
University of Kentucky
UKnowledge

Electrical and Computer Engineering Faculty
Patents Electrical and Computer Engineering

12-14-1999

Method for Testing Field Programmable Gate
Arrays
Charles E. Stroud
University of Kentucky

Miron Abramovici

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ece_patents

Part of the Electrical and Computer Engineering Commons

This Patent is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in
Electrical and Computer Engineering Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Recommended Citation
Stroud, Charles E. and Abramovici, Miron, "Method for Testing Field Programmable Gate Arrays" (1999). Electrical and Computer
Engineering Faculty Patents. 10.
https://uknowledge.uky.edu/ece_patents/10

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232572154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/ece_patents?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/ece_patents?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/ece?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/ece_patents?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/ece_patents/10?utm_source=uknowledge.uky.edu%2Fece_patents%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu

US006003150A

United States Patent [19]
Stroud et al.

6,003,150
Dec. 14, 1999

[11] Patent Number:

[45] Date of Patent:

[54] METHOD FOR TESTING FIELD
PROGRAMMABLE GATE ARRAYS

[75] Inventors: Charles E. Stroud, Lexington, Ky.;
Miron Abramovici, Murray Hill, NJ.

[73] Assignees: Lucent Technologies Inc., Murray Hill,
N.J.; University of Kentucky Research
Foundation, Lexington, Ky.

[21] Appl. No.: 08/974,799

[22] Filed: Nov. 20, 1997

Related US. Application Data

[63] Continuation of application No. 08/595,729, Feb. 2, 1996,

5,090,015 2/1992 Dabbish et al. 371/22.5

5,107,208 4/1992 Lee 324/158 R

5,179,561 1/1993 IZaWa et al. 371/52

5,260,946 11/1993 Nunally . 371/22.1
5,278,841 1/1994 Myers 371/20.6

5,347,519 9/1994 Cooke et al. 371/22.2

5,361,264 11/1994 Lewis 371/22.5

5,430,734 7/1995 Gilson . 371/22.2
5,475,624 12/1995 West 364/578

5,488,612 1/1996 Heybruck 371/22.2
5,508,636 4/1996 Mange et al. 326/38

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Nadeem Iqbal
Attorney, Agent, or Firm—King and Schickli

[57] ABSTRACT

A method of testing ?eld programmable gate arrays
abandoned‘ (FPGAs) includes the step of con?guring programmable

[51] Int. Cl.6 G06F 11/00 logic blocks of the FPGAS for Completing a built-in self-test.
[52] US. Cl. 714/725; 395/500.17 This is followed by the steps of initiating the built-in
[58] Field of Search 371/222 22 33 self-test, generating test patterns With the programmable

371 22 6 25 ,1 2'7 2? logic blocks and analyzing a resulting response to produce
395/183_06 ‘18,307’ 183:6 560,05 ‘50017’ a pass/fail indication With the programmable logic blocks.

500 18. 364/4188 489’ 580. 3,2 4 /765. ’714/725’ More speci?cally, the con?guring step includes establishing
' ’ 7,27 7,33 7,35 30 27’. 365/201’ a ?rst group of programmable logic blocks as test pattern

’ ’ ’ ’ ’ generators and output response analyzers and a second

[56] References Cited group of programmable logic blocks as blocks under test.
The blocks under test are then repeatedly recongifured in

Us PATENT DOCUMENTS order to completely test each block under test in all possible

Re 34 445 11/1993 Hayes et al 371/21 1 modes of operation. The programming of the ?rst and
44147669 11/1983 Heckelmanet'alf...................... 371/4'9 Second groups of Programmable logic blocks is then
4:757:503 7/1988 Hayes et a1_ _______ __ __ 371/21 reversed and the testing of each neW block under test is then
4,817,093 3/1989 Jacobs et al. 371/25 Completed.
5,051,996 9/1991 Bergeson et al. .. 371/22.4
5,081,297 1/1992 Lebel et al. 395/325 15 Claims, 1 Drawing Sheet

/ 22
O outputs I

BUT \ L ORA 1
m outputs . 20 LUT FF I K

to n BUTs : r \
O outputs \ /

. BUT / \ 26
m inputs , 24 .

18 0 O 22

: . \ 20 2 4 . / O O
18 \

BUT I '71 (ORA
m outputs T

Q 20 LUT FF
TPG to n BUTs : / r

- BUT / 26 t — O rou s of n ORAs C TPGS m mp“ S 0/ #vpurs g p

C groups of n BUTs 20

6,003,150
1

METHOD FOR TESTING FIELD
PROGRAMMABLE GATE ARRAYS

This is a continuation of application Ser. No. 08/595,729,
?led Feb. 2, 1996, noW abandoned.

TECHNICAL FIELD

The present invention relates generally to the ?eld of
testing of integrated circuit devices and, more particularly, to
a method of diagnostic testing applicable to ?eld program
mable gate arrays.

BACKGROUND OF THE INVENTION

A ?eld programmable gate array (FPGA) is a type of
integrated circuit consisting of an array of programmable
logic blocks interconnected by programmable routing
resources and programmable I/O cells. Programming of
these logic blocks, routing resources and I/O cells is selec
tively completed to make the necessary interconnections that
establish a con?guration thereof to provide desired system
operation/function for a particular circuit application.

Of course, it is desirable to complete diagnostic testing of
all types of integrated circuits including FPGAs in order to
check the functionality of the various programmable logic
blocks, routing resources and I/O cells of the FPGAs. Since
FPGAs are programmable, hoWever, the diagnostic testing
thereof is complicated by the need to cover all possible
modes of operation and even many non-classical fault
models (faults effecting the programmable interconnect
netWork, delay faults, etc.).

In past diagnostic testing approaches, special test transis
tors and circuits have been added to each FPGA integrated
circuit. These additional test transistors and circuits increase
the complexity and space requirements or “area overhead”
of the FPGAs. In fact, the siZe of the FPGAs is typically
increased betWeen 10—30% in order to accommodate the
built-in test circuitry and signi?cant delay penalties in the
operating speed of the FPGAs result.

It should further be noted that in current state of the art
testing procedures, tests are generated manually by con?g
uring the FPGAs into several application circuits. The
FPGAs so con?gured are then exercised With test vectors
developed speci?cally for each application circuit. Since
these circuits all share the same set of faults, FPGAs are
rejected even if a fault is detected in only one of their
circuits.

While this is an effective testing procedure, it does suffer
from a number of draWbacks. For example, since all the
application circuits must be simulated to complete testing
for stuck-at faults, fault simulation in accordance With this
procedure is very expensive. Additionally, the tests require
a signi?cant amount of time to complete and relatively
sophisticated and expensive automatic test equipment (ATE)
must be utiliZed.

Further, it should be appreciated that the FPGA manufac
turing tests presently utiliZed are not reusable for board and
system-level testing. Hence, additional developmental effort
is required in order to complete a testing procedure at the
system-level. The state of the art approach to system-level
testing of FPGAs focuses upon the development of off-line
system diagnostic routines to test the FPGAs in the system
mode of operation. The development of these routines is
costly and time consuming. This, of course, is another
signi?cant draWback to state of the art FPGA diagnostic
testing.

5

10

15

20

25

30

35

40

45

55

60

65

2
A need is therefore identi?ed for an improved approach

for completing diagnostic testing of FPGAs.

SUMMARY OF THE INVENTION

Accordingly, it is a primary object of the present invention
to provide a method of testing FPGAs overcoming the
above-described limitations and disadvantages of the prior
art.

Another object of the present invention is to provide a
method of testing FPGAs that exploits the reprogrammabil
ity of the FPGAs to create built-in self-test (BIST) logic
advantageously alloWing off-line testing at both the manu
facturing and system levels.

Yet another object of the present invention is to provide a
simple and improved method of testing FPGAs Wherein the
FPGAs are temporarily programmed for built-in self-testing
and the need to provide separate test circuitry on the FPGA
is eliminated. Advantageously, this reduces area overhead
alloWing the use of smaller FPGAs With substantially faster
system operating times for a given system function.

Yet another object of the present invention is to provide a
BIST approach for testing FPGAs alloWing both manufac
turing and ?eld level testing of digital systems that is
particularly advantageous; providing high fault coverage
testing at the system operating frequency. Accordingly,
diagnostic run time is reduced and diagnostic softWare
development is simpli?ed. The reduction in the diagnostic
run time advantageously results in the reduction in the mean
time necessary to repair the system being tested. This
effectively functions to increase system availability and,
therefore, overall system productivity. Of course, the reduc
tions in the time necessary to develop the diagnostic code
also advantageously result in reduced development cost and
system overhead.

Additional objects, advantages and other novel features of
the invention Will be set forth in part in the description that
folloWs and in part Will become apparent to those skilled in
the art upon examination of the folloWing or may be learned
With the practice of the invention. The objects and advan
tages of the invention may be realiZed and obtained by
means of the instrumentalities and combinations particularly
pointed out in the appended claims.

To achieve the foregoing and other objects, and in accor
dance With the purposes of the present invention as
described herein, a neW and improved method is provided
for testing FPGAs. The method may be broadly de?ned as
including the steps of con?guring the programmable logic
blocks of an FPGA for completing a built-in self-test,
initiating the built-in self-test, generating test patterns With
the programmable logic blocks and analyZing the resulting
response With the programmable logic blocks in order to
produce a pass/fail indication. Advantageously, the present
method is applicable to any in-circuit reprogrammable
FPGA, such as SRAM-based FPGAs. It is also applicable to
all levels of testing including Wafer, package, board and
system. Further, all tests are performed at normal operating
frequencies, thus providing at-speed testing to detect any
delay faults While signi?cantly reducing the diagnostic test
times over those possible With prior art approaches.
More speci?cally describing the invention, the con?gur

ing step includes establishing a ?rst group of programmable
logic blocks in an FPGA as test pattern generators and output
response analyZers. The con?guring step also includes the
step of establishing a second group of programmable logic
blocks in the same FPGA as blocks under test. By repeatedly
recon?guring each block under test, each block under test is

6,003,150
3

completely tested in all possible modes of operation. Pseu
doexhaustive testing is used to provide maximum fault
coverage totally independent of the intended system func
tion of the FPGAs.

This is folloWed by the step of reversing the programming
of the ?rst and second groups of programmable logic blocks
so that the ?rst group is established as blocks under test and
the second group is established as test pattern generators and
output response analyZers. Then folloWs the step of repeat
edly recon?guring each block under test in the ?rst group of
FPGAs in order to test each such block completely in all
possible modes of operation. Since every programmable
logic block is individually tested, the present diagnostic
testing method advantageously provides in-system location
of defective devices. Such diagnostic resolution is not
alWays possible With state of the art test systems. This, of
course, functions to reduce repair time as Well as repair costs
by enabling one to repair or replace only those components
that are actually defective.

Still other objects of the present invention Will become
apparent to those skilled in this art from the folloWing
description Wherein there is shoWn and described a preferred
embodiment of this invention, simply by Way of illustration
of one of the modes best suited to carry out the invention. As
it Will be realiZed, the invention is capable of other different
embodiments and its several details are capable of modi?
cation in various, obvious aspects all Without departing from
the invention. Accordingly, the draWings and descriptions
Will be regarded as illustrative in nature and not as restric
tive.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying draWing incorporated in and forming
a part of the speci?cation, illustrates several aspects of the
present invention and together With the description serves to
explain the principles of the invention. In the draWing:

FIG. 1 is a schematical block diagram shoWing the
structure of a typical programmable logic block of a ?eld
programmable gate array (FPGA); and

FIG. 2 is a schematical block diagram illustrating a FPGA
structure temporarily programmed for diagnostic testing in
accordance With the method of the present invention.

Reference Will noW be made in detail to the present
preferred embodiment of the invention, an example of Which
is illustrated in the accompanying draWing.

DETAILED DESCRIPTION OF THE
INVENTION

The method of the present invention for diagnostic testing
of FPGAs Will noW be described in detail. The method may
be described as a sequence of test phases each phase
consisting of a series of simple steps. The ?rst of these steps
is the con?guring of the programmable logic blocks of an
FPGA for completing a built-in self-test (BIST). Next is the
initiating of the BIST. This step is then folloWed by gener
ating test patterns With the programmable logic blocks. Next
is the analyZing of the resulting response to produce a
pass/fail indication. This analyZing step is also completed
With the programmable logic blocks of the FPGA being
tested. Lastly, the method may include the step of reading
the test results.

As should be appreciated, the con?guring, initiating and
reading steps are all performed by a test controller such as
automatic test equipment (ATE), a central processing unit
(CPU) or a maintenance processor. Typically an ATE of a

10

15

20

25

30

35

40

55

60

65

4
type knoWn in the art is utiliZed for Wafer/package testing.
Typically a CPU or maintenance processor of a type also
knoWn in the art is utiliZed for board/system testing. More
speci?cally, the test controller interacts With the FPGAs to
be tested to con?gure the FPGA logic. This is done by
retrieving a BIST con?guration from the con?guration stor
age of the test controller and loading it into the FPGAs.

In accordance With the con?guring scheme, the method
includes the steps of establishing a ?rst group of program
mable logic blocks as test pattern generators and output
response analyZers. Further, the method includes the step of
establishing a second group of programmable logic blocks
as blocks under test. Once the programmable logic blocks
are fully con?gured in the tWo groups, the test controller
initiates the BIST. The test strategy relies upon pseudoex
haustive testing. Accordingly, every subcircuit of the FPGA
is tested With exhaustive patterns. This results in maximal
fault coverage Without the explicit fault model assumptions
and fault simulations that must necessarily be developed
With prior art testing approaches. Of course, many FPGAs
contain RAM modules for Which exhaustive testing is
impractical. For these modules, the test controller utiliZes
standardiZed state of the art RAM test sequences Which are
knoWn to be exhaustive for the fault models speci?c to
RAMs.

Reference is noW made to FIG. 1 shoWing a program
mable logic block, generally designated by reference
numeral 10. The programmable logic block 10 comprises a
memory block 12, a ?ip-?op block 14 and a combinational
output logic block 16. Such a structure is, for example,
featured in the AT&T ORCAprogrammable function unit, in
the Xilinx XC4000 con?gurable logic block and the in
ALTERA FLEX 8000 logic element. The memory block 12
may be con?gured as RAMs or combination look-up tables
(LUTs). The ?ip ?ops in the ?ip ?op block 14 may also be
con?gured as latches although other programming options
With synchronous and asynchronous Set and Reset, Clock
Enable, etc. could be provided. Usually, the output block or
cell 16 contains multiplexers (MUX) to connect different
signal lines to the output of the programmable logic block
10. Usually this cell has no feed back loops and the ?ip ?ops
can be directly accessed by by-passing the LUT (as shoWn
by the dashed line in draWing FIG. 1). Advantageously, the
inputs and outputs of every subcircuit in this type of simple
structure are easy to control and observe. This simpli?es the
pseudoexhaustive testing of the cell.

Advantageously, the present testing method is particularly
adapted to perform output response analysis by means of
direct comparison. Such an approach is dif?cult to utiliZe in
most prior art BIST applications because of the expense
involved in storing the reference response or in generating it
from a copy of the circuit under test. In accordance With the
present method, hoWever, the circuits under test are identical
programmable logic blocks 10 and all that is needed is to
create the output response analyZers to compare their out
puts.

Unlike signature-based compression circuits used in most
other BIST applications, comparator-based output response
analyZers do not suffer from the aliasing problem that occurs
When some faulty circuits produce the good circuit signa
ture. Essentially, as long as the programmable logic blocks
under test 20 being compared by the same output response
analyZer do not fail in the same Way at the same time, no
aliasing is encountered With the comparison-based approach

6,003,150
5

of the present invention. While it should be appreciated that
if the blocks under test 20 are fed by the same faulty test
pattern generator the applied test Will be incomplete and a
faulty programmable logic block under test may escape
detection, this problem may be avoided by con?guring the
logic so that the different test pattern generators feed the
blocks under test 20 being compared by the same output
response analyZer. Further, all test pattern generators must
be synchroniZed to generate the same test pattern at the same
time.

Based upon the above described approach, the con?gur
ing step outlined above includes establishing a ?rst group of
programmable logic blocks 10 as exhaustive test pattern
generators 18 and comparison-based output response ana
lyZers 22. Additionally, the con?guring step includes estab
lishing a second group of programmable logic blocks 10 as
blocks under test (BUTs) 20. Further, the method includes
the steps of repeatedly recon?guring each BUT 20 in order
to test each BUT in all modes of operation. Accordingly, a
test session may be de?ned as a sequence of test phases or
con?gurations that completely tests the BUTs 20. Once the
BUTs 20 have been exhaustively tested the roles of the
programmable logic blocks 10 are changed, that is: the
programming of the ?rst and second groups of program
mable logic blocks 10 is reversed so that the ?rst group is
established as BUTs 20 and the second group is established
as test pattern generators 18 and output response analyZers
22. It should therefore be appreciated that at least tWo test
sessions are required to test all of the programmable logic
blocks 10. Advantageously, it should be noted that all the
BUTs 20 are tested in parallel With this approach.
Accordingly, the BIST run time is not dependent on the siZe
of the FPGA.
Of course, an important goal of the testing strategy is to

minimiZe the number of test sessions and thereby minimiZe
the testing time and effectively reduce testing cost. An FPGA
con?gured for a test session is illustrated in FIG. 2. The test
pattern generators 18 Work as binary counters in order to
supply exhaustive test patterns to the m-input BUTs 20 in
most of the test con?gurations. Since the programmable
logic block 10 has more inputs than outputs, several pro
grammable logic blocks are required to construct a single
m-bit counter. Of course, When the memory block 12 is
con?gured as RAM, the test pattern generators 18 Work as
p-bit state machines (Wherein p>m) in order to generate
standard RAM test sequences.

As noted above, different test pattern generators 18 must
be used to feed the BUTs 20. Thus the number of test pattern
generators 18 required for the BIST is equal to C Where C
represents the number of programmable logic block outputs
that may be compressed by a single response analyZer 22.
Each output response analyZer 22 comprises a look up table
24 for comparing the corresponding output from the C BUTs
and a ?ip ?op 26 to record the ?rst mismatch. As shoWn in
FIG. 2 the feedback from the ?ip ?op 26 is output to an input
of the look up table 24. Thus, a mismatch disables further
comparisons by the output response analyZer 22 once the
?rst error is recorded.

As also illustrated in FIG. 2, several output response
analyZers 22 may be implemented in the same program
mable logic block 10 depending upon the number of inde
pendent look up tables 24 in the programmable logic block.
The look up tables 24 are considered to be independent if
their set of inputs are disjoint in at least one programmable
logic block con?guration. Each one of the C test pattern
generators 18 drives a group of n BUTs. Each BUT has
m-inputs and O-outputs. The C><n><O outputs from the BUTs

10

15

20

25

30

35

40

45

55

60

65

6
are compared by O groups of n output response analyZers 22
With each output response analyZer monitoring C outputs
and the ith group of output response analyZers receiving the
ith output from n BUTs.

For example in the ORCA programmable logic block
there are tWo independent look up tables With each of those
look up tables having 5 inputs. Of course, the feedback
connection from the ?ip ?op occupies one of these inputs
and, accordingly, C must be set to be equal to 4. Since each
programmable logic block has m=18 inputs, the number of
?ip ?ops required for a test pattern generator to generate
exhaustive test patterns is also 18. Since there are f=4 ?ip
?ops in the programmable logic block, ?ve programmable
logic blocks are required for an exhaustive test pattern
generator. In contrast only four programmable logic blocks
Would be required for the test pattern generator used for
RAM mode testing. Further, it should be appreciated that
there are O=5 outputs from each programmable logic block
that must be compared by the output response analyZers 22.
This data is summariZed in the folloWing table and com
pared to the XILINX 4000 and ALTERA FLEX 8000 Series
FPGAs. Using this approach, most commercially available
FPGAs have been found to be completely tested in tWo test
sessions. It should be appreciated, hoWever, that some of the
smaller FPGAs require three test sessions.

TABLE 1

FPGA Architectural Parameters

XILINX ALTERA
Parameter Resource ORCA 4000 8000

C Comparisons/ 4 3 4
LUT

O Outputs/ 5 5 3
PLB

L LUTs/PLB 2 2 1
m FFs/TPG = 1 8 1 2 1 O

Inputs/PLB
f FFs/PLB 4 2 1

The folloWing examples are presented to further illustrate
the present invention:

EXAMPLE 1

FPGAs Were programmed for the normal functions
intended for the FPGAs during system operation. Program
ming of the FPGAs Was accomplished by doWnloading the
con?guration databits (Which con?gured the FPGAs for the
intended system functions) from hard disk storage media
under the direction of a microprocessor of a central process
ing unit. System diagnostics Were then run to test the system
for faults. Using the same mechanism as that used to
doWnload the intended system functions into the FPGAs,
each BIST con?guration Was doWnloaded into the FPGAs in
turn. Since the BIST con?gurations are generic, the same
con?guration is loaded into all FPGAs regardless of the
intended system function.

Once con?gured, the operation of the BIST functions
programmed by the FPGAs Was initiated into the same
controlling function as that Which controlled the doWnload
ing and, upon completion of the BIST sequence, the results
of the BIST Was retrieved from the FPGAs by the controller
for determination of the fault free/faulty or pass/fail status of
each FPGA under the given BIST sequence. The next BIST
con?guration Was then doWnloaded, initiated and results
Were retrieved. The process Was continued until all BIST
con?gurations Were doWnloaded and executed.

6,003,150
7

Any failing BIST sequence produced by a given FPGA
indicated the existence of one or more faults in that FPGA.
At that point in time, any printed circuit board containing a
faulty FPGA Was replaced and repaired or, if suf?cient
diagnostic information Was obtained from the BIST
sequence to facilitate the identi?cation and location of the
fault in the FPGA, the intended system function for that
FPGA Was remapped onto the FPGA so that the faulty
circuitry Was not used in the system function. Following
testing and necessary repair, the intended system functions
Were reloaded into the FPGAs. This Was done via the
doWnloading mechanism and the system Was brought back
into service.

EXAMPLE 2

A similar approach to that disclosed in Example 1 Was
used to simulate FPGAmanufacturing tests Where the device
level test machine controlled the doWnloading of the BIST
sequence, initiated the BIST sequence and then retrieved the
BIST results. In our research laboratory, We utiliZed a PC
running commercial FPGA vendor softWare for converting a
digital design de?ned by the designer to the con?guration
bits needed to program the FPGA for the intended system
function (We used a traf?c light controller as an example
system function). The con?guration data Was doWnloaded
via a standard PC port and cable to a printed circuit board
containing a FPGA (AT&T optimiZed recon?gurable cell
array—ORCA—2C Series). We designated the BIST con
?gurations in the same manner as a system function With the
exception being that the intended function in this case Was
a self-test of the FPGA circuitry. Once the BIST con?gura
tion data had been obtained via the FPGA vendor softWare
(We used the AT &T ORCA development system—ODS), the
BIST con?gurations Were doWnloaded into the FPGA in
order to test the FPGA on the printed circuit board.

EXAMPLE 3

In this example, the con?gurations needed for a complete
BIST session are described and results regarding fault
coverage, test-time and memory requirements are presented.

While pseudoexhaustive testing does not require fault
simulation, We used the fault simulator to evaluate the fault
coverage contained in the different phases of the BIST
session in accordance With the method of the present inven
tion. First We developed a complete gate-level model for the
ORCA programmable logic block, including the program
mable logic block con?guration BIST Which Was repre
sented as a primary input Whose values Were “frozen” during
each phase. This alloWed us to also simulate the stuck-at
faults effecting the con?guration BISTS. The exhaustive
testing of each of the three modules (look up tables, ?ip ?ops
and output multiplexor) Were used to determine undetectable
faults (3 faults in the look up tables and 4 faults in the ?ip
?ops) Which Were removed from the fault list. A total of
2224 collapsed stuck-at-gate-level faults Were left in the
programmable logic block, consisting of 1538 faults in the
look up tables, 440 faults in the ?ip ?ops and 246 faults in
the output multiplexor.
A total of 9 con?gurations Were developed to completely

test each programmable logic block. These 9 phases Which
comprised a complete programmable logic block BIST
session are described in more detail beloW. The fault simu
lation results are summariZed in Table 2 in terms of the
number of neW faults detected in each phase for each of the
3 modules, a cumulative number of total faults detected and
the obtained fault coverage.

10

15

20

25

30

35

40

45

50

55

65

8

TABLE 2

PLB Fault Simulation Results

Number of Faults Detected

Phase Fault
No. LUTs FFs MUX Total Coverage

1 1457 0 54 1511 67.9%
2 60 0 30 1601 72.0%
3 16 0 28 1645 74.0%
4 5 0 25 1675 75.3%
5 0 234 25 1934 87.0%
6 0 72 33 2039 91.7%
7 0 60 30 2129 95.7%
8 0 40 15 2184 98.2%
9 0 34 6 2224 100%

As should be appreciated from revieWing Table 2, the ?rst
4 phases provided a complete test for the look up tables
While the folloWing 5 phases detected all the faults in the ?ip
?ops. Of course, all 9 phases Were required to detect all the
faults in the output multiplexor. The 9 con?gurations may be
described in terms of the modes set for each of the three
modules. An ORCA output uses a 9-to-1 multiplexor to
select any one of the 4 look up table outputs or 4 ?ip-?op
outputs as Well as the carry out from the look up tables in the
fast adder mode of operation (a mode of operation With
dedicated look-ahead-carry circuitry available in the more
recent FPGA look up table architectures). This 9-to-1 mul
tiplexor establishes the number of con?gurations (9) needed
to completely test the output multiplexor block.

There Were 4 distinct modes of operation for the ORCA
look up tables. These Were RAM, fast adder, look up
table-based logic functions of 5 variables and look up
table-based logic functions of 4 variables. These 4 modes of
operation Were tested during the ?rst 4 phases of the
programmable logic block BIST as summariZed in Table 3.

TABLE 3

PLB BIST Con?gurations

FF Latch Modes and Options

FF
Phase FF/ Set/ Clock Data LUT PLB
No. Latch Reset Clock Enable Select Mode Pins

1 — — — — — RAM 13

2 — — — — — Fast 14

Adder
3 — — — — — 5 —Var. 14

4 — — — — — 4-Var. 14

5 FF Async Fall Active LUT 4-Var. 13
Set Edge LoW Output

6 FF Async Rise Active PLB 4-Var. 13
Reset Edge High Input

7 Latch Sync Active Active LUT 4-Var. 13
Set LoW LoW Output

8 Latch Sync Active Active PLB 4-Var. 13
Reset High High Input

9 FF — Rise Active Dyn. 4-Var. 13

Edge LoW Select

During the RAM mode con?guration the test pattern
generators Were con?gured to generate a standard RAM test
sequence While the test pattern generators for all the other
phases Were con?gured as binary counters. Once the look up
tables had been tested in the RAM mode, the remaining
BIST phases relied on chessboard patterns stored in the look
up tables to insure all possible patterns at the look up table
outputs.

6,003,150
9

The ?ip ?op module had a number of optional modes of
operation, including: (1) choice of ?ip ?op or latch, (2)
choice of active clock edge (or level for latches), (3) optional
clock enable With choice of active level, (4) choice of preset
or clear, (5) synchronous or asynchronous preset/clear acti
vation With choice of active level and (6) selection of data
from the look up table output or directly from the program
mable logic block inputs. The number of possible combi
nations of these options Was too large to be considered.
HoWever, We determined from fault simulating the gate
level programmable logic block model that ?ve con?gura
tions are suf?cient to completely test the ?ip ?op module.
These are the last 5 phases summariZed in Table 3.

It Was also found that the ORCA could be put through
pseudoexhaustive testing in only tWo test sessions. Atotal of
18 con?gurations Was all that Was required to completely
test all the programmable logic blocks. These 18 con?gu
rations compare favorably With the 32 con?gurations cur
rently used for a state of the art ORCA manufacturing test.

Unlike the BIST run-time, the con?guration memory
requirements and the con?guration doWnload time depended
on the siZe of the FPGA. For the largest 1 C Series ORCA
(the AT&T 1C09), approximately 16 Kbytes of storage Were
needed per con?guration. This means about 160 Kbytes for
the 9 BIST con?gurations and the “normal” con?guration
needed to be restored after board or system test. DoWnload
time for the ORCA 1 C Series FPGAs varies from 2—35
msec per con?guration depending upon the type of interface
betWeen the con?guration storage media and the FPGA. The
execution time for the BIST sequence is approximately 15
msec at a 10 MHZ clock rate. This results in approximately
1 second of testing time required to completely test all the
programmable logic blocks. Of course, if these requirements
are too restrictive for system level testing, the test time could
be reduced by removing some con?gurations Which detect
very feW neW faults or Which represent modes of operation
not used in the system for Which the FPGA being tested is
applied.

During testing it Was found that in some instances, the
routing resources of the FPGA Were not suf?cient to alloW
the routing of all test pattern generator outputs to BUTs and
all BUT outputs to output response analyZers. This problem
Was relatively easily overcame, hoWever, by alloWing a
small deviation from the principal of pseudoexhaustive
testing. That is, for every con?guration, instead of applying
exhaustive patterns to all the inputs and observing all the
outputs of a BUT, exhaustive patterns Were only applied to
those inputs and observed only from those outputs that Were
actually used in that phase.

Further, it should be noted that the output response
analyZer results must be brought out of the FPGA for
determining the faulty fault-free status of the FPGA. The
boundary scan (BS) circuitry in the I/O buffers offers the
best approach for this task. In some FPGAS, hoWever, When
all output response analyZer outputs are routed to the BS
chain, the routing resources in the perimeter of the FPGA
become exhausted. It Was found, hoWever, that by ORing the
output results from the output response analyZers into feWer
bits, the BIST con?gurations may be successfully routed in
the FPGA even though additional logic resources are
required for the OR logic. One disadvantage of this approach
Was that some fault diagnostic capability With respect to
identifying a particular faulty programmable logic block Was
lost. The advantage, hoWever, Was that the programmable
logic blocks implementing the OR logic could be placed
near the output response analyZers from Which they receive
input signals. This advantageously reduced the routing con

10

15

20

25

30

35

40

45

55

60

65

10
gestion near the perimeter of the array Where many output
response analyZer outputs Would otherWise be for routing
resources in order to reach the BS chain.

In summary, numerous bene?ts result from employing the
concepts of the present invention. As should be appreciated,
and noted from the above description, the present method
takes advantage of the reprogrammability of the FPGAs,
recon?guring the FPGAs to test themselves only during
off-line testing. As a result, there is no need to provide
testability hardWare in the design of the FPGA. Accordingly,
all logic resources in the FPGA are available for system
functionality.

In addition, hardWare design and diagnostic softWare
development intervals may be reduced since the FPGA BIST
approach is generic and is applicable to all the SRAM based
FPGAs in the system. Since the test sequences are generic
and they are the function of the FPGA architecture and not
a function of What is programmed into the FPGA, this
technique may also be used for manufacturing test from
Wafer level through package and board level to unit and
system level testing. Advantageously, loWer-cost automatic
test equipment may be utiliZed for purposes of device and
package level testing. Further, it should be appreciated that
the BIST con?gurations developed also test the portion of
the programming interface of the FPGA that is associated
With the programmable logic blocks. The exception is the
programming read-back circuitry that may be tested by
simply reading back each con?guration after it has been
programmed. Advantageously, the BIST con?gurations also
tests a large portion of the programmable interconnection
netWork.
The foregoing description of a preferred embodiment of

the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Obvious modi
?cations or variations are possible in light of the above
teachings. For example, the FPGA under test could be
con?gured to act as an interactive logic array Whereby
blocks under test are connected to other blocks under test in
a series arrangement leading to an output response analyZer.
The embodiment Was chosen and described to provide the
best illustration of the principles of the invention and its
practical application to thereby enable one of ordinary skill
in the art to utiliZe the invention in various embodiments and
With various modi?cations as are suited to the particular use
contemplated. All such modi?cations and variations are
Within the scope of the invention as determined by the
appended claims When interpreted in accordance With the
breadth to Which they are fairly, legally and equitably
entitled.
We claim:
1. A method of testing a ?eld programmable gate array

including a plurality of programmable logic blocks, com
prising the steps of:

con?guring said programmable logic blocks for complet
ing a built-in self-test;

initiating said built-in self-test;
generating identical test patterns With said programmable

logic blocks;
applying said test patterns to equivalently con?gured
programmable logic blocks; and

comparing outputs of said equivalently con?gured pro
grammable logic blocks in order to produce a pass/fail
indication for each of said equivalently con?gured
programmable logic blocks under test.

2. The method set forth in claim 1, Wherein said con?g
uring includes establishing a ?rst group of said program

6,003,150
11

mable logic blocks as test pattern generators and output
response analyzers.

3. The method set forth in claim 2, Wherein said con?g
uring further includes establishing a second group of said
programmable logic blocks as blocks under test.

4. The method set forth in claim 3, including repeatedly
recon?guring each block under test in order to test each
block under test completely in all possible modes of opera
tion.

5. The method set forth in claim 4, including reversing
programming of said ?rst and second groups of said pro
grammable logic blocks so that said ?rst group is established
as blocks under test and said second group is established as
test pattern generators and output response analyZers.

6. The method set forth in claim 5, including repeatedly
recon?guring each block under test in order to test each
block under test completely in all possible modes of opera
tion folloWing reversing programming of said ?rst and
second group of programmable logic blocks.

7. The method set forth in claim 1, further including
reading results of said built-in self-test.

8. The method set forth in claim 6, further including
reading results of said built-in self-test.

9. The method set forth in claim 1, Wherein said test
patterns being generated are exhaustive.

10. A method of testing a ?eld programmable gate array
including a plurality of programmable logic blocks, com
prising the steps of:

con?guring said programmable logic blocks for complet
ing a built-in self-test as tWo equivalently con?gured
programmable logic blocks under test;

initiating said built-in self-test;
generating identical test patterns With said programmable

logic blocks;

10

20

25

30

12
applying said test patterns to said equivalently con?gured
programmable logic blocks under test;

comparing outputs of said programmable logic blocks
under test; and

generating a test result indication for said equivalently
con?gured programmable logic blocks under test.

11. The method of testing a ?eld programmable gate array
set forth in claim 10, Wherein said con?guring step further
includes establishing a ?rst group of said programmable
logic blocks as a test pattern generator and an output
response analyZer and a second group of said programmable
logic blocks as said blocks under test.

12. The method of testing a ?eld programmable gate array
set forth in claim 11, including repeatedly recon?guring
each block under test in order to test each block under test
completely in all possible modes of operation.

13. The method of testing a ?eld programmable gate array
set forth in claim 11, including reversing programming of
said ?rst and second groups of said programmable logic
blocks so that said ?rst group is established as blocks under
test and said second group is established as a test pattern
generator and an output response analyZer.

14. The method of testing a ?eld programmable gate array
set forth in claim 13, including repeatedly recon?guring
each block under test in order to test each block under test
completely in all possible modes of operation folloWing
reversing programming of said ?rst and second groups of
programmable logic blocks.

15. The method of testing a ?eld programmable gate array
set forth in claim 10, Wherein said test patterns being
generated are exhaustive.

* * * * *

	University of Kentucky
	UKnowledge
	12-14-1999

	Method for Testing Field Programmable Gate Arrays
	Charles E. Stroud
	Miron Abramovici
	Recommended Citation

	US6003150.pdf

