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ABSTRACT OF THESIS 

 

 
Numerical simulations of current-voltage characteristics of nanowire CdS/CdTe 

solar cells are performed as a function of temperature using SCAPS-1D. This research 

compares the experimental current-voltage (I-V) characteristics with the numerical (I-V) 

simulations obtained from SCAPS-1D at various temperatures.  Various device 

parameters were studied which can affect the efficiency of the nanowire-CdS/CdTe solar 

cell.  It was observed that the present simulated model explains the important effects of 

these solar cell devices, such as the crossover and the rollover effect.  It was shown that 

the removal of defect in i-SnO2 is responsible for producing the crossover effect.  In the 

past, the rollover effect has been explained by using back to back diode model in the 

literature.  In this work, simulations were performed in order to validate this theory.  At 

the back electrode, the majority carrier barrier height was varied from 0.4 to 0.5 eV, the 

curve corresponding to the 0.5 eV barrier showed a strong rollover effect, while this 

effect disappeared when the barrier was reduced to 0.4 eV.  Thus, it was shown that the 

change of barrier height at the contact is a critical parameter in the rollover effect. 

Keywords: Nanowire Cadmium Sulfide; Cadmium Telluride; Solar Cells, SCAPS-1D, 
Simulation; Interface States 
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1. Introduction 

1.1. Solar cells  

       The conventional energy sources like fossil fuels are going to deplete over the years 

and thus, the world is beginning to focus on renewable energy sources. The solar energy 

is abundant as well as environmentally friendly. It is versatile and the solar technology is 

making significant advances over the years.  

      Since 2010, the world has added more solar photovoltaic (PV) capacity than in the 

previous four decades. The solar photovoltaic global capacity has been increased to 177 

Gigawatts in 2014, with an increase of 40 GW from 2013. [1] Figure1.1 shows the solar 

PV generation and projection until 2020 [2]. 

 

 

Figure 1.1 Solar PV generation and projection by region  

 

Figure1.2 shows the roadmap for PV’s share of global electricity reaching 16% by 2050, 

a significant increase from the 11% goal in the 2010 roadmap [3]. 
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Figure 1.2 Regional production of PV electricity envisioned in the roadmap  

 

The global investment in solar energy sector has increased by 25% in 2014 over 2013. 

Figure1.3 shows the global new investment in Renewable energy [1].  

 

Figure 1.3 Global New Investment in Renewable Energy by Technology, Developed and 
Developing Countries, 2014  
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1.1.1 History of solar cells 
 
            The photovoltaic effect was discovered by French physicist Alexandre-Edmond 

Becquerel in 1839. This was the beginning of the solar cell technology. In 1905, Albert 

Einstein published his paper on photoelectric effect that explained very well the 

absorption of the photons regarding to the frequency of light. Audobert and Stora 

discover the photovoltaic effect in cadmium sulfide (CdS) in 1932 [4].  Russell Ohl 

observed the first photovoltaic effect of substantial EMF voltage on a silicon p-n junction 

in 1940 [5]. In 1954, Gerald Pearson, Daryl Chapin and Calvin Fuller, at Bell 

Laboratories discovered a silicon solar cell, which was the first material to directly 

convert sunlight into electricity to run electrical devices. The efficiency of this silicon 

solar cell, was 4%, which later increased to 11% [5]. Over several decades, different 

types of solar cells (multi-junction) using new materials have been fabricated in order to 

improve the efficiency of solar cells to reach Shockley – Queisser limit. 

1.1.2 Generations of solar cells 

            Solar cells are mainly categorized into three generations. The first generation of 

solar cells has the major portion of the present market. The benefits of this solar cell 

technology are good performance and high stability. The materials use for this generation 

solar cells include GaAs and crystalline Silicon However, the production costs is high 

due to high energy in production and material costs mostly for the silicon wafer.  This 

generation of solar cells has higher efficiency (around 40%) as shown in Figure1.4 [6]. 

          The second generation of solar cells managed to reduce the material cost by 

eliminating the use of silicon wafer and replacing it with thin-film technology. This 

technology is based on amorphous silicon, CIGS, CdTe etc. where the typical efficiency 

is around 20% (Figure 1.4). The energy consumption associated with the production of 

these solar cells is quite high due to the use of vacuum processes and high temperature 

treatments. 

           The third generation of solar cells includes Quantum Dot, Polymer, Perovskite, 

Nanocrystalline and Dye- sensitized solar cells. The benefits of these types of solar cells 

are low cost and large scale production capability with flexibility. The disadvantages are 

low efficiency and low stability compared to traditional solar cells.  
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Figure 1.4 Best Research Cell efficiencies of three generations of solar cells, Source: National 

Renewable Energy Laboratory [6] 
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1.2. Basics of solar cells 

1.2.1. Photovoltaic effect and P-N junction theory 

           The discovery of the photovoltaic effect was the major step towards the invention 

of solar cells. The photovoltaic effect is a physical and chemical phenomenon. It is the 

creation of voltage or electric current in the material when the light is exposed on it.  

P-N junction is formed by the P-type and N-type semiconductor. If the material used in 

the p-type and n-type semiconductor is same, it is called as the homojunction. When the 

materials used for p-type and n-type are different, it is called as the heterojunction.  

           Figure 1.5 shows the abrupt p-n junction in equilibrium. The diffusion process 

occurs because of the thermal gradient and scattering. The electrons and holes migrate 

from the high concentration to low concentration region in order to reach an equilibrium. 

During this process, the electrons and holes are removed from n-type and p-type regions 

respectively, which creates uncompensated donor and acceptor ions as shown in 

Figure1.5 [5]. This region is called as the depletion region as it is depleted from the free 

electrons and holes. 

The uncompensated charge creates an electric field which is also referred to as the built-

in field. There is a difference between the electric potential at the edges of the depletion 

layer due to the built-in electric field, which is called as built-in voltage (Vbi). The 

current due to the built-in field is called as drift current. In equilibrium diffusion current 

is equal to the drift current.  

  The solar cell is essentially a p-n junction device, where n-type material is kept thin to 

allow light to pass through the solar cell. Light is composed of photons. When the photon 

is incident on the material and if the energy of photon is greater than the energy band gap 

of the material, an electron-hole pair is created. 

Once the electron – hole pair is created in n and p type regions, most electrons combine 

with majority carriers (i.e. holes) in p-type and  most holes combine with  majority 

carriers (i.e. electrons) in n-type. Only those carriers which have not been combined with 

majority carriers can move towards the other region, resulting the photocurrent. It 

depends upon the diffusion length and carrier lifetime. The diffusion length is the 

distance, carriers can diffuse in carrier lifetime before they are annihilated. [5]  
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Figure 1.5 Abrupt p-n junction under equilibrium bias [5] 

 

1.2.2. Quantum efficiency 

           Quantum efficiency is the ratio of the number of charge carriers collected by a 

solar cell to the number of photons of a given energy incident on the solar cell. It is 

related to the response of a solar cell to the various wavelengths in the spectrum of light 

which is incident on the cell. Thus, the quantum efficiency is expressed as a function of 

either wavelength or energy.  

There are two type of quantum efficiency of a solar cell. External quantum efficiency 

(EQE) considers the losses due to the recombination, transmission and reflection losses. 

It is the ratio of number of charge carriers collected by the solar cell to the number of 
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incident photons of a given energy. Internal quantum efficiency (IQE) is the  efficiency 

with which light not transmitted through or reflected away from the cell can generate 

charge carriers—specifically electrons and holes—that can generate current. By 

measuring the transmission and reflection of a solar device, the external QE curve can be 

corrected to obtain the internal QE curve. [7] 

 Figure1.6 [8] shows the the curve of external quantum efficiency as a function of 

wavelenth. The quantum efficiency is reduced by the surface recombination , reflection 

and low diffusion length. The quantum efficency is also dependent on the series and 

shunt resistance, energy bandgap and temperature. 

 

Figure 1.6 External quantum efficency as a function of wavelength [8] 

1.2.3. I-V characteristics of a solar cell 

          The equivalent circuit of the solar cell consists of the constant current source IL and 

a diode as shown in Figure1.7 [5]. IL denotes the photocurrent, RL is the load resistance, Is 

is the diode saturation current.  
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Figure 1.7 Equivalent circuit of a solar cell in light conditions [5] 

 

The dark I-V characteristics of the solar cell follow the ideal I-V characteristics of a 

diode and is given by the following equation: 

 

𝐼𝐼(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝐼𝐼𝑠𝑠 �exp �𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘
� − 1�                            (1) 

Where, k is Boltzmann constant 

 

 

The ideal saturation current for the solar cell is given by  

𝐼𝐼𝑠𝑠 = 𝐴𝐴𝐴𝐴𝑁𝑁𝐶𝐶𝑁𝑁𝑉𝑉 �
1
𝑁𝑁𝐴𝐴
�𝐷𝐷𝑛𝑛
𝜏𝜏𝑛𝑛

+ 1
𝑁𝑁𝐷𝐷
�
𝐷𝐷𝑝𝑝
𝜏𝜏𝑝𝑝
� 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐸𝐸𝑔𝑔

𝑘𝑘𝑘𝑘
�  (2) 

 

From the above equation, it can be observed that the saturation current depends on 

diffusion coefficient of minority carriers (Dn, Dp), energy bandgap (Eg), carrier lifetime 

(τn , τp),  Donor impurity concentration (Nd), Acceptor impurity concentration (Na) , 

Effective density of states in conduction band (Nc) and valence band (Nv).  

 

The total current is the summation of dark current and the photocurrent (IL), which is 

given by:  

𝐼𝐼 = 𝐼𝐼𝑠𝑠 �exp �𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘
� − 1� − 𝐼𝐼𝐿𝐿                           (3) 

 

The above equation depicts the total I-V characteristics of the solar cell under 

illumination.  
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The open circuit voltage (Voc) is the maximum voltage available from a solar cell, which 

occurs when the current is zero.  The equation for Voc can be derived by putting the value 

of current to be zero in equation (3), which is given by 

 

𝑉𝑉𝑜𝑜𝑜𝑜 = 𝑘𝑘𝑘𝑘
𝑞𝑞
𝑙𝑙𝑙𝑙 �𝐼𝐼𝐿𝐿

𝐼𝐼𝑠𝑠
+ 1� ≈ 𝑘𝑘𝑘𝑘

𝑞𝑞
𝑙𝑙𝑙𝑙 �𝐼𝐼𝐿𝐿

𝐼𝐼𝑠𝑠
�              (4) 

 

The open circuit voltage increases logarithmically with the decrease in the saturation 

current.  

The short circuit current (Isc) is the current through the solar cell when the voltage across 

the solar cell is zero. In the ideal case, the short circuit current is equal to the 

photocurrent.  

The typical I-V curve of the solar cell is shown in the Figure 1.8[9].  

 

 

Figure 1.8 I-V characteristics of a solar cell under illumination [9] 

The output power cannot be determined by the short circuit current (V=0) and open 

circuit voltage (I=0). It is given by the following equation  

 

𝑃𝑃 = 𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑠𝑠𝑉𝑉 �exp �𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘
� − 1� − 𝐼𝐼𝐿𝐿𝑉𝑉                              (5) 

 

The maximum power is obtained when dP/dV=0 

The maximum current and maximum voltage are given by: 
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𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑠𝑠𝛽𝛽𝑉𝑉𝑚𝑚exp (𝛽𝛽𝑉𝑉𝑚𝑚) ≈ 𝐼𝐼𝐿𝐿 �1 − 1
𝛽𝛽𝑉𝑉𝑚𝑚

�                           (6) 

 

𝑉𝑉𝑚𝑚 = 1
𝛽𝛽
𝑙𝑙𝑙𝑙 �(𝐼𝐼𝐿𝐿 𝐼𝐼𝑠𝑠⁄ )+1

1+𝛽𝛽𝑉𝑉𝑚𝑚
� ≈ 𝑉𝑉𝑜𝑜𝑜𝑜 −

1
𝛽𝛽

ln (1 + 𝛽𝛽𝑉𝑉𝑚𝑚)                   (7) 

 

where, β=q/kT. 

 

The maximum power thus obtained is given by  

 

𝑃𝑃𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑉𝑉𝑚𝑚 = 𝐹𝐹𝐹𝐹𝐼𝐼𝑠𝑠𝑠𝑠𝑉𝑉𝑜𝑜𝑜𝑜 ≈ 𝐼𝐼𝐿𝐿 �𝑉𝑉𝑜𝑜𝑜𝑜 −
1
𝛽𝛽

ln(1 + 𝛽𝛽𝑉𝑉𝑚𝑚) − 1
𝛽𝛽
�   (8) 

 

The fill factor is another important parameter in solar cell theory. It measures the 

sharpness of the I-V curve.  

𝐹𝐹𝐹𝐹 ≡
𝐼𝐼𝑚𝑚𝑉𝑉𝑚𝑚
𝐼𝐼𝑠𝑠𝑠𝑠𝑉𝑉𝑜𝑜𝑜𝑜

                                                                            (9) 

 

The ideal conversion efficiency is given by the ratio of the maximum power output to the 

incident power Pin  

 

𝜂𝜂 = 𝑃𝑃𝑚𝑚
𝑃𝑃𝑖𝑖𝑖𝑖

= 𝐼𝐼𝑚𝑚𝑉𝑉𝑚𝑚
𝑃𝑃𝑖𝑖𝑖𝑖

= 𝑉𝑉𝑚𝑚2 𝐼𝐼𝑠𝑠(𝑞𝑞/𝑘𝑘𝑘𝑘)exp(𝑞𝑞𝑉𝑉𝑚𝑚 𝑘𝑘𝑘𝑘⁄ )
𝑃𝑃𝑖𝑖𝑖𝑖

                             (10) 

 

To optimize the maximum efficiency, optimum value of the energy bandgap is used.                                                  
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1.3 Background On The Solar Cell Devices, Which Were Studied Through 

Simulation 

1.3.1. Device Design 

          The device fabricated comprises of CdS nanowires which are embedded in a 

transparent anodized aluminum oxide (AAO) matrix. This device has been fabricated by 

Dr. Hongmei Dang for her PhD work [10]. The experimental procedures, figures 1.9-1.12 

and the experimental results presented here are obtained from her dissertation.  

 

The schematic structure of the solar cell comprising of planar CdS and its carrier 

transport process is shown in figures 1.9 A and C respectively. Figure 1.9 B shows the 

structure of Nanowire CdS solar cell. Figure 1.9 D shows the carrier transport process of 

nanowire CdS/CdTe solar cell [10]. 

 

The use of AAO matrix and CdS nanowires in the nanowire CdS/CdTe solar cell resulted 

in the better transmittance of incident light, which improved the short circuit current. The 

open circuit voltage was improved due to the reduction of interface recombination and 

decreased effective reverse saturation current, which was the result of reduced junction 

interface area between the CdS nanowires and the polycrystalline CdTe. 
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Figure 1.9 A. Schematic structure of a vertical stack nanowire CdS/CdTe solar cell, 

where light blue color represents absorption- negligible AAO, B. Schematic structure of a 

planar CdS/CdTe solar cell, C. Electron and hole transport through reduced junction 

interface area in a nanowire CdS/CdTe solar cell, D. Electron and hole transport through 

junction interface in a conventional planar CdS/CdTe solar cell [10] 

1.3.2. Experimental Procedure      

1.3.2.1 Fabrication of AAO Membrane 
The AAO membrane was fabricated on commercially available ITO/ soda-lime glass 

substrates of cross section 1 inch x 1 inch. ITO/ soda-lime glass substrates sheet 

resistance of 23-28 Ω/square. The substrate was cleaned in acetone, methanol, de-ionized 

water for 30 minutes each and dried in nitrogen flow. After cleaning, 100 nm thick tin 

oxide (intrinsic SnO2) layer and a 5 nm thick titanium (Ti) layer were sputtered on ITO 

by magnetic sputtering.  100nm thick aluminum (Al) layer is deposited on the top of Ti 

layer by electron beam evaporation.  
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The Al film was anodized in a 0.3 M oxalic acid solution at 50 V bias until Al was 

completely anodized. The temperature of the electrolyte was maintained at approximately 

5 °C.  Ti layer improves adhesion and passivation. The as-anodized samples were etched 

in 5% phosphoric acid (H3PO4) for 40 minutes to partially remove the barrier layer. 

Reactive ion etch (RIE) was used to completely remove the barrier layer. The RIE 

process was set as an anisotropic etching with 90W of RF and 250W of ICP power. After 

RIE process, the samples were etched in 5% phosphoric acid solution for 5 minutes to 

dissolve removed barrier layer particles. Figure 1.10 (A) and (B) show Al layer on ITO 

and AAO membrane. [10] 

 

Figure 1.10 Schematics of (A) Al layer on ITO and (B) formed AAO membrane [10] 

1.3.2.2 Fabrication of CdS Nanowire 
The electrodeposition method was used for the growth of CdS nanowires. Figure 

1.11shows the schematics illustration of CdS nanowires embedded into nanopores of 

AAO membrane [10]. The CdS nanowires were deposited in mixture of 0.5g cadmium 

chloride (CdCl2) and 0.5g elemental sulfur in 50mL dimethyl-sulfoxide (DMSO) solution 

under a high dc current density of 7mA/cm2 and at a high deposition temperature of 

160°C to form nanowires. Then the CdS nanowires were soaked in a 75%-saturated 

CdCl2 for 15 minutes, and are annealed at 400°C for 30 minutes with 100-sccm Argon 

purge.  
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Figure 1.11 Schematics illustration of CdS nanowires embedded into nanopores of AAO 

membrane [10] 
 

1.3.2.3 Fabrication of CdTe absorber layer 
 
            The two step closed-space sublimation process was used for depositing CdTe 

absorber layer.  In first step, the CdTe source plate was fabricated. CdTe was sublimated 

from a graphite boat packed with a chunk of CdTe powder (99.99% Alfa Aesar) on Mo 

substrate, for source plate fabrication at 15-torr He, with a sample temperature of 625°C, 

Mo substrate temperature of 525°C, 2 mm spacing, and a deposition time of 20 min. [10]. 

 In the second step, this substrate was considered as the source and the sample (nw-CdS/ 

i-SnO2/ ITO/ glass) as the substrate. The source-substrate distance was kept at 2 mm. The 

chamber was pumped down to a background pressure of approximately 0.35 torr; then 

5% O2 was introduced at a total pressure of 15 torr. The source and substrate were 

ramped together to 570°C, and then the source temperature was quickly increased to 

630°C.The source and substrate were maintained at 570°C, and 630°C for 2.3 min 

deposition. [10]. 

 

 When the substrate was cooled down to 400°C in the CSS chamber, films were annealed 

in-situ for 10 minutes. In-situ annealing helps removing stress and shunts CdTe 

recrystallization. Next, they were soaked in a 75%-saturated CdCl2 in methanol solution 

for 30 min at room temperature. Then, the pieces were then placed on an aluminum plate 

in a tube furnace that was purged with Argon. The furnace was then set at 400°C and left 

on for 30 min with a flow of 100-sccm Argon. After cooling to a maximum of 50°C, the 

pieces were rinsed in DI water to remove any excess CdCl2. 
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1.3.2.4 Back Contact Formation   
 

            After the deposition of CdTe layer, the cells were etched in a solution of nitric and 

phosphoric acid (NP) (1% HNO3, 88% H3PO4, 35% DI-water) for 35 seconds.  The cells 

were then masked and 5 nm thick copper layer was deposited onto the back contact area 

by sputtering. Graphite paste (with 1200-2400 Ω/ml) and silver paste electrodes were 

painted on to the back contact area. These samples were then heated at 150°C for 10 min 

to facilitate forming a Cu2Te layer and for curing the graphite/silver paste electrode 

Figure 3.4 shows the schematic of the finished nanowire CdS-CdTe solar cell [10]. 

 

Figure 1.12 Schematic of the nanowire CdS-CdTe solar cells [10] 
 

1.3.3 Results obtained from the experiment 
 
           SEM images of the CdS nanowires were obtained where it was observed that CdS 
nanowires take about 32% and AAO membranes take 68% of the physical area. Thus, the 
optical and electrical properties of CdS nanowires will be different from planar CdS 
window layer. It was observed that the AAO membranes have negligible absorption.  
 
Thus, AAO membranes have the ability to transmit the incident light and the transmission 
of the incident light is better through CdS nanowires due to their larger effective energy 
band gap. Thus, more incident light reaches the absorber CdTe layer. [10] 
 
    The open-circuit voltage Voc of 770 mV, a short current density Jsc of 26 mA/cm2, a fill 
factor, FF of 60%, and power conversion efficiency (PCE) of 12% was obtained. 
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1.4. Motivation 

We need to find the ways to improve the efficiency of solar cells, in order to 

provide green energy to the world. The nw-CdS/CdTe solar cell was invented in our lab 

which has the efficiency of 12%. This thesis is focused on the analysis of the parameters 

of this device.  

The objective of this thesis is to understand the J-V characteristics of nw-

CdS/CdTe solar cell and identify and evaluate the importance of various device 

parameters that affect the efficiency of nw-CdS/CdTe solar cell.  

 

In order to achieve this, the simulations were performed using SCAPS-1D and the 

plots of J-V characteristics were obtained. The experimental and theoretical plots were 

compared and the results are presented and interpreted in this thesis.  
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2. Theory of SCAPS-1D 

2.1 Numerical Modeling  

 
       Numerical Modeling has been increasingly used as a tool to understand the physical 

operation of the solar cells. Various measurements are done to understand the optical and 

electrical properties of the solar cell. However, it is difficult to analyze these 

measurements without the precise model. Therefore, numerical modeling is necessary to 

interpret the advanced measurement on complicated structures, design and optimization 

of advanced cell structures.  

 

      Following are the most important things to consider in a simulation software [11]: 

Capability of solving the basic equations –Poisson equation and the continuity equation 

for electron and holes 

(1) Allow multiple semiconductor layers with available option of material grading 

(2) Correct depiction of the discontinuities in the energy bands Ec and Ev at the 

interface 

(3) Provide the convergence for most solar cell structures 

(4) Capability of handling various tunneling mechanisms 

(5) Fast and user friendly 

 

       There are several solar cell simulation programs available at present. Mark S. 

Lundstrom developed the first solar cell simulation program as a part of his PhD Thesis 

[12]. Other programs are Thin-Film Semiconductor Simulation Program (TFSSP) [13], 

Solar Cell Analysis Program in 1Dimension (SCAPlD), Solar Cell Analysis Program in 2 

Dimension (SCAP2D) [14], PUPHS, and PUPHS2D [15]. These have been used to 

model a number of solar cells -thin-film Si: H, CdS/CIS, CdS/CdTe, Si, Ge, & GaAs cells 

in one spatial dimension and high efficiency Si and GaAs solar cells in two-dimensions. 

 

      The more common available simulation software programs are one dimensional 

programs, which include AMPS (Analysis of Microelectronic and Photonic Structures), 

ASA (Amorphous Semiconductor Analysis), PC1D and SCAPS. [11]  
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     AMPS was written by S. Fonash and coworkers of Pennsylvania State University [16]. 

In this software, all parameters are independent of temperature. It is possible to simulate 

the graded junctions. When the definition of the device is completed, the user can 

simulate J -V in dark and light as well as spectral response measurements. However, 

AMPS is slow in solving the problem compared to other simulation programs.  

 

     ASA was written by M. Zeman, M. Kroon, J. van den Heuvel and others at the Delft 

University of Technology [17]. It is especially designed for amorphous silicon devices. 

The number of layers which can be used are very large compared to other programs. The 

user can simulate J-V, capacitance-voltage (C-V) characteristics in dark and light as well 

as spectral response measurements.  It does not use graphical user interface for defining 

the problem. The problem is defined in ASCII input file. Therefore, it is difficult to start 

the problem from scratch.  

   

   PC1D was first written by Basore and coworkers at Sandia National Labs and further 

developed at UNSW, Australia [18]. It is very popular in PV community for modeling of 

crystalline Si solar cells. It has a clear user interface and defining a problem is easy. 

However, only five layers can be used in the defining the problem.  

     

 This thesis is focused on one-dimensional simulation and SCAPS-1D has been used as 

the tool for the simulations of nw-CdS/CdTe solar cell.  

2.1.1 Introduction to SCAPS-1D 

 

      SCAPS-1D (a solar cell capacitance simulator in one dimension) is written and 

maintained at the University of Gent [19]. It is mainly used for modelling CdTe, CIS and 

CIGS based thin film solar cells. The SCAPS-1D is a Windows application program and 

has been written in C code.  

 

      We can add up to seven layers to the device and the physical and electrical 

parameters can be entered to each layer. Simple models are used for the temperature 

dependence of the effective density of states and the thermal velocity. Other parameters 
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such as the bandgap and the mobilities are independent of temperature. We can define up 

to three deep levels for each layer and three interface states can be placed in between 

these three layers. These deep levels can be energetically distributed in the forbidden 

zone (single level, uniform, gauss or exponential tail). The deep bulk levels can also vary 

spatially inside the layer (uniform, step, linear or exponentially). All other properties are 

spatially uniform for each layer. So, in order to introduce the graded junctions in the 

device, several layers must be used.  

 

       Recombination in deep bulk levels and their occupation has been described by the 

Shockley–Read–Hall (SRH) formalism. Recombination at the interface states is described 

by an extension of the SRH formalism, which allows the exchange of electrons between 

the interface state and the two adjacent conduction bands, and of holes between the state 

and the two adjacent valence bands.  

 

       Excitation parameters are displayed in a separate window, together with the 

parameters that are necessary for defining the measurements. SCAPS can simulate: J (V), 

C (V), C (f) and spectral response. Each measurement can be calculated for light or dark 

conditions and as a function of temperature. During the process of solving the 

simulations, the energy band diagram and the charge and currents in the device are shown 

on screen for each intermediate bias voltage or wavelength. These intermediate solutions 

can then be saved to a file. When the simulation is completed, the characteristics can be 

viewed and compared with characteristics from other simulations, which also can be 

saved to a file. This feature makes SCAPS a very interactive program. 
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2.2 Mathematical model of SCAPS-1D 

2.2.1Basic Equations 

 
       SCAPS-1D solves the one dimensional semiconductor equations. The equations are 

as follows:  

A. Current –density equations:  

The current conduction mainly consists of two components, namely drift 

component, which is caused by the electric field and diffusion component, which 

is caused by the carrier-concentration gradient. These are also called as the 

constitutive equations. [5] 

 The equations are as follows:  

𝐽𝐽𝑛𝑛 = 𝑞𝑞𝜇𝜇𝑛𝑛𝑛𝑛ℰ + 𝑞𝑞𝐷𝐷𝑛𝑛
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝜇𝜇𝑛𝑛 �𝑛𝑛ℰ + 𝑘𝑘𝑘𝑘
𝑞𝑞
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝜇𝜇𝑛𝑛𝑛𝑛

𝑑𝑑𝐸𝐸𝐹𝐹𝐹𝐹
𝑑𝑑𝑑𝑑

                    (15) 

𝐽𝐽𝑝𝑝 = 𝑞𝑞𝜇𝜇𝑝𝑝𝑝𝑝ℰ + 𝑞𝑞𝐷𝐷𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝜇𝜇𝑝𝑝 �𝑝𝑝ℰ + 𝑘𝑘𝑘𝑘
𝑞𝑞
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝜇𝜇𝑝𝑝𝑝𝑝

𝑑𝑑𝐸𝐸𝐹𝐹𝐹𝐹
𝑑𝑑𝑑𝑑

                     (16) 

 

where, ℰ- Electric field 

𝜇𝜇𝑛𝑛 , 𝜇𝜇𝑝𝑝  -Mobility of electron and hole respectively 

𝐽𝐽𝑛𝑛,   𝐽𝐽𝑝𝑝- Electron and hole current density respectively 

𝐷𝐷𝑛𝑛 , 𝐷𝐷𝑝𝑝-Diffusion coefficient for electrons and holes respectively 

𝐸𝐸𝐹𝐹𝐹𝐹, 𝐸𝐸𝐹𝐹𝐹𝐹- Quasi-Fermi level for electron and hole respectively 

 

B. Continuity equations: 

In semiconductor, there are various carrier transport mechanisms. The continuity 

equations include the time-dependent phenomena such as generation, 

recombination and low-level injection. The effect of drift, diffusion, indirect or 

direct thermal generation or recombination give rise to the change in carrier 

concentration with respect to time. The net change of carrier concentration is the 

difference between generation and recombination, plus the net current flowing in 

and out of the specified region.  
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The continuity equations are given by:  

−𝜕𝜕𝐽𝐽𝑛𝑛
𝜕𝜕𝜕𝜕

− 𝑈𝑈𝑛𝑛 + 𝐺𝐺 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                      (17) 

−𝜕𝜕𝐽𝐽𝑝𝑝
𝜕𝜕𝜕𝜕

− 𝑈𝑈𝑝𝑝 + 𝐺𝐺 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                       (18) 

where, G- Generation rate 

𝑈𝑈𝑛𝑛, 𝑈𝑈𝑝𝑝-Net recombination/generation rate  

C. Poisson equation: 

Poisson equation gives the starting point in obtaining the qualitative solution for 

electrostatic variables in a semiconductor. It is given by 
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜀𝜀0𝜀𝜀

𝜕𝜕Ψ
𝜕𝜕𝜕𝜕
� = −𝑞𝑞(𝑝𝑝 − 𝑛𝑛 + 𝑁𝑁𝐷𝐷 − 𝑁𝑁𝐴𝐴)           (19)  

            where, 𝑞𝑞(𝑝𝑝 − 𝑛𝑛 + 𝑁𝑁𝐷𝐷 − 𝑁𝑁𝐴𝐴) = 𝜌𝜌 (charge density), considering the dopants to be              

fully ionized.  

𝑁𝑁𝐷𝐷 ,𝑁𝑁𝐴𝐴-Donor and acceptor impurity concentration respectively 

 

Together with appropriate boundary conditions at the interfaces and contacts, this results 

in a system of coupled differential equations in (Ψ, n, p) or (Ψ, EFn, EFp). 

The steady state and small signal solution of this system is numerically calculated by 

SCAPS-1D.  

At first, the dc solution is calculated by the dc algorithm. Then the ac algorithm 

calculates the complex admittance from the dc solution. 

2.2.2 DC Analysis 
 
         The dc analysis of the problem is explained in this section. The simulation domain 

is partitioned into number of subdomains. The differential equations are replaced by 

algebraic equations, in each subdomain.  The unknown functions are potential and carrier 

concentrations. They are replaced by their values in the nodes. Then, these nonlinear 

algebraic equations are solved iteratively [20]. 

 

The classical three point discretization method is used in this analysis. By assuming the 

electric field is constant within each subdomain, the discrete Poisson equation is 



 

 22 

obtained. The discretization of continuity equations are obtained by using exponentially 

fitted finite difference scheme.  

 

For the dc solution of the problem, the normalized electrostatic potential qΨ /kT and the 

following functions of quasi-Fermi energies are used as a set of variables:  

 

𝑢𝑢 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐸𝐸𝐹𝐹𝐹𝐹
𝑘𝑘𝑘𝑘
� − 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑞𝑞𝑞𝑞

𝑘𝑘𝑘𝑘
�            (20) 

𝑣𝑣 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐸𝐸𝐹𝐹𝐹𝐹
𝑘𝑘𝑘𝑘
� − 1                         (21) 

 

where, V is the applied bias and EFn and EFp  are the quasi-Fermi energies of the electrons 

and holes respectively.  

 

Here, the electrostatic potential is referenced to its value at the absorber contact and the 

quasi-Fermi energy are referenced to the equilibrium Fermi energy EF. The discrete 

continuity equations are linear in u and v, if the recombination terms are ignored. All the 

coefficients are scaled to make them dimensionless and in order to obtain the better 

conditioned numerical values of coefficient matrices.  

 

A nonlinear system of 3N equations with 3N variables is obtained with N nodes:  

 𝐹𝐹Ψ𝑑𝑑𝑑𝑑�Ψ���⃗  ,𝑢𝑢�⃗  , 𝑣⃗𝑣� = 0    (22) 
 

𝐹𝐹u𝑑𝑑𝑑𝑑�Ψ���⃗  ,𝑢𝑢�⃗  , 𝑣⃗𝑣� = 0      (23) 
 

𝐹𝐹v𝑑𝑑𝑑𝑑�Ψ���⃗  ,𝑢𝑢�⃗  , 𝑣⃗𝑣� = 0      (24) 
 

where, 𝐹𝐹Ψ𝑑𝑑𝑑𝑑  denotes the N- dimensional vector function with components, the discrete 

Poisson equation with N nodes and arguments, the variables  �Ψ𝚤𝚤����⃗  ,𝑢𝑢𝚤𝚤���⃗  , 𝑣𝑣𝚤𝚤���⃗ � , with 

i=1,2…N. 

The total system of 3N equations is separated into three subsystems of N equations with 

N variables. These subsystems are solved by Newton Raphson method.  

The correction vector is solved in three steps. Poisson equation is solved for the 

electrostatic potential and values of u and v are taken from the previous step in order to 
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calculate the coefficients. Similarly, continuity equations are used for the calculation of u 

and v. Here, the first estimate of the potential for the calculation at applied bias (∆V) is 

given by Ψ𝑖𝑖 − (𝑥𝑥𝑖𝑖 𝐿𝐿⁄ )∆V, where i=1, 2,…N and L is the device length, 𝑥𝑥𝑖𝑖 is the distance 

from the node I to the back contact and Ψ𝑖𝑖 is the equilibrium potential.  

2.2.3 AC Analysis 
 
The time dependent semiconductor equations are discretized and considering the 
variables (Ψ, n, p), the equations are given by: [20] 
 

𝐹𝐹Ψ𝑖𝑖�Ψ���⃗  ,𝑛𝑛�⃗  , 𝑝⃗𝑝� = 0          (25) 
 

𝐹𝐹n𝑖𝑖�Ψ���⃗  ,𝑛𝑛�⃗  , 𝑝⃗𝑝� = −𝜕𝜕𝑛𝑛𝑖𝑖
𝜕𝜕𝜕𝜕

     (26) 
 

𝐹𝐹p𝑖𝑖�Ψ���⃗  ,𝑛𝑛�⃗  , 𝑝⃗𝑝� = −𝜕𝜕𝑝𝑝𝑖𝑖
𝜕𝜕𝜕𝜕

      (27) 
 
The equation in the frequency domain is obtained by linearizing equations (25), (26) and 
(27) around the dc solution. The derivatives with respect to time are replaced by j𝜔𝜔 
where 𝜔𝜔 is the angular frequency of the ac-excitation. With the dc solution, 
 𝐹𝐹n𝑖𝑖�Ψ0�����⃗  , 𝑛𝑛0����⃗  ,𝑝𝑝0����⃗ � = 0 
 
The first order Taylor expansion of the discrete continuity equations for electrons at node 
i is given by:  

        

�
𝜕𝜕𝐹𝐹𝑛𝑛𝑛𝑛
𝜕𝜕Ψ𝑘𝑘

𝑁𝑁

𝑘𝑘=1

Ψ�𝑘𝑘 +
𝜕𝜕𝐹𝐹𝑛𝑛𝑛𝑛
𝜕𝜕n𝑘𝑘

n�𝑘𝑘 +
𝜕𝜕𝐹𝐹𝑛𝑛𝑛𝑛
𝜕𝜕p𝑘𝑘

p�𝑘𝑘 = −𝑗𝑗𝑗𝑗n�𝑖𝑖 

(28) 
where, (Ψ𝚤𝚤�,𝑛𝑛𝚤𝚤� ,𝑝𝑝𝚤𝚤�)  are the small signal amplitudes of the potential, carrier concentrations 
at node i. After linearization of the Poisson equation and continuity equations, linear 
system of 3N equations with 3N variables are obtained. As the system is linear, the 
solution is found by finding the lower-upper decomposition of N x N matrix with 3x3 
matrices as elements.  
 
For node i, 3x3 matrix Aik is given by:  
 

𝐴𝐴𝑖𝑖,𝑘𝑘 =

⎝

⎜
⎛

𝜕𝜕𝐹𝐹Ψ𝑖𝑖
∂Ψ𝑘𝑘

𝜕𝜕𝐹𝐹Ψ𝑖𝑖
∂n𝑘𝑘

𝜕𝜕𝐹𝐹Ψ𝑖𝑖
∂p𝑘𝑘

𝜕𝜕𝐹𝐹n𝑖𝑖
∂Ψ𝑘𝑘

𝜕𝜕𝐹𝐹n𝑖𝑖
∂n𝑘𝑘

+ 𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖
𝜕𝜕𝐹𝐹n𝑖𝑖
∂p𝑘𝑘

𝜕𝜕𝐹𝐹𝑝𝑝𝑝𝑝
∂Ψ𝑘𝑘

𝜕𝜕𝐹𝐹𝑝𝑝𝑝𝑝
∂n𝑘𝑘

𝜕𝜕𝐹𝐹𝑝𝑝𝑝𝑝
∂p𝑘𝑘

+ 𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖⎠

⎟
⎞

      (29) 
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𝑤𝑤𝚤𝚤� = �
Ψ𝚤𝚤�
𝑛𝑛𝚤𝚤�
𝑝𝑝𝚤𝚤�
�                               (30) 

 

𝑧𝑧𝑁𝑁� = �
−𝑉𝑉�
0
0
�                                (31) 

 
𝑧𝑧𝚤𝚤�=0 for i<N and 𝑉𝑉�  is the small signal amplitude of the applied bias. The ac system thus 
becomes:  

𝐴𝐴𝑤𝑤� = 𝑧̃𝑧                                        (32) 
 
In order to avoid the numerical problem, equation (32) is scaled using the S (n x n) 
scaling matrix. The elements of scaling matrix is given by:  
 

𝑆𝑆𝑖𝑖,𝑘𝑘 = 𝛿𝛿𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖,𝑖𝑖−1                                (33) 
The small signal amplitude 𝐽𝐽 is calculated after obtaining the solution for potential and 
carrier concentrations. Thus, the capacitance and conductance can be calculated by using 
the following equation:  
 

𝐺𝐺(𝜔𝜔) = 𝑅𝑅𝑅𝑅 � 𝐽𝐽
∇
�                 (34) 

 
𝐶𝐶(𝜔𝜔) = 1

𝜔𝜔
𝐼𝐼𝐼𝐼 � 𝐽𝐽

∇
�               (35) 

2.2.4 Physical Model  

 
For interface recombination, SCAPS-1D uses Pauwells Vanhoutte model [20]. The model 
considers four bands for interface states i.e. conduction and valence bands of both 
semiconductors at the interface.  

 
Figure 2.1 Pauwells Vanhoutte Model for CdS/CdTe heterojunction [20] 
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This theory considers the recombination of electrons of one semiconductor with holes of 
another semiconductor along with the standard recombination of electrons with holes 
within the same semiconductor. Here, the most important recombination path is the 
recombination of window electrons with the absorber holes. The total charge in the 
interface states equals the discontinuity in the dielectric displacement at the interface.  
 
It is assumed in SCAPS-1D that the quasi fermi levels of electrons and holes are 
discontinuous at the interface when the current flows through the interface. It is taken 
care by including one extra node at the interface in the numerical algorithm. The 
electrostatic potential is assumed continuous at the interfaces.  
 
Thermionic emission theory has been used to explain the transport of free carriers across 
the interface. Thermionic emission current for electrons for two direct bandgap 
semiconductors with identical effective masses, is given by 

 
𝑗𝑗𝑡𝑡ℎ 𝑛𝑛 = 𝑣𝑣𝑡𝑡ℎ 𝑛𝑛(𝑛𝑛(1)𝑒𝑒𝑒𝑒𝑒𝑒 �− |Δ𝐸𝐸𝑐𝑐|

𝑘𝑘𝑘𝑘
� − 𝑛𝑛(2))                             (36)  
 

Where, 𝑗𝑗𝑡𝑡ℎ 𝑛𝑛=particle current from semiconductor 1 to 2 
𝑣𝑣𝑡𝑡ℎ 𝑛𝑛  = thermal velocity of electrons 
𝑛𝑛(1)  ,  𝑛𝑛(2)= electron concentrations 
Δ𝐸𝐸𝑐𝑐= conduction band discontinuity  
 
Similarly, thermionic emission current for holes can be calculated.  
 
At the metal semiconductor contact, the boundary equations are imposed on the 
continuity equation for the electrons:  
 

𝑗𝑗𝑛𝑛 = 𝑆𝑆𝑛𝑛�𝑛𝑛 − 𝑛𝑛𝑒𝑒𝑒𝑒�            (37) 
where, 𝑛𝑛𝑒𝑒𝑒𝑒 is the number electrons at the contact in equilibrium. If the electrons are the 
majority carriers at the contact, then  
 

𝑆𝑆𝑛𝑛 = 𝐴𝐴∗𝑇𝑇2

𝑞𝑞𝑁𝑁𝑐𝑐
= 𝑣𝑣𝑡𝑡ℎ 𝑛𝑛             (38) 

 
 

where, 𝐴𝐴∗ is the effective Richardson constant.  
 
When the electrons are minority carriers at the contact, then 𝑆𝑆𝑛𝑛 in equation (37) is the 
surface recombination velocity of electrons.  
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3. Simulation Procedures 

       SCAPS-1D was used for doing the simulating the J-V characteristics of nanowire 

CdS-CdTe solar cell.  The main screen which pops up after running the SCAPS-1D is as 

shown in figure 3.1. 

 

In the working point panel, the temperature (K), voltage (V), frequency (Hz) and number 

of operations are entered. Series resistance, shunt resistance, Illumination (dark/ light) are 

entered in the startup panel.  

 

 

Figure 3.1 The SCAPS start up panel 
 

In SCAPS-1D, the problem is defined by specifying the key inputs such as the geometry 

and the material properties of the layers and contacts. The parameters of all the layers in 

nw-CdS/CdTe device were entered in the SCAPS-1D, including the front and back 

contact.  
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The thickness of the layers was entered as per the experimental data. The material 

properties of the layers and contacts were selected from literature [21]-[24] and in some 

cases such as interface state density, defect density, surface recombination velocity, bulk 

resistance, effective state densities and metal work function, were estimated and adjusted 

in order to get the curve fit to the experimental I-V curve at 300K. The range of the 

parameters used for the simulations are discussed in section 4.1. It is worthwhile to 

mention here that the parameters were kept same for all the temperatures.  

 

It is to be noted here that SCAPS-1D only takes the thin layer parameters, the nanowire-

CdS layer was presented as the thin layer with the higher absorption constant (9.6x10^5). 

As mentioned in section 1.3.3, nanowire-CdS layer has proven to be more improving 

light transmission through the window layer and enhancing absorption and carrier 

generation in absorber. [25] 

 

The problem is defined by clicking the SET PROBLEM in the startup panel. Figure 3.2 

shows the SCAPS solar cell definition panel. 

 



 

 28 

 

Figure 3.2 The SCAPS solar cell definition panel 
 

In each layer, specific parameters are to be entered as shown in the figure 3.3 and figure 

3.4. The whole screen is shown in two parts here. Between any two layers, interface layer 

can be defined.  
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Figure 3.3 Parameters for each layer in SCAPS 
 

The optical absorption constant α can be set either from the model or from a file. 

When it is set from a model, as it is wavelength dependent, is calculated using following 

equation in the program.  

α (λ) = �A +  𝐵𝐵 ℎ𝜐𝜐� ��ℎ𝜐𝜐 − 𝐸𝐸𝑔𝑔             (39) 
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Figure 3.4 Parameters including defect type for each layer in SCAPS 
 

The defects can be added by clicking on “add a defect” button. The new window 

appears on the screen as shown in figure 3.5. The program allows to set up to seven 

defects for each layer.  
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Figure 3.5 Defect properties panel 
 

The contact properties can be entered by either clicking on front or back contact 

button on the cell definition panel, which opens the contact properties panel as shown in 

figure 3.6.  
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The metal work function (φm) needs to be entered here. The program calculates 

metal work function at various temperature if flat band option is used. It calculates the 

barrier height relative to fermi level and conduction /valence band and displays on the 

screen. [26] 

 

 

Figure 3.6 Contact properties panel 
 

The density of states in conduction band (Nc) and valence band (Nv), thermal velocity       

(vth) and diffusion co-efficient are temperature dependent. In SCAPS-1D, all the 

parameters are defined at T0 (default temperature-300K). Nc, Nv and vth are calculated as 

follows for various temperatures. [26] 

𝑁𝑁𝑁𝑁(𝑇𝑇) = 𝑁𝑁𝑁𝑁(𝑇𝑇0) �𝑇𝑇
𝑇𝑇0
�
1.5

                              (40) 
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𝑁𝑁𝑁𝑁(𝑇𝑇) = 𝑁𝑁𝑁𝑁(𝑇𝑇0) �𝑇𝑇
𝑇𝑇0
�
1.5

                             (41) 

𝑣𝑣𝑡𝑡ℎ(𝑇𝑇) = 𝑣𝑣𝑡𝑡ℎ(𝑇𝑇0) �𝑇𝑇
𝑇𝑇0
�
0.5

                            (42) 

 

The other parameters are considered temperature independent. 

SCAPS-1D allows the user to set tunneling in each layer for band to band tunneling, 

intra-band tunneling, tunneling to interface states and tunneling to contacts.  

 

The table 3.1 shows the parameters used in the SCAPS-1D simulations at various 

temperatures. 

 

Table 3.1 Parameters used for simulations in SCAPS-1D 

Parameters Value 

CdS-nw/CdTe interface  

defect type acceptor 

capture cross section electrons (cm²) 1.00E-13 

capture cross section holes (cm²) 1.00E-13 

energetic distribution single 

reference for defect energy level Et Above Ev of CdTe 

Parameters  

energy with respect to Reference (eV) 0.100 

total  density (integrated over all energies) (1/cm2) at 

CdS/CdTe interface 

1.60E+12 

  

CdTe  

thickness (µm) 8 

bandgap (eV) 1.5 

electron affinity (eV) 3.9 

dielectric permittivity (relative) 9.4 

CB effective density of states (1/cm3) 1.000E+18 
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Parameters Value 

VB effective density of states (1/cm3) 8.000E+18 

electron thermal velocity (cm/s) 1.000E+7 

hole thermal velocity (cm/s) 1.000E+7 

electron mobility (cm²/Vs) 5.000E+2 

hole mobility (cm²/Vs) 4.000E+1 

shallow uniform acceptor density NA (1/cm3) 1.000E+16 

absorption constant A (1/cm eV(½)) 9.600E+5 

  

Defect 1 of CdTe  

defect type Single Acceptor 

capture cross section electrons (cm²) 1.000E-15 

capture cross section holes (cm²) 1.000E-12 

energetic distribution Single 

reference for defect energy level Et Above Ev 

energy level with respect to Reference (eV) 0.090 

Nt total (1/cm3) uniform  9.900E+13 

  

CdS-nw  

thickness (µm) 0.090 

bandgap (eV) 3.490 

electron affinity (eV) 4.000 

dielectric permittivity (relative) 9.000 

CB effective density of states (1/cm3) 8.000E+19 

VB effective density of states (1/cm3) 8.000E+18 

electron thermal velocity (cm/s) 1.000E+7 

hole thermal velocity (cm/s) 1.000E+7 

electron mobility (cm²/Vs) 1.000E+2 

hole mobility (cm²/Vs) 2.500E+1 

shallow uniform donor density ND (1/cm3) 1.150E+17 
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Parameters Value 

absorption constant A (1/cm eV(½)) 9.600E+5 

Allow Tunneling  Yes 

effective mass of electrons 1.900E+1 

effective mass of holes 8.000E+1 

  

i-SnO2  

thickness (µm) 0.100 

bandgap (eV) 3.600 

Parameters Value 

electron affinity (eV) 4.400 

dielectric permittivity (relative) 9.000 

CB effective density of states (1/cm3) 2.200E+19 

VB effective density of states (1/cm3) 1.800E+19 

electron thermal velocity (cm/s) 1.000E+7 

hole thermal velocity (cm/s) 1.000E+7 

electron mobility (cm²/Vs) 1.000E+2 

hole mobility (cm²/Vs) 2.500E+1 

shallow uniform acceptor density NA (1/cm3) 1.000E+15 

shallow uniform donor density ND (1/cm3) 1.000E+15 

absorption constant A (1/cm eV(½)) 1.000E+5 

ITO  

thickness (µm) 0.150 

bandgap (eV) 3.650 

electron affinity (eV) 4.800 

dielectric permittivity (relative) 8.900 

CB effective density of states (1/cm3) 5.200E+18 

VB effective density of states (1/cm3) 1.000E+18 

electron thermal velocity (cm/s) 2.000E+7 

hole thermal velocity (cm/s) 1.000E+7 
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Parameters Value 

electron mobility (cm²/Vs) 1.000E+1 

hole mobility (cm²/Vs) 1.000E+1 

shallow uniform donor density ND (1/cm3) 1.000E+15 

absorption constant A (1/cm eV(½)) 1.000E+5 

  

BACK CONTACT (CdTe)  

Thermionic Emission/ surface recombination velocity (cm/s)  

(a) electrons 1.000E+5 

(b) holes 1.000E+7 

Metal work function (eV) 5 

Majority Carrier barrier height(eV)  

(a) relative to Ef 0.4 

(b) relative to Ev  0.2271 

  

FRONT CONTACT   

Thermionic Emission/ surface recombination velocity (cm/s)  

(c) electrons 1.000E+5 

(d) holes 1.000E+7 

Metal work function (eV) 5.0216 

Majority Carrier barrier height(eV)  

(a) relative to Ef 0.2216 

(b) relative to Ec 0 

 

I-V measurements are done by clicking on the checkbox in startup panel and 

selecting dark/ light condition. The range of voltage can be set in the panel. Then either 

the “Calculate: single shot” or “Calculate: Batch” can be used to get the measurements. 

When we click on the “Calculate: Batch”, the panel opens where we can choose which 

parameter to vary, over which range, and in which mode (Lin, Log or custom). We can 

also define more than one parameter, and vary all of them (in a nested way or 

‘simultaneous’).  
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SCAPS uses a start point (initial guess) in order to get the solution under specified 

working point conditions and at the first measurement point. Every calculation starts at a 

start point. Here, it is assumed that the quasi fermi levels are zero throughout the 

structure and there is no potential drop. This is used as an initial guess to get equilibrium 

where there is no illumination and voltage is zero. So, when the calculations are done in 

dark condition, this is considered as an initial guess to calculate the solution in working 

point conditions.  

 

In light condition, the intermediate step is used in order to calculate the short 

circuit situation. The intermediate steps between the start point and the working point 

have to be close in order to get convergence. The number of intermediate steps can be 

entered in the action panel.  When the working point situation is calculated, the program 

calculate the first calculation point. In I-V measurement, the working point is usually 

considers as 0 V and then the first calculation is done from the start point of the voltage 

range setup in the main panel.  

 

When we click on the “Calculate” button, the energy bands panel opens and the 

calculations start. SCAPS shows the movie how the conduction band, valence band and 

fermi levels are evolving. Once it is completed, energy band and current densities are 

shown. I-V curves can be seen after clicking on the “I-V” buttons. Figure 3.7 shows the I-

V curve at 300K (dark). 
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Figure 3.7 SCAPS I-V panel 
 
The parameters such as the CdTe defect, CdS/ CdTe interface layer defect, etc. 

were adjusted in order to get the fit for the experimental I-V characteristics at various 
temperatures. The feature “Calculate: Batch” was used to perform number of simulations 
at the same time.  

 
I-V measurements were obtained at dark and light for the temperatures 296K, 

275K, 250 K and 225 K. The results were compared with the experimentally obtained 

data.  
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4. Results and Discussion        

4.1. Effect of various parameters on light I-V characteristics 
 

Effect of various parameters such as interface state density, CdS and CdTe state 

densities, trap concentration, metal work function on light I-V curves were studied by 

using SCAPS-1D and are presented in this section.  

4.1.1. Effect of interface state density  
 

The charge Qit in the interface traps exists within the forbidden gap due to the 

interruption of the periodic lattice structure at the surface of a crystal. [5] Qit can be very 

high because the density of ions at the interface can be quite high, in the order of 1015 

ionscm2. Similar to bulk impurities, an interface trap is considered as a donor when 

neutral (filled with electrons) and can become positively charged by donating an electron. 

An interface trap is considered as an acceptor when neutral (empty) and can become 

negatively charged by accepting an electron.  

 

To study the effect of interface state density on I-V characteristics, the interface 

state densities (Nit) between nw-CdS and CdTe layers were varied in the simulations from 

the range of 5.88x1011 to 6.35x1014 cm-2. This range related to the simulated J-V curves 

obtained by SCAPS-1D with no convergence failure. In this model, the defect type for 

the interface state is considered as an acceptor with single level energetic distribution.  

Figs. 4.1-4.15 show the simulated J-V characteristics of solar cell for the range of 

interface state densities. 
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Figure 4.1 Simulated J-V characteristics at 300 K for Nit: 5.88 x1011cm-2  
 
 

 
Figure 4.2 Simulated J-V characteristics at 300 K for Nit: 6 x1011cm-2 
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Figure 4.3 Simulated J-V characteristics at 300 K for Nit: 7 x1011cm-2 

 
 
 

 
Figure 4.4 Simulated J-V characteristics at 300 K for Nit: 8 x1011cm-2 
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Figure 4.5 Simulated J-V characteristics at 300 K for Nit: 9 x1011cm-2 

 
 

 

 
Figure 4.6 Simulated J-V characteristics at 300 K for Nit: 1 x1012cm-2 
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Figure 4.7 Simulated J-V characteristics at 300 K for Nit: 3 x1012cm-2 
 

 

 
Figure 4.8 Simulated J-V characteristics at 300 K for Nit: 5 x1012cm-2 
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Figure 4.9 Simulated J-V characteristics at 300 K for Nit: 7 x1012cm-2 
 

 
Figure 4.10 Simulated J-V characteristics at 300 K for Nit: 1 x1013cm-2 
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Figure 4.11 Simulated J-V characteristics at 300 K for Nit: 5 x1013cm-2 

 

 
Figure 4.12 Simulated J-V characteristics at 300 K for Nit: 1 x1014cm-2 
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Figure 4.13 Simulated J-V characteristics at 300 K for Nit: 3 x1014cm-2 

 
 

 
 

 
Figure 4.14 Simulated J-V characteristics at 300 K for Nit: 6 x1014cm-2 
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4 
 
 

 
Figure 4.15 Simulated J-V characteristics at 300 K for Nit: 6.35 x1014cm-2 
 
 

 

 Figure 4.16 shows the simulated I-V curves and table 4.1 shows the values of 

Voc, Jsc, FF and efficiency at various interface state densities. The interface 

recombination current increases the dark saturation current of the solar cell and decrease 

the collection efficiencies.  Thus, it decreases the short circuit current and therefore, the 

efficiency of the solar cell. [27] As can be seen from the figure 4.16 and table 4.1, Voc 

and Jsc decreases as the total density of interface states increases, and thus, the efficiency 

is reduced.  
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Figure 4.16: Simulated light I-V curves of nw-CdS/CdTe device at various interface state 

densities  

 
Table 4.1 Effect of interface state density on Voc, Isc, FF and Efficiency 

 Red curve Blue  curve Light Green 

curve  

Aqua Blue 

curve 

Total  density (1/cm^2) at 

CdS/CdTe interface 

6.000e+11 1.000e+12 1.000e+13 6.350e+14 

RESULTS     

Voc(V) ↓ 0.7964 0.7898 0.7546 0.7328 

Jsc(mA/cm2) ↓ 25.79 24.79 7.69 0.296 

FF (%) 70.17 68.52 67.68 83.23 

Efficiency (%) ↓ 14.42 13.42 3.93 0.18 
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4.1.2 Effect of Surface recombination velocity at interface  
 
Surface recombination velocity is an important parameter that affects the dark saturation 

current and the quantum efficiency of a solar cell. Interfaces introduce band of electronic 

states in the band gap that can be ascribed to broken or strained bonds and impurities. [5]  

 

The surface recombination velocity at the interface is given by  

𝑆𝑆𝑛𝑛 =  𝜎𝜎𝑛𝑛 𝑣𝑣𝑡𝑡ℎ𝑁𝑁𝑖𝑖𝑖𝑖  - For electrons      (43) 

𝑆𝑆𝑝𝑝 =  𝜎𝜎𝑝𝑝 𝑣𝑣𝑡𝑡ℎ𝑁𝑁𝑖𝑖𝑖𝑖 – For holes             (44) 

Where,  𝑁𝑁𝑖𝑖𝑖𝑖  - Density of interface traps 

              𝑣𝑣𝑡𝑡ℎ - Thermal velocity 

              𝜎𝜎𝑝𝑝 , 𝜎𝜎𝑛𝑛 –Capture cross section of holes and electrons, respectively 

The interface recombination velocities were varied in the simulations from the range of 

6x 102 -6x 107 cm/s and simulations were performed. Figures 4.17-4.22 show the 

simulated J-V characteristics of solar cell for the range of surface recombination 

velocities. 

 
Figure 4.17 Simulated J-V characteristics at 300 K for Sn: 6x107 cm/s 
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Figure4.18 Simulated J-V characteristics at 300 K for Sn: 6x106 cm/s 

 
 

 
Figure 4.19 Simulated J-V characteristics at 300 K for Sn: 6x105 cm/s 
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Figure 4.20 Simulated J-V characteristics at 300 K for Sn: 6x104 cm/s 

 

 
Figure 4.21 Simulated J-V characteristics at 300 K for Sn: 6x103 cm/s 
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Figure 4.22 Simulated J-V characteristics at 300 K for Sn: 6x102 cm/s 

 
 

 

Figure 4.23 Simulated light I-V curves of nw-CdS/CdTe device at various interface 

recombination velocity 



 

 53 

 

As can be seen from the figure 4.23 and table 4.2, Voc and Jsc increases as interface 

recombination velocity decreases, and thus, the efficiency increases. 
 

Table 4.2 Effect of interface recombination velocity on Voc, Isc, FF and Efficiency 

 Red Blue   Light Green 

Interface recombination velocity(cm/s) 1.6x107 8.8 x106 1.6x106 

RESULTS    

Voc(V) ↑ 0.7103 0.7317 0.7839 

Jsc(mA/cm2) ↑ 11.378436 15.4002

4 

22.317618 

FF (%) ↑ 56.11 60.62 68.27 

Efficiency (%) ↑ 4.53 6.83 11.94 
 
 

4.1.3. Effect of CdS and CdTe effective density of states  

4.1.3.1 Effect of CdS effective density of states (Nc): 

            

The effect of Nc and Nv can be explained from equation (2) – (4). As Nc/ Nv increases, the 

dark saturation current increases, thus open circuit voltage Voc decreases. Therefore, the 

efficiency of a solar cell decreases.  

In order to verify the simulated model, the effective density of states in the conduction 

band of CdS-nw was varied from the range 8 x 1018 to 8 x 1019 cm-3 and I-V simulations 

were performed. 

 

As can be seen from figure 4.24 and table 4.3, as Nc increases in CdS-nw, the open circuit 

voltage reduces and the efficiency is reduced.  
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Figure 4.24 Simulated light I-V curves of nw-CdS/CdTe device at various Nc in CdS-nw 
 

Table 4.3 Effect of Nc of CdS-nw on Voc, Isc, FF and Efficiency 

 Red curve Blue Curve 

Nc in CdS-nw (1/cm^3) 8.000E+18 8.000E+19 

RESULTS   

Voc(V) ↓ 0.8441 0.7839 

Jsc(mA/cm2)  22.31 22.32 

FF (%) 68.42 68.27 

Efficiency (%) ↓ 12.89 11.94 
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4.1.3.2 Effect of CdTe effective density of states (Nv) 

            The effective density of states in the valence band (Nv) were varied 8 x 1018 to 8 x 

1019 cm-3 and I-V simulations were performed. 

 

Figure 4.25 Simulated light I-V curves of nw-CdS/CdTe device at various Nv in CdTe 

 

Table 4.4 Effect of Nv of CdTe on Voc, Isc, FF and Efficiency 

 Red curve Blue Curve 

Nv in CdTe (1/cm^3) 8.000E+18 8.000E+19 

RESULTS   

Voc(V) ↓ 0.7839 0.722 

Jsc(mA/cm2)  22.32 20.71 

FF (%) 68.27 66.99 

Efficiency (%) ↓ 11.94 10.71 

 

As can be seen from figure 4.25 and table 4.4, as Nv increases in CdTe, the open circuit 

voltage reduces and the efficiency is reduced.  
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4.1.4. Effect of defect in CdTe layer 
 

 The recombination at defect level plays an important role in I-V 

characteristics. SCAPS-1D allows the user to specify the defect at each layer. The 

acceptor defect is simulated in CdTe layer for this model.  The trap energy level Et is 0.09 

above the valence band of CdTe. The trap densities were varied from the range 9.9 x1013 

to 9.9 x1017 cm-3 and simulations were performed at 300 K. Fig. 4.26-4.28 show the 

simulated J-V characteristics of solar cell for the range of defect densities. 

 

 

Figure 4.26 Simulated J-V characteristics at 300 K for Nt: 9.9 x1017cm-2 
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Figure 4.27 Simulated J-V characteristics at 300 K for Nt: 9.9 x1016cm-2 
 

 

Figure 4.28 Simulated J-V characteristics at 300 K for Nt: 9.9 x1013cm-2 
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Table 4.5 Effect of trap density of CdTe on Voc, Isc, FF and Efficiency 

 Red curve Blue Curve 

Nt in CdTe (1/cm^3) 9.9E+13 9.9E+16 

RESULTS   

Voc(V)  0.7842 0.7857 

Jsc(mA/cm2) ↓ 22.45 21.04 

FF (%) 68.45 69.83 

Efficiency (%) ↓ 12.05 11.54 

 

Figure 4.29 Simulated light I-V curves of nw-CdS/CdTe device at various Nt in CdTe 
 

 

As can be seen from figure 4.29 and table 4.5, as Nt increases in CdTe, the short circuit 

current decreases and the efficiency is reduced.  
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4.1.5. Effect of metal work function 
 

          The metal work function is defined as the energy needed to bring an 

electron from the Fermi level to the vacuum level. The back contact can be ohmic or 

Schottky depending upon the work functions of metal and CdTe. An ohmic contact will 

allow the transfer of free carriers while the Schottky contact will have a barrier at the 

back contact for the transfer of carriers. The metal work function of the CdTe contact was 

varied from 5-5.7 eV and the simulations were performed. Fig. 4.30-4.38 show the 

simulated J-V characteristics of solar cell for the range of defect densities. 

 
 
 

 
Figure 4.30 Simulated J-V characteristics at 300 K for metal work function: 4.87eV 
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Figure 4.31 Simulated J-V characteristics at 300 K for metal work function: 5.0 eV 

 
 
 

 
Figure 4.32 Simulated J-V characteristics at 300 K for metal work function: 5.1 eV 
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Figure 4.33 Simulated J-V characteristics at 300 K for metal work function: 5.2 eV 

 

 
Figure 4.34 Simulated J-V characteristics at 300 K for metal work function: 5.3 eV 
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Figure 4.35 Simulated J-V characteristics at 300 K for metal work function: 5.4 eV 
 

 
Figure 4.36 Simulated J-V characteristics at 300 K for metal work function: 5.5 eV 
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Figure 4.37 Simulated J-V characteristics at 300 K for metal work function: 5.6 eV 

 
 

 
Figure 4.38 Simulated J-V characteristics at 300 K for metal work function: 5.7 eV 
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It can be observed from figures 4.35 to 4.38, the J-V characteristics show similar results 
as the CdTe contact becomes the ohmic contact from metal work function 5.4 and above 
and it allows the flow of carriers towards the absorber layer. 
 

 

Figure 4.39 Simulated light I-V curves of nw-CdS/CdTe device at various metal work 

function 

Table 4.6 Effect of metal work function on Voc, Isc, FF and Efficiency 

 Red curve Blue Curve 

Metal work function (eV) 5 5.4 

Majority carrier barrier 

height [relative to Ef ](eV) 

0.4 0.0 

RESULTS   

Voc(V) ↑ 0.7839 0.7872 

Jsc(mA/cm2) ↑ 22.32 24.22 

FF (%) ↑ 68.27 68.93 

Efficiency (%) ↑ 11.94 13.14 
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As can be seen from figure 4.39 and table 4.6, as metal work function increases, the 

majority carrier barrier height with respect to the Fermi level is reduced. The open circuit 

voltage is increased and the efficiency is enhanced.  
 

4.1.6 Simulated J-V characteristics at 300 K 
 
J-V characteristics for 300 K were simulated using the optimum values of the interface 
state density, defect density, metal work function, surface recombination velocity, shunt 
and series resistance. The objective was to obtain the highest efficiency, with no 
convergence failure and no crossover or rollover effect.  
 
The values for series resistance were varied from 0.5-5 ohm and shunt resistance from 
1.0x1015   to 1.0 x1020 ohm.cm2. The range of the values for other parameters was varied 
as mentioned in the previous sections 4.1.1-4.1.5. 
 
Figure 4.40 shows the simulated J-V characteristics at 300 K with the efficiency of 
22.26%. The open circuit voltage of 0.9828 V and short circuit current of 26.724 mA/cm2 
with the fill factor of 84.73 was observed here. There was no crossover and rollover 
effect.  
 
Table 4.7 shows the parameter values used for achieving highest efficiency of 22.26% 
and the parameters which were used in order to fit the experimental data at 300 K. Figure 
4.40 shows no rollover or crossover effect and it can be concluded here that the efficiency 
of the solar cell can be improved by reducing the interface state density, surface 
recombination velocity at the interface, metal work function and the bulk resistance.  
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Figure 4.40 Simulated J-V curve at 300 K 
 
 
Table 4.7 Parameters used for simulated J-V curves at 300 K with 22.26% efficiency and 
12.08% efficiency 
 
 
Parameters Values used for achieving 

highest efficiency 
(𝜂𝜂=22.26%) 

Values used for J-V 
curve fitting 
(𝜂𝜂=12.08%) 

Total  density (integrated over all 
energies) (1/cm2) at CdS/CdTe 
interface 

6.0x1011 1.60 x1012 

Surface recombination velocity at 
the interface (cm/s)  

6.0x102 1.6x106 

Metal work function at CdTe contact 
(eV) 

5.5 5 

Series Resistance (ohm) 0.5 4.0 

Shunt Resistance (ohm.cm2) 1.0x1020 1.0x1015 
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4.2 J-V curve fitting  
 
      J-V characteristics of nanowire CdS/CdTe solar cell, tested under standard conditions 

of room temperature and 100 mW/cm2 irradiation were experimentally obtained by Dr. 

Hongmei Dang [10]. The cell had an area of 0.018 cm2, and yielded an open-circuit 

voltage Voc of 770 mV, a short current density Jsc of 26 mA/cm2, a fill factor, FF of 60%, 

and a power conversion efficiency (PCE) of 12%. It should be noted that the 12% 

efficiency value was achieved on an intrinsic SnO2/ITO-soda-lime glass substrate and 

without antireflective coating. 

Figure 4.41 shows the experimental curve under dark and 1-sun illumination at 296 K. 

 

 

Figure 4.41 Experimental J-V curves (dark and light) of nw-CdS/CdTe device at 296K 
 
The properties of the device in the simulations such as interface recombination velocity, 

interface state density, defects, Nc, Nv, etc. were varied in order to get the most perfect 

fit with the experimental results for the temperature 300 K. The parameters were kept 

constant for lower temperatures and the simulations were performed.  

Figure 4.42 shows the simulated J-V light and dark curve at 296 K which is a best fit for 

the experimental curves.  
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Figure 4.42 Simulated J-V curves (dark and light) of nw-CdS/CdTe device at 296K 
 

Figure 4.43 – figure 4.50 show the experimental and simulated J-V light and dark curves 

at 296K, 275K, 250 K and 225K individually with R2 co-efficient. 

 

 

Figure 4.43 J-V curves fitting (dark) of nw-CdS/CdTe device at 296K 
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Figure 4.44 J-V curves fitting (light) of nw-CdS/CdTe device at 296K 
 

 

Figure 4.45 J-V curves fitting (dark) of nw-CdS/CdTe device at 275K 
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Figure 4.46 J-V curves fitting (light) of nw-CdS/CdTe device at 275K 
 
 

 

 

Figure 4.47 J-V curves fitting (dark) of nw-CdS/CdTe device at 250K 
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Figure 4.48 J-V curves fitting (light) of nw-CdS/CdTe device at 250K 

 

 

Figure 4.49 J-V curves fitting (dark) of nw-CdS/CdTe device at 225K 
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Figure 4.50 J-V curves fitting (light) of nw-CdS/CdTe device at 225K 
 
 

The above figures show that the simulated curves are similar to the experimental curves 

obtained at various temperatures.  

The variations in the simulated results can be attributed to the following reasons:  

(1) The parameters for thin layer CdS in SCAPS-1D have been optimized for 

nanowire CdS embedded in AAO membrane.  

(2) Various defects might be actually present in the device. In the simulation, only 

acceptor level defect in CdTe was considered along with the acceptor level defect 

in the interface of nw-CdS and CdTe layers.  

(3) SCAPS-1D treats energy bandgap and mobilities as temperature independent. 

However, both the parameters are actually temperature dependent. [5] 
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4.3 Crossover Effect 

 
       The crossover effect is generally observed in CdTe solar cells. At higher forward 

bias, the light current-voltage characteristic crosses over and reaches above the dark 

current-voltage characteristic.  The crossover effect has been attributed to various causes 

including,  

(i) The photoconductivity effect; the bulk resistance of both CdS and CdTe is 

reduced when sunlight is shined on them.  This leads to reduced series 

resistance and hence higher light current compared to the dark current is 

observed at voltages higher than the crossover point. 

(ii) Sensitivity of the CdS-CdTe heterojunction to the sunlight radiation; electron 

occupation of interface states and traps near the junction alters when sunlight 

falls on the device.  This leads to a reduced junction potential barrier under 

illumination and hence higher light current compared to the dark current is 

observed at voltages higher than the crossover point. 

(iii) Sensitivity of the CdTe-Graphite Schottky diode junction to the sunlight 

radiation; some sunlight generated electrons reach the interface between the 

CdTe layer and the graphite electrode, and then recombine via surface states.  

This increases the value of the effective reverse saturation current (j0) in light 

compared to the value of (j0) in the dark, and leads to higher light current 

compared to the dark current at voltages higher than the crossover point.  The 

simulations done by Burgelman et. al., in SCAPS-1D, have indicated that the 

crossover effect occurred due to the minority carrier recombination at 

metal/CdTe contact. [28] This recombination current is directly proportional 

to the illumination intensity. This needs to be added to the dark saturation 

current of the back diode. Thus, the total recombination current at illumination 

is higher than the dark, at a given voltage. It is negligible at low bias. 

However, it may become comparable with the back contact saturation current 

at higher bias.  

(iv) Sensitivity of the CdS/ i-SnO2 junction to the sunlight radiation; some sunlight 

generated electrons reach the interface between the CdTe layer and i-SnO2 
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layer, and then recombine via traps and interface states.  This increases the 

value of the effective reverse saturation current (j0) in light compared to the 

value of (j0) in the dark, and leads to higher light current compared to the dark 

current at voltages higher than the crossover point. 

 

In our study, we focused on the fourth effect.  The following curves represent the J-V 

curves (dark and light) at 300K. Here, we see the crossover is starting to appear from Fig. 

4.52 and crossover is observed at 0.96 V in fig. 4.53. Table 4.8 shows the parameters 

which were used for simulating these curves. The CdS thickness was reduced from 100 

nm to 90 nm and the defect in i-SnO2 layer was removed. We can conclude from here 

that the removal of defect in i-SnO2 increases the Jsc at particular voltage, thus producing 

the crossover effect. Further, reducing the thickness of CdS layer reduced the overall 

resistance, thus increasing the current Jsc. 

 

 
Figure 4.51 Simulated J-V curve (dark and light) at 300 K with CdS thickness-100 nm 
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Figure 4.52 Simulated J-V curve (dark and light) at 300 K with CdS thickness-90 nm 

 

 
Figure 4.53 Simulated J-V curve (dark and light) at 300 K with CdS thickness-90 nm and 
absence of i-SnO2 defect 
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Table 4.8 Parameters used for explaining Crossover effect 
 

Parameters Figure4.17 Figure4.18 Figure4.19 
CdS-nw    
thickness (µm) 0.100 0.09 0.09 
    
i-SnO2    
CB effective density of states 
(1/cm^3) 

2.200E+18 2.200E+18 2.200E+18 

Defect 1 of i-SnO2    
defect type Donor Donor Removed 
capture cross section electrons 
(cm²) 

1.00E-15 1.00E-15  

capture cross section holes 
(cm²) 

1.00E-12 1.00E-12  

energetic distribution single single  
reference for defect energy 
level Et 

Below Ec  Below Ec   

energy level with respect to 
Reference (eV) 

0.2 0.2  

Nt total (1/cm^3) uniform 1.000E+15 1.000E+15  
 
 

4.4 Rollover Effect 
 
           Because of the relatively high work function of p-CdTe, it is rather difficult to 

make an ohmic contact to it.  To achieve a conducting contact, surface of CdTe must be 

cleaned, etched and its chemical composition modified in such a way that becomes 

tellurium rich, and highly conductive at the surface.  In spite of careful processing, it is 

not uncommon for the CdTe-top electrode contact to become a Schottky diode.  Many 

times, the solar cell, as made has a conducting contact between CdTe and the top 

electrode, but the contact degrades with time into a Schottky diode type because of 

insufficient encapsulation and the resultant oxidation of the CdTe surface.   As this 

happens, the solar cell begins to behave like two back-to-back diodes [28-29].  One diode 

is made up of the main p-n heterojunction between n-CdS and p-CdTe, and the other is 

the Schottky diode between the surface of p-CdTe and the top electrode, which is 

typically graphite, or a metal like gold (Au). 
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The current-voltage characteristics now display a saturation like behavior, which 

manifests as an S-shaped curvature in the I-V curve at high voltages.  This effect, called 

the Rollover Effect, is illustrated in Fig. 4.54.  It can be seen when the cell is the dark and 

also when under illumination.   

In the past, the Rollover Effect in planar CdS-CdTe solar cell devices has been explained 

by Singh et al [29] in terms of the tunneling breakdown of the Schottky diode; as 

thermionic emission and shunt conductance by Stollwerk et al [30]; and as drift and 

diffusion by Niemegeers et al [28].  

 

Rollover effect can be explained by two diode model. The majority carrier current 

transport through CdTe back contact diode is limited by thermionic emission, or by drift 

and diffusion in the contact space charge layer, or a combination of both. However, slope 

of I-V curve at forward bias cannot be explained only by thermionic emission. The 

reason being current limited by thermionic emission is independent of voltage at forward 

bias. Further, the I-V curve shows a slope beyond the rollover point, which decreases 

exponentially with temperature. The shunt conductance at the contact, though shows the 

slope of I-V curve, does not explain the temperature dependence. According to 

Niemegeers et al [28], the current transport across the CdTe back contact is limited by 

drift and diffusion. The electric field at the metal contact depends on the voltage over the 

contact diode, which explains the voltage dependence of the saturation current. The 

Boltzmann factor exp (−𝑞𝑞∅𝐵𝐵) explains the temperature dependence of the saturation 

current.  

 

It is interesting to note that all of the three theories mentioned above, for the planar CdS-

CdTe solar cell device rely upon the presence of a diode at the junction between the 

surface of CdTe and the top electrode.  To check the validity of these theories for the 

nanowire CdS-CdTe device, we simulated the effect of varying the height of the Schottky 

barrier on the current-voltage characteristics of the solar cell.  The barrier height (energy 

difference between the metal Fermi level and the top of the valence band) was altered 

from 0.5 eV to 0.4 eV.  Fig. 4.54 shows the J-V curves (light) at 300 K and Table 4.9 

shows parameters varied for removing the rollover effect.  It is clear that the barrier 
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height of this Schottky diode at the CdTe surface plays a critical role in determining cell 

performance.  The curve corresponding to the 0.5 eV barrier exhibits a strong rollover 

effect, while this effect has disappeared when the barrier was reduced to 0.4 eV.  The fact 

that the 2-diode model is applicable to the nanowire CdS-CdTe-graphite solar cell as the 

planar CdS-CdTe-graphite cell is not surprising because the CdTe-graphite junction is the 

same in both cases. 

 

 

Figure 4.54 Simulated J-V curves (light) at 300 K 
 

Table 4.9 Parameters varied for removing the rollover effect 
 

 Red curve Blue Curve 

Majority carrier barrier height 

[relative to Ef ](eV) 

0.5 0.4 

Majority carrier barrier height 

[relative to Ev](eV) 

0.3271 0.2271 

 

Copyright © Rasika Ganvir 2016 
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5. Conclusion and Future Work 
 
CdS nanowires have several advantages over the planar CdS such as the improvement in 

open circuit voltage due to reduced junction area and improvement in short circuit current 

due to higher optical transmission through CdS nanowires. The modeling of the nw-CdS/ 

CdTe was studied by using SCAPS-1D in order to identify and evaluate the parameters 

responsible for improving the efficiency of this solar cell.  

 

The effects of various parameters including interface state density, CdS and CdTe state 

densities, trap concentration, metal work function on light I-V curves were studied and 

the optimum values for these parameters were obtained in order to get the highest 

efficiency without convergence failure and with no crossover or rollover effect. The 

highest efficiency for nw-CdS/ CdTe structure obtained was 22.26% withJsc= 26.724 

mA/cm2, Voc= 0.9828 V and FF=84.27 at 300K. It can be concluded here that the 

efficiency can be improved by improving the interface and contact properties of nw-

CdS/CdTe structure. The fill factor can be improved by reducing the series resistance and 

increasing the shunt resistance.  

 

The simulations for J-V characteristics of nw-CdS/CdTe solar cell were performed using 

SCAPS-1D for getting the curve fit with the experimental characteristics for 300 K.  The 

experimental J-V measurements at 300 K were Voc=0.770 V, Jsc = 26 mA/cm2, FF=60% 

and the efficiency of 12%. The simulated J-V curves considered for curve fitting were at 

Voc=0.7919 V, Jsc = 22.345 mA/cm2, FF=68.27% for the efficiency of 12.08%. The same 

parameters were used for obtaining the simulated J-V characteristics at lower 

temperatures 275K, 250K and 225K. It can be concluded here that the simulated J-V 

characteristics were close to the experimental characteristics with R2 >0.9 at all 

temperatures. The variations in Voc and Jsc can be attributed to the defects, assumptions 

made in the simulations for nw-CdS parameters and SCAPS-1D does not consider 

parameters such as energy bandgap and mobilities as temperature dependent.  

 

Further, it was observed that the present simulated model explains the important effects 

of the nw-CdS/CdTe solar cell such as crossover and rollover effect. The crossover effect 



 

 80 

was studied by considering the sensitivity of CdTe/i-SnO2 under illumination. It was 

shown that the removal of defect in i-SnO2 is responsible for producing the crossover 

effect.  

 

The rollover effect has been explained by using back to back diode model in the literature 

and the simulations were performed in order to validate this theory.  It was shown that the 

change of barrier height at the contact is a critical parameter in the rollover effect. Once 

the majority carrier barrier height was varied from 0.4 to 0.5 eV, the curve corresponding 

to the 0.5 eV barrier showed a strong rollover effect, while this effect was disappeared 

when the barrier was reduced to 0.4 eV.   

 

Overall, it can be concluded that SCAPS-1D model, which is modeled for thin film solar 

cells, is able to provide the realistic simulation for nw-CdS/CdTe solar cells.  

 

For future work, C-V and external quantum efficiency (EQE) characteristics can be 

simulated, studied and the results can be compared with the experimental obtained data.  
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