccaaag	tcattaaaac	ttcgtaaaaa	13680
gcctgcttta	gtgaagagct	tctggcgacg	gcctttgaat	ctgtgcccct	gagggctcca	13740
gggcaggact	ccaactggtg	gtgtaagact	tgctgtcctg	atgtgggtgg	cagttgctag	13800
aagagggact	gtttcatttc	attagcagtg	aagtgtgctg	tcagccggca	gtgatagcca	13860
tgggacaaga	tgcaacccaa	tctgactctg	aaacatcctg	tcctagccac	cgctgagctc	13920
ttccccctta	gggggtcgcc	agaagagtat	tgattggaca	aggagagaga	gccctcttga	13980
agaggaatgg	tgctaaagtc	aacctgaagc	cttctgaaaa	ttcagcggcc	ctagaactgc	14040
cccaaatgct	atttactgca	aagcagaatt	ctgtatccag	aggggttgtc	ctggactcca	14100
ctcaagaggt	ttagctttta	aagagcctaa	aggattcctg	gcttatctgt	tgggtgagtg	14160
tgagagtcag	atcccaaagg	attatatgat	atgatggatg	atttagcacg	ctgcttcaca	14220
ggaatttaac	agaaatataa	gattgctcag	ctggagcaga	attgtctaag	agacaaacct	14280
ttttaaaacc	ccactaatgt	ataacctcaa	gccacaactg	gattcaatta	ctgcgtggaa	14340
agaaaggcat	tttcttataa	agccactctg	tttccgtgcc	tggctgtgag	ctgggtcagc	14400
catgacaaag	ataagcttgt	gtgttgtttt	tggttgtttt	tcctttcaag	ctcttcccct	14460
ggcactgcca	ggccccaggc	tgtttggatc	ggttgtgtgg	aggccagttt	acttgttttg	14520
gctttcagcc	tttctgttca	gcattgatga	tagaagagtg	ggcctgtgtc	ctgcgtggcc	14580
agtgatgggc	tatcagcatg	gcttggtggt	ggcaccatgc	ccaggtgccc	cttaggaggc	14640
acacaatgtt	tagaagccac	acagtttgtg	aggaaggtga	acattctaag	gaaggagact	14700
ggcagagatt	gtaggggact	cgagaggggt	ctgggcacag	aagggtetge	gtattgacat	14760
tctcaaatat	taatacaaat	acctaacatg	tggagtgctt	actctctcta	ggccctgtcc	14820
taacagcttt	acatatatta	cttcatttaa	acctcccaac	aatcctgtga	agtaaatgtt	14880
attattatat	ccactttaca	gacgaggaaa	ttgaggaaca	gaagggtaca	tagtttgccc	14940
aaggtcacac	agtaagtagc	tgagggccca	cgtgcttgat	cactccattg	tcaaagagta	15000
tgggacagaa	actttaaaac	catgacatgt	gcatttatgc	agacactaaa	tatttttaca	15060
gtgttcttta	ttcattattt	tccttaacat	agtatattaa	tacctgaaag	gcatatttgt	15120
actgttatat	agcatgtttg	aaatcacaag	aatggaaaga	cccatttggt	tcagtctgcc	15180
ttggggaaga	taagaatata	tatatagaaa	gacctagcca	gtgcaataag	gcaagagaaa	15240
gaaataaaag	tcatccaaat	aggaaagcaa	gtcaaactac	ctctcttcac	tgactgtatg	15300
attctatact	tagaaaaccc	tgaagactct	gccaagaggc	tactagaact	gatcaatgat	15360
tctagtatga	tttcaggata	caaaattaat	gtacaaaaat	cagtagtatt	tctatacact	15420
aaaaatatct	agactgagag	tcaaataaaa	aacacagtcc	tatttacaat	agccatgaac	15480
aaaatgaaat	acctaggaat	acagctaacc	aaggaggtaa	agatetetae	aaggagaact	15540
acaaaacact	gctgaaagaa	ctcagagatg	acaccaataa	atggaaaaac	attccatgca	15600
aatgggttgg	aagaatcagt	atcattaaaa	tacccctact	gcccaaagca	atttacagat	15660
tcaaagctat	tcctatcgta	ttaccatgtt	attcttcaca	gaattagaaa	aaactattct	15720
aaaattcata	tggaaccaaa	tagccaaagc	aatcctaagt	aaaaagaaca	aagccagagg	15780
catcactcta	cctgagttca	aactatacta	taaggctaca	gtaaccaaaa	cagcatgata	15840

ccagcacaaa	aacagacaca	tagaccaatg	gaacagaata	gaaagctcag	aaacaaagct	15900
gtgtgcctac	aaccatctga	tcaacaaggc	tgaccaaaaa	aaaaaaaaa	ggactttcta	15960
ttcaataaat	gatgctggga	tagetggeta	gccatatgca	gaagaataaa	actagaccct	16020
tacctttcac	cgtatacaaa	agttttctca	agatggatta	aagatttaaa	tataagacct	16080
caagttataa	aaatcctaga	agaaaaccta	ggaaataccc	ttctcaacat	tgaccttgac	16140
aaataatttt	tggctaagcc	cttaaaagca	attgcaacaa	aaaacaaaaa	ttggcaagtg	16200
ggacctaatg	aaatgaaaga	gcttctgcac	agcaaaagaa	accatcaaca	gagtaaaaca	16260
gacageetae	agaatgggtt	gcaaaatatt	ctcaaactat	gcatgtgaca	aaggtctaat	16320
atccagaatc	tataaagaac	ttaaatcaac	aagcaaaaac	caaataactc	cattaaaaat	16380
gggcaaagga	catgaacaga	tacttctcaa	aagaagacat	acaagcagcc	aacaaatata	16440
tgaaaaaagt	tcatcatcac	tgatcatcag	agaaatgcaa	atcaaaacca	cagtgaaata	16500
ccatctcaca	ccagtcagaa	tggcttctat	gaaacagtaa	aaaacaacag	atgctggtga	16560
ggctgtggag	aaaagagagt	gcttatacag	tgttgatgag	aatgtaaact	agttcagcca	16620
ctgtggaaag	cagtttggag	atttctcaaa	gaacttaaaa	cagagctacc	atttgaccca	16680
gcgatcccat	tattgggtat	ctacccaaag	gaaaacagat	cattatacca	aaaagacaca	16740
tgcacctgta	tgttcatcac	agcactcttc	acagtagcaa	agacatggaa	acaatgtagg	16800
tgcccatcag	cagtggactg	gataaagaaa	gtgtggtgca	tatacaccgt	ggaatactat	16860
actgccataa	aaaagaatga	aacatgtcct	ttgcagcaat	gtggatggag	ctggaggcca	16920
taatcctaaa	tgaattaatg	ctggaacaga	aaaacaaata	cccgtgtcct	cacttataag	16980
tgggagctaa	acattgagca	cacatggtca	taaacatgcg	gacaacagac	actgtggact	17040
actagaggga	ggagggaaga	agcaggatgt	gggttgaaaa	actacctatt	aggcactatg	17100
ctcacaaact	aggtgcaatg	tgcccatgta	acaaactggc	atgtgtaccc	cctgtatcta	17160
aaataacagt	tgatatttt	aaaaaagaat	atatataaac	atatatatta	tatgtaaagt	17220
atatatattt	tagggcctgg	cacatgatac	taatgactca	tatggaaagc	cagcgagctt	17280
tcataagata	ttgcacacaa	ggaaagttaa	gaaccagctt	gctgggctgt	ctgatcacta	17340
geteaggett	tctgcatgag	cttggctttc	tgataggaaa	atccagggct	ctgagcctgg	17400
aatgaacata	tgtatggccc	aagctccacc	agcagcttaa	ttcactgtga	caattatcaa	17460
ttggttgcct	ctcagctcca	aattcaccct	tcattactcg	ctcttcgaga	atgatgaggg	17520
ttaggctttg	tcagcaggaa	gtcctggagg	gacattgtga	gagaaaatgg	ctgctcttcc	17580
tagttccagg	gggcttgctt	tctcaggctc	ttgcagcctg	gacagctttc	tctgcagccc	17640
caggtggcca	gcagcctgag	atgccttcct	gcagacagct	tccctgggca	cctccctgtg	17700
aatgacctct	gccagatccc	cctcaggaag	ctttgcagta	gggtgcacaa	aatggggtac	17760
cgccccttgg	atggcttccc	tggcacccgc	ttgggcagct	ttgcagtggg	tgccttccta	17820
agcactccag	agacaggttt	ctggacagcc	tcagcagtga	ggcccctcat	gaacttttcc	17880
cccatcctga	aagccctggc	cagaccctct	tccatgaggc	ctggatctca	gctcttcctt	17940
gaatgctcta	tctcagtcct	aggggagata	gctgctgtct	gtatcagcta	ttcctatatt	18000
ctttagagct	ctctttaccg	gttactagcc	agtctttcat	cacttcaatc	ccctgttact	18060
aatttgttat	agttaatttt	cttgtagaaa	ttactgattt	gtctcctgtt	cagagtttag	18120
tacattcacc	atatttttc	agcccaccat	ttaaaataaa	aatgtaactc	cctttacatg	18180

aaaaacactg	caagaaacat	ggaagcaaca	aaaacaatat	gaaaacactt	tcactattaa	18240
tttactaagt	tagaagattc	tatattctct	ttcagttctt	ggctatctgt	ctgatttttc	18300
cgtatttgta	acctgcgtgc	ataattgagt	ctgcactcta	agtttatgag	ttgactttag	18360
cttacgtaag	cagtttgata	gccctatagt	ccccaagtag	ccactggtca	catagtcctt	18420
gcatttgtca	tcaggcaagg	caatataata	ttccattttc	ttcacgtgct	caaatttgct	18480
aagctagttc	ctgattgtgg	gatacatggg	ttggttcatg	cttttccata	ttacaaaaag	18540
cacagatcaa	aatatttttg	ttcaagttgc	atcaacccca	cctaattttt	tctcttgttt	18600
cttcctttct	cgattctcta	acagttgggc	tcacatattt	tcccaccgat	agacaagaga	18660
ttaccagaaa	aggggtgagg	aatccagaga	gaatgtctgc	ataagaagga	gggtggagat	18720
ttcttactga	actaaaggct	tcaagaattg	gcaaatacct	gctcagtaag	tatctcctgc	18780
caggaaaaga	accagtctca	gaggtggagg	cagaggggaa	tcattggttg	gagaggagga	18840
atttagactt	gggaagcaag	gtcgttctag	agatcaagac	tgtctttct	tcagtctctc	18900
atagtgtaac	ctgtgactaa	tgcattagtc	atactgagca	cgtggaaact	acacaatata	18960
cactagaaaa	acattttagt	tctcaagaat	agcctcaaaa	tcagacaatg	cctgaagtaa	19020
ttgagagtgg	gaagcacatt	gtgcaagtga	ttactgctct	ctgacatttt	aaaccaccaa	19080
taactcaatt	gtttcctgaa	ttcccagaga	gtcagagaac	atgaaaaaac	cttctttgtc	19140
actcagtgga	gtaaatgtta	atctcatact	taaatctttt	tctttttcac	ataaaagtgt	19200
tcctggtata	aagcccagaa	agaagcttaa	gcatagcacc	ccctgtattg	ttcattttct	19260
tgttcataca	taatgtttac	ctggaaattc	tttatttcac	acttattctt	aaaagtaatt	19320
ttgctgagtc	tccaaacaac	tgttttcaaa	attttcttcc	atttttctga	cttggaatca	19380
ctagaaatta	aaactgtgct	tttcttaaag	ctctataaac	tgaagctagc	aacttaaact	19440
tcgggagaaa	caatagcaac	atatgtaatt	aatatatata	tatatacaac	ttttgtgcct	19500
gcctgatgat	gtatggactt	ctcagaaagt	tcacttgaac	acccgattcg	agccacaatc	19560
cagaaaaatc	tgtcaggttg	ctactgcaac	ctgaagatgc	ttgagagact	ctagaaaaac	19620
tagtctatca	actgctccag	gacattcacc	tttgctttcc	ttctgtttct	gtagaaatgc	19680
ctcctattaa	agatctgttt	gcctgcatca	tatatagtgg	cccaccctgt	ctgcaatgcc	19740
acctcctaga	atgagacaca	gctgtttaac	tgatctattc	tcaggactaa	gagactgact	19800
aaagaagata	cgaggatgat	atatttaaat	ttgctctttt	ctgttccttc	caatttgtct	19860
ttccatttct	ttgtctatct	ctaacaagct	ctaaaacaaa	tttctccaaa	gctatctgct	19920
tgtcttttaa	tatgtgaatt	tttttaagtt	tcaaagtgat	gactgaaata	tttcacccca	19980
aaatatggct	ccctggtata	gtgagtatgt	tgaattcaac	acccttagag	atcaacaagc	20040
actagaagag	gcttttccca	cctacataaa	gataggaatg	atccaccgag	gagaacaatt	20100
gctcttgttc	tcctccgtta	tctcattatc	cattacagga	aagaagacca	agaatgtaac	20160
cacacctgaa	cggaaccttt	ttgagataat	gactgtctct	aaggatcatt	tacattccaa	20220
gaactactta	caagttaatt	tctgctccct	gatccaacca	ttttccctgg	tgatcattta	20280
ttgcccctca	atacaattat	tctcctccc	attcccataa	cccattctat	ccggattcaa	20340
gcccccattc	tttctgtaac	ctcaagatag	caggtaagct	gctgtaccac	attgagaagt	20400
tgggtcttca	ttctgaaggt	tcccatgtgt	acacactaaa	taagtttgta	taccttttcc	20460
cctatttatt	attattattt	ttgagacgga	gactccctct	gtagcctagg	ctggagtgca	20520
atggcgtgat	cttggctcag	tgcaacctcc	acctcccagg	ttcaagcgat	tctcctgcct	20580

cagcctcctg	agtagctggg	attacaggtg	cccaccacac	ctggtgaatt	tgtatatttt	20640
	ggtgtttcac					20700
atccacctgc	ctcagactcc	catagtgctg	ggattacagg	cgagcaccac	cgtgcctggc	20760
catctattcc	cctattttt	ttttaaagta	gttttgctgc	acatgcaatt	ctcatttatt	20820
ttcgcttatc	actttgaaga	tattgttcca	caattgtcta	gtttctgttg	ctgtataaag	20880
gtatgttgct	aataatttt	gtagatgatc	tgtcattttt	ctgctttaag	atctttctga	20940
gtttagcatt	ctgcaatttt	attactatct	tttgcagact	gggtgtggat	tttaaaagct	21000
ttatcttgca	tggtatatgg	tgtgcatctg	taactgccca	gtaagttctt	cttgcctgct	21060
gcccagatag	agccaattta	tcaagacagg	agaactgcaa	tggagaaaga	gtttaattcg	21120
tgcagagttg	gctgaatgga	agagtttaat	acacatagag	caggctaaat	ggaagactga	21180
agctttatta	ttactcacat	tagcctccct	gaaacacagt	cttgcaggca	gggggctagg	21240
gaatggggag	tgctgattgg	ttgggttgag	gatgaaatca	cagggagtcc	aggetgteet	21300
cttgctctga	gtcagctcct	ggatggtggc	cacaagacca	gaggagccag	tttactggtc	21360
tgggtggcgc	cactggatcc	atcagagtgc	agagtetgaa	aaatattcca	aacaccaatc	21420
ttagatgtta	ttcacaaaag	caattagaag	gttaggaatc	tggtgccctc	tggctgtata	21480
actcctaagc	cataatttct	aatcttgtgg	ttaatctgtt	agttttacag	aggcagtttg	21540
gtccccacac	aaggaggagg	tttgtttcag	ggaggggctg	ttatcgtctt	tgtttcaaac	21600
tataaactaa	attcctccca	aagttagttc	agcctatgcc	caggaaggaa	gaggggcagg	21660
ttggaggtta	aacgcaggat	ggagtcagtt	aggtcagatc	tctttcactg	tcataacttt	21720
ctcactgttg	taatttttgc	aagggtagtt	taactttcta	tatctgggaa	ctcatctctt	21780
atcagttctg	gaaattctct	tttattatct	tttttaatat	tggtttttca	tctattttct	21840
ctagtctttt	ctgccactcc	tattatatta	aatcttattc	tatcctctat	gtcttgaccc	21900
ctctttgatg	ttctatcttc	ctgtctcttt	gtgttatatt	ccaggtaatt	tcttcagata	21960
tattagttaa	ataattctct	tttcagttgt	ttcttatata	ctgtttaatt	tggtcattga	22020
gtttttaatg	tcaacaacta	tatttttcat	ttataaatgt	tttacttggc	tcttttcaa	22080
atctgcctgg	tcatatttca	tagtatctgg	gttacttcca	tacatttatg	atctcatctt	22140
ggatttcttt	aaatatttcc	tatacaacac	ttggtatgca	tgattttgca	tttaaaatgc	22200
actattttgc	atttaataat	tctaatacca	aagtcttggg	agtgtaaatt	tattgtttat	22260
tatttttgct	ttcttttcca	tatgctggct	tattctcttg	ctgtttggtg	gtggtctttg	22320
atcctgaaca	cattgtgctt	gatcactggg	agtcttgggg	tcctaagttg	aagttatgta	22380
ctccagaaga	ggttgtcact	tgcttcttcc	atggcccaga	ggactggttg	agcctccttc	22440
aggggtcatg	gtttacagtg	ggagacctga	agttgacttt	tgcaccttgt	aatgggcttg	22500
gggcttagtg	tcagattttg	tcccacactt	accttttagc	tctttcctgg	atttcagctc	22560
actgccattg	tttctttgct	tggagagttt	gtttgccatt	gctgcaagcc	cagctgcgca	22620
ttaaaaaaca	tgttgtatcc	agaatgtagt	agaattatag	caggaggcct	tcaaaggatc	22680
agttttgtca	gaatagtgag	aatggatggt	gtgtgttcgt	aatgttcaag	gcatatgaac	22740
acaactgcaa	gaattagaca	ggcacaagta	ggtgtagccc	acacttcaaa	attttagaaa	22800
caataagaca	tagacatagg	aaagaactag	agcacatttc	aaagctctat	ctctcttct	22860
ctgtctgcat	ctgtctatct	atgtctatat	ctacagctgt	atcatctaaa	tgtcctcaca	22920

tgtaatacaa	aggtagagat	gggtgaagaa	ctgataccca	gagtaagtgt	aggatttcct	22980
ttaagggcct	gaagctggta	ctcagggtgg	aggaaacagc	atgaacagag	gcactaggag	23040
ggaataagta	tgggatcatc	tctgtgtctc	tgtttataac	aagggccttg	cctcactgtt	23100
atccttctgg	cttcataatt	gcagaattta	gctagtaatt	ttgtatacaa	atatcccttt	23160
tgagagtccc	ctataatttc	cttatttaca	atatggatgc	ccattaaagt	cctcatagtc	23220
ttatcaggtg	gcttttacat	gtggacaatg	taaggactgt	attatttact	cctttgatga	23280
tcatggtagc	tagggtgctg	aaatcaatca	agcaacagca	tctcagagag	atgcaccttg	23340
tttcctactt	ttgcatgcaa	agttgctgtt	ttttcctttc	attgtccact	tattgaggtg	23400
gggtttgaga	gttctggttt	ctgtctttta	acactaaaat	caccgctgac	ttgtccatca	23460
agtcagcaaa	gtctttcctt	ggtacagcaa	agtctgtctg	gctcaacctc	catctgggcc	23520
tgtggcattc	tactgaactt	tgtagttttc	tctattcttc	aaaacaaaac	tatctgaaac	23580
agggtctact	tctgggttgt	aaattagttg	tagaaaatct	gggctctgaa	caaaaaccac	23640
atttgaaagc	acatgtette	tcttttattg	gettttgete	taaaaagcaa	aggctgaaaa	23700
acagctgtta	gctgtttata	gagtatttt	tatttaagtg	ttagacaata	gctgttttct	23760
tctccactta	caatggcaca	ttttttctca	ggccagttaa	gteetetete	ggtgtggccc	23820
tgggtatttg	tatgcacctc	ctccctttcc	ctaggtttct	caggagacta	agggttgttg	23880
tttttttctt	cctttcttca	gtttctggtt	tttggttttg	aattcagact	ttggtctctc	23940
agaatagatg	gctgaattta	gtcccaggcc	agaatccttc	tgggccaact	ctacacaggt	24000
attcacagaa	gacactctag	aggaagcttc	tataggtgca	aagtgttgat	ggtttgtggc	24060
tagatggcat	gggcagaatt	agatatagac	gtagttattg	ctctctattc	tcgagccctg	24120
aacatcgttg	gtttgctttc	ctctattagg	aattcagaag	atagtgcttt	ccaatcccct	24180
catcctggaa	cgtgctctga	ggacactgcc	attgctcatt	atcctcatgg	tcccaagcaa	24240
gcaagatcag	cagggeteag	ggacatattg	cacatgagtg	aaaacactcc	ctagcctgca	24300
aaaggaacca	gccaaaatgt	ttttcagcac	tettgtgetg	tgtgctgcca	tagcaattcc	24360
tactatataa	gacaatggta	acaccatcaa	gttacatgtt	ataccaggtt	ttcctgggat	24420
tttatttgcc	tgcagtctgc	ctccttttaa	tcaatttctg	ttctttcaga	tcatcaactt	24480
gtattgattt	acatatgggg	gaatagtcta	acctgtgatt	tctggaaaag	acagcttctt	24540
atacctcact	aagaagacac	aggggctggt	tatatctccc	tgagatctta	gacattcaaa	24600
tcctgcctaa	cgaacatgag	ccccttcatt	tacccatcca	tcacaccatg	ggctgggcca	24660
cctctaaacc	agtttctagg	acttgggaat	tttttttgtt	tttttagaca	aggactcact	24720
ctgccatcca	ggctgaagtg	cagtgtcaca	atcacagete	acagctcact	gcagcctcta	24780
gctccccagg	ctcaggtgac	cctcccacat	cagetteeca	agtagctcag	gtgacaggaa	24840
tgcaccacca	cacccaggta	atttttgtat	ttttagtaga	gatggggttt	cgccatgttg	24900
cccaagcttg	tctcaaactc	ctgggttcaa	gcgatcctcc	cacctcagcc	tccaaaagtg	24960
ctgggattac	aggcgtgagc	caccacacct	gatgaacttg	ggaattctta	caaggtgaca	25020
ccagggaagc	actgcaagct	tgttagaaac	tgcctttgca	aaacttataa	tggtgagaaa	25080
attatgacag	tgaaagagat	ctgacctgac	caacttcgtc	ttgcctttaa	cctccaaact	25140
gccctggtca	ttcctgggca	tgggccaagc	taactttggg	agaattttag	tttatagttt	25200
aaatgataat	aactcttccc	aaaatgaaac	tgcctttata	aaactaataa	aagttcacaa	25260
gtttaggatt	atgagaggga	tttgaattct	gctaagatgt	aggcataaag	gattatcagc	25320

catcattcca	gaggtcacca	gatttgtaac	ttccccaatt	actcctataa	ataacctcac	25380
tattgtagcc	cttttgagat	gtttttccag	acttttgtat	ttctgatgac	tggatgactc	25440
cacctggacc	cgagactcat	gactcaccca	gtcctgtggc	cccacccaga	agtggactca	25500
gagcaagagg	accattttcc	acaccccaat	gagtgcatcc	ccaaccaatc	agcagcacct	25560
gttccctagc	cccctgacca	ccaaactctc	cttgagaaac	cgtagcctcc	aaattttctg	25620
ggaggctgat	ttgagtaata	ataaaacttt	ggtctcctat	gtagctggct	ctatgtgtat	25680
taaactcttc	ctctattgca	attcccctgc	cttggtaagt	cggctttatc	tgggcagtgg	25740
gcaagaagaa	ttcactgggt	gttacatgtt	gaaataaata	tatacctgga	taacagacaa	25800
gctttgtacc	cttcacagag	actctaggaa	tttgcaaatc	tatagtgaca	atgccacctc	25860
caatccccca	acaaccctcc	ccaaagtact	cctccgtctt	attctgcatc	acacataact	25920
aaacacattt	tgctcttatt	taataaggga	aaaacacatt	gtgattgttg	cttttagaat	25980
agttggtcca	aattagataa	ttagaaaaat	agttcccata	gatgtaactc	aaaacagtag	26040
gtttgtatga	cactatttca	aaaacaagtt	ttgtggttaa	aataatacct	ccctttggga	26100
gataagagtt	ttggcatatt	aaaggctcca	agaagtcctg	tgacaaagac	attttgtgga	26160
actctgtttt	cacaggacat	ctattaacct	ctctcagtac	agtcatgagg	aaaacatgtc	26220
ctgaaatctg	tcttgaagtt	caaattttca	gcatcctcag	gcatattcac	ccaccgggaa	26280
tcctggtttc	agctgcccca	tcctgctgct	gccctctctc	cactgatcct	caccgactcc	26340
ctttgtttat	gggacagggc	tcaataatgg	ggaagatcag	ggtcccacac	actttctcag	26400
agcttaaact	aagagggag	gggagctgac	ggtggaggga	aaagctgcct	cttctccatg	26460
attgtcctca	cccaccctct	tgcctacagg	gggctgcttc	tcttgtgtgg	cacatttgct	26520
ttcactatta	ataactgtat	agttattttg	ccatcctatt	ctagttgtgg	accagttgga	26580
gcggggcata	gacataatgc	gtgaagaagg	atgctgaccc	acagctattc	ttccagaaaa	26640
aggcaggcac	ccccaaagta	caaggggaag	ggcacttccc	cttagccagg	tggaggctgg	26700
catggaacat	aaagtcttag	ttgaaatgga	tatggcaacc	acaaggaaac	atgtgacttt	26760
gcaaagagag	acagatggac	agtgactcag	acaactgtac	cataccagaa	gcacaccagc	26820
ttcctgagca	cagaaacatc	catctccagc	ccagcgatag	aaatgtttgt	aaaacagtgt	26880
aacaagattc	tgcccagttt	cccactaggt	gtccggggaa	atgggtggct	ggaggataaa	26940
gaggaggagg	aggaggaaac	aggegegtte	tggccagtaa	ttctctcaaa	cgggatgagt	27000
attgttgcca	gcaggacttc	tcaaaggaag	gtatcttagt	tcaggctgtc	ataacaaaat	27060
gccatagact	agggggctta	caaacaacag	aaatttattt	ctcacagttc	tggaggctgg	27120
tacccccaag	atcaaggtgc	cagctggttc	ggtgtgtggt	tagggccttg	atcctcatag	27180
atggccaaat	tctcactgta	acctcacaag	gcggaagggg	tgaggggtct	cttggggcct	27240
gttttatggg	gacactaatc	ccattcatga	gggcttttta	cgacctaaca	acctcccaac	27300
ggctctgcct	cttaataccg	tcattttgag	ggttaggatt	tcaatatacg	aatttgaggg	27360
ggacacaaat	attcaggtca	tagcagagag	tgacttccat	ttgtcaatga	aaccagactg	27420
tgtacgtatc	actcttgcca	tccataccat	ggtttgcatg	tgatgttggg	caacaggttt	27480
atttggctac	attcatgccc	acatccacta	gacatgcaca	ctcttcccaa	ggagagggaa	27540
aaaaaagcta	gaaactggtt	atgtaacaat	cattagtttt	atagctgagt	aagttatgaa	27600
taatagtgct	ttcagcgatt	tcattaccaa	tctgccccca	ggagcaagat	gaagctgata	27660

aaatatttat	gggctagtaa	attttttcta	ctaatttgca	aggctataat	aaaatccatg	27720
aacttgatgg	cctgcaggaa	acataacaag	aactaggaat	gtagagtaat	ttggagctag	27780
aaagcctctt	aaggccctac	aggaaatgac	tcccagaaag	cagatgaatc	acagtatttt	27840
aaacagaaaa	taatgatgtt	atgtttgtac	ttaaccagtt	atagcctgag	aacaattttc	27900
cacaaggaaa	ttgtggaaat	tteetgetet	ccattatttt	tgccttaaga	aataaaatta	27960
attcaagtat	ataaaaaaca	atattcaaat	aaaaacaatt	actggaacac	agtgtatcct	28020
gtaatgaata	tgaactttta	ggattgtaat	tgttaagaaa	ctacagtata	cacagtcaca	28080
ttgtgccctc	ttgtggcaga	aatattgttg	tgctccgagg	acacgccctg	gtgtatttta	28140
ttcagtaatt	aatcaggttt	gtttggggga	agtcagttca	agtgaaaaga	tggtttgcag	28200
aaggtagttg	gcaaagagtt	gtttctgggg	cactctagag	ggtgcacacc	tggaaggggc	28260
cgttcttagc	caggggagca	gctgtcaaaa	ggtttcctga	tgttttaaca	catgctaaga	28320
aatacccatc	acagaatgct	gcttcaattg	tctgtctaat	gttacacttg	ctcatttaaa	28380
atattttatt	actagttatc	ctcatctata	aataacagta	attgctatta	tttagtgaaa	28440
caggcagttg	atgcacagta	tctcatttaa	tctcaaaact	ataaggtaat	ataaggaaac	28500
tgaagatcgc	agatattaac	taatgctgta	gtttacctaa	ctagtaaatg	gaagagetgg	28560
gatttgattt	aacttcccat	gtttccataa	gcctatgcac	tttccattct	gccaagctga	28620
ctctctagac	aaatatttcc	tgaatactga	atacatgtga	gactctgttg	ctgggtcccc	28680
tggaattgac	aaggtgtaag	taatatactc	ctatccttca	ggaacttatg	gcgtaaatag	28740
ggaaataaaa	acatacacgc	aaaagaaact	gccatacgag	gcagcataca	aggaatatcc	28800
atgtagaact	tttttttt	tttttttt	gagacggagt	ctcgctctgt	tgcccaggct	28860
ggagtgcagt	ggagcgatct	tggctcactg	caaggtccgc	ctcccggatt	cacgccattc	28920
tcctgcctca	gcctaccgag	tagctgggac	tacaggggcc	cgccaccacg	cccagctagt	28980
tttttgtatt	tttaagtaga	gatggggttt	caccatgtta	gccaggatgg	tctcgatctc	29040
ctgacctcgt	gatccacccg	teteggeete	ccaaagtgct	gggattacag	gcatgagcca	29100
ccgcgcccgg	ccatgtagaa	ctattttta	aacaaataca	caaaagatct	gtatagtcat	29160
gtacacttct	ccccttcaga	gcagtagagc	tatatacttt	ctgcagttac	tctcctattg	29220
cttttggatt	tgagtgtgag	caggacttgt	ggcttgcttc	taagccatag	aatacggcaa	29280
agctgttggg	atgtgtgtga	ttatgtgtga	atacatgatt	atgttacata	agatattagt	29340
acccatcttg	ctggggtctc	tttctctctg	gctttgagga	agcaagtgat	tacgttgggg	29400
aacacgtggc	aaagaactgt	gtgggtggtg	tctaggagct	gagggcagta	tattgaagtc	29460
cttagtccca	aaactatgag	aaactgaatt	ctgccaataa	gtgcctctag	ttgagcagta	29520
acattgttac	tcaacaatag	ataactagta	catttatctt	ttaaagtttt	ataattttaa	29580
atcttgcatt	taggtctttg	atctatttca	agttgctttt	tgctttttt	tttttttt	29640
gagacagagt	gttgctctgt	cactcaggct	ggagtgcagt	ggcaggatct	cagctcactg	29700
caacttgcaa	ctctggggtt	gaagtgattg	ttgtgccttg	gcctcctgag	tagctgggat	29760
tacaggcatg	caccacccat	gtccagctaa	gttttgtatt	tttaatagag	atgtggtttc	29820
accatgttgg	ccaggctggt	ctccaactcc	tggactcaag	caatctgccc	accttgggct	29880
tccaaaattc	tgggattaca	ggcatgagcc	accatgcctg	gcctcatttc	aagttaattt	29940
ttatagatgg	tgcaagtttc	ccactgtcag	gtacaggctg	acattctctt	tttttttt	30000
ttttttttg	actttttct	ctttttggca	tatgggtatc	caattgttcc	aataaccaat	30060

gttgcaaata	tatcttttgt	ccactgaatt	gccttggcat	ctgtattagt	ctgttttcac	30120
gctgctaata	aagacatacc	cgagactggg	aagaaaaata	ggtttagtgg	actcacagtt	30180
ccatgtggct	ggggaggcct	cacagtcatg	gtggaagttg	aaaggcactt	cttacatggt	30240
ggtggaaaga	gagaacgaga	gaagcgaaag	cggaagcccc	ttataaaacc	atgagatete	30300
atgagactta	ttcactacca	cggaaacatt	acgggggtaa	ctacccgcat	gattcaattc	30360
tctcccaccg	ggtctctccc	acaacatgtg	ggaatttatg	ggagtataat	tcaagatgag	30420
atttgggtgg	ggacacagag	acaaaccata	tcaaagtctt	tgtcaaaaga	caattggcca	30480
tatatatgtc	tatttcactg	caacctgcac	ctccggggtt	gaagtgattc	ttgtgcctca	30540
gcctcctgag	tagctgggat	tacaggcacg	caccaccatg	tccagctaat	ttttgtattt	30600
ttagtagaga	tgtggtttca	ccatgttggc	cagcctggtc	tccaactcct	ggacccaagc	30660
agtccaccca	ccttgggctt	ccaaagtgct	gggattacag	gcatgagcca	ctgtgtctgg	30720
cctcatgttt	ctaggctctc	tgctcagctg	atctatgtat	ctgcctttat	gccagtgcac	30780
actgttttac	ttattgtagc	tttttaataa	ttcccgaaat	cagatagaat	aagtetteea	30840
acttcatctg	ttctttttc	accaaagata	tttggctatt	ctagatgctt	aacattttca	30900
taaaatatta	gaatgcaagt	tcattgccac	gccagagcat	cccctttct	gccctgttgt	30960
cccaggccaa	gagccatagc	ctctttgctt	tagtttcctc	aaccctggat	aacctgtccc	31020
gtggctcaca	atttcagggg	acatgtgtca	agctctctga	gaggtttcct	tgaagctcct	31080
cttcagactt	atggtgagaa	agtgtcatca	cccctcacag	ggtagcagca	gctctcacca	31140
ggaactcttc	ccgtaagccc	actcccagtg	gagttccaag	gggagagcca	cgagactgtt	31200
ttgtgccttc	tatgtggcct	gtattcttgg	ccacttgcat	tgaatgtctt	catcttggtc	31260
tgtctcaaaa	tttgctttgt	gtccaatatt	tatcacgtct	tggtgtttca	ctcaacactt	31320
ccaattcaat	gttttgttac	tcatctaaat	ttaaatgtta	cacgtttaga	taatttcatc	31380
tagaattttt	agttgtttta	tagaggaagg	gatgttcagg	gagttgagtt	tgcaatagtc	31440
ccagaaacgg	aagtttgcaa	ttatttgctt	acccattatt	gctgctattt	tcttcctgtt	31500
accattatag	ttatcgatca	atcatatgga	atgtacaaat	tgtttctctg	tagtgcaatc	31560
ttgtcacaga	acacagaact	atcctttttg	gggaggcaga	agaaatagag	taatactttg	31620
ccttttgaat	atattgggaa	gaagaaaagt	gctcagatct	cagtaaaatc	tgaacatttc	31680
taggtccttt	tcaatactta	gatgtagctc	ttgtgagtac	taagtactaa	acctcccagc	31740
tggggaatgt	tacatagcag	catttaaatg	ggagatgaac	aatcttaacc	acatgctggt	31800
tccgaggcac	tttcctgcag	aatgactata	taaatccagg	tgagtgcttg	taaaacacac	31860
aattacaccc	ccacagagtg	gactgaaagc	acgtagtcag	gcaatgagca	cagttaataa	31920
tatggctata	aaagaaatac	aggateteet	tcacttttt	ttttaaagga	aaaggccaat	31980
atttatgctt	gaatgtcttt	atagtttgag	acacattttt	tattaaaata	aattaataca	32040
taattgatga	tgtgtatata	catatgtacc	tttgtttggg	gtcgatattt	tttataacct	32100
tgtagtttaa	acccagggga	aaattttta	aactggtaat	ttacttgagt	tttaaaaacc	32160
tgatgatgag	ggtaataatt	aaaatagtag	caatagcaat	gtagtatatg	ataaaggcag	32220
catttgaatc	aatggagaaa	aaatgggtta	gtgtcactcc	acagtcttgg	gacaattggc	32280
aattatttgg	aagaatgtaa	tctatgtatc	cttacctttt	tetttette	tttcttttt	32340
tagtcggatc	tcactctgtt	acccaggctg	gggtgaagtg	gcacaatcat	agttcactgc	32400

53 54

agccttgacc	teetgggete	aagtgatcct	cccgcctcag	tctcccaaag	tgctggaatt	32460
acaggtgtga	gccactgctc	cttgtgatct	tactctttct	accaataaaa	attccagatt	32520
gtattagtct	gttctcacac	tgctataaag	aactacttga	gattgggtaa	cttataaaga	32580
aaataggttt	aattgactca	tagttctgca	ggctcaacag	gaagtatgac	tagaaggcct	32640
caggaaactt	acaatcatgg	cagaaggtca	agggaagtat	gcacacattt	acaatggcag	32700
agcaggagac	agagagcaaa	gggggagatg	ccacacactt	ttgaacaacc	ggatctcatg	32760
agageteaet	cactagcatg	agaacagtaa	gggggaagtc	tgccccatga	tttaatcacc	32820
tcccactggg	ccctcctct	gacacgtggg	gataacaatt	caagatgagt	tttgggcagg	32880
gacacagaac	caaaccatat	cacagatgaa	gttttatatg	taaaacacaa	agaaacacaa	32940
acctaaaagc	aacagaataa	acccatatat	atgtatgtgt	acatatgtgc	atgtgcacac	33000
atacatatat	tcatgtactc	atgtaaaaat	tttgtagcac	ccaagggtgt	aaagtaaaaa	33060
ataaatgtcc	ccttcttcac	ccaaccttca	tgttctattc	ccagggagaa	aacaagttat	33120
cagattcttg	catgtccttc	cagagatatt	ctgtatatat	ttaagcatat	atgtgtatac	33180
ttttattaaa	agacattcta	ttggatagac	aagattattc	tattcacttt	tttggcaaaa	33240
tattaatata	ttgaacatct	ttccacttag	tacatattgt	tctatcaact	cattgttaat	33300
gattgcctag	tatctcactg	tatagaggca	tcatatttat	ttaaacactt	tcctaaattg	33360
cgtttctcat	atggcaatgt	ttcatggtct	tcccatatag	cccatatgga	tctcattatg	33420
ggagatacct	ctaccttatt	ttgtcctatt	gcatactatt	ccactctagg	aatataccac	33480
aacgtattag	tccattgaca	ggttgtttcc	aacttttctc	tattacaaac	aatagtttct	33540
agtacatgtc	ctcttatgaa	aatttcccta	agacagcagt	tctcatacag	tcaaaggatc	33600
accttggcta	tggtgttgag	aatagccatg	gcatcgggga	tcaagaacaa	aatcagtgac	33660
agtggcaggc	cattgcaaat	agtccagata	agtgactaag	tggcttgtac	tagacagtgg	33720
tggcaaggat	ggtggtgaca	agtggttgga	atggggcaca	ttttggaggt	aaggtaacat	33780
gatttcttga	cccttaggtg	tagagtgtga	gcagaaaaga	gacatcaatg	aagattccaa	33840
agtttggggc	ctaaacaacc	aagaaaataa	agttaccaat	taccaagata	cgggacactg	33900
ggagacgagc	agctttgggg	acaggatcca	tgtcacaaaa	tctgttttgg	acatattaag	33960
gttgccaatc	agacttccca	gtgagatgtc	aagaaactaa	gaaagaagga	aaagatccag	34020
gaacaggcac	tgagaaaaag	cagccagtga	gacaggagga	aaccaaggaa	gcatagagtc	34080
ctggtttcca	gggaaaggaa	gtgatctaat	ttcttaaatg	ctgctgacag	gtaaaataag	34140
agaagatgta	caaagcacta	caggaatcgg	caaagtggag	ttcaccgatg	tggacaaaag	34200
cctgactggt	gtaggttcaa	gggaacatgg	gagaagaaga	attagagaca	gtcattagaa	34260
ttacaactct	ttggagagtt	ttgctttaaa	agggaacagg	aggccgggcg	cgatgactca	34320
cgcctgtaat	cccagcactt	tgggaggccg	aggcgggcgg	atcacgaagt	caggagttcg	34380
agaccagcct	gaccaatatg	gtgaaacccc	ttctctacta	aaaatacaaa	aattagccat	34440
gegtggtgge	gegtgeetgt	agteceaget	acttgggagg	ctgaggcagg	agaatcactt	34500
gaacctggaa	ggcggaggtt	gcagtgagct	gagatagtgc	cactgcactc	cagcctgggc	34560
aacagaacga	gattctgtct	caaaaaaaaa	aaaaaagggg	gaacaggaaa	aaagggacag	34620
tggcttgaag	ggatgtatgt	ggaatcaagt	gaggatgcta	agatcacacc	attcttgtag	34680
gatgttggga	gattccaagt	cgagaggagg	aaaatgcagg	gaagaaaggc	actaaggatt	34740
caactgagga	ttgatgtcct	tgagtatgtg	agagaagcta	gggatccagc	gcacaggttg	34800

tagggetgge	cttaggtagg	agcacaagag	tttgtccttc	atagcaatgg	gaaaacaaaa	34860
tacatgagca	taaacgcagg	agaggggtta	aatgtagagc	tgggaacgtg	tagaagttct	34920
gtactgtttc	tattttcatg	gcgcaatagg	aagttaggat	cagctgagac	cgactggcta	34980
ggtgatgaaa	ggcggtcacg	taaggggtga	atgttaagtt	ttgcctatga	cgaaggacag	35040
atggtcacgg	ttgtgccata	gaagaacctg	aattggcaag	tgaagaccgt	catgtcccct	35100
ggcaaggcaa	gctggtaagc	tgtcctagca	aaccaaaaac	caatgaagca	taaggccagc	35160
tgggcggtgc	ggtgccgggg	agggcccctt	tactgaacaa	ctcccttaaa	caccggctga	35220
gagccggcac	taggctagga	tggtgaggtg	tgattgcggg	tgagacaggc	caccccttct	35280
tcgactgggt	aatctatgga	gatatatttt	tctgtaagaa	taaatctgat	ttttataatc	35340
gaaataactg	gggggaaaaa	gatgatatcc	tcaggtatct	ggtgagagca	ggtagaagag	35400
agaagggagg	ttgggagaac	tgaagaatga	atttgcagga	aaatgggagg	cacaattttt	35460
acagcttggg	acacacatgc	gctctcctcg	ttaggatcaa	ctctcctttt	tacttgagtt	35520
atgcagagct	agctgccaca	cactgtgcta	ccaggtgcct	gggtggactt	tgacaagtcc	35580
ctttatgtgc	aaagcacgtc	ctggaagagg	tgctttctga	ggccccagcc	cacagcccag	35640
tgattctgcc	acgggaccta	tttttcctga	gcaataatgg	gagaagttgg	tttttaaaat	35700
agacataaag	aaaatccatc	ccaaatatta	accgttttta	taaacctctt	aagtcattct	35760
gtccctttcc	tcttttatgt	ttccaagtaa	atccaagaag	gtcatcatta	aataagcccc	35820
aattataaaa	gacatgctaa	gacttagtgt	gcttggccgc	ctctgctctt	tagccggcag	35880
taataaaaca	atgaacccca	gcaggactcc	gttccaaatc	atattctgca	gttattgttc	35940
tgactccttt	ctttcattat	tgcaaacaga	atcccactga	gctcacacac	tttcaaaacg	36000
actgtttccc	cacactgcag	aaagtggggc	ggcattttct	aagagccgct	attgttttcc	36060
catggcacat	ttatatctca	aaggtacatt	acctaatgct	tactgcacgt	tatgattttc	36120
atttgcttct	tataaatgcc	cttccttaat	gaatttttag	aaagtacagt	tttttgtcaa	36180
acgtttttct	atctttttt	ttttttggat	atttgattat	ttctttattc	cactggacac	36240
aaagcagtac	ttggcaatca	ttaattctag	gcaaccacat	caaagaagct	gtattagcac	36300
tttctattaa	ggtctcatta	ctaaatagtt	ggtaaaggca	ataataatgt	tttgttttct	36360
tgttctggcc	ttacaaatat	tcttattttc	ccatgtattc	ttgtatagtt	caatgatatt	36420
taatcacaca	gtgctaaaaa	ttaagtgatt	ctaagttttt	tctgctgttg	gaagaaattg	36480
gtatgtgatt	gagcaaatca	ttctgtattt	tgtaagctgg	gataaatctt	gaagtgcttt	36540
tcttcatgat	tgtaggtcta	tctatcctta	aagcttagta	tgaattcttc	gtatatctgt	36600
gcatgaataa	ataactcaaa	gtagttcaaa	taacaaagaa	acatattggt	ttctataaca	36660
gaaaattcac	aggtagttga	actcagataa	ggtctgatcc	agaaaacaat	gttatgtagg	36720
ataaaaatgt	tataatgtta	tatagaggac	caggacattc	attaatacaa	atattaggct	36780
agtttttgag	attgtgtgat	ttttaaatac	tatttgtcag	catttgtttt	tttttttgc	36840
tgcaggtggg	cgtgtgtcca	catgtgtgca	tctgaattgg	tttgcaggtt	ctgtgtgcct	36900
ctaccttcat	gttgtgttct	tttttaaaat	tttaacatta	tgtatatttt	ttaaattaat	36960
taatttttt	tctgagacag	ggtctcactc	tgttgcccag	gctggaatgc	agtggcacca	37020
tcaaagctca	ctggggcctt	aatctccctg	ggctcaggca	atcctcccac	ctcagcctcc	37080
tgagtagctg	ggaccacaag	cgcatgccaa	tatgcccagc	tcatatttgt	atgtatcgta	37140

gacatggggt	tttgccatgt	tggccaggct	ggtctcaaac	tcctgggctc	aagagatttg	37200
cccacctcgg	cttcccaaag	tgctgggatt	acaggcatta	gtgatgctcc	tggccctatt	37260
aatttttaa	attgacaaat	gataactgca	tgtatttatt	gtgtacatgt	agttttgaaa	37320
tatgtaccta	tggctgggcg	tggtggctca	cgtctgtaat	cccagcactt	tgggaggctg	37380
aggcaggcag	attgcgtaag	cgcaggagtt	cgagaccgca	ctggacagca	tggtgaaacc	37440
ccgtctctac	taaaatacaa	aaaattagct	gggtgtggtg	gcacaggcct	gtagtcccag	37500
ctacttggga	ggctaaggca	agagaatcgt	ttgagtcctg	gaggcggagt	ttgcagtgag	37560
ccgagatcgc	accactgcac	tccagcctgg	gctacagagt	gagactccgt	ctaaaaaaaa	37620
aaaagaaaaa	gaaaaaaaga	aatacgcgca	tattgtggaa	tggctgaatt	gagctaatta	37680
acatatgcat	tacttcacat	atgtatttgt	cagcttttta	aaatgtgcaa	aatattgtga	37740
tttctttct	tattctaaat	aactttgtat	ttataatttt	taattttcta	aaatggttcc	37800
cccaagttgt	ataaacttta	agtctcacaa	aacctggatc	tgtctctgct	gagcaaaggg	37860
tgaggttgct	cccagaggaa	agattttgtg	cacacgcagg	agaaaggaca	cctaatggca	37920
aaaacagggc	atgaccagta	aagttttaaa	ccttttctga	actttctttg	ctttgaattc	37980
tgcctctatg	aggctgataa	attttttaat	tggcaatgaa	gctattttaa	ggcagggatt	38040
atgtgttaaa	cctctctggt	tgtgcaccca	gtaatcagcg	aactaacttg	tatggaagaa	38100
catattgata	tattaacact	tctttccagt	acagtgattc	aaagtgatta	tacagtcgtc	38160
ccttggtata	cacaagggat	tggttccagg	acctctccgc	ctcacccacc	ccctcaccta	38220
tataccaaat	ccatgcatgc	tcaaggcaag	tcccacagtc	agccatgtcg	aacctgcaca	38280
taggagaact	cagctgtctg	tacaggtggg	tttcatatcc	ctcaagtact	gtattttcaa	38340
tccacgtttg	gttgaaaaaa	atccacgtat	aggtggatct	gtgctgttca	gacctgtgtt	38400
gttcaagggt	cgactgtact	tttttttact	tgaacacata	aaattttcat	ggaggagtcc	38460
aaattccata	aaggagttac	atcataaact	caaaaggctg	tatagagaaa	gattattaca	38520
acaatagcaa	aacatgtttg	cagaacaaaa	caatgactca	agtcttggac	gtggacccac	38580
taatttcaaa	taattatcta	ttggctgcgt	ctctagtatt	tgttgaacag	aactgcagct	38640
acagtaagaa	atcttgcctg	atgaaagatt	atgattaatt	taagaattgc	taaatgtaac	38700
tcagtgtttt	ctaacatcct	tgaggagcat	atatttgttt	taaaggttaa	tctggaaaat	38760
gagttttagg	aaacgttaat	gtgcatttac	ttgggaggta	aatagttaaa	ttagactctt	38820
ccccttggcc	tttccaggag	gtttgggttt	catgttaggt	tttgctgtaa	attgaaattc	38880
atttgcagtg	agaaagcgtg	ttgagaatgg	attttgggat	tttgtcaggt	ttgtccagag	38940
actgttgtca	ttggtctgga	gagggaagga	tcttactccc	gtagaatctt	tgtcttcttc	39000
cagaatgtcc	tcatttggca	gtactgggtg	acacattggt	acattattaa	gtaactgtag	39060
tttgacctct	tggagtttgt	tgggaacaaa	tccaaataaa	ctggcatcta	ccttctgttt	39120
gccttgttcg	tgetttgetg	tttgtcaaat	cacctctctc	agcagagtgt	cctcttttt	39180
tttttttt	tagcagtgtc	ccctggtaaa	aaccaggggg	ttgtttcaga	atgaatctga	39240
ggtccagtta	actgcaacat	tctcttattc	taggattctg	ttttcaggaa	cacagatact	39300
ttcagacaaa	tgttaaaagg	cttggttaac	atgggaaata	gttcctcaaa	acttagaggt	39360
taaagtactg	tactgttaaa	gaagttaaag	tactgatttt	aaacttttct	agaaatttct	39420
gggaacaagt	agtgttttc	aagatttctt	agagggaaga	gacctttctt	ccctaccagc	39480
agtctgtcca	tcctttcaga	caatcatttt	ggattaagga	tatttaagta	agtggttagt	39540

gtgcttcaga	atacctgggg	tttattaaac	acaggtgtat	gcattgtcat	atattgtgaa	39600
catctttcca	tgttaataaa	tatgcaacta	ggccaccatt	tttactttaa	ttttaaaatt	39660
atatattatt	ggccaagcgc	agtggctcac	acccatcatg	tcagcatttt	gggaggccga	39720
ggctggtgga	tcacttgagg	ccaagagttc	acggccagcc	tggccaacat	ggtgaaactc	39780
tgtctctact	aaaaatacaa	aaattagcca	gctgtggtgg	tgcacgcctg	tagttccagc	39840
tactcaggag	gctgaggcgt	gagaattgct	tgaacctggg	aggcagaggc	ttcagtgagc	39900
caagactgca	tcactgtact	cctgtctggg	caacaaagac	tctgtctcaa	aaaaaaaaa	39960
aaagaaaaaa	tatacattat	ttattacaga	agtaataaca	tcctagtata	aaaacctcag	40020
acgattcagg	gctgtatatt	cccctatgcc	aaaatatact	tttcaatagc	tgcatagtac	40080
tttcttatat	agaaaacacc	ataatttact	taaccagtcc	cctgtgaaca	tttggccctt	40140
aagttgcttc	ctttttgctt	ttcttataaa	taatactata	ctgaaaatgc	tgcacataga	40200
caattgcaca	tttctctgat	tatttcctca	ttttaatacc	cttgtgatta	taggggtaat	40260
atactgtata	cagtatttat	tatagaaaat	acaaaaataa	taaaaatact	tttatctgag	40320
gcaattagga	ccagtagata	gtcgattaac	tgaaaaagtt	ggtaaagcaa	agaatcataa	40380
aaaaagaaat	tttatgaaag	acccagatga	cttcaaagct	atttgaattg	tttcagagca	40440
taaaaagaga	aaatacccaa	gttattttat	aggaagccaa	cgtaacattg	aaaacagtgt	40500
gcaacaatgt	ttgcacagga	aaattctaga	caatctcatt	tattaatatc	agtacaacaa	40560
tctaacataa	aatattagca	accagacttc	aacagcacgt	caaaggataa	taaaattaac	40620
aattagagtt	tattacagga	atgcaatgac	cattctttt	tttttttt	ttttgagata	40680
gagtctcact	cttgttgcct	aggetggtgt	gcgatggcac	aatctcggct	cactgcaccc	40740
tctgcctcct	gggttcaagc	gatteteetg	cctcagcctc	ctgagtagct	gaggttacag	40800
gcacccacta	ccacgcctgg	ctaattttt	gtatttttag	tagagatggg	ggtttcacta	40860
tgttggctag	gctggtctca	aactcctgac	ctcatgatcc	gcccgcctca	acctcccaaa	40920
gtgctgggat	tacagatgtg	agccactgtg	tctagccaat	gaccattctt	tattttgaac	40980
tcttttatta	cgacatgaga	aaattaatat	tatcttttca	gcaggtacta	agaaggcatt	41040
tgatacaatc	cagtattcat	tcctggtgaa	aacttcgtaa	accagcagta	ggtggatact	41100
ttcggcatga	gtaaatatat	ctatcttagt	ctaaaaccta	gcattgagca	taatggagaa	41160
tggaggaaca	ccatatgttt	ccattaaagt	cagaaacaag	gcaaaggtgt	ccaggcacac	41220
tgcaattatt	taacattatt	ctgcagatac	tagctaattc	aattagataa	aagaaactag	41280
gcatcaatta	aaaaaagagg	aagtggccag	gcgtggtgat	tcatgcctgt	aatcttagca	41340
ctagttgagg	tggatggatc	acttgagccc	aggagttcaa	gaccagettg	agcaacatgg	41400
caaaacccat	ctctactaaa	cataagaaaa	ccgagatggg	aagatcacct	gagcccgggg	41460
agattgaggc	tacagtgagc	catgatgctg	ccaccgcact	ccagagagac	accatctcaa	41520
aaaaaaaag	tcacataacc	atcatttgca	gatgatatca	tgatatatct	ggaaaactta	41580
aaaagagtca	tctgaaaaat	tatgtcaaac	aatatgggaa	gtaatttggc	ttggtaaaaa	41640
taaataaata	cagagaaata	gtcttttact	ttttgacaga	gtctcactct	gtcacccagg	41700
ctggagtgca	gtggtgtgat	cttggctcac	tgcaacctct	gcctcccagg	ttcaagcgat	41760
tcttatgcct	caacttccca	agtagctggg	attacagaca	tgtgccacca	cacctggcta	41820
atttttgtac	ttttagtaga	gattaggttt	caccatgttg	gccaggctgg	tctcaaactc	41880

ccggcctcaa	gtgatttgcc	cgccttggcc	tcacaaaatg	ctgggattac	aggtgtgaac	41940
caccacacct	ggcccagaaa	tagcctttta	aatacaaaaa	caataatcag	tgagtagatg	42000
gaatagagga	tcctacttac	attgtagctg	aaaaagtaga	ttaagcttaa	gagaaatata	42060
gaagttccag	ttcaaaaaca	tttaaaccct	actgagaaat	acaggagaga	atgtgaacaa	42120
ttggaaggtt	ctgcttttga	gtagaaagac	tcatcataat	catgtcaact	gtctttattt	42180
taatgcaatc	tcagtaaaaa	ctctgtaagg	agttttttt	tttttttga	gaccaattaa	42240
ggtgcctctc	aagtattaaa	gcatattatt	atataaaacc	agaataattt	atgtagcaca	42300
gtgctgacat	attataggca	gcttgacaga	acagggtata	aaatcctgaa	atgcatatca	42360
gacatcgttt	atgatatata	ctgttgtttt	gcaatatgat	aacggtgcat	ttcaaataca	42420
gaaggaaaaa	gtggattact	tagttaatgg	aagtgagaaa	aaccagatac	tctctggaaa	42480
taagttgaat	tcatatttta	catcttatac	caaaatacat	ttcagatggg	tccaatattt	42540
aaatacagga	agtaaagaga	agtagaagaa	aatatggaat	gttttcatca	tgaaatgggg	42600
aagaaatttc	tgagcataat	atgaaaccca	gaagaaaaga	aaagaaaaat	ttgatcaatt	42660
ggactatata	ataataaaat	aattcaatat	gacaaaaaca	accataagga	aagtgaaaat	42720
tcaaacaaca	gactgggggg	aagtatacaa	tttccatcat	atataaaggt	tttatattcc	42780
ttatataaaa	aactcctaca	aacagtgaac	aataccaaca	accaacagaa	aaatgaaaaa	42840
aaaaaaaag	agatgtgaac	tgtagaagaa	aagcacaata	gggtcttaag	catatgtaaa	42900
gatgctcaat	tacatacata	agaaagtatg	agaaaataca	aactataaag	tagtaacatt	42960
ttacatgcca	atttggcaaa	tctcaaaagt	ttgctaacat	gctgtgtagg	tgaaagtgag	43020
agaaaaataa	acagtattac	aacatactga	atggagtgta	aattggcaca	atgattatga	43080
agagtaattt	tgcaatatcc	atcaagatta	tagatataaa	tatactttca	cccagcaatt	43140
cacttctggg	aatttagcca	acaatagctc	tcacatgtgc	aaatagcaca	tattattatg	43200
gcaaaattat	tcatggtagc	tttatttgta	attgtgaaag	actggaaaca	atccaaatgt	43260
tcaacaatag	aagtttggtt	acaatgtttt	tggttactgt	ttctttttt	aaataatgga	43320
aaaatattgt	gcaactattc	agaaagagaa	atatagtggt	ttgaactgtc	ctctaagaga	43380
gtagagtgag	ttgcagaacc	atttgtgtaa	aacaaagaag	gaaataaata	tattgatttt	43440
tttgcttatt	tatgcataaa	atatttctga	aaggatatcc	aaatacttta	gttagctggg	43500
gctgccataa	caaaatacca	tagtctaagt	ggtgtaaaca	acaaaaattt	atcttctcac	43560
agttctggtg	gctggaagtc	caaaatcagg	gtgccagcat	ggttgggttc	tgttgagggg	43620
gagagagtat	gaaagctctt	cagtgtcttt	tcttcttctt	tcttcttgtt	cttgttcttc	43680
ttgttcttgt	tettettgtt	cttgttcttc	ttgttcttgt	tcttgttctt	cttcttcttc	43740
ttcttcttct	tettettett	cttcttcttc	ttettettet	tettettett	cttctccttc	43800
teetteteet	teteettete	cttctcctcc	tectectect	cttattcttc	ttcttttctg	43860
agatggagtc	ttgctctgtc	actcaggctg	gagtgcagtg	gcgcaatctt	ggctcactgc	43920
aacctccgtc	teeegggtte	aagcaattct	cgttcctcag	cctcctgagt	aagctgggat	43980
tacaggcgtg	tgccaccaca	cccggctatt	cttttggtat	ttttattaga	gaccaagttt	44040
caccatgttg	gcccggctag	tctggaactc	ctgacttcag	gtgatctgcc	tgcctccgcc	44100
tcctaaagtg	ctaggattac	aggcgtgagc	cactgcactc	ggcccagtat	cccttcttcc	44160
aaaggtacta	atcccatcat	gagggtctca	ccctcatcag	ctcatccaaa	cctaattacc	44220
acccaaagcc	ttcatctcca	aacaccatca	cactgtgaat	tagggcttca	acatattaat	44280

ttgaggagga cacaattcag	tecacagtae	caagttattt	gatcatagta	gttgctgctg	44340
ggcccaggga agaaagcaag	atgtaggaga	atagaattgg	aaaggtgatt	tttcattgtt	44400
tgctctttgt acctctgtaa	ttctctatct	gatatcaacc	gagtgtccaa	caattcaatt	44460
caattctgac ccactgtgtc	actgaccaca	tgttcttgga	ctctccatag	aaagtaacat	44520
gaggctgaaa gagtttttcc	agataagact	tcattggagc	ttatgcccag	acaggaaggc	44580
agcatgagag agagagagag	agagacactg	gggtagatta	tgcaggttga	agggtagggt	44640
atgcaggtca gcattatctg	cttaggatgg	ttatcttgtg	taatggacca	cctggtggtc	44700
tggccagcag caacaaggct	gtaatccatt	gttcagcatt	ccttcccagg	tgggacactc	44760
cacaaccttg gtttgatgtg	tagatttcct	aagggcaatt	cctagaattc	tttaagtaaa	44820
aggcatagtt aaacattatg	taggaggagc	cacatcccat	tcctattcta	cctcatatat	44880
acttagggtt actgtcagat	tccataagtt	aaagagctca	gccccacaaa	accgcctcaa	44940
cttcagatgc tggtcttaag	tcatgggcca	ctcatacttt	ttttttttga	gatggagtct	45000
ctctctgtcg cccaggctgg	agtgcagtgg	cacgatetea	gctcactgca	acctccgcct	45060
cccgggttca agcgatttgt	ctgcctcaga	ctctcgagta	gctgggatta	caagcatgca	45120
ccaccatgcc cagctaattt	ttgcattttt	agtagagaca	gggtttcacc	atattagcca	45180
ggctggtctt gaactcctga	cctcatgatc	cgcccatctc	agcctcccaa	agtgctggca	45240
tgagecaetg egeetggeee	catacttctg	actagctata	gattggtgat	tcccatgaat	45300
ccctcctcat tttgagtatt	ttgctagaat	gtcccccaga	actcaagaaa	tcattttact	45360
tatgtttacc agttttttat	aaaggacaca	agtgaacagc	cagaggaaga	ggtacagagg	45420
gtaggaccca gcagggtccc	aagagcagag	gcttctgtcc	tgtggagttg	gagccagcca	45480
ccctcccagc gtgggttgga	tgtgttcacc	agcccaggag	ctctccaaac	cctgttgtta	45540
aggggttttt atggagtttc	ttacataggc	atgattgatt	aaatcactgg	ccaatggtga	45600
teegatteaa ttteeageee	cttttccctt	tctagaggtt	ggagagtgaa	ggttccaatc	45660
atctaatcaa gacttggtct	ttcaggagaa	gggcccctat	cctcaagcta	tccagaggtc	45720
ctccaggagt cactttatta	gcataaactc	aggtacagtt	gaaaggggct	tgttatgaac	45780
agtaaaagat gctccaattt	tccctatcac	agaggaaaac	tccaagtgtt	ttaggagctc	45840
tgtgtcatga accagggaca	aagactcagt	atatatttc	tattatattt	taccacagtg	45900
ttaaggaaaa ggggtcctga	tctacaccca	aagggagggt	tcttgaatct	catgaaagaa	45960
agaattcaag gtgaatccat	acagtgaagt	aaaagtaagt	ttattaagaa	agtaaaggaa	46020
taaaagaatg gctactccat	aggcagaaca	acccttgggg	ctgctggttg	cccattttta	46080
tggttatttc ttgattatat	gataaacaag	gaatgaatta	ttcatgagtt	ttccggggaa	46140
aggagtggca attcctggaa	ctgagggttc	ttccccattt	tggaccatat	agggcaactt	46200
cctcatgttg ctatggcatt	tataaactgt	tatggcacta	gtgggagtgt	cttttagctt	46260
gctaatacat tataattagt	gtataatgag	cagtgaggac	aactagaggt	cactttcatc	46320
accatcttgg ttttggtggg	atgtagttgg	ctttaccaca	ttatttttc	agcaaggtct	46380
ttatgacctg taccttgtgc	agaccttcta	tctcatcctg	tgactaagaa	tgactaacct	46440
cctgggaatg cagcccagta	ggtctcagcc	ttattttaac	cagcctttat	ttgagatgga	46500
gttgctctgg tttgaatgcc	tctgacaaca	gtaccttttg	aattttgacc	tatgtataca	46560
aacacacaca cacacacaca	caaacacaga	agtattaata	ctgagtaata	ctgagagttg	46620

gggggatgct	cagaaagact	gagttaccca	agttcacata	atttgccatg	gtcagagatg	46680
gacctcaggt	ttccttactt	ctgtttgaag	gttttttcca	atatgctgtg	attactttct	46740
catctctttg	aagatgttta	ctgctttcat	gacttcagaa	tgtctgagta	ttctagtttt	46800
caatatctaa	aggggaatcc	tttagattta	ggggcatggg	ggccacttgt	gggaggtcaa	46860
tgatatttcc	tcacacatta	atgcaatttt	tctccaatat	tcaatgcaag	atatggtata	46920
tagagaggca	accatgtata	tcatgcaaat	tgagaaagac	ttggaaactg	tcccatccaa	46980
aagtactcat	ctattaatct	gctcaaagaa	atatgaaaga	aaacttagaa	gaaatcccac	47040
tactgtgtag	tatctcttaa	gtaaattgca	aatatttcta	ggagaagtgc	tcttgaaatg	47100
ggagagttcc	ctgaccaccc	ttaaaggaca	tgcaacaggg	gtatggctca	tgtgtttggt	47160
caccacacac	tcaaacccct	aacaggagtg	ggagcacaca	gcagggcagg	cacaggagct	47220
ggggcgagtg	ctttgaggct	ccagccccat	agcagcatct	ggagtgggtg	cctgtgactc	47280
ccaaaaccca	agtgggcatg	gcatgtgtta	cagtgcactc	ttttagcttt	gatgtccaca	47340
gatggtgtaa	gtgttaacca	gctcagtgga	tectetgeet	ttttgcaagg	gcagagggcc	47400
agtgtgacag	cttactgtat	cccaagctcc	tgtctaacat	cccagaagaa	tcaggtcaca	47460
catggacttg	aagggtagtg	aatgtggggg	ttttatcggg	tggtagaggt	ggatctcagt	47520
gggatggatg	gggagctaga	agggagatgg	tgtgggaaga	tgatcttccc	ttggagttta	47580
gatgctcttt	ctcttctctg	ccacatcatt	ctgctgttct	tetgetette	tgttcatctt	47640
ctcatctcct	tgtctgctca	tetgettetg	gaacctgagg	tctgtggttt	atatgggtac	47700
aggatagggg	ggtcaaaaga	caacttttgg	ggcatgaaaa	caggaatgcc	tgttcccatt	47760
tagggccatg	agtatccagg	cttgaggatg	gggcctttgc	tggggaacca	ccctcttcta	47820
cccagtattt	ctctgtctcc	tgtccatatc	actcttacac	tgtcaacaac	tattattaac	47880
tcctgaaaaa	atgaatttat	cagattccta	cttgcaggtc	agattctaac	agcaggetee	47940
tacagaaatg	ggacaagtgg	ttgatgaaga	gtcaaattct	gtaaaatatt	ttaagagatt	48000
tattttgagc	caactttgag	tgaccatagc	ctatgaagga	gccctcagga	ggtcctgaga	48060
acatgtgcct	gagatgatta	ggctgcagct	tggttttata	tattttaagg	agacatgaga	48120
cttcaatcaa	attcatttaa	gaaatacatt	ggaggccagg	tgctgtggtt	catgcctgta	48180
atcccagaac	tttgggaggc	tgaggtgggt	ggattacctg	aggtcaggag	ttcgaggcca	48240
gcctggccaa	atggtgaaac	cctctctact	aaaaatacaa	aaattagctg	ggtgtggtgg	48300
tgtgtgcctg	taatcctggc	teeteagget	gaagcacaac	aatcgcttga	acccaggagg	48360
tggaggttgc	agtgagccga	gattgcgcca	ctgcacactc	cageetggge	aacaacgtga	48420
gactctgtct	caaaaaaaaa	aaaaaaaaa	aaaaagaaat	acattggttt	ggtcctgaaa	48480
ggtaggacaa	cttgaagcag	gggtttccag	cttataagta	gattttaaaa	ttttctggtt	48540
ggcagttggt	tgagtttatc	taaagacctg	ggatcaatag	aaaataatgt	ttggattaag	48600
ataacaggtt	gtggaggcca	aatttcttat	tggcagagga	agcctgcagg	tagtcggctt	48660
cagagagaat	aggttgtaaa	atgtttctta	tgtgacttaa	agtctgtgtt	gatgttaatg	48720
ctggagaggt	ataatgagcc	atgtccaacc	actacttccc	atcatggcct	gaaacaatct	48780
ctcagggtaa	attttaaaag	agccctggct	gagtaggaag	tccattcaag	tggctggggg	48840
gtcttggaat	tttttttt	ttttggttta	caaagggata	ataaattttg	atttaaaaaa	48900
caaagcacct	gaggggtggg	ctcagtggct	gatgcctata	atttcagcat	tttgggaggc	48960
caaggtggga	ggatcacttg	aggtcggcag	tttgagacca	gtctgtgcaa	catagggaga	49020

ccttgtctct	acacacac	acacacac	acacacac	acacacac	atgatctgag	49080
gatctttgtt	tttttcttca	aagacagggt	cttactatgt	tacccaggtt	ggatttgaac	49140
ttctggactc	aagggatctt	cccatttcag	ccttccaagt	agataagact	ataggcatgt	49200
gccaccacac	gcattctctc	ggttttgtca	tctgtaaaac	gagtgagctg	gaccagtgtg	49260
tcctcagatt	tccttccttc	agagctctgt	tctggctaaa	tgatttttca	aatcccttat	49320
ctcacttgca	tcccatggaa	aacctgggaa	gggcaggaag	gacaggggag	actattttc	49380
ttacttgtca	gataaggaag	ccaagattca	agagttccat	gatcaccagc	tatcttaatc	49440
catttgagct	gttatgacaa	aatgccacag	actgggtaac	ttataaaaaa	tcagaattta	49500
tttctcactg	ttcttgaggc	taggaattca	aagatcaagg	tggcagctga	tgaggtetea	49560
gttcctctgc	ttccaagaag	gcaccttggg	gcagtatcct	acagagggga	tgaatgctgt	49620
cccctcacat	agtggaagag	agaagaacaa	aaaaggactg	agtgctacat	ggagcctcag	49680
ggctttaatc	ccattcacaa	aaaataatca	cgtcttaaat	gccacacctc	tcaatactat	49740
cacaagaacc	attacgtttc	aacacatgaa	ttttggagga	gatcactcaa	accatagcac	49800
caggcaagga	gcctgtttag	catgggcact	taactccaag	tttagtggcc	tttccactgt	49860
ctcatacaca	ttcattcgtc	ttttgagtac	aaggtattat	gctgcgtgct	ggggatgcaa	49920
aaccaaaaag	ataagcctcc	tgccctccag	gggctgacag	tggctggaga	aaatgaatgc	49980
ttacagagcc	tcatggtcag	ctccctgctg	gaaacagaga	tggaggaagg	aggacaaaca	50040
gtatcgggga	cagagcaagt	ttcctggaaa	aggcccatca	ctgaagctga	acgaggaagg	50100
atgaataggt	atttggtata	aagaaaggga	aggcctgtgc	tctcaggaga	caatatttca	50160
tccttaagtg	ggatacttag	ggtgccatgt	cagttgtctg	tggtagactg	ggagacagaa	50220
acttttgggt	agagggatct	ttcaaccctt	tttggttaag	attgtttgtc	actgctgaga	50280
ccagctcagt	cagggagacc	ctaacccagt	ggcgctagaa	gaattaaaga	cacacacaca	50340
gaaatacaga	ggtgtgaagt	gggaaatcag	gggtctcaca	gccttcagag	ctgaaagccc	50400
agaacagaga	tttacccaca	tatttattaa	cagcaaacca	gtcattagca	ttgtttctat	50460
agatattaaa	ttaactaaaa	gtatccctta	tgggaaacaa	agggatgggc	caaattaaaa	50520
taataggttg	gactagttaa	ctgcagcagg	agcatgtcct	taaggcacag	atcgctcatg	50580
ctgttgtttg	aggettaaga	atacctttaa	gtggtccgcc	ctgggtgggc	caggtgttcc	50640
ttgccgtcat	tcccacaaac	ccacaacctt	ccagggtggg	tgttagggcc	attatgaaca	50700
tgttacagtg	ctgcagatat	tttgtttatg	gccagttttg	gggccagttt	atggccagat	50760
tttgaggggc	ctgctactaa	catgtccccc	ttctctgatg	tgcaaatcaa	taaactcaaa	50820
ggcagctttg	tcacagtgag	ctacttcttg	caggagtcag	gatccacatc	tgcagactat	50880
acaaagacaa	acaacacaga	ttaaaagcac	aatcatcatt	gaaatcacag	agcttccaag	50940
tgtttttatc	aattttcagc	tccttgaagc	acaccagttc	ctggcattaa	ggtcaggtgt	51000
gcctgggatg	ctttaaatat	ttgttctttt	aattttaaat	ccttacgcta	agctcctaga	51060
				catggttcca		51120
				tttgttcaga		51180
				agctaaacat		51240
				cctctgcctg		51300
				tccaatcctg		51360
		5				

51420

ggtttttgag	ggcagtatgc	ctcaattata	ggagcagatt	gattatggta	aatactgaga
tcagaaagca	tgtgtaactg	tgtcataaag	tgattgcatc	caggcattat	tgccagccaa

69

to gccaa 51480 gattgataaa tagacccagt aagtataatt gttctctgtg tcacccctta ttgaaggaat 51540 actcatqaca qtqqtqataa ccactatcat aqctaccatt aaattattca ttqtqactqq 51600 ttgtcccgct ttcctcaagt tttcttccgc catctgtgac agcttcttga tctgtcccca 51660 ggtgggtgac tgtgttcaac gggagttact cattgacagt tggggtcctc ctcagcgtca 51720 gccttgacat ggctgcaact ggggggtcct tgggatcctc ccgaaatctc ttcctcagca 51780 tetggeteat gataaggttt tgagtgtett gatggtatee aaatttgetg ttgattttgg 51840 cctgtacccc aagttattat tttacctatt tcccaacttt ttgttatcag atctctccac 51900 caaatcagtt gttctgcttc tgtctttgca gctggtttct gtagatgctg ttcagttgct 51960 gatgacatct ggcctttggg caggctcaaa aaatttaaaa ttaataatgc taggttcagt 52020 tgcatctgtg ggggttccat attgtctgtc ttcccctttc tgcttttgca acttctgttt 52080 tagggagaga ttcattcttt ccactatggc ttgtccttga gaattgtatg ggataccagt aatgtgttta atattccaca tagagaaaaa tgtagctaga gcttggctag tatggcctgg ggtattatct gttttagtag aagctggaat gcccatcacc gcaaaacact gcaaaagatg acatttaaca caggcagaag acteteetgg etggcatgta geteagacaa agtgagaaaa ggtgtccaca catacatgta cataagctag tctcccaaac aagggaatat gtgtgacatc catttgccaa agtgaattag gttccagtcc tcgaggatta actcctcctc taaaagatga ggaatgtacc atttggcaag ttgggcatcg ctggataata tttttagctt ctttccaggt aatqctqtat ctqtqtttqa qaccaqaqqc attaacatqq qttaaattqt qaaaqtqtct 52560 agcattagat attgcattag caactaggtg atcagccatt tgattccctt cagtcaaagg 52620 tcctggaaga ggtgtatgag ccctaatgtg agtgatataa aaaaggtgca ttctactcct 52680 aactgctgtt tgcaattggg taaataaagt catcagttgt tcatctgtat gaaatcataa 52740 ctgagcattt tcaattaatt gtgtggagtg aactacgtat gaagaatcag aaatcacatt 52800 aataqqcata tcaaaaqcaq tcaatacctc aattactqct acaaqctctq ctttttqaqc 52860 tgaaatatag ggcatctgga acactttact ttttgatcca gaataagaag ttttgctatt 52920 agtagaccca tctgtaaaaa cattttcagc accttcaatt ggtttaaatt tagttatttt 52980 agggagaatc caattagtta atttcaaaaa ctgaaacagc ttctttttag gaaagtgatt 53040 atcaacaata cccacaaagt cagctaaatg ggtttgccaa gtaagactaa ttataaaagc 53100 ttgctgtatt tgtgccttca tgagagggat aataattttt ccaggattat atccatgtaa 53160 tttaacaata caatttctcc caatccctat catagtagcg atttgatcta aataaggagt 53220 tagagtccat gaattagtat gtggaagaaa aagtcacttt actaagtcct gttcttggac 53280 gaaaacacta gtaggtgaat actgagttga aaaaaatagc aagtctagag tcttctctga 53340 atctattcta tttatttgag ctttatggac ttgcttctca atcagttgta actctgcctc 53400 agecteettt gttaattgee gagggetagt gagactagga ttteetetaa ggatagaaaa 53460 cagattactc atggcatagg taggaatgcc tagagcaggt cgtatccaat taatatcccc 53520 tagtaatttt tgaaagtcat ttaatgtttt cagttgatcc ctacgtatgg ttactttctg 53580 tggcacaatg gtagtgtcat ttactaaggt ccccaagtag gagtaaggag tagtagtctg 53640 aattttgcca ggagctataa ttaaaccagc atgagaaatc gaattttgca agtgatcata 53700 acattggagt aatattteet gagtggggge ageacaaagt atatateate catatagtga 53760

ataatttaac actgtgaaaa	ttttttatga	gtaggttcaa	ttgcttgccc	cacataggcc	53820
tggcaaattg tgggactgtt	taacatgccc	tgtgacaaca	ctttccaata	aaaacgctta	53880
gcaggctgca ggttgtttac	tgcaggaatt	gtaaatgcaa	accattcaca	gtcttgctca	53940
gctaagggga tagtaaagaa	acagtctttt	aaatctatga	ctattaaagg	ccaattttt	54000
ggaattatag cagaagaagg	caatcctggc	tgtaatgctc	ccataggttg	tataactgaa	54060
ttgatagete ttaagteagt	taacattctc	catttacctg	atttttctt	aattacaaaa	54120
actagagaat tccaagggga	aaatgttgga	gctgtgtgcc	cattttctaa	ttgttcagta	54180
actaatttct ctaaagcctc	cagtttctct	ttacttagca	gccattgttc	tatccaaatt	54240
ggcttatctg ttaaccattt	taaaggtata	gattctggag	gcttaacaat	ggcaaccatc	54300
aaaacttatt tcctaatctt	tggcaggaac	tttgattttc	cgcttgaagt	ggttctttca	54360
aaccttgcaa attttttct	agtcccatac	aagggacata	ccccatttca	tccattgtat	54420
gttgacttca agggctatat	aattgttctg	gaattataac	ttgtgttccc	cattgttgta	54480
ataaatctct tccccataaa	tttataggta	cagaagttat	aattggttga	atagtcccag	54540
gttgtccatc gggcccttca	caatgcaaaa	tataaccact	tggatatact	tcaggggctt	54600
taccaactct acctatgtta	aattgagtgg	gttgaattcg	ccacgtggac	agccagtgct	54660
gcagagaaat gatcgaaatg	tccactcctg	tatctaccaa	acctttaaat	ttctttccct	54720
gaatggttgt ttcacaggta	ggatgtttat	cagtaatttg	atttacccaa	taagctgctt	54780
tgccttgttt atttgtgctt	ccaaatcctc	ctgttcgttt	aatttcactt	tttcccattc	54840
ccacatatgg cacgatcagg	agctgtgcta	tgegetetee	cggctctgct	ttccaggaaa	54900
cagaagtaga tataacaatt	tgaatttccc	cattgtaatt	tgaatcaatg	actcctgtat	54960
gtatttgtat cccttttaaa	cctaaactag	accttcctaa	aagtaatcct	attgtccctg	55020
ctggcaaggg tccacagact	cctgttggga	ccttttgcag	gggttcccca	ggtagaaggc	55080
tcacagettt tgtgcageat	aaatctactg	tggcactact	ggctgtggag	agggacagac	55140
attgtacagg ggtgagggaa	tggcctgagc	tggaaatgcc	ccagtttaga	atggggccca	55200
ggatgggccc ctcatggcgt	ttcccgaaat	tgggttccct	tctttatcaa	acttagagtg	55260
acactgatta gcccaatgtt	ttcacttttt	acattttgga	catatttcag	gatcagcagt	55320
tttcttttct cccctgtctg	acggcctgac	tcgctgattt	tttctacatt	cttttttagt	55380
atgaccatgc ttcccacagt	taaaacaagc	tccaggaaat	ggagtatttc	ctttatccac	55440
tctcagtcct gccattgcat	gtgctagcag	agtagcttta	tgcagattac	ctctgatgcc	55500
atcacaggcc ttgatataat	caactaaatg	tgctttccct	ctgataggtc	gcagagcagc	55560
ctggcaattg ggattagcat	tgtcgaaagc	taataactgc	agcactatat	cctgagcagc	55620
caaatctgcg atcatctttc	gaagagactc	ctgaaaccga	gctataaaat	taatgtatgg	55680
ttctcttggt ccctgtttta	tagcactaaa	ggaaaggtat	tgttctccac	ctgaagtgat	55740
tttttcccaa gctctaatgc	atactcctct	aagctgctct	atggcatcat	cctgcatgac	55800
cacttgtgca tgtaaaccag	cccagccacc	aacccctaaa	agttggtctg	cagttatatt	55860
aatttgaggt tgggcctggg	cattgtgagc	agcctgaatg	gtagcttcac	ctgtccacca	55920
agttttaaat tgtaagaact	gagcaagagt	tagacaagct	caagtaagag	cgtctcagtc	55980
agtaggaatc atctgactgg	aaacagcaac	attctttaac	agttccatta	aaaaaggaga	56040
acgtggtcca tactgattta	tagcttgttt	aaattctttg	agtaatttaa	aaggaaaagg	56100

ctcaaatgta	gctataatat	ttccctgttg	atctgggggc	tgtattctaa	cagggaactg	56160
ccaagcctct	aaatcaccct	ctcgtctagc	ttactggatt	cctgcctgaa	tagaactaag	56220
agtggttgct	caaggcgctg	ctcgaacagt	cactggggca	actaatttt	gcccagtgtc	56280
ctctggaaaa	gaaagatctg	gagggtcatt	ttcttcaaaa	taataaggag	ggggtgcaga	56340
agggtaggga	tgaacctctc	cctcctttgc	cactttagct	ttagctggta	aataaacatg	56400
ctctgtaacc	tcttctgtta	cttcgctata	ctctatactc	ttgttcctcc	tcatcatcag	56460
tgtgaaaaag	ttccaaggtg	aaaccaacca	gaccccacat	ctgtcccatt	gttaccctga	56520
cgcttctgag	ctccccttct	tactcaccac	ggtgattgct	ttaagagtac	tcgggtatcc	56580
tccagctagt	tttccattcc	aactgtcgct	ctggtgaccc	tttgacctag	atttgagccc	56640
ccacgatgga	tgccacttgc	tgagaccagc	tcggtcgagg	agaccctaac	ccagtggcaa	56700
tagaggaatt	aaagacaaac	acagaaatat	agaggtgtga	agtgggaaat	caggggtctc	56760
acagccttca	gagctgagag	cccagaacag	agatttaccc	acatatttat	taacagcaaa	56820
ccagtcatta	gcattgtttc	tatagatatt	aaattaacta	aaagtatccc	ttatgggaaa	56880
cgaagggatg	ggttgaatta	aaggagtagg	ttgggctagt	taactgcagc	aggagcctgt	56940
ccttaaggca	cagatcgctc	atgctattgt	ttgtggctta	agaatgactt	taagcggttt	57000
teegeeetgg	gtgggccagg	tgttccttgc	cctcattccc	gtaaacctac	aaccttccag	57060
tgtgggcatt	agggccatta	tgaacatgtt	acagtgctgc	agatattttg	tttatggcca	57120
gttttggggc	cagtttatgg	ccagattttg	gggggcctgc	tcccaactgt	cactacccta	57180
ttaatgtctt	tatcagattt	tcagagtcat	aggcaccttc	taacttgctg	ttctgccatc	57240
ccctatgtgg	tctttatgca	agaggctatg	ttgtgaaaga	ttgaagctgg	cagacaaata	57300
ataggccatg	ccataactac	ttctttgggt	ggtttatagt	cggttttact	tcccagatta	57360
tgaagagggg	gattagcatt	cctcttgaga	ttgtcaaaag	actcagtaac	acacccaagt	57420
ttcaaaggcg	aaacacaaga	gcaaattttc	atcactgctt	taaaaaaatg	tattgtggcc	57480
tetgeetggg	ctgagggctc	cgtggagcag	ggacaggttg	cttccaggta	gcttcagtgc	57540
atcacattcc	gcaaccgtct	gcttcacacc	ccagcccctt	aagaaataca	ctttggaagc	57600
agagctcgaa	aaatttctct	gttgccttcc	tcagacctgc	tccttatttt	tttgataact	57660
ttggtcagtg	tcactgtggg	aagcagctag	ctatctcgaa	ggtgttagtt	gttattcttc	57720
agctcactca	cagacctgta	aacacacaca	cacacacaca	cacacagatg	cacacacacc	57780
tttcacctct	ctactgatgc	tggcagaacc	catcttctgc	tacattcttt	gcatttctaa	57840
catcaacatg	ttataacact	caaggttcct	aggccaaaat	tttatccatt	tcatgttctt	57900
tgaaagagac	tgatagtagg	tattccaggt	cttttgcaca	ttctacagat	cccctgtttg	57960
tttcttttt	ttatgctaag	agggaaaaca	tttcattcac	tggaaccttt	cttaattcac	58020
tgcatttgtt	taggaaccaa	tcctttcaaa	actgctccag	gtagageeet	cagcaggtgt	58080
gcacgtgaaa	tacatcagag	aaagactgtg	ctgtccagga	taagagggaa	acatgcatca	58140
ttttgaaaga	gagtggggag	ggagggaaag	gcggaaaaga	gggaggagga	aagagagaag	58200
ctggaaaggt	cagaccacca	tcctgtcaga	tactcaggct	tgtaacctcc	tctcccctcc	58260
tcacgtttat	ttgctgaccc	cagggagtag	gttcccatag	cctgtcattc	ttctccatca	58320
ttgagtgaag	ccctttattc	tgtatctact	atcatctctt	taacctggat	ggtgaatact	58380
aggctcccag	agaatctttc	tgccatcagc	ttctccaccc	tcctccactc	tctgctacac	58440
cccattatca	gaccaatctt	ctgacagcac	cactetggae	aaaaacttca	gtaageteee	58500

cactgtccat	taactaaagc	tcagtagtct	tggcctagaa	ttcaaggctc	ccctcctcct	58560
tgtggcccca	actttattga	cttatcacaa	gccaggtact	ctgttaaaag	catctaaatg	58620
ttaatttgtc	catctaaaat	ccctttccag	gaatgtgctt	tctcccccac	ttcctctccc	58680
agtctctgaa	gtgttgcgct	gctattgatg	agagatgagc	atatgatgca	ggccagccag	58740
tcagagcatt	tcacggcctg	gctacaggcc	agccaatcag	aacccttcac	agcctggcca	58800
tgggccagcc	aatgagagct	tttcacagcc	tggccacagg	ccagccaatc	cgagcattct	58860
actctctgcc	gccccaccgc	cactctcagc	tttctttctt	tttttttt	tttttttt	58920
gagatggagt	cttgctctat	cgcccaggct	ggagtgcagt	ggtactatct	tggctcactg	58980
aaacctctgc	ttcctgggtt	caagctggtc	tcctgtccca	gcctccagag	tagctgagat	59040
tacaggcaag	tgccaccacg	cctggttaat	ttttgtattt	ttagtggaga	cagggtttcg	59100
ccatgttggt	caggctggcc	tcgaactcct	aacctcaggt	gatcttcttg	cctcagcgtc	59160
tcaaagtgct	gggataacag	gcttgagcca	ccgcgcccgg	ccccatcctt	agctttctga	59220
aatgtgatgt	gtaggtgtgg	tggagagggg	gcttctctct	tctgggtttg	aaatctacac	59280
agagaagcag	agaggagaag	tgatggagaa	tgagagagaa	agggagacct	gatgacactg	59340
tctctctgga	teccatggea	cgtggggctt	gttccacctc	tggacttttc	ccagagtgag	59400
tcaaaaacgt	cccttgtttt	cttcggcctg	tttgagttgg	gtttgctgtt	acttgcagct	59460
gaagccatga	agaaagtgtc	ggaggcgagc	gacgactatc	tggacaggtg	gcggggagat	59520
aaaagaattt	accaagacag	geegggtgeg	gtggcttacg	cctgtaatcc	cagcagtttg	59580
ggaggctgag	gcgggcggat	cacccgaggt	caggagttgg	cgaccagcct	gaccaacgtg	59640
gagaaaccct	gcttctttaa	aaattcaaaa	ttagccaggc	atggtggcgc	atgcctgtaa	59700
tcacagctac	tegggagget	gaggcagtag	aatcgcttca	agccgggagg	cggaggttgc	59760
tctgagctga	ggttgcgcca	ttgcactcca	gcctggacaa	caagagtgaa	actccgtctc	59820
aaaaaaaaa	aaaaaaaaat	ttaccaaggc	agttgtaggt	agaaaaaggc	agattcatta	59880
gagaaagtat	gaaaatacct	ttccaggaag	caacgggcag	gctcagcaga	agaggcgctg	59940
actgcaaaga	aacaaaggct	tgctggaggt	tttataggtt	ggttctgagg	ctgcagagtg	60000
tctcattcag	tactgattaa	cgccaaggtt	gcagggagct	aacttgcatt	ttttcgtatc	60060
agctgaaggt	ctggtgatag	ctcggtgtag	gaagattgtg	agttatttgt	gtaggagggc	60120
tgtgtgtcct	ggagcatata	gaaaggcaga	cttgtagctt	atctgcttct	tctttttgct	60180
ttcccttgct	cccaccagcc	tgactccctt	tccctaatta	ggacgccaga	gagagcactt	60240
aagagggcct	atgtcatttg	atcctcatga	ccaccatgag	gcaagactgt	tagttcacca	60300
ttttgatggg	gaagtgacac	ctgagagata	agccagtgcc	caaggcctca	cagtttttaa	60360
gtggtagaga	cagaatttac	agccaggcct	ctgactccga	ggctgctctc	ttaacgatga	60420
gttccaaggc	cttccaggaa	aatgtacccg	gtacttccta	tgtgccgggc	actaggctaa	60480
gcgccacaca	cttgtcctct	cctcatctgc	tgctgtttcc	agcgtgttcc	acacgcccct	60540
caaacaggtc	ctgggttttc	ccacatctgc	atctttacct	ggaacatgct	ctttgcccca	60600
cctctgcctg	gcaatgttta	cttatctttc	caatcttgga	tcaaatgttg	agtctttctg	60660
gaagtctacc	atactcagaa	gcaagtactt	cctccctgga	gtcttaaggc	ttttgatttg	60720
accccaggc	cagtcggctg	cctttgagcg	ctgatggcac	aggaacttgt	aggcatttct	60780
tagggagagt	ggggaactga	cagtttgaag	ttaccagatt	taggttctag	ttattttgat	60840

77 78

ggcatctcgg	caaaacacca	cacttttcga	taacaagaaa	tgccactgtc	atggaatggg	60900
cagtggcttt	ggggtaagac	agggctgggt	ttgaatctgt	ctctgcaact	ctagagcttg	60960
ggtgacatta	aaaagactac	ccattctctc	tgagtctcat	ttttcttatc	tgaatatgag	61020
gatgacagca	gtgttgatct	tagagatetg	agagaagtaa	atgggataat	gaatgctaag	61080
ggcttagcac	agtgtctggt	gccatgtatg	tatgttttta	cataaaggat	tacatcttaa	61140
actcattttt	geceetgeac	gcagagaaga	tgcaggtaac	acacgtactt	attaaatgaa	61200
ggaccaaatc	ttatgaatat	ccctccttta	aaccttctcc	tagtetttga	tagcaactgg	61260
ccacttgtag	ttgcttaaag	aagctaaaga	gaattggaag	cagcaggatg	gaagagaggt	61320
ggagggaaat	gggagtcaga	aaataaacgt	ccttttaaga	aaggccatca	taagagcagt	61380
gcaggtgttc	cagegaggea	agaaccaggg	ttagctttgt	tccttagatg	acccacgett	61440
cattccttac	tttgtctttt	cttagaggac	acagggtgag	atgaccaatg	acataggetg	61500
cattgttcct	tttggaattg	tgcagtgttc	ccagttcaat	cttcctcata	agcgggagtg	61560
aggcagtggt	gcagtggtgg	tgctgccatg	gcggtaacag	cagetgeeca	gcagetteet	61620
gatctctggg	ttgaaactct	ggtggtgtga	ccttgaaacc	agtactcatg	ttatgacccc	61680
tgacttctcc	tccagctctt	ccaacaatgt	tgaaagcata	taattatctt	acttatatcc	61740
ctctctgctt	gaaatactta	gaggggtttc	tgtttccact	acttagctct	gatgaataca	61800
catagcatat	aaaaacaagc	atattaaata	ctagttttaa	attgggcatg	gtcacactgc	61860
tatagtccca	gctactcagg	aggetgaegt	gggaggattg	cttgaggcca	ggagtttgag	61920
gctgcagcaa	gctatgattg	cactgttacc	ggtggaagat	atcagagtta	ctggtgaatc	61980
tgtatgggtc	tgcagcaacc	tcagttcttc	ctttctcaga	agaaagaatt	caaccgagga	62040
gcataaggca	gaaaaagaaa	ctgaggcaag	tttcagagca	gtttatttaa	aaaggcttat	62100
ttaaaaaaaa	aaggctttag	aacaggaaag	aaaggaaaat	tcacttgcac	ccaaacaggc	62160
acctgaaggt	caagtgcagt	gttgaacttt	gatcctagga	ctttataggc	tggccccttt	62220
cccatgattc	ttctctcaga	gtgggctgcc	cgcatgcaca	gtgccctcct	tatccttggg	62280
agatgagcat	tcacagtgct	taggaagttg	tacacatgcc	catctgaggc	tttcttccct	62340
tttctggtgg	agtgccctca	gaaggtcatc	ctttgccatt	ttgtctccct	tttttttt	62400
ttttttgagt	tggagtttca	ctcttgttgc	ccaggctgga	gtacggtggt	gcgctcttgg	62460
ctcaccataa	cctccgcctc	ccgggtacaa	gtggttctcc	tgcctcgacc	tcccgagtag	62520
ctgtgattac	aggettgeae	caccacgccc	ggctaatttt	gtatttttt	tttttttta	62580
gtagagatgg	ggtttctcca	tgttggtcag	gctggtcttg	aactcccaac	ctcaggtgat	62640
ccgcccgcct	tggcctccca	aagtgctagg	attacaggca	tgagtcaccg	tgcctggcct	62700
ccattttatc	tcttaatgca	catgcccagg	aagttgtgtc	teeetggtge	ctgcgctcaa	62760
ttaacacttc	agtgcaacag	gtgcaggcca	tcaggacatg	getteteeet	ggtgcaggct	62820
gccaatgtat	cccttttaga	gaggcaatgt	gatcattgcc	aaaacatcac	ctgacattcc	62880
tagcgggtgg	gggaagagcc	ctctccagcc	ccactcatgc	ttgtctaact	acctgtaaca	62940
gcgctacttg	cactccagca	gcctgagtga	tagagcaaga	ctccatctct	ttttaaaaaa	63000
ggaattttac	aatgtgagtc	aatttattta	gaaaattata	gcgatatgac	agatatgaag	63060
gtggtcatca	gtggtgggat	gctgaagtgt	gggaaacact	ggtcttattt	aataatcata	63120
accaggtagg	cactattgtt	accttcaaga	gaaagagagg	ctaaatgaat	ccctcaggat	63180
tacatagctg	ttaggtagtg	tttctgactc	cacageteae	tttctgaagc	tggagaaagg	63240

agttggaaat	tatttggttg	tcatcagaga	ccaaacatca	agtggcactg	taactgcatc	63300
ctgaagaatg	aataggattt	atccagtgag	gtagggaggg	atttccaggc	tgacaggctg	63360
acatggacaa	aggtgtggtg	gtgtgagtgg	gcaccatgca	tcatgggaac	tgacggagcc	63420
ctgcagttct	agagcagagg	agttgtatgg	gaacgtgact	ggaggtgata	cctgagaggg	63480
gagcaggaat	ctagtcctgg	gagtccttca	aagctatgat	gaggagatga	cgcaattctg	63540
aaagccaagg	agccatggga	ggatattaga	cagggtgacc	tattcgcatg	ggaatcttag	63600
agagttactt	cattcggtgg	agagctgggg	cttaggatct	aagccgatga	ggaagaggtg	63660
ggctgaggag	cctgtaggtg	tgtgatgaga	actgaaacaa	tttccctcca	cacagetgge	63720
tttctacatt	gacatcattt	tactattgcg	ctgtcttcat	taacatgact	ttactattcc	63780
aggaaactct	ttcccagaaa	gatatatgtt	acaaatacct	tgtggttcat	ttcaggaatt	63840
teccaaaete	atttaaatga	atatcaaatg	gttaaacttt	tcagtagaaa	gtgtgaaaca	63900
acagtttgct	ccccagaatc	ttttgaaccc	cttgcctcaa	aatccccacc	tcactgtgtc	63960
ctccaatcct	aaactcatat	caagatcatt	atcaaacccc	aatccagccc	ctccgttgaa	64020
atacctgcct	ggaaccagac	tccaaaacct	catctccttt	cgtcctctgc	tttctgaaca	64080
ctattaagac	tctggcaagt	aagtagtttc	ccttactgct	gtgaggcttg	gctttatcaa	64140
gtagtagtga	aactgccttt	gcaaaaatta	tgacagtgag	agaaatctga	tatagctggc	64200
gtcatctggc	ttctagcctc	acaagctaat	cccctttgtt	aactgtaaaa	caaagagaat	64260
aacagcctct	tctaataaca	gccaaaacta	atattctcct	tgcccaggaa	ctgaaacagt	64320
ctttgtaaga	ctcctgaaag	tccccaagat	taggattatg	ggaggggcct	gaattctgct	64380
aaaatgtagg	cgtagttaaa	tgattaacag	ctattgttcc	ctagcttgct	tttctgtaaa	64440
teettacage	tcaagagtaa	cgtagctggt	agctgaaggg	cacaagatct	gtaacttccc	64500
caatcccaat	tgctcctaca	gataacatca	ttattgtcaa	aacctaaaat	tgatctttga	64560
gatatttttc	agacttttgt	attetggeaa	ccaactgact	ccacctggac	ccgtgactca	64620
taccaaggaa	catgacaccc	acacagaaac	tcccatccag	aaacaaactc	agcatgcgaa	64680
gacacttcgg	acactaacat	atttcattcc	caatcaatca	gcagcaccca	tttcttagcc	64740
ccctgcctgc	caaattgtac	ctaaaaaccc	tagcctcaga	gcttttgggg	aggtgaattt	64800
gagaaatgtt	teetgtaett	ctgctcggtt	ggtgataatt	aacattttt	ttctaatttt	64860
tttaaaaaaa	tcacttggat	cacttgaggt	caggattttg	agaccagctt	ggccaacctg	64920
gtgaaacccc	atctctatta	aaaatacaaa	attagtcggg	tgtggtggtg	tgcgcctgta	64980
atcccagtta	ctcaggagac	tgaggcagga	gaatcacttg	aacctgggag	gcagaggttg	65040
cagtgccaag	atcacaccat	tgcattccaa	cctgggcaac	agagcaagac	tctgtctcaa	65100
gaaaacaaaa	caaaacaaaa	caaaaacaaa	aacaaaaaca	aaaaaccacg	gttgacaaag	65160
aaatttgtta	cctctgtagc	acacaataat	ttaacgtaac	agttattact	gataatgtat	65220
actaagtcct	accagaatta	taggagtttc	acataacttt	tgaacacata	ccagtaagat	65280
acttctacaa	atacagccca	aagaaagtca	aacattattt	catatttgac	aatgcttcct	65340
gtataatttt	tatgccaaat	aagccaaatt	atgttatttt	tggactttag	gaaacctaat	65400
atcttaaaag	attaattaag	tcagaaaaag	acataattta	taatttttgt	taaagagcag	65460
atcagtgctc	taagaaaaac	cggttgtgct	tttattccaa	tattcaattt	attgaaaaac	65520
tgaagattaa	ttcctttaac	tttagccaat	atgttcacac	acataatttc	ttttgtaaga	65580

81

ccaattttc	agaaaccttc	caaaaagtca	aagaagcagt	tcattacctt	aaagcattta	65640
gcaaacctaa	tatatgacct	gcataattta	gaccaaatgt	ctacattttt	gaagatattt	65700
ttattttacc	agtaatcttt	aaaaccattt	ttatttctca	aagattactc	aagtcatgtg	65760
aactaaaatg	catcacactt	tttattttc	tgacaaaata	tttgcctacc	tagttattat	65820
acaccaaagc	tctctcataa	tgggaagtaa	tttttaatac	ccccaaaagt	aaaaaatgtc	65880
agttaatgca	atgcaaaaca	gtacaaagcc	ttagattttg	agaggaatct	atccactttt	65940
taatccctgg	ggttccatga	ggaaaacaga	ggtttttccc	aaaatgggat	ctgtggctcc	66000
tcctatgttt	tccccaagga	tttccaggct	gttagagctt	gaataagctg	acttaaccac	66060
agtgctcttt	taaaaagtcc	ttttaaatct	cgtattacca	gactttagcc	aggccaaacg	66120
gccaagattc	ctggcttttg	aactttacca	aaagcaacct	cacaggtgaa	accaacaagt	66180
cttaactaaa	gttatggctt	aatcacgagt	gtatgaggta	ttttcaaaaa	ggtggtaagc	66240
agtttttaca	agatctagaa	tctccagtgg	tagctaaaag	aaaggaagat	tcaagaaggg	66300
aaccagaaat	tgtacatgga	ggggaagaga	atcaacaaat	gttaaaggtc	atgcagaaat	66360
caaaccagaa	aggggtcatc	tcctaagctg	gaattgaacc	caggccatca	ttgtaaaatg	66420
gcagagacca	agagacagta	ctgccacatg	gttacaaggt	caagctccca	aggacatgaa	66480
acaagatgag	agggaaactt	tatccagttt	ttttggtttc	agagacctgc	agcaaaattt	66540
gtaactgacc	agtttgctgg	accatcttga	acagtgggtt	tacaggggtc	ctaggcttgc	66600
attctatcct	acggtaccca	tctttatgac	agaacaatac	agaaagacac	acaaagcaca	66660
ccagatttgc	tacagcataa	gattaccctc	acaaatcctt	tttctcatta	attaaaactt	66720
tacagaagat	aaacagagat	ttttaccatt	cattcaatca	gtttgcacag	caagagagag	66780
aggccagaag	tctgactggt	aagaaattct	tacccttttg	ccagcatgcc	aggcttctgg	66840
gttccctttg	cctgagtggc	cctagtgacc	tggcttgctg	caccatagcg	ctgggggcca	66900
accctcaaca	caaaggaaaa	ttatcttttt	ccattctggc	tggagcaaaa	tatgtgtgac	66960
aaaacacaga	catcagccac	tctgcttagc	acccaatatc	aaactggcaa	agctcaaact	67020
tgcccccggt	tggccccata	attgttaatc	cagtctccaa	ccaggagttt	caatttgtgg	67080
tctctgggca	agatggtagc	cctgggtaat	agaaaagata	agaaagagaa	aggagagaaa	67140
aggagtgaag	cgtagtctgc	agtagggtgg	ggaaggtgaa	gagctcagag	aggccagaga	67200
aaaacccacc	catcccagcg	atgctgaatc	aaaagttcag	gtggcttctt	gtcagtcacg	67260
aagggatctt	ttccagcagt	ttcaccagct	ctcaagtttc	ctcctttagg	gaggaaaaag	67320
ctccccatgt	cccatgatcc	tgtacatgac	taattctgtc	acccacagcc	accagcaaag	67380
agtgcaaggc	agacttatcc	aaagaaatag	cagttaacat	cctgtaatgc	caaacctgtt	67440
cttagctgag	agggacttta	ccaagacagg	cctccaaccc	cctaaatttt	aggaaggact	67500
ctaatcttcc	taagttgggc	cgtgaaccaa	ggtttggtca	agcatccttg	ccttttctta	67560
agaggggtct	ttaaccctct	ctgtcttagg	agagactcta	actcccctaa	gttgggcccc	67620
taacccaatc	ccatccttga	cccgggtact	ccaccatgta	cccaaaatca	gtcagtcagt	67680
gctagtctat	ttcctttgag	tcgagggtct	cctcagtgta	gtcttttcat	ggctctccag	67740
aaagttgtta	ctggaaaggg	gtcctgatcc	agaccccaag	agggggttat	tggatcttgt	67800
gcaagaaaga	attcagggtg	agtctataaa	gggaaaataa	gtacataaag	aaagtaaagg	67860
aataaaagaa	tggctactcc	attggcagag	cagccccaag	ggctgctggt	tacccttttt	67920
aatggttatt	tctaaaatat	acaccaaaca	aggggtggat	tattcctgcc	tccccttttt	67980

agaccacata	gggtaacttc	ctgacatagt	catagcattt	gtaaactgtc	atggcgctgg	68040
tgggagtgta	gcagtgagga	caaccagagg	tcacgctcat	ggccatcttg	gtttcagtgg	68100
gttttagctc	gcttctttat	tgcaatctgt	tttatcagca	aggtctttat	gacctgtatc	68160
ttgtgccaac	ctcctatctc	atcctgtaaa	ttagaatgcc	taaccagctg	ggaatgcagc	68220
tcagcaggtc	tcagccttat	tttgcccagc	tcctattcaa	aatggagttg	ttctggttca	68280
aacacctctg	acaattttgt	ttattttttg	tagagatgag	gtctcattat	gctgcccagg	68340
ctggtctcaa	actcccaggc	tcaagtgatc	ctcctgcctt	ggtctcctga	agtgctgaga	68400
ttacaagtgt	gagccactat	gcccagctaa	ttaaactgtt	tatttgctgc	aacacctgat	68460
gttcttagtg	cattagcttt	tctggacagt	gggcaagacg	aacccattag	gttgttacag	68520
tttgggtggt	attttctggg	atctggacct	ggagaatctg	ctcaatcaga	agagggagcc	68580
agccatggtg	gcacgagcac	ctgtagtccc	agctacttag	aagactgagg	caggaggatc	68640
acttgagccc	acgagtttga	gtccagcctg	ggcaacatag	tgagaccctg	tctctaattt	68700
tacgaaaaga	gagagagagg	aaatagggga	agaagagcca	gggataagaa	atgcagagga	68760
cggccgggtg	tggtgggtca	cgcctgtaat	cccagcactt	tggaaggctg	aggtgggcag	68820
atcacgaggt	caggagtttg	ggaccagcct	ggccagcgtg	attaaatccc	gtccctacta	68880
aagatacaaa	aaaaattagc	tgggtgtggt	ggtatgtgcc	tgtaatccca	gctacttggg	68940
aggctgaggc	aggagaattg	cttgaaccca	ggaggcagag	gttgcagtga	gccaagattg	69000
cgccattgca	ctccagcctg	ggtgacaggg	tgagactcca	tctcaaaaaa	aaaaaaaaa	69060
aaaaaaaga	aaagaaaaga	aaaaaagaaa	tgctggggac	atcaacattc	aaaggcagtg	69120
ggggagccaa	ggtaattttt	cgacagagaa	tccagtatta	gcctaaattc	catctagatt	69180
cacaggccct	ggaaagcagg	actttgagaa	atggagagga	ggtaatttgg	aaccaggagc	69240
cttcagatgg	gtagaacaca	gtgagtgcta	ggtacaggtg	agggtggcaa	ttagaaacca	69300
gccccagcct	gatgcatggt	gggacacagg	tgatggggtg	tctggaattg	gagagaagtg	69360
tgggaagtga	agtgagaggg	tgctgagaca	aacttgactc	tggaatttcc	ccaggcaggc	69420
tctgactggg	ctctcctgag	gaaggacttc	ggcttggtag	ctggagcagg	ttccctgggc	69480
caaggggagg	acagggtggg	gcagacccta	tgagaatggc	tgcaagactc	ttactgcaat	69540
aactcagtga	gctgccatcc	tececetece	ccaccacaca	aactcccctt	cccactttgt	69600
tgatgatttc	ttagctctgg	atgetteegg	tccatttata	gctaacctta	taatcggatg	69660
catacttgtc	attttataag	tagagetett	ggtcactctt	tgcccatcaa	ttaactcaat	69720
tgtggtgttt	gttgtctgtc	ctctttctac	tttctggata	ccttgtatgg	acctagatgt	69780
ggttccaggg	acactttgaa	tagaaaggcc	aggetgagat	gagggttggg	cctggaggcc	69840
ccttggacca	ctggacatca	gaacatttac	tcacgtgcca	gggactctaa	gtcacccaac	69900
tgaacaacta	caccttctag	atttagaaga	atgcacatac	atagtttcct	ctcaggcccc	69960
tgctttctcc	cctccctttc	ttcccacctc	ccttccactt	actggcagaa	atatatccac	70020
cctgtattgt	gttaagatga	ctttattgca	tttctaaagg	gcaagtgtgt	tgttggtagg	70080
ctccctttta	ggaagctgaa	aggettgeet	gagtgctggg	tggggttaga	gccaggaccc	70140
cagtettett	ccattcatgt	gtggagaaac	tgcttttagg	aaattgctta	cagtttgttt	70200
tattattccc	tctgcttgga	ctatgtccat	tcattcattt	attcaacata	tatttattga	70260
gcacctatta	tatgtcaaaa	tgcttgctct	cgtggagctc	gtatttgaga	gtaatgatat	70320

cagaatgcac	atattatata	tgtattacat	atatatata	ttaggttgaa	gaaaaacaaa	70380
acaaggtagc	atggtaaggg	gctagaaaat	gatgaggact	gatattttag	gaggagcaga	70440
gaacaatgac	ctgactgaag	tgaggaaatg	agccacgtgg	ctctccagga	ccagaagttt	70500
caggcagagg	aatagcacgc	gaaaaatcca	gagactaggg	aggtgggtgt	ttactgtgtt	70560
tgctgtcttt	gaggatgagc	aaggatgcca	gtgtggctgg	agtggagcag	gagttgagaa	70620
agagtggtag	ggaggtgggt	caaagaagca	gccagagctg	tggccggact	ttgcattttt	70680
ttctgagcat	gataggaagc	agctgagcaa	gggagggact	tgatctggat	tctatttcct	70740
gctatgtggg	gtgagggagg	aagcaaggag	agcagctggg	agagacagag	tataacagaa	70800
tcggggtcta	ttataaagga	agagcaacca	gaattttcta	atggaaaagg	atatggagtg	70860
tgaaagcaaa	agaggagtag	taaaagacac	caagggtttt	ggcctgagca	actcaaggac	70920
agggatgtca	tttaccgaga	tgggaagtgc	tggagaggaa	caggagtgag	ggtggccacg	70980
gtgaaatgtg	gctttgggat	gtgtggtgga	gatgtggaga	aggtggaggt	gttaacaagt	71040
ctagagtgct	gggatgaggt	catgttggac	atgtaactct	ggggattatc	aatgtatgtt	71100
ttgaaagcca	ttaagattgt	ctgtaaagaa	caagatggta	agtgttttag	gattgtccca	71160
accactcaac	tctgccatta	taatatgaaa	gcagccatag	acaatatgtg	aatgaatgat	71220
catgaccatg	ttccaataaa	actttatttt	agaaagcaga	tagtgggtca	gattttggcc	71280
cataggatat	agtttgccaa	atcttagacg	aggtggtatt	acctaggtag	actgtaaaaa	71340
gaaaagagaa	gaactcagag	ccttggggca	cccaacactt	agaaattggg	aagaggagag	71400
ggatctaaga	gaatgagata	taacaagcag	caagggaaca	ggcaaattaa	gagattgggg	71460
tggcatggga	gatggaagat	gtttcaagaa	ggacaaacca	atattatggt	gccaataaac	71520
gttgtgaaat	acactgaaat	ggacaaaaaa	attgagtgtt	ctgtctagta	tacccttcag	71580
ggttatattt	atttttcatt	gcttttgagc	tattttacaa	ctttttaagt	tgtagaaaac	71640
tgacaataat	gcaaatgatt	cttgtctatg	aaaacaaatt	atgtccagta	caatgcaatt	71700
aattgcactg	gtggaattgg	tagaatgcaa	ttgccctgtg	aataaaccag	ttttgcatct	71760
ataatcatgt	gatgcttaac	cacaaggata	tgttctaaga	aatgcggtat	tgttaggcaa	71820
ttttgtcatt	gtgcaaacat	catacagtgt	gcttacacaa	acctagatgg	tatagcccac	71880
tacacaccag	gctgtagggt	agagcctatt	gcttcgaggc	tacaaacctg	aacagcatgt	71940
tactgaactg	aatgctgtag	gcaattggaa	cacagtggtg	aatatttctg	catctaaaca	72000
tatctaaata	tttaaaaggc	acagtagaaa	tacagtaaaa	aagatttgaa	atgctacatg	72060
tatgtagtgc	acttactatg	aatggagctt	acaggactgg	aagctgccct	gggggagcca	72120
gtgagtgaga	gatagtaaat	gtgaaggctt	aggacattat	tgtacctgat	ggtagatttt	72180
ataaacactg	tacacctagg	ctacattaaa	tatatttaac	gttttttct	ttcttcaata	72240
ataaattaac	cttagattac	cgtaacattt	ttatcctatg	aacttttaaa	ttttaacaat	72300
cttgttgact	gttttctaat	aatatttggc	ttaatacaca	aacacattgt	acagctgtat	72360
aaaaatattt	gttctttata	tcctcattct	ataaactttt	ttaatttaaa	tttttttt	72420
tttacttttt	aaacttttt	gttaaaaatg	aagacagaaa	cacatacatt	agcctaggcc	72480
acacagggta	aggattatca	atatcactgc	cttccacctc	tactccttgt	cccactggaa	72540
tgtcttcaag	ggcaataata	tccttggggc	tgtcgtctcc	tatgacaaca	atgccatctt	72600
ctggagcacc	tcctgaagga	cttatcttag	gctgttttac	agctaacttt	tttttttctt	72660
ttgagacaga	gtttcacttt	tgttgcccag	gctggagtgc	aatgcgtgat	cttggctcac	72720

87

cgcaacctct	gcctcccggg	ttcaagcgat	tctcctgcct	cagcctcccg	agtagctggg	72780
attacaggca	cccgccacca	cgcctggcta	attttgtatt	ttttgcagag	acggggtttc	72840
tccatgttgg	acaggctggt	ctcaaactct	caacctcagg	tgatctgcct	gccttggcct	72900
cccaaagtgt	tgggattaca	ggcatgagcc	accaagcccg	gcctacagct	aactttttt	72960
ataagtacga	tgagtacact	ctaaaataat	gatgaatgta	cagtatagta	aatacgtaaa	73020
ctagtaatac	agttgcttat	gatcattatc	aagtcctatg	cactgtacat	agttgtatgt	73080
gctatgcgtt	tatacaactg	gtagtacggt	gaattggttt	acaccagcat	caccacaaat	73140
acattgcgta	atgcattgtg	ctatgatgtt	aggacagcta	tgatgttaca	aggcaacagg	73200
aatttttcag	ctccattata	ccctatggga	ataccaacat	atatggggtc	cattgttgac	73260
caaaatgttg	ttttgcaatg	tgcaactgta	tttgtaaatt	tagaatagca	ttccttattg	73320
cttttgtatg	tgagtttcat	taacttcttt	aaactggttg	taacatctta	ccggttccct	73380
cattagtgag	taaaataaaa	tcatttacat	gtattcattt	tatatttgta	tgtgagccat	73440
gatttcactt	tttgaaataa	ttattatttg	acaatggaga	ttaagttaaa	taaatattaa	73500
gaattaacaa	aattggcaac	atacagatca	tggtgacttt	gataagaacg	attttggagt	73560
aggaagggtg	aaagactgat	tggagcaaat	tgtgtaaagc	tataataaat	aataaagaca	73620
catgggcaca	ggggtaaata	aatagaccaa	tggaacagag	ttagagatcc	cagaataaac	73680
ccacacataa	atagaaactt	tgtagatggc	agagatggta	atgcaggaaa	aggatggagt	73740
agtcaataaa	tggggctggt	acaatttgtc	atctatatga	gaaaaaaaac	aaaactggat	73800
ctctacctca	aacaaatcag	tctgttccag	tggatttaag	atgatatggt	ttggatctgt	73860
gtccttgccc	aaatctcacg	tcgaattgta	atccccaatg	ttggaggtga	gggctggtgg	73920
gagatgactg	atcatggagg	gggatttete	atgaatagtt	tagcaccaac	atcttggtgc	73980
tgttctccat	gatagtgagt	gagttaatgt	gagatctggg	catgcaaaag	tgtgtagcag	74040
ctctttacct	ctcttgcttc	actctggcca	tgtgacgtgc	ctgctcgccc	tttgctctct	74100
gctatgatta	taagtttcct	gaggtctccc	cagaagctga	gcagatgcca	gcaccatgct	74160
tcctgtacag	cctacagaac	agtgagccaa	ttaaaattct	tttctttgta	aattacgcca	74220
tctcaggtgt	ttctttatag	caacgtgaaa	agggactaat	acagactttt	agaagaaaat	74280
agaagggaat	atttttgtgg	cctcatggta	atgaaaaaaa	tttaaaataa	gacacaaaat	74340
cacaaacctt	aaaggaaaac	atttatgaat	ttgacaccat	taaaatttta	aaaacttttg	74400
attatcaaaa	gacacattaa	agagattgaa	aacacaatta	ctcataacac	ttaactgaca	74460
aaagataggt	atccagattc	tgcaaagaac	acttacaaat	caatataaat	aaaaataact	74520
taatagaaaa	atgtgcaaaa	aatatgaata	aacaattatc	agaagagaaa	actcaaatga	74580
tcaatgaaca	tatgaaaaga	tgtaaaacct	cactactaat	tagagaaatg	caaattaaaa	74640
ccccaatata	atactatttt	acatctcttt	aatggactaa	tctttaagag	tgtgatgatc	74700
caagtattgg	caaagatgtg	gggacattag	aacttttata	ctctcttgag	tggaaggtaa	74760
attgttataa	tcactttaga	aagcaatttg	gcaatattta	atattttaag	tttttctaag	74820
cagttttcca	ggggttgttg	tgttataggg	tatacatata	acacagcaac	tcctggagat	74880
ataccttaga	aaaactcaca	aatatgtaca	gagggacagt	ttatagcaat	ggtgctgtag	74940
taagattttg	gctataacct	gcctgtccat	caataagaaa	atgattaagt	aaattgtggt	75000
ttattgagac	aatggaatac	tatgtagcaa	tgaaaaagaa	tggattagag	ctgcatgtat	75060

89 90

caatatggat	gaatttcaca	aacagatgtt	caagggaaag	agcaagttgc	acaatacatg	75120
ttcataccta	gttttcagtt	tacagatett	gcacattttt	gtcagattta	tccctaagta	75180
tattttaagt	gttattgaaa	atggtatttt	aggetgggee	tggtggctca	tgcctgtaat	75240
cccagcatgg	ctttgggagg	ctgagatagg	aggattgctt	gagcctagga	gttcaagatc	75300
agcctaggca	acatagtgag	acctccactt	tacaaaagaa	ataaaaatag	ccaagcatag	75360
tggatcatgc	ctgtaatcct	atcatttagg	gaagcaaagg	tggggtatag	cttaagccca	75420
ggagtttgag	acctgcctgg	gcaatatagc	gagaccgtgt	tctctacaaa	agagggaaa	75480
aaagaaaaaa	taaataaaaa	tttacaaaat	tagctgggca	tggtggtgca	tgcctgaagt	75540
cacaaatact	caggaggctg	aggtgggagg	atcacttgag	cccaggaggt	tgaggctgca	75600
gtggactatg	atcattccac	tgcagtccgg	cctggacaac	acagtaagac	cctatatcaa	75660
aaaaaaaaa	aaaaaaaga	agaaaacagt	atttaaaaaa	ttccaatttc	taattgttcc	75720
ttactagtat	atagaaatac	agtagactgt	tgtatattaa	tcttatatcc	tgtaactttg	75780
ctaaaatcac	ttattctagt	agctattaaa	aatagattcc	atcagatttt	ctctatattt	75840
gaccatgtca	tctgtgaata	aacacagttt	tatttcttcc	ttttcaatct	gaatgccttt	75900
ttttccacct	aatgctctgg	ttagaacccc	ccatacaaag	ctgaatagaa	gcagtgagaa	75960
cagacatctt	tgtctagttc	ccaatcttag	ggagaaaaca	tacagtettt	cacatgaagt	76020
atactgttag	ctatgggttg	ttttttggag	atgcccttta	tgagatggat	gtaattccct	76080
tctattctta	gtttgttcag	tgtttttatt	atgaaaaggt	gttggcttct	cccaaatgtg	76140
ttttttgcat	tgactgggat	aatcatgttt	tttcatatgg	tctgttagta	tggtaaatta	76200
tattgcttga	ttttcagatg	ttaaatcact	cttgcattct	tgtgataaat	ctcatgtgct	76260
catgatgtac	ttgtcctttt	aaatataaag	agacatccaa	tttgctaaag	ttttgttgag	76320
aattattgca	tctatgttca	tataggtata	ttggtgtata	gttttcttgc	cttgtaaggt	76380
ctttacctgg	ttttgatgtc	agagtaatgc	tggaccattc	agtgatttgg	gacgtattca	76440
ctcatcttca	acttccttga	acagtttgtg	cagaatcaat	attatttcta	ccttaaatgt	76500
ctgactctgg	ggetttettt	ctttcttt	tetttttet	tttttttgag	gcagggtctc	76560
actgtgtcac	ccaggctgga	gtgcagtggc	ccagtcacgg	ctcactgcag	cttcgacctt	76620
ccaggctcaa	gtaatcctcc	cacctcagcc	tcccaagtag	ctaggataac	aggcgtgcac	76680
catgatgcct	ggccaaatgt	tttgcatttt	ttatagagat	gaggtttcac	catgttgccc	76740
aggetggtet	caaactcctt	gactcaggcg	atcctcctgc	ctcagcctcc	taaagtgtta	76800
ggactacagg	tgtgagccac	tgcacgtggc	caaccctggg	gttttctttg	tggaaacatg	76860
tgttagtcta	tttgcattgc	tataaaggaa	tacctgagac	tggataattt	ataaagaaag	76920
gagatttatt	tggctcatgg	ttctgtaggc	tgtacatgaa	gcatagtgcc	agcatctgct	76980
tctgttgagg	gcctcaggaa	gcttccagtc	atggcagaag	atgaagcggt	ccctgaatca	77040
catggtgaga	gaaggaacaa	gagagaagga	ggaggaagtt	ccagactctt	tcaaacaacc	77100
agatattgtg	tgaactcata	actgagaatt	cactcattac	tggggaggat	ggcaccaaga	77160
cattcatgaa	ggatccatga	tccaaacccc	tcccaccagg	ccccacctcc	aacattaggg	77220
actacatttc	aacacgagat	ttggagagga	caaacatcca	aactatatca	gaaggttttt	77280
aattgcatat	tcaatttctt	taatagatgt	aggcctattt	tggttatcta	tttcttcttg	77340
agtgttgtta	gattgtattt	ttcagtaatt	tgtccatttt	atccatattg	tgacatttct	77400
atctggtgta	ataagaatag	tgttcatatc	aaagttcaat	ttctccatat	cttttccagg	77460

taactctccc	tttggtgctt	tgaagcaata	tggcgtcttg	actggctgcc	atggccccca	77520
cctttcctcc	taggctcagc	ccttgacata	actactcctc	actaccctct	catcttcccc	77580
ccaccttgta	tecetetage	attcctcacc	tgaagaactt	aggetttett	aagtctcttt	77640
agttagcagg	aaactatcta	atttaaaaac	cctctccaag	ttgtttatta	cttaagggat	77700
tagtccttcc	aagagtattt	atgtttcaga	agagaatgtc	tagataggat	tgtgcataac	77760
aaaaataagt	caatttttaa	tggtgttatt	gtaggetetg	tgacaagtag	gggagggaag	77820
cactttggga	aatggactct	cctctcttc	aaatattatt	caagtacaag	tttgcgcctg	77880
ttactcttct	gctttaagac	tgtctacagg	gagttctcct	tgtcctttgg	tcaaagtaaa	77940
atgttcaaca	cagccttgca	agatcctgcc	gcttctcgga	gccatcagac	ccactcttga	78000
tgctctgctc	tggtagagct	ctgccctggc	cctcaaactg	ttggacttct	ctgagaaagc	78060
gataggtgtg	ctcagatttt	aaggatgagg	tggagaagtt	cagagagagg	gcatttgcta	78120
tggaactgag	gctaccaaag	tgacgaagag	aatgcatccc	tgttctctag	gaactcaagg	78180
tttagtggcc	ttatagagtg	gaatagcacg	ccaacagtgg	ggccagtgac	tgccaggctg	78240
actagagaag	gcaactctca	ctgtggatat	agtcggaaac	tggcttttct	gcttcagcgc	78300
tgtggaccag	caattgacct	ttcttcccta	aagttcattc	acttgatacc	ttccagaagg	78360
aaggtcaccc	cctgcctggg	ttggctatgg	gccaaacccc	tgcccactcc	aaagtgtggc	78420
ttggaatgcc	atggtctgct	tattaaaaat	cagatttcgg	gaggccaagg	cggtcggatc	78480
acgacgtcag	gaaatcgaaa	tcatcctggc	taacacggtg	aaaccccgtc	tctactaaaa	78540
atacaaaata	ttagccggac	gtggtggcgg	gcacctcccc	gctacttggg	aggctgaggc	78600
aggagaatgg	tttgaacccg	ggaggtggag	cttgcagtga	gccgagattg	caccactgca	78660
ctccagcctg	ggcgacagag	cgagactccg	tctcaaaaaa	aaaaaaaaa	aaaaaaaaa	78720
aaaaaaaaa	aaaaatcaga	ttcctgttcc	ccaggcatcc	tgaatcatca	gggatggagt	78780
ctcaaaataa	atgtacattt	atttatttt	tatttttgta	tagacgaggt	gtcgctatac	78840
gttgcccagg	ctggtctcaa	actccttggc	tccagcaatc	ctcctgcctc	ggcctcccaa	78900
agcactggga	ttataggcct	gagccaccac	gccggcctaa	ttgtactttt	atttttttga	78960
gacggagttt	cactcttgtt	cctcaggctg	gagtgcaatg	gcacgatctt	ggctcaccgc	79020
aacctccgtc	tccagggttc	aagcgattct	tetgeeteag	cctcccgagt	agctgggatt	79080
acaggcatgt	gccaccacgc	ccggctaatt	ttgtattttt	agtggagacg	gggtttctcc	79140
atgttggtca	ggctagtctt	gaactcccga	cctcaggtga	teegeeegee	teggeeteee	79200
aaagtgctgg	gattacaggc	gtgagcaagt	gegeeeggee	ttaaatgtac	cttttaaacc	79260
aagttctgca	gtagattctt	aggcattaaa	gtttgagagc	catgtttctg	aggggcgtca	79320
tgctgaaggc	tatatattct	tgeggeeeee	ggaccgagcc	tagecettge	attcccaccc	79380
tgggctctct	ctcagcgaca	acttttccca	ggcgtcgggg	cttccctcga	gcgtggcgac	79440
cccgcagaca	tggtgccaag	agccagggtg	ggcggcgggg	cgggtgggag	agcggcggcg	79500
ctgggggcga	gggcaccatg	cgaccgcggg	cgccgggacc	acagegegee	gggaaggagg	79560
ccgaggcggc	aggaaaaaag	ccgaagatac	ttggggggac	cgaggggcca	agcgacggag	79620
ggaggaacag	aatacagcct	cgcgctggtc	ccgagcactg	ggacgcgcgg	ggagagcagg	79680
aggccgggcg	gggaggttcg	gggcggggcg	cgctacccgc	agteccegga	gctcggctaa	79740
ctcggcgccc	agtgcacggc	cgcaccatgg	ggtcccgcca	cttcgagggg	atttatgacc	79800

acgtggggca	cttcggcagg	tatgggggag	gggccccgcg	gcgccacgcg	ggaggcggcg	79860
ccgaggggtc	tgtttctttc	cgttgcggcg	gggttetege	geggegeteg	cgatccgaaa	79920
acatctccac	ttcctcctca	ccccgcgcag	tegggaeaeg	ggcgtccaga	cgccggcccc	79980
tagctgggct	teteetetag	gcctctggca	gegggaeetg	gcatggtgag	cagaggcgct	80040
gggctcgctc	ggagtgcgcc	tgttgccggg	caggagggac	ctggtgcgtg	ctctccgcgg	80100
cagcagatgc	tggaggcatc	tggctggaga	tctggctcga	ggggccagat	ctcactcgta	80160
gggggtgcct	gtgcctggcc	gcccgtttct	ctaatccgcc	gccacttccc	tagacggctg	80220
ctgcccagtt	ctgccctgcg	cctccgtagg	gcctccctct	gtgcctggca	ggtgttcccc	80280
agggacaacc	gttagtcaga	gttggttgcc	gtttattaaa	acctaatacg	tgccaggtac	80340
actgtacctg	gcgcttacac	atagttcttc	atttgatgtt	caccgggacc	ctgcaaagga	80400
ggtgttcaaa	tccttatttt	agtgattggg	aaacaagctg	gcggggtcaa	ggactcatag	80460
ccaacgcatg	gtggaaccac	gtttaacctc	cgtacaccct	cttttcattt	gtcaaattga	80520
tttaaaaaat	ttaaattatt	cattcgttcg	ttcactcatg	gacagagete	ctctatctga	80580
ctcagagtgt	tttgagaggg	gaggtagccg	ggtgaggggc	catgcagcgt	tatggccgga	80640
gatttggagc	tgcgtctcga	teetggeetg	ctacttacct	ctgatatgat	tctggagata	80700
ctttgtgtgt	cagtttccta	tccagaaaac	gggaatcagg	cttagcaaag	agatgatgtg	80760
gtgctgttct	tcaaggtgga	aggttgcatg	cgttttggtt	ttgattccca	gtgtctgcaa	80820
aaaggagctg	ttaggacaga	ggaaacgggc	aggaagcccc	agctgttccc	ttcttcctct	80880
gcttgcatca	ttgaacgctg	ccttgtgcct	ggctcggtca	taagccgttg	gtacatgtta	80940
cttcctttaa	tcttcactac	agccttataa	ggttggtagt	atcaccctct	tttcacagat	81000
gagaaaacca	aggtttctgc	ctaagcacaa	atctaatact	agcagggcag	aattggatgc	81060
cattggatgc	ccatcacctc	cacageceae	actctcaacc	atgatgcact	cctgagcacg	81120
gttaggtgac	ggctcctcag	ctgggccaag	ctctttatgt	atgatctcat	ttcatccttc	81180
tggaagcaga	atagcacaga	ggttaaaaga	tcagttttaa	ggctggatgt	ctaagttccc	81240
actctggcgc	taccacacat	taactatacg	gtcttgagca	ttttatttac	cactttctta	81300
tctgtaaaat	ggggctaata	atagtacaaa	tgttttcaaa	taggagtagt	gaaaatgtgt	81360
atatgaggac	tetgeatgea	gtttctcatc	cttacagtaa	ctcaatgagg	taggtggtac	81420
ttacatctta	gttcccctgt	gttttttagg	gattagctga	ggtaattata	ttagttggtg	81480
tttgactaaa	gtgcccaatc	aaacagattc	ctcaaatgga	agtttatgcc	tctccagtaa	81540
ctgcccacag	caggatctgt	gccacgagac	cattcaagga	ccctggcagg	tgggacagct	81600
ctgtcatcca	ctgcatgggg	ctccctgtct	gtgcctggag	cagctgcgca	cccatggtga	81660
cagctcacta	cggtgaagag	ggggcaaatg	ggtttgagga	gacagetett	agctggccac	81720
cataatgtat	gcaaaagtct	tattattcag	taagttctca	ataagtcatg	gctattatca	81780
ttacctgagt	tcccatattg	gtggtcaggg	ttgactcgtg	aaagcagctt	acaggaggga	81840
aaagggtaac	aaaccactgc	ttatatagca	gaagatgaag	actgtgtgac	tgcaacacag	81900
taccacattt	ttctcaggta	tttgttctaa	ttggtatcta	ttctttataa	acagaaagga	81960
aagttattgt	gatgattatt	tagteetete	tttaagggat	cctagtgaaa	gtgttaagta	82020
gagcagtggt	ccccaacctt	tttagcacca	gggactggtt	ttgtggaaga	cattttttcc	82080
acagacctgg	tccctaacct	ttttagcacc	agggactggt	ttcgtggaag	atatttttc	82140
cacagacctg	tggtggggtc	gggaggatgg	tttcaggatg	gaactgtttc	acctcagatc	82200

atcaggcatt	agattctcat	aaggagcact	cagcctagat	ccctcgcatg	tgcagttcac	82260
aatggggttc	acgttcctat	gagaatctaa	tgccgccgct	gatctgacag	gaggtggagc	82320
ttaggaagta	atgctcgctg	gccgctgctc	acctcctgct	gtgtggtcca	gtttctaaca	82380
ggccatggac	cagtctggtc	tatggcctgg	ggctttggga	cccctacagt	agagaaccct	82440
gattacctct	catttctcat	tggtcatttc	tagaataagg	aagcactatt	ctagtcacct	82500
ttaaaagggg	aaaacaggcc	aggtgcggtg	gttcatgcct	gtaatcccag	cactttggga	82560
ggctgaggca	ggcagatcac	gaggtcggga	gctcgagacc	atcctggcta	atgtagtgaa	82620
accaagtctc	cactaaaaat	acaaaaaaat	gagcctggca	tggtggcggg	ggcctgtggt	82680
cccagctact	tgggaggctg	aggcaggaga	atggcgtgaa	cccaggaggc	agagettgea	82740
gtgagccgag	attgcgccac	tgcactccag	cccgggcgac	agaacgagat	tccgtctcaa	82800
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaag	ggaaaacagg	82860
atacctgaga	agaactaaaa	taccattcca	ggatttctcc	tgaaaccata	tcgtttccat	82920
aaacttcaca	gcttaagctc	catatgaaaa	gaaattgaga	agactgaaat	ttaggcacct	82980
gtgttgggag	gatctgaacc	tggatccctg	agttagttgt	cctgggttaa	gaggagagac	83040
ggtttaaaag	tttagagttg	gaatgtggag	cctgtggcag	accttcatca	atggatagag	83100
gtagggtttt	gttttgtttt	atttcagtat	atagagtttt	tctggctctt	ttttgacttc	83160
agtgtgtgaa	catcataaca	tctatcattt	atatacagct	acggtgtgtc	atagagtgct	83220
ttccatgtgt	taactcattt	cattcccaca	aagcccatag	tttagatgag	gaaactgagg	83280
cacagaaagg	ctaaggatct	tgctcatggt	ccctggtggt	aagtaacagg	gccaagatca	83340
aaccttggca	gtctggctcc	agagtccatg	ctcttagcca	tgatggactc	caccagttat	83400
gcttttatat	ggaatggtat	aatctaggac	tgaaagcagt	tttcttcatc	cgtcactcag	83460
attgcatggg	tccattccct	ggggettetg	geegeeettg	cttttcctcg	cctctgggtt	83520
ttctgccgat	tgtgtttgtg	tgattatttt	tccattagag	tgtcatatct	ataagcctgt	83580
tgtcctggtg	gacccctagg	ttgggtacat	gcatgacacc	tetgagggee	aagaatcttt	83640
gtaaaagaga	gagtgatgtg	ttagaatgct	agacgcctaa	ggaaatgggg	cttggttttt	83700
tttcaagagg	ttattcttgc	aaaagggaaa	gggaaatttg	aattgaagga	gtgcttagga	83760
cctttctagc	acatggaaag	tgtgtttatg	tgaactagca	tggcttgatt	gggggccact	83820
tagtggttta	ttattttggg	ggtataaaat	atgagagtga	gagaggcagg	aggtaagctt	83880
acagtcatct	ccatgagtgt	ttttgcaaag	tttgggtatc	agaagtttgg	gttttgcagt	83940
gcagagggtg	gattggaggg	gcagcgagtg	gggcaagggg	gccagtgaag	acctagataa	84000
gagcccaggt	gagagagaaa	gagggtctgg	agagtgggag	tgtgggcagg	gagaaccaga	84060
cagttttagc	aggtggagtt	gatgggagct	cttggcccta	aggcatgaag	gagaagtgaa	84120
tgggaccaca	tgcccctcct	agcccacccc	atgtcccatg	ccctggattt	ctagtttgtg	84180
tgggtgatgg	tagcctaaac	tcagaaagtt	accetecagg	cggggcaggc	ctagatatcg	84240
agctcagttt	gagattggtt	taccttgagt	tccttgtggg	aattccaggt	ggagacatca	84300
agtgggaagt	tgggtagata	atctgttgct	cagggaaaat	gcccccttgt	caatatggat	84360
caggtggcca	cccagggctg	cagtccagct	ggaccagtgc	cttgtggaca	gattaggcat	84420
gcctggcacc	tgttccagct	gtgcctcagc	aggggtgttg	ctgaatagtt	ttccctctcc	84480
ctgggcgctg	tagatagaaa	acttttaaat	tgatatatta	catatatgca	gaaaagtgtc	84540

caccataatc	tacagcctga	tgagttgtca	tacagtgaac	acacctgtgt	tacccccacc	84600
caaatcatct	cctcttatgc	cttctcccaa	gccctactcc	gtccctgtcc	cccaagctca	84660
ctactgtcct	tacatcaacg	atactaaatg	ttacataagt	ggggtaaaag	gcacttgccc	84720
tttggcttct	tttgttccac	actgtgtttg	tgagatccac	ccatattgtg	tgtcacagag	84780
gttagtcgat	tttcacagct	acatagtatt	taatggcaca	aatatttcac	ggttcattca	84840
tttactgtca	acagacgttt	agactgtgtc	caggttgggc	ttatatgagt	tgcctttctt	84900
gcatttgtct	tttagggtag	ggttatattt	tgcttaacga	cagagatact	tctgagaagt	84960
tcatcgttag	gtgattttgt	tgttctgcaa	acatcacaga	ttttatttac	acaagcctag	85020
atggtacagc	ctgctacaca	tttaggctct	atggtatagc	ccactgctcc	tagactacaa	85080
acctgcacag	catgttattg	tactgaatac	tgtaggcaat	tgtaacacaa	tgggaagtat	85140
ttgtgtacct	aaacatggaa	agggtgtggt	aaaaatatga	tattaatatt	ataatcttat	85200
gggaccactg	ttgtatatgt	ggttcatcat	tgaccgaaac	gtcgttttgt	ggcatgtggc	85260
tctacctgtg	tatgcatttc	gctgggtaga	tacctaggag	atgctgtcac	aggeggtgea	85320
tgtggtcccc	tgccagagag	ttttgcaaaa	tggttataac	aaatgtcacc	ctcacaagct	85380
gtttattggt	ttttcagttg	ctccacaaca	attgtccagt	attttgaatg	tcaaaccttg	85440
taccagtaca	tagtttaacc	agaaaactag	atateetggg	gcaatgtttt	cateegtate	85500
agcatctcct	aagaagcttc	ttaagcttgt	aggggccttg	accccacctt	agacctcctg	85560
aatcacgatt	gctaagaggg	ggacagaaaa	gacaaatcct	agcttcagag	gcctgccagg	85620
gtgggtgctg	tgttggtgta	tgtgtgtgtg	tgcacaagag	aaaaagacac	aaagagagaa	85680
ggagagggga	agagagagag	agaatagttc	tggtgatgtg	gtgatgactg	tgggggtcac	85740
tggctgagga	agaaaaaaac	tgaggccagg	aaggtagaaa	ctaactgaag	aagctggtag	85800
gatctgaaga	ctggacgcct	gaatggtgct	ggaaatgggg	tcagtgggaa	ggatggggga	85860
agtaagaggg	tgggaggtca	tgctcagaac	ctgagctttt	cagtggtgga	gctgttccag	85920
gtagagacta	gttagggaac	aaacccaaat	gcctcaggta	aactttaggc	aagttaaaca	85980
tgcctgctgt	ttgcaggggc	tgtgttgtcg	tttgctgagt	tgaaatttca	gggatgggag	86040
tcaaataatt	ataaatatgt	gcaccatacg	tacatgattt	atgttctatt	tccagtcata	86100
ttcatatggg	attgttatta	tagggtgctc	cttaggctct	caacaaaatt	tagtttcaag	86160
aggacctgat	tttcatgcct	cttattgcca	tggtgtctag	cgggtagatg	ctggcccacc	86220
acaagccaca	ctgtaatgat	ctggatgggg	tgattctcag	actaggaata	ctcctttagt	86280
taaaaactac	atgctaccct	ttccctctag	gatctcctag	gagtatctac	acttttatca	86340
tactttcacc	ataatttctt	taaccagtct	cctgtcaatg	gacatttcag	ttttctatgt	86400
tttgcagttg	cagacactgc	tgaaaataaa	atttataaat	taactttggg	agagttgata	86460
tctttgtgat	gttgactact	ggttactttt	agggaagtca	agttttatta	ttaacaagag	86520
cagacaataa	cacccattag	tgtaatgtct	tttagcaaag	cagagacaac	taggtgcttg	86580
attttacaaa	aaattagtac	atatgaactg	tttccttaag	caagattaat	ttcccacttt	86640
atttacatca	gcgattcact	aagcaaagat	tttttttagt	ttgtcagctg	gctcacaaac	86700
tctgatgtat	gttgggatga	ttaaatgaga	taatgagtgt	gaacatgctt	taaagtatga	86760
tccaatataa	ggtgttagta	tttatttatt	tttgagacag	ggtctctctc	tgttgcccag	86820
gctagagtgc	agtggcacga	tcttggctca	ctgcaacgta	tgcttccagg	ttccagctat	86880
tctcatgcct	cagcctcctg	agtagctggg	actacagtca	cccgcaactg	cctggctaat	86940

ttttgtattt	atagtagaga	tggagtttca	ccatttatag	tagagatggg	gtttcaccag	87000
gagttcaagg	ctggtcttga	actcctgacc	tcaagtgatc	cgcctcagca	tcccaaagtg	87060
ctgggattat	aggcatgagc	cactgcgccc	ggcctaagat	gttagtatta	tgcacagtga	87120
ccaagacaat	gctgaataag	ctgccacgta	cagtacaggc	aggagtgaat	agagtagagt	87180
aaagaggga	gaattgactt	ctgctgtgta	agatgaagcc	catctacaat	ctgtgcaata	87240
gaagcagact	ggatggcact	gtagggtcaa	ggagtctctt	aagagagcca	ttcttattgc	87300
ctggaagatg	cctcttgaga	aaatgacagg	gaaggaagaa	acaccttctg	aatggacaag	87360
cctgcttccc	aagggcaggt	gacccaccag	ccatgctagg	tgctcacccc	catgaggcca	87420
caggcaatat	agcaacccca	aggctctgtg	gtgacacggc	agccagtgca	ggggctgggg	87480
acgagggatt	ctgacctgca	ggtgtgaggg	tcagcaccac	tcatcttcaa	gccaagatgt	87540
tagcctgtgg	ggtcttttga	gcaagagcaa	caccggcctg	tcttctcagc	ctactgttcc	87600
tgcccaaccc	ctctgtctag	gatggactga	ggctgatttc	ttttttctt	tttcttcttc	87660
ttcttcttct	tctccatttt	gtttttttt	tttttgagac	agagcctcgc	tcgcttaccc	87720
aggctagagt	gcagtggtgt	gatcttggct	gactgaaacc	tccgcctccc	agattcaagc	87780
aattctcctg	tctcagcctc	cttagtagct	gagactacag	gcacgtgcca	ctatgcctgg	87840
ctagtttttg	gcatttttag	tagaaacagg	gtttcaccat	gttggccagg	cttgtcttga	87900
actcccaacc	tcaggtaatc	cacctgcctt	ggcctcccaa	agtgttggga	ttacaggcat	87960
gagccaccat	gcctggcctg	atttctgatc	attttactac	tggcagggac	atattaatgt	88020
ttttggaaaa	aacagagcta	gctcccatta	gcccatcaag	cactggggct	ccaagctctt	88080
ctgttggctg	cccatcccaa	agagacccta	agaataggaa	ttagtgtgtt	ctttctcatc	88140
ctggagctag	aagaacacta	cttacttccc	gcctgcattt	tgctttgtag	ttttctttcg	88200
tggactagct	agctacaagg	gccaatgcca	tagatagaat	tcagttttga	aactgtggcc	88260
aacatgacca	gcctgtggtg	tcctgatagc	cacaagactt	caaattcatt	ccatttaacc	88320
tattatttat	ctacatgagg	ttctatgaga	agtgaggaat	ggtggctaca	tgccagcctg	88380
gcagttatct	gtgaggactt	ggagaggtca	ctaggttgtg	atagtctcca	aagtggggtg	88440
tgttcaccag	tgggcggtag	agatgatece	ttggactgcc	accagaaaac	acccatttta	88500
tatatgaatg	tgtgcataga	agtcaatatg	tacaaataga	agtttatatt	tcaatataca	88560
taataagtta	atttagcatt	atatgaatat	gtgtgtgtat	acatgttcac	tttatatgtc	88620
tacatgcaca	tctgtgcaca	catacacttt	ttaaaattta	actgatgggg	gacccaggct	88680
aaatttttgg	atacactggc	ctattgaaca	tctctcttta	gcagagtact	gagtatgagt	88740
caatttcagc	actgttcatt	ttcagcccaa	ggtattctcc	agcattctat	agccactgca	88800
ctacacactg	tgctgggtgc	tacaggagat	actaaagtga	ctgaaccaca	gtttctgctc	88860
tgatgagact	ttaactcaac	cttttatagg	acttctgttg	ttggtttggt	agagaaatag	88920
aaaacattca	cctggtgttc	tttaaaaaaa	tcaacataaa	taacagaatg	gtacttcagc	88980
tgcatattgt	gttcatagaa	gagaaggaag	agaaggaaaa	gtggggacta	gaaaatgcat	89040
aaatgagtga	gaatgggaaa	ggcggaagca	agtaaaaaga	caggactgag	agaagctggc	89100
agtgaaggat	aaagagactg	aaaatcggca	tttaggttgg	agggaaaaaa	aacgcagaga	89160
gagaggagta	tgagaggaac	aggctagacc	agcaggtctc	aaaatgtgag	aattcttgta	89220
ggtctttgaa	gtctgcaagg	gtaaaacttt	tttctagcaa	tactaagata	ttagctgtct	89280

ttttaaaaac	tctcattctc	tcatgaaagt	acagtagagt	tttccagagg	ctagatgatg	89340
tgtaataact	catcagattg	aatgcagatt	atctatctat	ctatctatct	atctatctat	89400
ctatctatct	atctatctat	ctatctatca	cattttcttt	atccagttaa	ccactgatgg	89460
actcttaggt	tgattctttg	gctttgcaat	cgtgaatagt	gctgtgataa	acagacaaat	89520
gcaggtgtct	ttttgatata	atgatttctt	ttcctttggg	taaataccca	gtagtgggat	89580
tgctggatca	aatggtagtc	ctatttttag	ttctttgaga	aatcttgata	atgttttcca	89640
taggggttgt	actaattcat	attcctgcta	acagtgtata	aatgttccct	tttctccaca	89700
gtctcactaa	tatctgttat	ttttgacttt	ttaataatag	ctattctgaa	tggtatgaga	89760
tggtatctca	ttgtggtttt	aatttgcatt	tctctgatga	ttagtgatat	tgagcatttt	89820
ttcctgtttg	ttggctgctt	gtatgtcttc	ttttggaaaa	tgtctgttta	tgtcctttgc	89880
ctacttttta	atggttttt	tttgtattaa	tttgagttct	ttatggattc	tggatattag	89940
ctctttgttg	gatgcatagt	teggtttgea	aatattttc	ccattctgta	ggttatgtac	90000
tctatcgatt	gtttcttttg	ctgtgcagaa	gctttttagt	tgaattaatt	cccatttgtc	90060
tatttttggt	tttgttgcat	ttgcctttga	ggacttggtc	ataaattctt	tgcctaggct	90120
aatgtccaga	agagtttttc	ctaagttttc	ttctaggact	ttttgagtgt	caggtcttac	90180
atttaggcct	ttaattcatc	cttagttaat	ttttgtatat	ggtgagagat	agggatccag	90240
tttcattctt	ctgcatatag	caagccagtt	tttcccagca	ccatttattg	aatagagagt	90300
ccttttccca	ttgtttattt	ttgttgattt	tgttgacgat	cagttggttg	tcagtgtgtg	90360
gctctatttc	tggattctct	attttgttcc	attggcttgt	gtgtcgattt	gtgtaccagt	90420
tccatgctgg	tttggttact	atagccttgt	agtatagttt	gaagtcaggt	aatgtgatgc	90480
ctctggcctt	gctctttttg	cttaggattg	ctttggctat	ttgggctctt	ttgtggttcc	90540
atgtgaattt	tagaatagtt	ttttctaatt	ctgtgaaaaa	taatgctgat	tctataggaa	90600
ttgcattgaa	tttgtagatt	gccttgggca	gtatggtcac	ttaaatggta	ttgattcttc	90660
taatccatga	gcatgagatg	tttttccatt	ttttgtgtca	cttctgattt	ctttcattag	90720
tgttttgtag	ttctccttgt	agaggtcttt	tacttctttg	gttaagtgta	ttcctaggta	90780
ttttgtgtgt	ttgtgtggct	ataataaatg	ggattgactt	tttgatttag	tttgcagctt	90840
gagtgttgta	tagaaatgca	actgattttt	gtacattaat	tttgtttctt	gaaactttac	90900
tgaagttgtt	tatcaagtct	aggagtcttt	tggaggaatc	tttaggattt	ttctaggtat	90960
aagatcatgt	tatcagggaa	cagagataat	ttcactcttt	ttttcagttt	ggataccttt	91020
tgtttctttc	ttttacctaa	ttgctatgtt	taggacttct	agtactgtgc	tatttaggag	91080
ctgtaagagt	gaaatccttg	tcttgttcta	gttctgaaga	ggaatgcatt	ttacttttcc	91140
ccattcagta	tgatgttggc	tacgggtttg	ttatatatgg	ctcttattat	tttgaggtat	91200
gttactttga	tgcctagttt	gttgagtttt	tttttttt	atcatgaagg	gatgttggat	91260
tttatcaaat	gctttttcag	catctattga	gttgacctta	tgtcttttgt	ttttaatttt	91320
gtttacgtgg	tgaatgacat	taattgactt	gcatatgttg	aaccatcttg	gcatccctaa	91380
aataaaactc	atctgattgt	gatggattat	ctttttgatg	tgctgttgga	ttcagtttgc	91440
tagtattttg	ttgaggattt	ttgtatctat	gttcatcaga	gatattggcc	tgtagttttc	91500
ttttttgatg	tgttcttatc	agattttggt	atcattatga	tactggtttc	atagaattat	91560
ttatggagga	attcctcttc	cttaattttc	tggaatgatt	tcagtaagat	tggttctagc	91620
tctttgtaca	tctgataaaa	ttcaactgtg	aatccgtctg	gtcctgggtt	ctttttttgt	91680

tgtagttgtt	acatttttt	gttactgatt	caatttcatt	actcgttatt	ggtctgttca	91740
gaatttctat	ttctcttgag	gggttgtatg	cttccagaaa	tttattcatg	tactctgggt	91800
tttctagtgt	gtgcacttag	agatgttcat	agtagtctct	gatgatcctt	tgtgtttctg	91860
tgttatcagt	tgtaatgtta	cttttatcat	ttctgattgt	gcttatctga	atcttctctt	91920
tttctttgtt	agtctagcta	gccgtctaac	aattttgttt	accttttcag	agaaccaact	91980
ttgtgttttg	ttgatccttt	gtatgatttt	tttggtttca	atttaattga	gatcaaatct	92040
tctctgatct	ttgttattat	tctttcttc	tgctagcttt	gtgtttggtt	tgttcttgat	92100
tttctagttc	cttgaggtgt	ggcattaatg	gttgttaatt	tgagatctgt	ctttttgatt	92160
tgagcaatta	atgctataag	ctttcctctt	agcactgctt	ttgctgtatc	ccagaggttt	92220
tggtatgttg	tgtctgtttt	cattcatttc	aaaacatttt	tttgatttct	gccttgattt	92280
tatggtttac	ccaaaagtca	ttcaggagca	agttgtttag	tttccatgta	cttctgtggt	92340
tttgagagtt	tctcttggta	ttgatttcta	attttattcc	tctgtggtct	gggaagatcc	92400
taatatgatt	ttgacttttt	tttttttgca	tttattgaga	cttgctttat	gggcaagcat	92460
atggtgaatt	ttagagaatg	ttttatgcac	agatgagaaa	aatgtatatt	ctgtggttgt	92520
tgggtggaat	gttctgtagg	tgtctcttag	tccatttggt	caagtttata	taatcaaatc	92580
gacagatcaa	gctcaatgat	ctgtcatcat	tgacagctta	ttgctgtcag	tatggtattg	92640
aaagtccctc	actcttttat	atgactgtct	atctcttttt	gtaagtctaa	tagtatttgt	92700
tttataaatc	tgggtgctct	gatgctgggt	gcatatgtat	ttaggatagt	taaatctttt	92760
tgttgaatta	gaccgtgtat	cattggataa	tgctattctt	tgtcttttt	tttttttt	92820
ttttttactg	ttgttacttt	agagactgtt	ttatctgata	taagaagaac	aactcctgct	92880
cctttttgtt	ttccatttgc	atgacatatc	tttttacccc	cctttacttt	aggctatggg	92940
tatctttaca	tattaagtgg	tctcttgtag	gtagcagatg	gttgggtctt	tttaaaaaaa	93000
aatccatttt	gctcatctat	atcctctaag	tggagcattg	aggctgttta	catttagggt	93060
taataatgat	atgtgaggtt	ttgttcctgt	cagagttttg	ttagctagtt	gctttgtagt	93120
gtcaattgtg	taattgcttt	atgggatctg	tgaactttct	acttatgtgt	gattttactg	93180
tggcaagtat	tgtcctttca	tttccatggt	tataacttct	ttaagcagtt	cttatagaac	93240
tggtcaagtg	gtgattaatt	cccttagtgt	ttgcttgtct	gggaaagact	ttatttctcc	93300
ttcttttatg	aggcttattt	ggcaggatat	aaaattcttg	ggaggctttt	ttttttcctt	93360
taagaaggct	ataaataggc	ccccaatctg	ttctggcttg	taagatttct	actgagacgt	93420
ctcattagtc	tgacaggatt	tctttttata	ggcgatctga	cacttctctc	cagatgcctt	93480
taagattttt	ttctttagca	ttaaacttgg	atagtatgat	gactatatgc	cttggtgaca	93540
ttcatctttt	atagtatctc	ccagatattc	tctgaatttc	ttgcatctga	atgtctacct	93600
ctatagcaag	atcagggaaa	ttttcctgaa	ttattctctt	aaatataatt	gcttactttt	93660
tcttcttctc	tctcaggatt	acatataagt	catacatttg	gtccctttac	ataattgcat	93720
atttctcaaa	gactttattc	attaaaaaat	tctttttct	ttatttttgt	ttgacttgtt	93780
aaaatagaaa	gattggtctt	caagctctga	aattatcttt	tctgcttggt	ctagtctttc	93840
actatagtta	aagtttaata	tatctatttt	gtctttcatg	tcctaagttt	ttgggggttg	93900
attttcagct	ttcttttgca	tctcagtgag	ctttcttaca	atccatattt	tgaattcttt	93960
atctgtcatt	tcagaatttt	cattttagtt	aggatccatt	gctagagagc	tagtaatgtt	94020

105

tggaggtgtc	aaaacacttt	gtctttttgt	atagctggag	cttttatgct	gattccttct	94080
catctgaagg	agcttgatat	agtttggttc	tgtgtcccac	ccaaatctca	tcttttaact	94140
cccataattc	ccacgtgttg	tgggagggat	gtggtgagag	atgattgaaa	catggaggca	94200
ggtatttccc	gtgctgttct	tgtgacagta	aaagggtete	acaagatctg	atggttttaa	94260
aaatgggagt	ttctctgcac	aagctctctc	tttgcctgtt	gccatccatg	taagatgtga	94320
cttgctcctc	cttgccttct	gccatgattg	tgaggcctcc	ccagccttgt	ggaactgtaa	94380
gtccaataaa	cctctttctt	ttgtaaattg	cccagtcttg	gtatgtcttt	atcagcagca	94440
tgaaattgga	caaatacaga	gctgttgcct	cctatttttg	aatttgccaa	catttgaatg	94500
aaacttttaa	agtttgtatt	ctttttcac	ttgagggtgt	ggctgtagta	tatattgcgt	94560
atgattgttt	ggctttgttt	ctgggtgctt	tcagggggcc	aagggtctct	atgggttcct	94620
tggttatgga	tatcatttgt	gtggtggctt	tcccagatgc	tgcttgttgc	agtgatatgt	94680
agggtgtatg	agctgacaca	ctatcttctg	tagggctagg	agtgtggagg	tctcaggaag	94740
cttatctcat	acactagcac	tgtgctcttc	tgacagcagg	ttttttgttt	gatgatgcag	94800
ttcagtctct	agtccagtaa	gtgacgcttg	agggtaagaa	gagctagctc	accctcaggt	94860
catccaaaga	tgagtggaag	ccccttcctt	gatgggggtt	ctgaggtctc	aggggtaggg	94920
gccagcaggg	ggctgcacca	gctcctcatc	ctgggcagac	aagaacatga	tccactacct	94980
atcatgcccc	tttcacagca	ctcataaccc	tcagttcttt	taaacactgt	cctttggctc	95040
ctggccactc	ctgaggtctg	tgagaaggct	tcgattgtgg	ctaccaccaa	aatggcctcg	95100
ggtcagagcc	tctttctcca	gtccagaaca	gtcagctctg	tggcttgtct	gtcctctgtt	95160
gcagggacat	tgctactttg	tgtagggagc	ggtagatggg	ccctgccttt	tctgaaagcc	95220
caggcagtac	cacctcactt	tcagtgggga	tgcagccact	gtgaaaagtg	ctagaaagcc	95280
tttcttcaat	tgcacgaatg	ccagcttcca	gcagggaaag	cctctgctgc	atctgcaaca	95340
gtgaatgggt	ggagtaggaa	atagtcccct	ctccatgtcc	cttcccagct	actactaccg	95400
cccctttcag	agattggtcc	tgtgcctgca	tttcctttgt	cccaaggagc	actttggtgg	95460
getgtgetee	ccctagaaga	aacctgcact	gagggctaga	tttctggggt	tcccgcagct	95520
ccccagggtc	ctgctggtcc	cccatggttg	ccaaagtcag	agtggttgtg	gggtatgttt	95580
ctgggggatc	tggtgataca	atatcacaaa	ggctgaggtt	gcttgggcag	ggcagtggct	95640
cagaacaggt	gcacaaccag	tatggtgtcc	accatctcag	ttcaggcctg	aggggagtgc	95700
cagcacacct	gcatgagttg	gtcacctggc	actctattct	caggaagttc	ccaaatcacc	95760
actgacagca	ttgcccaggg	tcacgaaggc	agaggggete	tcccacaatt	tggtagtcag	95820
cagtttgtta	caggggtgag	gtgagaaggg	atgcacccct	atccaccctt	tctgtaagac	95880
tecaggetee	ccaggggcca	gtetetgeea	gattettget	gttttccttt	tctctgcccc	95940
agettettee	tgtgggctcc	ctggcagacc	ttggctctct	tteeteetet	ctttctccat	96000
tttaatttct	aatatataaa	aggtgataaa	tatgatccac	ataaagaaag	tccttttgga	96060
atcctcaaaa	tttgtaaaaa	tatagaggct	cttgagacca	aaaagtgtga	gaactgctga	96120
gctgagggat	ggtcagaagc	atcttccagt	gagagggagc	atcaggatgc	agcggggtgg	96180
gcaggtctgc	aaaggaagaa	gggcgatgga	gatcacatgt	gtcaatggtg	caatttgacc	96240
tcagtttgat	cggacaggac	ctatttccta	cctcccattt	taatggtttt	ataggaatgt	96300
tggtgattgc	cttaactgat	tctgttttca	atctaaataa	ttaagtcacc	tgttcaaagg	96360
tctgctatgc	ctcttaattt	caggggttgg	aattttgtgg	ggtaatccaa	attttatctg	96420

ttctatcctg	ttgtcctgtg	ggcataattg	tccttatgcg	gtgattttt	acttcagaaa	96480
atatgtcact	gttggtttga	gtctataaat	ttggagactc	tatttttta	aatttttaaa	96540
taaacttttt	attttttgat	aattttagat	ttatggaaaa	gttacacaga	tagtacagag	96600
tccccatatg	accctcaccc	agtttcccct	attgttaaca	tcttacatta	ccatatttgt	96660
cagaactaac	aaactgatat	taatatgtta	ctattaacta	actatatact	tcatttgaat	96720
ttcaccagtt	tttccaagtg	tcctcttcct	gttccgggat	ccagtcccag	agcaccacac	96780
tgcatttaat	tgtctgtagc	agtctctcag	tctttcttta	ttttttgtga	ccttggcagt	96840
ctttaggtat	attggccagg	taacctgtag	atgaccccca	atctggggtc	ttttttaaa	96900
ttattaaact	aaggttatgg	tttttggaaa	gacaacaaca	gagatgaagt	gcccttctca	96960
tcagatcata	ggagggatac	agcatatcca	catgacgtca	ctggggatgt	taaccttcat	97020
cacttggtga	ctttagtgtt	tgcaagtttc	taggtttccc	cactgtaaag	atactatttt	97080
tcctctttc	ctgctttgtt	ctttagaagc	aagttactaa	gcctagccca	ccctttagga	97140
gtaaattgcg	ggaattaaac	tctacttcct	ggagagaggg	aatgtctaca	gatagtaatt	97200
gaattctaat	gtaagaaaga	ttggtctctt	ctccctcttt	tatttttca	ttcatttatt	97260
tatatgagta	tggtgtattg	tatttgtcag	gcttctccag	agaaagagaa	caaataggat	97320
acacacacac	acacacatac	acacacacac	atatatgaga	cttattatag	gagttggctt	97380
acatggttat	aaaggctgag	aagtctcatg	acctactatc	tgcaagctgg	agaactagga	97440
aagctagtgg	tgtaattcag	tcccagactg	aaggcctggt	gtaagtcttc	atctaattcc	97500
aaaaacccaa	gaaccaggag	ctctgatatt	tgagaaccag	agaatatgga	tgtcccagct	97560
catgcagaga	ataaatttgc	tcttccttca	cctttttgtt	ttattcaagc	cctcaagtga	97620
ttggatgatg	cccacctcaa	ctggtgaggg	tgatctctac	ttagtctact	gattcatacg	97680
ctaatctctt	ccagagacac	tctcacagac	acacccagaa	ataatgtttt	gccagctatc	97740
tgggcttccc	ttaacccagt	caagttaaca	cataaaatta	accacacagt	atgaattcat	97800
gtatatttat	tttatgcttt	gggatatact	atgccattta	ttttgttgct	caaattgttt	97860
cagcttccaa	ctggctgtag	gggccagcct	tacagggtct	gtgggtttt	ctccccatgt	97920
gtggagacga	gagatcgtag	aaataaagac	acaagacaaa	gagacaaaag	aaaagacagc	97980
tgggcctggg	ggacccctac	caccatgaca	cagagactgg	tagtggtcct	gaatgtcagg	98040
ctgcactgtt	atttattgga	tacaagacat	gggggcaggg	taaagagtgt	gagccatctc	98100
caatgatagg	taaggtcacg	tgggtcacgt	gtccagtgga	cagggggccc	ttccctgttt	98160
ggcaaccgag	gcggggagag	agagagagag	agaggagaca	gcttatgcca	ttatttctgc	98220
atatcagaga	cttttaatat	tttcactaat	tctgctactg	ctatctagaa	ggcagagcca	98280
ggtgtatagg	atggaacatg	aaagcagacc	aggagcgtga	ccactgaagc	acagcatcac	98340
agggagatgg	ttaggcctcc	agataactgc	aggcaggcct	gactgatgtc	aggccctcca	98400
caagaggtgg	tggagtagag	tcttctctaa	actcccctgg	ggaaagggag	actccctttc	98460
ctggtctgct	aagtagcggg	tacttttctt	tggcactgac	gctactgcta	gaccatggtc	98520
cgcttggtaa	cgggcatctt	tccagacact	ggcattacct	ctagatcaag	gagccctctg	98580
gtggccctac	ccgggcataa	cagaaggttc	acactcttgt	cttctggtca	cttctcacca	98640
tgtcccttca	gctcctgtct	ctgtatggcc	tggtttttct	taggttatgg	ttgtagagct	98700
aggattatta	tagtattgaa	ataaagagta	attactacaa	actaatgatt	ggtgatactt	98760

atatataatc	atgtctatga	tctatatata	tctagcataa	ctcttgttat	tttatatatt	98820
ttattatatg	gaacagctcg	tgctcggtct	cttgcctcgg	cacctgggtg	gcttgccacc	98880
cacagetgge	cactgggaac	tttttcaggt	tgctacttgg	gcccctttca	tatgccctta	98940
tccttttgtt	ttttgagtat	ttccttactt	tatggtattg	taagatattc	caggcttatt	99000
ttgtattctt	cttttcctgg	ctttagaatc	agccactttt	tctggctcct	ctcattggag	99060
aatggtattt	agaaactaag	atctgggcaa	tgggtgtgct	tgctgctctt	gggatgtcat	99120
tgcttctagg	ccttctcagt	agatggagct	aagtaatata	tgtatatata	ctaacccaca	99180
gatataaata	tgtctataat	tatttctata	tttatccatt	cgtgtatatg	ttaagataaa	99240
catgatggag	acccttcaaa	tttgcttatg	ttcttttca	gcctatagac	cagatataat	99300
aattagcttt	tcttctcttg	cagattccag	agagtcctct	atttcatatg	tgccttccag	99360
aacatctctt	gtggtattca	ctacttggct	tctgtgttca	tgggagtcac	ccctcatcat	99420
gtctgcaggc	ccccaggcaa	tgtgagtcag	gttgttttcc	ataatcactc	taattggagt	99480
ttggaggaca	ceggggeeet	gttgtcttca	ggccagaaag	attatgttac	ggtgcagttg	99540
cagaatggtg	agatctggga	gctctcaagg	tgtagcagga	ataagaggga	gaacacatcg	99600
agtttgggct	atgaatacac	tggcagtaag	aaagagtttc	cttgtgtgga	tggctacata	99660
tatgaccaga	acacatggaa	aagcactgcg	gtgacccagt	ggaacctggt	ctgtgaccga	99720
aaatggcttg	caatgctgat	ccagccccta	tttatgtttg	gagtcctact	gggatcggtg	99780
acttttggct	acttttctga	caggtaaaat	caaatattta	ggattgttgt	atcagtgtag	99840
ggtttatttt	cctatctggt	tttcttggga	cacaaggaat	tatgtttaaa	acttgtcatt	99900
tttatacttc	ctatctaaat	acctacctct	ttgctgatcc	attatttagg	gatgtataat	99960
gataaggata	ggctctgaag	acagtatacc	tagatccaaa	teetggttet	accacttatt	100020
aactgtggac	cccaggcaaa	ttgcctaact	tacctgtgtt	tcagaatctt	tgtctatagg	100080
ctggtgataa	aaaataatat	cacttacttc	aaaggattat	tgcaaaatta	atacagaaaa	100140
aaagtaccct	ggacatataa	tcactcaata	gatacggttt	attactttga	atattttctt	100200
ctctttaaat	agacttgctt	tttaatagga	gtagcctgat	cctaagcagt	atatctgtaa	100260
aattatgggc	ttgatataac	agcccctttt	agtctttttg	tgctgctgta	acaaaatacc	100320
acagactggg	taattcacaa	acaatagaaa	tttatttccc	atagttctgg	cggctgggaa	100380
gcccaagata	aggtgccaac	aggattgctg	actgggaagg	ctgttgtttg	ctttcaagat	100440
ggtgccttat	tgctgcatcc	tttggatggg	ataaatgcag	tgtcctcaca	tggaagaagg	100500
gatggaaggg	caggagagtg	ctcccttcaa	ccttgagcac	ttttctaagg	gtgctaaggg	100560
ctctactgtc	atgactttat	cacctcccaa	ggccatccct	cttaatagtg	ttgcactgga	100620
gattaagttt	caacatgaat	tttggaggga	atactatcat	tcaaagcata	acctggccat	100680
atatttttaa	aaatttacat	taaaatgaat	atgtaattct	taaaataaag	caaagtttat	100740
ctctgtatga	acatggacca	taccaaagca	cagagatgaa	cttatttggt	ctccatagtt	100800
gtggatttta	cagtcatatg	gtgggcactg	aggacctaaa	gacaatagct	tagatcagaa	100860
atccctgccc	ttgaggtata	ccagtctaat	ggggctgata	aacatgtcaa	aagaaaaatt	100920
aaagggcttt	gttatgggca	gggccatacc	tctcatagta	tgtcaaaggt	gctaggtatt	100980
agtgttttca	ttcagcaagc	tgttatacaa	attatcactt	ggggcttttc	tgttgaaatg	101040
tgttcactgc	ttgactcttg	aaactcaaaa	tatttgcaac	tacttgtatg	aaatgtacta	101100
aaatacattt	gctgtatgac	aaaaacggga	tataaataat	gcttataaca	cagtcagagt	101160

acaaaatatg ttaactgaaa ataaatttag ttcctttgtc tgaacttggt atagttatat 101220 agacatatat tgaacactta cagtcacttt gatagatgca gagatgtgtg tgtatatata 101280 tatataatat ataaataaaa aatatattag tgaaattata tatatatttc actaattata 101340 tgtacatata atataaatat attatatgta catgtaatat ataatatata tttatatatt 101400 atatatata taatatata attatatata atataacata tattatatat attataatat 101460 aacatatata atatatatat tatatatatt tatatattta tatatattta tatatatta tatatataaa 101580 taaatattat atataatata tatattagtg aaagcaagtt tattaagaaa gtaaaggaat 101820 aaagaagggt cactccatag gcagagcagc catgatatat attttttaaa gtccttgaga 101880 agttgcatac cattaactgg tattcatttg gatgggtagc ttgaattaaa attacttggg 101940 agetecagaa aaacettaag etaaaaaatt ggtttgacat ggteeetgae teecagtgte 102000 tgtattctct cggcggaatt tgttgaaaga gacagcctcc ttgcacctct tgtagtcttc 102060 tatacttctt gctggatgtg ccaagatggc aagtccctga ccactttttt atgtgggcca 102120 tttctcagag ttgtctatgc agccagtacc ttaaaagatg agtgctatgg cttagatatg 102180 attagtctgt tctcaccaag gctcatgttg aaatttgatc cccagtgtgg cggtgttggg 102240 aggtgaggcc tagtgggagg tgtttgggcc atgggggcaa atccctcatg aatgaattgg 102300 tgctgttctc atggcagtga gtgaatgagt tctggctgtc acaagactgg attaattctc 102360 gcaggaattg attagttcct gcaagagtgg attgttttaa agtgaggaca cccctcaggt 102420 ttetetetet ttacatgtgt etgetteace tttgacette tetgeeatgt tgtaatgtag 102480 catgaaagcc cttgcaagaa gccagtaccc ttgatcttcc cagcctgcag aactatgagc 102540 taaataaacc tcttttcttt ataaattatc cagtcttagg tgttctttta tagcaacata 102600 aaattaacta atatgatgag ataatgtccc ctctctgcca caaagagtag gcttcctaac 102660 tgcttggtac aaaaccagtg gattccccac atccagtgct cctcctctct aattcaaccc 102720 actatctgtg aagtgtcatc tggactcatt gtgggacttg gggattagag gacctgagac 102780 aaagatgctg ctgccctact gcttgctaac gaagtaagta atgaagttct ttgtctctga 102840 cccaaacatc ttgtgttttt gccagcatcc cttaaacagt acagattaac atattaactt 102900 agagtaaaat aaaattgaat attetttgta tacceteate ttgggeetga gaggattete 102960 ataaattatt tttcaaggtg aataagtagc tcagtgaaaa ccaaaagaca taattaaaag 103020 ggaccatgag tgagaatcaa cagaaacaac tggcagcaga agcagacttc tgcacaaaga 103080 gaaatagaag acaagcttaa aaatattgat aaaaactgga cattgcatta aaactgacat 103200 aaaattgaag aatacccagg acatctagaa atacaaagtg aaataagtga ataacaaatc 103260 acctgcaaag ttttaacaac ctgtcacaca cagctacaaa aaattcatga aatggatgat 103320 aactcagaaa aagtcatcaa tattaaagct cagagagaca gagaggtggg aaatatgaga 103380 gattaaaatt tatggaggct gaaaagagaa aagttctgaa atctacttaa tattagaaac 103440 taatcaatgg tatttaccac attaacgtat tagaggacaa aattcataca atcaactcaa 103500

tacatataqq aaaaqcattt qatqaatttc aaaatccatt catcataaaa actaaaaata 103560 gaagaatgcc tttaacctga taaaaggttt ctacaataag gtttaccatg aatatcttac 103620 ttgtgaagtt taaaatatta atttcttttt tctttctttc tttttatgtt tagagacagg 103680 gttttgctat gttgcccagg ctgttctcaa actcctgggc tcaagcaatt ctcctgcctc 103740 agccctccca agtaggtggg attacaggca tgcaccactg cacccagctc ttaactgtga 103800 aatgttaaaa gcttttcctt tgagattagg aacagacgag gatgtatgaa acatgtcttc 103860 tacttagcat tgtactggat agtctagcca gtgctgtaag gaaaaagaga gagaaagagg 103920 tagaaggaaa ggaagcaagg aaagaataat gattggaaag gagaaataaa aagtcattat 103980 ttgtagttat tacaattttg tatgaaaaaa gtcctacata tgaattatta gaattaatga 104040 gcatttaaaa ttatatttct atataccagt aacaaatata taaattttaa aaatgtcatt 104100 gcagaaacct aaaaatatga aatataaatg gttaaatata acaaaaagtg aagaaggccc 104160 tctgtggaga caattataaa cttgaagaat caaatcatta aagtaaatag atatatcact 104220 agacaaacag attgaggctc ccttagaggt tcctggaata gacttgtgca ttcataaaca 104280 taagtataga cacataggca ttttatatta gcaggaaaag gatcaatcat taagtggtgc 104340 tgggacagat gtctagctat atagaaggaa atacaactgg attcattttc taacatttta 104400 cagtacaaca gcagttccag aaggactaaa cgtgcatatg tgaaaagcaa aactatacga 104460 ttttaggaag ataatttagg agaatatttt caggacctaa tggaagaaag ggtgattttt 104520 ctaaaacaca aaaaacattg atcatgaaag aaaaaatgga taaatttgac ttcattacag 104580 gaatttatgt ccaccaaaag acaccattaa aagaggaaag acatgaatgt gtgcacacaa 104640 gagagagaaa atatttgctt tacatataac taaattatta gtgtccagaa tagtcaaagg 104700 atttttactt acatcaatgg gaaaaagaca atccaataga aaaatgggaa aaagatttga 104760 agtcacttca tagaaaagaa aatccaaatg gctaatgaaa agttgaattg acagtgacat 104820 ataatcacac catttacttt tgaccagttg tcaaaagtca gaagtcttgt aatactaagt 104880 gttggtgagg atatggagta ataggatete teateetget ggtgtgaatg caaactgaga 104940 atccaaattg ggttaacctt gaagactgat ttggtatcat atagagttgg tgatgtgcac 105000 agccacatgc tetggggcat ataccetgag catgetettg cacaggteca cagaggtaca 105060 tgcataaaag tgccctcaca gcattgttcc taacagccct gcactctaaa caacccagat 105120 gtccttcaat tatctcatgg acacatgtat taaaatatat tcttacagta ggatatgtgg 105180 acatgaaaat gaatgagaca cagctacatg aaacaacata gatgaatete etatacataa 105240 tgtttgataa aggaagcaag tcataaaata atacatgtgg tattgtcctg ttatagaaaa 105300 tttaaaatca taatagcaaa acttacctat actgtttata agcagtaacc tgtattgttt 105360 agcattgctt ataaaagtag taaaatgaaa caaaaaacaa gagattatca ccaaaattag 105420 aaaaatgttt cctcctagaa agggcaaggg atttgtagtc acaaagagag gtgcaagaag 105480 ctatcaggag gctggcaatc atctctttct tgccttgggt tgtgatttct aggcatttga 105540 ttttttatta ttcttgaaac tgtacatatt ttatgcatgg ttatatatgt ataaaatatt 105600 ataataaaaa aagcaaagaa ataagatctg atcccaccct taaggagcta acagtggaga 105660 atatagactt ttgaactgac aatttcaatg aaatgtagta aatgcttttt ttttttttt 105720tttttttttg agaagatgtc tagctctgtt gcccaggctg aagtgcagtg gtgcgatctt 105780 ggatcactgc aacttctgcc tcccaggttc aagtgattct cctgcctcag cctcccgagt 105840 agctgggact acaggcatgt gccgccatgc ctggctaatt tttgtatttt cagcagagta 105900

ggggtttcac catgttggcc aggctggtct tgaactcctg acctccagtg atctgcctgc 105960 cttggcctcc caaagtgctg ggattacagg catgagccgc catgcccagc cggtaaatgc 106020 ttttaaaata ataaaaactc qcatttatqq acaatttatt atacactaqq tactattcta 106080 aatgtettat atateatete atttaattat ttaaagaggt etgtgagata gacactattg 106140 tgccccccc tcctttttt ttaaccagta gggaaaagga agcatagaaa gttcacatgg 106200 aaaataaggg atggagctgg gatttgagcc caggccagca tccccaacta ctgcatcaca 106260 ctgtttctga atttttgcta tgagacccca aggaatgatc aatggaagtt gtcagatgga 106320 gaaggccccc aagggaaagg aatagctttg tgtcatgaaa caacctggca tgttcagaga 106380 attgtgggaa agtcagtgtg gcagaagtag agaagggcag attgtgaaag gaaatgacaa 106440 gagacaaaac cacaatgggg attattttat ttctaggaag tgtgggaaggt gtactgacat 106500 gaggttagga agaccagctg ggaagctagt gggatgaatg atgtaagaaa tggtgaagac 106560 ttgagtgaaa gcgggaaaag cagggaggaa aagatgaaga catatttggg aggcatttct 106620 aaactcacat aatctgatga cgaatatgca ggagggagcg gaggaatgta ttaaggttta 106680 gaagcctaat ggaaggagat tttgctaacc aattcaggaa ataccaggga gagagcagtt 106740 ttagaagaga agggaacacg tttggatata ttccagtgag cttgtcctat ccctattaag 106800 aaaaacaaag tootatooot atattaagaa aaacaaagtg aagatgtgtt caaagttaat 106860 accaattaca acagcaacaa gagattgcag ctctgcagga cattaaagca gagaagagca 106920 actggggcca gatggtgggt ggggagttaa tagcccatac ttaggaatca gagccaggga 106980 agtggatgaa atcacaaggg cagagtgtgc agcagaggac tttagggagt ccagctttga 107040 ggcaggcggg tcatcaggga ggtacaagca gaaccaggtg agagggatgt tttacaagcc 107100 aaaggacagc aggggtctaa cgagtaggca tggtcagtgg cattagagag gacaggcaga 107160 aaggaccagg agaggcaatg tgcaggtccc tggtgactgc aaaatgagct cagaaaagtt 107220 ggttgcacct ggtcatcatt ggctgaggaa acatgtagga gttgaggaag gaaatactcc 107280 cttctgatat atctgtcaag ggaggaaatg caacgtggct aaaggagcaa tggggtcaag 107340 agaaggttct tgtctttggt tggaggagac taaactgaaa ggaagaagtc aaaggagagg 107400 gaaaaacaaa ggaaaaagaa gtgaagggtt tcagaggaag tgggaagagg cacaagccga 107460 tacaaagatt gcaaaatgat atttggagag aaaggggcat gtgtcttcag agaggcagga 107520 agagaaggct gaatgcagat gcaggtcatg ttggtaagtg gacagagcag gaagttgtgg 107580 gtcttcctct ttgatggtct ctgttctctg caggagatgg ctgttcatct acagagagag 107640 aagttgtttg aggtgggaga gagggtcaag cagtgatagg taaaaatagt tttaggtggc 107700 attcagggat aaaattagat tggggaacat tcatatatag ggccaacaat ctctactaat 107760 gtgcaaagga gcaaagaagg ctgaagtgtg aagatgatgg tttcttattt atttgcatat 107820 cetetgetge accaageaaa tetgttggtt ggaeteteea gaeaatatte ttttgeetta 107880 aactatttgt cagagacaac ccataggaag aaaatatttg cttattatat atctgataag 107940 ggtctagtat ccagaatata taaagagctc ttacaactca atattaaaaa agcaatagac 108000 taattcaaaa atgggcaaag aatttggata aacatttctc taaagaatat atgcaaatag 108060 ccaatacgcg cttgaaaaga tgctcaacat cattaatcat tagggaattg taaataaaaa 108120 ccacaatcag atactacttc acagccattg ggctggctat aataaaaaag gcagacagta 108180 acaaqtaqtq qqqaqaatqt qqaqaatcaa aaccctcata cattqctqqt qqqaatqqaa 108240

aaatggggcg gccatcttgg aaaccagttt ggcagttcct caaaatgtta cacatagagt 108300 taccatatga cccaggaatt tcactctagg tatataccca agagaattca aaacctaagt 108360 tcacacaaaa tcttgttcat gaatgttcag agcagcatta ttcataatag ccaagaagag 108420 gaaaatgagc catcaactga tgaatagata aaatgtggtt tatccgtata atggtgctac 108480 tcagagagaa aaaaggaatg aagtgctaat acatgctaca acgcagaaga agctggaaaa 108540 tctaatgcta gggaaaagaa gtcagacaca aaaggccaca tattgtttga ctccatttat 108600 gggaaatgtc cagaacaggc aaatctatgg agacagaagg tagatgagtg gttgtcagag 108660 actggaggga gcagggaaga gggggtggca gcttctgggc acagagtttc ttttgggagt 108720 gattaacgta tcctggaatt aaagaatgat gatggttgca caaccttgca aatatactaa 108780 aaaccaccaa attgtctact ttaaaaggtt gaattttatg gcatttgaat tatatcacaa 108840 ttttaaaatc tgtcagatat tatttgtttt ttaaacaaag agatgcctct ttcaattatg 108900 aaaagatagg gcaagtaagc acattattct agaagaagaa ggtagcaaga cctctgtttt 108960 tagaggggct tggcaagagc tgtcatagcc ttagtggaca gagccagcct ggcagggaag 109020 atgateceae agagagecaa agteetgaaa gggagaggae aaattetete etetetteee 109080 ccaatcccag gttaaagggt cctgcgggga tgactcagag tgatcaggta tgtatattag 109140 caactcaggt aaaggeetet ceaetgaaca getggtettt taaagaagee atggaactta 109200 tggtttgctc aaaataaata aaagaaaaac aatcaataca taagctattc aaggtatata 109260 ggtaatgcct atcttttatg aattggagtg gatgtttaaa ctgttacaac tctacctttc 109320 ctettecact gtgtgactet tatttttcag getaggaege egggtggtet tgtgggecac 109380 aagcagtagc atgtttttgt ttggaatagc agcggcgttt gcagttgatt attacacctt 109440 catggctgct cgcttttttc ttgccatggt gagttgtgtt ttttacttct ttaattctgc 109500 tgcagttttt cataggaaac cttaactctc atcattttgc tcatttaaga tctagtgagc 109560 gagatcaagg actcatcttt gtccactcca ctgcagaagt ctgcctacag aataccaatg 109620 ccttatgttt agaatggaac tcattaaagt gaaaaattgt tgctggctag gcagaagtgt 109680 gtttgcctct gtgtcgggca tgtggtccac atgtcacaat tactgaggca ttattttctt 109740 tctgagtaat catattggtc tagtcagggc ctgttcacat gagcaaacag acagttgagg 109800 tgtgtggtta aagtcacttg tataatgtac aggaagaatg aaaacaggag ggcattaggt 109860 ccttatgtta ccaggaacgg cagtttagtg gaaagggcac gagtttgaat accagcattg 109920 teatatattg gettgttagt tgtatgatea gtateetett tgaacetttg gttgeagtet 109980 gtaaactgta gaaaagaatc tgtgtttatt attattattc tcaggattca gtgagattaa 110040gtataaacaa ccgcagtaca gcacctgatt acaatggtaa cttactagaa atggactagc 110100 gagcaaggag gctgtttcca tgctcagtga ggcttccaga tagatttcca actatcaagc 110160 aacatcaaga ataatagagg gaagtttcca tctggaggag gagcttgtga tcttgctaaa 110220 tgcagagcag caggttggat ggtctgaggg tctggagaga agcaaagggc ttcaatctct 110280 ctgcacccc tcagagaaca agatggggtg tcagttttgg agtctttttt gatggataga 110340 aagggtttct agcaaaccat acagttggcc aaggataagg aagatgcata aaaataaatc 110400 taggagactg gaaggtgttg tacctcatta aaaagtaaat atatattt aggaatgtaa 110460 agagttttaa atacaagata gcaaccagta gttctgtttc cactgaggac ataactctgt 110520 gactgtagag tgagatttca cgagagaaac cttctggtgg gactgaaggc tccacaaagg 110580 cacaggtact aagaaagtat aaacatcatc ttttggaaga cttaagagga tatttctgaa 110640

aatatctgtt tcagtcttgc aaaataccac gcgttggctt ctatacccaa ggaaacaagg 110700 ccacacccat aquatacatc cqtqaaatqt qqccttaatt ttctqtqact qtttccqttq 110760 atgttcatgg ggaatggatt tgtgggggaa ttctgtggat gggagatgca ggcagattca 110820 tttactcaac acatttattg atctgtctac agagtgtaat gctaagtaaa ccagacccag 110880 ctgtctcagt aagtctagta ggaaaggcaa gacgttgatc agccatcttc aaaaataaat 110940 aaaatgttga cagtgagggc ataacatcag tgggtctgga gcgttcacca gggtctggag 111000ggtcaagggt tttctcactg tgagggatgg gtgagagaag aatattccag caaagataga 111060 agtggatgaa agggccctga gatgagaaag aaaagccgga atgtctggag aatagagagg 111120 aggagagacg cattgatgag gctgaaggga tcaaggcggt taggtggggc tttgtaggat 111180 tgtcaggatt ttgctctatc tcctaaaggc aatggcaatc cacaaaaggg attccaggaa 111240 ttctggctgc tatgaggggg tggattccga gaagatgtga gtattattat cagtggaagg 111300 gatgggtgtg agtggattca cagagtgttt tggagttagt tgtatatgga ttttctgaat 111360 ccaataacag aggaagttgt agctgactca tgagaaataa ttagcattga aaaacctgac 111420 agggacaaat attacagctt aatttaactg ggaaatttat agtatttgaa agttatcaca 111480 atctttgtta atgtaacagc agcgcttacc aaaagcgact tctggattgt tagatgtagg 111540 gtcccgatga tctgagtctt gccattacaa agttgcacag ggaaataaaa gctgttgtca 111600 caaaaatatt aaactgatta tgaatacagt agtcctcatc aagcacctcc ctgcctcctg 111660 ctagtgtcaa ccctttctga cagcaggaat atccttgtag gccggcctct ttgtgactgt 111720 ccaatgcaag gagaaattgc agttattaca agggacacat gtttacaaaa agtctttaaa 111780 aqcaqtqaqq qaacaqqqqa acactqcctq aatcctqccc acaacctttq qccaqtqqqq 111840 atctggcaga gagacctgtt aacttttgaa gaaattaaca tctgcaagga taatcacata 111900 atgageettt gaaagagtat gatteaaata tetaatgatt aagagaagee tttggggagt 111960 ggtgctctcg aataatttta caaaagttaa ttgtatgatt tgtgttgtag aagtcaaata 112020 tgaaaaaatt ttgtagaaaa aattetteee eteeteetee caaaaaaacce atcaatggac 112080 aatttttatt aaagatagtc atatttccaa aataaagttt ttccccagtt ttccttcttg 112200 tggtaaagta catataacac aaaatttacc atcctaacca tttttaagtg tacagttgag 112260 tgatattaag tgcattcata ctgtggtgca attatcacca ctgtgcatct tcagaactcg 112320 ttttcatctt gcaaaactga aactctgtcc attgaataat aactctctgt tccctgtctc 112380 cctagecect gacaaceace attetacate etgetetat gagtttggee actetaggta 112440 cctcatgaaa gcggaatcat atgatagttg tctttttgtg actggcttat ttcccttagc 112500 ataatattca ttgtatgcat agactacatt tttcttatct attcatctat ggacggaccc 112560 ttggggggtt gcttccatgc tttagctgtt gtgaataatg ctatgagcag gcatgtgcaa 112620 acatetette cagaceceae ttteaattee tttgggtata taeteaaagg tggaattget 112680 ggatcatgct gtaattgttt tttgaggaat cgtcatactg tttttcctag aggctgtgcc 112740 attatacatt tctctcacat attacacatg ggttccagtt tctctacatt cccgccaaaa 112800 cttgttattt tttttttaa ttagccacac taatgtgtat gagggggtat ctctttgtag 112860 cattgaattg catttctcaa tgattggtaa aaatttgtat ttcttctgtt tgaaatgtct 112920 gttcaaagcc tttgcccatt tttgaattgg attgtctgtg tttttgctgt tgttggattt 112980

taggagttct	ccataaaatc	ccttatcaga	tatttgattt	gcaaatattt	tatccagttc	113040
tgcaggttgc	cttttccctc	cattgatagt	gttctttgat	gcacagtttt	aattttcatg	113100
aagtctaatt	tgtcttcttt	gcctgtcaaa	atagaatttt	aattaaatca	gtttttctta	113160
ccactagtta	gcgtaaattt	ttttgtctcc	atttagcagt	taggatttaa	caataaggac	113220
ctcctggata	cagataactt	gatgtatgca	tttacaagga	atggagaaat	acatccacag	113280
tataatgaaa	tatttagatg	acacaaaaga	caatgtctaa	catttatatc	ataaataatc	113340
tctcaagttt	tgccatttgg	ggtggggagg	atgagggaag	atgaaaggac	ctataagaaa	113400
aaaagataga	tcggattgaa	tgtcatttta	tacatctgat	aggggtttca	gaaagcaagt	113460
ctttgtcatt	ttcttttttg	cctatatgtg	atttgcaatg	gggtcagact	cctcaatagt	113520
tataaatgtg	accttgaata	taaatcccta	ttatttgttt	ttcaggttgc	aagtggctat	113580
cttgtggtgg	ggtttgtcta	tgtgatggaa	ttcattggca	tgaagteteg	gacatgggcg	113640
tctgtccatt	tgcattcctt	ttttgcagtt	ggaaccctgc	tggtggcttt	gacaggatac	113700
ttggtcagga	cctggtggct	ttaccagatg	atcctctcca	cagtgactgt	cccctttatc	113760
ctgtgctgtt	gggtgctccc	agagacacct	ttttggcttc	tctcagaggg	acgatatgaa	113820
gaagcacaaa	aaatagttga	catcatggcc	aagtggaaca	gggcaagctc	ctgtaaactg	113880
tcagaacttt	tatcactgga	cctacaaggt	cctgttagta	atagccccac	tgaagttcag	113940
aagcacaacc	tatcatatct	gttttataac	tggagcatta	cgaaaaggac	acttaccgtt	114000
tggctaatct	ggttcactgg	aagtttggga	ttctactcgt	tttccttgaa	ttctgttaac	114060
ttaggaggca	atgaatactt	aaacctcttc	ctcctgggta	agtagttaca	gtatatttaa	114120
atttggcagt	gaagtgagat	ttctaccatt	tgtgtgtgtg	tgtctgtttc	tgtgtgaatt	114180
tgagaaaaag	aatgttttta	ataggccctt	taaaaccagg	aacaatactg	ccaaccatat	114240
tattatgata	tctcttagtg	ttatgttgta	acacatgtac	atatgagggg	acttcaacca	114300
gttcatggaa	aaatggcatt	aaaagacaaa	aatttaaaac	ataaactttc	tcaacatgat	114360
tgccatcaag	gtcaagacac	ttttgtacga	catcagccat	ttattccatc	cttaaaaaac	114420
tgagggtcct	gagaatgtac	ccatgtcaat	gcagtcttat	ttacactatt	aactgaagaa	114480
aaatgggtgc	cgcgtacaga	ctttttaaga	ttaggaaaca	gaaagaagtc	agaatgagcc	114540
accatgagaa	ctgttaaggt	ggctgcctag	tgatttccca	tcaaaactct	tgcaaaattg	114600
cccttgtttg	atgagaggaa	tgagcatgcc	cattgtcatg	gaggagaagg	actctctggt	114660
gatgtttccc	aggcattttt	ctacaaaagc	tttggttaac	tctctcaaaa	cactctcctc	114720
ataagcagat	attttcattc	tttggccctc	cagaaagcta	acaagcaaaa	tgccttgagc	114780
atccccaaca	aacgttgcca	tgacctttgc	tttcgactgg	tccacttttg	ctttgacagg	114840
accatggccc	cccttggtaa	ccattgcttt	ggttgggctt	tgtcttcagg	atcagactcg	114900
taaaaccgtg	tttcatctcc	tgttacaatt	ctccaaagaa	atccttcagg	atcttgatcc	114960
cacttgttta	aaatttccat	gggaagttct	gcccttctct	gcagctgatc	tgggcacaac	115020
tgttttggca	cccattgagt	ggaaagtttg	ctcaacttta	atttttcagt	cagaattctg	115080
taagccagac	taattgagat	atctatggta	ttggctattg	cttctgctgt	taatctcagt	115140
ctttgtcaat	tagggcataa	acaagatgta	ttttttcct	caatgtggat	gctctgccac	115200
tgtggtcttc	atcttcaata	tegtettgte	ctttcttaaa	ataagttatc	catttgtaaa	115260
ctgctgattt	atttggggct	ttgtgcccgt	aaacttttca	taaagcatca	atgatttcac	115320
cattcttcca	cccaagcttc	accataaatt	tgatgtttgt	tcttgcttca	atttcagcag	115380

aattcatgtt getetagtgg gagetetttt caaactgata tettattett ettagtgeet 115440 caaactaqct cctcttcaqa cacqttctaa qaaqttaqta caaatttctt ttaqtqcaqa 115500 aaaaatctqa aaacacatqc ataqtttttt cataatatqc actttccatt aactttttt 115560 tttggaaaag gagtcttgct ctgttgccca ggttggagtg cagtggtgtg atctcagctc 115620 actgcaatat ccgcctcctg ggttcaagcg attctcctgt ttcagcctcc tgaataaatg 115680 atattacggg cacatgccac catgcccage taatttttat attttagtag agacagggtt 115740tcaccatgtt ggccaggctg gtctcgaact cctgacctca ggtgatccac ccgccttggc 115800 ctcccagagt gctgggatta caggcatgag ccacagcacc ccgccgtcca tgaccttttt 115860 gaaaactcct tgtattttcc atttgaaaaa aatgcatcag aagaatttag tctctccctt 115920 tetgeettet eteettgete acettettea cacccatece cageecagag eteetcecag 115980 gggtaacttc tataatgttt gggttgtgcc ctttcagatc tattcctatg catttgtgcc 116040 agacattgtg gcatgtgcct gtagtcccag ctactcggga ggctgaggag ggaggattac 116100 ttgagcccag gagttctggg ctgcagtact ctatgctgat caggtgtcca cactaagttc 116160 agtatcagta tggtgacctc ctgagagcag ggaaccacca ggttgcctaa ggaggggtga 116220 accggccctg gtcgaaaatg gagcaggtca aaattcctgt gctgatcaga tctgtttcta 116280 cgcattttca tatatttgtg catattaatg ttttatattt taacataaat gagatcactc 116340 actatatatt gttctttgta agttgcttcc cttttaaaaat ttaatatgcc ttggctatct 116400 ggcacctctc aaccttcaag tgtccttaat ttataaattt tagttagtaa aataactttt 116460 aaatacatgc aactataatt tatgttgttg tacttctttc attttaatgg caggttaaat 116520 cactttaqat aqcttqaqat qtqactccta qtqtaaacca aatttaaact aaaacqtqaq 116580 agaaatatta gaaacctctt tttatccatc tagtcttaac tcctgcttat tgctgtgtag 116640 gctgcctgta ttttatatta tcctcaaaac atcttgcttc taaattttta tacgtagaca 116700 tegtgecate teattaaagt getetgaegg cacatetggt tattttttet gattteetea 116760 gcagacacat ccgtttttgt tcattatagc tcagcaggaa ttatgagaga agtcgtttta 116820 agaaaaaaag atttactctt ttttttgaag caaactaaca agtttataga aagagcctgt 116880 cttgacttca aactcattct ctatgacaat ttgagatggt gcagtatccc tagaacagag 116940 tggccaatgg taggtggggt ggagtgtgga tgcagaagct taggaaggct agaagtttag 117000 atcttcatga catagttttt tacttttgcc aaagacataa attgtcaaaa aactgggcaa 117060 teteataaat acaaaaatgt tteeaaagae aaacacacat ggttttatat tatetaeegt 117120 tttggatttt tcacttgtac tcttgcagat gggtgcttct gttcaataat tctcggctgt 117180 ${\tt gaaatttttg} \ \ {\tt aacaagtttt} \ \ {\tt tatctcctga} \ \ {\tt gacagttttg} \ \ {\tt ggctggtggg} \ \ {\tt aatttgggct} \ \ {\tt 117240}$ ctggctttgt gccatttgca ggtgccaggc ggattatgag cattagagca tttcacagga 117300 aacgctcatc tttactgtag tgagtttaaa agtggcgggg ctggctgcct cgcagcaatt 117360 cttagagagt ttctaaaggc cccagaagtg aggagagggc tgctcatgcc ttttgggtag 117420 tgggttagaa gacgggggtc cccttttgca gtcgggtacc tagacttata gagggctgct 117480 tgctcaatga caggtgtagt ggaaattccc gcctacacct tcgtgtgcat cgccatggac 117540 aaggteggga ggagaacagt eetggeetae tetetttet geagtgeaet ggeetgtggt 117600 gtcgttatgg tgatccccca ggtgagttat cttctgtttt ttataagaca gttatactgt 117660 gacagtttga tgggaagaat ttagcttatt acagttaagt atgaaggtca attcagagta 117720

tgatttgggc agagtatata atatttaaaa atctgttttc tttaaaacat tctttttctg 117780 aaaagcctaa cctgggtgca atgactcaca cttataatcc cagcaactca agaggctgag 117900 ggtaggagga tggcttgagt tcaggagttc gaggctgcag tgagctctga tcactgccac 117960 tgtactccag cctagatgac agagtgagaa ctcatctcaa aaaataaaaa ataaaaaata 118020 aaaagttcat aatcctaatt cccagagatg accagtgttg tattttgtaa acgcaataat 118080 cttgtgtgag gaaagtcgat cacaccttcc agcatcatca tactgaacat tcactcattt 118140 atteatteag caaacattta tecaecatet tttatgtgcc aggtgctgag aacacacagt 118200 gcatcaagtt tccgtaaatg taacgagagg gcgtctggca cccgtgtgta ctcttttgtc 118260 tagggtggtc gaggatggtg cacctctcgg aggaggcgac atgtaatcag aaacctgaat 118320 gagggaggca gccatggaga catctgaagg atatgagtca gatattcaag actggtagag 118380 tttcagtaca ctgttttca ttgcaggaga ttagtagttt ccaatgtctg gtacgcataa 118440 acaccccaag gagcttgttt ttaaaaacag tttcttagtg agaaacacta cccagaaatt 118500 cctgaaatga ctttcacatt cccatatttt ggcaaactgc gtccctcaaa atacctcttg 118560 catccagaag tgcttcccct cttcccaaaa aagatgtttt cagatctgta ttttaattct 118620 tgatttgcaa aatgtcacta taacagtact taaaatattt tatttaatgt tctcctgtga 118680 ttatataatc attaagcaat agtatatcaa catttagagc aaagcatttt aagttttgca 118740 tatcgtttga aatttaattt aagctaacaa gtgtcttcct tttatagtag cactttactt 118800 aatgcttagg atcggtgagc caaatatttt atgtaatgaa atttccaggt gattgataca 118860 caactaattg aatgcaataa aactactcgg gacaaggagg tctctgccaa tttgagagaa 118920 cttcatccac acctttaaaa aagtagtttg tagtgatggt agttgagtag atggcagctg 118980 cctttaagtt ggtgaagagt tggggaacac cagaaccttt gagttctaca ctaataggga 119040 agatgagaaa gaggctgatg gagatttcta gaaatagagc attaacccac aacgacaaat 119100 ctctcccctc caataaattt ttccccaqqt qataatqtca acacaataca aatactaatt 119160 taattaacaa ttqttaatta atttaattta caattqtaat taaqqtqaca ttaqctcttt 119220 aatagaggca tcccagaatc tcagtgactt aacataaagg atgtttgtta cctgctcata 119280 gaaagttcca tgtatttgta cctagctggc caaagtggga gtggtgagtg ggtgtttgtg 119340 tccatggagt cattcaggga tgtaggctga cagaggcact gctgtcctta acacatcagc 119400 cgcaaggcca ccctgggtct cagcatccag ttggcagatg ggggaggagg gagatttcgg 119460 aatatagggt gtctttgtta gttacctttg gaagtggaac acattaggga gaataaaaac 119520 cgaggtggag gtaaaggttt tgccattgag gaatgtatca gctgcaaaca aacaaacaaa 119580 tgaacaaaac agtctgtact aatagttacc actttcaaat attttctgaa gataatttat 119640 aagccaggga ttactgccac aaagggcaca atttgttttg tttgttttt ttaagaaaag 119700 taaatagatt aaatagagac aagateteae tetgteacce aagetgaagt geagtggtgt 119760 gattatagcc ctccgtaatc ttgaactcct gggcttaaat gatcctcctg ccttagcttc 119820 tccagtagct gggaccacag gcatgtacca tcacacacag ctaatttttt tgtttttctg 119880 tagaaatggg gtcttgctat gttgccctgg ctggtctaaa actcttggcc tcaagtgatt 119940 ctcctgcctc agcctcctaa agtgctggga ttacaggtgt gagccattag gcccggctca 120000 caatttgttt gtatggctcc ttgattcatt ctgctggatc agtcccagaa ggagtgggga 120060 aattettggt gecaecagea etateaggge gtgteteett eeaaaacagt etteecaact 120120

ggctttcgtc acagttcaaa ccctccaaag tggatggga gaagagacac actgaaactt 120180 tcctccacat ttcqtaaaqa tqqaaaqctt tctcaqactq tqaqtaqaqt ttaatacatt 120240 caaacaqaaa aataaqqqtc ttcattqttc tqaaaaaata ctqaaqqaat taqaatqttt 120300 taagtaatga ttttaaagat tttctatttt cctttaaaaa taccacttgt gatgatctat 120360 tetgetaaat tittiteaga aacattatat titigggtgtg gigacageta tiggitiggaaa 120420 atttgccatc ggggcagcat ttggcctcat ttatctttat acagctgagc tgtatccaac 120480 $\mathtt{cattgtaagg} \ \mathtt{taaggatgaa} \ \mathtt{ttgttttctg} \ \mathtt{gttgttttcc} \ \mathtt{tattatcttt} \ \mathtt{cacttgtgtg} \ \mathtt{120540}$ tcatttcatt gtatttggcc tttacatgta aatgcttctt ttttatagaa gttacctgga 120600 tetetgagat gggaaaatga catgetgata etcattttga gtetgagget ttgtacceta 120660 ttagtgagga tattagacga attattttga aataacactc tattattcca aaaacatttt 120720 aagtttcaag taccatagac ttccactgag tctctgtatt gactcaaagg taatttctca 120780 ggatgtgtct ctcgatgttc tgatgccaat tgtgttagtc tgagtgggct gctgtaacaa 120840 aataccacag gctgggtggc ttaaacaata gaaatttatt ttctcacagt actggaggct 120900 ggaagtccaa gaacaaggtg tcggcaggtt tggattctcc tgaggcctcg ctctgtggtc 120960 ttcaggtggt gccctcttgc tatgtcctca aggggtctta cctctgtgtg caccgctgat 121020 gtccctccct cttcatataa gacaccagcc atattggatt acggcctcac cctaacagcc 121080 tcattttaac ttaatcacct ctttaaagac cttatctaca aataccatta catcataaag 121140 tactagggat tcagacttca acacttgaac tttgggaggg acaacttagc ccataacatc 121200 agtaatcatt ggctccctga gattacctta tctggaggtt ctcaaagctg gcagctcgtc 121260 agagtcattg aggtatttca taaaaaatat cagtcttggg tccttacacc agacctgctg 121320 gatcaatcca agaatgacac tggggatttt tttttctttt ttcgagatgg agtctcattc 121380 tgttgcccag gctggagtgc agtggtgtga tcttggttca ctgcaagctc cgcctcctgg 121440 gttcaagcaa ttctcttgcc tcagcctcca gagtagctgg gattacacgt gcatgccact 121500 acaccegget aattitigta tittitagtag agacggggtt teaccatgit ggicaggetg 121560 gtctcgaact cctgacctcg tgatccgcca gccttggcct cccaaagtgt tgggattaca 121620 ggcatgagcc accaegecta gecgagaete gggattttta acaagtetge aggtgaetet 121680 gagttgccac cctgcccgcc ccacccgccc ccccgacacc ctttgggaat gtctgatgtg 121740 attcccactg atctgggaac ctcagggact tccaagcttt tacaaagctt ttccaaacac 121800 attttacttg gaaactcttt atgtggtgaa gaggacggag gtcctttgtg gaagctctgt 121860 tgagtacctg gaatcccccc agtgctcctg ccttcttgct ccagggggct gcagcagaac 121920 ttccaggcct taacagtaca tcctttgtaa accacacttc ttgttgcagc cctcatgtcc 121980 agataagaca gctgagacca gggagatcaa gtacctggtg caagacacac agctgggacc 122040 ccagctataa agggaaggga tcttttctct gattctccat tggattttat tttattttt 122100 ttgagacaga gtctcactct gttgcccagg ctggagtgaa atggtgtgat cttggctcac 122160 tgcaacctta cctcccaggt tcaggtgatt ctcctgcctc agcctcctga gtagctggga 122220 ttgcaggtgt gcaccaccat gcccggctaa tttttgtatt ttagtagaga cagggtttca 122280 ccatgttggc caggctggtc tcaaactcct gacctcaagt gatccaccct ccttggcctc 122340 ccaaageget aggattacag gtgtgageca ctgegteegg eeegteagae tttttgaete 122400 tttttttttgc aaaatgatcc tgtattttaa agtgtaaata gtgattaggg tcacactgct 122460

-continued

gccaagagac acttgtccca cagatctccc tctgtgaaat tccgtaatag tttcctatct 122520 gcagtcctcc cttaaatcct ccaagtggca ttttcctaac acctgcttta tcaatggaag 122580 ttttcatttt ctaagggaaa aaatttgtta gcttggataa tttcttagcc tattaaagac 122640 ccaatcttaa tggcaacaaa taaacaaaca agatattaag gtttttcaca ggaaacttat 122700 taaaaaaatct aactgcttag ctagtgggtt catcccattt aggagtatgt tatttgtcat 122760 gtgttacaag tgtgaaaggc aagtgacttt ctatagagat aagtccatat aacaccagcc 122820 cagagatgcc tcctccttgt ctccacaagc aggaggatg taggacctag aaaatccatt 122880 agtcaagaga tagcataaat cetteectag gaatttteea tgeecacaca cetgeetget 122940 gaaatgctag ggcaggcagc cctgtggacc aggatgggta agtacatttg tgttgactgt 123000 agatagatta atggatatct agatggatgg atggatggat ggagggatgg aagaatggat 123060 agatagagta ggtacacata tatatctaag aaaaaagttt atcagactaa tatgtgacca 123120 ggggtataga atagcagagg aataactccc tatgtaattg tctattagcc cagttgtctg 123180 agagtagagt ttttcttctt cctccatact tcccctctag gtcacccaga gtgctattat 123240 tagaccactc tcgcagtcta ataataaata catcttctgt ccattttaca ggttgtgggaa 123300 ctggaattca cacaagatta gggtcgtggc caaaggcatc tggctagtca gtgacccatc 123360 agaactcaaa tccacatctt ttggccctat ctgtcaccca gtgaaataca tgagaatttt 123420 tatgggagac agtgcttaac attagcgggg gataagttgc tagcagtaga gctttagtag 123480 caqaqqqaa qaaqqtattt tqqqqtaaqq qctttqtqqa ctcttctcaq atcatattqt 123540 gaaagtggca gccctgcaca gatgtacagt agcagacagg cagaataaca gattacattc 123600 tagcacttac aggctgacaa tggtggagac tagttgaatg caatagagag tgaagttgca 123660 taattgccaa cttgcgttgt ggctttggct ccgttgtggc tgacccaggg aagaagctgc 123720 tctaaatcaq qqaqaatatc tttqtcatqt cctqtqqqac ccttctqqcc tctcaqqtqq 123780 atttctqctc aqccaqqaaa aqctt 123805

<210> SEO ID NO 4

<211> LENGTH: 551

<212> TYPE: PRT

<213 > ORGANISM: Homo sapiens

<400> SEOUENCE: 4

Met Arg Asp Tyr Asp Glu Val Ile Ala Phe Leu Gly Glu Trp Gly Pro 10 15

Phe Gln Arg Leu Ile Phe Phe Leu Leu Ser Ala Ser Ile Ile Pro Asn 25

Gly Phe Asn Gly Met Ser Val Val Phe Leu Ala Gly Thr Pro Glu His

Arg Cys Arg Val Pro Asp Ala Ala Asn Leu Ser Ser Ala Trp Arg Asn

Asn Ser Val Pro Leu Arg Leu Arg Asp Gly Arg Glu Val Pro His Ser

Cys Ser Arg Tyr Arg Leu Ala Thr Ile Ala Asn Phe Ser Ala Leu Gly

Leu Glu Pro Gly Arg Asp Val Asp Leu Gly Gln Leu Glu Gln Glu Ser

Cys Leu Asp Gly Trp Glu Phe Ser Gln Asp Val Tyr Leu Ser Thr Val 120

Val Thr Glu Trp Asn Leu Val Cys Glu Asp Asn Trp Lys Val Pro Leu

	130					135					140				
Thr 7	Thr	Ser	Leu	Phe	Phe 150	Val	Gly	Val	Leu	Leu 155	Gly	Ser	Phe	Val	Ser 160
Gly (Gln	Leu	Ser	Asp 165	Arg	Phe	Gly	Arg	Lys 170	Asn	Val	Leu	Phe	Ala 175	Thr
Met A	Ala	Val	Gln 180	Thr	Gly	Phe	Ser	Phe 185	Leu	Gln	Ile	Phe	Ser 190	Ile	Ser
Trp (Glu	Met 195	Phe	Thr	Val	Leu	Phe 200	Val	Ile	Val	Gly	Met 205	Gly	Gln	Ile
Ser A	Asn 210	Tyr	Val	Val	Ala	Phe 215	Ile	Leu	Gly	Thr	Glu 220	Ile	Leu	Gly	Lys
Ser \ 225	Val	Arg	Ile	Ile	Phe 230	Ser	Thr	Leu	Gly	Val 235	GÀa	Thr	Phe	Phe	Ala 240
Val (Gly	Tyr	Met	Leu 245	Leu	Pro	Leu	Phe	Ala 250	Tyr	Phe	Ile	Arg	Asp 255	Trp
Arg N	Met	Leu	Leu 260	Leu	Ala	Leu	Thr	Val 265	Pro	Gly	Val	Leu	Сув 270	Val	Pro
Leu :	Trp	Trp 275	Phe	Ile	Pro	Glu	Ser 280	Pro	Arg	Trp	Leu	Ile 285	Ser	Gln	Arg
Arg I	Phe 290	Arg	Glu	Ala	Glu	Asp 295	Ile	Ile	Gln	Lys	Ala 300	Ala	Lys	Met	Asn
Asn 3	Ile	Ala	Val	Pro	Ala 310	Val	Ile	Phe	Asp	Ser 315	Val	Glu	Glu	Leu	Asn 320
Pro I	Leu	Lys	Gln	Gln 325	Lys	Ala	Phe	Ile	Leu 330	Asp	Leu	Phe	Arg	Thr 335	Arg
Asn I	Ile	Ala	Ile 340	Met	Thr	Ile	Met	Ser 345	Leu	Leu	Leu	Trp	Met 350	Leu	Thr
Ser V	Val	Gly 355	Tyr	Phe	Ala	Leu	Ser 360	Leu	Asp	Ala	Pro	Asn 365	Leu	His	Gly
Asp A	Ala 370	Tyr	Leu	Asn	Cys	Phe 375	Leu	Ser	Ala	Leu	Ile 380	Glu	Ile	Pro	Ala
Tyr 3	Ile	Thr	Ala	Trp	Leu 390	Leu	Leu	Arg	Thr	Leu 395	Pro	Arg	Arg	Tyr	Ile 400
Ile A	Ala	Ala	Val	Leu 405	Phe	Trp	Gly	Gly	Gly 410	Val	Leu	Leu	Phe	Ile 415	Gln
Leu V	Val	Pro	Val 420	Asp	Tyr	Tyr	Phe	Leu 425	Ser	Ile	Gly	Leu	Val 430	Met	Leu
Gly I	ГЛа	Phe 435	Gly	Ile	Thr	Ser	Ala 440	Phe	Ser	Met	Leu	Tyr 445	Val	Phe	Thr
Ala(Glu 450	Leu	Tyr	Pro	Thr	Leu 455	Val	Arg	Asn	Met	Ala 460	Val	Gly	Val	Thr
Ser 5	Thr	Ala	Ser	Arg	Val 470	Gly	Ser	Ile	Ile	Ala 475	Pro	Tyr	Phe	Val	Tyr 480
Leu (Gly	Ala	Tyr	Asn 485	Arg	Met	Leu	Pro	Tyr 490	Ile	Val	Met	Gly	Ser 495	Leu
Thr V	Val	Leu	Ile 500	Gly	Ile	Leu	Thr	Leu 505	Phe	Phe	Pro	Glu	Ser 510	Leu	Gly
Met 5	Thr	Leu 515	Pro	Glu	Thr	Leu	Glu 520	Gln	Met	Gln	Lys	Val 525	Lys	Trp	Phe
Arg S	Ser 530	Gly	ГЛа	ГЛа	Thr	Arg 535	Asp	Ser	Met	Glu	Thr 540	Glu	Glu	Asn	Pro
Lys \ 545	Val	Leu	Ile	Thr	Ala 550	Phe									

<211 <212	-> LE 2> TY	EQ II ENGTH PE:	I: 59 PRT	51											
		RGANI EQUEN			sap	piens	3								
Met 1	Ala	Gln	Phe	Val 5	Gln	Val	Leu	Ala	Glu 10	Ile	Gly	Asp	Phe	Gly 15	Arg
Phe	Gln	Ile	Gln 20	Leu	Leu	Ile	Leu	Leu 25	Cys	Val	Leu	Asn	Phe 30	Leu	Ser
Pro	Phe	Tyr 35	Phe	Phe	Ala	His	Val 40	Phe	Met	Val	Leu	Asp 45	Glu	Pro	His
His	Сув 50	Ala	Val	Ala	Trp	Val 55	Lys	Asn	His	Thr	Phe 60	Asn	Leu	Ser	Ala
Ala 65	Glu	Gln	Leu	Val	Leu 70	Ser	Val	Pro	Leu	Asp 75	Thr	Ala	Gly	His	Pro 80
Glu	Pro	Cys	Leu	Met 85	Phe	Arg	Pro	Pro	Pro 90	Ala	Asn	Ala	Ser	Leu 95	Gln
Asp	Ile	Leu	Ser 100	His	Arg	Phe	Asn	Glu 105	Thr	Gln	Pro	Cys	Asp 110	Met	Gly
Trp	Glu	Tyr 115	Pro	Glu	Asn	Arg	Leu 120	Pro	Ser	Leu	Lys	Asn 125	Glu	Phe	Asn
Leu	Val 130	Cys	Asp	Arg	Lys	His 135	Leu	Lys	Asp	Thr	Thr 140	Gln	Ser	Val	Phe
Met 145	Gly	Gly	Leu	Leu	Val 150	Gly	Thr	Leu	Met	Phe 155	Gly	Pro	Leu	Cys	Asp 160
Arg	Ile	Gly	Arg	Lys 165	Ala	Thr	Ile	Leu	Ala 170	Gln	Leu	Leu	Leu	Phe 175	Thr
Leu	Ile	Gly	Leu 180	Ala	Thr	Ala	Phe	Val 185	Pro	Ser	Phe	Glu	Leu 190	Tyr	Met
Ala	Leu	Arg 195	Phe	Ala	Val	Ala	Thr 200	Ala	Val	Ala	Gly	Leu 205	Ser	Phe	Ser
Asn	Val 210	Thr	Leu	Leu	Thr	Glu 215	Trp	Val	Gly	Pro	Ser 220	Trp	Arg	Thr	Gln
Ala 225	Val	Val	Leu	Ala	Gln 230	CÀa	Asn	Phe	Ser	Leu 235	Gly	Gln	Met	Val	Leu 240
Ala	Gly	Leu	Ala	Tyr 245	Gly	Phe	Arg	Asn	Trp 250	Arg	Leu	Leu	Gln	Ile 255	Thr
Gly	Thr	Ala	Pro 260	Gly	Leu	Leu		Phe 265	Phe	Tyr	Phe	Trp	Ala 270	Leu	Pro
Glu	Ser	Ala 275	Arg	Trp	Leu	Leu	Thr 280	Arg	Gly	Arg	Met	Asp 285	Glu	Ala	Ile
Gln	Leu 290	Ile	Gln	Lys	Ala	Ala 295	Ser	Val	Asn	Arg	Arg 300	Lys	Leu	Ser	Pro
Glu 305	Leu	Met	Asn	Gln	Leu 310	Val	Pro	Glu		Thr 315	Gly	Pro	Ser	Gly	Asn 320
Ala	Leu	Aap	Leu	Phe 325	Arg	His	Pro	Gln	Leu 330	Arg	Lys	Val	Thr	Leu 335	Ile
Ile	Phe	Cys	Val 340	Trp	Phe	Val	Asp	Ser 345	Leu	Gly	Tyr	Tyr	Gly 350	Leu	Ser
Leu	Gln	Val 355	Gly	Asp	Phe	Gly	Leu 360	Asp	Val	Tyr	Leu	Thr 365	Gln	Leu	Ile
Phe	Gly	Ala	Val	Glu	Val	Pro	Ala	Arg	Càa	Ser	Ser	Ile	Phe	Met	Met

-continued

370 Gln Arg Phe Gly Arg Lys Trp Ser Gln Leu Gly Thr Leu Val Leu Gly Gly Leu Met Cys Ile Ile Ile Ile Phe Ile Pro Ala Asp Leu Pro Val 410 Val Val Thr Met Leu Ala Val Val Gly Lys Met Ala Thr Ala Ala Ala 425 Phe Thr Ile Ser Tyr Val Tyr Ser Ala Glu Leu Phe Pro Thr Ile Leu 440 Arg Gln Thr Gly Met Gly Leu Val Gly Ile Phe Ser Arg Ile Gly Gly Ile Leu Thr Pro Leu Val Ile Leu Leu Gly Glu Tyr His Ala Ala Leu 470 475 Pro Met Leu Ile Tyr Gly Ser Leu Pro Ile Val Ala Gly Leu Leu Cys 490 Thr Leu Leu Pro Glu Thr His Gly Gln Gly Leu Lys Asp Thr Leu Gln Asp Leu Glu Leu Gly Pro His Pro Arg Ser Pro Lys Ser Val Pro Ser Glu Lys Glu Thr Glu Ala Lys Gly Arg Thr Ser Ser Pro Gly Val Ala Phe Val Ser Ser Thr Tyr Phe <210> SEQ ID NO 6 <211> LENGTH: 557 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEOUENCE: 6 Met Arg Asp Tyr Asp Glu Val Thr Ala Phe Leu Gly Glu Trp Gly Pro Phe Gln Arg Leu Ile Phe Phe Leu Leu Ser Ala Ser Ile Ile Pro Asn 25 Gly Phe Thr Gly Leu Ser Ser Val Phe Leu Ile Ala Thr Pro Glu His 40 Arg Cys Arg Val Pro Asp Ala Ala Asn Leu Ser Ser Ala Trp Arg Asn 55 His Thr Val Pro Leu Arg Leu Arg Asp Gly Arg Glu Val Pro His Ser Cys Arg Arg Tyr Arg Leu Ala Thr Ile Ala Asn Phe Ser Ala Leu Gly 90 Leu Glu Pro Gly Arg Asp Val Asp Leu Gly Gln Leu Glu Gln Glu Ser 105 Cys Leu Asp Gly Trp Glu Phe Ser Gln Asp Val Tyr Leu Ser Thr Ile Val Thr Glu Trp Asn Leu Val Cys Glu Asp Asp Trp Lys Ala Pro Leu Thr Ile Ser Leu Phe Phe Val Gly Val Leu Leu Gly Ser Phe Ile Ser Gly Gln Leu Ser Asp Arg Phe Gly Arg Lys Asn Val Leu Phe Val Thr Met Gly Met Gln Thr Gly Phe Ser Phe Leu Gln Ile Phe Ser Lys Asn 185

											-	con	tin	ued	
Phe	Glu	Met 195	Phe	Val	Val	Leu	Phe 200	Val	Leu	Val	Gly	Met 205	Gly	Gln	Ile
Ser	Asn 210	_	Val	Ala	Ala	Phe 215	Val	Leu	Gly	Thr	Glu 220	Ile	Leu	Gly	Lys
Ser 225	Val	Arg	Ile	Ile	Phe 230	Ser	Thr	Leu	Gly	Val 235	Cys	Ile	Phe	Tyr	Ala 240
Phe	Gly	Tyr	Met	Val 245	Leu	Pro	Leu	Phe	Ala 250	Tyr	Phe	Ile	Arg	Asp 255	Trp
Arg	Met	Leu	Leu 260	Val	Ala	Leu	Thr	Met 265	Pro	Gly	Val	Leu	Cys 270	Val	Ala
Leu	Trp	Trp 275	Phe	Ile	Pro	Glu	Ser 280	Pro	Arg	Trp	Leu	Ile 285	Ser	Gln	Gly
Arg	Phe 290	Glu	Glu	Ala	Glu	Val 295	Ile	Ile	Arg	Lys	Ala 300	Ala	Lys	Ala	Asn
Gly 305	Ile	Val	Val	Pro	Ser 310	Thr	Ile	Phe	Asp	Pro 315	Ser	Glu	Leu	Gln	Asp 320
Leu	Ser	Ser	Lys	Lys 325	Gln	Gln	Ser	His	Asn 330	Ile	Leu	Asp	Leu	Leu 335	Arg
Thr	Trp	Asn	Ile 340	Arg	Met	Val	Thr	Ile 345	Met	Ser	Ile	Met	Leu 350	Trp	Met
Thr	Ile	Ser 355	Val	Gly	Tyr	Phe	Gly 360	Leu	Ser	Leu	Asp	Thr 365	Pro	Asn	Leu
His	Gly 370		Ile	Phe	Val	Asn 375	Cys	Phe	Leu	Ser	Ala 380	Met	Val	Glu	Val
Pro 385	Ala	Tyr	Val	Leu	Ala 390	Trp	Leu	Leu	Leu	Gln 395	Tyr	Leu	Pro	Arg	Arg 400
Tyr	Ser	Met	Ala	Thr 405	Ala	Leu	Phe	Leu	Gly 410	Gly	Ser	Val	Leu	Leu 415	Phe
Met	Gln	Leu	Val 420	Pro	Pro	Asp	Leu	Tyr 425	Tyr	Leu	Ala	Thr	Val 430	Leu	Val
Met	Val	Gly 435	Lys	Phe	Gly	Val	Thr 440	Ala	Ala	Phe	Ser	Met 445	Val	Tyr	Val
Tyr	Thr 450	Ala	Glu	Leu	Tyr	Pro 455	Thr	Val	Val	Arg	Asn 460	Met	Gly	Val	Gly
Val 465	Ser	Ser	Thr	Ala	Ser 470	Arg	Leu	Gly	Ser	Ile 475	Leu	Ser	Pro	Tyr	Phe 480
Val	Tyr	Leu	Gly	Ala 485	Tyr	Asp	Arg	Phe	Leu 490	Pro	Tyr	Ile	Leu	Met 495	Gly
Ser	Leu	Thr	Ile 500	Leu	Thr	Ala	Ile	Leu 505	Thr	Leu	Phe	Leu	Pro 510	Glu	Ser
Phe	Gly	Thr 515	Pro	Leu	Pro	Asp	Thr 520	Ile	Asp	Gln	Met	Leu 525	Arg	Val	Lys
Gly	Met 530		His	Arg	Lys	Thr 535	Pro	Ser	His	Thr	Arg 540	Met	Leu	Lys	Asp
Gly 545	Gln	Glu	Arg	Pro	Thr 550	Ile	Leu	Lys	Ser	Thr 555	Ala	Phe			
<21 <21	0 > SI 1 > LI 2 > TI 3 > OI	ENGTI YPE :	H: 59 PRT	55	o sai	oiens	3								
	0> SI				2										
	Pro				Asp	Asp	Val	Leu	Glu 10	His	Gly	Gly	Glu	Phe 15	His

Phe	Phe	Gln	Lys 20	Gln	Met	Phe	Phe	Leu 25	Leu	Ala	Leu	Leu	Ser 30	Ala	Thr
Phe	Ala	Pro 35	Ile	Tyr	Val	Gly	Ile 40	Val	Phe	Leu	Gly	Phe 45	Thr	Pro	Asp
His	Arg 50	Сув	Arg	Ser	Pro	Gly 55	Val	Ala	Glu	Leu	Ser 60	Leu	Arg	Сув	Gly
Trp 65	Ser	Pro	Ala	Glu	Glu 70	Leu	Asn	Tyr	Thr	Val 75	Pro	Gly	Pro	Gly	Pro 80
Ala	Gly	Glu	Ala	Ser 85	Pro	Arg	Gln	Cys	Arg 90	Arg	Tyr	Glu	Val	Asp 95	Trp
Asn	Gln	Ser	Thr 100	Phe	Asp	CÀa	Val	Asp 105	Pro	Leu	Ala	Ser	Leu 110	Asp	Thr
Asn	Arg	Ser 115	Arg	Leu	Pro	Leu	Gly 120	Pro	Cys	Arg	Asp	Gly 125	Trp	Val	Tyr
Glu	Thr 130	Pro	Gly	Ser	Ser	Ile 135	Val	Thr	Glu	Phe	Asn 140	Leu	Val	СЛв	Ala
Asn 145	Ser	Trp	Met	Leu	Asp 150	Leu	Phe	Gln	Ser	Ser 155	Val	Asn	Val	Gly	Phe 160
Phe	Ile	Gly	Ser	Met 165	Ser	Ile	Gly	Tyr	Ile 170	Ala	Asp	Arg	Phe	Gly 175	Arg
Lys	Leu	Сув	Leu 180	Leu	Thr	Thr	Val	Leu 185	Ile	Asn	Ala	Ala	Ala 190	Gly	Val
Leu	Met	Ala 195	Ile	Ser	Pro	Thr	Tyr 200	Thr	Trp	Met	Leu	Ile 205	Phe	Arg	Leu
Ile	Gln 210	Gly	Leu	Val	Ser	Lys 215	Ala	Gly	Trp	Leu	Ile 220	Gly	Tyr	Ile	Leu
Ile 225	Thr	Glu	Phe	Val	Gly 230	Arg	Arg	Tyr	Arg	Arg 235	Thr	Val	Gly	Ile	Phe 240
Tyr	Gln	Val	Ala	Tyr 245	Thr	Val	Gly	Leu	Leu 250	Val	Leu	Ala	Gly	Val 255	Ala
Tyr	Ala	Leu	Pro 260	His	Trp	Arg	Trp	Leu 265	Gln	Phe	Thr	Val	Ala 270	Leu	Pro
Asn	Phe	Phe 275	Phe	Leu	Leu	Tyr	Tyr 280	Trp	Cys	Ile	Pro	Glu 285	Ser	Pro	Arg
Trp	Leu 290	Ile	Ser	Gln	Asn	Lys 295	Asn	Ala	Glu	Ala	Met 300	Arg	Ile	Ile	ГЛЗ
His 305	Ile	Ala	ГÀв	ГÀЗ	Asn 310	Gly	Lys	Ser	Leu	Pro 315	Ala	Ser	Leu	Gln	Arg 320
Leu	Arg	Leu	Glu	Glu 325	Glu	Thr	Gly	Lys	330 TÀa	Leu	Asn	Pro	Ser	Phe 335	Leu
Asp	Leu	Val	Arg 340	Thr	Pro	Gln	Ile	Arg 345	Lys	His	Thr	Met	Ile 350	Leu	Met
Tyr	Asn	Trp 355	Phe	Thr	Ser	Ser	Val 360	Leu	Tyr	Gln	Gly	Leu 365	Ile	Met	His
Met	Gly 370	Leu	Ala	Gly	Asp	Asn 375	Ile	Tyr	Leu	Asp	Phe 380	Phe	Tyr	Ser	Ala
Leu 385	Val	Glu	Phe	Pro	Ala 390	Ala	Phe	Met	Ile	Ile 395	Leu	Thr	Ile	Asp	Arg 400
Ile	Gly	Arg	Arg	Tyr 405	Pro	Trp	Ala	Ala	Ser 410	Asn	Met	Val	Ala	Gly 415	Ala
Ala	Cys	Leu	Ala 420	Ser	Val	Phe	Ile	Pro 425	Gly	Asp	Leu	Gln	Trp 430	Leu	Lys

The Pro Phe Leu Val Tyr Arg Leu The Assn Ile Trp Leu Glu Leu Val Soo Store Sto																
450	Ile	Ile		Ser	CAa	Leu	Gly	_	Met	Gly	Ile	Thr		Ala	Tyr	Glu
## 470 ## 475 ## 475 ## 475 ## 485 ##	Ile		CÀa	Leu	Val	Asn		Glu	Leu	Tyr	Pro		Phe	Ile	Arg	Asn
Leu Met Val Phe Gly Val Leu Gly Leu Val Ala Gly Gly Leu Val I Soo Soo Soo Soo Soo Soo Soo Soo Soo S		Gly	Val	His	Ile		Ser	Ser	Met	Càa		Ile	Gly	Gly	Ile	Ile 480
Leu Leu Pro Glu Thr Lys Gly Lys Ala Leu Pro Glu Thr Ile Glu Control Sis	Thr	Pro	Phe	Leu		Tyr	Arg	Leu	Thr		Ile	Trp	Leu	Glu		Pro
S15 S20 S25	Leu	Met	Val		Gly	Val	Leu	Gly		Val	Ala	Gly	Gly		Val	Leu
Leu Gln Val Gln Lys Leu Asp Ile Pro Leu Asn 5555	Leu	Leu		Glu	Thr	Lys	Gly		Ala	Leu	Pro	Glu		Ile	Glu	Glu
545	Ala		Asn	Met	Gln	Arg		Arg	Lys	Asn	Lys		ГЛа	Met	Ile	Tyr
<pre> <211> LENGTH: 554 <212> TYPE: PRT <213> ORGANISM: Homo sapiens </pre> <pre> <400> SEQUENCE: 8 Met Pro Thr Val Asp Asp Ile Leu Glu Gln Val Gly Glu Ser Gly 15</pre>		Gln	Val	Gln	Lys		Asp	Ile	Pro	Leu						
<pre><212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 8 Met Pro Thr Val Asp Asp Ile Leu Glu Gln Val Gly Glu Ser Gly 15 Phe Gln Lys Gln Ala Phe Leu Ile Leu Cys Leu Leu Ser Ala Ala I 20 Ala Pro Ile Cys Val Gly Ile Val Phe Leu Gly Phe Thr Pro Asp I 40 His Cys Gln Ser Pro Gly Val Ala Glu Leu Ser Gln Arg Cys Gly 55 Ser Pro Ala Glu Glu Leu Asn Tyr Thr Val Pro Gly Leu Gly Pro 65 Gly Glu Ala Phe Leu Gly Gln Cys Arg Arg Tyr Glu Val Asp Trp 85 Gln Ser Ala Leu Ser Cys Val Asp Pro Leu Ala Ser Leu Ala Thr 2115 Thr Pro Gly Ser Ser Ile Val Thr Glu Phe Asn Leu Val Cys Ala 2115 Phe Gly Ser Leu Gly Val Gly Tyr Phe Ala Asp Arg Phe Gly Arg 116 Phe Gly Ser Leu Gly Thr Val Leu Val Asp Arg Pro Leu Ala Ser Cys Ala 2116 Phe Gly Ser Leu Gly Thr Val Leu Val Asp Arg Phe Gly Phe I 165 Phe Gly Ser Leu Gly Thr Val Leu Val Asp Arg Phe Gly Arg I 170 Arg Ser Trp Lys Leu Asp Leu Phe Gln Ser Cys Leu Asn Ala Gly Phe I 165 Phe Gly Ser Leu Gly Thr Val Leu Val Asn Ala Val Ser Gly Arg I 170 Arg Leu Cys Leu Leu Gly Thr Val Leu Val Asn Ala Val Ser Gly I 190 Met Ala Phe Ser Pro Asn Tyr Met Ser Met Leu Leu Phe Arg Leu I 200 Thr Glu Phe Val Gly Ser Gly Ser Arg Arg Thr Val Ala Ile Met 225 Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala 3 Ala I a 1</pre>																
Met Pro Thr Val Asp Asp Ile Leu Glu Gln Val Gly Glu Ser Gly Ile Leu Glu Val Gly Ile Leu Cys Leu Leu Ser Ala Ala Ile Leu Leu Cys Leu Leu Ser Ala Ala Ile Leu Leu Gly Phe Ala Leu Gly Phe Ala Leu Gly Phe Ala Ala <td></td> <td></td> <td></td> <td></td> <td>Homo</td> <td>sa]</td> <td>piens</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					Homo	sa]	piens	3								
1	< 400)> SI	EQUE1	ICE :	8											
Ala Pro Ile Cys Val Gly Ile Val Phe Leu Gly Phe Thr Pro Asp F 45		Pro	Thr	Val		Asp	Ile	Leu	Glu		Val	Gly	Glu	Ser		Trp
His Cys Gln Ser Pro Gly Val Ala Glu Leu Ser Gln Arg Cys Gly Ser Pro Ala Glu Glu Leu Asn Tyr Thr Val Pro Gly Leu Gly Pro Ala Glu Ala Phe Leu Gly Gln Cys Arg Arg Arg Tyr Glu Val Asp Trp Ala Glu Ser His Leu Pro Leu Gly Pro Cys Gln Asp Gly Tilo Thr Pro Gly Ser Ser Ile Val Thr Glu Phe Asn Leu Val Cys Ala Ala Ser Trp Lys Leu Asp Leu Phe Gln Ser Cys Ual Asp Trp Ala Ser Trp Lys Leu Asp Leu Phe Gln Ser Cys Leu Ala Asp Arg	Phe	Gln	ГЛа		Ala	Phe	Leu	Ile		Cya	Leu	Leu	Ser		Ala	Phe
Ser Pro Ala Glu Glu Leu Asn Tyr Thr Val Pro Gly Leu Gly Pro 28 Gly Glu Ala Phe Leu Gly Glu Cys Arg Arg Arg Tyr Glu Val Asp Tyr Arg Arg Tyr Glu Val Asp Pro Leu Ala Ser Leu Ala Pro 28 Arg Arg Arg Tyr Glu Val Asp Pro Leu Ala Ser Leu Ala Pro 28 Val Asp Pro Leu Ala Ser Leu Ala Pro Ala Asp Pro Ala Asp Intraction In	Ala	Pro		Cys	Val	Gly	Ile		Phe	Leu	Gly	Phe		Pro	Asp	His
65	His		Gln	Ser	Pro	Gly		Ala	Glu	Leu	Ser		Arg	Cya	Gly	Trp
Ser Ala Leu Ser Cys Val Asp Pro Leu Ala Ser Leu Ala Thr Ala Asp Pro Leu Ala Ser Leu Ala Thr Ala Asp Pro Leu Ala Asp		Pro	Ala	Glu	Glu		Asn	Tyr	Thr	Val		Gly	Leu	Gly	Pro	Ala 80
Arg Ser His Leu Pro Leu Gly Pro Cys Gln Asp Gly Trp Val Tyr A 125 Thr Pro Gly Ser Ser IIe Val Thr Glu Phe Asn Leu Val Cys Ala Asp Gly Trp Val Tyr A 125 Ser Trp Lys Leu Asp Leu Phe Gln Ser Cys Leu Asn Ala Gly Phe I 155 Phe Gly Ser Leu Gly Val Gly Tyr Phe Ala Asp Arg Phe Gly Arg I 175 Leu Cys Leu Leu Gly Thr Val Leu Val Asn Ala Val Ser Gly Val I 185 Met Ala Phe Ser Pro Asn Tyr Met Ser Met Leu Leu Phe Arg Leu I 195 Gln Gly Leu Val Ser Lys Gly Asn Trp Met Ala Gly Tyr Thr Leu I 205 Thr Glu Phe Val Gly Ser Gly Ser Arg Arg Thr Val Ala Ile Met I 225 Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala I	Gly	Glu	Ala	Phe		Gly	Gln	Cys	Arg	_	Tyr	Glu	Val	Asp	_	Asn
115	Gln	Ser	Ala		Ser	CÀa	Val	Asp		Leu	Ala	Ser	Leu		Thr	Asn
130	Arg	Ser		Leu	Pro	Leu	Gly		Cha	Gln	Asp	Gly		Val	Tyr	Asp
145 150 155 155 157 155 157 155 1	Thr		Gly	Ser	Ser	Ile		Thr	Glu	Phe	Asn		Val	Cys	Ala	Asp
165		Trp	Lys	Leu	Asp		Phe	Gln	Ser	Cys		Asn	Ala	Gly	Phe	Leu 160
Met Ala Phe Ser Pro Asn Tyr Met 200 Ser Met Leu Leu Phe 205 Pro Arg Leu I 205 Gln Gly Leu Val Ser Lys 210 Gly Asn Trp Met Ala Gly Tyr Thr Leu 220 Thr Glu Phe Val Gly Ser 230 Ser Arg Arg Thr Val Ala Ile Met 235 Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala 250	Phe	Gly	Ser	Leu		Val	Gly	Tyr	Phe		Asp	Arg	Phe	Gly		Lys
195 200 205 Gln Gly Leu Val Ser Lys Gly Asn Trp Met Ala Gly Tyr Thr Leu 1 210 Thr Glu Phe Val Gly Ser Gly Ser Arg Arg Thr Val Ala Ile Met 2 225 Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala 3	Leu	Сув	Leu		Gly	Thr	Val	Leu		Asn	Ala	Val	Ser		Val	Leu
210 215 220 Thr Glu Phe Val Gly Ser Gly Ser Arg Arg Thr Val Ala Ile Met 225 230 235 Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala 2	Met	Ala		Ser	Pro	Asn	Tyr		Ser	Met	Leu	Leu		Arg	Leu	Leu
225 230 235 2 Gln Met Ala Phe Thr Val Gly Leu Val Ala Leu Thr Gly Leu Ala S	Gln	_	Leu	Val	Ser	Lys	_	Asn	Trp	Met	Ala	_	Tyr	Thr	Leu	Ile
		Glu	Phe	Val	Gly		Gly	Ser	Arg	Arg		Val	Ala	Ile	Met	Tyr 240
	Gln	Met	Ala	Phe		Val	Gly	Leu	Val		Leu	Thr	Gly	Leu		Tyr

Ala	Leu	Pro	His 260	Trp	Arg	Trp	Leu	Gln 265	Leu	Ala	Val	Ser	Leu 270	Pro	Thr
Phe	Leu	Phe 275	Leu	Leu	Tyr	Tyr	Trp 280	CAa	Val	Pro	Glu	Ser 285	Pro	Arg	Trp
Leu	Leu 290	Ser	Gln	Lys	Arg	Asn 295	Thr	Glu	Ala	Ile	300 Tàs	Ile	Met	Asp	His
Ile 305	Ala	Gln	Lys	Asn	Gly 310	Lys	Leu	Pro	Pro	Ala 315	Asp	Leu	Lys	Met	Leu 320
Ser	Leu	Glu	Glu	Asp 325	Val	Thr	Glu	Lys	Leu 330	Ser	Pro	Ser	Phe	Ala 335	Asp
Leu	Phe	Arg	Thr 340	Pro	Arg	Leu	Arg	Lys 345	Arg	Thr	Phe	Ile	Leu 350	Met	Tyr
Leu	Trp	Phe 355	Thr	Asp	Ser	Val	Leu 360	Tyr	Gln	Gly	Leu	Ile 365	Leu	His	Met
Gly	Ala 370	Thr	Ser	Gly	Asn	Leu 375	Tyr	Leu	Asp	Phe	Leu 380	Tyr	Ser	Ala	Leu
Val 385	Glu	Ile	Pro	Gly	Ala 390	Phe	Ile	Ala	Leu	Ile 395	Thr	Ile	Asp	Arg	Val 400
Gly	Arg	Ile	Tyr	Pro 405	Met	Ala	Met	Ser	Asn 410	Leu	Leu	Ala	Gly	Ala 415	Ala
СЛа	Leu	Val	Met 420	Ile	Phe	Ile	Ser	Pro 425	Asp	Leu	His	Trp	Leu 430	Asn	Ile
Ile	Ile	Met 435	Cys	Val	Gly	Arg	Met 440	Gly	Ile	Thr	Ile	Ala 445	Ile	Gln	Met
Ile	Сув 450	Leu	Val	Asn	Ala	Glu 455	Leu	Tyr	Pro	Thr	Phe 460	Val	Arg	Asn	Leu
Gly 465	Val	Met	Val	CÀa	Ser 470	Ser	Leu	CAa	Asp	Ile 475	Gly	Gly	Ile	Ile	Thr 480
Pro	Phe	Ile	Val	Phe 485	Arg	Leu	Arg	Glu	Val 490	Trp	Gln	Ala	Leu	Pro 495	Leu
Ile	Leu	Phe	Ala 500	Val	Leu	Gly	Leu	Leu 505	Ala	Ala	Gly	Val	Thr 510	Leu	Leu
Leu	Pro	Glu 515	Thr	Lys	Gly	Val	Ala 520	Leu	Pro	Glu	Thr	Met 525	Lys	Asp	Ala
Glu	Asn 530	Leu	Gly	Arg	ГÀз	Ala 535	ГÀа	Pro	Lys	Glu	Asn 540	Thr	Ile	Tyr	Leu
Lys 545	Val	Gln	Thr	Ser	Glu 550	Pro	Ser	Gly	Thr						
-01/	0 - CT	70 TI	NIO	0											
<21	0> SE 1> LE	ENGTI	4: 53												
	2 > T\ 3 > OF			Homo	sap	piens	3								
< 400	0> SI	EQUE	ICE :	9											
Met 1	Ala	Phe	Glu	Glu 5	Leu	Leu	Ser	Gln	Val 10	Gly	Gly	Leu	Gly	Arg 15	Phe
Gln	Met	Leu	His 20	Leu	Val	Phe	Ile	Leu 25	Pro	Ser	Leu	Met	Leu 30	Leu	Ile
Pro	His	Ile 35	Leu	Leu	Glu	Asn	Phe 40	Ala	Ala	Ala	Ile	Pro 45	Gly	His	Arg
CAa	Trp 50	Val	His	Met	Leu	Asp 55	Asn	Asn	Thr	Gly	Ser 60	Gly	Asn	Glu	Thr
Gly	Ile	Leu	Ser	Glu	Asp	Ala	Leu	Leu	Arg	Ile	Ser	Ile	Pro	Leu	Asp

					7.0					7.5					0.0
65					70					75					80
Ser	Asn	Leu	Arg	Pro 85	Glu	ГÀа	CAa	Arg	Phe 90	Phe	Val	His	Pro	Gln 95	Trp
Gln	Leu	Leu	His 100	Leu	Asn	Gly	Ile	His 105	Ser	Thr	Ser	Glu	Ala 110	Asp	Thr
Glu	Pro	Cys 115	Val	Asp	Gly	Trp	Val 120	Tyr	Asp	Gln	Ser	Tyr 125	Phe	Pro	Ser
Thr	Ile 130	Val	Thr	Lys	Trp	Asp 135	Leu	Val	Cys	Asp	Tyr 140	Gln	Ser	Leu	Lys
Ser 145	Val	Val	Gln	Phe	Leu 150	Leu	Leu	Thr	Gly	Met 155	Leu	Val	Gly	Gly	Ile 160
Ile	His	His	Gly	Val 165	Ser	Asp	Arg	Phe	Gly 170	Arg	Arg	Phe	Ile	Leu 175	Arg
Trp	Cys	Leu	Leu 180	Gln	Leu	Ala	Ile	Thr 185	Asp	Thr	Cys	Ala	Ala 190	Phe	Ala
Pro	Thr	Phe 195	Pro	Val	Tyr	Cys	Val 200	Leu	Arg	Phe	Leu	Ala 205	Gly	Phe	Ser
Ser	Met 210	Ile	Ile	Ile	Ser	Asn 215	Asn	Ser	Leu	Pro	Ile 220	Thr	Glu	Trp	Ile
Arg 225	Pro	Asn	Ser	Lys	Ala 230	Leu	Val	Val	Ile	Leu 235	Ser	Ser	Gly	Ala	Leu 240
Ser	Ile	Gly	Gln	Ile 245	Ile	Leu	Gly	Gly	Leu 250	Ala	Tyr	Val	Phe	Arg 255	Asp
Trp	Gln	Thr	Leu 260	His	Val	Val	Ala	Ser 265	Val	Pro	Phe	Leu	Gly 270	Leu	Leu
Leu	Leu	Gln 275	Arg	Trp	Leu	Val	Glu 280	Ser	Ala	Arg	Trp	Leu 285	Ile	Ile	Thr
Asn	Lys 290	Leu	Asp	Glu	Gly	Leu 295	Lys	Ala	Leu	Arg	300 Lys	Val	Ala	Arg	Thr
Asn 305	Gly	Ile	Lys	Asn	Ala 310	Glu	Glu	Thr	Leu	Asn 315	Ile	Glu	Val	Val	Arg 320
Ser	Thr	Met	Gln	Glu 325	Glu	Leu	Asp	Ala	Ala 330	Gln	Thr	ГÀа	Thr	Thr 335	Val
GÀa	Asp	Leu	Phe 340	Arg	Asn	Pro	Ser	Met 345	Arg	ГЛа	Arg	Ile	350	Ile	Leu
Val	Phe	Leu 355	Arg	Phe	Ala	Asn	Thr 360	Ile	Pro	Phe	Tyr	Gly 365	Thr	Met	Val
Asn	Leu 370	Gln	His	Val	Gly	Ser 375	Asn	Ile	Phe	Leu	Leu 380	Gln	Val	Leu	Tyr
Gly 385	Ala	Val	Ala	Leu	Ile 390	Val	Arg	Сув	Leu	Ala 395	Leu	Leu	Thr	Leu	Asn 400
His	Met	Gly	Arg	Arg 405	Ile	Ser	Gln	Ile	Leu 410	Phe	Met	Phe	Leu	Val 415	Gly
Leu	Ser	Ile	Leu 420	Ala	Asn	Thr	Phe	Val 425	Pro	ГÀЗ	Glu	Met	Gln 430	Thr	Leu
Arg	Val	Ala 435	Leu	Ala	CAa	Leu	Gly 440	Ile	Gly	CAa	Ser	Ala 445	Ala	Thr	Phe
Ser	Ser 450	Val	Ala	Val	His	Phe 455	Ile	Glu	Leu	Ile	Pro 460	Thr	Val	Leu	Arg
Ala 465	Arg	Ala	Ser	Gly	Ile 470	Asp	Leu	Thr	Ala	Ser 475	Arg	Ile	Gly	Ala	Ala 480
Leu	Pro	Leu	Leu	Met 485	Thr	Leu	Thr	Val	Phe 490	Phe	Thr	Thr	Leu	Pro 495	Trp

Ile Ile Tyr Gly 500	Ile Phe Pro	Ile Ile Gly 505	Gly Leu Ile	Val Phe Leu 510
Leu Pro Glu Thr 515	Lys Asn Leu	Pro Leu Pro 520	Asp Thr Ile 525	Lys Asp Val
Glu Asn Gln Lys 530	Lys Asn Leu 535		Ala	
<210> SEQ ID NO <211> LENGTH: 59 <212> TYPE: PRT	50			
<213> ORGANISM: <400> SEQUENCE:	-	8		
Met Ala Phe Ser		Glu Gln Ala	Gly Gly Val	Gly Leu Phe 15
Gln Thr Leu Gln			Pro Cys Leu	
Ser Gln Met Leu 35	Leu Glu Asn		Ala Ile Pro	
Cys Trp Thr His	Met Leu Asp 55			Thr Asn Met
Thr Pro Lys Ala 65	Leu Leu Thr	Ile Ser Ile	Pro Pro Gly	Pro Asn Gln 80
Gly Pro His Gln	Cys Arg Arg 85	Phe Arg Gln 90	Pro Gln Trp	Gln Leu Leu 95
Asp Pro Asn Ala	Thr Ala Thr	Ser Trp Ser 105	Glu Ala Asp	Thr Glu Pro 110
Cys Val Asp Gly 115	Trp Val Tyr	Asp Arg Ser 120	Val Phe Thr 125	Ser Thr Ile
Val Ala Lys Trp 130	Asp Leu Val 135		Gln Gly Leu 140	Lys Pro Leu
Ser Gln Ser Ile 145	Phe Met Ser 150	Gly Ile Leu	Val Gly Ser 155	Phe Ile Trp 160
Gly Leu Leu Ser	Tyr Arg Phe 165	Gly Arg Lys 170		Ser Trp Cys 175
Cys Leu Gln Leu 180	Ala Val Ala	Gly Thr Ser 185	Thr Ile Phe	Ala Pro Thr 190
Phe Val Ile Tyr 195	Cys Gly Leu	Arg Phe Val 200	Ala Ala Phe 205	Gly Met Ala
Gly Ile Phe Leu 210	Ser Ser Leu 215		Val Glu Trp 220	Thr Thr Thr
Ser Arg Arg Ala 225	Val Thr Met 230	Thr Val Val	Gly Cys Ala 235	Phe Ser Ala 240
Gly Gln Ala Ala	Leu Gly Gly 245	Leu Ala Phe 250	Ala Leu Arg	Asp Trp Arg 255
Thr Leu Gln Leu 260	Ala Ala Ser	Val Pro Phe 265	Phe Ala Ile	Ser Leu Ile 270
Ser Trp Trp Leu 275	Pro Glu Ser	Ala Arg Trp 280	Leu Ile Ile 285	Lys Gly Lys
Pro Asp Gln Ala 290	Leu Gln Glu 295		Val Ala Arg 300	Ile Asn Gly
His Lys Glu Ala 305	Lys Asn Leu 310	Thr Ile Glu	Val Leu Met 315	Ser Ser Val 320
Lys Glu Glu Val	Ala Ser Ala	Lys Glu Pro	Arg Ser Val	Leu Asp Leu

				325					330					335	
Phe	Cya	Val	Pro 340	Val	Leu	Arg	Trp	Arg 345	Ser	Cya	Ala	Met	Leu 350	Val	Val
Asn	Phe	Ser 355	Leu	Leu	Ile	Ser	Tyr 360	Tyr	Gly	Leu	Val	Phe 365	Asp	Leu	Gln
Ser	Leu 370	Gly	Arg	Asp	Ile	Phe 375	Leu	Leu	Gln	Ala	Leu 380	Phe	Gly	Ala	Val
Asp 385	Phe	Leu	Gly	Arg	Ala 390	Thr	Thr	Ala	Leu	Leu 395	Leu	Ser	Phe	Leu	Gly 400
Arg	Arg	Thr	Ile	Gln 405	Ala	Gly	Ser	Gln	Ala 410	Met	Ala	Gly	Leu	Ala 415	Ile
Leu	Ala	Asn	Met 420	Leu	Val	Pro	Gln	Asp 425	Leu	Gln	Thr	Leu	Arg 430	Val	Val
Phe	Ala	Val 435	Leu	Gly	Lys	Gly	Cys 440	Phe	Gly	Ile	Ser	Leu 445	Thr	CÀa	Leu
Thr	Ile 450	Tyr	Lys	Ala	Glu	Leu 455	Phe	Pro	Thr	Pro	Val 460	Arg	Met	Thr	Ala
Asp 465	Gly	Ile	Leu	His	Thr 470	Val	Gly	Arg	Leu	Gly 475	Ala	Met	Met	Gly	Pro 480
Leu	Ile	Leu	Met	Ser 485	Arg	Gln	Ala	Leu	Pro 490	Leu	Leu	Pro	Pro	Leu 495	Leu
Tyr	Gly	Val	Ile 500	Ser	Ile	Ala	Ser	Ser 505	Leu	Val	Val	Leu	Phe 510	Phe	Leu
Pro	Glu	Thr 515	Gln	Gly	Leu	Pro	Leu 520	Pro	Asp	Thr	Ile	Gln 525	Asp	Leu	Glu
Ser	Gln 530	Lys	Ser	Thr	Ala	Ala 535	Gln	Gly	Asn	Arg	Gln 540	Glu	Ala	Val	Thr
Val 545	Glu	Ser	Thr	Ser	Leu 550										
	D> SI														
<212	L> LE 2> TY	PE:	PRT			o i on	~								
	3 > OF O > SE				o sa <u>r</u>	oren:	5								
Met	Thr			Glu	Ile	Leu	Asp	Arg		Gly	Ser	Met	Gly		Phe
1 Gln	Phe	Leu		5 Val	Ala	Ile	Leu	Gly	10 Leu	Pro	Ile	Leu	Asn	15 Met	Ala
3	TT-1	3	20	T	G1	T1-	Dla a	25	77-	77-	Mla sa	Dava	30	774	774
ASII	HIS	35	ьеи	ьеи	GIII	iie	40	Inr	AIA	Ala	Inr	45	val	HIS	His
Cys	Arg 50	Pro	Pro	His	Asn	Ala 55	Ser	Thr	Gly	Pro	Trp 60	Val	Leu	Pro	Met
Gly 65	Pro	Asn	Gly	Lys	Pro 70	Glu	Arg	Cys	Leu	Arg 75	Phe	Val	His	Pro	Pro 80
Asn	Ala	Ser	Leu	Pro 85	Asn	Asp	Thr	Gln	Arg 90	Ala	Met	Glu	Pro	Сув 95	Leu
Asp	Gly	Trp	Val 100	Tyr	Asn	Ser	Thr	Lys 105	Asp	Ser	Ile	Val	Thr 110	Glu	Trp
Asp	Leu	Val 115	CÀa	Asn	Ser	Asn	Lys 120	Leu	Lys	Glu	Met	Ala 125	Gln	Ser	Ile
Phe	Met 130	Ala	Gly	Ile	Leu	Ile 135	Gly	Gly	Leu	Val	Leu 140	Gly	Asp	Leu	Ser

-continued

Asp 145	Arg	Phe	Gly	Arg	Arg 150	Pro	Ile	Leu	Thr	Сув 155	Ser	Tyr	Leu	Leu	Leu 160
Ala	Ala	Ser	Gly	Ser 165	Gly	Ala	Ala	Phe	Ser 170	Pro	Thr	Phe	Pro	Ile 175	Tyr
Met	Val	Phe	Arg 180	Phe	Leu	СЛа	Gly	Phe 185	Gly	Ile	Ser	Gly	Ile 190	Thr	Leu
Ser	Thr	Val 195	Ile	Leu	Asn	Val	Glu 200	Trp	Val	Pro	Thr	Arg 205	Met	Arg	Ala
Ile	Met 210	Ser	Thr	Ala	Leu	Gly 215	Tyr	Cys	Tyr	Thr	Phe 220	Gly	Gln	Phe	Ile
Leu 225	Pro	Gly	Leu	Ala	Tyr 230	Ala	Ile	Pro	Gln	Trp 235	Arg	Trp	Leu	Gln	Leu 240
Thr	Val	Ser	Ile	Pro 245	Phe	Phe	Val	Phe	Phe 250	Leu	Ser	Ser	Trp	Trp 255	Thr
Pro	Glu	Ser	Ile 260	Arg	Trp	Leu	Val	Leu 265	Ser	Gly	ГÀЗ	Ser	Ser 270	Glu	Ala
Leu	Lys	Ile 275	Leu	Arg	Arg	Val	Ala 280	Val	Phe	Asn	Gly	Lys 285	Lys	Glu	Glu
Gly	Glu 290	Arg	Leu	Ser	Leu	Glu 295	Glu	Leu	Lys	Leu	Asn 300	Leu	Gln	Lys	Glu
Ile 305	Ser	Leu	Ala	Lys	Ala 310	Lys	Tyr	Thr	Ala	Ser 315	Asp	Leu	Phe	Arg	Ile 320
Pro	Met	Leu	Arg	Arg 325	Met	Thr	Phe	Cys	Leu 330	Ser	Leu	Ala	Trp	Phe 335	Ala
Thr	Gly	Phe	Ala 340	Tyr	Tyr	Ser	Leu	Ala 345	Met	Gly	Val	Glu	Glu 350	Phe	Gly
Val	Asn	Leu 355	Tyr	Ile	Leu	Gln	Ile 360	Ile	Phe	Gly	Gly	Val 365	Asp	Val	Pro
Ala	Lys 370	Phe	Ile	Thr	Ile	Leu 375	Ser	Leu	Ser	Tyr	Leu 380	Gly	Arg	His	Thr
Thr 385	Gln	Ala	Ala	Ala	Leu 390	Leu	Leu	Ala	Gly	Gly 395	Ala	Ile	Leu	Ala	Leu 400
Thr	Phe	Val	Pro	Leu 405	Asp	Leu	Gln	Thr	Val 410	Arg	Thr	Val	Leu	Ala 415	Val
Phe	Gly	Lys	Gly 420	CAa	Leu	Ser	Ser	Ser 425	Phe	Ser	CAa	Leu	Phe 430	Leu	Tyr
Thr	Ser	Glu 435	Leu	Tyr	Pro	Thr	Val 440		Arg	Gln	Thr	Gly 445	Met	Gly	Val
Ser	Asn 450	Leu	Trp	Thr	Arg	Val 455	Gly	Ser	Met	Val	Ser 460	Pro	Leu	Val	Lys
Ile 465	Thr	Gly	Glu	Val	Gln 470	Pro	Phe	Ile	Pro	Asn 475	Ile	Ile	Tyr	Gly	Ile 480
Thr	Ala	Leu	Leu	Gly 485	Gly	Ser	Ala	Ala	Leu 490	Phe	Leu	Pro	Glu	Thr 495	Leu
Asn	Gln	Pro	Leu 500	Pro	Glu	Thr	Ile	Glu 505	Asp	Leu	Glu	Asn	Trp 510	Ser	Leu
Arg	Ala	Lys 515	Lys	Pro	Lys	Gln	Glu 520	Pro	Glu	Val	Glu	Lys 525	Ala	Ser	Gln
Arg	Ile 530	Pro	Leu	Gln	Pro	His 535	Gly	Pro	Gly	Leu	Gly 540	Ser	Ser		

<210> SEQ ID NO 12 <211> LENGTH: 550 <212> TYPE: PRT

<213	3 > OF	RGAN	SM:	Homo	sar	piens	3								
< 400)> SI	EQUE1	ICE :	12											
Met 1	Ala	Phe	Asn	Asp 5	Leu	Leu	Gln	Gln	Val 10	Gly	Gly	Val	Gly	Arg 15	Phe
Gln	Gln	Ile	Gln 20	Val	Thr	Leu	Val	Val 25	Leu	Pro	Leu	Leu	Leu 30	Met	Ala
Ser	His	Asn 35	Thr	Leu	Gln	Asn	Phe 40	Thr	Ala	Ala	Ile	Pro 45	Thr	His	His
Cys	Arg 50	Pro	Pro	Ala	Asp	Ala 55	Asn	Leu	Ser	Lys	Asn 60	Gly	Gly	Leu	Glu
Val 65	Trp	Leu	Pro	Arg	Asp 70	Arg	Gln	Gly	Gln	Pro 75	Glu	Ser	CÀa	Leu	Arg 80
Phe	Thr	Ser	Pro	Gln 85	Trp	Gly	Leu	Pro	Phe 90	Leu	Asn	Gly	Thr	Glu 95	Ala
Asn	Gly	Thr	Gly 100	Ala	Thr	Glu	Pro	Cys 105	Thr	Asp	Gly	Trp	Ile 110	Tyr	Asp
Asn	Ser	Thr 115	Phe	Pro	Ser	Thr	Ile 120	Val	Thr	Glu	Trp	Asp 125	Leu	Val	Cys
Ser	His 130	Arg	Ala	Leu	Arg	Gln 135	Leu	Ala	Gln	Ser	Leu 140	Tyr	Met	Val	Gly
Val 145	Leu	Leu	Gly	Ala	Met 150	Val	Phe	Gly	Tyr	Leu 155	Ala	Asp	Arg	Leu	Gly 160
Arg	Arg	Lys	Val	Leu 165	Ile	Leu	Asn	Tyr	Leu 170	Gln	Thr	Ala	Val	Ser 175	Gly
Thr	CÀa	Ala	Ala 180	Phe	Ala	Pro	Asn	Phe 185	Pro	Ile	Tyr	CÀa	Ala 190	Phe	Arg
Leu	Leu	Ser 195	Gly	Met	Ala	Leu	Ala 200	Gly	Ile	Ser	Leu	Asn 205	Cys	Met	Thr
Leu	Asn 210	Val	Glu	Trp	Met	Pro 215	Ile	His	Thr	Arg	Ala 220	CAa	Val	Gly	Thr
Leu 225	Ile	Gly	Tyr	Val	Tyr 230	Ser	Leu	Gly	Gln	Phe 235	Leu	Leu	Ala	Gly	Val 240
Ala	Tyr	Ala	Val	Pro 245	His	Trp	Arg	His	Leu 250	Gln	Leu	Leu	Val	Ser 255	Ala
Pro	Phe	Phe	Ala 260	Phe	Phe	Ile	Tyr	Ser 265	Trp	Phe	Phe	Ile	Glu 270	Ser	Ala
Arg	Trp	His 275	Ser	Ser	Ser	Gly	Arg 280	Leu	Asp	Leu	Thr	Leu 285	Arg	Ala	Leu
Gln	Arg 290	Val	Ala	Arg	Ile	Asn 295	Gly	Lys	Arg	Glu	Glu 300	Gly	Ala	Lys	Leu
Ser 305	Met	Glu	Val	Leu	Arg 310	Ala	Ser	Leu	Gln	Lys 315	Glu	Leu	Thr	Met	Gly 320
ГÀа	Gly	Gln	Ala	Ser 325	Ala	Met	Glu	Leu	Leu 330	Arg	Cys	Pro	Thr	Leu 335	Arg
His	Leu	Phe	Leu 340	CAa	Leu	Ser	Met	Leu 345	Trp	Phe	Ala	Thr	Ser 350	Phe	Ala
Tyr	Tyr	Gly 355	Leu	Val	Met	Asp	Leu 360	Gln	Gly	Phe	Gly	Val 365	Ser	Ile	Tyr
Leu	Ile 370	Gln	Val	Ile	Phe	Gly 375	Ala	Val	Asp	Leu	Pro 380	Ala	ГЛа	Leu	Val
Gly 385	Phe	Leu	Val	Ile	Asn 390	Ser	Leu	Gly	Arg	Arg 395	Pro	Ala	Gln	Met	Ala 400

-continued

```
Ala Leu Leu Leu Ala Gly Ile Cys Ile Leu Leu Asn Gly Val Ile Pro
                405
                                    410
Gln Asp Gln Ser Ile Val Arg Thr Ser Leu Ala Val Leu Gly Lys Gly
           420
                               425
Cys Leu Ala Ala Ser Phe Asn Cys Ile Phe Leu Tyr Thr Gly Glu Leu
                           440
Tyr Pro Thr Met Ile Arg Gln Thr Gly Met Gly Met Gly Ser Thr Met
                       455
Ala Arg Val Gly Ser Ile Val Ser Pro Leu Val Ser Met Thr Ala Glu
                  470
Leu Tyr Pro Ser Met Pro Leu Phe Ile Tyr Gly Ala Val Pro Val Ala
Ala Ser Ala Val Thr Val Leu Leu Pro Glu Thr Leu Gly Gln Pro Leu
Pro Asp Thr Val Gln Asp Leu Glu Ser Arg Lys Gly Lys Gln Thr Arg
                           520
Gln Gln Glu His Gln Lys Tyr Met Val Pro Leu Gln Ala Ser Ala
                      535
Gln Glu Lys Asn Gly Leu
<210> SEQ ID NO 13
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically synthesized
<400> SEOUENCE: 13
ggcacattta ttcaccaaga ccag
                                                                      24
<210> SEQ ID NO 14
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Chemically synthesized
<400> SEQUENCE: 14
tgtggacctc agcagcattt ggat
                                                                      24
```

What is claimed is:

- 1. A method of screening candidate substrates of the organic cation transporter 6 (OCT6) comprising: 50
 - a. providing a test agent;
 - b. providing mammalian cells or a mammalian cell line which express OCT6;
 - c. incubating the test agent with the cells or cell line; and
 - d. determining whether the test agent is a substrate for OCT6,
 - wherein the mammalian cells or mammalian cell line provided in step b, are leukemia cells or a leukemia cell line, respectively.
- 2. The method of claim 1 wherein the test agent is coupled to a detectable substance.
- 3. The method of claim 2 wherein the detectable substance is selected from the group consisting of extrinsically activatable enzymes, prosthetic groups, fluorescent materials, lumi-

- nescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, nonradioactive paramagnetic metal ions, immunogenic tag peptide sequences, extrinsically activatable toxins, extrinsically activatable quenching agents, and antibodies.
- **4**. The method of claim **1** wherein the step of determining whether the test agent is a substrate for OCT6 comprises analyzing whether the test agent is located intracellularly.
- 5. The method of claim 1, wherein step (d) comprises determining the viability of the cells or cell line.
- 6. The method of claim 5, wherein the viability of the cells or cell line is determined by applying a dye to the cells or cell line, wherein incorporation of the dye by the cells is indicative of death of the cells or cell line.
 - 7. The method of claim 6, wherein the dye is trypan blue.

* * * * *