Peptide Elastase Inhibitors and Methods

George Digenis
University of Kentucky, digenis@uky.edu
Bushra J. Agha
University of Kentucky
Kiyoshi Tsuji
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents
Part of the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation

Digenis, George; Agha, Bushra J.; and Tsuji, Kiyoshi, "Peptide Elastase Inhibitors and Methods" (1987). Pharmaceutical Sciences Faculty Patents. 133.
https://uknowledge.uky.edu/ps_patents/133
[54] PEPTIDE ELASTASE INHIBITORS AND METHODS
[75] Inventors: George A. Digenis; Bushra J. Agha, both of Lexington, Ky.; Kiyoshi Tsuji, Osaka, Japan
[73] Assignee: The University of Kentucky Research Foundation, Lexington, Ky.
[21] Appl. No.: 683,316
[22] Filed: Dec. 18, 1984
[51] Int. Cl. ${ }^{4}$ \qquad A61K 37/64; C07K 5/08
[52] U.S. Cl.
58] Field of Search 260/326.4; 424/274. 514/18; 530/331

References Cited

U.S. PATENT DOCUMENTS

4,155,914 5/1979 Batz et al.
260/326.4
4,248,883 2/1981 Sawayama et al.
424/274

OTHER PUBLICATIONS

F. Conti et al, "Cyclols-Formation from Tripeptide Systems and Structure Assignment by Carbon-13 Nuclear Magnetic Resonance", Int. J. Peptide Protein Res. 5, 1973, 353-357.
K. Tsuji et al, "Peptidyl Carbamate Esters: A New Class of Specific Elastase Inhibitors", Biochemical and Biophysical Research Communications, vol. 122, No. 2, 1984, pp. 571-576.

Primary Examiner-Delbert R. Phillips
Attorney, Agent, or Firm-Lowe, Price, LeBlanc, Becker \& Shur

[57] ABSTRACT

Compounds useful as inhibitors of the enzyme elastase are of the following general formula:

wherein Z is selected from the group consisting of $\mathbf{R}^{\prime \prime} \mathrm{O}$-Suc-where $\mathrm{R}^{\prime \prime}$ is lower alkyl of 1 to 3 carbon atoms and $\mathrm{CF}_{3} \mathrm{CO}-$; X is oxygen or sulfur; R^{\prime} is selected from the group consisting of straight or secondary branch-chained alkyl of 1 to 4 carbon atoms, alkenyl of 2 to 3 carbon atoms, alkynyl of 2 to 4 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, and benzyl, and R is selected from the group consisting of susbstituted or unsubstituted phenyl wherein the substituents are selected from the group consisting of nitro, and pentafluoro; benzyl, $\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1-lower alkyl tetrazolyl, 1-phenyltetrazolyl, 2-thioxo-3-thiazolidinyl-, pyridyl and benzothiazolyl, provided that when R is paranitrophenyl, R^{\prime} is other than tertiary-butyl, benzyl or cyclohexyl, and when X is sulfur, R is other than benzyl.

30 Claims, No Drawings

PEPTIDE ELASTASE INHIBITORS AND METHODS

FIELD OF THE INVENTION

This invention relates to inhibitors of the enzyme elastase and more particularly relates to the use of certain novel peptides containing the carbamate functionality which are active-site directed inhibitors of the enzyme elastase.

BACKGROUND OF THE INVENTION

Proteinases from polymorphonuclear leukocytes and macrophages, especially elastases (human leukocyte elastase and cathepsin G), appear to be responsible for the chronic tissue destruction associated with inflammation, arthritis and emphysema. During infection or inflammation, the normal lung is protected from proteolytic digestion by the protease inhibitor, α_{1}-antitrypsin. The protective mechanism appears to be nonoperative in individuals with an α_{1}-antitrypsin deficiency due to genetic or other causes. Synthetic elastase inhibitors capable of replacing α_{1}-antitrypsin therefore appear to be useful in the treatment of pulmonary emphysema and related diseases.

Several types of elastase inhibitors have been reported in the literature. These include peptide chloromethyl ketones as described in "Inhibition of Human Leukocyte Elastase by Peptide Chloromethyl Ketones", P. M. Tuhy and J. C. Powers, FEBS Letters, 50, 359-61 (1975); "Specificity of Porcine Pancreatic Elastase, Human Leukocyte Elastase and Cathepsin G. Inhibition with Peptide Chloromethyl Ketones", J. C. Powers, B. F. Gupton, A. D. Harley, N. Nishino and R. J. Whitley, Biochem. Biophys. Acta. 485, 156-66 (1977); azapeptides "Proteinase Inhibitors. 1. Inhibitors of Elastase", C. P. Dorn, M. Zimmerman, S. S. Yang, E. C. Yurewicz, B. M. Ashe, R. Frankshun and H. Jones, J. Med. Chem., 20, 1464-68 (1977); "Reaction of Serine Proteases with Aza-amino Acid and Aza-peptide Derivatives", J. C. Powers and B. F. Gupten, Meth. Enzymol., 46, 208-16 (1977); sulfonyl fluorides "Specificity and Reactivity of Human Leukocyte Elastase, Porcine Pancreatic Elastase, Human Granulocyte Cathepsin G, and Bovine Pancreatic Elastase, Human Granulocyte Cathepsin G, and Bovine Pancreatic Chymotrypsin with Arylsulfonyl Fluorides. Discovery of a new series of potent and specific irreversible Elastase Inhibitors", T. Yoshimura, L. N. Barker and J. C. Powers, J. Biol. Chem., 257, 5077-84 (1982); heterocyclic acrylating agents. "Inhibition of Elastase and Other Serine Proteases by Heterocyclic Acylating Agents", M. Zimmerman, H. Morman, D. Mulvey, H. Jones, R. Frankshun and B. M. Ashe, J. Biol. Chem., 255, 9848-51 (1980); "Selective Inhibition of Human Leukocyte Elastase and Bovine α_{1}-Chymotrypsin by Novel Heterocycles", B. M. Ashe, R. L. Clark, H. Jones and M. Zimmerman, J. Biol. Chem., 256: 11603-6 (1981); imidazole N-carboxamides, W. C. Groutas, R. C. Badger, T. D. Ocain, D. Felker, J. Frankson and M. Theodorakis, Biochem. Bio- 6 phys. Res. Commun., 95, 1890 (1980); and p-nitrophenylN alkyl carbamates, " p -Nitrophenyl Carbamates as Active-Site-Specific Reagents for Serine Proteases", R. E. Scofield, R. P. Werner and F. Wold, Biochemistry, 16, 2492 (1977).

Although some peptide chloromethyl ketones have been shown to be effective in preventing elastase induced emphysema in animal models "Prevention of $\mathrm{R}^{\prime \prime} \mathrm{O}$-Suc-where $\mathrm{R}^{\prime \prime}$ is lower alkyl of 1 to 3 carbon atoms, and $\mathrm{CF}_{3} \mathrm{CO}-$; X is oxygen or sulfur, R^{\prime} is selected from the group consisting of straight or secondary branch-chained alkenyl of 2 to 4 carbon atoms, alkynyl of 2 to 4 carbon atoms, alkyl of 1 to 4 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, preferably cyclopropyl or cyclohexyl, and benzyl, and R is selected from the group consisting of substituted or unsubstituted phenyl wherein the substituents are selected 65 from the group consisting of nitro, preferably p-nitro, and fluoro, preferably pentafluoro; benzyl, $\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1-lower alkyl- and 1-phenyl tetrazo-lyl-, 2-thioxo-3-thiazolindinyl-, pyridyl, and benzo-
thiazolyl, provided that when R is para-nitrophenyl, R^{\prime} is other than tertiary-butyl, benzyl, or cyclohexyl, and when X is sulfur, R is other than benzyl.
The invention also provides elastase inhibiting pharmaceutical compositions containing these novel substituted carbamates as the active ingredients, methods for inhibiting the enzyme elastase in animals and humans, and methods for production of the compounds and compositions.

DESCRIPTION OF PREFERRED EMBODIMENTS

As pointed out above, the invention relates to certain novel substituted carbamate compounds, pharmaceutical compositions containing these compounds, and methods for use of these pharmaceutical compositions in the specific inhibition of porcine pancreatic elastase and human leukocyte elastase without affecting the similar serine dependent proteases, bovine pancreatic trypsin and chymotrypsin. It is known from the art that proteases from polymorphonuclear leukocytes and macrophages, especially elastases (human leukocyte HL elastase and cathepsin G) appear to be responsible for the chronic tissue destruction associated with inflammation, arthritis and emphysema. During infection or inflammation, the normal lung is protected from proteolytic digestion by the protease inhibitor, α_{1}-anitrypsin. This protective mechanism appears to be nonoperative in individuals with an α_{1}-antitrypsin deficiency due to genetic or other causes. Synthetic elastase inhibitors capable of replacing α_{1}-antitrypsin are therefore useful in the treatment of pulmonary emphysema and related diseases.

According to the present invention, a class of compounds containing carbamate functionality and oligopeptides have been found to be active-site directed inhibitors of elastase in animals and humans. This class of compounds therefore provide an opportunity to incorporate chemical moieties which will optimize the affinity of the inhibitor towards the enzyme, and transfer and acylating moiety to the active site of the enzyme. The nature of the acylating moiety could be varied to optimize the duration of enzymatic inactivation.

It is theorized that the mechanism of the invention takes advantage of the fact that the carbamate esters will react with proteases and esterases at the carbonyl carbon by losing the alkoxy portion and transferring the carbamylating moiety to the active site of the enzyme. Decylation will then lead to recovery of enzymatic activity.

The present invention provides a series of carbamate compounds which are active in accordance with the above proposals as elastase inhibitors. These compounds are carbamates substituted by oligopeptides and may generally be described by the following general formula:

wherein Z is selected from the group consisting of $\mathrm{R}^{\prime \prime} \mathrm{O}$-Suc-where $\mathrm{R}^{\prime \prime}$ is lower alkyl of 1 to 3 carbon atoms, and $\mathrm{CF}_{3} \mathrm{CO}-; \mathrm{X}$ is oxygen or sulfur, R^{\prime} is selected from the group consisting of straight or secondary branched-chain alkyl of 1 to 4 carbon atoms, alkenyl of 1 to 4 carbon atoms, alkynyl of 2 to 4 carbon atoms,
cycloalkyl of 3 to 6 carbon atoms, preferably cyclopropyl or cyclohexyl, and benzyl, and R is selected from the group consisting of substituted or unsubstituted phenyl wherein the substituents are selected from the 5 group consisting of nitro, preferably p-nitro, and fluoro, preferably pentafluoro; benzyl, $\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1lower alkyl tetrazolyl-, 1-phenyltetrazolyl-, 2-thioxo-3thiazolindyl, pyridyl, and benzothiazolyl, provided that when R is paranitrophenyl, R^{\prime} is other than tertiaryother than benzyl.
In more preferred and detailed embodiments, the compounds of the invention may be described by the following general formulae A or B:

A.
wherein X is oxygen or sulfur and R is selected from the group consisting of phenyl, fluorophenyl, nitrophenyl, 1-phenyltetrazolyl, 1-lower alkyl tetrazolyl, benzyl, 3-thiazolidinyl, pyridyl, and benzothiazolyl, and R^{\prime} is straight or secondary branch chained alkyl of 2 to 4 carbons, alkenyl of 2 to 4 carbons, and alkynyl of 2 to 4 carbons, provided that when R is p-nitrophenyl, R^{\prime} is other than tertiarybutyl, and when X is sulfur, R is other than benzyl; and

B.
wherein Z is selected from the group consisting of MeO-Suc-Ala-Ala and $\mathrm{CF}_{3} \mathrm{CO}$-Ala-Ala, wherein R^{\prime} is as defined above but is preferably isopropyl.

It will be noted from the description of the compounds that the peptidyl carbamates of this invention are those wherein the amino portion contains the oligopeptide and the peptide portion is so chosen as to increase the specificity of the carbamate ester for elastase.

In one embodiment, the compounds of the invention are prepared by a sequential series of reactions beginning with L -proline protected on the ring nitrogen with ultimate coupling to the peptide. In the first step, an N -protected proline, e.g., N-t-BOC-L-proline, is reacted with diazomethane to obtain the diazoketone followed by treatment with HCL to obtain the chloromethyl ketone protected L-proline. The chioromethyl ketone thus obtained is reacted with the appropriate amine $\mathrm{H}_{2} \mathrm{NR}^{\prime}$ to form the protected amine derivative. The amine is in turn reached with the appropriate chloroformate or thiochloroformate and deprotected by 0 reaction with an acid such as HCl to provide the HCl salt. This compound is then coupled with Z-Ala-Ala by the mixed carbonic anhydride method to provide the compounds of the invention. The Z-Ala-Ala compounds are obtained by reaction of Ala-Ala with methyl 5 succinic acid N-hydroxy succinimide ester when $\mathrm{Z}=\mathrm{R}^{\prime \prime} \mathrm{O}-$ Suc, e.g., MeOSuc. These Z-Ala-Ala intermediates may be prepared according to the following scheme:

I.

In conducting these reactions, the L-proline in the initial step is protected on the ring nitrogen by reaction with any suitable protective agent known to the art so that reaction will occur on the carboxylic acid portion of the molecule. Preferably, the nitrogen atom in the ring is protected with a known protective agent, such as t -BOC. For example, t-BOC-Pro is available commercially from Sigma Chemical Company, St. Louis, Mo. The protected proline is reacted with diazomethane by the method of Penke et al. (B. Penke, J. Czombos, L. Balaspiri, J. Peters and K. Kovacs, Helv. Chim. Acta., 53, 1057 (1970). Thereafter, the resulting chloromethyl ketone is then reacted with the appropriate amine. This reaction is preferably conducted in a solvent solution, such as a lower alkyl alcohol, and preferably in the presence of an alkali metal iodide. The reactants are mixed under cool temperatures and then reacted at 50° to $75^{\circ} \mathrm{C}$. to complete the reaction. The evolved HCl is neutralized, as with a sodium carbonate solution, and extracted. This intermediate is then reacted with the appropriate chloroformate or thiochloroformate and deprotected with hydrogen chloride to form the carbamate portion of the molecule. This molecule is then coupled with the peptide portion of the molecule to form the final product.

This reaction procedure may be illustrated as follows:

Methyl Succinic Acid-N-hydroxysuccinimide Ester

To an ice-cooled solution of N -hydroxysuccinimide ($1.15 \mathrm{~g}, 10 \mathrm{mmol}$) and methyl succinyl chloride (1.23 ml , 10 mmol) in ethyl acetate (50 ml) was added, dropwise, triethyl amine ($1.4 \mathrm{ml}, 10 \mathrm{mmol}$). The mixture was
65 stirred at $4^{\circ} \mathrm{C}$. for 10 min and at room temperature for 5 min . Filtration of insoluble materials, followed by the evaporation of the filtrate yielded pale yellow crystals. ($2.1 \mathrm{~g}, 92 \%$); m.p. $86^{\circ}-88^{\circ} \mathrm{C}$.

EXAMPLE 2

Methyl Succinyl-L-alanyl-L-alanine
Without further purification, the product from Example $1,(1.48 \mathrm{~g}, 6.46 \mathrm{mmol})$, was slowly added to a stirred solution of L-alanyl-L-alanine ($862 \mathrm{mg}, 5.38 \mathrm{mmol}$) and sodium bicarbonate ($452 \mathrm{mg}, 5.38 \mathrm{mmol}$) in water (5 ml) and acetone (5 ml). The mixture was stirred at room temperature for 4 h , and the acetone evaporated. The aqueous solution was washed with $\operatorname{EtOAC}(8 \mathrm{ml})$, acidified with citric acid (1.3 g), saturated with NaCl , and extracted four times with EtOAc (30 ml). The organic layers were washed with NaCl solution (3 ml) successively, combined, dried over anhydrous MgSO_{4}, and evaporated. The residue was washed with EtOAc to give colorless crystals of methyl succinyl-L-alanyl-Lalanine, $\left(920 \mathrm{mg}, 62 \%\right.$); m.p. $134^{\circ}-135^{\circ}$ C. NMR (DMSO-d ${ }_{6}$) $\alpha 1.16(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), $1.24(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7$ Hz), $2.40(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), $3.54(\mathrm{~S}, 3 \mathrm{H}), 4.16$ (quintet, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), 4.29 (quintet), $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$) 8.01 (d, 2 H , $\mathrm{J}=7 \mathrm{~Hz}$) ppm; IR (Nujol) 3280, 1735, 1690, 1630, 1540 cm^{-1}. Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 48.17$; H, 6.61 ; N, 10.21 . Found: C, 48,$05 ; \mathrm{H}, 6.65$; N, 10.17 .

EXAMPLE 3

(N-t-Boc-L-prolyl)Diazomethane

This compound was prepared according to the method of Penke et al, Helv. Chim. Acta. 53, 1057 (1970).

EXAMPLE 4

(N-t-Boc-L-prolyl)Chloromethyl Ketone

Into an ice-cooled solution of the product of Example 3 , (11.0 g) in ether (240 ml), HCl gas was introduced until the yellow solution turned colorless. The mixture was evaporated and purified by column chromatography (hexane/ $\mathrm{CHCl}_{3} ; 1: 1$) to give colorless crystals, (9.8 $\mathrm{g}, 51.7 \%$ from t-Boc-L-proline); m.p. $47^{\circ}-49^{\circ} \mathrm{C}$.; NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.8-2.2(\mathrm{~m}, 4 \mathrm{H}), 3.4-3.8(\mathrm{~m}$, 2 H), $4.36(\mathrm{~s}, 2 \mathrm{H}), 4.4-4.8(\mathrm{~m}, 1 \mathrm{H})$; IR (Film) 1735, 1690 cm^{-1}. Anal Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClNO}_{3}$: $\mathrm{C}, 53.33 ; \mathrm{H}, 732$; n, $5.65 ; \mathrm{Cl}, 14.31$. Found: $\mathrm{C}, 53.46 ; \mathrm{H}, 735 ; \mathrm{N}, 5.56 ; \mathrm{Cl}$, 14.26.

EXAMPLE 5

N -(N^{\prime}-t-Boc-L-prolyl)Methyl-N-Isopropylamine

To an ice-cooled solution of the product of Example $4,(3.0 \mathrm{~g}, 12.1 \mathrm{mmol})$ in $95 \% \mathrm{EtOH}(30 \mathrm{ml})$, was added sodium iodide ($1.95 \mathrm{~g}, 12.8 \mathrm{mmol}$) and isopropylamine $(10.2 \mathrm{ml}, 60 \mathrm{mmol})$. The mixture was shaken at $65^{\circ} \mathrm{C}$. for 15 h and a saturated NaHCO_{3} solution was added. The mixture was extracted into ether, evaporated and purified by column chromatography $\left(\mathrm{CHCl}_{3} . \mathrm{CH}_{3} \mathrm{OH}\right.$; $50: 1)$ to give a brown oil, ($1.84 \mathrm{~g}, 56 \%$). NMR $\left(\mathrm{CDCl}_{3}\right)$ \& $1.12(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 1.50(\mathrm{~s}, 9 \mathrm{H}), 1.8-2.2(\mathrm{~m}, 4 \mathrm{H})$, 2.5-3.1 ($\mathrm{m}, 3 \mathrm{H}$), $3.4-3.8(\mathrm{~m}, 3 \mathrm{H}), 4.3-4.6(\mathrm{~m}, 1 \mathrm{H})$, IR (Film) 3330 (br), 1695 (br) cm^{-1}.

EXAMPLE 6

p-Nitrophenyl
N -(N^{\prime}-t-Boc-L-prolyl)Methyl-N-Isopropylcarbamate
A solution of p-nitrophenyl chloroformate $(0.88 \mathrm{~g}$, 4.34 mmol) in dry THF (10 ml) was added dropwise to a solution of the product of Example 5, $10.98 \mathrm{~g}, 3.36$ mmol) and triethylamine ($0.604 \mathrm{ml}, 4.34 \mathrm{mmol}$) in THF at $5^{\circ} \mathrm{C}$. The mixture was stirred at $5^{\circ} \mathrm{C}$. for 2 h and
filtered. The filtrate was evaporated and purified by column chromatography ($\mathrm{CHCl}_{3} / \mathrm{EtOAc}^{2} 100: 1$) to give a yellow oil ($1.28 \mathrm{~g}, 81 \%$). NMR $\left(\mathrm{CDCl}_{3}\right)$ \& $1.0-1.3(\mathrm{~m}, 6 \mathrm{H}), 1.3-1.5(\mathrm{~m}, 9 \mathrm{H}), 1.7-2.2(\mathrm{~m}, 4 \mathrm{H})$, 3.3-3.7 ($\mathrm{m}, 2 \mathrm{H}$), 4.0-4.7 (m, 4H), 7.1-7.4 (m, 2H), $8.1-8.4\left(\mathrm{~m}, 2 \mathrm{H}\right.$); IR (Film) 1690-1740, 1590, $1520 \mathrm{~cm}^{-1}$.

EXAMPLE 7

Phenyl N-(N^{\prime}-t-Boc-L-Prolyl)Methyl-N-Isopropyl Carbamate

This compound was prepared using the procedure of Example 6 and the product of Example 5 as starting material, Yield, 95%; $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \& 1.1-1.4(\mathrm{~m}, 6 \mathrm{H})$, $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.7-2.1(\mathrm{~m}, 4 \mathrm{H}), 3.4-3.7(\mathrm{~m}, 2 \mathrm{H}), 3.8-4.6$ (m, 4H), 7.0-7.5 (m, 5H); IR (Film) 1680-1750, 1595 cm^{-1}.

EXAMPLE 8

p-Nitrophenyl N-(L-Prolymethyl)-N-Isopropyl Carbamate Hydrochloride

A mixture of the product of Example $6(1.65 \mathrm{mmol})$ in formic acid (5 ml) and 1 N solution hydrogen chloride in THF (2 ml) was stirred at room temperature for 1 h . The mixture was evaporated and the oil obtained was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give the desired compound as crystals. Yield 68.8%; mp $190^{\circ}-193^{\circ}$ C. (dec); NMR 9DMSO-d ${ }^{\text {G }}$) 1.14 (d, 6H, J- 6 Hz), 1.6-2.2 (m, 4H), 3.1-4.8 (m, 6H), 7.52 (d, $2 \mathrm{H}, \mathrm{j}-9 \mathrm{~Hz}$), 8.48 (d, $2 \mathrm{H}, \mathrm{J}-9$ Hz); IR (Nujol) 1740, 1725, 1615, 1595, $1520 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{5}$: $\mathrm{C}, 51.69 ; \mathrm{H}, 5.96 ; \mathrm{N}$, $11.30 ; \mathrm{Cl}, 9.53$. Found: $\mathrm{C}, 51.52 ; \mathrm{H}, 5.98 ; \mathrm{N}, 11.21 ; \mathrm{Cl}$, 9.55 .

EXAMPLE 9

Phenyl N-(L-Prolylmethyl)-N-Isopropyl Carbamate Hydrochloride
This compound was prepared using the procedure of Example 8 but the product of Example 7 as starting material. Yield, 58%; m.p. $207^{\circ}-208^{\circ} \mathrm{C}$. (dec); NMR (DMSO-d ${ }_{6}$) \& 1.0-1.4 (m, 6H), 1.7-2.2 (m, 4H), 3.0-3.7 (m, 2H), 4.1-4.9 (m, 4H), 7.1-7.7 (m, 5H); IR (Nujol) 1750, 1725, 1600, $1550 \mathrm{~cm}^{-1}$. Anal. Caled for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}: \mathrm{C}, 58.80 ; \mathrm{H}, 7.09 ; \mathrm{N}, 8.57 ; \mathrm{Cl}, 10.85$. Found: C, 58.57 ; $\mathrm{H}, 7.13 ; \mathrm{N}, 8.54 ; \mathrm{Cl}, 10.92$.

EXAMPLE 10

p-Nitrophenyl N-(Methy
Succinyl-L-Alanyl-L-Alanyl-L-Prolymethyl)-N-Isopropyl Carbamate
To a stirred mixture of methy/succinyl-L-alanyl-Lalanine from example $2(213 \mathrm{mg}, 0.778 \mathrm{mmol})$ and N methyl morpholine ($86 \mathrm{ul}, 0.778 \mathrm{mmol}$) in THF (2.5 ml) at -15° to $-30^{\circ} \mathrm{C}$. was added, dropwise, a solution of isobutyl/chloroformate ($101 \mathrm{ul}, 0.778 \mathrm{mmol}$) in THF (1 ml), and the mixture stirred for 30 min at the same temperature. A solution of the product from Example 8, (0.779 mmol), N-methyl morpholine (0.778 mmol) and bis (trimethylsilyl) acetamide (1 ml in THF (3 ml) was then added dropwise to the above mixture at $-50^{\circ} \mathrm{C}$. The reaction mixture obtained was warmed up gradually stirred at room temperature overnight, diluted with $\mathrm{CHCl}_{3}(10 \mathrm{ml})$, successively washed with 10% citric acid, and $4 \% \mathrm{NaHCO}_{3}$ solution and evaporated. The resulting oil was purified by column chromatography $\left(\mathrm{CHCl}_{3} \mathrm{MeOH}, 50: 1\right)$ to give crystals. Yield, 82%; m.p. $153^{\circ}-163^{\circ} \mathrm{C}$.; NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.0-1.5(\mathrm{~m}, 12 \mathrm{H})$,
$1.8-2.4(\mathrm{~m}, 4 \mathrm{H}), 2.4-2.9(\mathrm{~m}, 4 \mathrm{H}), 3.5-4.0(\mathrm{~m}, 2 \mathrm{H}), 3.83$ (s, 3H), 4.2-5.0 (m, 6H), 6.5-7.7 (m, 4H), 8.46 (d, 2H, $\mathrm{J}=7 \mathrm{~Hz}$); IR (Nujol) $3350,1737,1720,1688,1655,1645$, $1525 \mathrm{~cm}^{-1}$. Anal Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{10}: \mathrm{C}, 54.82 ; \mathrm{H}$, 6.30 , N, 11.84. Found: C, 54.60 H, 6.34, N, 11.73.

EXAMPLE 11
Phenyl N-(Methyl Succinyl-L-Alanyl-L-Alanyl-L-Prolyl Methyl)-N-Isopropyl Carbamate
This compound was prepared using the procedure of Example 10 and the product of Example 9 as starting material. Yield, 67%; m.p. $60^{\circ}-65^{\circ} \mathrm{C}$.; NMR $\left(\mathrm{CDCl}_{3}\right)$ \& $0.7-1.4(\mathrm{~m}, 12 \mathrm{H}), 1.7-2.2(\mathrm{~m}, 4 \mathrm{H}), 2.3-2.8(\mathrm{~m}, 4 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.1-3.40(\mathrm{~m}, 2 \mathrm{H}), 4.0-4.8(\mathrm{~m}, 6 \mathrm{H}), 6.1-7.6(\mathrm{~m}$, 7H); IR (Film) 3300-3500, 1730 (br), 1645 (br), 1530 (br) cm^{-1}. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8}: \mathrm{C}, 59.33 ; \mathrm{H}, 7.01$; N, 10.25. Found: C, 59.16; H, 7.06; N, 10.17

EXAMPLE 12

(N -t-Boc-L-prolyl) chloromethane
The title compound was prepared in the same manner as that of Example 4. (76.3% yield from N -Boc-proline).

EXAMPLE 13

N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-isopropylamine

To a solution of ($\mathrm{N}-\mathrm{t}$-Boc-L-prolyl)chloromethane $(3.0 \mathrm{~g}, 0.0121 \mathrm{~mol})$ in ether $(40 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$. was added isopropylamine (12 ml). The solution was stirred overnight in an ice bath and allowed to come to room temperature. Precipitated isopropylamine hydrochloride was filtered off and washed with ether. The filtrate was evaporated in vacuo to give an oil. The oil was purified by column chromatography (silica gel 45 g , solvent 2% $\mathrm{MeOH}-\mathrm{CHCl}_{3}$) to give 2.16 g of the product as an oil. NMR (\&, CDCl_{3}), $1.12(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.50(9 \mathrm{H}, \mathrm{s})$, $1.8-2.2(4 \mathrm{H}, \mathrm{m}), 2.83(1 \mathrm{H}, \mathrm{m}), 3.3-3.9(5 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}$, m) ppm; IR (Film) 3330 (br), $1690 \mathrm{~cm}^{-1}$.

EXAMPLE 14

1-Methyl-5-tetrazolyl thiochloroformate

A solution of triethylamine ($0.647 \mathrm{ml}, 4.64 \mathrm{mmol}$) in THF (2 ml) was added dropwise to a mixture of 1 -meth-yl-5-mercaptotetrazole ($450 \mathrm{mg}, 3.87 \mathrm{mmol}$) in the THF (5 ml) and 12.5% phosgene in benzene ($4.7 \mathrm{ml}, 6 \mathrm{mmol}$) at $0^{\circ}-5^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ}-5^{\circ} \mathrm{C}$. for 30 min and at room temperature for 2 h , followed by filtration of the mixture. The filtrate obtained was evaporated go give 0.62 g (89.7%) of pale brown crystals of the title compound $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \& 4.23(\mathrm{~S}, 3 \mathrm{H})$, IR (Film) $1770 \mathrm{~cm}^{-1}$.

EXAMPLE 15 1-Methyl-5-tetrazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-isopropylthiocarbamate
To a solution of the product of Example $13(1.95 \mathrm{~g}$, 7.2 mmol) and triethylamine ($1.30 \mathrm{ml}, 9.36 \mathrm{mmol}$) in THF (15 ml) at $5^{\circ} \mathrm{C}$. was added a suspension of 1 -meth-yl-5-tetrazolyl thiochloroformate from Example 15, $(1.67 \mathrm{~g}, 9.36 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ over 4 min , and the mixture was stirred for 1 hour at $5^{\circ} \mathrm{C} . \mathrm{CHCl}_{3}$. The organic layer was dried over anhydrous MgSO_{4} and evaporated in vacuo to give an oil. The oil was purified by column chromatography (silica gel 40 g) using CHCl_{3} as an eluent to give 1.86 g of the product as an oil, 74% yield. The oil was crystallized from ethyl ace-tate-hexane mp $145^{\circ}-150^{\circ} \mathrm{C}$. NMR (\&, CDCl_{3}) 1.30
$(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.8-2.2(4 \mathrm{H}, \mathrm{m}), 3.4-3.7$ ($2 \mathrm{H}, \mathrm{m}$), $4.10(3 \mathrm{H}, \mathrm{s}), 4.0-4.6(4 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$ IR (Film) 1735, 1685, $1670 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}$: C, 49.50 ; H, 6.84; N, 20.37. Found: C, 49.65; H, 6.87; N, 520.30.

EXAMPLE 16

1-Methyl-5-tetrazolyl
N -(L-prolylmethyl)-N-isopropylthio-carbamate Hydrochloride
The title compound was prepared by the same method as that of Example 8 (52% yield).

EXAMPLE 17

1-Methyl-5-tetrazolyl N-(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylthiocarbamate
The title compound was prepared by the same method as that of Example 10. The obtained oil was crystallized from ethyl acetate-hexane, 21% yield, mp $110^{\circ}-113^{\circ} \mathrm{C} . \mathrm{NMR}\left(\&, \mathrm{CDCl}_{3}\right), 0.9-1.5(12 \mathrm{H}, \mathrm{m})$, 1.8-2.2 ($4 \mathrm{H}, \mathrm{m}$), 2.4-2.8 ($4 \mathrm{H}, \mathrm{m}$), 3.5-3.8 ($2 \mathrm{H}, \mathrm{m}$), 3.76 $(3 \mathrm{H}, \mathrm{s}), 4.10(3 \mathrm{H}, \mathrm{s}), 4.0-4.9(6 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}-8$ Hz), $7.20(1 \mathrm{H}$, brd, $\mathrm{J}=8 \mathrm{~Hz}$), ppm. IR (Film); 3300, 1735, $1680-1640,1520 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 48.58 ; \mathrm{H}, 6.38 ; \mathrm{N}, 1970$. Found: C, 48.41; H, 6.43; N, 19.58.

EXAMPLE 18

N-(N'-t-Boc-L-prolyl)methyl-N-cyclopropylamine
The title compound was prepared in a similar manner to Example 13 and obtained as an oil, 52.4% yield. NMR (\&, $\left.\mathrm{CDCl}_{3}\right) 0.33(4 \mathrm{H}, \mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}), 2.0-2.3$ ($6 \mathrm{H}, \mathrm{m}$), 3.3-3.9 ($4 \mathrm{H}, \mathrm{m}$), 4.40 ($1 \mathrm{H}, \mathrm{m}$) ppm, IR (Film) $3260,1720,1680,1400,1160 \mathrm{~cm}^{-1}$.

EXAMPLE 19

1-Methyl-5-tetraazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-cyclopropyl thiocarbamate
The title compound was prepared in a similar manner to Example 15 as a powder, 30% yield. m p $144^{\circ}-148^{\circ}$ C. NMR (\& , CDCl_{3}); $1.00(4 \mathrm{H}, \mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.7-2.3$ $(4 \mathrm{H}, \mathrm{m}), 2.96(1 \mathrm{H}, \mathrm{m}), 3.53(2 \mathrm{H}, \mathrm{m}), 4.06(3 \mathrm{H}, \mathrm{s}), 4.30$ ($3 \mathrm{H}, \mathrm{m}$) ppm. IR (Film) $1730,1680,1480,1400 \mathrm{~cm}^{-1}$ Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 49.75 ; \mathrm{H}, 6.34 ; \mathrm{N}$, 20.48. Found: C, 49.49; H, 6.39; N, 20.34.

EXAMPLE 20

1-Methyl-5-tetrazolyl
N -(L-prolylmethyl)- N -cyclopropylthiocarbamate Hydrochloride
The compound of Example 39 ($0.82 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in ethyl acetate (30 ml). HCl gas was passed through the solution at room temperature for 5 minutes After evaporation of the solvent, the residue was triturated with ether to give a powder 80% yield, mp $144^{\circ}-148^{\circ}$ C. NMR (\&, DMSO-d ${ }^{\circ}$): 1.00 ($4 \mathrm{H}, \mathrm{m}$), $1.5-2.0(4 \mathrm{H}, \mathrm{m}), 3.20(3 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{m}), 4.07(3 \mathrm{H}, \mathrm{s})$, $460(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. IR (Nujol) $17251670,1260 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{~S}$: C, 41.78; H, 5.48; N , 24.24; S, 9.23. Found: C, 41.60 ; H, 5.55; N, 24.17; S, 10.32.

EXAMPLE 21

1-Methyl-5-tetrazolyl N-(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-cyclopropylthiocarbamate
The title compound was prepared in a manner similar to Example 17. The product powder was obtained in 60.8% yield, mp $107^{\circ}-109^{\circ} \mathrm{C}$. NMR (\&, CDCl_{3}) 1.00 $(4 \mathrm{H}, \mathrm{m}), 1.36(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.8-2.4(4 \mathrm{H}, \mathrm{m}), 2.63$ $(4 \mathrm{H}, \mathrm{m}), 3.0(1 \mathrm{H}, \mathrm{m}), 3.66(2 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.08$ $(3 \mathrm{H}, \mathrm{s}), 4.3-4.9(5 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right) 3300-3400$, 1730, 1710, 1680, $1510 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 48.76 ; \mathrm{H}, 6.05 ; \mathrm{N}, 19.77$. Found C, 48.56; H, 6.07; N, 19.57.

EXAMPLE 22

N -(N-t-Boc-L-prolyl)methyl-N-propylamine

The title compound was prepared in a similar manner to Example 13 as an oil, 54% yield. NMR ($\&, \mathrm{CDCl}_{3}$) $0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.6-2.3(6 \mathrm{H}, \mathrm{m}), 2.67$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$), 3.3-3.7(4H, m), $4.33(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. IR (Film) $3300,1710,1690,1380 \mathrm{~cm}^{-1}$.

EXAMPLE 23

1-Methyl-5-tetrazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-propyl thiocarbamate
The title compound was prepared in a similar way to Example 15 to give crystals, 23.5% yield. mp $112^{\circ}-114^{\circ}$ C. NMR (\&, $\left.\mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 14.6(\mathrm{oH}, \mathrm{s})$, $1.6-2.3(6 \mathrm{H}, \mathrm{m}), 3.2-3.7(4 \mathrm{H}, \mathrm{m}), 4.10(3 \mathrm{H}, \mathrm{s}), 4.30(3 \mathrm{H}$, m) ppm. IR (Film) 1730, 1680, 1380, $1160 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 49.51 ; \mathrm{H}, 6.79 ; \mathrm{N}, 20.38$. Found: C, 49.23; H, 6.84; N, 20.30.

EXAMPLE 24

1-Methyl-5-tetrazolyl
N -(L-prolylmethyl)-N-propylthio carbamate Hydrochloride
The title compound was prepared in a similar manner to Example 20, 84% yield, $\mathrm{m} \mathrm{p} 107^{\circ}-112^{\circ} \mathrm{C}$. NMR (\&, DMSO- d_{6}) $1.0(3 \mathrm{H}, \mathrm{m}), 1.2-2.0(6 \mathrm{H}, \mathrm{m}), 3.0(2 \mathrm{H}, \mathrm{m})$, 4.07 ($3 \mathrm{H}, \mathrm{s}$), $4.25-5.0(5 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. IR (Film) 3350, $1740,1680 \mathrm{~cm}^{-1}$.

EXAMPLE 25

1-Methyl-5-tetrazolyl N -(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-propylthiocarbamate
The title compound was prepared in a similar manner to Example $17, \mathrm{mp}, 138^{\circ}-140^{\circ} \mathrm{C} .22 .3 \%$ yield. IR (Film) $3300,1735,1650,1530,1170 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}) $1.00(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.40(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}) 1.2-1.8$ $(2 \mathrm{H}, \mathrm{m}), 2.07(4 \mathrm{H}, \mathrm{m}), 2.66(4 \mathrm{H}, \mathrm{m}), 3.50(2 \mathrm{H}, \mathrm{m}), 3.70$ $(3 \mathrm{H}, \mathrm{s}), 4.10(3 \mathrm{H}, \mathrm{s}), 4.2-5.0(5 \mathrm{H}, \mathrm{m}), 6.9(1 \mathrm{H}, \mathrm{m}), 7.4$ ($1 \mathrm{H}, \mathrm{m}$) ppm. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{7}$: $\mathrm{C}, 48.58 ; \mathrm{H}$, 6.38 ; N, 19.71. Found: C, 48.37; H, 6.38; N, 19.64.

EXAMPLE 26

p-Nitrophenyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-propylcarbamate
The title compound was prepared in the same way as 65 that of Example 6 to recover an oil, 51.7% yield. NMR (\&, $\left.\mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s})$, $1.5-2.5(6 \mathrm{H}, \mathrm{m}), 3.50(4 \mathrm{H}, \mathrm{m}), 4.30(3 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}$,
m), $8.30(2 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. IR (Film) 1740, 1700, 1670, 1610 cm^{-1}.

EXAMPLE 27

5 P-Nitrophenyl N-(L-prolylmethyl)-N-propylcarbamate Hydrochloride
The title compound was prepared in the same manner as previous Example 8. The compound of Example 26 $(0.72 \mathrm{~g}, 1.65 \mathrm{mmol})$ was dissolved in a mixture of formic acid (10 ml) and 1 N HCl in THF (10 ml). The solution was stirred at room temperature for 3 hours. Evaporation of the solvent gave a residue which was triturated with ether to give a powder. The powder was collected and washed with ether to give 0.49 g of the product. 79.8% yield. $\mathrm{mp} 155^{\circ}-160^{\circ} \mathrm{C}$. NMR ($\&$, DMSO- d_{6}) 0.9 $(3 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$), 1.1-2.2 ($6 \mathrm{H}, \mathrm{m}$), 3.0-3.7 ($4 \mathrm{H}, \mathrm{m}$), $4.3-4.8(3 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 8.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9$ Hz) ppm. IR (Nujol) $3400,1720,1610,1590,1520 \mathrm{~cm}^{-1}$.

EXAMPLE 28
P-Nitrophenyl N -(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)
N -propylcarbamate
.
The title compound was prepared in the same manner as that of Example $10.20 .1 \%$ yield, $\mathrm{mp} 158^{\circ}-161^{\circ} \mathrm{C}$. NMR ($\left.\&, \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{m}), 1.36(6 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=6.5$ $\mathrm{Hz}), 1.5-2.3(6 \mathrm{H}, \mathrm{m}), 2.63(4 \mathrm{H}, \mathrm{br}, \mathrm{s}), 3.2-4.0(4 \mathrm{H}, \mathrm{m})$, $3.70(3 \mathrm{H}, \mathrm{s}), 4.2-5.0(5 \mathrm{H}, \mathrm{m}), 7.0(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})$, $7.1-7.63 \mathrm{H}, \mathrm{m}), 8.30(2 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}) \mathrm{ppm}$. IR (film) $3320,1740,1650,1580,1550 \mathrm{~cm}^{-1}$.

EXAMPLE 29

P-Nitrophenyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-cyclopropylcarbamate
The title compound was prepared in the same way as that of Example 6 as an oil. 45% yield, NMR (\&, $\left.\mathrm{CDCl}_{3}\right) 0.86(4 \mathrm{H}, \mathrm{m}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.7-2.5(4 \mathrm{H}, \mathrm{m}), 3.0$ $(1 \mathrm{H}, \mathrm{m}), 3.56(2 \mathrm{H}, \mathrm{m}), 4.40(3 \mathrm{H}, \mathrm{m}), 7.43$ ($2 \mathrm{H}, \mathrm{brd}, \mathrm{J}=9$ Hz), 8.33 ($2 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$) ppm IR (film) 1740,1720 , $1700,1610,1590,1390,1210 \mathrm{~cm}^{-1}$.

EXAMPLE 30
P-Nitrophenyl
N -(L-prolylmethyl)-N-cyclopropylcarbamate hydrochloride)
HCl gas was passed through a solution of the product of Example $29(1.3 \mathrm{~g}, 3.0 \mathrm{mmol})$ in ether (40 ml) for 6 min at room temperature. Precipitated amine salts were collected and washed with ether to give the product $(0.7 \mathrm{~g}), 63 \%$ yield. $\mathrm{mp} 150^{\circ} \mathrm{C}$. (dec). NMR (\&, CDCl_{3}), $0.81(4 \mathrm{H}, \mathrm{m}), 1.7-2.3(4 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{m}) 3.23(2 \mathrm{H}, \mathrm{m})$, $4.60(3 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{brd}, \mathrm{J}=9 \mathrm{~Hz}), 8.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9$ Hz). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{5}: \mathrm{C}, 51.96 ; \mathrm{H}, 5.44$; N, 11.36. Found, C, 51.72; H, 5.48; N, 11.30.

EXAMPLE 31

P-Nitrophenyl N-(methyl
succinyl-L-alanyl-L-analyl-L-prolylmethyl)-N-cyclopropylcarbamate
The title compound was prepared in the same manner as Example 10 and was obtained as a powder, 61% yield. $\mathrm{mp} 154^{\circ}-158^{\circ} \mathrm{C}$. IR (film) $3340,1740,1690,1655$, $1640,1590,1520 \mathrm{~cm}^{-1}$. NMR ($\& \mathrm{CDCl}_{3}$) $0.83(4 \mathrm{H}, \mathrm{m}$), $1.40(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 1.8-2.3(4 \mathrm{H}, \mathrm{m}), 2.60(4 \mathrm{H}, \mathrm{m}), 3.0$ $(1 \mathrm{H}, \mathrm{m}), 3.60(2 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 4.2-5.0(5 \mathrm{H}, \mathrm{m}), 6.38$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{br}, \mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}), 7.36(2 \mathrm{H}$,
d, J $=9 \mathrm{~Hz}$), $8.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$). Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{10}$: C, $55.00, \mathrm{H}, 5.98$; N, 11.88. Found C, 54.80; H, 5.99; N, 11.76.

EXAMPLE 32

N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-butylamine

To a solution of the product of Example $12(2.8 \mathrm{~g}$, 0.0113 mol) in ether (70 ml) at $5^{\circ} \mathrm{C}$. was added n-butylamine (8.2 ml 0.0831 mol). The solution was stirred at 5° C. for 5 hours. Precipitated salts were filtered and washed with ether. The filtrate was evaporated in vacuo to give an oil. The oil was purified by column chromatography (silica gel 15 g , solvent $2 \% \mathrm{MeOH}$ CHCl_{3}) to give 3.2 g of the product as an oil. IR (Film) $3300,1690,1380 \mathrm{~cm}^{-1}$. NMR ($\left.\&, \mathrm{CDCl}_{3}\right) 1.0(3 \mathrm{H}, \mathrm{m})$, $1.50(9 \mathrm{H}, \mathrm{s}), 1.2-1.8(4 \mathrm{H}, \mathrm{m}), 1.8-2.2(4 \mathrm{H}, \mathrm{m}), 2.60(2 \mathrm{H}$, $\mathrm{m}), 3.1-3.9(5 \mathrm{H}, \mathrm{m}), 4.33(1 \mathrm{H}, \mathrm{m})$.

EXAMPLE 33
1-Methyl-5-tetrazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-butyl thiocarbamate
The title compound was prepared in a manner similar to Example $15,35.1 \%$ yield, mp $125^{\circ}-128^{\circ}$ C. IR (Nujol), 1735, 1670, 1170, $1120 \mathrm{~cm}^{-1}$, NMR (\&, $\left.\mathrm{CDCl}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{brt}, \mathrm{J}=5 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.2-1.8$ $(4 \mathrm{H}, \mathrm{m}), 2.0(4 \mathrm{H}, \mathrm{m}), 3.2-3.7(4 \mathrm{H}, \mathrm{m}), 4.07(3 \mathrm{H}, \mathrm{s})$, 4.2-4.6 (3H, m) ppm. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}$. C, 50.69; H, 7.09; N, 19.70. Found: C, 50.75; H, 7.14; N, 19.66.

EXAMPLE 34
1-Methyl-5-tetrazolyl
N -(L-prolylmethyl)-N-butylthiolcarbamate Hydrochloride
The title compound was prepared in a similar manner to Example 20, 91.9% yield, m p $120^{\circ}-129^{\circ}$ C. IR (Nujol) 3350, $1735,1665,1560,1200 \mathrm{~cm}^{-1}$. NMR (\&, DMSO-d 6) 0.96 ($3 \mathrm{H}, \mathrm{m}$), 1.2-2.3 ($8 \mathrm{H}, \mathrm{m}$), $3.0-3.6$ (4 H , $\mathrm{m}), 4.06(3 \mathrm{H}, \mathrm{s}), 4.4-5.0(3 \mathrm{H}, \mathrm{m})$. Anal. Cacld. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{ClN}_{6} \mathrm{O}_{2} \mathrm{~S} ; \mathrm{C}, 43.03 ; \mathrm{H}, 6.39$. Found C, 43.10; H, 6.62.

EXAMPLE 35

1-Methyl-5-tetrazolyl N -(methyl
succinyl-L-alanyl-L-alanyl-L-prolymethyl)-N-butylthiocarbamate
To a solution of the product of Example 2, $(0.428 \mathrm{~g}$, 0.00173 mol) and N -methyl morpholine $(0.175 \mathrm{~g}$, 0.00173 mol) in THF (3 ml) at $-15^{\circ} \mathrm{C}$. was added a solution of isobutyl chloroformate $(0.236 \mathrm{~g}, 0.00173$ mol) in THF (1.6 ml). The mixture was stirred at -15° C . for 10 minutes. To the mixture at $-15^{\circ} \mathrm{C}$. was added a solution of the product of Example 34, $(0.57 \mathrm{~g}, 0.00157$ mol) and N -methyl-morpholine (0.159 g) in $\mathrm{CH}_{3} \mathrm{CN}(5$ $\mathrm{ml})$. The mixture was stirred at $5^{\circ} \mathrm{C}$. for 1.5 hours and stored at $5^{\circ} \mathrm{C}$. overnight. The reaction mixture was diluted with CHCl_{3}, washed with 10% aq. citric acid, water and saturated NaCl solution, and dried over anhydrous MgSO_{4}. Evaporation of the solvents gave an oily residue which was purified by column chromatography (silica gel 16 g , solvent: $2 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$) to give 0.37 g of the product as an oil. The oil was crystallized from ethyl acetate-hexane to give 0.27 g of the product, $\mathrm{mp} 140^{\circ}-145^{\circ} \mathrm{C} .29 .5 \%$ yield. IR (Nujol) 3340 , $1730,1690,1655,1630,1535 \mathrm{~cm}^{-1}$. NMR (\& CDCl_{3}) $1.00(3 \mathrm{H}, \mathrm{m}), 1.2-1.8(4 \mathrm{H}, \mathrm{m}), 1.37(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 2.07$ $(4 \mathrm{H}, \mathrm{m}), 2.63(4 \mathrm{H}, \mathrm{m}), 3.3-3.9(4 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.10$
(3H, s), 4.2-5.0 ($5 \mathrm{H}, \mathrm{m}$), $6.50(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.10$ ($1 \mathrm{H}, \quad \mathrm{br}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$) ppm. Anal Calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 49.47$; H, 6.57; N, 19.23. Found $=\mathrm{C}$, 49.52; H, 6.58; N, 19.08.

EXAMPLE 36

1-Phenyl-5-tetrazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-isopropylthiocarbamate
The title compound was prepared in a similar manner as that of Example 15 as an oil, 73.8% yield. IR (Film) $1735,1690,1590,1495,1400 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}), $1.17(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.95(4 \mathrm{H}, \mathrm{m}), 3.46$ $(2 \mathrm{H}, \mathrm{m}), 3.9-4.6(4 \mathrm{H}, \mathrm{m}), 7.70(5 \mathrm{H}, \mathrm{s})$.

EXAMPLE 37

1-Phenyl-5-tetrazolyl
N -(L-prolylmethyl)- N -isopropylthiocarbamate Hydrochloride

The title compound was prepared in a similar manner to Example 20 as an amorphous powder 46.2% yield. IR (Nujol) 3400, 1760, 1730, 1670, $1590 \mathrm{~cm}^{-1}$. NMR (\&, DMSO-d d_{6}) $1.13(6 \mathrm{H}, \mathrm{m}), 2.0(4 \mathrm{H}, \mathrm{m}), 3.30(2 \mathrm{H}, \mathrm{m})$, $253.8-4.8(4 \mathrm{H}, \mathrm{m}), 7.7-8.0(5 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.

EXAMPLE 38

1-Phenyl-5-tetrazolyl N-(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylthiolcarbamate

The title compound was prepared in a similar manner to Example $35,44.0 \%$ yield, mp $103^{\circ}-108^{\circ}$ C. IR (Nujol) 3340, 1735, 1680, 1655, $1530 \mathrm{~cm}^{-1}$. NMR (\&, $\left.\mathrm{CDCl}_{3}\right), 0.8-1.7(12 \mathrm{H}, \mathrm{m}), 2.03(4 \mathrm{H}, \mathrm{m}), 2.60(4 \mathrm{H}, \mathrm{m})$, $3.66(2 \mathrm{H}, \mathrm{m}), 7.60(5 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 53.32 ; \mathrm{H}, 6.07$; N, 17.77. Found: C, 53.17; L H, 6.15; N, 17.68.

EXAMPLE 39

N -(N^{\prime}-t-Boc-L-prolyl)methyl- N -allylamine

The title compound was prepared in a similar manner as that of Example 13 as an oil, 55.9% yield IR (Film) $3320,1700,1400,1160 \mathrm{~cm}^{-1}$. NMR ($\&, \mathrm{CDCl}_{3}$) 1.46 $(9 \mathrm{H}, \mathrm{s}), 2.00(4 \mathrm{H}, \mathrm{m}), 3.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 3.4-3.8$ $(4 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{m}), 5.0-5.4(2 \mathrm{H}, \mathrm{m}), 5.5-6.3(1 \mathrm{H}, \mathrm{m})$ ppm.

EXAMPLE 40

1-Methyl-5-tetrazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-allylthiocarbamate
The tile compound was prepared in a similar manner as that of Example 15, as a powder, 39.5% yield, mp $124^{\circ}-126^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right) 1735,1685,1160 \mathrm{~cm}^{-1}$. NMR (\& , CDCl_{3}): $1.47(9 \mathrm{H}, \mathrm{s}), 2.0(4 \mathrm{H}, \mathrm{m}), 3.50(2 \mathrm{H}, \mathrm{m}), 4.10$ $(3 \mathrm{H}, \mathrm{s}), 4.0-4.6(5 \mathrm{H}, \mathrm{m}), 5.1-5.5(2 \mathrm{H}, \mathrm{m}), 5.6-6.4(1 \mathrm{H}, \mathrm{m})$ ppm. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S} \mathrm{C}, 49.74, \mathrm{H}, 6.38$; $\mathrm{N}, 20.47$ Found: $\mathbf{C}, 49.50 ; \mathrm{H}, 6.45 ; \mathrm{N}, 20.37$.

EXAMPLE 41

1-Methyl-5-tetrazolyl
N -(L-prolylmethyl)- N -allylthiocarbamate Hydrochloride
The title compound was prepared in a similar manner as Example 20 as a powder, 93.8% yield, NMR (\&, DMSO-D 6), $1.90(4 \mathrm{H}, \mathrm{m}), 3.20(2 \mathrm{H}, \mathrm{m}), 4.07(3 \mathrm{H}, \mathrm{s})$, 3.9-4.9 ($5 \mathrm{H}, \mathrm{m}$), $5.0-5.6(2 \mathrm{H}, \mathrm{m}), 5.7-6.3(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.

EXAMPLE 42

1-Methyl-5-tetrazolyl N-(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-allylthiocarbamate
The title compound was prepared in a similar manner as Example 17 as a powder. 24.3% yield, mp $143^{\circ}-145^{\circ}$ C. IR (Film) 3340, 1735, 1660, 1530, $1450 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}), $1.40(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=\mathrm{Hz}), 2.10(4 \mathrm{H}, \mathrm{m}), 2.66(4 \mathrm{H}$, $\mathrm{m}), 3.73$ ($3 \mathrm{H}, \mathrm{s}$), $3.6-3.8(2 \mathrm{H}, \mathrm{m})$, $4.10(3 \mathrm{H}, \mathrm{s}), 4.1-5.0$ $(7 \mathrm{H}, \mathrm{m}), 5.1-5.6(2 \mathrm{H}, \mathrm{m}), 5.6-6.3(1 \mathrm{H}, \mathrm{m}), 6.8(1 \mathrm{H}, \mathrm{br}, \mathrm{d}$, $\mathrm{J}=7 \mathrm{~Hz}$), $7.20(1 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 48.75 ; \mathrm{H}, 6.05 ; \mathrm{N}, 19.78$. Found C, 48.51, H, 6.08, N, 19.68.

EXAMPLE 43

N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-(2-methyl)proplyamine

The title compound was prepared in a similar manner 20 as Example 13 as an oil, 69.75 yield. NMR ($\&, \mathrm{CDCl}_{3}$), $0.93(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.46(9 \mathrm{H}, \mathrm{s}), 1.3-1.6(1 \mathrm{H}, \mathrm{m}), 2.0$ ($4 \mathrm{H}, \mathrm{m}$), $2.43(2 \mathrm{H}, \mathrm{m}), 3.3-4.3(4 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{m})$ ppm. IR (Film) 3340, $1700,1470,1400 \mathrm{~cm}^{-1}$

EXAMPLE 44

P-Nitrophenyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-(2-methyl)lpropylcarbamate
The title compound was prepared in a similar manner as Example 6 as an oil, 93% yield. IR (Film) 1730, 1615, $1595,1525 \mathrm{~cm}^{-1}$. NMR (\&, CDCL ${ }_{3}$), $0.96(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6$ $\mathrm{Hz}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.3-1.6(1 \mathrm{H}, \mathrm{m}), 2.0(4 \mathrm{H}, \mathrm{m}), 3.1-3.8$ $(4 \mathrm{H}, \mathrm{m}), 4.1-4.6(3 \mathrm{H}, \mathrm{m}), 7.3(2 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 8.33$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}) \mathrm{ppm}$.

EXAMPLE 45

P-Nitrophenyl N-(L-prolylmethyl)-N-(2-methyl) propylcarbamate Hydrochloride
The title compound was prepared in a similar manner as that of Example 30 as a powder, 47% yield, mp $135^{\circ}-149^{\circ}$ C. IR (Nujol) 3500, 1740, 1710, 1615, 1595 cm^{-1}. NMR (\&, DMSO- d_{6}), 0.95 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}$), 1.3-2.2 ($7 \mathrm{H}, \mathrm{m}$), 3.0-3.6 ($4 \mathrm{H}, \mathrm{m}$), 4.1-4.8 ($3 \mathrm{H}, \mathrm{m}$), 7.43 ($2 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{dd}, \mathrm{J}=2,9 \mathrm{~Hz}$), $8.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$) ppm.

EXAMPLE 46

p-Nitrophenyl N -(methyl
 succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-(2methyl)propylcarbamate

The title compound was prepared in a similar manner as that of Example 10 as a powder, 57.7% yield mp $177^{\circ}-179^{\circ}$ C. IR (Nujol) 3350, 1735, 1695, 1660, 1635, $1595 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}): $0.96(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}$), ;b $1.35(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{hz}), 1.5-2.0(1 \mathrm{H}, \mathrm{m}), 2.0(4 \mathrm{H}, \mathrm{m})$, $2.60(4 \mathrm{H}, \mathrm{m}), 3.30(2 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.70(2 \mathrm{H}, \mathrm{m})$, $4.1-5.0(5 \mathrm{H}, \mathrm{m}), 6.50(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{m})$, $7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 8.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{10}: \mathrm{C}, 55.53 ; \mathrm{H}, 6.44 ; \mathrm{N}, 11.57$. Found: C, $55.29 ;$ H, 6.55 ; N, 11.46.

EXAMPLE 47

N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-phenylmethylamine
The title compound was prepared in a similar manner as that of Example 13 as an oil, 63.5% yield. IR (Film) $3310,1700,1605,1585,1400 \mathrm{~cm}^{-1}$. NMR ($\&, \mathrm{CDCl}_{3}$), as that of Example 30 was a powder. 38.4% yield mp $136^{\circ}-142^{\circ} \mathrm{C}$. IR (Nujol) $3400,1730,1670,1590 \mathrm{~cm}^{-1}$. NMR (\&, DMSO-d ${ }_{6}$), $2.00(4 \mathrm{H}, \mathrm{m}), 3.3$ ($2 \mathrm{H}, \mathrm{m}$), 4.2-5.0 $(5 \mathrm{H}, \mathrm{m}), 7.3-7.4(7 \mathrm{H}, \mathrm{m}), 8.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}) \mathrm{ppm}$.

EXAMPLE 50

P-Nitrophenyl N-(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-phenylmethylcarbamate
The title compound was prepared in a similar manner as that of Example 10 as a powder, 39.6% yield mp $141^{\circ}-143^{\circ} \mathrm{C}$. IR (Nujol) 3340, 1730, 1690, 1660, 1630, $1520 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}), $1.2-1.8(6 \mathrm{H}, \mathrm{m}), 2.00$ $(4 \mathrm{H}, \mathrm{m}), 3.70(2 \mathrm{H}, \mathrm{m}), 4.2-5.0(7 \mathrm{H}, \mathrm{m}), 6.46(1 \mathrm{H}, \mathrm{m})$, $3.70(3 \mathrm{H}, \mathrm{s}), 3.70(2 \mathrm{H}, \mathrm{m}), 4.2-5.0(7 \mathrm{H}, \mathrm{m}) .6 .46(1 \mathrm{H}, \mathrm{br}$, $\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.3-7.6(7 \mathrm{H}, \mathrm{m})$, $8.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}) \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{10}$. C, $58.21 ; \mathrm{H}, 5.79 ; \mathrm{N}, 10.95$. Found: C, 57.97; H, 5.86; N, 10.89 .

EXAMPLE 51

N (N^{\prime}-t-Boc-L-prolyl)methyl-N-cyclohexylamine
The title compound was prepared in a similar manner as that of Example 13 as an oil, 43.9% yield. IR (Film) $3320,1690,1390 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}), 0.9-2.5 (15H, $\mathrm{m}), 1.47(9 \mathrm{H}, \mathrm{s}), 3.3-3.9(4 \mathrm{H}, \mathrm{m}), 4.33(1 \mathrm{H}, \mathrm{m}), \mathrm{ppm}$.

EXAMPLE 52

P-Nitrophenyl
50
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-cyclohexylcarbamate)
The title compound was prepared in a similar manner as that of Example 6 as an oil, 80.1% yield IR (Film) $1725,1690,1612,1590,1520 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}), 0.9-2.3 ($14 \mathrm{H}, \mathrm{m}$), $1.47(9 \mathrm{H}, \mathrm{s}), 3.3-4.0(3 \mathrm{H}, \mathrm{m}), 4.1-4.6$ $(3 \mathrm{H}, \mathrm{m}), 7.13(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5,9 \mathrm{~Hz}), 8.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9$ Hz) ppm.

EXAMPLE 53

P-Nitrophenyl
N -(L-prolylmethyl)-N-cyclohexylcarbamate
Hydrochloride
The title compound was prepared in a similar manner 65 as that of Example 30 as a powder, 77.3% yield, mp $146^{\circ}-158^{\circ}$ C. IR (Nujol) 1720, 1612, 1595, $1515 \mathrm{~cm}^{-1}$. NMR (\&, DMSO-d d_{6}) 1.1-2.6 (14H, m), 3.3-4.9 ($6 \mathrm{H}, \mathrm{m}$), $1.47(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5,9 \mathrm{~Hz}), 8.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}) \mathrm{ppm}$.

EXAMPLE 54
P-Nitrophenyl N-(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-Ncyclohexylcarbamate
The title compound was prepared in a similar manner as that of Example 10 as a powder, 62.9% yield mp $150^{\circ}-154^{\circ}$ C. IR(Nujol) 3345, 1735, 1690, 1655, 1595 cm^{-1}. NMR(\&, $\left.\mathrm{CDCl}_{3}\right), 1.2-2.4(14 \mathrm{H}, \mathrm{m}), 1.40(6 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.5 \mathrm{~Hz}), 2.66(4 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.5-5.0(8 \mathrm{H}, \mathrm{m}), 6.4$ $(1 \mathrm{H}, \mathrm{m}), 7.0(1 \mathrm{H}, \mathrm{m}), 7.4(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 8.33(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J} \doteq 9 \mathrm{~Hz}$). Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{10}$: C, $57.05 ; \mathrm{H}$, 6.49 ; N, 11.09. Found: C, $56.87 ;$ H, $6.54 ;$ N, 11.00

EXAMPLE 55

Pentafluorophenyl-N-(N'-t-Boc-L-prolyl methyl-N-isopropylcarbamate
This compound was prepared according to the procedure described in Example 6; NMR (CDCl_{3}) \& 1.1-1.4 $(\mathrm{m}, 6 \mathrm{H}), 1.48(\mathrm{~S}, 9 \mathrm{H}), 1.9-2.3(\mathrm{~m}, 4 \mathrm{H}, 3.4-3.8(\mathrm{~m}, 2 \mathrm{H})$, 4.2-4.7 (m, 4H); IR (Film) 1750, 1690, $1515 \mathrm{~cm}^{-1-t}$.

EXAMPLE 56

Pentafluorophenyl-N-(L-prolylmethyl)-N-isopropyl carbamate hydrochloride
This compound was prepared according to the procedure described in Example 8: mp $189^{\circ}-190^{\circ}$ C.; NMR (DMSO-d d_{6} \& 1.0-1.3 ($\mathrm{m}, 6 \mathrm{H}$), 1.7-2.3 ($\mathrm{m}, 4 \mathrm{H}$), 3.1-3.5 (m, 2H), 4.0-4.9 (M, 4H); IR (Nujol) $1750,1515 \mathrm{~cm}^{-1}$. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ClF}_{5} \mathrm{O}_{3}: \mathrm{C}, 46.11, \mathrm{H}, 4.35 ; \mathrm{N}$, $6.72, \mathrm{Cl}, 8.50$. Found: $\mathrm{C}, 45.94 ; \mathrm{H}, 4.38 ; \mathrm{N}, 6.66 ; \mathrm{Cl}, 8.67$.

EXAMPLE 57
Pentafluorophenyl N-(methyl
succinyl-L-analyl-L-alanyl-L-prolymethyl)-N-isopro-pyl-carbamate
This compound was prepared according to the proce- 40 dure described in Example 10: yield, 44%; mp $152^{\circ}-154^{\circ} \mathrm{C}$.; NRM $\left(\mathrm{CDCl}_{3}\right)$ \& $1.0-1.5(\mathrm{~m}, 12 \mathrm{H})$, 1.8-2.3 (m, 4H), 2.5-2.8 (m, 4H), 3.4-4.0 (m, 2H), 3.75 ($\mathrm{S}, 3 \mathrm{H}$), $4.0-5.0(\mathrm{~m}, 6 \mathrm{H}), 6.2-7.4$ (br, 2H), IR (Nujol) 3350, 1765, 1740, 1690, 1660, 1640, $1520 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{~F}_{4} \mathrm{O}_{8}: \mathrm{C}, 50.94, \mathrm{H}, 5.22 ; \mathrm{N}, 8.80$. Found: C, 50.85; H, 5.26; N, 8.78.

EXAMPLE 58

Heptafluorobutyl

N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-isopropyl carbamate
This compound was prepared following the same procedure as in Example 6: NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.13$ (d, $6 \mathrm{H}, \mathrm{J}-7 \mathrm{~Hz}$), $1.49(\mathrm{~S}, 9 \mathrm{H}), 1.8-2.2(\mathrm{~m}, 4 \mathrm{H}), 3.4-3.7(\mathrm{~m}$, 2 H), 4.0-5.0 (m, 6H); IR (Film) 1690-1740 cm^{-1}.

EXAMPLE 59

Heptafluorobutyl N -(L-prolylmethyl)-N-isopropyl carbamate hydrochloride
This compound was prepared following the procedure in Example 8; mp 149 ${ }^{\circ}-150^{\circ}$ C.; NMR (DMSO-d ${ }_{6}$) \& $1.11(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}-7 \mathrm{~Hz}), 1.7-2.3(\mathrm{~m}, 4 \mathrm{H}), 3.0-3.4(\mathrm{~m}, 2 \mathrm{H})$, 3.9-5.2 (m, 4H), $4.40(\mathrm{~S}, 2 \mathrm{H}), 9.7$ (br, 2H); IR(Nujol) 6 3410, 1745, $1710 \mathrm{~cm}^{-1}$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ClF}_{7} \mathrm{O}_{3}: \mathrm{C}_{1} 38.86 ; \mathrm{H}, 4.66 ; \mathrm{N}, 6.47$; Cl, 8.19. Found: C, 38.58; H, 4.68; N, 6.43; Cl, 8.20.

EXAMPLE 60

Heptafluorobutyl N-(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylcarbamate
This compound was prepared following the procedure in Example 10: Yield, 43%; mp $165^{\circ}-166^{\circ} \mathrm{C}$.; NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.16(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.38(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}-7$ Hz), 1.9-2.3 (m, 4H), 2.5-2.8 (m, 4H), $3.75(\mathrm{~S}, 3 \mathrm{H})$, $3.6-4.0(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~S}, 2 \mathrm{H}), 4.0-5.0(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), $7.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$); IR (nujol) 3350 , 1735, 1690, 1655, $1640,1525 \mathrm{~cm}^{-1}$. Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{~F}_{7} \mathrm{O}_{8}: \mathrm{C}, 46.01 ; \mathrm{H}, 5.41$; $\mathrm{N}, 8.59$. Found: C, 45.89; H, 5.42; N, 8.54.

EXAMPLE 61

S-Benzyl
N -(\mathbf{N}^{\prime}-t-Boc-L-prolyl)methyl-N-isopropylthiocarbamate

This compound was prepared according to the procedure described in Example 6 starting with S-benzyl chlorothioformate (J. J. Willard and E. Pacsu, J. Am. Chem. Soc., 82, 4317 (1960): NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.18$ (d, $6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$), $1.50(\mathrm{~S}, 9 \mathrm{H}), 1.8-2.4(\mathrm{~m}, 4 \mathrm{H}), 3.4-3.8(\mathrm{~m}$, 2H, 4.26 (S, 2H, 4.2-4.6 (m, 4H), 7.45 (S, 5H); IF (Film) $1740,1690,1640 \mathrm{~cm}^{-1}$.

EXAMPLE 62

S-Benzyl

-

(D.0 ${ }^{-1}$) \& $1.10(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 1.6-2.3(\mathrm{~m}, 4 \mathrm{H})$, $2 \mathrm{H}) .5(\mathrm{~m}, 2 \mathrm{H}), 4.6(\mathrm{~S}, 2 \mathrm{H}), 4.46(\mathrm{~S}, 2 \mathrm{H}), 4.2-4.8(\mathrm{~m}$, 2H), 7.41 (S, 5H), 9.7 (br, 2H), IR (Nujol) 1745, 1635, $1545 \mathrm{~cm}^{-1}$.

EXAMPLE 63

S-Benzyl N-(Methyl succinyl
-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylthiocarbamate
This compound was prepared according to the procedure described in Example 10: yield, 41%; mp $125^{\circ}-127^{\circ} \mathrm{C}$.; NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.0-1.5(\mathrm{~m}, 12 \mathrm{H})$, 1.7-2.3 (m, 4H), 2.4-2.8 (m, 4H), 3.4-3.9 (m, 2H), 3.80 (S, 3H) $<4.0-4.9$ (m, 9H), 7.50 (S, 5H): IR (Nujol) 3360, 1735, 1680, 1655, 1640, $1530 \mathrm{~cm}^{-1}$. Anal. calcd. for $\mathrm{C}^{28} \mathrm{H}^{40} \mathrm{~N}^{4} \mathrm{O}^{7} \mathrm{~S}:(\mathrm{C}, 58.23 ; \mathrm{H}, 6.99, \mathrm{~N}, 9.71, \mathrm{~S}, 5.56$ Found: C, 58.23, H, 7.00, N, 9.69, S, 5.55 .

EXAMPLE 64

N -(N '-t-Boc-L-prolyl)methyl-N-methylamine

Sodium iodide ($635 \mathrm{mg}, 4.23 \mathrm{mmol}$) and 40% methylaine aqueous solution ($6.9 \mathrm{ml}, 80.6 \mathrm{mmol}$) were added to an ice-cooled solution of product from Example $4(1.0 \mathrm{~g}, 4.03 \mathrm{mmol})$ in ethanol (10 ml). The mixture was shaken in a steel bomb at $65^{\circ} \mathrm{C}$. for 12 h and the solvent evaporated. Saturated solutions of NaHCO_{3} (5 $\mathrm{ml})$ and $\mathrm{NaCl}(5 \mathrm{ml})$ were added to the residual mixture. The resulting mixture was extracted into ether, evaporated and purified by silica gel column chromatography $\left(\mathrm{CHCl}^{3}: \mathrm{CH}^{3} \mathrm{OH}, 50: 1\right)$ to give $0.29 \mathrm{~g}(29.7 \%)$ of the title compound. NMR $\left(\mathrm{CDCl}^{3}\right) \& 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.7-2.1$ $(\mathrm{m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.3-3.7(\mathrm{~m}, 4 \mathrm{H}), 4.1-4.5(\mathrm{~m}, 1 \mathrm{H})$, IR (Film) 3340 (br), 1695 (br) c^{-1}.

EXAMPLE 65

p-Nitrophenyl
N -(N -t-Boc-L-prolylmethyl)-N-methylcarbamate
This compound was prepared in a manner similar to that for Example 6: yield 52%, NMR (CDCl^{3}) \& 1.49 (s , 9 H), 1.8-2.2 (m, 4H), 3.09-3.21 (br. s, 3H), 3.4-3.8 (m, 2 H), 4.3-4.6 (m, 3H), 7.2-7.0 (m, 2H), 8.2-8.5 (m, 2H), IR (Film) 1740-1670, 1615, 1590, 1520, $1497 \mathrm{~cm}^{-1}$.

EXAMPLE 66

p-Nitrophenyl N -(L-prolylmethyl)-N-methylcarbamate hydrochloride

This compound was prepared using the procedure of Example 8: yield 74%; mp $177^{\circ}-181^{\circ}$ (dec); NMR (DMSO-d ${ }^{6}$) \& 1.7-2.3 ($\mathrm{m}, 4 \mathrm{H}$), 2.9-3.7 ($\mathrm{m}, 5 \mathrm{H}$), 4.4-4.8 (m, 3H), 7.3-7.7 (m, 2H), 8.2-8.5 (m, 2H); IR (Nujol) $3530,3450,1735,1720,1612,1592,1550,1515 \mathrm{~cm}^{-1}$.

EXAMPLE 67

p-Nitropheny N -(methyl
succinyl-L-alanyl-L-alanyl-L-prolymethyl)-N-methylcarbamate
This compound was prepared using the procedure of Example 10: yield, $41 \%, \mathrm{mp} 105^{\circ}-110^{\circ} \mathrm{C}$., NMR $\left(\mathrm{CDCl}_{3}\right) \& 1.1-1.5(\mathrm{~m}, 6 \mathrm{H}), 1.8-2.2(\mathrm{~m}, 4 \mathrm{H}), 2.4-2.8(\mathrm{~m}$, 4 H), $3.0-3.4(\mathrm{~m}, 3 \mathrm{H}), 3.5-4.0(\mathrm{~m}, 2 \mathrm{H}, 3.73$ (S, 3 H), $4.2-5.0(\mathrm{~m}, 5 \mathrm{H}), 6.1-6.5(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.7(\mathrm{~m}, 3 \mathrm{H})$, 8.1-8.6 (m, 2H); $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3300,1735,1640,1520$ cm^{-1}. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{10}$: C, $53.28 ; \mathrm{H}, 5.90$; N, 12.43 Found: C, 53.53 ; H, 5.96; N, 12.36.

EXAMPLE 68

N-(N'-t-Boc-L-prolyl)methyl-N-t-butylamine
This compound was prepared following the same procedure as in Example 5: yield, 51%, NMR $\left(\mathrm{CDCl}_{3}\right)$ \& $1.12(\mathrm{~S}, 9 \mathrm{H}), 1.47(\mathrm{~S}, 9 \mathrm{H}), 1.8-2.2(\mathrm{~m}, 4 \mathrm{H}), 3.5-3.8(\mathrm{~m}$, 2 H), $3.74(\mathrm{~S}, 2 \mathrm{H}), 4.4-4.6(\mathrm{~m}, 1 \mathrm{H})$, IR (Film) 3320, 1710, $1690 \mathrm{~cm}^{-1}$.

EXAMPLE 69

p-Nitrophenyl N-(N'-t-Boc-L-prolyl methyl)-N-t-butylcarbamate

This compound was prepared using the procedure of Example 6: yellow oil, yield, 49%, NMR $\left(\mathrm{CDCl}_{3}\right)$ \& 1.48 (S, 9H), $1.51(\mathrm{~s}, 9 \mathrm{H}), 1.7-2.2(\mathrm{~m}, 4 \mathrm{H}), 3.4-3.7$ (m, $2 \mathrm{H}), 4.4-4.7(\mathrm{~m}, 3 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 2 \mathrm{H}), 8.1-8.4(\mathrm{~m}, 2 \mathrm{H})$; IR (Film) 1740, 1690 (br), 1615, $1593 \mathrm{c}^{-1}$.

EXAMPLE 70
p-Nitrophenyl N -(L-prolymethyl)-N-t-butylcarbamate hydrochloride
This compound was prepared using the procedure of Example 8: brown powder; yield, 61%; mp $85^{\circ}-90^{\circ} \mathrm{C}$. (dec); NMR (DMSO-d 6) \& 1.41 (S, 9H), 1.7-2.2 (m, $4 \mathrm{H}), 2.8-3.5(\mathrm{~m}, 2 \mathrm{H}), 4.0-4.9(\mathrm{~m}, 3 \mathrm{H}), 6.9-7.5(\mathrm{~m}, 2 \mathrm{H})$, $8.0-8.4(\mathrm{~m}, 2 \mathrm{H})$.

EXAMPLE 71
p-Nitrophenyl N-(Methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl-N-t-butylcarbamate
This compound was prepared using the procedure of 65 Example 10: colorless crystals; yield, 16%; mp $147^{\circ}-151^{\circ} \mathrm{C}$.; NMR $\left(\mathrm{CDCl}_{3}\right)$ \& $1.1-1.8(\mathrm{~m}, 15 \mathrm{H})$, $1.8-2.3(\mathrm{~m} \mathrm{4H}), 2.5-3.0(\mathrm{~m}, 4 \mathrm{H}), 3.6-4.1(\mathrm{~m}, 5 \mathrm{H}), 4.4-5.0$
t tate was 10% aqueous citric acid and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over anhydrous MgSO_{4}, and evaporated in vacuo to give an oil. The oil was purified by 60 column chromatography (silica gel 30 g) using 2% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluting solvent. The oil obtained was triturated with ether to give a powder of the compound (0.35 g)., 44.3% yield. mp. IR (CHCl_{3}): 3300 , 1730, 1680, 1640, $1520,1435 \mathrm{~cm}^{-1}$. NMR ($\&, \mathrm{CDCl}_{3}$): $0.9-1.6(12 \mathrm{H}, \mathrm{m}), 2.10(4 \mathrm{H}, \mathrm{m}), 2.63(4 \mathrm{H}, \mathrm{m}), 30-5.0$ $(12 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{S}), 6.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.16$ ($1 \mathrm{H}, \mathrm{m}$).

EXAMPLE 75

2-Pyridyl N-(N't-Boc-L-prolyl)methyl-N-isopropyl
To a solution of N -(N^{\prime}-t-Boc-L-prolyl)methyl- N -isopropylamine ($2.0 \mathrm{~g}, 7.4 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{ml}, 8.6$ mmol) in THF (12 ml) at $5^{\circ} \mathrm{C}$. was added a solution of the compound of Example $89(1.50 \mathrm{~g}, 8.64 \mathrm{mmol})$ IN THF (30 ml) for 3 min . The solution was stirred at $5^{\circ} \mathrm{C}$. for 45 min and then at r.t. for 2 hr . The precipitate was filtered off and the filtrate was evaporated in vacuo to give an oil. The oil was purified by silica gel column chromatography (solvent, 5% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 1.2 g of product as an oil 39.7% yield. IR (Film): 1735 (sh), $1690,1615,1570,1560 \mathrm{~cm}^{-1}$, NMR (\&, $\left.\mathrm{CDCl}_{3}\right) ; 1.23(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}), 1.53(9 \mathrm{H}, \mathrm{S}), 1.9-2.3(4 \mathrm{H}$, $\mathrm{m}), 3.3-3.8(2 \mathrm{H}, \mathrm{m}), 4.1-5.0(4 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{m}), 7.80$ $(2 \mathrm{H}, \mathrm{m}), 8.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz})$.

EXAMPLE 76

2-pyridyl
N -(L-prolylmethyl)-N-isopropylthiocarbamate Hydrochloride
HCl gas was passed through a solution of the compound of Example 75 ($1.1 \mathrm{~g}, 2.7 \mathrm{mmol}$) in ethyl acetate $(40 \mathrm{ml})$ at r.t. for 5 min . The solution was allowed to stand at r.t. for 20 min . Evaporation of the solvent gave a residue which was triturated with either to give a hygroscopic powder of product $(0.7 \mathrm{~g}) 76.3 \%$ yield. IR $\left(\mathrm{CHCl}_{3}\right)$: $1740,1645,1605,1545 \mathrm{~cm}^{-1}$, NMR ($\&$, DMSO-d ${ }_{6}$: $1.1-1.6(6 \mathrm{H}, \mathrm{m}), 1.8-2.2(4 \mathrm{H}, \mathrm{m}), 3.1-3.5$ $(2 \mathrm{H}, \mathrm{m}), 4.0-5.0(4 \mathrm{H}, \mathrm{m}), 7.5-8.2(3 \mathrm{H}, \mathrm{m}), 8.7(1 \mathrm{H}, \mathrm{m})$.

EXAMPLE 77

2-Pyridyl N-(Methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)- N -isopropylthiocarbamate
To a solution of methyl succinyl-L-alanyl-L-alanine ($0140 \mathrm{~g}, 1.46 \mathrm{mmol}$) and N -methylmorpholine (0.16 ml , 1.46 mmol) in THF (12 ml) at $-15^{\circ} \mathrm{C}$. was added a solution of isobutyl chloroformate ($0.20 \mathrm{ml}, 1.53 \mathrm{mmol}$) in THF (15 mol) for 3 min . The mixture was stirred at $-15^{\circ} \mathrm{C}$. for 10 min . To the mixture at $-15^{\circ} \mathrm{C}$. was added a suspension of the compound of Example 76. ($0.50 \mathrm{~g}, 1.46 \mathrm{mmol}$) and N-methylmorpholine (0.19 ml , 1.73 mmol) in acetonitrile (14 ml). The mixture was stirred at $-15^{\circ} \mathrm{C}$. for 0.5 hr and then at r.t. for 2.5 hr . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was wahed with 10% aqueous citric acid, dried over anhydrous MgSO_{4}, and evaporated in vacuo to give an oil. The oil was triturated with ether to give a hygroscopic powder of desired compounds. (0.16 g). $\mathrm{mp} .19 .5 \%$ yield. IR $\left(\mathrm{CHCl}_{3}\right): 3300,1730,1650,1520$ cm^{-1}. NMR ($\left.\&, \mathrm{CDCl}_{3}\right): 1.1-1.6(12 \mathrm{H}, \mathrm{m}), 2.03(4 \mathrm{H}$, m), $2.60(4 \mathrm{H}, \mathrm{m}), 3.5-40(2 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{S}), 4.1-5.2$ $(6 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}), 7.15-7.53(2 \mathrm{H}, \mathrm{m}), 7.66$ $(2 \mathrm{H}, \mathrm{m}), 8.60(1 \mathrm{H}, \mathrm{brd}, \mathrm{J}=5 \mathrm{~Hz})$.

EXAMPLE 78

2-Benzothiazolyl
N -(N^{\prime}-t-Boc-L-prolyl)methyl-N-isopropylthiolcarbamate
To a solution of the compound of Example $5(0.54 \mathrm{~g}$, $2.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{ml}, 4.0 \mathrm{mmol})$ in THF (5 ml) 65 at $5^{\circ} \mathrm{C}$. was added a solution of compound $90(0.9 \mathrm{~g}, 3.8$ mmol) in THF (5 ml). The mixture was stirred at $5^{\circ} \mathrm{C}$. for 2 hr . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The organic layer was washed successively with $\mathrm{H}_{2} \mathrm{O}$, 10% aqueous citric acid, $\mathrm{H}_{2} \mathrm{O}$, and saturated NaCl solution, dried over anhydrous MgSO_{4}, and evaporated in vacuo to give an oil. The oil was purified by silica gel column chromatography (solvent, CHCl_{3}) to give a 0.51 g of the compound as an oil. 55.1% yield. IR (Film): 1735, 1680, 1390, $1150 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}): $1.27(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 1.50(9 \mathrm{H}, \mathrm{S}), 1.8-2.2(4 \mathrm{H}, \mathrm{m}), 3.50$ ($2 \mathrm{H}, \mathrm{m}$), $4.0-4.7(4 \mathrm{H}, \mathrm{m}), 7.20-7.66(2 \mathrm{H}, \mathrm{m}), 7.80-8.20$ (2H, m).

EXAMPLE 79

2-Benzothizolyl
N -(L-prolylmethyl)-N-isopropylthiocarbamate
HCl gas was passed through a solution of the compound of Example $78(0.51 \mathrm{~g}, 1.1 \mathrm{mmol})$ in a mixture of ethyl acetate (7 ml) and formic acid $(1 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$. for 5 min . The solution was allowed to stand at r.t. for 10 min 0 and then evaporated in vacuo. To the oily residue was added ethyl acetate and the ethyl acetate was evaporated in vacuo. This operation was repeated three times. The residue obtained was triturated with ether to give a powder which was collected and washed with ether to give the compound (0.36 g), 82.3% yield. mp. $150^{\circ}-156^{\circ}$ C. IR (Nujol): $1745,1655,1545 \mathrm{~cm}^{-}$. NMR (\&, DMSO$\mathrm{d}_{6}$): $1.23(6 \mathrm{H}, \mathrm{d}, 7 \mathrm{~Hz}), 1.7-2.2(4 \mathrm{H}, \mathrm{m}), 3.0-3.6(2 \mathrm{H}, \mathrm{m})$, 4.0-5.0 ($4 \mathrm{H}, \mathrm{m}$), 7.43-7.66 ($2 \mathrm{H}, \mathrm{m}$), 7.9-8.3 ($2 \mathrm{H}, \mathrm{m}$). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$. $\mathrm{HCl} .0 .5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.93$; 30 H, 5.67; N, 10.27. Found: c, 49.94, H, 5.64; N, 10.40.

EXAMPLE 80

2-Benzothiazolyl N -(methyl

 succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylthiocarbamateTo a solution of methyl succinyl-L-alanyl-L-alanine $(0.257 \mathrm{~g}, 0.936 \mathrm{mmol}$) and N -methylmorpholine (94.5 $\mathrm{mg}, 0.936 \mathrm{mmol}$) in acetonitrile (4 ml) at $-15^{\circ} \mathrm{C}$. was added a solution of isobutyl chloroformate (128 mg , 0.936 mmol) in acetonitrile (2 ml). The mixture was stirred at $-15^{\circ} \mathrm{C}$. and there was added a suspension of the compound of Example $79(0.340 \mathrm{~g}, 0.851 \mathrm{mmol})$ and N -methylmorpholine ($103 \mathrm{mg}, 1.02 \mathrm{mmol}$) in acetonitrile (6 ml). The mixture was stirred at $-10^{\circ} \mathrm{C}$. for 15 min and then at $5^{\circ} \mathrm{C}$. for 1 hr 50 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed successively with 10% aqueous citric acid, water, and saturated NaCl solution and dried over anhydrous MgSO_{4}. Evaporation of the solvent gave a crude oil which was purified by silica gel column chromatography (solvent, 3% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give a 0.47 g of crystalline residue. Recrystallization of the crystals from tethyl acetate-hexane gave 0.35 g of desired compound. 66.4% yield. mp $169^{\circ}-171^{\circ}$ C. IR (Nujol): $3350,1730,1690,1655,1530 \mathrm{~cm}^{-1}$. NMR ($\&$, $\left.\mathrm{CDCl}_{3}\right): 1.0-1.6(12 \mathrm{H}, \mathrm{m}), 2.1(4 \mathrm{H}, \mathrm{m}), 2.63(4 \mathrm{H}, \mathrm{m})$, $3.5-4.0(2 \mathrm{H}, \mathrm{m}), 3,70(3 \mathrm{H}, \mathrm{S}), 4.0-5.1(6 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}$, brd, $J=7 \mathrm{~Hz}$), $7.3-8.2,(5 \mathrm{H}, \mathrm{m})$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$: C, 54.27; H, 6.02; $\mathrm{N}, 11.30$. Found $=\mathrm{C}$, 54.15; H, 6.03; N, 11.22.

EXAMPLE 81

1-Propyl-5-tetrazolyl
N -(N^{\prime}-5-Boc-L-prolyl)methyl-N-isopropylthiocarbamate
To a solution of a compound $5(2.38 \mathrm{~g}, 8.8 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.76 \mathrm{~g}, 0.0174 \mathrm{~mol})$ in acetonitrile $(10 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$.
was added a solution of the compound of Example 91. ($3.0 \mathrm{~g}, 0.015 \mathrm{~mol}$) in acetonitrile (8 ml) for 3 min . The mixture was stirred at $5^{\circ} \mathrm{C}$. for 1 hr and then at r .t. for 2 hrs. The reaction mixture was evaorated in vacuo to give a residue which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated NaCl solution, dried over anhydrous MgSO_{4}, and evaporated in vacuo. The oil was purified by silica gel column chromatography (solvent, 10% ethyl acetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give 1.1 g of the compound as an oil. 29.8% yield. IR (Film): 1735, 1680, $1390 \mathrm{~cm}^{-1}$. NMR (\&, $\left.\mathrm{CDCl}_{3}\right): 1.00(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.33(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz})$, $1.50(9 \mathrm{H}, \mathrm{S}), 1.8-2.4(6 \mathrm{H}, \mathrm{m}), 3.53(2 \mathrm{H}, \mathrm{m}), 4.0-4.8(4 \mathrm{H}$, $\mathrm{m}), 4.37(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$.

EXAMPLE 82

1-Propyl-5-tetrazolyl
N -(L-prolylmethyl)- N -isopropylthiocarbamate Hydrochloride
HCl gas was passed through a solution of the compound of Example $81(1.1 \mathrm{~g}, 2.6 \mathrm{mmol})$ in a mixture of ethyl acetate (8 ml) and formic acid (6 ml) ar r.t. for 3 min . The solution was allowed to stand at r.t. for 10 min . The reaction mixture was evaporated in vacuo to give an oil. To this oil was added ethyl acetate and the ethyl acetate was evaporated in vacuo. The oil was triturated with ether to give a hygroscopic powder of $90(0.4 \mathrm{~g})$. NMR (\&, DMSO-d ${ }_{6}$) $=0.9-1.6(9 \mathrm{H}, \mathrm{m})$, $1.7-2.3(6 \mathrm{H}, \mathrm{m}), 3.2-4.0(2 \mathrm{H}, \mathrm{m}), 4.0-5.0(6 \mathrm{H}, \mathrm{m})$.

EXAMPLE 83

1-Propyl-5-tetrazolyl N-(methyl succinyl-L-analyl-L-alanyl-L-prolylmethyl)-N-isopropylthiocarbamate
To a solution of methyl succinyl-L-Alanyl-L-alanine $(0.325 \mathrm{~g}, 1.31 \mathrm{mmol})$ and N -methylmorpholine $(0.132 \mathrm{~g}$, $1.31 \mathrm{mmol})$ in THF (3 ml) at $-15^{\circ} \mathrm{C}$. was added a solution of isobutyl chloroformate ($0.179 \mathrm{~g}, 1.31 \mathrm{mmol}$) in THF (1 ml). The mixture was stirred at $-15^{\circ} \mathrm{C}$. for 10 min . To the mixture was added a suspension of the compound of Example $83(0.35 \mathrm{~g}, 0.93 \mathrm{mmol})$ and N methylmorpholine ($0.15 \mathrm{~g}, 1.5 \mathrm{mmol}$) in acetonitrile (4 $\mathrm{ml})$. The mixture was stirred at $-10^{\circ} \mathrm{C}$. for 0.5 hr and then at $5^{\circ} \mathrm{C}$. for 4 hrs . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}$. The organic layer was washed successively with 10% aqueous citric acid, water and saturated NaCl solution, dried over MgSO_{4}, and evaporated in vacuo. The oil obtained was purified by silica gel column chromatography (solvent, 3% methanol in CHCl_{3}) to give 0.13 g of the compound as an oil. The oil was crystallized from ethyl acetate-hexane to give 39 mg . 7.0% yield, mp $107^{\circ}-108^{\circ} \mathrm{C}$. IR (Nujol): 3350 , $1735,1685,1655,1530 \mathrm{~cm}^{-1}$. NMR (\& CDCl_{3}): 1.00 $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 1.0-1.7$ ($12 \mathrm{H}, \mathrm{m}$), 1.7-2.3 ($6 \mathrm{~h}, \mathrm{~m}$), 2.66 $(4 \mathrm{H}, \mathrm{m}), 3.5-4.0(2 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H} \mathrm{S}), 4.0-5.1(8 \mathrm{H}, \mathrm{m})$, $6.83(1 \mathrm{H}, \mathrm{d}, 8 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{m})$.

EXAMPLE 84

$\mathrm{N}-\mathrm{N}^{\prime}$-t-Boc-L-prolyl)methyl-N-2-propynylamine

To a solution of (N-t-Boc-L-prolyl)chloromethane $(2.0 \mathrm{~g}, 8.1 \mathrm{mmol})$ in ether $(50 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$. was added 2 -propynylamine ($2.2 \mathrm{ml}, 0.032 \mathrm{~mol}$). The solution was stirred at $5^{\circ} \mathrm{C}$. for 1.5 hr and then at r.t. for 1 hr . The precipitate was filtered off and washed with ether. The filtrate was evaporated in vacuo to give an oil. The oil was purified by silica gel column chromatography (solvent, 3% methanol in CHCl_{3}) to give 1.1 g of the com-
pound as an oil. 51% yield, IR (Film): 3200-3500, 1690, $1400 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}): 1.43 ($9 \mathrm{H}, \mathrm{S}$), 1.7-2.1 $(4 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{brS}), 3.3-3.8(6 \mathrm{H}, \mathrm{m}), 4.3(1 \mathrm{H}, \mathrm{m})$.

EXAMPLE 85

p-Nitrophenyl
N -(N^{\prime}-5-Boc-L-prolyl)methyl-N-2-propynylcarbamate
To a solution of the compound of Example $84(1.0 \mathrm{~g}$, 3.76 mmol) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.65 \mathrm{ml}, 4.7 \mathrm{mmol}$) in THF (12 ml) at $5^{\circ} \mathrm{C}$. was added a solution of p -nitrophenyl chloroformate ($0.75 \mathrm{~g}, 3.72 \mathrm{mmol}$) in THF (4 ml). The mixture was stirred at $5^{\circ} \mathrm{C}$. for 1 hr and then at r.t. for 2 hr . The reaction mixture was filtered and the filtrate was evaporated in vacuo. The oil was purified by silica gel column chromatography (solvent, CHCl_{3}) to give an oil $(1.60 \mathrm{~g}) .98 .9 \%$ yield, IR (Film): 1730, 1680, 1610, 1590 cm^{-1}. NMR (\&, CDCl_{3}): 1.43 ($\left.9 \mathrm{H}, \mathrm{S}\right), 2.0(4 \mathrm{H}, \mathrm{m}), 2.43$ $(1 \mathrm{H}, \mathrm{brS}), 3.6-4.8(7 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, \mathrm{m}), 8.33(2 \mathrm{H}, \mathrm{brd}$, $\mathrm{J}=8 \mathrm{~Hz}$).

EXAMPLE 86
 P-Nitrophenyl
 N -(L-prolylmethyl)-N-2-propynylcarbamate
 Hydrochloride

HCl gas was passed through a solution of the compound of Example 85 . ($1.40 \mathrm{~g}, 3.25 \mathrm{mmol}$) in ether (40 $\mathrm{ml})$ at r.t. for 5 min . The solution was allowed to stand at r.t. for 15 min . The reaction mixture was evaporated in vacuo to give a residue. Trituration of the oil with ether gave a powder (0.36 g) of the compound. 30.1% yield, $\mathrm{mp} 141^{\circ}-152^{\circ} \mathrm{C}$. IR (Nujol): 3300, 1740, 1720, $1610,1590,1515 \mathrm{~cm}^{-1}$. NMR (\&, DMSO-d 6): $2.0(4 \mathrm{H}$, m), 2.40 ($1 \mathrm{H}, \mathrm{brS}$), 3.3-3.7 ($2 \mathrm{H}, \mathrm{m}$), 4.0-4.8 ($5 \mathrm{H}, \mathrm{m}$), 7.40 $(2 \mathrm{H}, \mathrm{brd}, \mathrm{J}=8 \mathrm{~Hz}), 8.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$.

EXAMPLE 87

-p-Nitrophenyl N-(methyl
succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-Npropynylcarbamate
To a solution of methyl succinyl-L-alanyl-L-alanine ($0.27 \mathrm{~g}, 0.99 \mathrm{mmol}$) and N -methylmorpholine $(0.11 \mathrm{ml}$, 1.0 mmol) in THF (12 ml) at $-15^{\circ} \mathrm{C}$. was added a solution of isobutyl chloroformate ($0.13 \mathrm{~g}, 0.95 \mathrm{mmol}$) in THF. The mixture was stirred at $-15^{\circ} \mathrm{C}$. for 15 min . To the mixture was added a mixture of the compound $86(0.35 \mathrm{~g}, 0.95 \mathrm{mmol})$, N-methylmorpholine (0.11 ml , $1.0 \mathrm{mmol})$, and bis(trimethylsilyl)acetamide (1.5 ml) in THF (14 ml). The mixture was stirred at $-15^{\circ} \mathrm{C}$. for 1 hr . and then at $\mathrm{r} . \mathrm{t}$. for 2.5 hr . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with 10% aqueous citric acid, dried over anhydrous MgSO_{4}, and evaporated in vacuo to give an oil. The oil was purified by silica gel column chromatography (solvent, 5% methanol in CHCl_{3}) to give an oil. Trituration with ether gave a powder (0.21 g) of the compound. 37.7% yield. mp. $160^{\circ}-163^{\circ} \mathrm{C}$. IR (Nujol): 3340,1740 , 1690, 1655, 1635, 1595, $1520 \mathrm{~cm}^{-1}$. NMR (\&, CDCl_{3}): 1.33 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$), $2.03(4 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{brS}), 2.60$ $(4 \mathrm{H}, \mathrm{m}), 3.5-4.0(2 . \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{S}), 4.1-5.0(7 \mathrm{H}, \mathrm{m})$, $6.40(1 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}), 7.33(2 \mathrm{H}, \mathrm{m}), 8.30$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}$).

EXAMPLE 88

2-Thioxo 3-thiazolidinecarbonyl chloride

A solution of 2 -mercaptothiazoline $(2.0 \mathrm{~g}, 0.0168$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.9 \mathrm{ml}, 0.021 \mathrm{~mol})$ in THF (30 ml) was
added dropwise to a solution of phosgene $(2.37 \mathrm{~g}$, $0.0239 \mathrm{~mol})$ in toluene (12 ml) at $5^{\circ} \mathrm{C}$. for 7 min . The mixture was stirred at $5^{\circ} \mathrm{C}$. for 5 min and then filtered to remove the precipitate. The filtrate was evaporated in vacuo to give a crystalline residue. To the residue was added ether (10 ml) and the ether was evaporated in vacuo. This operation was repeated twice. 2-Thioxo-3thiazolidinecarbonyl chloride ($2,0 \mathrm{~g}$) was obtained as a solid. 65.5% yield. IR (Nujol).

EXAMPLE 89

2-Pyridyl thiochloroformate

A solution of 2-mercaptopyridine ($1.50 \mathrm{~g}, 0.0135 \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{ml}, 0.018 \mathrm{~mol})$ in THF (24 ml) was added dropwise to a solution of phosgene $(1.53 \mathrm{~g}, 0.015 \mathrm{~mol})$ in toluene (8 ml) at $5^{\circ} \mathrm{C}$. for 6 min . The mixture was stirred at $5^{\circ} \mathrm{C}$. for 5 min and then at r.t. for 5 min . The reaction mixture was filtered and the filtrate was evaporated in vacuo. To the residue was added ether and the ether was evaporated. This operation was repeated twice. An oil of the compound (1.5 g) was obtained 63.9% yield. IR (Film): $1765 \mathrm{c}^{-1}$.

EXAMPLE 90

2-Benzothiazolyl thiochloroformate

A solution of 2-mercaptobenzothiazole ($0.669 \mathrm{~g}, 4.0$ mmol) and $\mathrm{Et}_{3} \mathrm{~N}(0.61 \mathrm{ml}, 4.4 \mathrm{mmol})$ in THF (5 ml) was added to a solution of phosgene ($0.59 \mathrm{~g}, 6.0 \mathrm{mmol}$) in toluene (3.1 ml) at $5^{\circ} \mathrm{C}$. for 15 min . To the mixture was added acetonitrile (3 ml). The mixture was stirred at 5° C. for 0.5 hr . The precipitate was filtered and washed with THF. The filtrate was evaporated in vacuo to give a solid (0.9 g). IR $($ Nujol $)=1775,1605 \mathrm{~cm}^{-1}$.

EXAMPLE 9

1-Propyl-5-tetrazolyl thiochloroformate

A solution of 5 -mercapto-1-propyltetrazole $(2.5 \mathrm{~g}$ $0.0174 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.65 \mathrm{ml}, 0.0101 \mathrm{~mol})$ in acetonitrile (10 ml) was added to the solution of phosgene (2.58 $\mathrm{g}, 0.0260 \mathrm{~mol})$ in toluene $(13.5 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$. for 50 min . The mixture was stirred at $5^{\circ} \mathrm{C}$. for 50 min . The precipitate was filtered off and washed with THF. The filtrate was evaporated in vacuo to give an oil (3.1 g). IR (Film): $1775,1720 \mathrm{~cm}^{-1}$. NMR (\&, $\left.\mathrm{CDCl}_{3}\right)=1.00(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 2.10(2 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}, \mathrm{m})$.

EXAMPLE 92

N-Trifluoroacetyl-L-alanyl-L-alanine

This compound was prepared according to the method by Schallenberg et al [E. E. Schallenberg and M. Calvin, J. Amer. Chem. Soc. 77, 2779 (1955); J. L. Dimicoli et al. Biochemistry 15, 2230 (1976)]; yield based on alanyl-a-alanine, 71.3%; mp $225^{\circ}-235^{\circ}$ C. (dec) NMR (DMSO- $\mathrm{d}_{6} \& 1.42(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, \mathrm{~J}=7$ $\mathrm{Hz}, 3 \mathrm{H}), 4.54(\mathrm{l}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 8.46 (d, J=7 Hz, 1H); IR (Nujol) 3330, 3310, 3270, 1705, $1665,1545 \mathrm{~cm}^{-1}$.

EXAMPLE 93

Pentafluorophenyl

N -(trifluoroacetyl-L-alanyl-L-alanyl-L-prolylmethyl)N -isopropylcarbamate
This compound was prepared in a similar manner as Example 10 colorless powder; yield 20.3%, mp $85^{\circ}-88^{\circ}$ C., NMR (CDCl_{3}), \& 0.9-1.9 ($\mathrm{m}, 12 \mathrm{H}$), 1.9-2.5 (m, 4H), 3.3-5.0 (m, 8H), IR (Film) 3420 (b), 1715, 1670, 1555
cm^{-1}. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{~F}_{8} \mathrm{O}_{6}$: $\mathrm{C}, 46.61 ; \mathrm{H}, 4.24$; N, 9.06. Found C, 46.74, H, 4.27, N, 9.04.

EXAMPLE 94

Heptafluorobutyl chloroformate

Triethylamine ($3.66 \mathrm{ml}, 26.3 \mathrm{mmol}$) was added dropwise to a solution of heptafluorobutanol ($3.1 \mathrm{ml}, 25$ mmol) and phosgene ($3.3 \mathrm{~g}, 30 \mathrm{mmol}$) in benzene (26 ml) at $5^{\circ} \mathrm{C}$. The mixture was stirred at $5^{\circ} \mathrm{C}$. for 30 min and at room temperature for 2 h , filtered and distilled. The product distilled with benzene and was was used in the next step without further purification. NMR $\left(\mathrm{CDCl}_{3}\right)$ \& $4.70\left(5,2 H, J=12.5 \mathrm{~Hz} ;\right.$ IR (Film) $1785 \mathrm{~cm}^{-1}$.

EXAMPLE 95
Pentafluorophenyl chloroformate
This compound was prepared according to the procedure in Example 94: IR (Film) $1800,1525 \mathrm{~cm}^{-1}$.

EXAMPLE 86

1-Phenyl-5-tetrazolyl chlorodithioformate

To a solution of thiophosgene ($1.29 \mathrm{~g}, 0.0112 \mathrm{~mol}$) in THF (40 ml) at $5^{\circ} \mathrm{C}$. was added a solution of 1-phenyl1 H -tetrazole-5-thiol ($2.0 \mathrm{~g}, 0.0112 \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.94$ $\mathrm{ml}, 0.0134 \mathrm{~mol}$) in THF (30 ml). The mixture was stirred at $5^{\circ} \mathrm{C}$. for 30 min and then at r.t. for 1 hr .20 min . The precipitate was filtered and washed with THF. The filtrate was evaporated in vacuo. To the obtained residue was added ether and the insoluble material was filtered off. The filtrate was evaporated in vacuo to give a solid which was recrystallized from CHCl_{3}-hexane. 0.91 g of the compound was obtained. 27.6% yield. IR (Nujol): 1725, $1585 \mathrm{~cm}^{-1}$.

EXAMPLE 97

1-Phenyl-5-tetrazolyl

N -(N^{\prime}-5-Boc-L-prolyl)methyl-N-isopropyldithiocarbamate
To a solution of compound $5(1.30 \mathrm{~g}, 4.81 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.83 \mathrm{ml}, 5.7 \mathrm{mmol})$ in THF (14 ml) at $5^{\circ} \mathrm{C}$. was added a solution of the compound of Example 96 (1.40 $\mathrm{g}, 4.77 \mathrm{mmol}$ in THF (14 ml) for 10 min . The solution was stirred at $5^{\circ} \mathrm{C}$. for 2 hr and then at r.t. for 2 hr . The precipitate was filtered and washed with THF. The filtrate was evaporated in vacuo and the obtained oil was purified by silica gel column chromatography (solvent, CHCl_{3}) to give 1.30 g of the compound as an oil. 51.8% yield. IR (Film): 1740, 1690, 1595, $1395 \mathrm{~cm}^{-1}$. NMR (\&, CDCl ${ }_{3}$): 1.0-1.6 ($6 \mathrm{H}, \mathrm{m}$), $1.50(9 \mathrm{H}, \mathrm{S}), 1.8-2.3$ $(4 \mathrm{H}, \mathrm{m}), 3.3-4.8(6 \mathrm{H}, \mathrm{m}), 7.63(5 \mathrm{H}, \mathrm{S})$.

EXAMPLE 98

1-Phenyl-5-tetrazolyl
N -(L-prolylmethyl)-N-isopropyldithiocarbamate
Hydrochloride
HCl gas was passed through a solution of compound $97(1.20 \mathrm{~g}, 2.28 \mathrm{mmol})$ in ether $(50 \mathrm{ml})$ at r.t. for 8 min . The solution was allowed to stand at r.t. for 15 min . The reaction mixture was evaporated in vacuo to give an oil of the compound $(0.85 \mathrm{~g}), 87.4 \%$ yield. NMR ($\&$, DMSO-d ${ }_{6}$): $1.0-1.6(6 \mathrm{H}, \mathrm{m}), 1.8-2.3(4 \mathrm{H}, \mathrm{m}), 3.3-4.8$ ($6 \mathrm{H}, \mathrm{m}$), $7.73(5 \mathrm{H}, \mathrm{S})$.

EXAMPLE 99

1-Phenyl-5-tetrazolyl N-(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropyldithiocarbamate
To a solution of methyl succinyl-L-alanyl-L-alanine ($9.60 \mathrm{~g}, 2.20 \mathrm{mmol}$) and N-methylmorpholine (9.24 ml , $2.19 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ at -15° was added a solution of isobutyl chloroformate ($0.28 \mathrm{ml}, 2.13 \mathrm{mmol}$) in THF (5 ml). The mixture was stirred at $-15^{\circ} \mathrm{C}$. for 15 min . To the mixture was added a mixture of compound $98(0.80 \mathrm{~g}, 1.86 \mathrm{mmol})$, N-methylmorpholine (0.24 ml , 2.19 mmol), and bis(trimethylsilyl)acetamide (2 ml) in THF (14 ml). The mixture was stirred at $-{ }^{-15} \mathrm{C}$ for 0.5 hr and then at $\mathrm{r} . \mathrm{t}$. for 2 hr . The reaction mixture was di-
luted with CHCl_{3}. The organic layer was washed with 10% aqueous citric acid, dried over anhydrous MgSO_{4}, and evaporated in vacuo to give an oil. The oil was crystallized from CHCl_{3}-hexane to give crystals of 5 compound 99. NMR (\&, CDCl_{3}); 0.9-1.6 ($12 \mathrm{H}, \mathrm{m}$), 2.0 $(4 \mathrm{H}, \mathrm{m}), 2.53(4 \mathrm{H}, \mathrm{m}), 3.5-3.8(2 \mathrm{H}, \mathrm{m}), 3.63(3 \mathrm{H}, \mathrm{s})$, $4.0-5.0(6 \mathrm{H}, \mathrm{m}), 7.0(1 \mathrm{H}, \mathrm{m}), 7.13-7.8(5 \mathrm{H}, \mathrm{m})$.

The procedures described in Schemes I and II above and the following Schemes III, IV, V and VI were 10 followed in preparing the compounds of the working examples described above. Set forth hereinafter are Schemes III, IV, V and VI with the compounds prepared in the examples being indicated. The compounds of the intermediates and final products are identified by 15 example numbers adjacent the definitions of R and R^{\prime}.

-continued

Scheme III

(A)

(B)

A	B
$16: R^{\prime}=\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}=\mathrm{SMT}$	$17: \mathrm{R}^{\prime}=\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}=\mathrm{SMT}$

20: $\mathrm{R}^{\prime}=-\longrightarrow, \mathrm{R}=\mathrm{SMT}$
21: $\mathbf{R}^{\prime}=-\quad \mathrm{R}=\mathrm{SMT}$
24: $\mathrm{R}^{\prime}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}=$ SMT
25: $\mathbf{R}^{\prime}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}=\mathrm{SMT}$
28: $\mathbf{R}^{\prime}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{R}=\mathbf{O N P}$
$30: R^{\prime}=-\quad, \quad \mathrm{R}=\mathrm{ONP}$
31: $\mathrm{R}^{\prime}=\longrightarrow, \mathrm{R}=\mathrm{ONP}$
34: $\mathrm{R}^{\prime}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{R}=\mathrm{SMT}$
35: $\mathrm{R}^{\prime}=\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{R}=\mathrm{SMT}$

41: $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{R}=$ SMT
45: $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{ONP}$ 49: $\mathbf{R}^{\prime}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}=\mathrm{ONP}$

(A)

(B)

B

64: $\mathrm{R}^{\prime}=\mathrm{CH}_{3}$

68: $\mathrm{R}^{\prime}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
58: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{OCH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$

84: $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
61: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{S}-\mathrm{CH}_{2}$
69: $\mathrm{R}^{\prime}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{R}=\mathrm{ONP}$
72: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{N}^{\text {N }}$
75: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{S}-\langle$

78: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$,

81: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{S}-\mathrm{C}_{\mathrm{C}}^{\mathrm{N}-\mathrm{N}}$
85: $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}, \mathrm{R}=\mathrm{ONP}$

(A)

(B)

B

59: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{OCH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$
60: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=\mathrm{OCH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$

63: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{SCH}_{2}$
66: $\mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}=\mathrm{ONP}$
70: $\mathrm{R}^{\prime}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{R}=\mathrm{ONP}$
67: $\mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{R}=\mathrm{ONP}$
73: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{N}^{\text {S }}$
74: $\mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{R}=-\mathrm{N}^{\text {S }}$

Scheme III

83: $\mathbf{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathbf{R}=$

86: $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}, \mathrm{R}=\mathrm{ONP}$
87: $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}, \mathrm{R}=\mathrm{ONP}$

Scheme IV
$\mathrm{R}-\mathrm{H}+\mathrm{COCl}_{2} \longrightarrow \mathrm{RCOCl}$.
(A)

$\mathbf{R}=\mathrm{OCH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$

Scheme V

$$
\mathrm{CF}_{3} \mathrm{CO}-\mathrm{Ala}-\mathrm{Ala}+
$$

92

35

93
9145

50

96

As pointed out above, the compounds of the invention are useful as elastase inhibitors. To evaluate the compounds, the inhibitory activity of the compounds were tested in vitro against the serine dependent proteolytic enzymes, trypsin, chymotrypsin and porcine pancreatic elastase. All three enzymes belong to the family of serine proteases where the catalytic residues are composed of a triad of amino acid residues, serine, histidine
and aspartic acid that actually perform the peptide bond hydrolysis. In addition to the catalytic residues, the active site is composed of an extended substrate binding site that consists of a primary substrate binding site S_{1}, 5 and various subsites on either side of the scissile bond.

The terminology of Schechter and Berger, Biochem. Biophys. Res. Commun., 27, 157 1980) is used where $\mathrm{S}_{2}-\mathrm{S}_{1}-\mathrm{S}_{1}-\mathrm{S}_{2}{ }^{\prime}$ refer to subsites on both sides of the catalytic site of the enzyme and the notation P on the sub10 strate (or inhibitor) denotes amino acid residues which bind to these enzyme subsites, such that $\mathrm{P}_{1}-\mathrm{P}_{1}{ }^{\prime}$ represents the bond which is cleaved. Substrate specificity studies with HL elastase, Powers et al, Biochem, Biophys, Acta., 485, p. 156, (1977), have shown that substrates with the sequence MeOSuc-Ala-Ala-Pro-Val (representing $\mathrm{P}_{5}-\mathrm{P}_{4}-\mathrm{P}_{3}-\mathrm{P}_{2}-\mathrm{P}_{1}$ are highly reactive with the enzyme. The same sequence, although not ideal with PP elastase, was found to react with it effectively. In fact, HL elastase is similar to the more widely studied
20 PP elastase in many respects. They are both serine proteases that show esterase activity toward synthetic substrates such as Boc-Ala-ONp and are both inhibited by α_{1}-anti-trypsin. Furthermore, the natural substrates of these enzymes are very similar.
The results of these evaluations are set forth in the following Tables 1,2 , and 3 . The compounds tested as shown in Tables 1, 2, 3, and 4 were prepared as described above.

TABLE 1

TABLE 1-continued

Compound No.	Peptidyl Carbamates ($\mathrm{ROCONR}^{\prime} \mathbf{R}^{\prime \prime}$) where $\mathrm{NR}^{\prime} \mathbf{R}^{\prime \prime}$ is a Polypeptide Effect of changes in P_{1}^{\prime} on inhibitory activity towards PP elastase. ${ }^{(*)}$		
	$\begin{gathered} \mathrm{Ki} \\ (\mu \mathrm{M}) \end{gathered}$	Comments	$\mathrm{mp}^{\text {a }}\left({ }^{\circ} \mathrm{C}.\right)$
		-	~ 50

(*) NONE OF THE LISTED COMPOUNDS EXHIBITED INHIBITION TOWARDS TRYPSIN AND CHYMOTRYPSIN

+ AT LEAST 70% INHIBITION OF PP ELASTASE OBSERVED IN 30 MIN AT $\frac{[I]}{[E]}=260,[1] \sim 150 \mu \mathrm{M}$
- NO INHIBITION OF PP ELASTASE AT [I] < $150 \mu \mathrm{M}$ USING [E] $=0.61 \mu \mathrm{M}$
${ }^{a}$ ALL COMPOUNDS WERE NOVEL AND WERE IDENTIFIED BY SPECTRAL DATA AND ELEMENTAL ANALYSES.

TABLE 2

Compound No.	Peptidyl Carbamates ($\mathrm{ROCONR}^{\prime} \mathrm{R}^{\prime \prime}$) where $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{N}$ is a Polypeptide: Effect of changes in \mathbf{P}_{1} on inhibitory activity towards PP elastase. ${ }^{\text {. }}$			
		$\begin{gathered} \mathrm{Ki} \\ (\mu \mathrm{M}) \end{gathered}$	Comments	$\mathrm{mp}^{a}\left({ }^{\circ} \mathrm{C}.\right)$
10		42.5	+	153-163
29		30.5	$+$	161-166
32			+	155-160
68			+	105-110
72			-	147-151

(*) NONE OF THE LISTED COMPOUNDS EXHIBITED INHIBITION TOWARDS TRYPSIN AND CHYMOTRYPSIN

+ AT LEAST 70% INHIBITION OF PP ELASTASE OBSERVED IN $30 \mathrm{MIN} \mathrm{AT} \frac{[\mathrm{I}]}{[E]}=260,[\mathrm{II}] \sim 150 \mu \mathrm{M}$
- NO INHIBITION OF PP ELASTASE AT [I] < $150 \mu \mathrm{M}$ USING [E] $=0.61 \mu \mathrm{M}$
${ }^{a}$ ALL COMPOUNDS WERE NOVEL AND WERE IDENTIFIED BY SPECTRAL DATA AND ELEMENTAL ANALYSIS.

TABLE 3

TABLE 3-continued

Compound No.	Peptidyl Carbamates (ROCONR'R") where $R^{\prime} R^{\prime \prime} N$ is a polypeptide Effect of Variations in P_{5} and P_{3} on inhibitory activity towards PP elastase				
			$\begin{gathered} \mathrm{Ki} \\ (\mu \mathrm{M}) \end{gathered}$	Comments	$\mathrm{mp}^{\text {a }}$ (${ }^{\circ} \mathrm{C}$.)
93			49.0	$+$	85-88

+ AT LEAST 95% INHIBITION OF PP ELASTASE OBSERVED IN 30 MIN AT $\frac{[I]}{[E]}=260,[I] \sim 150 \mu \mathrm{M}$ ${ }^{a}$ ALL COMPOUNDS WERE NOVEL AND WERE IDENTIFIED BY SPECTRAL DATA AND ELEMENTAL ANALYSIS.

TABLE 4

TABLE 4-continued

No ${ }^{=}$	Peptidyl Carbamates: Relative inhibitory activity towards PP and HL elastase.								HLE ${ }^{(2)}$
	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P^{\prime}	PPE ${ }^{(1)}$	
51		c	a	a				-	-
55								-	-

$\left.{ }^{(1)}\right)_{39}>26>18=43>36>22$
${ }^{(2)} 39>43=18>26>22=36$

- No inhibition at $[\mathrm{I}]<150 \mu \mathrm{M}$ using $[\mathrm{E}]=0.61 \mu \mathrm{M}$.
* Not tested for HLE

As will be apparent from the above tables, the useful peptidyl carbamates of the invention were found to exhibit specific inhibition of porcine pancreatic elastase without affecting the other two enzymes. The rate and extent of inhibition could be effected by varying the structure of R and R^{\prime}. As shown from kinetic parameters when R is p-nitrophenol, and R^{\prime} was varied, all the peptidyl carbamates inhibited PP elastase except when \mathbf{R}^{\prime} was a tert-butyl group. As shown in Table 4, when R^{\prime} is cyclohexyl and benzyl, the compounds are also inactive. In all cases the inhibition was specific and competitive. When R^{\prime} was kept as an isopropyl group and R varied, it was found that when R is an aromatic alcohol or thio-heterocycle with good nucleofugicity, the peptidyl carbamates were specific inhibitors of elastase. However, when R was an aliphatic alcohol or thioalcohol it was found that polyhalogenated groups give better inhibitors than simple hydrocarbons. When compounds where the extended chain was shortened into two amino acids, were tested against the serine proteases, it was found that the inhibitory activity of the carbamates disappeared. Moreover, the nature of the protecting group $\left(\mathrm{P}_{5}\right)$ seemed to affect the affinity of the inhibitor for the enzyme. In all these cases the inhibition was studied at different substrate and inhibitor concentrations and the mode of inhibition determined from Lineweaver-Burk and Dixon plots. Ki values were calculated from the latter. Active peptidyl carbamate inhibitors were found to have a Ki value ranging from 49 $\mu \mathrm{M}$ to $14.8 \mu \mathrm{M}$. The Km value for the substrate used (BOC-Ala-ONp) was $4800 \mu \mathrm{M}$. The enzymatic activity of PP elastase after treatment with the inhibitor(s) was also tested using the natural substrate elastin-congo red.
In contrast to chloromethyl ketone inhibitors, the carbamate esters of the invention do not inhibit the enzyme permanently as evidenced by the recovery of enzymatic activity of PP elastase in 72 h after inhibition. This reversibility of inhibition, along with the hydrolysis of 6 by PP elastase (as detected by the release of p-nitrophenol) support the mechanism of inhibition proposed herein.
The following abbreviations are used in this specification:
BOC $=$ t-Butyloxy carbonyl, $\quad \mathrm{Ala}=\mathrm{L}$-alanine, Pro $=$ L-proline,\quad Val $=\mathrm{L}$-valine,$\quad \mathrm{ONp}=$ p-nitrophenol, $\mathrm{PP}=$ porcine pancreatic, $\mathrm{HL}=$ human leukocyte. All amino acids used herein are L-amino acids.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

What is claimed is:

1. A compound of the following general formula:

wherein Z is selected from the group consisting of $\mathrm{R}^{\prime \prime} \mathrm{O}$-Suc- where $\mathrm{R}^{\prime \prime}$ is lower alkyl of 1 to 3 carbon atoms and $\mathrm{CF}_{3} \mathrm{CO}-$; X is oxygen or sulfur; R^{\prime} is selected from the group consisting of straight or secondary branch-chained alkyl of 1 to 4 carbon atoms, alkenyl of 2 to 3 carbon atoms, alkynyl of 2 to 4 carbon atoms, cycioalkyl of 3 to 6 carbon atoms, and benzyl, and \mathbf{R} is selected from the group consisting of substituted or unsubstituted phenyl wherein the substituents are selected from the group consisting of nitro, and pentafluoro; benzyl, $\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1-lower alkyl tetrazolyl, 1-phenyltetrazolyl, 2-thioxo-3- thiazolidinyl-, pyridyl and benzothiazolyl, provided that when R is paranitrophenyl, \mathbf{R}^{\prime} is other than tertiary-butyl, benzyl or cyclohexyl, and when X is sulfur, R is other than ben0 zyl .
2. A compound according to claim 1 wherein Z is $\mathrm{CH}_{3} \mathrm{O}-\mathrm{Suc}-$.
3. A compound according to claim 1 wherein R^{\prime} is selected from the group consisting of $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, cyclopropyl, cyclohexyl, and benzyl.
4. A compound according to claim 1 wherein R is para-nitrophenyl.
5. A compound according to claim 1 wherein R is phenyl.
6. A compound according to claim 1 wherein R is perfluorophenyl.
7. A compound according to claim 1 wherein R is $-\mathrm{OCH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$.
8. A compound according to claim 1 wherein R is 1-lower alkyltetrazolyl or 1-phenyltetrazolyl.
9. A compound according to claim 1 wherein R is pyridyl.
10. A compound according to claim 1 wherein R is 2-thioxo-3-thiazolidinyl.
11. A compound according to claim 1 wherein R is benzothiazolyl.
12. A compound according to claim $\mathbf{1}$ wherein Z is 5 $\mathrm{CH}_{3} \mathrm{OSuc}-$, R^{\prime} is $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, and R is 1 -methyltetrazolyl.
13. A compound of the following general formula:

1-Phenyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylthiol carbamate; and
1-Methyl-5-tetrazolyl N-(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-allylthiocarbamate.
18. Elastase inhibitor compositions comprising a carrier, and an elastase inhibiting-effective amount of an effective compound of the following formula:

wherein X is O or S and wherein R is selected from the 1 group consisting of phenyl, nitrophenyl, fluorophenyl, $-\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1-lower alkyltetrazolyl, 1-phenyltetrazolyl, benzyl, 2-thioxo-3-thiazolidinyl, pyridyl, and benzothiazolyl, and R^{\prime} is selected from the group consisting of straight or secondary branch-chained alkyl of 20 1 to 4 carbons, alkenyl of 2 to 3 carbon atoms, alkynl of 2 to 4 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, and benzyl, provided that when R is p-nitrophenyl, R^{\prime} is other than tertiary-butyl, benzyl or cyclohexyl, and when X is sulfur R is other then benzyl.
14. A compound according to claim 12 wherein R is p-nitrophenyl and R^{\prime} is isopropyl.
15. A compound according to claim 13 wherein R is 1 -methyltetrazolyl, and R^{\prime} is isopropyl.
16. A compound of the formula:

wherein Z^{\prime} is selected from the group consisting of 40 $\mathrm{MeO}-\mathrm{Suc}-\mathrm{Ala}$-Ala and $\mathrm{CF}_{3} \mathrm{CO}$-Ala-Ala.
17. A compound according to claim 1 selected from the group consisting of:
p-Nitrophenyl N -(Methyl succinyl-L-alanyl-L-alanyl-
L-prolylmethyl)-N-isopropyl carbamate;
Phenyl N-(Methyl Succinyl-L-Alanyl-L-Alanyl-L-Prolyl Methyl)-N-Isopropyl Carbamate;
Pentafluorophenyl N -(methyl succinyl-L-alanyl-L-ala-nyl-L-prolymethyl)-N-isopropyl-carbamate;
Heptafluorobutyl N -(methyl succinyl-L-alanyl-L-ala- 50 nyl-L-prolylmethyl) N-isopropylcarbamate;
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)- N -isopropylthiocarbamate;
P-Nitrophenyl N-(Methyl succinyl-L-alanyl-L-alanyl-L-propylmethyl) N-propylcarbamate;
P-Nitrophenyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-cyclopropylcarbamate;
p-Nitrophenyl-N-(Methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-methyl-carbamate;
Pentafluorophenyl N-(trifluoroacetyl-L-alanyl-L-ala- 60 nyl-L-prolylmethyl)-N-isopropylcarbamate;
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-cyclopropylthiocarbamate;
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L- 65 alanyl-L-prolylmethyl)-N-propylthiocarbamate.
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-propylmethyl)-N-butylthiocarbamate;
$\mathrm{R}^{\prime \prime} \mathrm{O}$-Suc- where $\mathrm{R}^{\prime \prime}$ is lower alkyl of 1 to 3 carbon atoms and $\mathrm{CF}_{3} \mathrm{CO}-$; X is oxygen or sulfur; R^{\prime} is selected from the group consisting of straight or secondary branch-chained alkyl of 1 to 4 carbon atoms, alkenyl of 2 to 3 carbon atoms, alkynyl of 2 to 4 carbon atoms, cycloalkyl of 3 to 6 carbon atoms, and benzyl, and R is selected from the group consisting of substituted or unsubstituted phenyl wherein the substituents are selected from the group consisting of nitro, and pentafluoro; benzyl, $\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1-lower alkyl tetrazolyl, 1-phenyltetrazolyl, 2-thioxo-3-thiazolidinyl-, pyridyl and benzothiazolyl, provided that when R is paranitrophenyl, R^{\prime} is other than tertiary-butyl, benzyl or cyclohexyl, and when X is sulfur, R is other than benzyl.
19. A composition according to claim 20 wherein Z is $\mathrm{CH}_{3} \mathrm{O}$-Suc- and wherein R^{\prime} is selected from the group consisting of $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}-$ 3 ,- $\mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, cyclopropyl, cyclohexyl, and benzyl.
20. A composition according to claim 19 wherein R is selected from the group consisting of para-nitrophenoyl, perfluorophenyl, $\mathrm{OCH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CH}_{3}$, 1-methyltetrazolyl, 1-phenyltetrazolyl, 2-thioxo-3-thiazolidinyl, pyridyl and benzothiazolyl.
21. A composition according to claim 18 wherein Z is $\mathrm{CH}_{3} \mathrm{OSuc}-, \mathrm{R}^{\prime}$ is isopropyl, and R is 1 -methyltetrazolyl.

22. A composition according to claim 18 wherein the composition contains an elastase-inhibiting amount of a compound of the formula:

wherein X is oxygen or sulfur, R is selected from the group consisting of phenyl, p-nitrophenyl, pentafluorophenyl, $-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$, 1-methyltetrazolyl, 1-phenyltetrazolyl, 2-thioxo-3-thiazolidinyl, pyridyl, benzyl and benzothiazolyl, and R^{\prime} is selected from the group consisting of lower alkyl, lower alkenyl, lower alkynl, and benzyl, provided that when R is p -
nitrophenyl, R^{\prime} is other than tert-butyl, and when X is sulfur R is other than benzyl.
23. A composition according to claim 22 wherein R is p-nitrophenyl and \mathbf{R}^{\prime} is isopropyl.
24. A composition according to claim 22 wherein R is 1 -methyl or 1-phenyltetrazolyl, and \mathbf{R}^{\prime} is isopropyl.
25. A composition according to claim 18 wherein the composition contains an elastase-inhibiting amount of a compound of the formula:

wherein Z is as defined in claim 18.
26. A composition according to claim 18 wherein the effective compound is selected from the group consisting of:
p-Nitrophenyl N-Methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropyl carbamate;
Phenyl N-(Methyl Succinyl-L-Alanyl-L-Alanyl-L-Prolyl Methyl)-N-Isopropyl Carbamate;
Pentafluorophenyl N-(methylsuccinyl-L-alanyl-L-ala-nyl-L-prolymethyl)-N-isopropyl-carbamate;
Heptafluorobutyl N-(methyl succinyl-L-alanyl-L-ala-nyl-L-prolylmethyl) N -isopropylcarbamate;
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-isopropylthiocarbamate;

P-Nitrophenyl N-(Methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl) N-propylcarbamate;
P-Nitrophenyl N-(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-cyclopropylcarbamate;
5 p-Nitrophenyl-N-(Methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-methyl-carbamate;
Pentafluorophenyl N -(trifluoroacetyl-L-alanyl-L-ala-nyl-L-prolylmethyl)-N-isopropylcarbamate;
1-Methyl-5-tetrazolyl N -methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-cyclopropylthiocarbamate;
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)-N-propylthiocarbamate.
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-propylmethyl)-N-butylthiocarbamate;
1-Phenyl-5-tetrazolyl N-(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)- N -isopropylthio carbamate; and
1-Methyl-5-tetrazolyl N -(methyl succinyl-L-alanyl-L-alanyl-L-prolylmethyl)- N -allylthiocarbamate.
27. A composition according to claim 18 wherein the effective ingredient is present in a concentration of about 0.001 to 2.0 weight percent in an inert carrier or adjuvent.
28. A method for inhibiting the enzyme elastase in animals and humans which comprises administration thereto of a composition of claim 18.
29. A method for inhibiting the enzyme elastase in animals and humans which comprises administration 30 thereof of a composition of claim 22.
30. A method for inhibiting the enzyme elastase in animals and humans which comprises administration thereto of a composition of claim 26.

