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RESEARCH ARTICLE

A Novel C-Terminal CIB2 (Calcium and
Integrin Binding Protein 2) Mutation
Associated with Non-Syndromic Hearing Loss
in a Hispanic Family
Kunjan Patel1☯, Arnaud P. Giese2☯, J. M. Grossheim3, Rashima S. Hegde4, Maria Delio5,
Joy Samanich6, Saima Riazuddin2, Gregory I. Frolenkov3, Jinlu Cai1, Zubair M. Ahmed2*,
Bernice E. Morrow1*

1 Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York,
United States of America, 2 Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine,
University of Maryland, Baltimore, Maryland, United States of America, 3 Department of Physiology, College
of Medicine, University of Kentucky, Lexington, Kentucky, United States of America, 4 Division of
Developmental Biology, Cincinnati Children’s Hospital Medical Centre Cincinnati, Ohio, United States of
America, 5 Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York,
United States of America, 6 Department of Pediatrics (Clinical Genetics), Albert Einstein College of
Medicine; Montefiore Medical Center, Bronx, New York, United States of America

☯ These authors contributed equally to this work.
* zahmed@smail.umaryland.edu (ZMA); Bernice.Morrow@Einstein.yu.edu (BEM)

Abstract
Hearing loss is a complex disorder caused by both genetic and environmental factors. Previ-

ously, mutations inCIB2 have been identified as a common cause of genetic hearing loss in

Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transi-

tion mutation in theCIB2 gene identified through whole exome sequencing (WES) in a Carib-

bean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-

and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with

calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within

predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed

that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips

of hair cell stereocilia. However, we found that themutation disrupts inhibition of ATP-induced

Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.

(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further

highlights the necessity of the calcium binding property of CIB2 for normal hearing.

Introduction
Congenital hearing loss is considered to be the most prevalent abnormality in newborns with
an estimated incidence of 1/500 live births [1, 2]. Both genetic and environmental factors are
responsible for hearing loss [3–6]. Genetic factors account for 50% of hearing loss in developed

PLOSONE | DOI:10.1371/journal.pone.0133082 October 1, 2015 1 / 16

OPEN ACCESS

Citation: Patel K, Giese AP, Grossheim JM, Hegde
RS, Delio M, Samanich J, et al. (2015) A Novel C-
Terminal CIB2 (Calcium and Integrin Binding Protein
2) Mutation Associated with Non-Syndromic Hearing
Loss in a Hispanic Family. PLoS ONE 10(10):
e0133082. doi:10.1371/journal.pone.0133082

Editor: Karl-Wilhelm Koch, University of Oldenburg,
GERMANY

Received: March 20, 2015

Accepted: June 22, 2015

Published: October 1, 2015

Copyright: © 2015 Patel et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The raw data bam files
from whole exome sequencing for the four subjects in
the study, JS6.001, JS6.002, JS6.100, JS6.200 have
been submitted to dbGaP.

Funding: This study was partially sponsored by the
National Institute on Deafness and Other
Communication Disorders (NIDCD/NIH) research
grants R01 DC012564 to Z.M.A. and R01 DC011803
to S.R. Support for this work was provided by a gift
from the Department of Pediatrics at Montefiore
Medical Center and the Human Genetics Program in
the Department of Genetics at Albert Einstein College

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0133082&domain=pdf
http://creativecommons.org/licenses/by/4.0/


countries and among them the majority is non-syndromic [7]. As of June 2015, a total of 96
genes have been identified for non-syndromic hearing loss in humans (http://
hereditaryhearingloss.org). Autosomal recessive non-syndromic hearing loss (ARNSHL) is the
most common genetic form and accounts for ~80% of all genetic cases [8]. To date, over 60
genes have been identified for ARNSHL (http://hereditaryhearingloss.org). Previously, many
ARSNHL-associated genes have been identified through linkage analysis of large consanguine-
ous families [9]. Although this approach has been extremely successful, the requirement of
large families with multiple affected and unaffected individuals has proved to be a limiting fac-
tor in linkage based gene discovery in the past.

Through recent advances in DNA sequencing technology, many previously unknown, deaf-
ness-associated genes have been discovered by use of targeted gene capture or whole exome
sequencing (WES) [10–17]. This is particularly true for evaluation of smaller sized consanguin-
eous families [18, 19] or non-consanguineous families [9]. Utilization of quartet families with
one or more affected individual for WES has enabled discovery of underlying mutated genes
[20–24]. The advantage of using families that are larger than trios is that the inheritance pat-
terns can more easily aid in deciphering disease-associated mutations.

One important question in the field is whether there are differences in the relative impor-
tance of known disease genes for ARSNHL in different populations. The GJB2 (gap junction
protein beta 2) gene, comprising a single exon, mapping to the DFNB1 locus (MIM#220290) is
the most common disease-associated gene in familial or isolated ARSNHL in many popula-
tions of different ethnicities [25, 26]. We previously reported a paucity of mutations in GJB2,
the most common cause of ARNSHL in the Bronx, NY, African-American and Caribbean His-
panic population [27–29]. Our goal to use WES was to identify mutations in other genes in
individual families that are being cared for in our hospital. Here, we report results fromWES
of genomic DNA purified from blood, from one quartet family termed, JS6. This family is of
Hispanic ethnicity that was negative for mutations in GJB2, and we identified a mutation in
CIB2. Mutations in CIB2, encoding a calcium and integrin binding protein 2 (OMIM#
605564), were previously reported in Pakistani and Turkish families with ARSNHL (DFNB48)
as well as Usher syndrome type 1J [30]. Through functional studies, we show here that p.
Arg186Trp (C>T; chr15:78,397,660, February 2009; GRCh37/hg19 assembly) mutation specif-
ically impaired the calcium binding ability of CIB2 in heterologous cell system.

Materials and Methods

Clinical Information
This research study was approved by the Albert Einstein College of Medicine Committee on
Clinical Investigation (CCI#2005–756). Blood samples were collected from the JS6 family
affected with hearing loss cared for at the Children’s Hospital at Montefiore, Montefiore Medical
Center, NY. Family JS6 consisted of two siblings, JS6.001 (Male) and JS6.002 (Female) affected
with nonsyndromic hearing loss and healthy parents, JS6.100 (mother) and JS6.200 (father).
Audiometry tests were conducted in a sound proof room to evaluate hearing impairment. Differ-
ent sounds of varying intensities were delivered to each ear one at a time, requiring a response
from the subject thereby indicating whether or not they heard the sound. The audiologist
recorded each tone at the lowest possible volume that was heard by the subject. After the general
audiometry test, Rinne andWeber tuning fork tests were used to distinguish between sensori-
neural and conductive hearing loss. A written informed consent was attained from each individ-
ual as part of subject enrollment and before sample collection. The Puregene Genomic DNA
Purification kit (Gentra, Minneapolis, MN) was used to purify DNA in the Molecular Cytoge-
netics Core, Albert Einstein College of Medicine, NY, according to standard protocols.
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Whole Exome Sequencing (WES)
The library preparation was performed with 1ug of genomic DNA using the Illumina TruSeq
DNA Low-Throughput (LT) Sample Preparation kit (Illumina, San Diego, CA) and Roche
NimbleGen SeqCap EZ Human Exome Library v3.0 according to the manufacturers instruc-
tions (Roche NimbleGen, Madison, WI). Briefly, genomic DNA was purified using the Gentra
Puregene Kit (Qiagen). The quality and quantity of DNA was determined by NanoDrop spec-
trophotometry, Qubit fluorometery and agarose gel electrophoresis. Genomic DNA was
sheared using the Covaris S2 System into 300bp fragments for DNA library preparations. Illu-
mina TruSeq adaptors were added using the TruSeq DNA (LT) Sample Preparation kit allow-
ing multiple samples to be barcoded simultaneously, following the protocol for ligation of
adaptors. The samples were then amplified by LM-PCR following the manufacturer’s protocol
(eight cycles; NimbleGen SeqCap EZ Library SR User’s Guide v3.0). The amplified libraries
were analyzed for quality and quantity (Qubit).

High quality amplified sample libraries were denatured, and then hybridized to the Roche
NimbleGen EZ custom design biotin-labeled Library v3.0 following the manufacturer’s proto-
col (NimbleGen SeqCap EZ Library SR User’s Guide v3.0). A magnetic pull down of DNA was
performed with Streptavidin Dynabeads to enrich the target regions and the captured DNA
was recovered. The libraries captured up to 64 Mb in a single reaction and a total of four sam-
ples were pooled per captured reaction. The captured libraries were evaluated for enrichment
by real time PCR to ensure that on-target enrichment has occurred. Targeted captured
enriched DNA libraries were sequenced on one lane of Illumina HiSeq 2000 instruments for
paired end reads of 100 bp, as per the manufacturer’s guidelines. Images generated by the Illu-
mina HiSeq 2000 instrument were automatically processed in real-time using control software
(1.3.8) and CASAVA (1.7) software packages. Throughout this process, quality metrics were
recorded to measure experimental efficacy and to facilitate rigorous filtering of sequences prior
to genome alignment.

Sequencing reads were mapped to the human reference genome (GRCh37/hg19, February
2009 assembly) using BWA software (http://bio-bwa.sourceforge.net/, version 0.6.2). The PCR
duplicates, to be removed, were marked using Picard-tools (http://picard.sourceforge.net, ver-
sion 1.72). Local re-alignment, base quality recalibration and variant annotation were per-
formed through GATK version 2.2–15 (Genome Analysis Toolkit, https://www.broadinstitute.
org/gatk/) in UnifiedGenotyper mode. SNPs and indels were filtered using the expressions
“QD< 2.0 || MQ< 40.0 || FS> 60.0 || HaplotypeScore> 13.0 || MQRankSum< -12.5 || Read-
PosRankSum < -8.0” and “QD< 2.0 || ReadPosRankSum< -20.0 || FS> 200.0”, respectively.
The variant call format file (VCF) for the whole exome sequence data is available at NCBI,
dbGaP database, ID 16015, phs000969, title, “Whole exome sequence of hearing loss family”.

Filtering Annotated variants
For quality control and to reduce the number of false positive calls, single nucleotide polymor-
phisms (SNPs) with a genotype score< 20 or a sequencing depth less< 15X were filtered and
removed prior to analysis. Additionally, SNPs exceeding 10bp from either exonic boundary
were also removed. The following criteria were used to prioritize the remaining variants: (1) A
minor allele frequency (MAF)< = 1%, based on dbSNP (http://www.ncbi.nlm.nih.gov/
projects/SNP/) and 1000 Genomes Project (http://www.1000genomes.org/); (2) A list was com-
piled of previously reported hearing loss genes published in the literature and listed in the
Hereditary Hearing Loss database (http://hereditaryhearingloss.org/); (3) Mode of inheritance
classification (using sequencing data from parents); (4) Prioritized non-synonymous variants.
All remaining variants were further investigated using Alamut v2.2 software (Interactive
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Biosoftware, San Diego, CA). This software displays simultaneous in silico predictions from
SIFT, Align GVGD, and MutationTaster.

Amplification and Analysis
Prior to further investigation, all potential disease-causing variants were validated using Sanger
sequencing. Primers for exon 6 of the CIB2 gene (RefSeq: NM_006383.2 and transcript ID
ENST00000258930) were designed using primer3 v0.4.0 (bioinfo.ut.ee/primer3-0.4.0/) and any
SNP’s in the primer-binding site were ruled out using the NGRL SNPCheck database (https://
ngrl.manchester.ac.uk/SNPCheckV3/snpcheck). PCR amplification was performed using the
FASTstart High Fidelity PCR system (Roche, Madison, WI) at 59°C annealing temperature.
Amplified PCR products were purified using the Agencourt AMPure XP Purification System
(Beckman Coulter, Indianapolis, IN) and sequenced on the Applied Biosystems 3730
sequencer (Genomics Core at Einstein, NY). The Sequencer v4.0.1 software (Gene Codes, Ann
Arbor, MI) was used to compile and compare the data to the CIB2 sequence.

Restriction Enzyme Digestion Assays
To determine the frequency of the c.556C>T (p.(Arg186Trp)) CIB2mutation in the healthy
Caribbean Hispanic population, a PCR product based restriction enzyme digestion assay was
developed. We selected 194 healthy controls and 94 of which were ethnically matched (Carib-
bean Hispanic). The HPAII enzyme (New England Biolabs, Ipswich, MA) that recognizes the
5’ CCGG 3’ restriction site, was, abolished by the c.556C>T mutation of CIB2. In our assay,
any samples with c.556C>T mutation will remain undigested (206 bp) whereas the digestion
of a normal sample would result into two restriction fragments 124 bp and 82 bp size. Any het-
erozygous or homozygous samples identified through the restriction enzyme digest assay
would be sequenced for confirmation.

PCR amplification was performed using the FASTstart High Fidelity PCR system (Roche,
Madison, WI) at 60°C annealing temperature. Amplified products where then digested for 16
hours at 37°C. Digested PCR products were then run on a 2% agarose gel long with a 100bp siz-
ing ladder.

DNA constructs
The full-length isoform of human CIB2 was PCR amplified from adult human eye cDNA
(Clontech, Mountain View, CA), cloned into the pEGFP-N2 vector and sequence was veri-
fied. Stratagene QuikChange Lightning mutagenesis (Roche) was used to introduce the
c.556C>T (Fwd-primer 5’-cctcagcactttccacatctggatccccgggatcc-3’; Rev-
primer 5’ ggatcccggggatccagatgtggaaagtgctgagg-3’) mutation into the wild
type CIB2 sequence.

Helios gene gun transfection
Postnatal day 3 (P3) vestibular sensory epithelial explants from C57BL/6 mice were cultured
for 24h in DMEM supplemented with 10% FBS (Life Technologies, Carlsbad, CA) at 37°C with
5% CO2. Explants were transfected with constructs encoding CIB2WT-GFP, and CIB2R186W-
GFP using a Helios gene gun. After 24h, cells were fixed in 4% paraformaldehyde and counter-
stained with rhodamine phalloidin and DAPI (Invitrogen). Finally, samples were mounted
with the ProLong Gold Reagent and imaged using a 100X objective and a confocal microscope
(LSM700, Carl Zeiss).
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Immunostaining of COS-7 cells
COS-7 (African green monkey fibroblast cell line; ATCC CRL-1651; [31]) cells were co-trans-
fected with 2μg of GFP-Myosin 15a, Dsred-CIB2WT, Dsred-CIB2R186W and Whirlin constructs
using Lipofectamine-2000 (Life Technologies, Carlsbad, CA). After 24h of transfection, COS-7
cells were trypsinized and plated on 35mm glass-bottom dishes (MatTek, Ashland, Maine).
COS-7 cells were fixed with 4% PFA after 24h and processed for immunostaining. Whirlin
antibodies (HL5141; [32]) were used at 1/500 dilution and incubated overnight at 4°C, followed
by washing and secondary antibody labeling with AlexaFluor 647 goat anti rabbit antibodies.
COS-7 cells were mounted using the prolong gold antifade reagent and imaged using a 63X
objective and a confocal microscope (LSM700, Carl Zeiss).

Co-immunoprecipitation assay
HEK 293 cells [33] were maintained using DMEM supplemented with 10% FBS, glutamine
and penicillin-streptomycin (Invitrogen). Cells were plated in 100mm culture dishes for 24h
at 37°C in 5% CO2. On the day of transfection, 10μg of each DNA sample was transfected
into cells using Polyethylenimine (PEI; Polysciences). After 48h, cells were washed with cold
1x PBS, then homogenized with a sonicator (Fisher Scientific) at intensity setting 2 for 10s in
RIPA buffer containing a protease inhibitor mixture (Roche). Protein A–Sepharose CL-4B
beads were incubated for 4h with 5 μg of antibody to GFP (Life Technologies) and were
washed three times with PBS containing 0.1% Triton X-100. Lysates were incubated with the
beads overnight at 4°C and were centrifuged at 10,000g for 3m. Beads were washed with
RIPA buffer three times and boiled in 2× SDS sample buffer. Samples were processed for
western blot using 4–20% Tris Glycine gel (Novex) as well as antibodies against GFP and
DsRed (Clontech) tags.

Calcium imaging
The calcium imaging was done as previously described [30]. Briefly, HEK-293 cells were trans-
fected with 3–4 ug of DsRed-tagged CIB2 constructs using Lipofectamine 2000 (Life Technolo-
gies, Carlsbad, CA). After 24h, cells were loaded with 18 μM ratiometric Ca2+ indicator, Fura-2
AM (Life Technologies, Carlsbad, CA), for 1–1.5h at room temperature. Fura-2 fluorescence
was observed in L-15 medium at room temperature with sequential 340- and 380-nm illumina-
tions at a rate of 0.78–0.81 image pairs per second. The 340- to 380-nm fluorescence (F340/
F380) ratio images were calculated, and pixel values were converted to intracellular Ca2+ con-
centration using the calibration curve obtained with the Fura-2 Calibration kit (Life Technolo-
gies, Carlsbad, CA). Calcium responses were evoked by application of 1 μMATP for 50 s
through a puff pipette of ~1 μm in diameter that was situated ~25 μm from the cells. The num-
ber of dishes used for every construct was 4 or greater, and the number of transfected cells for
every construct was over 40. The data was analyzed by a student t-test and P values<0.05 were
considered statistically significant.

Molecular modeling
CIB2 was modeled using the high-resolution crystal structure of human CIB1 (PDB 1XO5) as
a template and the SWISS-MODEL server [34]. Energy minimization and analysis were per-
formed with a Yasara server [35].
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Results

Affected individuals of Hispanic family have nonsyndromic hearing loss
We identified a Caribbean Hispanic family in which both affected children have bilateral pro-
found hearing loss diagnosed within the first year of life (Fig 1A). Additional family history
was obtained through a medical interview at the time of recruitment. The parents were found
to have normal hearing and did not report any medical complication or drug exposure during
pregnancy. No evidence for other syndromic features such as Usher syndrome was present.
The proband had a normal ocular exam (Ocular exam: VA: 20/25 left, 20/20 right; EOM full.

Fig 1. Pedigree and audiogram of JS6 proband. (A) Pedigree of family JS6 (arrow to proband). The filled symbols represent affected individuals. (B)
Audiogram from the female proband, JS6.001 indicating hearing loss ranging from severe to profound. The symbols ‘o’ and ‘x’ denote air conduction pure-
tone thresholds, and the ‘A’ symbol denotes bone conduction thresholds. Downward arrow denotes no response on the audiogram.

doi:10.1371/journal.pone.0133082.g001
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External: OK; Anterior segment: L/L flat on; FUNDUS: = 0.75–1.00 x 180; +2.50–1.50 x 180).
There was no evidence for congenital heart disease, respiratory problems, urinary tract abnor-
malities, thereby ruling out the possibility of CHARGE syndrome. Assessment of auditory
brainstem responses (ABR) at 7 months revealed profound impairment with a threshold
greater than 90 dB at 250 Hz and greater than 110 dB for all other frequencies tested (Fig 1B).
The acoustic reflexes were also absent in both ears. The proband’s brother had bilateral hearing
loss (Fig 1A), but there is no other family history of hearing loss. Therefore, based on this infor-
mation we tentatively concluded that hearing loss in both children is non-syndromic with a
possible underlying genetic cause. Mutations in the GJB2 gene had previously been excluded as
part of routine clinical management.

WES revealed a missense mutation in CIB2 associated with
nonsyndromic hearing loss
WES analysis was performed on DNA from family JS6, including both affected children and
parents. WES generated an average of 7.5 billion base pair sequence, with an average map abil-
ity rate of 95% across the 64Mb targeted region. The mean target depth for these samples was
approximately 57X. This data resulted in a total of 36,752 single nucleotide variants (SNVs)
and 21,721 indels after variant calling using GATK. The data was then compared to the dbSNP
and 1000 Genomes Project databases to eliminate SNVs with a MAF>1%. The SNVs were fur-
ther categorized based on the mode of inheritance using the parental sequencing data. As a
result, we obtained 619 recessively inherited variants of which 535 were SNVs and 84 were
indels. This group also included compound heterozygous DNA variants and variants, which
were homozygous in either affected child. A total of 53 SNVs were identified in both affected
individuals and they were analyzed first. We prioritized our analysis using a custom list of 160
genes associated with both syndromic and non-syndromic hearing loss. We included both
types of hearing loss because mutations in genes for syndromic hearing loss have been found in
non-syndromic individuals. The 160 genes were complied through literature search and pres-
ence in the Hereditary Hearing Loss database (http://hereditaryhearingloss.org/).

Through this initial search, we identified a homozygous mutation in CIB2 (c.556C>T; p.
(Arg186Trp)) in both affected siblings, whereas the healthy parents are unaffected carriers (Fig
2). The c.556C>T (p.Arg186Trp) mutation is located in exon 6 of CIB2, which encodes the car-
boxy-terminal end of the resulting polypeptide. The mutation in the female proband found by
WES was validated by Sanger sequence analysis (Fig 2A). This nucleotide change was not
observed in the normal population (1000 Genomes Project; NHLBI ESP6500). We performed
a mutation specific restriction enzyme digest (Fig 3) in 94 ethnically matched (Hispanic) and a
100 African American unrelated healthy individuals and did not identify the mutation in any
of the subjects, suggesting this mutation is truly rare in both populations (data not shown).
This nucleotide change has been observed as a rare heterozygous variant in an African Ameri-
can control samples and was absent in a further 8586 European controls samples studied, as
part of the NHLBI Exome Sequencing Project (ESP; S1 Table).

The arginine residue at position 186 (Fig 2B) is located in a predicted type II PDZ binding
ligand (aa184-187,-HIRI-COO-, X F1 X F2-COO

-). It is the penultimate amino acid of the pro-
tein (Fig 2B). This residue shows moderate evolutionary conservation, through twelve mam-
malian species and a moderate Grantham distance between the arginine and tyrosine (101) as
depicted in Fig 2C. Evolutionary conservation between species would suggest that this particu-
lar amino acid might be important for the function of the protein. Structural differences in
amino acid substitutions could influence the function as well. In silico analysis using Align
DVGD, CADD, SIFT and MutationTaster predicted this mutation to be damaging (S1 Table).
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Fig 2. Mutation in penultimate amino acid of CIB2. (A) Chromatogram from Sanger sequencing showing
that both affected children have a homozygous c.556C>T (p.Arg186Trp) mutation and the parents are
heterozygous carriers. The chromatogram of the proband is shown and the sibling has an identical
chromatogram (not shown). (B) The mutation affects the arginine residue at amino acid position 186 of CIB2,
which is the penultimate amino acid of the protein. The genomic position of the nucleotide variant is on
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We examined WES data for other possible candidate genes as well. We identified an intronic
variant in CHD7 (g.61713126_61713127insTGGACT; Human February 2009 GRCh37/hg19
Assembly). Heterozygous mutations in this gene have been associated with CHARGE syn-
drome. CHARGE syndrome is a multi-systemic disorder including hearing loss in a subset of
patients. Based upon the medical history, there was no evidence for clinical features of
CHARGE syndrome, including congenital heart disease, respiratory problems or urinary tract
abnormalities, thereby ruling out this variant as being responsible for deafness in this family.
No other mutations, in any of the 160 known hearing loss causing genes, were identified.

chromosome 15, position 78,397,660 on human February 2009, GRCh37/hg19 assembly. (C) The arginine
residue at amino acid position 186 is conserved across a wide variety of species. Identical residues are
highlighted in gray color.

doi:10.1371/journal.pone.0133082.g002

Fig 3. Restriction enzyme digestion to validate theCIB2mutation. Lanes 2 and 3 on the agarose gel represent the restriction digest of a PCR product
that was performed on both affected children. The presence of the c.556C>T mutation abolishes the restriction site and results in a single product of 206bp
(Lanes 2 and 3, depict the proband and sibling, respectively). Lanes 4 and 5 contain both parental samples and as a result the there is a PCR product of
206bp representing the mutant allele as well as two additional digested fragments at 124bp and 82bp, which represent the normal allele. Lanes 6 and 7 are
restriction enzyme digests from two normal, unrelated individuals, with no PCR product corresponding to the mutant allele of 206bp and only two digested
PCR products corresponding to the normal allele. Lane 1 contains the DNA size standard ladder.

doi:10.1371/journal.pone.0133082.g003
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Targeting of CIB2 to the tips of stereocilia and CIB2-Whirlin-Myosin 15a
complex was not affected by p.Arg186Trp mutation
CIB2 is localized to the stereocilia of cochlear and vestibular system hair cells, primarily at the
tip of stereocilia of the shortest rows in hair cells, where the mechanotransduction channels are
localized [30]. To investigate the effect of p.Arg186Trp mutation on CIB2 targeting to the tip
of stereocilia, we overexpressed GFP tagged CIB2R186W protein in postnatal vestibular system
explants, using a Helios gene gun mediated transfection system. The targeting of CIB2R186W-
GFP was comparable to CIB2WT-GFP (Fig 4). These results suggest that in explant cultures,
the p.Arg186Trp alleles do not affect the targeting of CIB2 to the tip of stereocilia.

We previous have shown that CIB2, Whirlin and Myosin XVa forms a tripartite complex
located at the tip of filopodia of COS-7 cells [30]. To determine if the deafness causing muta-
tion affects the ability to localize to the tips of filopodia, we over-expressed DsRed tagged
CIB2WT (Fig 5A) and CIB2R186W constructs of human CIB2 (Fig 5B and 5C) along with non-
tagged humanWhirlin and GFP-Myosin 15a in COS-7 cells. Confocal imaging of transfected
COS-7 cells revealed that CIB2 and CIB2R186W variants are located at the tip of filopodia (Fig
5), indicating the persistence of the interaction between CIB2 and Whirlin despite the presence
of the mutation. The interaction between CIB2R186W variant andWhirlin was further con-
firmed by in vitro co-immunoprecipitation assay (Fig 5D).

The p.Arg186Trp mutation affects the calcium binding affinity of CIB2
We analyzed the effect of the p.Arg186Trp mutation on the molecular structure of CIB2, using
the human crystal structure of CIB1 (1XO5) as a template. The carboxy terminal helix of CIB1
is flexible and believed to participate in the Ca2+ binding. This helix is folded back against the
hydrophobic integrin binding pocket of the CIB1, C-domain in the 1XO5.PDB crystal struc-
ture. The displacement of this helix is also part of the integrin binding mechanism suggesting
that it might affect access to the hydrophobic pocket to integrins. Any unfolding or destabiliza-
tion of the helix due to p.Arg186Trp allele could potentially affect the ability for CIB2 to bind
to calcium or integrins (Fig 6). To test if the pArg186Trp mutation affects the calcium binding
affinity of CIB2, we measured the inositol triphosphate (IP3)-dependent Ca2+ responses
evoked by extracellular ATP in HEK-293 cells transiently transfected with Dsred tagged

Fig 4. The p.Arg186Trpmutation does not affect the targeting of CIB2 to the stereocilia tips of
vestibular system hair cells.Gene gun transfection of P3 vestibular system with a CIB2WT-GFP expression
vector shows targeting of CIB2 to the cell body, the cuticular plate (Pseudocolor, *) and also along the length
of stereocilia of hair cells (top set of panels). As previously shown, CIB2 also accumulates to the stereocilia
tips (Pseudocolor, arrows). The p.Arg186Trp mutation does not affect the localization of CIB2 in the cuticular
plate or to the tip of stereocilia (pseudocolor, *, arrows) as shown in the bottom set of panels. Scale bars,
5μm.

doi:10.1371/journal.pone.0133082.g004
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constructs (Fig 7). As a control we measured responses in the cells expressing the p.Phe91Ser
variant of CIB2 [30]. HEK-293 cells overexpressing wild type CIB2 demonstrated significantly
decreased ATP-induced Ca2+ responses as compared to no Ca2+ buffering ability in mock
transfected cells, as previously reported [30]. Cells transfected with the p.Phe91Ser mutant
allele did not alter the calcium binding affinity of CIB2 (Fig 7). Intriguingly, HEK-293 cells
overexpressing p.Arg186Trp mutant CIB2 had a significant increase in Ca2+ responses, indicat-
ing that this CIB2R186W variant resulted in loss of Ca2+ sequestering ability (Fig 7).

Fig 5. The p.Arg186Trpmutation does not affect the Myosin 15a/Whirlin/CIB2 tripartite complex.COS-7 cells were co-transfected with GFP-Myosin
15a, Dsred-CIB2WT, Dsred-CIB2R186W andWhirlin constructs. A) Co-transfection of GFP-Myosin 15a, Dsred-CIB2WT andWhirlin shows that the Myosin 15a-
Whirlin complex is able to transport CIB2 to the tip of the filopodia and form a tripartite complex. The linescan analysis shows co-localization of the three
proteins. B, C) The p.Arg186Trp mutation does not affect transport of CIB2 as Dsred-CIB2R186W co-localizes with Whirlin and Myosin 15a at the tip of the
filopodia. D) In vitro co-immunoprecipitation of CIB2R186W-GFP and Dsred-Whirlin constructs showing that CIB2R186W variant interacts with Whirlin. GFP
construct is used as a negative control. Scale bars, 10μm.

doi:10.1371/journal.pone.0133082.g005
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Discussion
UsingWES, we have identified a homozygous CIB2mutation in a family with non-syndromic
sensorineural hearing loss. The p.Arg186Trp mutation is located within the carboxy terminal end
of the CIB2 protein and is predicted to be pathogenic by in silico prediction databases (S1 Table).
CIB2 belongs to the family of calcium-and integrin-binding proteins, consisting of three addi-
tional CIB family members (CIB 1, 3 and 4) [36]. These proteins are characterized by three to
four EF hand motifs and are involved in mediating Ca2+ binding and intracellular signaling [37].

In the sensory epithelium of the inner ear, CIB2 is targeted to the tip of the stereocilia of
hair cells, a site of the tip-link mechanotransduction complex [38–41]. There are several
important proteins that comprise the complex, including Protocadherin 15 and Cadherin 23,
which form the extracellular tip link structure and are mutated in patients with Usher type 1
syndrome. The tip link is connected inside the cell by Whirlin and Myosin VIIa, as well as
other proteins, which are also mutated in patients with ARSNHL [42]. Biochemical studies
demonstrated that CIB2 functionally and physically interacts with Whirlin and Myosin VIIa

Fig 6. The C-terminal helix of CIB2mutationmay be destabilized because of steric hindrance.Molecular models using the Protein Data Bank (PDB)
1XO5 crystal structure of Ca2+-CIB1 as a template. A) The backbone ribbon of the C-terminal helix of CIB1 is highlighted in red, and the four Ca2+ ions are
represented by white spheres. B) The side-chain of the Arg186 residue is represented in white and blue (dash line), and the Trp residue is overlapped in
green at position 186.

doi:10.1371/journal.pone.0133082.g006
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[30]. We found that the p.Arg186Trp mutation does not affect the tip localization as well as
interaction between CIB2 and Whirlin. However, we cannot exclude the possibility that CIB2
harboring p.Arg186Trp mutation dimerizes with endogenous CIB2 and that this dimer is tar-
geted to the tip of stereocilia. CIB2 belongs to the calcium integrin binding family and shares
significant sequence homology with CIB1, which has been extensively studied and is known to
regulate platelet aggregation by interacting with platelet integrin alpha(IIb)beta(3). However,
the Arg186 residue is not conserved between CIB1 and CIB2. CIB1 specifically binds to platelet
integrin alpha(IIb)beta(3) through displacement of its C-terminal end [43]. In contrast, our ex
vivo functional studies revealed that the p.Arg186Trp mutation within the carboxy terminus of
CIB2 affects the calcium binding ability. Our study indicates that the mutations of CIB2 are not
limited to Pakistanis or Turkish populations. Detection of p.Arg186Trp allele in Caribbean
Hispanic family and in an African American control sample (S1 Table) raises the probability
that individuals of other populations may harbor mutations in CIB2.

Fig 7. The p.Arg186Trpmutation affects the calcium binding affinity of CIB2.Calcium responses in
COS-7 cells transfected with DsRed-tagged CIB2 constructs were recorded after ATP stimulation. The p.
Arg186Trp mutation abolished the ability of CIB2 to decrease ATP-induced calcium release from the cell,
whereas the p.Phe91Ser mutation did not. Data are normalized to the average response of mock-transfected
cells and are shown as mean ± s.e.m. ***P < 0.001; **P < 0.01; *P < 0.05.

doi:10.1371/journal.pone.0133082.g007
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Supporting Information
S1 Table. In silico analysis of the CIB2: c.556C>T (p.Arg186Trp) mutation.We performed
a bioinformatic analysis of the c.556C>T mutation in CIB2 to determine its predicted pathoge-
nicity. We provide the SNP ID number from dbSNP, frequency of occurrence in European and
African American populations as well as results from pathogenicity predication software.
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