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METHOD FOR TESTING FIELD 
PROGRAMMABLE GATE ARRAYS 

This is a continuation of application Ser. No. 08/595,729, 
?led Feb. 2, 1996, noW abandoned. 

TECHNICAL FIELD 

The present invention relates generally to the ?eld of 
testing of integrated circuit devices and, more particularly, to 
a method of diagnostic testing applicable to ?eld program 
mable gate arrays. 

BACKGROUND OF THE INVENTION 

A ?eld programmable gate array (FPGA) is a type of 
integrated circuit consisting of an array of programmable 
logic blocks interconnected by programmable routing 
resources and programmable I/O cells. Programming of 
these logic blocks, routing resources and I/O cells is selec 
tively completed to make the necessary interconnections that 
establish a con?guration thereof to provide desired system 
operation/function for a particular circuit application. 

Of course, it is desirable to complete diagnostic testing of 
all types of integrated circuits including FPGAs in order to 
check the functionality of the various programmable logic 
blocks, routing resources and I/O cells of the FPGAs. Since 
FPGAs are programmable, hoWever, the diagnostic testing 
thereof is complicated by the need to cover all possible 
modes of operation and even many non-classical fault 
models (faults effecting the programmable interconnect 
netWork, delay faults, etc.). 

In past diagnostic testing approaches, special test transis 
tors and circuits have been added to each FPGA integrated 
circuit. These additional test transistors and circuits increase 
the complexity and space requirements or “area overhead” 
of the FPGAs. In fact, the siZe of the FPGAs is typically 
increased betWeen 10—30% in order to accommodate the 
built-in test circuitry and signi?cant delay penalties in the 
operating speed of the FPGAs result. 

It should further be noted that in current state of the art 
testing procedures, tests are generated manually by con?g 
uring the FPGAs into several application circuits. The 
FPGAs so con?gured are then exercised With test vectors 
developed speci?cally for each application circuit. Since 
these circuits all share the same set of faults, FPGAs are 
rejected even if a fault is detected in only one of their 
circuits. 

While this is an effective testing procedure, it does suffer 
from a number of draWbacks. For example, since all the 
application circuits must be simulated to complete testing 
for stuck-at faults, fault simulation in accordance With this 
procedure is very expensive. Additionally, the tests require 
a signi?cant amount of time to complete and relatively 
sophisticated and expensive automatic test equipment (ATE) 
must be utiliZed. 

Further, it should be appreciated that the FPGA manufac 
turing tests presently utiliZed are not reusable for board and 
system-level testing. Hence, additional developmental effort 
is required in order to complete a testing procedure at the 
system-level. The state of the art approach to system-level 
testing of FPGAs focuses upon the development of off-line 
system diagnostic routines to test the FPGAs in the system 
mode of operation. The development of these routines is 
costly and time consuming. This, of course, is another 
signi?cant draWback to state of the art FPGA diagnostic 
testing. 
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2 
A need is therefore identi?ed for an improved approach 

for completing diagnostic testing of FPGAs. 

SUMMARY OF THE INVENTION 

Accordingly, it is a primary object of the present invention 
to provide a method of testing FPGAs overcoming the 
above-described limitations and disadvantages of the prior 
art. 

Another object of the present invention is to provide a 
method of testing FPGAs that exploits the reprogrammabil 
ity of the FPGAs to create built-in self-test (BIST) logic 
advantageously alloWing off-line testing at both the manu 
facturing and system levels. 

Yet another object of the present invention is to provide a 
simple and improved method of testing FPGAs Wherein the 
FPGAs are temporarily programmed for built-in self-testing 
and the need to provide separate test circuitry on the FPGA 
is eliminated. Advantageously, this reduces area overhead 
alloWing the use of smaller FPGAs With substantially faster 
system operating times for a given system function. 

Yet another object of the present invention is to provide a 
BIST approach for testing FPGAs alloWing both manufac 
turing and ?eld level testing of digital systems that is 
particularly advantageous; providing high fault coverage 
testing at the system operating frequency. Accordingly, 
diagnostic run time is reduced and diagnostic softWare 
development is simpli?ed. The reduction in the diagnostic 
run time advantageously results in the reduction in the mean 
time necessary to repair the system being tested. This 
effectively functions to increase system availability and, 
therefore, overall system productivity. Of course, the reduc 
tions in the time necessary to develop the diagnostic code 
also advantageously result in reduced development cost and 
system overhead. 

Additional objects, advantages and other novel features of 
the invention Will be set forth in part in the description that 
folloWs and in part Will become apparent to those skilled in 
the art upon examination of the folloWing or may be learned 
With the practice of the invention. The objects and advan 
tages of the invention may be realiZed and obtained by 
means of the instrumentalities and combinations particularly 
pointed out in the appended claims. 

To achieve the foregoing and other objects, and in accor 
dance With the purposes of the present invention as 
described herein, a neW and improved method is provided 
for testing FPGAs. The method may be broadly de?ned as 
including the steps of con?guring the programmable logic 
blocks of an FPGA for completing a built-in self-test, 
initiating the built-in self-test, generating test patterns With 
the programmable logic blocks and analyZing the resulting 
response With the programmable logic blocks in order to 
produce a pass/fail indication. Advantageously, the present 
method is applicable to any in-circuit reprogrammable 
FPGA, such as SRAM-based FPGAs. It is also applicable to 
all levels of testing including Wafer, package, board and 
system. Further, all tests are performed at normal operating 
frequencies, thus providing at-speed testing to detect any 
delay faults While signi?cantly reducing the diagnostic test 
times over those possible With prior art approaches. 
More speci?cally describing the invention, the con?gur 

ing step includes establishing a ?rst group of programmable 
logic blocks in an FPGA as test pattern generators and output 
response analyZers. The con?guring step also includes the 
step of establishing a second group of programmable logic 
blocks in the same FPGA as blocks under test. By repeatedly 
recon?guring each block under test, each block under test is 



6,003,150 
3 

completely tested in all possible modes of operation. Pseu 
doexhaustive testing is used to provide maximum fault 
coverage totally independent of the intended system func 
tion of the FPGAs. 

This is folloWed by the step of reversing the programming 
of the ?rst and second groups of programmable logic blocks 
so that the ?rst group is established as blocks under test and 
the second group is established as test pattern generators and 
output response analyZers. Then folloWs the step of repeat 
edly recon?guring each block under test in the ?rst group of 
FPGAs in order to test each such block completely in all 
possible modes of operation. Since every programmable 
logic block is individually tested, the present diagnostic 
testing method advantageously provides in-system location 
of defective devices. Such diagnostic resolution is not 
alWays possible With state of the art test systems. This, of 
course, functions to reduce repair time as Well as repair costs 
by enabling one to repair or replace only those components 
that are actually defective. 

Still other objects of the present invention Will become 
apparent to those skilled in this art from the folloWing 
description Wherein there is shoWn and described a preferred 
embodiment of this invention, simply by Way of illustration 
of one of the modes best suited to carry out the invention. As 
it Will be realiZed, the invention is capable of other different 
embodiments and its several details are capable of modi? 
cation in various, obvious aspects all Without departing from 
the invention. Accordingly, the draWings and descriptions 
Will be regarded as illustrative in nature and not as restric 
tive. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying draWing incorporated in and forming 
a part of the speci?cation, illustrates several aspects of the 
present invention and together With the description serves to 
explain the principles of the invention. In the draWing: 

FIG. 1 is a schematical block diagram shoWing the 
structure of a typical programmable logic block of a ?eld 
programmable gate array (FPGA); and 

FIG. 2 is a schematical block diagram illustrating a FPGA 
structure temporarily programmed for diagnostic testing in 
accordance With the method of the present invention. 

Reference Will noW be made in detail to the present 
preferred embodiment of the invention, an example of Which 
is illustrated in the accompanying draWing. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The method of the present invention for diagnostic testing 
of FPGAs Will noW be described in detail. The method may 
be described as a sequence of test phases each phase 
consisting of a series of simple steps. The ?rst of these steps 
is the con?guring of the programmable logic blocks of an 
FPGA for completing a built-in self-test (BIST). Next is the 
initiating of the BIST. This step is then folloWed by gener 
ating test patterns With the programmable logic blocks. Next 
is the analyZing of the resulting response to produce a 
pass/fail indication. This analyZing step is also completed 
With the programmable logic blocks of the FPGA being 
tested. Lastly, the method may include the step of reading 
the test results. 

As should be appreciated, the con?guring, initiating and 
reading steps are all performed by a test controller such as 
automatic test equipment (ATE), a central processing unit 
(CPU) or a maintenance processor. Typically an ATE of a 
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4 
type knoWn in the art is utiliZed for Wafer/package testing. 
Typically a CPU or maintenance processor of a type also 
knoWn in the art is utiliZed for board/system testing. More 
speci?cally, the test controller interacts With the FPGAs to 
be tested to con?gure the FPGA logic. This is done by 
retrieving a BIST con?guration from the con?guration stor 
age of the test controller and loading it into the FPGAs. 

In accordance With the con?guring scheme, the method 
includes the steps of establishing a ?rst group of program 
mable logic blocks as test pattern generators and output 
response analyZers. Further, the method includes the step of 
establishing a second group of programmable logic blocks 
as blocks under test. Once the programmable logic blocks 
are fully con?gured in the tWo groups, the test controller 
initiates the BIST. The test strategy relies upon pseudoex 
haustive testing. Accordingly, every subcircuit of the FPGA 
is tested With exhaustive patterns. This results in maximal 
fault coverage Without the explicit fault model assumptions 
and fault simulations that must necessarily be developed 
With prior art testing approaches. Of course, many FPGAs 
contain RAM modules for Which exhaustive testing is 
impractical. For these modules, the test controller utiliZes 
standardiZed state of the art RAM test sequences Which are 
knoWn to be exhaustive for the fault models speci?c to 
RAMs. 

Reference is noW made to FIG. 1 shoWing a program 
mable logic block, generally designated by reference 
numeral 10. The programmable logic block 10 comprises a 
memory block 12, a ?ip-?op block 14 and a combinational 
output logic block 16. Such a structure is, for example, 
featured in the AT&T ORCAprogrammable function unit, in 
the Xilinx XC4000 con?gurable logic block and the in 
ALTERA FLEX 8000 logic element. The memory block 12 
may be con?gured as RAMs or combination look-up tables 
(LUTs). The ?ip ?ops in the ?ip ?op block 14 may also be 
con?gured as latches although other programming options 
With synchronous and asynchronous Set and Reset, Clock 
Enable, etc. could be provided. Usually, the output block or 
cell 16 contains multiplexers (MUX) to connect different 
signal lines to the output of the programmable logic block 
10. Usually this cell has no feed back loops and the ?ip ?ops 
can be directly accessed by by-passing the LUT (as shoWn 
by the dashed line in draWing FIG. 1). Advantageously, the 
inputs and outputs of every subcircuit in this type of simple 
structure are easy to control and observe. This simpli?es the 
pseudoexhaustive testing of the cell. 

Advantageously, the present testing method is particularly 
adapted to perform output response analysis by means of 
direct comparison. Such an approach is dif?cult to utiliZe in 
most prior art BIST applications because of the expense 
involved in storing the reference response or in generating it 
from a copy of the circuit under test. In accordance With the 
present method, hoWever, the circuits under test are identical 
programmable logic blocks 10 and all that is needed is to 
create the output response analyZers to compare their out 
puts. 

Unlike signature-based compression circuits used in most 
other BIST applications, comparator-based output response 
analyZers do not suffer from the aliasing problem that occurs 
When some faulty circuits produce the good circuit signa 
ture. Essentially, as long as the programmable logic blocks 
under test 20 being compared by the same output response 
analyZer do not fail in the same Way at the same time, no 
aliasing is encountered With the comparison-based approach 
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of the present invention. While it should be appreciated that 
if the blocks under test 20 are fed by the same faulty test 
pattern generator the applied test Will be incomplete and a 
faulty programmable logic block under test may escape 
detection, this problem may be avoided by con?guring the 
logic so that the different test pattern generators feed the 
blocks under test 20 being compared by the same output 
response analyZer. Further, all test pattern generators must 
be synchroniZed to generate the same test pattern at the same 
time. 

Based upon the above described approach, the con?gur 
ing step outlined above includes establishing a ?rst group of 
programmable logic blocks 10 as exhaustive test pattern 
generators 18 and comparison-based output response ana 
lyZers 22. Additionally, the con?guring step includes estab 
lishing a second group of programmable logic blocks 10 as 
blocks under test (BUTs) 20. Further, the method includes 
the steps of repeatedly recon?guring each BUT 20 in order 
to test each BUT in all modes of operation. Accordingly, a 
test session may be de?ned as a sequence of test phases or 
con?gurations that completely tests the BUTs 20. Once the 
BUTs 20 have been exhaustively tested the roles of the 
programmable logic blocks 10 are changed, that is: the 
programming of the ?rst and second groups of program 
mable logic blocks 10 is reversed so that the ?rst group is 
established as BUTs 20 and the second group is established 
as test pattern generators 18 and output response analyZers 
22. It should therefore be appreciated that at least tWo test 
sessions are required to test all of the programmable logic 
blocks 10. Advantageously, it should be noted that all the 
BUTs 20 are tested in parallel With this approach. 
Accordingly, the BIST run time is not dependent on the siZe 
of the FPGA. 
Of course, an important goal of the testing strategy is to 

minimiZe the number of test sessions and thereby minimiZe 
the testing time and effectively reduce testing cost. An FPGA 
con?gured for a test session is illustrated in FIG. 2. The test 
pattern generators 18 Work as binary counters in order to 
supply exhaustive test patterns to the m-input BUTs 20 in 
most of the test con?gurations. Since the programmable 
logic block 10 has more inputs than outputs, several pro 
grammable logic blocks are required to construct a single 
m-bit counter. Of course, When the memory block 12 is 
con?gured as RAM, the test pattern generators 18 Work as 
p-bit state machines (Wherein p>m) in order to generate 
standard RAM test sequences. 

As noted above, different test pattern generators 18 must 
be used to feed the BUTs 20. Thus the number of test pattern 
generators 18 required for the BIST is equal to C Where C 
represents the number of programmable logic block outputs 
that may be compressed by a single response analyZer 22. 
Each output response analyZer 22 comprises a look up table 
24 for comparing the corresponding output from the C BUTs 
and a ?ip ?op 26 to record the ?rst mismatch. As shoWn in 
FIG. 2 the feedback from the ?ip ?op 26 is output to an input 
of the look up table 24. Thus, a mismatch disables further 
comparisons by the output response analyZer 22 once the 
?rst error is recorded. 

As also illustrated in FIG. 2, several output response 
analyZers 22 may be implemented in the same program 
mable logic block 10 depending upon the number of inde 
pendent look up tables 24 in the programmable logic block. 
The look up tables 24 are considered to be independent if 
their set of inputs are disjoint in at least one programmable 
logic block con?guration. Each one of the C test pattern 
generators 18 drives a group of n BUTs. Each BUT has 
m-inputs and O-outputs. The C><n><O outputs from the BUTs 
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6 
are compared by O groups of n output response analyZers 22 
With each output response analyZer monitoring C outputs 
and the ith group of output response analyZers receiving the 
ith output from n BUTs. 

For example in the ORCA programmable logic block 
there are tWo independent look up tables With each of those 
look up tables having 5 inputs. Of course, the feedback 
connection from the ?ip ?op occupies one of these inputs 
and, accordingly, C must be set to be equal to 4. Since each 
programmable logic block has m=18 inputs, the number of 
?ip ?ops required for a test pattern generator to generate 
exhaustive test patterns is also 18. Since there are f=4 ?ip 
?ops in the programmable logic block, ?ve programmable 
logic blocks are required for an exhaustive test pattern 
generator. In contrast only four programmable logic blocks 
Would be required for the test pattern generator used for 
RAM mode testing. Further, it should be appreciated that 
there are O=5 outputs from each programmable logic block 
that must be compared by the output response analyZers 22. 
This data is summariZed in the folloWing table and com 
pared to the XILINX 4000 and ALTERA FLEX 8000 Series 
FPGAs. Using this approach, most commercially available 
FPGAs have been found to be completely tested in tWo test 
sessions. It should be appreciated, hoWever, that some of the 
smaller FPGAs require three test sessions. 

TABLE 1 

FPGA Architectural Parameters 

XILINX ALTERA 
Parameter Resource ORCA 4000 8000 

C Comparisons/ 4 3 4 
LUT 

O Outputs/ 5 5 3 
PLB 

L LUTs/PLB 2 2 1 
m FFs/TPG = 1 8 1 2 1 O 

Inputs/PLB 
f FFs/PLB 4 2 1 

The folloWing examples are presented to further illustrate 
the present invention: 

EXAMPLE 1 

FPGAs Were programmed for the normal functions 
intended for the FPGAs during system operation. Program 
ming of the FPGAs Was accomplished by doWnloading the 
con?guration databits (Which con?gured the FPGAs for the 
intended system functions) from hard disk storage media 
under the direction of a microprocessor of a central process 
ing unit. System diagnostics Were then run to test the system 
for faults. Using the same mechanism as that used to 
doWnload the intended system functions into the FPGAs, 
each BIST con?guration Was doWnloaded into the FPGAs in 
turn. Since the BIST con?gurations are generic, the same 
con?guration is loaded into all FPGAs regardless of the 
intended system function. 

Once con?gured, the operation of the BIST functions 
programmed by the FPGAs Was initiated into the same 
controlling function as that Which controlled the doWnload 
ing and, upon completion of the BIST sequence, the results 
of the BIST Was retrieved from the FPGAs by the controller 
for determination of the fault free/faulty or pass/fail status of 
each FPGA under the given BIST sequence. The next BIST 
con?guration Was then doWnloaded, initiated and results 
Were retrieved. The process Was continued until all BIST 
con?gurations Were doWnloaded and executed. 
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Any failing BIST sequence produced by a given FPGA 
indicated the existence of one or more faults in that FPGA. 
At that point in time, any printed circuit board containing a 
faulty FPGA Was replaced and repaired or, if suf?cient 
diagnostic information Was obtained from the BIST 
sequence to facilitate the identi?cation and location of the 
fault in the FPGA, the intended system function for that 
FPGA Was remapped onto the FPGA so that the faulty 
circuitry Was not used in the system function. Following 
testing and necessary repair, the intended system functions 
Were reloaded into the FPGAs. This Was done via the 
doWnloading mechanism and the system Was brought back 
into service. 

EXAMPLE 2 

A similar approach to that disclosed in Example 1 Was 
used to simulate FPGAmanufacturing tests Where the device 
level test machine controlled the doWnloading of the BIST 
sequence, initiated the BIST sequence and then retrieved the 
BIST results. In our research laboratory, We utiliZed a PC 
running commercial FPGA vendor softWare for converting a 
digital design de?ned by the designer to the con?guration 
bits needed to program the FPGA for the intended system 
function (We used a traf?c light controller as an example 
system function). The con?guration data Was doWnloaded 
via a standard PC port and cable to a printed circuit board 
containing a FPGA (AT&T optimiZed recon?gurable cell 
array—ORCA—2C Series). We designated the BIST con 
?gurations in the same manner as a system function With the 
exception being that the intended function in this case Was 
a self-test of the FPGA circuitry. Once the BIST con?gura 
tion data had been obtained via the FPGA vendor softWare 
(We used the AT &T ORCA development system—ODS), the 
BIST con?gurations Were doWnloaded into the FPGA in 
order to test the FPGA on the printed circuit board. 

EXAMPLE 3 

In this example, the con?gurations needed for a complete 
BIST session are described and results regarding fault 
coverage, test-time and memory requirements are presented. 

While pseudoexhaustive testing does not require fault 
simulation, We used the fault simulator to evaluate the fault 
coverage contained in the different phases of the BIST 
session in accordance With the method of the present inven 
tion. First We developed a complete gate-level model for the 
ORCA programmable logic block, including the program 
mable logic block con?guration BIST Which Was repre 
sented as a primary input Whose values Were “frozen” during 
each phase. This alloWed us to also simulate the stuck-at 
faults effecting the con?guration BISTS. The exhaustive 
testing of each of the three modules (look up tables, ?ip ?ops 
and output multiplexor) Were used to determine undetectable 
faults (3 faults in the look up tables and 4 faults in the ?ip 
?ops) Which Were removed from the fault list. A total of 
2224 collapsed stuck-at-gate-level faults Were left in the 
programmable logic block, consisting of 1538 faults in the 
look up tables, 440 faults in the ?ip ?ops and 246 faults in 
the output multiplexor. 
A total of 9 con?gurations Were developed to completely 

test each programmable logic block. These 9 phases Which 
comprised a complete programmable logic block BIST 
session are described in more detail beloW. The fault simu 
lation results are summariZed in Table 2 in terms of the 
number of neW faults detected in each phase for each of the 
3 modules, a cumulative number of total faults detected and 
the obtained fault coverage. 
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TABLE 2 

PLB Fault Simulation Results 

Number of Faults Detected 

Phase Fault 
No. LUTs FFs MUX Total Coverage 

1 1457 0 54 1511 67.9% 
2 60 0 30 1601 72.0% 
3 16 0 28 1645 74.0% 
4 5 0 25 1675 75.3% 
5 0 234 25 1934 87.0% 
6 0 72 33 2039 91.7% 
7 0 60 30 2129 95.7% 
8 0 40 15 2184 98.2% 
9 0 34 6 2224 100% 

As should be appreciated from revieWing Table 2, the ?rst 
4 phases provided a complete test for the look up tables 
While the folloWing 5 phases detected all the faults in the ?ip 
?ops. Of course, all 9 phases Were required to detect all the 
faults in the output multiplexor. The 9 con?gurations may be 
described in terms of the modes set for each of the three 
modules. An ORCA output uses a 9-to-1 multiplexor to 
select any one of the 4 look up table outputs or 4 ?ip-?op 
outputs as Well as the carry out from the look up tables in the 
fast adder mode of operation (a mode of operation With 
dedicated look-ahead-carry circuitry available in the more 
recent FPGA look up table architectures). This 9-to-1 mul 
tiplexor establishes the number of con?gurations (9) needed 
to completely test the output multiplexor block. 

There Were 4 distinct modes of operation for the ORCA 
look up tables. These Were RAM, fast adder, look up 
table-based logic functions of 5 variables and look up 
table-based logic functions of 4 variables. These 4 modes of 
operation Were tested during the ?rst 4 phases of the 
programmable logic block BIST as summariZed in Table 3. 

TABLE 3 

PLB BIST Con?gurations 

FF Latch Modes and Options 

FF 
Phase FF/ Set/ Clock Data LUT PLB 
No. Latch Reset Clock Enable Select Mode Pins 

1 — — — — — RAM 13 

2 — — — — — Fast 14 

Adder 
3 — — — — — 5 —Var. 14 

4 — — — — — 4-Var. 14 

5 FF Async Fall Active LUT 4-Var. 13 
Set Edge LoW Output 

6 FF Async Rise Active PLB 4-Var. 13 
Reset Edge High Input 

7 Latch Sync Active Active LUT 4-Var. 13 
Set LoW LoW Output 

8 Latch Sync Active Active PLB 4-Var. 13 
Reset High High Input 

9 FF — Rise Active Dyn. 4-Var. 13 

Edge LoW Select 

During the RAM mode con?guration the test pattern 
generators Were con?gured to generate a standard RAM test 
sequence While the test pattern generators for all the other 
phases Were con?gured as binary counters. Once the look up 
tables had been tested in the RAM mode, the remaining 
BIST phases relied on chessboard patterns stored in the look 
up tables to insure all possible patterns at the look up table 
outputs. 



6,003,150 
9 

The ?ip ?op module had a number of optional modes of 
operation, including: (1) choice of ?ip ?op or latch, (2) 
choice of active clock edge (or level for latches), (3) optional 
clock enable With choice of active level, (4) choice of preset 
or clear, (5) synchronous or asynchronous preset/clear acti 
vation With choice of active level and (6) selection of data 
from the look up table output or directly from the program 
mable logic block inputs. The number of possible combi 
nations of these options Was too large to be considered. 
HoWever, We determined from fault simulating the gate 
level programmable logic block model that ?ve con?gura 
tions are suf?cient to completely test the ?ip ?op module. 
These are the last 5 phases summariZed in Table 3. 

It Was also found that the ORCA could be put through 
pseudoexhaustive testing in only tWo test sessions. Atotal of 
18 con?gurations Was all that Was required to completely 
test all the programmable logic blocks. These 18 con?gu 
rations compare favorably With the 32 con?gurations cur 
rently used for a state of the art ORCA manufacturing test. 

Unlike the BIST run-time, the con?guration memory 
requirements and the con?guration doWnload time depended 
on the siZe of the FPGA. For the largest 1 C Series ORCA 
(the AT&T 1C09), approximately 16 Kbytes of storage Were 
needed per con?guration. This means about 160 Kbytes for 
the 9 BIST con?gurations and the “normal” con?guration 
needed to be restored after board or system test. DoWnload 
time for the ORCA 1 C Series FPGAs varies from 2—35 
msec per con?guration depending upon the type of interface 
betWeen the con?guration storage media and the FPGA. The 
execution time for the BIST sequence is approximately 15 
msec at a 10 MHZ clock rate. This results in approximately 
1 second of testing time required to completely test all the 
programmable logic blocks. Of course, if these requirements 
are too restrictive for system level testing, the test time could 
be reduced by removing some con?gurations Which detect 
very feW neW faults or Which represent modes of operation 
not used in the system for Which the FPGA being tested is 
applied. 

During testing it Was found that in some instances, the 
routing resources of the FPGA Were not suf?cient to alloW 
the routing of all test pattern generator outputs to BUTs and 
all BUT outputs to output response analyZers. This problem 
Was relatively easily overcame, hoWever, by alloWing a 
small deviation from the principal of pseudoexhaustive 
testing. That is, for every con?guration, instead of applying 
exhaustive patterns to all the inputs and observing all the 
outputs of a BUT, exhaustive patterns Were only applied to 
those inputs and observed only from those outputs that Were 
actually used in that phase. 

Further, it should be noted that the output response 
analyZer results must be brought out of the FPGA for 
determining the faulty fault-free status of the FPGA. The 
boundary scan (BS) circuitry in the I/O buffers offers the 
best approach for this task. In some FPGAS, hoWever, When 
all output response analyZer outputs are routed to the BS 
chain, the routing resources in the perimeter of the FPGA 
become exhausted. It Was found, hoWever, that by ORing the 
output results from the output response analyZers into feWer 
bits, the BIST con?gurations may be successfully routed in 
the FPGA even though additional logic resources are 
required for the OR logic. One disadvantage of this approach 
Was that some fault diagnostic capability With respect to 
identifying a particular faulty programmable logic block Was 
lost. The advantage, hoWever, Was that the programmable 
logic blocks implementing the OR logic could be placed 
near the output response analyZers from Which they receive 
input signals. This advantageously reduced the routing con 

10 

15 

20 

25 

30 

35 

40 

45 

55 

60 

65 

10 
gestion near the perimeter of the array Where many output 
response analyZer outputs Would otherWise be for routing 
resources in order to reach the BS chain. 

In summary, numerous bene?ts result from employing the 
concepts of the present invention. As should be appreciated, 
and noted from the above description, the present method 
takes advantage of the reprogrammability of the FPGAs, 
recon?guring the FPGAs to test themselves only during 
off-line testing. As a result, there is no need to provide 
testability hardWare in the design of the FPGA. Accordingly, 
all logic resources in the FPGA are available for system 
functionality. 

In addition, hardWare design and diagnostic softWare 
development intervals may be reduced since the FPGA BIST 
approach is generic and is applicable to all the SRAM based 
FPGAs in the system. Since the test sequences are generic 
and they are the function of the FPGA architecture and not 
a function of What is programmed into the FPGA, this 
technique may also be used for manufacturing test from 
Wafer level through package and board level to unit and 
system level testing. Advantageously, loWer-cost automatic 
test equipment may be utiliZed for purposes of device and 
package level testing. Further, it should be appreciated that 
the BIST con?gurations developed also test the portion of 
the programming interface of the FPGA that is associated 
With the programmable logic blocks. The exception is the 
programming read-back circuitry that may be tested by 
simply reading back each con?guration after it has been 
programmed. Advantageously, the BIST con?gurations also 
tests a large portion of the programmable interconnection 
netWork. 
The foregoing description of a preferred embodiment of 

the invention has been presented for purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Obvious modi 
?cations or variations are possible in light of the above 
teachings. For example, the FPGA under test could be 
con?gured to act as an interactive logic array Whereby 
blocks under test are connected to other blocks under test in 
a series arrangement leading to an output response analyZer. 
The embodiment Was chosen and described to provide the 
best illustration of the principles of the invention and its 
practical application to thereby enable one of ordinary skill 
in the art to utiliZe the invention in various embodiments and 
With various modi?cations as are suited to the particular use 
contemplated. All such modi?cations and variations are 
Within the scope of the invention as determined by the 
appended claims When interpreted in accordance With the 
breadth to Which they are fairly, legally and equitably 
entitled. 
We claim: 
1. A method of testing a ?eld programmable gate array 

including a plurality of programmable logic blocks, com 
prising the steps of: 

con?guring said programmable logic blocks for complet 
ing a built-in self-test; 

initiating said built-in self-test; 
generating identical test patterns With said programmable 

logic blocks; 
applying said test patterns to equivalently con?gured 
programmable logic blocks; and 

comparing outputs of said equivalently con?gured pro 
grammable logic blocks in order to produce a pass/fail 
indication for each of said equivalently con?gured 
programmable logic blocks under test. 

2. The method set forth in claim 1, Wherein said con?g 
uring includes establishing a ?rst group of said program 
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mable logic blocks as test pattern generators and output 
response analyzers. 

3. The method set forth in claim 2, Wherein said con?g 
uring further includes establishing a second group of said 
programmable logic blocks as blocks under test. 

4. The method set forth in claim 3, including repeatedly 
recon?guring each block under test in order to test each 
block under test completely in all possible modes of opera 
tion. 

5. The method set forth in claim 4, including reversing 
programming of said ?rst and second groups of said pro 
grammable logic blocks so that said ?rst group is established 
as blocks under test and said second group is established as 
test pattern generators and output response analyZers. 

6. The method set forth in claim 5, including repeatedly 
recon?guring each block under test in order to test each 
block under test completely in all possible modes of opera 
tion folloWing reversing programming of said ?rst and 
second group of programmable logic blocks. 

7. The method set forth in claim 1, further including 
reading results of said built-in self-test. 

8. The method set forth in claim 6, further including 
reading results of said built-in self-test. 

9. The method set forth in claim 1, Wherein said test 
patterns being generated are exhaustive. 

10. A method of testing a ?eld programmable gate array 
including a plurality of programmable logic blocks, com 
prising the steps of: 

con?guring said programmable logic blocks for complet 
ing a built-in self-test as tWo equivalently con?gured 
programmable logic blocks under test; 

initiating said built-in self-test; 
generating identical test patterns With said programmable 

logic blocks; 
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12 
applying said test patterns to said equivalently con?gured 
programmable logic blocks under test; 

comparing outputs of said programmable logic blocks 
under test; and 

generating a test result indication for said equivalently 
con?gured programmable logic blocks under test. 

11. The method of testing a ?eld programmable gate array 
set forth in claim 10, Wherein said con?guring step further 
includes establishing a ?rst group of said programmable 
logic blocks as a test pattern generator and an output 
response analyZer and a second group of said programmable 
logic blocks as said blocks under test. 

12. The method of testing a ?eld programmable gate array 
set forth in claim 11, including repeatedly recon?guring 
each block under test in order to test each block under test 
completely in all possible modes of operation. 

13. The method of testing a ?eld programmable gate array 
set forth in claim 11, including reversing programming of 
said ?rst and second groups of said programmable logic 
blocks so that said ?rst group is established as blocks under 
test and said second group is established as a test pattern 
generator and an output response analyZer. 

14. The method of testing a ?eld programmable gate array 
set forth in claim 13, including repeatedly recon?guring 
each block under test in order to test each block under test 
completely in all possible modes of operation folloWing 
reversing programming of said ?rst and second groups of 
programmable logic blocks. 

15. The method of testing a ?eld programmable gate array 
set forth in claim 10, Wherein said test patterns being 
generated are exhaustive. 

* * * * * 
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