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subdivision depth to determine the number of recursive 
subdivisions which may be performed on a control mesh to 
generate a plurality of ?ner mesh elements while preserving 
a predetermined error tolerance, and using the computed 
subdivision depth to construct an adaptively re?ned mesh 
that is substantially similar to the control mesh within the 
predetermined error tolerance. Limit control surfaces with 
and without extraordinary vertices may be analysed using 
the method of the invention. In another aspect, a software 
program for accomplishing the method of the present inven 
tion is provided. 
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SUBDIVISION SURFACE-BASED 
GEOMETRIC MODELING SYSTEM 

This application claims the bene?t of US. Provisional 
Patent Application Ser. No. 60/388,637 ?led Jun. 14, 2002. 
This invention Was made With Government support under 
NSF Grant No. DMI-99l2069. The Government may have 
certain rights in this invention. 

TECHNICAL FIELD 

The present invention relates to the art of surface mod 
eling of images to produce realistic images or to provide 
simulations With accurate surface information. More par 
ticularly, the present invention relates to a neW subdivision 
depth computation technique and to an improved label 
driven adaptive subdivision technique for use in Catmull 
Clark subdivision surface modeling systems. 

BACKGROUND OF THE INVENTION 

Subdivision surfaces have become popular recently in 
graphical modeling, animation, and CAD/CAM because of 
their stability in numerical computation, simplicity in cod 
ing, and most importantly their capability in modeling/ 
representing complex shape of arbitrary topology. Given a 
control mesh and a set of mesh re?ning rules, a user may 
obtain a limit surface by recursively cutting off corners of 
the control mesh. The limit surface is referred to as a 
subdivision surface because the corner cutting/mesh re?ning 
process is a generaliZation of the uniform B-spline surface 
subdivision technique. Subdivision surfaces include uniform 
B-spline surfaces and pieceWise BéZier surfaces as special 
cases. It is also knoWn in the art that subdivision surfaces 
may include non-uniform B-spline surfaces and NURBS 
surfaces as special cases. Subdivision surfaces can model/ 
represent complex shape of arbitrary topology because there 
is no limit on the shape and topology of the control mesh of 
a subdivision surface. It is also knoWn that subdivision 
surfaces cover both parametric forms and discrete forms. 
Since parametric forms are useful for design and represen 
tation and discrete forms are useful for machining and 
tessellation (including FE mesh generation), a representation 
is provided Which is suitable for all graphics and CAD/CAM 
applications. 

The prior art in subdivision surfaces has focused on the 
areas of surface trimming, boolean operations, and mesh 
editing. HoWever, there are presently feW suitable methods 
for dealing With precision/error control in subdivision sur 
faces, and in “smart” tessellation of subdivision surfaces. 
Given a predetermined error tolerance, it is necessary to 
determine hoW many levels of recursive Catmull-Clark 
subdivision should be performed on the initial control mesh 
such that the distance betWeen the resultant control mesh 
and the limit surface is less than the predetermined error 
tolerance. It is also desirable to improve ef?ciency of 
tessellation based applications and data communication by 
generating a re?ned mesh Within the required approximation 
precision of the limit surface With signi?cantly feWer faces 
than the uniformly re?ned mesh. To date, efforts to reduce 
the number of faces in a mesh have focused on: (1) mesh 
simpli?cation, i.e. removing over-sampled ver‘tices and pro 
ducing approximate meshes With various levels of detail; (2) 
approximating the limit surface by knoWn surfaces, such as 
displaced subdivision surface or NURBS patches; and (3) 
application of adaptive re?nement schemes to subdivision 
surfaces. 
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2 
Accordingly, a need is identi?ed for an improved method 

for subdivision surface modeling. The subdivision depth 
computation technique provided by the present invention 
provides precision/error control tools in subdivision surface 
trimming, ?nite element mesh generation, boolean opera 
tions, and surface tessellation for rendering processes. The 
label-driven adaptive subdivision technique of the invention 
improves efficiency of the above by generating an adaptively 
re?ned mesh that is Within the required approximation 
precision of the limit surface, but With signi?cantly feWer 
quadrilateral faces than prior art uniformly re?ned mesh 
techniques. The invention provides a subdivision depth 
computation technique for a Catmull-Clark subdivision sur 
face (CCSS) patch, and provides also a label-driven adaptive 
subdivision technique for a CCSS based on subdivision 
depths calculated for its patches. A novel greedy algorithm 
is used to eliminate illegal vertex labels in the initial mesh. 

Advantageously, the methods of the present invention 
provide a novel and efficient error control tool Which is 
suitable for all tessellation-based applications of subdivision 
surfaces, and signi?cantly reduce the number of faces in an 
adaptively re?ned quadrilateral mesh in a feW subdivision 
steps, thereby improving ef?ciency of all tessellation-based 
applications and data communication of subdivision sur 
faces. 

SUMMARY OF THE INVENTION 

In accordance With a ?rst aspect of the invention, a 
method for modeling or representing a surface or shape 
having an arbitrary topology Which may be represented by 
a control mesh comprising at least one discrete Catmull 
Clark Subdivision Surface (CCSS) patch de?ned by a set of 
control points is provided, comprising the steps of comput 
ing a subdivision depth determining the number of recursive 
subdivisions Which may be performed on the control mesh 
to generate a plurality of ?ner mesh elements, Whereby a 
distance betWeen each ?ner mesh element and the corre 
sponding limit surface patch is less than a predetermined 
error tolerance 6. Next is the step of using the computed 
subdivision depth to construct an adaptively re?ned mesh 
that is substantially similar to the control mesh Within the 
range of the predetermined error tolerance 6. Each face of 
the recursively subdivided control mesh is a quadrilateral, 
and may contain up to one extraordinary vertex. 
The method of the present invention is suitable for 

computing the subdivision depth, or the number of recursive 
subdivisions Which may be performed on a surface patch 
While maintaining the predetermined error tolerance, for 
both surface patches Which are not adjacent to an extraor 
dinary vertex, and for surface patches Which are adjacent to 
an extraordinary vertex. 

For surface patches Which are not adjacent to an extraor 
dinary vertex, it Will be appreciated that the surface patch 
Will be a uniform bicubic B-spline surface patch Which may 
be designated as S(u,v). In the absence of an extraordinary 
vertex, the next step is calculating a subdivision depth k 
de?ned as k levels of recursive subdivision performed on the 
control points of the surface patch S(u,v) to generate a level 
k control mesh, Wherein k is de?ned as ki?og4 (MO/3e) ], 
where M0 is the second order norm of S(u,v) and the distance 
betWeen S(u,v) and the level k control mesh is less than 6. 

If an extraordinary vertex is present in the patch being 
considered, the initial step is subdividing the surface patch 
at least tWice to de?ne at least one standard uniform bicubic 
B-spline surface subpatch and up to one extraordinary 
subpatch that is not a standard uniform bicubic B-spline 
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subpatch, the extraordinary subpatch containing a limit point 
of up to one extraordinary vertex. Next, a subdivision depth 
n6 for the extraordinary subpatch is computed, de?ned as n 
levels of recursive subdivision performed on the extraordi 
nary subpatch to generate a level n extraordinary subpatch 
control mesh, Wherein n6 is de?ned as 

rajlogigjj, 
where G0 is the ?rst order norm of H00, H00 is a level-0 
control point de?ned as {VI-ll §i§2N+8}, V1- is an extraor 
dinary vertex With valence N, and the distance betWeen the 
level n extraordinary subpatch control mesh and a corre 
sponding bilinear plane de?ned in the extraordinary sub 
patch is less than or equal to e if ning 

For the remaining patches not containing the extraordi 
nary vertex (after the initial subdivision step described 
above), next is the step of computing a subdivision depth D 
by performing D recursive subdivisions on each standard 
uniform bicubic B-spline subpatch to de?ne a level D 
control mesh, Wherein D is de?ned as the maximum number 
of recursive subdivisions Which may be performed such that 
the distance betWeen the standard uniform bicubic B-spline 
subpatch and the level D control mesh is less than 6. 

In another aspect, the present invention provides a label 
driven method of subdividing a Catmull-Clark subdivision 
surface patch derived as described above, comprising the 
steps of de?ning a mesh for Which subdivision depths have 
been computed, the mesh comprising a plurality of quadri 
lateral faces containing up to one extraordinary vertex and 
having at least one interior face not adjacent a boundary of 
the control mesh and at least one exterior face adjacent a 
boundary of the control mesh, and de?ning an initial label of 
the interior face as a non-Zero integer k Wherein k is the 
subdivision depth of its corresponding surface patch With 
respect to e. The method also includes the step of de?ning 
an initial label of the exterior face as Zero. 

Next is the step of establishing a consistent condition for 
each face Whereby no tWo adjacent vertices thereof have 
non-Zero labels and no tWo adjacent vertices thereof have 
Zero labels and further Wherein the number of Zero labels is 
maximiZed. The consistent condition is established by de?n 
ing a connection supporting graph G17 Whose vertices are 
those of the faces having tWo adjacent vertices Whose labels 
are Zero, selecting a vertex from Gb, rede?ning the selected 
vertex label to l, updating G1,, and repeating the process 
until the connection supporting graph contains no further 
vertices. For any face having tWo or more nonZero vertex 
labels, a balanced Catmull-Clark subdivision step is per 
formed. For any face having only one vertex With Zero label, 
an unbalance Catmull-Clark subdivision step is performed. 
Last is the step of computing neW vertices from the results 
of the balanced and unbalanced Catmull-Clark subdivision 
steps to generate at least one neW face de?ning the adap 
tively re?ned mesh structure. 

In another aspect of the present invention, a computer 
softWare program for subdivision surface modeling is pro 
vided, Wherein the softWare performs the steps as described 
above. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1 schematically depicts the ordering of control 
points for a CCSS patch With an extraordinary vertex; 
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4 
FIG. 2 schematically depicts a representative population 

of control point sets; 
FIG. 3 schematically depicts the subdivision of a surface 

patch having an extraordinary vertex into a plurality of 
standard uniform bicubic B-spline surface subpatches and a 
single extraordinary subpatch that is not a standard uniform 
bicubic B-spline subpatch Which contains the limit point of 
the extraordinary vertex; 

FIG. 4 schematically depicts FIG. 4 (aib) schematically 
depicts the balanced Catmull-Clark subdivision of one of the 
standard uniform bicubic B-spline surface subpatches of 
FIG. 3; 

FIG. 5 schematically depicts FIG. 5 (aic) schematically 
depicts the unbalanced Catmull-Clark subdivision of the 
extraordinary subpatch of FIG. 3; 

FIG. 6 (aic) depicts the distance and subdivision depth 
computation for a CCSS patch having: (a) no extraordinary 
vertex; (b) an extraordinary vertex of valence 5; and (c) an 
extraordinary vertex of valence 8; 

FIG. 7 graphically depicts a rocker FIG. 7 (aid) graphi 
cally depicts a rocker arm, shoWing: (a) a control mesh 
therefor; (b) a limit surface therefor; (c) the result of 
performing a conventional uniform subdivision process; and 
(d) the result of performing the adaptive subdivision method 
of the present invention; 

FIG. 8 (aid) depicts the distance a ventilation controller 
component, shoWing: (a) a control mesh therefor; (b) a limit 
surface therefor; (c) the result of performing a conventional 
uniform subdivision process; and (d) the result of perform 
ing the adaptive subdivision method of the present inven 
tion; and 

FIG. 9 (aid) graphically depicts a marker cap, shoWing: 
(a) a control mesh therefor; (b) a limit surface therefor; (c) 
the result of performing a conventional uniform subdivision 
process; and (d) the result of performing the adaptive 
subdivision method of the present invention. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The present invention provides a method and computer 
program, Which may conveniently be disposed on a com 
puter readable medium, for calculating a subdivision depth 
for a Catmull-Clark subdivision surface (CCSS) patch, and 
provides also a label-driven adaptive subdivision technique 
for a CCSS based on subdivision depths calculated for its 
patches. 

Subdivision Depth Computation for Patches not Near an 
Extraordinary Vertex. 
The ?rst step is computation of a subdivision depth for a 

desired surface. Let V0, V1, V2, and V3 be the control points 
of a uniform cubic B-spline curve segment C(t) Whose 
parameter space is [0,1]. If the middle leg of the control 
polygon is parametrized as folloWs: L(t):Vl+(V2—Vl)t, 
Oétél, then the maximum of |\L(t)-C(t)|\ is the distance 
betWeen the curve segment and its control polygon. Thus: 

(1) 
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Since (2Vl—VO—V2)/6 and (2V2—V1—V3)/6 are the values of 
L(t)-C(t) at t:0 and tIl, the following lemma results: 

Lemma 1: The maximum of |lL(t)-C(t)|l occurs at the end 
points of the curve segment and may be expressed as 

Next is the step of de?ning the distance betWeen a 
uniform bicubic B-spline surface patch and its control mesh. 
Let Vl-J, 0; i,j 23, be the control points of a uniform bicubic 
B-spline surface patch S(u,v) With parameter space [0,l]>< 
[0,1]. If the central mesh face {VIM Val, V13, V23} is 
parametrized as folloWs: 

then the maximum of |lL(u,V)—S(11,V)|l is Called the distance 
betWeen S(u,v) and its control mesh. De?ning Qlhk, Qvaks 
Q14,» and Qvk as follows: 

Where Ni,3(t) are standard uniform B-spline basis functions 
of degree 3 results in: 

Application of Lemma 1 on |\QM,I—Q4,IH, |\QM,2—Q4,2H and 
HQVJFQVJH, :l,2,3, and by de?ning M0 as the maximum 
norm of the second order forWard differences of the control 

points of S(u,v), We have 

MO is called the second order norm of S(u,v). From this, the 
folloWing lemma is derived: 

Lemma 2: The maximum of |\L(u,v)-S(u,v)|l satis?es the 
folloWing inequality 

(4) 

where M0 is the second order norm of S(u, V). 
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6 
It should be noted that even though the maximum of 

|lL(t)-C(t)|l occurs at the end points of the curve segment 
C(t), the maximum of |\L(u, v)-S(u,v)|l for a surface patch 
usually does not occur at the corners of S(u,v). Based on the 
foregoing, the method for subdivision depth computation for 
surface patches not adjacent to an extraordinary vertex Will 
noW be presented. 

Let V”, 0§i,j§3, be the control points of a uniform 
bicubic B-spline surface patch S(u,v). We use Vkl-J, Oéi, 
j§3+2k_l, to represent the neW control points of the surface 
patch after k levels of recursive subdivision. The indexing of 
the neW control points folloWs the convention that Vko,O is 
alWays the face point of the mesh face {Vk_lo,o, VI“l 1,0, 
VIFIOJ, Vkdhl}. The neW control points Vkl-J- Will be called 
the level-k control points of S(u,v) and the neW control mesh 
Will be called the level-k control mesh of S(u,v). 

Note that if the parameter space of the surface patch is 
divided into 4k regions as folloWs: 

9k (5) 

Where 0§m,n§2k—l and let the corresponding subpatches 
be denoted Skm,n(u,v), then each Skm,n(u,v) is a uniform 
bicubic B-spline surface patch de?ned by the level-k control 
point set {VkP,q|m§p§m+3,n§q§n+3}. Skm,n(u,v) is called 
a level-k subpatch of S(u,v). One can de?ne a level-k 
bilinear plane Lkmm on {Vkp,qlp:m+l, m+l; q:n+l, n+2} 
and measure the distance betWeen Lkm,n(u,v) and Skm,n(u,v). 
It can be said that the distance betWeen S(u,v) and the level-k 
control mesh is smaller than 6 if the distance betWeen each 
level-k subpatch Skm,n(u, v) and the corresponding level-k 
bilinear plane Lkm,n(u,v), 0§m,n§2k—l, is smaller than 6. 
Next Will be demonstrated hoW to calculate a subdivision 
depth k for a given 6 so that the distance betWeen S(u,v) and 
the level-k control mesh is smaller than 6 after k levels of 
recursive subdivision. The folloWing lemma is needed in the 
derivation of the computation process. If We use Mkmm to 
represent the second order norm of 8km,” (u, v), i.e. the 
maximum norm of the second order forWard differences of 
the control points of 8km,” (u,v), then the lemma shoWs the 
second order norm of 8km,” (u, v) converges at a rate of 1/4 
of the level-(k-l) second order norm. The proof of this 
lemma is provided in Appendix A. 

Lemma 3: If Mk,” is the second order norm of 8km,” (u,v), 
then We have 

(6) 

where M0 is the second order norm of S(u,v). 

With lemmas 2 and 3, it is easy to see that, for any 
0§m,n§2k_l, We have 

Osums 
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Hence, if k is large enough to make the right side of (7) 
smaller than 6, We have 

max "Limo. v) Jim. on s E 
Osmvsl ’ ’ 

for every 0§m,n§2k_l. This leads to the following: 

Theorem 4: Let Via], 0§i,j§3, be the control points of a 
uniform bicubic B-spline surface patch S(u,v). For any given 
e>0, if 

4411 
levels of recursive subdivision are performed on the control 
points of S(u,v), then the distance betWeen S(u,v) and the 
level-k control mesh is smaller than 6 where M0 is the 
second order norm of S(u,v). 

(3) 

Subdivision Depth Computation for Patches Near an 
Extraordinary Vertex. 
A different analysis is required for computation of sub 

division depth for surface patches near extraordinary verti 
ces, necessitated by the fact that one does not have a uniform 
B-spline surface patch representation and cannot use the 
analysis of Theorem 4 directly. The method of the present 
invention dictates making the siZe of such a vicinity as small 
as possible, thereby reducing such siZe to a degree that is 
tolerable (i.e., Within the given error tolerance) and use the 
analysis of Theorem 4 to analyZe the remaining portion of 
the surface patch. A subdivision depth computation based on 
this concept for a CCSS patch near an extraordinary vertex 
is presented beloW. It is assumed that the initial mesh has 
been subdivided at least tWice such that each mesh face is a 
quadrilateral and contains at most one extraordinary vertex. 

Let HOO:{Vl-|1§i§2N+8} be a level-0 control point set 
that in?uences the shape of a surface patch S(u,v) (:SOO(u, 
V). V1 is an extraordinary vertex With valence N. The control 
vertices are ordered folloWing Stam’s fashion (Stam, J. 
1998. Exact Evaluation of Catmull-Clark Subdivision Sur 
faces at Arbitrary Parameter Values. In Proceedings of 
SIGGRAPH 1998, 3954404, incorporated herein by refer 
ence) as schematically depicted in FIG. 1. 

Using V’qi to represent the level-n control vertices gener 
ated after n levels of recursive Catmull-Clark subdivision, 
and use 8%, S”1, S”2 and S”3 to represent the subpatches of 
8”‘1O de?ned over the tiles 

respectively, then the shape of S”O, S'ql, S”2 and S”3 are 
in?uenced by the level-n control point sets TI”O, H'ql, TI”2, 
and IT”3 are depicted in FIG. 2. 

S'ql, S”2 and S”3 are standard uniform bicubic B-spline 
surface patches because their control meshes satisfy a 4-by-4 
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8 
structure. Hence, the technique described in Theorem 4 can 
be used to compute a subdivision depth for each of them. S”O 
is not a standard uniform bicubic B-spline surface patch. 
Hence, Theorem 4 can not be used to compute a subdivision 
depth for S”O directly. For convenience S”O may be called a 
level-n extraordinary subpatch of S(u,v) because it contains 
the limit point of the extraordinary points (see beloW). Note 
that if HO and H” are column vector representations of the 
control points of H00 and TI”O, respectively, 

HOE(VO,V1, . . . ,V2N+8)’,H,,E(VO", V1", . . . ,V2N+8")’ 

where Q(, X, . . . , X)’ represents the transpose of the roW 

vector Q(, X, . . . , X) then We have 

HFUYHO (9) 

Where T is the (2N+8)><(2N+8) (extended) subdivision 
matrix de?ned as folloWs: 

(10) 

With 

HIV b/\/ 0N b/\/ 0N b/\/ ' b/\/ 0N (11) 

d d e e O 0 e e 

f f f f 0 0 0 0 

i d e e d e e O O 

T: f 0 0 f f f 0 0’ 

d e O O O 0 d e 

f f O O O O f 

c O 0 ba b0 0 O (12) 

e O O eddO O O 

b O O c b ab 0 0 

TM: 2 O O O 0 d d e 0, 

e O O dd 2 O O O 

b c b ab 0 O O 0 

e eddO O O O O 

c b c O b c O (13) 

0 e e O O O O 

O c b c O O O 

Th2: O 0 e e O O O 

O O O 0 e e O 

O O O O c b c 

O O O O 0 e e 

and 

7 3 1 9 

aN=1—m,bN=W,cN W,Q=E, 

b:3,,:_,d:§,,:i,f:1 32 64 8 16 4 
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Subdivision Depth Computation for a Vicinity of the 
Extraordinary Vertex. 

The goal is to ?nd an integer n6 for a given 6>0 so that if 
n (im) recursive subdivisions are performed on H0O, then 
the control set point of the level-n extraordinary subpatch 
S”O of S(u,v), H'qO:{V”l-|l§i§2N+8}, is contained in the 
sphere B(V "+15, 6/2) With center V”+15E(V”1+V”4+V”5+ 
V”6)/4 and radius 6/2. Note that if the (2N+8)-point control 
mesh is contained in the then the level-n extraordinary 
subpatch S”O is contained in the sphere B(V”+l5, 6/2) as Well. 
This folloWs from the fact that S”O, as the limit surface of 
TI”O, is contained in the convex hull of TI’qO and the convex 
hull of H'qO is contained in the sphere B(V "+15, 6/2). Then, 
We have 

maxHSO"(u,v)—LO"(u,v)H<6 (14) 

Where L”O(u,v) is a bilinear plane de?ned on the level-n 
mesh face {V'ql+V”4+V”5+V”6}. The construction of such 
an n6 depends on several properties of the (extended) 
subdivision matrix T and the control point sets {11%}. 

First note that since all the entries of the extended 
subdivision matrix T are non-negative and the sum of each 
roW equals one, the extended subdivision matrix is a tran 
sition probability matrix of a (2N+8)-state Markov chain. In 
particular, the (2N+l)><(2N+l) block T* of T is a transition 
probability matrix of a (2N+l)-state Markov chain. The 
entries in the ?rst roW and ?rst column of T* are all 
non-Zero. Therefore, the matrix T* is irreducible because 
(T *)2 has no Zero entries and, consequently, all the states are 
accessible to each other. On the other hand, since all the 
diagonal entries of T* are non-Zero and entries of (T *)” are 
non-Zero for all n22, it folloWs that all the states of T* are 
aperiodic and positive recurrent. Consequently, the Markov 
chain is irreducible and ergodic. By the Well-knoWn theorem 
of Markov chain, Theorem 4), (T *)” converges to a limit 
matrix T* Whose roWs are identical. More precisely 

Where A1. are the unique non-negative solution of 

with tn]. being the entries of T*. One can easily get the 
folloWing observations. 

The vector (A1, A2, . . . , Azml) satis?es the folloWing 
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-continued 

The matrix T* is an idempotent matrix, i.e. T* T*:T*. 
Hence, T* has tWo eigenvalues, l and 0 (With multi 
plicity 2N). 

T* has 1 as an eigenvalue and all the other 2N eigenvalues 
of T* have a magnitude smaller than one. 

As is Well knoWn, the limit point of {V1} is 

But V*l is actually the limit point of all V'qj, jIl, 2, . . . , 
2N+8. Therefore, the convex hull of {V'qp V”2, . . . , V”2N+8} 
converges to V* 1 When n tends to in?nity and, consequently, 
V*1:S(0,0). The fact that V*l is the limit point of {V”1, 
V”2, . . . , V”2N+l} folloWs from (9) and (15). The fact that 
V*l is also the limit point of {V”2N+2, V”2N+3, . . . 
is demonstrated in Appendix B. 
The last observation is important because it shoWs that 

maxuvytl - v|| <17) 
V6118 

converges. Therefore, it is possible to reduce the siZe of S”O 
to a degree that is tolerable if n is large enough. For a given 
6>0 We Will ?nd an n6 so that if nin6 then the level-n control 
point set H'qO is contained in the sphere B(V "+15, 6/2). To do 
this, We need to knoW hoW fast (17) converges. 

Referring to FIG. 3, let (DkO, (Dkl, (D2, and (D13, be subsets 
of 11% de?ned as folloWs: 

(V kg in @kl should be replaced With Vk2 if NI3) and de?ne 
Gko, Gkl, G2, and Gk3 as folloWs: 

Gkl. is called the ?rst order norm of (Dki, iIO, l, 2, 3. We need 
the folloWing lemma for the construction of n6. The proof is 
shoWn in Appendix C. 

Lemma 5: If (Dkl- and Gkl- are de?ned as above, then for iIO, 
1,2, 3,We have 

(20) 

Where Gosmax {GOO, G01, G02, G03}. G0 is called the ?rst 
order norm of H00. 

To construct n6, note that if V611”O and V6(I>”O, We have 
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It is easy to prove that similar inequalities hold for (I>”1, (I>”2, 
and (I>”3 as Well. Hence, for each VeH'qO, by Lemma 5 We 
have 

Since the maximum of 3A1+7A1N—13/2N2 occurs at N:7, (21) 
can be simpli?ed as 

7 1 n (22) 
Vn+1_ V _ _[_] G0 ll 5 ll < 4 6 

Where 

4-1 if N —3 (23) 
6- 3, — 
_ 98 

g, if N 25 

Hence, |\V”+15—V|\ is smaller than 6/2 if n is large enough to 
make the right hand side of (22) smaller than or equal to 6/2. 
Consequently, We have the following theorem. 

Theorem 6: Let HOO:{Vi|1§i§2N+8} be a level-0 control 
point set that in?uences the shape of a CCSS patch S(u,v) 
(:SOO(u,v)). V1 is an extraordinary vertex With valence N. 
The control vertices are ordered folloWing Stam’s fashion. 
For a given e>0, if n6 is de?ned as folloWs: 

4 , (24) 
7G0 g If N =3 

"651M611 98 
5, if N 25 

where G0 is the ?rst order norm of H00, then the distance 
betWeen the level-n extraordinary subpatch S”O(u,v) and the 
corresponding bilinear plane L”O(u,v) is smaller than or 
equal to e if ning Theorem 6 shoWs that the rate of 
convergence of the control mesh in the vicinity of an 
extraordinary vertex is fastest When valence of the extraor 
dinary vertex is three. 

Subdivision Depth Computation for the Remaining Part. 
It is desired, for each k betWeen 1 and n6, to determine a 

subdivision depth Dk (im) so that if Dk recursive subdivi 
sions are performed on the control mesh H0O of S(u,v), then 
the distance betWeen the level-Dk control mesh and the 
subpatches Ski, i:1, 2, 3, is smaller than 6. Consequently, if 
We de?ne D to be the maximum of these Dk(i.e. D:max 
{Dk|1§k§n€}), then after D recursive subdivisions, the 
distance betWeen the level-D control mesh and the sub 
patches Ski, i:1, 2, 3, Would be smaller than 6 for all 
1 ékéng Note that the distance betWeen the level-D control 
mesh and the subpatches Skl, S2, and Sk3 for n€+1§k§D, 
and the distance betWeen the level-D control mesh and the 
level-D extraordinary subpatch SDO Would be smaller than 6 
as Well. This is because these subpatches are subpatches of 
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Sn‘O and the distance betWeen Sn‘O and the level-n6 control 
mesh is already smaller than 6. Hence, the key here is the 
construction of Dk. We Will shoW the construction of Dk for 
Sk3 (u,v). This Dk Works for Skl (u,v) and Sk2 (u,v) as Well. 

For Oéu, vél, de?ne a bilinear plane Lk3 (u, v) on the 
mesh face {V2, Vks, Vk2N+7, Vk2N+6} as folloWs: 

Since Sk3(u, v) is a uniform bicubic B-spline surface patch 
With control mesh 11%, We have, by Lemma 2, 

Where Zk3 is the second order norm of Sk3 (u,v). If We de?ne 
Zl-O to be the second order norm of Sio(u,v), We have 

The proof of (27) is shoWn in Appendix D. Hence, by 
combining the above results, We have 

Lemma 7 The maximum distance betWeen Sk3 and Lk3 
satis?es the folloWing inequality 

m?XllL3k(14,\/)—S3k(14,v)llé 1/3( WY’ZOO (29) 

Where W is de?ned in (28) and Z0O is the second order norm 
of S(u,v). 

It should be pointed out that When de?ning Zio, only the 
folloWing items are needed for second order forWard differ 
ences involving Vil: 

Lemma 7 shoWs that if 1/3(W)k Zooée then the distance 
betWeen Sk3 and Lk3 is already smaller than 6. HoWever, 
since n6 subdivisions have to be performed on H0O to get 
S“O anyWay, Dk for Sk3 in this case is set to n6. This 
condition holds for Skl and Sk2 as Well. 

If 1/3(W)k ZOO>e, further subdivisions are needed on Hki, 
i:1, 2, 3, to make the distance betWeen Ski, i:1, 2, 3, and the 
corresponding mesh faces smaller than 6. Considering Sk3 
again, Sk3 is a uniform bicubic B-spline surface patch With 
control mesh 1113. Therefore, if 1k recursive subdivisions are 
performed on the control mesh 11%, by Lemma 2 and 
Lemma 3 We Would have 

llL3’k(14,\/)—S3k(14,v)ll§%(%)”‘Z3k (30) 

Where LU“3 (u,v) is a level-1k control mesh relative to 11k3 and 
Zk3 is the second order norm of Sk3(u, v). Therefore, by 
combining the above result With 27), We have 

We get the folloWing Lemma by setting the right hand side 
of (31) smaller than or equal to e. 
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Lemma 8 In Lemma 7, if the distance between Sk3 and Lk3 
is not smaller than 6, then one needs to perform 1k 

(WW8 
14104 3. ll 

more recursive subdivisions on the level-k control mesh ITk3 
of Sk3 to make the distance between Sk3 and the level-(k+lk) 
control mesh smaller than 6. 

This result works for for Skl and Sk2 as well. Note that the 
value of (W)k Z0O is already computed in Lemma 7 and W 
hs to be computed only once. Therefore, the subdivision 
depth Dk for Skl, S2, and Sk3 is de?ned as follows: 

Consequently, we have the following main theorem: 

Theorem 9 Let ITOO:{Vi|l §i§2N+8} be the control mesh of 
a CCSS patch S(u,v). The control points are ordered fol 
lowing Stam’ s fashion with Vl being an extraordinary vertex 
of valence N (see FIG. 1). For a given e>0, if we compute 
n6 as in (24) and D as follows: 

(32) 

(33) 

D:max {Dkll ékénd (34) 

where Dk is de?ned in (33) then after D recursive subdivi 
sions, the distance between S(u,v) and the level-D control 
mesh is smaller than 6. 

Label-Driven Adaptive Subdivision 
Given a control mesh of arbitrary topology and an error 

tolerance e>0, the next step is to construct an adaptively 
re?ned mesh that is close to within 6 to the CCSS of the 
given control mesh, but with signi?cantly fewer faces than 
are derived from the traditional Catmull-Clark subdivision 
process. The mesh re?ning process is driven by labels of 
mesh vertices. 

The given control mesh will be referred to as E0 with the 
assumption that all the faces are quadrilaterals and each face 
contains at most one extraordinary vertex (as described 
supra). The limit surface of 20 will be referred to as F. For 
each positive integer k, 2k refers to the result of applying k 
levels of recursive Catmull-Clark subdivision on 20. A face 
of 2k is called an interior face if it is not adjacent to the 
boundary of the mesh. Otherwise, it is called an exterior 
face. All the faces of a closed control mesh are interior faces. 
Each interior face f of Y“ has a corresponding surface patch 
in F, denoted Sf. The interior faces and their corresponding 
surface patches are parametriZed using the techniques pre 
sented by Stam. The distance between f and the limit surface 
F is de?ned as the distance between f and the corresponding 
surface patch Sf 
The initial label of an interior face f in E0, denoted L/(f), 

is set to k if k is the subdivision depth of the corresponding 
surface patch Sf with respect to e. The label of an exterior 
face is set to Zero. The label of a vertex V in Z0 is de?ned 
as the maximum of labels of adjacent faces, i.e., 

Lv(V):rnax {LmfeEO and Vis a vertex off}. (35) 

The adaptive re?nement procedure requires vertex labels 
of Z0 to satisfy the consistent condition (Cheng, P. et al., 
1989. A Parallel Mesh Generation Algorithm Based on the 
Vertex Label Assignment Scheme. International Journal for 
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14 
Numerical Methods in Engineering 28, l429il448, incor 
porated herein by reference). A face of Z0 is said to be an 
illegal face if two adjacent vertices have non-Zero labels and 
two adjacent vertices have Zero labels. The vertex labels of 
Z0 are said to satisfy the consistent condition if 20 contains 
no illegal faces. The consistent condition ensures that the 
adaptively re?ned meshes are crack-free. Usually, 20 does 
not satisfy the consistent condition. The easiest way to make 
20 satisfy the consistent condition is to set all the Zero labels 
to 1. However, this would unnecessarily increase the number 
of faces generated in the resulting meshes since the number 
of faces in the re?ned meshes is determined by the labels of 
the vertices. A better way is to construct an extension 

function EV(V) of LV(V), 

MW), if MW) > 0; 

O or 1, if 14W) :0, 

which satis?es the consistent condition but with as many 
Zero labels as possible. 

A greedy algorithm for the construction of EV(V) via a 
connection supporting graph G17 is therefore presented 
herein. The vertices of G17 are those of the illegal faces whose 
labels are Zero. The edges of G17 are those of E0 that connect 
vertices of G1,. The extension function EV(V) is constructed 
by repeatedly selecting a vertex from Gb, changing its label 
to l and then updating Gb accordingly. This process contin 
ues until G17 is empty. The complexity of this process is that 
changing the label of a vertex from 0 to 1 changes the status 
of adjacent faces: an illegal face might become legal and a 
legal face might become illegal. Therefore, after changing 
the label of a selected vertex from 0 to 1, one needs to 
remove some old vertices and edges from G17 while adding 
some new vertices and edges into Gb. Obviously, the greedy 
algorithm should remove as many old vertices from G17 and 
add as few new vertices into G17 as possible during each 
selection and changing cycle. This is achieved by using the 
following rule in selecting a vertex from G17 to change label. 
Let D(V) denote the degree of V in Gb and let N(V) be the 
number of new vertices introduced into G17 if the label of V 
is changed from 0 to 1. If the number of D(V):l vertices is 
not Zero then, in the pool of vertices which are adjacent to 
a D(V):l vertex, select any one with a minimum N(V) 
among those with a maximum D(V). Otherwise, select any 
vertex with a minimum N(V) among the vertices of G17 with 
a maximum D(V). 
The adaptive subdivision process is driven by vertex 

labels and is performed on individual mesh faces indepen 
dently. After each subdivision step, labels are assigned to the 
newly generated vertices so they can drive the next subdi 
vision step. The resulting meshes are crack free. The 
assumption is made that labels of the vertices of Z0 are 
de?ned by an extension function Ev even though the exten 
sion function might be the same as the original label function 
Lv. In the following, 2k, kIl, 2, . . . , stand for the meshes 
generated by the adaptive re?nement process. Also, vari 
ables without a bar refer to elements in Zk_1, and variables 
with a bar refer to elements in 2]“. 

The adaptive subdivision of Elf-1, kil, is performed as 
follows. If a face has two or more nonZero vertex labels, a 
balanced Catmull-Clark subdivision is performed on that 
face (see FIG. 4). A balanced Catmull-Clark subdivision is 
a standard Catmull-Clark subdivision. However, coordinates 
of the new vertices are not yet computed. The new vertices 
are marked for updating. Labels of the new vertices are 
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de?ned as follows. For each new vertex point, Evwl-Fmax 
{0, Ev(Vl.)—1}, i:1, 2, 3, 4. For each new edge point, E1?) 
is the minimum of labels of the new vertex points adjacent 
to V1, i:5, 6, 7, 8. For the new face point, 

If a face has only one vertex with nonZero label, an 
unbalanced Catmull-Clark subdivision with respect to that 
vertex is performed (see FIG. 5). An unbalanced Catmull 
Clark subdivision generates three new faces only, as shown 
in FIG. 50. However, V8, V9 and the auxiliary structure 
shown in FIG. 5b are computed and recorded for use in the 
computation of the vertices of Y‘“. Again, coordinates of 
the new vertices are not computed until a later point. The 
vertices, except V3, are marked for updating and later 
evaluation. The labels of the new points are set to Zero 

except V1 which is de?ned as EvWl):Ev(Vl-)—1. The faces 
without non-Zero vertex labels are not further adaptively 
subdivided, but are inherited topologically. 

After all the faces of Zk_l are processed, vertices marked 
for updating in Y“ are computed using the Catmull-Clark 
subdivision scheme to ?nd their coordinates in 2k. Note that 
the vertices of Zk_l required in the computation process for 
the new vertices are available because they were stored with 
the auxiliary structure (see FIG. 5b) even though not output. 
Other vertices (vertices marked for updating) of Y“ are 
inherited from Zk_l directly. Keeping an “update” status for 
some of the vertices in the adaptive subdivision process is 
necessary because whether a vertex should be inherited or 
updated depends on its adjacent faces. The adaptive re?ne 
ment process stops when labels of all the new vertices are 
ZeI'O. 

40 
Other aspects of the present invention will become appar 

ent to those skilled in this art from the following description 
wherein there is shown and described a preferred embodi 
ment of this invention, simply by way of illustration of one 
of the modes best suited to carry out the invention. As it will 45 
be realiZed, this invention is capable of other different 
embodiments and its several details are capable of modi? 
cation in various, obvious aspects all without departing from 
the intended scope of the invention. Accordingly, the 
descriptions and examples herein will be regarded as illus 
trative in nature and not as restrictive. 

50 

EXAMPLE 1 

Referring to FIG. 6, distance and subdivision depth com 
putation for a CCSS patch was calculated for several sur 
faces. The distances between the faces of the control meshes 
and the corresponding limit surface patches for each mesh 
face were 0.034 (FIG. 6a), 0.25 (FIG. 6b), and 0.15 (FIG. 
60). For an error tolerance of 0.01, the subdivision depths 
computed for each mesh face was 1 (FIG. 6a), 24 (FIG. 6b), 
and 22 (FIG. 60). The calculated subdivision depths for the 
mesh faces shown in FIGS. 6b and 60 were greater because 
each surface has an extraordinary vertex. For the mesh face 
shown in FIG. 6b, subdivision depths for error tolerances 
0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 were 1, 3, 9, 24, 40, 
and 56, respectively. 

60 

65 

16 
EXAMPLE 2 

FIGS. 7, 8, and 9 compare conventional uniform Catmull 
Clark subdivision with the adaptive subdivision method of 
the present invention. Referring to FIG. 7 showing a rocker 
arm, uniform Catmull-Clark subdivision resulted in 22,656 
vertices, 45,312 edges, and 22,656 faces (FIG. 70) for an 
error of 0.25. In contrast, the adaptive subdivision method of 
the present invention (FIG. 7d) generated 2,706 vertices, 
5,412 edges, and 2,706 faces, i.e. only 3/25 of the total 
vertices, edges, and faces required for conventional Catmull 
Clark subdivision. Lowering the error tolerance to 0.2 
resulted in a maximum subdivision depth of 4. In this latter 
case, uniform Catmull-Clark subdivision generated 362,496 
vertices, 724,992 edges, and 362,496 faces. In comparison, 
the label-driven adaptive subdivision method of this inven 
tion generated only 9,022 vertices, 18,044 edges, and 9,022 
faces, or a 40x improvement on the total number of vertices, 
faces, and edges. 

FIG. 8 depicts a ventilation controller component. For an 
error tolerance of 0.15, the maximum subdivision depth of 
the mesh faces in the input control mesh was 3. Uniform 
Catmull-Clark subdivision (FIG. 80) generated 388,068 ver 
tices, 776,192 edges, and 388,096 faces. In contrast, the 
method of the present invention required only 9814 vertices, 
19,684 edges, and 9,842 faces. The reason that adaptive 
subdivision was performed in some of the ?atter regions was 
that those regions contained extraordinary vertices. 
A marker cap is depicted in FIG. 9. For an error tolerance 

of 0.1, the maximum subdivision depth of the mesh faces 
was 3. Uniform Catmull-Clark subdivision generated 273, 
398 vertices, 546,816 edges, and 273,408 faces (FIG. 90). 
FIG. 9d shows that the label-driven adaptive subdivision 
method of the present invention generated only 15,086 

5 vertices, 30,192 edges, and 15096 faces, an 18>< improve 
ment over the conventional method. Because the control 
mesh of the marker cap included more extraordinary verti 
ces, and therefore required additional subdivision in the 
regions containing the extraordinary vertices, the savings 
was less than that shown in FIGS. 7 and 8. Notwithstanding, 
the present method represents an extraordinary savings in 
the number of vertices, edges, and faces required (compared 
to conventional Catmull-Clark subdivision) regardless of the 
complexity of the surface. 

Accordingly, the present invention provides a signi?cant 
improvement over conventional subdivision surface meth 
odology. The subdivision depth computation step provides a 
precision/error control tool for all tessellation-based appli 
cations of subdivision surfaces. The label-driven adaptive 
subdivision step improves e?iciency of all tessellation-based 
applications and data communication by signi?cantly reduc 
ing the number of faces in the resultant mesh while satis 
fying the desired precision requirement. 

Appendix A: Proof of Lemma 3 
It is su?icient to show that, for each positive integer i, one 

has 

Mowo’u'lél?aMoyoi. (37) 

The sixteen second order forward differences involved in 
M1110,O can be classi?ed into four categories: (C-l) F-E-F, 
(C-2) E-F-E, (C-3) E-V-E, and (C-4) V-E-V, based on the 
type of the vertices. For instance, a second order forward 
difference is said to be in the ?rst category if an edge vertex 
is sandwiched by two face vertices, such as 2Vi+ll,o— 
Vi+lO,O—Vi+l2,O. Each category consists of four second order 
forward differences. We need to show that all these catego 
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ries satisfy (37). In the following, We prove (37) for one item Where T* is de?ned in (15) and T* 1,1 is a 7><(2N+l) version 
of each category. The proof of the other items is similar. of T*, i.e. 

(F-E- F) ; consider avg; - V551 - v3}. (38) 5 A1 A2 AZNH (43) 

Ca, A1 A2 A21v+1 
1+1 1+1 1+1 1 i i i T111 : : - ' ’ 

"ZN/0,1 — V0,2 — V0,0 H = “gal/0,1 — V0,2 — V0,0) + ' ' 

l . . . A1 A2 AZNtl 7><(2N+l) 

§(2Vi,1 — Vi,2 — Vi,0) 5 
10 

1M‘. 1M. _ 1M‘. § 0'0 + § 010 _ Z1 010' then, by (9) We have 

Vj"—>V1*EA1V1+A2V2+ . . . +A2N+1V2N+1 

Case 1 
15 for j:2N+2, 2N+3, . . . , 2N+8. Hence, to prove that 

V”2N+2, . . . ,V”2N+8 converge to V*l, it is su?icient to show 

(5_ F_ E);consider 2vé+21_vé+31_ vé+l1_ (39) that (42) is true, or, equivalently, to shoW that (i) (T l,2)” 
converges to a 7x7 Zero matrix When 11 tends to in?nity, and 
(ii) the loWer-left 7><(2N+l) block of (T)2” converges to 

uzvaal-vael- 51111=H—<2va2-v<s3-va1+2va1-v<s2-v<s0+ _ . . . . ' ' ' 16 ' ' ' ' ' ' 20 T*l,l. (I) is obvious because T1,2 contains non-negative 

ZVi? — Vl,3 — Vl,1 + Zv?l — V1‘) — Vl,0)|| 5 entries and the sum ofeach roW is smaller than one. To prove 

1 . 1 . 1 . 1 . 1 _ (ii), note that the sum of each roW of (7)” is one and, from 

EM6,O+EM6,O+EM6,O+EM6,O= zMép- (i), 
(T1,2)n_)0 

25 

Case 2 Therefore, for each of the last 7 roWs of (T)”, the sum of the 
?rst 2N+l entries is close to one When n is large. On the 
other hand, When n is large, (15) is true, ie each column of 

(E — V — E) I Consider Zvl?l — Vial — VlIol- (40) @‘4 has almost identical entries. Hence, computing an entry 

30 of the loWer-left 7><(2N+l) block of (T)2”:(T)”(T)” is like 
multiplying 2N+l almost identical entries (in the same 
column of the upper-left (2N+l)><(2N+l) block of the sec 
ond (T)” by 2N+l non-negative numbers Whose sum is close 
to one (in the same roW of the loWer-left 7><(2N+l) block of 

35 the ?rst (T)”. Consequently the value of that entry in the 
loWer-left 7><(2N+l) block of (T)2”:(T)” (T)” is close to the 

S 

iMé-m + iMéo + iMéo : {M60 ?rst 2N+l almost identical entries in the same column ofthe 
32 ' 16 ' 32 ' 4 ' second (T)” and this completes the proof of (ii). 

C 3 40 Appendix C: Rate of Convergence of (Dkj 
ase In this appendix We prove Lemma 5. Since (Dkj is sym 

metric to CD13, We only need to consider Gko, G2, and Gk3 
, . . . for the lemma. 

(V — E- V) : consider 2V1‘;l — Vfgl — Vl‘jl. (41) _ 

(i) Gko. For an edge point such as Vl+l4, We have 
1 45 

||2Vi,+2l _ Vi? _ vifll|| = “@(zvdz — V63 — V64 + zvdl — V61 — 
3 . l . l N 3 . . N 1 . (44) 

_ _ _ _ 1+ 1+ _ — l I _ l — l _ _ 

V0,0) + 5W1; — Vi,3 — Vi,1 +2Vi,1— "V1 _ V4 H _ j; ZNZWZJ V1) +1; 4N2(V2J+1 

v‘ v‘ ) 1 (2v‘ v‘ v‘ 50 3 1 1 1,2—1,0+— 2,2— 2,3— 2,1+ i ___ i_i __ 64 1 1 v1)+[2N2 161% Vl)+[4N2 
2V” _ V22 _ V20)" 5 [a + a + i + i)(v" - v") + (i — 31W‘ - v") + 
311.1. 16312N2841 

i + Q + @lMNO : ZMOYO' 1 1 V. V. 3 1 V. 
55 [W—E](5_ I)+[W_EJ(G_ 

Case 4 . N 3 N 1 3 

_ Vi||sZ2—2+Z4—2+‘[2N2 This completes the proof of the lemma. 1:4 1:3 

Appendix B: Convergence of V”2N+2, . . . , V”2N+8 60 +[E _ +2[i 1 HG‘O 
_ l6 8 2 2 l6 4N2 

Note that if one can prove that 3 7 4 

_ [§+W—W]G‘O, 1fN=3 
_ 5 7 10 . 

T 0 " T 0 (42) (_+___2]c;,, ifNzS 
lim(T)”= lim i i =T*E H 65 8 4N 
n?oo n?oo T11 T12 T111 0 

Where Gl-O is de?ned in (20). 
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For a face point such as Vi+1 3, We have 

(45) 

10 

41v2 4 312N2 4 41_;21\/2 

N 1 2(1 3 J 1 1 G‘. gw+ Z-WH-FW 0- 15 

(3+ 7 131G‘ 1v-3 1v>5 4 41v 2N2 0’ ‘or _' 

20 

The other cases are similar to (44) or (45). Hence, We have 
the following inequality for N:3 or N25: 

. 25 

GM [3 7 13 J i [3 7 13 I“ 0 (46) < - _ -— < - _ -— 

° —4+41v 2N2 0- 4+41v 2N2 0' 

(ii) Gk3. For an edge point such as Vi+1 2N+8, We have 30 

i i 1 i i i i 5 i i (47) 
||v4*1— V2128" = HBO/2M + V21v+7 — v6 — v5) + EM — v1) 5 

1 i i 1 i i 1 i i 35 

“E(V2N+8 — V4) + EU/ZNH _ V4) + E(V4 — V6) + 

1 i i 5 i i 9 i i 

Em - v5) + Em - v1) 5 Rmax{(;o, G3} 

40 

Where G1-0 and Gl-3 are de?ned in (20). 
For a face point such as Vi+1 3, We have 

45 
i i 3 i i 1 i i 1 i i (48) 

||v4*1- v3*1||=“E(v2 + v3) - Em, + V,) - g(v1+ v4) 5 

3 i i 3 i i 1 i i 1 i i 
“EU/2 _ V1) + EW3 _ V4) + E(V1_ V6) + EW4 _ V5) 5 

1 . . 50 

—maX{G‘O, G5}. 2 

For a Vertex point such as Vi+1 2N+7, We have 

55 

Ml — 511.71 = <49) 

3 i 9 i 1 i i 3 i 3 i i 

“Eb/4 — 5V1 + 5W3 + V5) + ivzlvn — @045 + V2) + 

1 . . 60 

@Wz‘ms + V2N+6) 5 

1 i i 3 i i 1 i i 

“a(V2N+8 — V4) + ?wzlvn — V4) + a(V2N+6 — V4) + 

65 

20 

The other cases are similar to these cases. Hence, by 
combining the results of (47), (48), and (49), We have 

The second inequality of (50) folloWs from (46). (50) Works 
for N:3 or N25. 

(iii) Gkz. For an edge point such as Vi+12N+6, We have 

The other cases are similar to these tWo cases. Hence, by 
combining the results of (51), (52), (46), and (50), We have 

Where GOImaX {GOO, G01, G02, G03}. The lemma noW 
folloWs from (46), (50), and (53). 

Appendix D: Proof of (27) 
The proof of Lemma 3 shoWs that the norms of most of 

the second order forWard differences of the control points of 
Hk3 satisfy the inequality 

VkZNH. The last tWo cases are similar. Hence, We only need 
consider the ?rst tWo cases. 
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In the second case, We have 

S 

Where Zl-O is _the second order norm of $0. In the above 
derivation, V18 should be replaced With V12 When NI3. 

In the ?rst case, When N25, We have 

2 
16N F1 

In the ?rst summation, one should use VZIZN+1 for Viz].+1 When 
jIl. The difference betWeen the case N:5 and N26 comes 
from the fact that (N2—28) is negative When N:5. When 
NI3, We have 

Consequently, from the above results We have the ?rst part 
of (27). The second part of (27) folloWs from the observation 
that the norms of second order forWard differences similar to 
2Vl"'l1—Vl'+12—Vi+16 dominates the other second order for 
Ward differences in all subsequent norm computation. 

The foregoing description is presented for purposes of 
illustration and description of the various aspects of the 
invention. The descriptions are not intended to be exhaustive 
or to limit the invention to the precise form disclosed. The 
embodiments described above Were chosen to provide the 
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best illustration of the principles of the invention and its 
practical application to thereby enable one of ordinary skill 
in the art to utiliZe the invention in various embodiments and 
With various modi?cations as are suited to the particular use 
contemplated. All such modi?cations and variations are 
Within the scope of the invention as determined by the 
appended claims When interpreted in accordance With the 
breadth to Which they are fairly, legally and equitably 
entitled. 

What is claimed is: 
1. A method for modeling or representing a surface or 

shape having an arbitrary topology Which may be repre 
sented by a control mesh comprising at least one discrete 
Catmull-Clark Subdivision Surface (CCSS) patch de?ned 
by a set of control points, comprising the steps of: 

computing a subdivision depth determining the number of 
recursive subdivisions Which may be performed on the 
control mesh to generate a plurality of ?ner mesh 
elements, Whereby a distance betWeen each ?ner mesh 
element and a corresponding limit surface patch is less 
than a predetermined error tolerance e; and 

using the computed subdivision depth to construct an 
adaptively re?ned mesh that is substantially similar to 
the control mesh Within the range of said predetermined 
error tolerance 6; 

wherein each face of the recursively subdivided control 
mesh is a quadrilateral and contains up to one extraor 
dinary vertex. 

2. The method of claim 1, Wherein the limit surface patch 
is not adjacent to an extraordinary vertex. 

3. The method of claim 1, Wherein the limit surface patch 
is adjacent to an extraordinary vertex. 

4. The method of claim 2, Wherein the limit surface patch 
is a uniform bicubic B-spline surface patch designated 
S(u,v). 

5. The method of claim 4, including the step of calculating 
a subdivision depth k de?ned as k levels of recursive 
subdivision performed on the control points of the limit 
surface patch S(u, v) to generate a level k control mesh, 
Wherein k is de?ned as kZI log4 (MO/36)], where M0 is the 
second order norm of S(u,v) and the distance betWeen S(u,v) 
and the level k control mesh is less than 6. 

6. The method of claim 3, including the initial step of 
subdividing the limit surface patch at least tWice to de?ne at 
least one standard uniform bicubic B-spline surface sub 
patch and up to one extraordinary subpatch that is not a 
standard uniform bicubic B-spline subpatch, said extraordi 
nary subpatch containing a limit point of up to one extraor 
dinary vertex. 

7. The method of claim 6, further including the step of 
computing a subdivision depth n6 for the extraordinary 
subpatch, de?ned as n levels of recursive subdivision per 
formed on the extraordinary subpatch to generate a level n 
extraordinary subpatch control mesh, Wherein n6 is de?ned 
as 

where G0 is the ?rst order norm of H00, H00 is a level-0 
control point de?ned as {VI-ll §i§2N+8}, V1- is an extraor 
dinary vertex With valence N, and the distance betWeen the 
level n extraordinary subpatch control mesh and a corre 
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sponding bilinear plane de?ned in the extraordinary sub 
patch is less than or equal to e if n§n€ 

8. The method of claim 7, further including the step of 
computing a subdivision depth D by performing D recursive 
subdivisions on each standard uniform bicubic B-spline 
subpatch to de?ne a level D control mesh, Wherein D is 
de?ned as the maximum number of recursive subdivisions 
Which may be performed such that the distance betWeen the 
standard uniform bicubic B-spline subpatch and the level D 
control mesh is less than 6. 

9. The method of claim 1, Wherein the step of constructing 
an adaptively re?ned mesh comprises the steps of: 

de?ning a mesh for Which subdivision depths have been 
computed, said mesh comprising a plurality of quad 
rilateral faces containing up to one extraordinary vertex 
and having at least one interior face not adjacent a 
boundary of the control mesh and at least one exterior 
face adjacent a boundary of the control mesh; 

de?ning an initial label of the interior face as a non-Zero 
integer k Wherein k is the subdivision depth of its 
corresponding surface patch With respect to e, 

de?ning an initial label of the exterior face as Zero; 

establishing a consistent condition for each face Whereby 
no tWo adjacent vertices thereof have non-Zero labels 
and no tWo adjacent vertices thereof have Zero labels 
and further Wherein the number of Zero labels is 
maximiZed, the consistent condition being established 
by de?ning a connection supporting graph G17 Whose 
vertices are those of the faces having tWo adjacent 
vertices Whose labels are Zero, selecting a vertex from 
Gb, rede?ning the selected vertex label to l, updating 
G1,, and repeating the process until the connection 
supporting graph contains no further vertices; 

performing a balanced Catmull-Clark subdivision step on 
any face having tWo or more nonZero vertex labels; 

performing an unbalanced Catmull-Clark subdivision step 
on any face having only one vertex With Zero label; and 

computing neW vertices from the results of the balanced 
and unbalanced Catmull-Clark subdivision steps to 
generate at least one neW face de?ning the adaptively 
re?ned mesh structure. 

10. A computer-readable medium having computer-ex 
ecutable instructions for modeling or representing a surface 
or shape having an arbitrary topology Which may be repre 
sented by a control mesh comprising at least one discrete 
Catmull-Clark Subdivision Surface (CCSS) patch de?ned 
by a set of control points, by the steps of: 

computing a subdivision depth determining the number of 
recursive subdivisions Which may be performed on the 
control mesh to generate a plurality of ?ner mesh 
elements, Whereby a distance betWeen each ?ner mesh 
element and a corresponding limit surface patch is less 
than a predetermined error tolerance e; and 

using the computed subdivision depth to construct an 
adaptively re?ned mesh that is substantially similar to 
the control mesh Within the range of said predetermined 
error tolerance 6; 

wherein each face of the recursively subdivided control 
mesh is a quadrilateral and contains up to one extraor 
dinary vertex. 

11. The computer-readable medium of claim 10, Wherein 
the limit surface patch is not adjacent to an extraordinary 
vertex. 
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12. The computer-readable medium of claim 10, Wherein 

the limit surface patch is adjacent to an extraordinary vertex. 

13. The computer-readable medium of claim 11, Wherein 
the limit surface patch is a uniform bicubic B-spline surface 
patch designated S(u,v). 

14. The computer-readable medium of claim 13, Wherein 
the computer-readable medium performs the further step of 
calculating a subdivision depth k de?ned as k levels of 
recursive subdivision performed on the control points of the 
limit surface patch S(u, v) to generate a level k control mesh, 
Wherein k is de?ned as k§[ log4 (MO/3e) ], where M0 is the 
second order norm of S(u,v) and the distance betWeen S(u,v) 
and the level k control mesh is less than 6. 

15. The computer-readable medium of claim 12, Wherein 
the computer-readable medium performs the initial step of 
subdividing the limit surface patch at least tWice to de?ne at 
least one standard uniform bicubic B-spline surface sub 
patch and up to one extraordinary subpatch that is not a 
standard uniform bicubic B-spline subpatch, said extraordi 
nary subpatch containing a limit point of up to one extraor 
dinary vertex. 

16. The computer-readable medium of claim 15, Wherein 
the computer-readable medium performs the further step of 
computing a subdivision depth n6 for the extraordinary 
subpatch, de?ned as n levels of recursive subdivision per 
formed on the extraordinary subpatch to generate a level n 
extraordinary subpatch control mesh, Wherein n6 is de?ned 
as 

eraser 
where G0 is the ?rst order norm of H00, H00 is a level-0 
control point de?ned as {VI-ll §i§2N+8}, V1- is an extraor 
dinary vertex With valence N, and the distance betWeen the 
level n extraordinary subpatch control mesh and a corre 
sponding bilinear plane de?ned in the extraordinary sub 
patch is less than or equal to e if n§n€ 

17. The computer-readable medium of claim 16, Wherein 
the computer-readable medium further performs the step of 
computing a subdivision depth D by performing D recursive 
subdivisions on each standard uniform bicubic B-spline 
subpatch to de?ne a level D control mesh, Wherein D is 
de?ned as the maximum number of recursive subdivisions 
Which may be performed such that the distance betWeen the 
standard uniform bicubic B-spline subpatch and the level D 
control mesh is less than 6. 

18. The computer-readable medium of claim 10, Wherein 
the computer-readable medium constructs an adaptively 
re?ned mesh by performing the steps of: 

de?ning a mesh for Which subdivision depths have been 
computed, said mesh comprising a plurality of quad 
rilateral faces containing up to one extraordinary vertex 
and having at least one interior face not adjacent a 
boundary of the control mesh and at least one exterior 
face adjacent a boundary of the control mesh; 

de?ning an initial label of the interior face as a non-Zero 
integer k Wherein k is the subdivision depth of its 
corresponding surface patch With respect to e, 

de?ning an initial label of the exterior face as Zero; 
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establishing a consistent condition for each face whereby 
no tWo adjacent vertices thereof have non-Zero labels 
and no tWo adjacent vertices thereof have Zero labels 
and further Wherein the number of Zero labels is 
maximized, the consistent condition being established 
by de?ning a connection supporting graph G17 Whose 
vertices are those of the faces having tWo adjacent 
vertices Whose labels are Zero, selecting a vertex from 
Gb, rede?ning the selected vertex label to l, updating 
G1,, and repeating the process until the connection 
supporting graph contains no further vertices; 

performing a balanced Catmull-Clark subdivision step on 
any face having tWo or more nonZero vertex labels; 

performing an unbalanced Catmull-Clark subdivision step 
on any face having only one vertex With Zero label; and 

computing neW vertices from the results of the balanced 
and unbalanced Catmull-Clark subdivision steps to 
generate at least one neW face de?ning the adaptively 
re?ned mesh structure. 

19. A method for modeling or representing a surface or 
shape having an arbitrary topology Which may be repre 
sented by a control mesh comprising at least one discrete 
Catmull-Clark Subdivision Surface (CCSS) patch de?ned 
by a set of control points, comprising the steps of: 

computing a subdivision depth determining the number of 
recursive subdivisions Which may be performed on the 
control mesh to generate a plurality of ?ner mesh 
elements, Whereby a distance betWeen each ?ner mesh 
element and a corresponding limit surface patch that is 
a uniform bicubic B-spline surface patch S(u,v) is less 
than a predetermined error tolerance 6; 

wherein the subdivision depth is calculated as subdivision 
depth k de?ned as k levels of recursive subdivision 
performed on the control points of the limit surface 
patch S(u,v) to generate a level k control mesh, Wherein 
k is de?ned as k§[ log4 (MO/3e) ], where M0 is the 
second order norm of S(u,v) and the distance betWeen 
S(u,v) and the level k control mesh is less than 6; and 

using the computed subdivision depth to construct an 
adaptively re?ned mesh that is substantially similar to 
the control mesh Within the range of said predetermined 
error tolerance 6; 

wherein each face of the recursively subdivided control 
mesh is a quadrilateral and contains up to one extraor 
dinary vertex. 

20. The method of claim 19, Wherein the limit surface 
patch is not adjacent to an extraordinary vertex. 

21. The method of claim 19, Wherein the limit surface 
patch is adjacent to an extraordinary vertex. 

22. The method of claim 21, including the initial step of 
subdividing the limit surface patch at least tWice to de?ne at 
least one standard uniform bicubic B-spline surface sub 
patch and up to one extraordinary subpatch that is not a 
standard uniform bicubic B-spline subpatch, said extraordi 
nary subpatch containing a limit point of up to one extraor 
dinary vertex. 

23. The method of claim 22, further including the step of 
computing a subdivision depth 116 for the extraordinary 
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subpatch, de?ned as n levels of recursive subdivision per 
formed on the extraordinary subpatch to generate a level n 
extraordinary subpatch control mesh, Wherein n6 is de?ned 
as 

where G0 is the ?rst order norm of H00, H00 is a level-0 
control point de?ned as {VI-ll §i§2N+8}, V1. is an extraor 
dinary vertex With valence N, and the distance betWeen the 
level n extraordinary subpatch control mesh and a corre 
sponding bilinear plane de?ned in the extraordinary sub 
patch is less than or equal to e if n§n€ 

24. The method of claim 23, further including the step of 
computing a subdivision depth D by performing D recursive 
subdivisions on each standard uniform bicubic B-spline 
subpatch to de?ne a level D control mesh, Wherein D is 
de?ned as the maximum number of recursive subdivisions 
Which may be performed such that the distance betWeen the 
standard uniform bicubic B-spline subpatch and the level D 
control mesh is less than 6. 

25. The method of claim 19, Wherein the step of con 
structing an adaptively re?ned mesh comprises the steps of: 

de?ning a mesh for Which subdivision depths have been 
computed, said mesh comprising a plurality of quad 
rilateral faces containing up to one extraordinary vertex 
and having at least one interior face not adjacent a 
boundary of the control mesh and at least one exterior 
face adjacent a boundary of the control mesh; 

de?ning an initial label of the interior face as a non-Zero 
integer k Wherein k is the subdivision depth of its 
corresponding surface patch With respect to e, 

de?ning an initial label of the exterior face as Zero; 
establishing a consistent condition for each face Whereby 

no tWo adjacent vertices thereof have non-Zero labels 
and no tWo adjacent vertices thereof have Zero labels 
and further Wherein the number of Zero labels is 
maximiZed, the consistent condition being established 
by de?ning a connection supporting graph Gb Whose 
vertices are those of the faces having tWo adjacent 
vertices Whose labels are Zero, selecting a vertex from 
Gb, rede?ning the selected vertex label to l, updating 
G1,, and repeating the process until the connection 
supporting graph contains no further vertices; 

performing a balanced Catmull-Clark subdivision step on 
any face having tWo or more nonZero vertex labels; 

performing an unbalanced Catmull-Clark subdivision step 
on any face having only one vertex With Zero label; and 

computing neW vertices from the results of the balanced 
and unbalanced Catmull-Clark subdivision steps to 
generate at least one neW face de?ning the adaptively 
re?ned mesh structure. 

* * * * * 
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