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METHODS FOR INCREASING RENEWABLE 
OIL PRODUCTION 

RELATED APPLICATIONS 

This application claims priority from U.S. Provisional 
Application Ser. No. 61/371,936, filed Aug. 9, 2010, the 
entire disclosure of which is incorporated herein by this ref
erence. 

TECHNICAL FIELD 

The presently-disclosed subject matter relates to methods 
for increasing renewable oil production. In particular, the 
presently-disclosed subject matter relates to methods for 
increasing renewable oil production in a plant, where the 
expression of a Vernonia galamensis diacylglycerol acyl
transferase (V gDGAT) polypeptide increases an amount of 
renewable oil in the plant. 

BACKGROUND 

Global plant oil production exceeded 120 metric tons (MT) 

2 
in a plant that is not accompanied by a concomitant decrease 
in protein levels in the plant, would be highly desirable and 
beneficial not only for purposes of human consumption, but 
also from an industrial perspective. 

SUMMARY 

The presently-disclosed subject matter meets some or all of 
the above-identified needs, as will become evident to those of 

10 ordinary skill in the art after a study of information provided 
in this document. 

This Summary describes several embodiments of the pres
ently-disclosed subject matter, and in many cases lists varia-

15 tions and permutations of these embodiments. This Summary 
is merely exemplary of the numerous and varied embodi
ments. Mention of one or more representative features of a 
given embodiment is likewise exemplary. Such an embodi
ment can typically exist with or without the feature(s) men-

20 tioned; likewise, those features can be applied to other 
embodiments of the presently-disclosed subject matter, 
whether listed in this Summary or not. To avoid excessive 
repetition, this Summary does not list or suggest all possible 
combinations of such features. in 2009, and continues to be dominated by four main oil 

crops: palm, soybeans, rapeseed or canola, and sunflowers 25 

(Wilson and Hildebrand, 2010). Indeed, world-wide palm 
and soybean production has increased rapidly in recent years, 
with rapeseed also showing steady increases, and it is 
expected that this trend will only continue as the projected 
global oil production in 2010 was expected to climb to over 
170 million MT. 

The presently-disclosed subject matter includes methods 
of increasing renewable oil production and, in particular, 
methods of increasing renewable oil production in a plant. In 
some embodiments, a method of increasing renewable oil 
production in a plant is provided that comprises transforming 

30 a plant cell with an isolated nucleic acid encoding a Vernonia 
galamensis diacylglycerol acyltransferase 1 (VgDGATl) 
polypeptide, wherein expression of the VgDGATl polypep
tide increases an amount of renewable oil in the plant. In some 
embodiments, expression of the V gDGATl polypeptide 

Of the oil being produced from the four main oil crops, 
palm oil production has been dominated by Malaysia and 
Indonesia, while the vast majority of soybeans are produced 
in the United States, Brazil, China and Argentina. Despite the 
production of different oils by different countries, however, 
global oilseed production has been consistently dominated by 
soybeans and has been followed by rapeseed as a distant 
second (Wilson and Hildebrand, 201 0). Over 200 million MT 
of soybean seeds have been produced in recent years, and this 
dominance is believed to be because, among oilseeds, soy
beans are low in oil and high in protein making soybeans the 
dominant global protein source. On average, soybeans consist 
of approximately 20% oil and 40% protein on a dry weight 
basis, whereas rapeseed is approximately 50% oil and palm 
fruit is close to 90% oil and includes both palm fruit oil and 
kernel oil. 

Breeding for increased oilseed yield per unit land area has 
also continued to progress in recent years with steady soybean 
yield increases being a good example (Egli, 2008a; Egli, 
2008b ). This increased yield is often with little or no 
increased inputs, thus making renewable oil production from 
plants less expensive over time and, at the same time, more 
competitive with petroleum as an industrial chemical feed
stock. Indeed, while most plant oil continues to be produced 
and used for food purposes, an increasing proportion of plant 
oil is being utilized for industrial uses, with the proportion of 
industrial versus food usage having increased from appro xi
mately 10% to approximately 20% in the last 10 years. 

Because U.S. and global seed and oil production is exten
sive and important for the both the production of oils for 
human and animal consumption and for industrial purposes, 
the value of even a 3-5% increase in seed oil content is also 
significant and has been increasingly recognized. Accord
ingly, a method of increasing oil content by only a small 
percentage would be both desirable and beneficial. More 
specifically, a method of increasing renewable oil production 

35 
increases the amount of renewable oil in the plant by at least 
about 2 or about 3 percent as compared to an amount of 
renewable oil in a control plant. In other embodiments, 
expression of the V gDGATl polypeptide increases the 

40 amount of renewable oil in the plant by at least about 5 percent 
as compared to an amount of renewable oil in a control plant. 

In some embodiments of the methods for increasing renew
able oil production in a plant, the plant is selected from: 
Arachis hypogaea, Baraga ojficinalis, Brassica campestris, 

45 Brassica napus, Brassica rapa, Camelina saliva, Cannabis 
saliva, Carthamus tinctorius, Cocos nucifera, Crambe abys
sinica, Cuphea species, Glycine max, Gossypium hirsutum, 
Gossypium barbadense, Gossypium herbaceum, Helianthus 
annuus, Linum usitatissimum, Oenothera biennis, Olea euro-

50 paea, Oryza sativa, Perilla frutescens, Ricinus communis, 
Salvia hispanica, Sesamum indicum, Sinapis alba, Theo
broma cacao, Triticum species, Zea mays, Juglans species, or 
Prunis dulcis. In some embodiments, increasing the amount 
of renewable oil in the plant comprises increasing the amount 

55 of renewable oil in a seed of the plant. In some embodiments, 
increasing the amount of renewable oil in the plant comprises 
increasing the amount oftriacylglycerol (TAG) in the plant. In 
some embodiments, even though the amount of renewable oil 
found in the plant is increased, the protein levels in the plant 

60 are substantially unchanged as compared to a control plant. In 
some embodiments, both the amounts of renewable oil found 
in the plant and the amounts of protein found in the plant are 
increased. 

In some embodiments of the presently-disclosed subject 
65 matter, the V gDGATl polypeptide expressed in the plant is a 

VgDGATla polypeptide. In some embodiments, the 
VgDGATla polypeptide is encoded by a nucleic acid mol-
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ecule having the sequence of SEQ ID NO: 1. In some embodi
ments, the V gDGATl a polypeptide comprises the amino acid 
sequence of SEQ ID NO: 2. 

In other embodiments of the methods described herein, the 
V gDGATl polypeptide that is expressed in the plant is a 5 
V gDGATl b polypeptide. In some of these embodiments, the 
VgDGATlb polypeptide is encoded by a nucleic acid mol
ecule having the sequence of SEQ ID NO: 3. In some embodi
ments, the V gDGATl b polypeptide comprises the amino acid 
sequence of SEQ ID NO: 4. 

10 
In some embodiments of the presently-disclosed methods 

for increasing renewable oil production, the methods include 
the further step of transforming a plant cell with an isolated 
nucleic acid encoding a Vernonia galamensis diacylglycerol 
acyl transferase 2 (V gDGAT2) polypeptide, where the expres
sion of the VgDGATl polypeptide and the VgDGAT2 15 

polypeptide increases an amount of renewable oil in the plant. 
In some embodiments, the co-expression of the VgDGAT1 
polypeptide and the V gDGAT2 polypeptide increases the 
amount of renewable oil in the plant in a synergistic mauner. 
In some embodiments, the V gDGAT2 polypeptide is encoded 20 

by a nucleic acid molecule having the sequence of SEQ ID 
NO: 5. In some embodiments, the VgDGAT2 polypeptide 
comprises the amino acid sequence of SEQ ID NO: 6. 

Further provided, in some embodiments of the presently
disclosed subject matter are methods of producing triacylg- 25 
lycerols (TAGs). In some embodiments, a method of produc
ing a triacylglycerol (TAG) is provided that comprises 
transforming a cell with an isolated nucleic acid that encodes 
a Vernonia galamensis diacylglycerol acyltransferase 1 
(V gDGATl) polypeptide, wherein expression of the V gD-

30 GAT! polypeptide increases an amount of TAG in the cell. In 
some embodiments, the cell is an animal cell, a plant cell, an 
algal cell, a fungal cell, or a yeast cell. 

Still further provided, in some embodiments of the pres
ently-disclosed subject matter, are methods for increasing 
renewable oil production in a plant that include transforming 35 

a plant cell with a first isolated nucleic acid encoding a Ver
nonia galamensis diacylglycerol acyltransferase (VgDGAT) 
polypeptide and a second isolated nucleic acid encoding an 
epoxygenase polypeptide, where the expression of the V gD
GAT polypeptide and the epoxygenase polypeptide increases 40 

an amount of renewable oil in the plant. In some embodi
ments, the VgDGAT polypeptide is a VgDGATla polypep
tide, a V gDGATl b polypeptide, or a V gDGAT2 polypeptide. 
In some embodiments, the epoxygenase polypeptide is 
encoded by a nucleic acid sequence comprising the sequence 45 

ofSEQIDNO: 19. 

4 
(VC), or a vector encoding an Arabidopsis thaliana DGATl 
polypeptide (AtDGATl), a Glycine max DGATla polypep
tide (GmDGATla), a Vernonia galamensis DGATla 
polypeptide (VgDGATla), or a Vernonia galamensis 
DGATl b polypeptide (V gDGATl b); 

FIG. 2 is a schematic diagram showing the phylogenetic 
relationships between soybean (Gm), Vernonia (Vg), 
Euphorbia (El) andArabidopsis (At) DGATl sand also show
ing the association of those DGATl s with other related 
DGATls; 

FIG. 3 is a graph showing oil and protein levels of mature 
soybean seeds that were produced on a research farm from a 
line expressing a Vernonia galamensis DGAT1a (Li-67), a 
high-oil content line of soybeans from breeding (NC-381), 
and a control line (Jack); 

FIG. 4 is a graph showing soybean oil levels of mature 
seeds expressing a Vernonia galamensis DGAT1a versus high 
oil lines from breeding and regular soybeans determined by 
single seed (SS) and bulk seed analyses; 

FIG. 5 is a graph showing soybean oil and protein levels 
and calculated meal protein levels of mature seeds produced 
on a research farm from a line expressing a Vernonia gala
mensis VgDGATla (Li-67), a high oil line from breeding 
(NC-381), and a control line (Jack); 

FIG. 6 is a graph showing the percentages of mean oil, 
protein, and oil and protein (O+P) in mature soybean seeds 
produced on a research farm over three years from a control 
line (Jack) and from various lines expressing VgDGATla 
(9648-2A; 9648-2D; 9652-A3; 9654-3E; 9627-4C; 9636-1A; 
9642-5B; and 9652-A6); 

FIG. 7 is a graph showing seed oil contents from a control 
soybean line (Vector-ctr) and from transgenic soybean lines 
expressing either a Stokesia laevis epoxygenase transgene 
(SIEPX), a V gDGATl a trans gene and a SIEPX trans gene, or 
a V gDGAT2 transgene and a SIEPX trans gene, where each 
data point represents seed oil content in whole seed samples 
from individual transgenic plants that were grown, and where 
horizontal bars indicate the mean for each dataset; and 

FIG. 8 is a graph showing seed protein content from a 
control soybean line (Vector-ctr) and from transgenic soy
bean lines expressing either a Stokesia laevis epoxygenase 
trans gene (SIEPX), a V gDGATla and a SIEPX trans gene, or 
a V gDGAT2 and a SIEPX trans gene, where each data point 
represents seed protein content in whole seed samples from 
individual transgenic plants that were grown, and where hori
zontal bars indicate the mean for each dataset. 

BRIEF DESCRIPTION OF THE SEQUENCE 
LISTING 

SEQ ID NO: 1 is a nucleic acid sequence of a diacylglyc
erol acyltransferase 1a eDNA obtained from Vernonia gala
mensis; 

In yet further embodiments of the presently-disclosed sub
ject matter are transgenic plant cells capable of producing an 
increased amount of renewable oil. In some embodiments, a 
transgenic plant cell is provided that comprises an isolated so 
nucleic acid encoding a Vernonia galamensis diacylglycerol 
acyl transferase 1 (V gDGATl) polypeptide, wherein expres
sion of the VgDGAT1 polypeptide increases an amount of 
renewable oil in the plant cell. In certain embodiments, the 
transgenic plant cell is operably linked to an expression con
trol sequence. In some embodiments, the expression control 
sequence comprises a constitutive promoter or a seed-specific 
promoter. 

SEQ ID NO: 2 is an amino acid sequence of a diacylglyc-
55 erol acyltransferase 1a polypeptide from Vernonia galamen-

Further features and advantages of the presently-disclosed 
subject matter will become evident to those of ordinary skill 60 

in the art after a study of the description, figures, and non
limiting examples in this document. 

sis; 
SEQ ID NO: 3 is a nucleic acid sequence of a diacylglyc

erol acyltransferase 1 b eDNA obtained from Vernonia gala
mensis; 

SEQ ID NO: 4 is an amino acid sequence of a diacylglyc
erol acyl transferase 1 b polypeptide from Vernonia gal amen
sis; 

BRIEF DESCRIPTION OF THE DRAWINGS 
SEQ ID NO: 5 is a nucleic acid sequence of a diacylglyc

erol acyltransferase 2 eDNA obtained from Vernonia gala-
65 mensis; and 

FIG. 1 is a graph showing the extent of TAG biosynthetic 
activity in yeast cells transfected with either a vector alone 

SEQ ID NO: 6 is an amino acid sequence of a diacylglyc
erol acyl transferase 2 polypeptide from Vernonia galamensis. 
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SEQ ID NO: 7 is a nucleic acid sequence of a degenerate 
forward primer for amplifYing diacylglycerol acyltransferase 
eDNA; 

SEQ ID NO: 8 is a nucleic acid sequence of a degenerate 
reverse primer for amplifying diacylglycerol acyltransferase 
eDNA; 

SEQ ID NO: 9 is an amino acid sequence of a conserved 
region in diacylglycerol acyltransferases from Arabidopsis 
thaliana and Mus musculus; 

6 
ject matter. Unless defined otherwise, all technical and scien
tific terms used herein have the same meaning as commonly 
understood by one of ordinary skill in the art to which the 
presently-disclosed subject matter belongs. Although any 
methods, devices, and materials similar or equivalent to those 
described herein can be used in the practice or testing of the 
presently-disclosed subject matter, representative methods, 
devices, and materials are now described. 

SEQ ID NO: 10 is another amino acid sequence of a con- 10 

served region in diacylglycerol acyltransferases from Arabi
dopsis thaliana and Mus musculus; 

Following long-standing patent law convention, the terms 
"a", "an", and "the" refer to "one or more" when used in this 
application, including the claims. Thus, for example, refer
ence to "a cell" includes a plurality of such cells, and so forth. 

SEQ ID NO: 11 is a nucleic acid sequence of a forward 
primer for amplifying Vernonia galamensis diacylglycerol 
acyltransferase eDNA; 

SEQ ID NO: 12 is a nucleic acid sequence of a reverse 
primer for amplifying Vernonia galamensis diacylglycerol 
acyltransferase eDNA; 

Unless otherwise indicated, all numbers expressing quan
tities of ingredients, properties such as reaction conditions, 

15 and so forth used in the specification and claims are to be 
understood as being modified in all instances by the term 
"about". Accordingly, unless indicated to the contrary, the 
numerical parameters set forth in this specification and claims 

SEQ ID NO: 13 is a nucleic acid sequence of a forward 
primer for amplifying Euphorbia lagascae diacylglycerol 20 

acyltransferase eDNA; 

are approximations that can vary depending upon the desired 
properties sought to be obtained by the presently-disclosed 
subject matter. 

SEQ ID NO: 14 is a nucleic acid sequence of a reverse 
primer for amplifying Euphorbia lagascae diacylglycerol 
acyltransferase eDNA; 

As used herein, the term "about," when referring to a value 

SEQ ID NO: 15 is a nucleic acid sequence of a forward 25 

primer for amplifYing Glycine max diacylglycerol acyltrans
ferase eDNA; 

or to an amount of mass, weight, time, volume, concentration 
or percentage is meant to encompass variations of in some 
embodiments ±20%, in some embodiments ±10%, in some 
embodiments ±5%, in some embodiments ±1%, in some 
embodiments ±0.5%, and in some embodiments ±0.1% from 
the specified amonnt, as such variations are appropriate to 
perform the disclosed method. In this regard, in some 

SEQ ID NO: 16 is a nucleic acid sequence of a reverse 
primer for amplifYing Glycine max diacylglycerol acyltrans
ferase eDNA; 

SEQ ID NO: 17 is a nucleic acid sequence of another 
forward primer for amplifYing Glycine max diacylglycerol 
acyltransferase eDNA; 

30 embodiments of the presently-disclosed subject matter, 
ranges can be expressed as from "about" one particular value, 
and/or to "about" another particular value. It is also under
stood that there are a number of values disclosed herein, and 

SEQ ID NO: 18 is a nucleic acid sequence of another 
reverse primer for amplifying Glycine max diacylglycerol 35 

acyltransferase eDNA; and 

that each value is also herein disclosed as "about" that par
ticular value in addition to the value itself. For example, if the 
value "10" is disclosed, then "about 10" is also disclosed. It is 

SEQ ID NO: 19 is a nucleic acid sequence of an epoxyge
nase eDNA obtained from Stokesia laevis. 

DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

The details of one or more embodiments of the presently
disclosed subject matter are set forth in this document. Modi
fications to embodiments described in this document, and 
other embodiments, will be evident to those of ordinary skill 
in the art after a study of the information provided in this 
document. The information provided in this document, and 
particularly the specific details of the described exemplary 
embodiments, is provided primarily for clearness of under
standing and no unnecessary limitations are to be understood 
therefrom. In case of conflict, the specification of this docu
ment, including definitions, will control. 

Some of the polynucleotide and polypeptide sequences 
disclosed herein are cross-referenced to GENBANK® acces
sion numbers. The sequences cross-referenced in the GEN
BANK® database are expressly incorporated by reference as 
are equivalent and related sequences present in GENBANK® 
or other public databases. Also expressly incorporated herein 
by reference are all annotations present in the GENBANK® 
database associated with the sequences disclosed herein. 
Unless otherwise indicated or apparent, the references to the 
GENBANK® database are references to the most recent ver
sion of the database as of the filing date of this Application. 

While the following terms are believed to be well under
stood by one of ordinary skill in the art, definitions are set 
forth to facilitate explanation of the presently-disclosed sub-

40 

also understood that each unit between two particular units 
are also disclosed. For example, if 10 and 15 are disclosed, 
then 11, 12, 13, and 14 are also disclosed. 

Plant seed oils represent a significant renewable resource, 
with most plant seed oils being predominately composed of 
triacylglycerols (TAGs) that are produced via the sequential 
incorporation of fatty acids. In plants, this sequential incor
poration of fatty acids into TAG is commonly known as the 

45 Kennedy pathway, which consists of three successive acyla
tion reactions of the hydroxyl groups of glycerol by three 
acyl-CoA-dependent acyltransferases, starting from glyc
erol-3-phosphate (G3P). Specifically, in the Kennedy path
way, lysophosphatidic acid (LPA) and phosphatidic acid (PA) 

50 are first formed through two acylations catalyzed by the acyl
transferases glycerol-3-phosphate (GPAT) and lyso-phospha
tidic acid acyltransferase (LPAAT). PAis then dephosphory
lated by the action of phosphatidate phosphatase (PAP) to 
form sn-1 ,2-diacylglycerol (sn-1 ,2 DAG). The final acylation 

55 of sn-1 ,2 DAG is the transfer of a fatty acyl moiety, such as 
from acyl-CoA, to the sn-3 position of diacylglycerol by 
diacylglycerol acyltransferase (DGAT) to generate TAG. 

It is thought that DGAT is one of the rate-limiting steps in 
plant storage lipid accumulation and plays a role in control-

60 ling both the quantitative and qualitative flux of fatty acids 
into storage TAGs. There are two distinct types of non-ho
mologous DGAT gene families designated as DGATl and 
DGAT2, encoding proteins with DGAT activity in plants and 
animals. Furthermore, in certain species, such as soybean, 

65 Vernonia galamensis, and Euphorbia species, DGAT1 genes 
can further be divided into two distinct subclasses, designated 
DGATla andDGATl b. Recently, the TAG biosynthetic activ-
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ity of DGATls from a number of plant species, including 
soybean, Arabidopsis, and Euphorbia have been analyzed for 
their ability to increase the production of TAG in plants. 
However, for the commercial production of renewable oil in 
plants, the use ofDGAT1 enzymes from those species have 
only proven to be modestly effective in increasing renewable 
oil production. 

8 
cell, a fungal cell, or a yeast cell. In some embodiments, the 
cell is an algal cell selected from C. reinherdtii, Chiarella, 
Scenedesmus, Ankistrodesmus, Chlorococcum, Boekelovia 
Oscillatoria, Amphora, Euglena, andSynechococcus species. 

The "amount" of a renewable oil, or TAG, in a cell can be 
determined by methods known to those of ordinary skill in the 
art. For example, gas chromatography-mass spectrometry, 
thin layer chromatography-gas chromatography, gas chroma
tography, near infrared (NIR) or nuclear magnetic resonance 

10 spectrophotometry, or gravimetric methods, such as Soxhlet, 
can be utilized to determine a total amount of renewable oil or 

Disclosed herein are novel data demonstrating that certain 
DGATl shave higher activity in TAG biosynthesis than other 
DGATs.As disclosed herein, DGATl proteins from Vernonia 
galamensis (V g) were expressed in a number of cells and 
tissues, including, but not limited to, yeast cells, petunia 
leaves, soybean somatic embryos, and mature soybean seeds, 
and it was ascertained that the expression of VgDGAT1 
enzymes greatly increased renewable oil production and, in 15 

particular, TAG biosynthesis and accumulation in the cells 
and tissues. To that end, the presently-disclosed subject mat-
ter includes methods of increasing renewable oil production 
in a plant, where the expression of a Vernonia galamensis 
diacylglycerol acyltransferase (V gDGAT) polypeptide 20 

increases an amount of renewable oil in the plant. 
In some embodiments of the presently-disclosed subject 

matter, a method of increasing renewable oil production in a 
plant is provided that comprises transforming a plant cell with 
an isolated nucleic acid encoding a Vernonia galamensis dia- 25 

cylglycerol acyl transferase 1 (V gDGATl) polypeptide, 
where the expression of the V gDGAT1 polypeptide increases 
an amount of renewable oil in the plant. 

Vernonia galamensis is a plant in the sunflower family of 
significant industrial value due to high levels of oil found 30 

within the seeds of the plant. In this regard, Vernonia gala
mensis is commonly grown as a source of oil that is used in a 
variety of industrial applications, such as the manufacture of 
plastics or paints. However, the large-scale farming of Ver
nonia galamensis is typically not economically feasible, par- 35 

ticularly outside of equatorial regions, due to poor seed yield 
and poor seed retention, which thus makes the plants agro
nomically unsuited for the industrial scale growth and pro
cessing that would be required to make use of Vernonia gala
mensis plants as a viable source of renewable seed oil. 40 

Disclosed herein, however, are data indicating that the 
DGAT1 genes from Vernonia galamensis, including Ver
nonia galamensis DGATla and DGAT1b genes, can be 
inserted into a vector and then efficiently and economically 
used to produce V gDGATl polypeptides that are capable of 45 

significantly increasing the production of renewable oils in 
plants that can be grown on a commercial scale. 

The term "renewable oil" as used herein in relation to 
plants refers to oils that include or are derived from TAG and 
are produced by or are derived from plants or portions thereof 50 

(e.g., the organs, tissues, cells, or propagation materials of a 
plant) such that the oils can be replaced or replenished by the 
growth of a new plant or by the initial plant that produced the 
oil. A number of plant oils are known to those of ordinary skill 
in the art and include, but are not limited to, oils derived from 55 

oil seeds (e.g., canola, peanut, com, soybean, sunflower, cot
tonseed, and safflower) and fixed oils such as almond oil and 
castor oil. Regardless of the specific type of oil, however, and 
as noted above, most plant oils are predominantly composed 
of TAGs, the synthesis of which is catalyzed, at least in part, 60 

by the activity ofDGATs. As such, in some embodiments of 
the presently-disclosed subject matter, a method of producing 
a TAG is further provided that includes transforming a cell 
with an isolated nucleic acid that encodes a V gDGATl 
polypeptide, where the expression of the V gDGATl polypep- 65 

tide in the cell increases an amount of TAG in the cell. In some 
embodiments, the cell is an animal cell, a plant cell, an algal 

a total amount of TAG in a sample obtained from a cell 
transformed with a nucleic acid encoding a V gDGATl 
polypeptide. An increase in the amount of renewable oil, or 
TAG, can then be measured relative to a control level of the 
oil, or TAG, such as an amount or range of amounts of the oil, 
or TAG, found in comparable samples in cells that have not 
been transformed with a nucleic acid encoding a V gDGAT 
polypeptide. In some embodiments, the increase in the 
amounts of renewable oils, or TAG, can be about 1%, about 
2%, about 3%, about 4%, about 5%, about 6%, about 7%, 
about 8%, about 9%, or about 10% relative to the amounts in 
a control sample. In some embodiments, expression of the 
V gDGATl polypeptide increases the amount of renewable 
oil in the plant by at least about 2 or about 3 percent as 
compared to an amount of renewable oil in a control plant. In 
other embodiments, expression of the V gDGATl polypeptide 
increases the amount of renewable oil in the plant by at least 
about 5 percent as compared to an amount of renewable oil in 
a control plant. 

In some embodiments, even though the amount of renew
able oil found in the plant is increased, the protein levels in the 
plant are substantially unchanged as compared to a control 
plant. In attempts to increase amounts of oil biosynthesis in 
plants, any increases in amounts of renewable oils are fre
quently accompanied by a concomitant decrease in the levels 
of proteins in the plants themselves, which, in turn, decreases 
the value of the plant as a source of protein, such as for animal 
feed, for human consumption, and for many industrial appli
cations. It has been ascertained, however, that by transform
ing a plant cell with a nucleic acid molecule encoding a 
V gDGATl polypeptide, plants can be produced that have 
increased seed oil content and little to no decrease in amount 
of proteins in the seeds of the plants. In some embodiments, 
plants are produced that have both increased seed oil content 
and increased amounts of proteins in the seeds of the plants, 
relative to control plants. In some embodiments, such an 
increase in the oil and protein levels in the seeds of the plants 
allows plant meal to be produced that is considerably higher 
in protein, which then allows for an increase in both the 
quality and value of the plant meal. Of course, any methods 
for measuring the protein content in a sample known to those 
of ordinary skill in the art, including, but not limited to, 
methods such as mass spectrometry, can be used to measure 
an amount of protein in accordance with the presently-dis
closed subject matter. 

In some embodiments of the presently-disclosed subject 
matter, the V gDGATl polypeptide expressed in the plant is a 
VgDGATla polypeptide (see, e.g., GENBANK® Accession 
No. EF653276.1, which is incorporated herein by this refer
ence). In some embodiments, the VgDGATla polypeptide is 
encoded by a nucleic acid molecule having the sequence of 
SEQ ID NO: 1. In some embodiments, the VgDGATla 
polypeptide comprises the amino acid sequence of SEQ ID 
N0:2. 

In other embodiments of the methods described herein, the 
V gDGATl polypeptide that is expressed in the plant is a 
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VgDGATlb polypeptide (see, e.g., GENBANK® Accession 
No. EF653277, which is incorporated herein by this refer
ence). In some of these embodiments, the VgDGAT1b 
polypeptide is encoded by a nucleic acid molecule having the 
sequence of SEQ ID NO: 3. In some embodiments, the 
V gDGATl b polypeptide comprises the amino acid sequence 
of SEQ ID NO: 4. 

In some embodiments of the presently-disclosed methods 
for increasing renewable oil production, the methods include 
the further step of transforming a plant cell with an isolated 10 

nucleic acid encoding a Vernonia galamensis diacylglycerol 
acyltransferase 2 (VgDGAT2) polypeptide (see, e.g., GEN
BANK® Accession No. FJ652577, which is incorporated 
herein by this reference; see also U.S. patent application 
Publication Ser. No. 12/622,045, which is also incorporated 15 

herein by reference in its entirety), where the expression of 
the V gDGATl polypeptide and the V gDGAT2 polypeptide 
increases an amount of renewable oil in the plant. Without 
wishing to be bound by any particular theory, it is believed 
that, in some embodiments, the co-expression of the V gD- 20 

GATl polypeptide and the V gDGAT2 polypeptide increases 
the amount of renewable oil in the plant in a synergistic 
manner. In some embodiments, the V gDGAT2 polypeptide in 
encoded by a nucleic acid molecule having the sequence of 
SEQ ID NO: 5. In some embodiments, the VgDGAT2 25 

polypeptide comprises the amino acid sequence of SEQ ID 
NO: 6. 

10 
VgDGATla polypeptide, a VgDGATlb polypeptide, or a 
V gDGAT2 polypeptide, such as those polypeptides described 
herein above. In some embodiments, the epoxygenase 
polypeptide is encoded by a nucleic acid sequence of SEQ ID 
NO: 19. In some embodiments, the epoxygenase polypeptide 
is a Stokesia laevis polypeptide, such as the epoxygenase 
described in U.S. Pat. No. 7,364,901, which is incorporated 
herein by this reference (see also GENBANK® Accession 
No. EA619792.1, which is further incorporated herein). 

In some embodiments of the methods for increasing renew-
able oil production, transforming the plant cell with a first 
isolated nucleic acid and a second isolated nucleic acid com
prises transforming the cell with a vector that includes the first 
isolated nucleic acid and a vector that includes the second 
isolated nucleic acid. For example, in some embodiments, a 
nucleic acid encoding a DGAT polypeptide can be inserted 
into an appropriate vector as described herein and a nucleic 
acid encoding an epoxygenase polypeptide can be inserted 
into another vector. In some embodiments, each of the vectors 
can then be electroporated into Agrobacterium tumefacians 
cells, which can then be used to transform cells with the 
vectors according to agro-infiltration methods known to those 
of ordinary skill in the art. 

The term "isolated," when used in the context of an isolated 
nucleic acid or an isolated polypeptide, is a nucleic acid or 
polypeptide that, by the hand of man, exists apart from its 
native environment and is therefore not a product of nature. 
An isolated nucleic acid or polypeptide can exist in a purified 
form or can exist in a non-native environment such as, for 

In yet further embodiments of the presently-disclosed 
methods for increasing renewable oil production in a plant, a 
method is provided that includes transforming a plant cell 
with nucleic acid encoding a V gDGAT polypeptide and with 

30 example, in a transgenic host cell. 
The term "nucleic acid" refers to deoxyribonucleotides or 

ribonucleotides and polymers thereof in either single- or 
double-stranded form. Unless specifically limited, the term 
encompasses nucleic acids containing known analogues of 

35 natural nucleotides that have similar binding properties as the 
reference nucleic acid and are metabolized in a manner simi
lar to naturally -occurring nucleotides. Unless otherwise indi
cated, a particular nucleic acid sequence also implicitly 
encompasses conservatively modified or degenerate variants 

a nucleic acid encoding an epoxygenase polypeptide as it has 
also been surprisingly discovered that such a co-expression 
results in an increase in renewable oil content in a plant. It is 
appreciated that certain V gDGAT polypeptides are capable of 
increasing the amount of epoxy fatty acids such as vernolic 
acid; however, it was previously thought that the observed 
increase in vemolic acid came at the expense oflinoleic acid, 
which then resulted in no increase in the amount of oil in a 
plant. It has been now been determined though that certain 
DGAT polypeptides, including V gDGATl and V gDGAT2 
polypeptides are able to effectively incorporates epoxy fatty 
acids into TAG, making a method of co-expressing a V gD
GATl or V gDGAT2 polypeptide with an epoxygenase 
polypeptide a useful means to increase an amount of renew- 45 

able oil in a plant. 

40 thereof (e.g., degenerate codon substitutions) and comple
mentary sequences, as well as the sequence explicitly indi
cated. 

In some embodiments of the presently-disclosed subject 
matter, a method of increasing an amount of renewable oil in 
a plant is provided that includes transforming a plant cell with 
a first isolated nucleic acid encoding a Vernonia galamensis 50 

diacylglycerol acyltransferase (VgDGAT) polypeptide and a 
second isolated nucleic acid encoding an epoxygenase 
polypeptide, where the expression of the V gDGAT polypep
tide and the epoxygenase polypeptide increases an amount of 
renewable oil in the plant as compared to the amounts of 55 

renewable oil found in a control plant. In some embodiments, 
the co-expression of a V gDGAT polypeptide and an epoxy
genase polypeptide allows for the production of a plant where 
the amount of renewable oil in the plant is increased, but 
where the amount of protein in the plant is substantially 60 

unchanged as compared to a control plant. In some embodi
ments, the amount of protein in the plant co-expressing the 
V gDGAT polypeptide and the epoxygenase polypeptide is 
increased as compared to a control plant. 

In some embodiments of the presently-disclosed methods 65 

that include co-expressing a V gDGAT polypeptide and an 
epoxygenase polypeptide, the V gDGAT polypeptide can be a 

The term "degenerate variant" refers to a nucleic acid hav
ing a residue sequence that differs from a reference nucleic 
acid by one or more degenerate codon substitutions. Degen
erate codon substitutions can be achieved by generating 
sequences in which the third position of one or more selected 
(or all) codons is substituted with mixed base andlordeoxyino 
sine residues (Batzer, et a!. 1991; Ohtsuka, et a!. 1985; Ros
solini, et a!. 1994 ). 

The terms "polypeptide," "protein," and "peptide," which 
are used interchangeably herein, refer to a polymer of the 20 
protein amino acids, or amino acid analogs, regardless of its 
size or function. Although "protein" is often used in reference 
to relatively large polypeptides, and "peptide" is often used in 
reference to small polypeptides, usage of these terms in the art 
overlaps and varies. The term "polypeptide" as used herein 
refers to peptides, polypeptides, and proteins, unless other
wise noted. The terms "protein", "polypeptide" and "peptide" 
are used interchangeably herein when referring to a gene 
product. Thus, exemplary polypeptides include gene prod-
ucts, naturally occurring proteins, homo logs, orthologs, 
paralogs, fragments and other equivalents, variants, and ana
logs of the foregoing. 

The terms "polypeptide fragment" or "fragment," when 
used in reference to a reference polypeptide, refers to a 
polypeptide in which amino acid residues are deleted as com-
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pared to the reference polypeptide itself, but where the 
remaining amino acid sequence is usually identical to the 
corresponding positions in the reference polypeptide. Such 
deletions can occur at the amino-terminus or carboxy-termi
nus of the reference polypeptide, or alternatively both. A 
fragment can also be a "functional fragment," in which case 
the fragment retains some or all of the activity of the reference 
polypeptide as described herein. For example, in some 
embodiments, a functional fragment of a V gDGATl polypep
tide can retain some or all of the ability of the reference 
polypeptide to catalyze the final acylation step during TAG 
synthesis, such as what had been described for other DGATl 
polypeptides (see, e.g., Siloto, eta!., 2009; Siloto, eta!., 2009; 
and Xu, et a!. 2008). 

12 
some embodiments, the vectors of the presently-disclosed 
subject matter are plasmids, such as the plasmid pBI121 or 
the pCAMBIA1301 plasmid. 

In some embodiments, the isolated nucleic acid included in 
the vector is operably linked to an expression control 
sequence. The terms "associated with," "operably linked," 
and "operatively linked" refer to two nucleic acid sequences 
that are related physically or functionally. For example, a 
promoter or regulatory DNA sequence is said to be "associ-

10 ated with" a DNA sequence that encodes an RNA or a 
polypeptide if the two sequences are operatively linked, or 
situated such that the regulator DNA sequence will affect the 
expression level of the coding or structural DNA sequence. 

The term "expression control sequence" is used inter-
changeably herein with the term "expression cassette" and is 
used to refer to a nucleic acid molecule capable of directing 
expression of a particular nucleotide sequence in an appro
priate host cell, comprising a promoter operatively linked to 

The terms "modified amino acid," "modified polypeptide," 15 

and "variant" refer to an amino acid sequence that is different 
from the reference polypeptide by one or more amino acids, 
e.g., one or more amino acid substitutions. A variant of a 
reference polypeptide also refers to a variant of a fragment of 
the reference polypeptide, for example, a fragment wherein 
one or more amino acid substitutions have been made relative 

20 the nucleotide sequence of interest which is operatively 
linked to termination signals. It also typically comprises 
sequences required for proper translation of the nucleotide 
sequence. The coding region usually encodes a polypeptide 
of interest but can also encode a functional RNA of interest, 

to the reference polypeptide. A variant can also be a "func
tional variant," in which the variant retains some or all of the 
activity of the reference protein as described herein. For 
example, a functional variant of a DGATl polypeptide retains 
some or all of the ability of the reference polypeptide to 
catalyze the final acylation step during TAG synthesis. 

The term functional variant also includes a functional vari
ant of a functional fragment of a reference polypeptide. The 
term functional variant further includes conservatively sub
stituted variants. The term "conservatively substituted vari
ant" refers to a peptide comprising an amino acid residue 
sequence that differs from a reference peptide by one or more 
conservative amino acid substitutions, and maintains some or 
all of the activity of the reference peptide as described herein. 
A "conservative amino acid substitution" is a substitution of 
an amino acid residue with a functionally similar residue. 
Examples of conservative substitutions include the substitu
tion of one non-polar (hydrophobic) residue such as isoleu
cine, valine, leucine or methionine for another; the substitu
tion of one charged or polar (hydrophilic) residue for another 
such as between arginine and lysine, between glutamine and 
asparagine, between threonine and serine; the substitution of 
one basic residue such as lysine or arginine for another; or the 
substitution of one acidic residue, such as aspartic acid or 
glutamic acid for another; or the substitution of one aromatic 
residue, such as phenylalanine, tyrosine, or tryptophan for 
another. The phrase "conservatively substituted variant" also 
includes pep tides wherein a residue is replaced with a chemi
cally-derivatized residue, provided that the resulting peptide 
maintains some or all of the activity of the reference peptide 
as described herein. 

In some embodiments of the presently-disclosed subject 
matter, vectors that include one or more of the isolated nucleic 
acid sequences described herein are provided. In some 
embodiments, a vector is provided that includes an isolated 
nucleic acid encoding a VgDGATla polypeptide, a 
V gDGATl b polypeptide, a V gDGAT2 polypeptide, an 
epoxygenase polypeptide, or combinations thereof. The term 
"vector" is used herein to refer to any vehicle that is capable 
of transferring a nucleic acid sequence into another cell. For 
example, vectors which may be used in accordance with the 
presently-disclosed subject matter include, but are not limited 
to, plasmids, cosmids, bacteriophages, or viruses, which can 
be transformed by the introduction of a nucleic acid sequence 
encoding a V gDGAT polypeptide described herein. Such 
vectors are well known to those of ordinary skill in the art. In 

25 for example antisense RNA or a non-translated RNA, in the 
sense or antisense direction. The expression control sequence 
comprising the nucleotide sequence of interest can be chi
meric, meaning that at least one of its components is heter
ologous with respect to at least one of its other components. 

30 The expression cassette can also be one that is naturally 
occurring but has been obtained in a recombinant form useful 
for heterologous expression. 

In some embodiments, an expression control sequence is 
provided that comprises a "constitutive promoter," such as a 

35 35S promoter, a figwort mosaic promoter, or the constitutive 
plant promoter of ubiquitin, that continually expresses a 
nucleic acid sequence of the presently-disclosed subject mat
ter in all types of cells where it is inserted. For some applica
tions, it is useful to direct the expression of a nucleic acid 

40 sequence of the presently-disclosed subject matter to differ
ent tissues of a plant. As such, in some embodiments, an 
expression control sequence is provided that comprises a 
"seed-specific promoter," such as a phaseolin, glycinin, con
glycinin, seed lectin, napin, cruferin, or other seed-specific 

45 promoter that expresses a nucleic acid sequence of the pres
ently-disclosed subject matter only in seeds of a desired plant. 

The presently-disclosed subject matter also provides trans
genic plant cells or plants that have been transformed with 
one or more of the vectors disclosed herein. As used herein, 

50 the term "plant cell" is understood to mean any cell derived 
from a monocotyledonous or a dicotyledonous plant and 
capable of constituting undifferentiated tissues such as calli, 
differentiated tissues such as embryos, portions of monocoty
ledonous or dicotyledonous plants, monocotyledonous or 

55 dicotyledonous plants or seed. The term "plant" is understood 
to mean any differentiated multi -cellular organism capable of 
photosynthesis, including monocotyledons and dicotyledons. 
In some embodiments of the methods for increasing renew
able oil production in a plant, the plant is selected from: 

60 Arachis hypogaea, Baraga ojficinalis, Brassica campestris, 
Brassica napus, Brassica rapa, Camelina sativa, Cannabis 
sativa, Carthamus tinctorius, Cocos nucifera, Crambe abys
sinica, Cuphea species, Glycine max, Gossypium hirsutum, 
Gossypium barbadense, Gossypium herbaceum, Helianthus 

65 annuus, Linum usitatissimum, Oenothera biennis, Olea euro
paea, Oryza sativa, Perilla frutescens, Ricinus communis, 
Salvia hispanica, Sesamum indicum, Sinapis alba, Thea-
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broma cacao, Triticum species, Zea mays, Juglans species, or 
Prunis dulcis, or a cell from such plants. 

The terms "transformed," "transgenic," and "recombinant" 
are used herein to refer to a cell of a host organism, such as a 
plant, into which a heterologous nucleic acid molecule has 5 

been introduced. The nucleic acid molecule can be stably 
integrated into the genome of the cell or the nucleic acid 
molecule can also be present as an extrachromosomal mol
ecule. Such an extrachromosomal molecule can be auto-rep
licating. Transformed cells, tissues, or subjects are under- 10 

stood to encompass not only the end product of a 
transformation process, but also transgenic progeny thereof. 

The terms "heterologous," "recombinant," and "exog
enous," when used herein to refer to a nucleic acid sequence 
(e.g., a DNA sequence) or a gene, refer to a sequence that 15 

originates from a source foreign to the particular host cell or, 
if from the same source, is modified from its original form. 
Thus, a heterologous gene in a host cell includes a gene that is 
endogenous to the particular host cell but has been modified 
through, for example, the use of site-directed mutagenesis or 20 

other recombinant techniques. The terms also include non
naturally occurring multiple copies of a naturally occurring 
DNA sequence. Thus, the terms refer to a DNA segment that 
is foreign or heterologous to the cell, or homologous to the 
cell but in a position or form within the host cell in which the 25 

element is not ordinarily found. Similarly, when used in the 
context of a polypeptide or amino acid sequence, an exog
enous polypeptide or amino acid sequence is a polypeptide or 
amino acid sequence that originates from a source foreign to 
the particular host cell or, if from the same source, is modified 30 

from its original form. Thus, exogenous DNA segments can 
be expressed to yield exogenous polypeptides. 

Introduction of a nucleic acid (e.g., a nucleic acid incorpo
rated into an appropriate vector) of the presently-disclosed 
subject matter into a plant cell can be performed by a variety 35 

of methods known to those of ordinary skill in the art includ
ing, but not limited to, insertion of a nucleic acid sequence of 
interest into an Agrobacterium rhizogenes Ri or Agrobacte
rium tumefaciens Ti plasmid, microinjection, electropora
tion, or direct precipitation. By way of providing an example, 40 

in some embodiments, transient expression of a nucleic acid 
sequence or gene of interest can be performed by agro-infil
tration methods. In this regard, a suspension of Agrobacte
rium tumefaciens containing a nucleic acid sequence or gene 
of interest can be grown in culture and then injected into a 45 

plant by placing the tip of a syringe against the underside of a 
leaf while gentle counter-pressure is applied to the other side 
of the leaf. The Agrobacterium solution is then injected into 
the airspaces inside the leaf through stomata. Once inside the 
leaf, the Agrobacterium transforms the gene of interest to a 50 

portion of the plant cells where the gene is then transiently 
expressed. 

As another example, transformation of a plasmid or nucleic 
acid of interest into a plant cell can be performed by particle 
gun bombardment techniques. In this regard, a suspension of 55 

plant embryos can be grown in liquid culture and then bom
barded with plasmids or nucleic acids that are attached to gold 
or tungsten particles, wherein the particles bound to the plas
mid or nucleic acid of interest can be propelled through the 
membranes of the plant tissues, such as embryonic tissue. 60 

Following bombardment, the transformed embryos can then 
be selected using an appropriate antibiotic to generate new, 
clonally propagated, transformed embryogenic suspension 
cultures. 

For additional guidance regarding methods of transform- 65 

ing and producing transgenic plant cells, see U.S. Pat. Nos. 
4,459,355; 4,536,475; 5,464,763; 5,177,010; 5,187,073; 

14 
4,945,050; 5,036,006; 5,100,792; 5,371,014; 5,478,744; 
5,179,022; 5,565,346; 5,484,956; 5,508,468; 5,538,877; 
5,554,798; 5,489,520; 5,510,318; 5,204,253; 5,405,765; EP 
Nos. 267,159; 604,662; 672,752; 442,174; 486,233; 486,234; 
539,563; 67 4, 725; and, International Patent Application Pub
lication Nos. WO 91/02071 and WO 95/06128, each of which 
is incorporated herein by this reference. 

The practice of the presently-disclosed subject matter can 
employ, unless otherwise indicated, conventional techniques 
of cell biology, cell culture, molecular biology, transgenic 
biology, microbiology, recombinant DNA, and immunology, 
which are within the skill of the art. Such techniques are 
explained fully in the literature. See, e.g., Molecular Cloning 
A Laboratory Manual (1989), 2nd Ed., ed. by Sambrook, 
Fritsch and Maniatis, eds., Cold Spring Harbor Laboratory 
Press, Chapters 16 and 17; U.S. Pat. No. 4,683,195; DNA 
Cloning, Volumes I and II, Glover, ed., 1985; Polynucleotide 
Synthesis, M. J. Gait, ed., 1984; Nucleic Acid Hybridization, 
D. Hames & S. J. Higgins, eds., 1984; Transcription and 
Translation, B. D. Hames & S. J. Higgins, eds., 1984; Culture 
Of Animal Cells, R. I. Freshney, Alan R. Liss, Inc., 1987; 
Immobilized Cells And Enzymes, IRL Press, 1986; Perbal 
(1984), A Practical Guide To Molecular Cloning; See Meth
ods In Enzymology (Academic Press, Inc., N.Y.); Gene 
Transfer Vectors For Mammalian Cells, J. H. Miller and M. P. 
Calos, eds., Cold Spring Harbor Laboratory, 1987; Methods 
In Enzymology, Vols. 154 and 155, Wu eta!., eds.,Academic 
Press Inc., N.Y.; Immunochemical Methods In Cell And 
Molecular Biology (Mayer and Walker, eds.,Academic Press, 
London, 1987; Handbook Of Experimental Immunology, 
Volumes I-IV, D. M. Weir and C. C. Blackwell, eds., 1986. 

The presently-disclosed subject matter is further illustrated 
by the following specific but non-limiting examples. 

EXAMPLES 

Materials and Methods for Examples 1-2 

eDNA Cloning. 
Partial Vernonia galamensis and Euphorbia lagascae dia

cylglycerol acyltransferase (DGAT) eDNA fragments wee 
obtained from RNA of developing embryos using an Access 
RT-PCR System (Promega Co., Madison Wis.). The PCR 
mixtures contained 1 flg of total RNA template, 0.2 mM 
dNTPs, 2.5 U of AMY reverse transcriptase, 2.5 U of Tfl 
polymerase and 1 f.LM each of two degenerate primers 
described below. Reaction mixtures were incubated in ather
mocycler (Perkin Elmer, Waltham Mass., Model2400) for 45 
minutes at 48° C., followed by 2 minutes at 94° C. and 40 
cycles of30 sat 94° C., 30 sat 50° C. and 1 minute at 72o C. 
The PCR primers used (DGATF, 5'-GCTCCYACWTTGT
GTTATSARC-3'; SEQ ID NO: 7, and DGATR, 5'-CCAYT
TRTGRACRGGSATATTCCA-3'; SEQ ID NO: 8) represent 
two peptide sequences, [APTLCYE/Q] (SEQ ID NO: 9) and 
[WNI/MPVHKW] (SEQ ID NO: 10), which are the con
served regions in amino acid sequences ofDGATs of Arabi
dopsis thaliana and Mus musculus. The amplified products of 
approximately 380 bp were fractionated on a 1% agarose gel, 
extracted from the gel using Quiaquick Gel Extraction Kit 
(Qiagen Inc., Valencia, Calif.) and subcloned into the 
pGEM-T Easy vector (Promega Co., Madison, Wis.) accord
ing to the manufacturer's instructions. The DNA inserted was 
sequenced in both directions. 

For determination of the full-length eDNA sequence, a 
RACE (Rapid Amplification of eDNA Ends) strategy was 
applied. A eDNA was synthesized from poly(A)+RNA of 
developing seeds of S. laevis using a Smart RACE eDNA 
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Amplification Kit (BD Biosciences Clontech, San Jose, 
Calif.). The following two primers were then designed from 
the sequence information of the partial eDNA fragment of 
Vernonia galamensis DGAT; VerDaF: 5'-TCGAAAGGGT
TGGGTGTTACGGCAACTG-3' (SEQ ID NO: 11 ), and Ver- 5 

DaR: 5'-CAGTTGCCGTAACACCCAACCCTTTCGA-3' 
(SEQ ID NO: 12), and Euphorbia lagascae DGAT; Euph5: 
5'-CAACTTGACAAACTGACGGAACACCC-3' (SEQ ID 
NO: 13), and Euph3: 5'-GGGTGTTCCGTCAGTTTGT
CAAGTTG-3' (SEQ ID NO: 14). The 5'-halfand3'-halfofthe 10 

cDNAs were amplified using the PCR conditions described in 
the user manual of the kit. Fractionation of the amplified 
fragments, cloning and sequencing were carried out as 
described above. 

For soybean DGAT cloning, a BLAST search of the 15 

sequence database using the Arabidopsis protein sequence 
identified soybean EST (Gm-c 1036-7949). The EST was 
fully sequenced in both directions. Since the EST lacked the 
5' end of the eDNA, it was obtained by 5' RACE with appro
priate nested primers using a Smart RACE cDNAAmplifica- 20 

tionkit (BD Biosciences Clontech, San Jose, Calif.). A eDNA 
was synthesized from poly(A)+RNA of developing seeds of 
the soybean cultivar, Jack. The following two primers were 
then designed from the sequence information of the eDNA of 
the EST; SoyD5-1: 5'-GCGTAAAGAAGGTTTCCCT- 25 

TGAGAGGATGC-3' (SEQ ID NO: 15), and SoyD3-1: 
5'-GTTGCCCCTACATTATGTTACCAGCCAAGC-3' (SEQ 
ID NO: 16). The 5'-half and 3'-half of the cDNAs were ampli
fied using the PCR conditions described in the user manual of 
the kit. In order to obtain the second possible DGAT 30 

sequence, another set of primers were designed that were; 
SoyD5-2: 5'-GAAAACACGCTCGGTCTTCTTC-3' (SEQ 
ID NO: 17), and SoyD3-2: 5'-TACAATTGCCAGAG
GAGAGTTG-3' (SEQ ID NO: 18). Fractionation of the 
amplified fragments (1.5 kb ), cloning and sequencing were 35 

carried out as described above. 
Expression in Insect Cells. 

16 
Samples were subsequently loaded on TLC plates and the 
radioactive bands were detected by phosphorimaging and 
scintillated. For identification of radioactive products, methy
lated fractions were analyzed by TLC with a hexane:MTBE 
(methyl tert-butyl ether):acetic acid (85:15:1, v/v/v) solvent 
system. 

Lipid Analysis. 
Samples prepared as described above were frozen in liquid 

N2 , stored at -80° C. and then lyophilized. Weighed samples 
were transferred to glass test tubes and tri-heptadecanoin 
(tri-17:0) was added at 10 flg/mg tissue as a standard. The 
samples were finely ground, and 1-2 mL of chloroform and 
methanol (2: 1) containing 0.001% butylated hydroxytoluene 
(BHT) was added and the samples were ground further. After 
a brief spin, the lower layer (CHC13 phase) was then trans
ferred into a new glass tube, and the samples were divided 
into two aliquots. One was used for TLC and the other directly 
for GC analysis. 

For GC analysis, samples were dried with N2 , 0.5 mL of0.5 
M sodium methoxide (NaOCH3 ) in methanol was added and 
incubated for at least 15 minutes with shaking at 22° C. 0.5 
mL of isooctane containing 0.001% BHT was added to each 
tube and mixed well. Phase separation was obtained with 
centrifugation or adding aqueous 0.9% KCl if needed. The 
top layer was extracted and transferred into GC auto-sampler 
vials. The fatty acid methyl esters (FAMEs) were analyzed 
with gas chromatography on a Varian CP-3800 GC with a 24 
mx0.25 mm ID CP-Select CB for FAME analysis using a 
fused silica column with a 0.25 flll1 film thickness. The tem
perature program was 90° C. for 1 min., then to 155° C. at 20° 
C./min. with no hold, then to 175° C. at 3.6° C./min. with no 
hold and finally to 250° C. at 12° C./min. holding for one min. 

For separation of individual lipid classes by TLC, the 
samples (CHC13 lipid extracts) were concentrated to about 
50-100 f.LL. Ten f.LL of the sample was loaded in a narrow band 
in lanes of silica gel60 (Whatman LK6D Silica gel60A) TLC 
plates 1 em from the bottom of the plates. The plates were put 
in a chamber with chloroform:methanol:water (65:25:4, 
v/v)+O.OOOl% BHT for running until the first solvent reached 

The expression in Sf9 cells was tested with the Bac-to-Bac 
expression system (Gibco BRL, Carlsbad, Calif.), and the 
recombinant baculovirus was prepared following their 
instruction manual. Sf9 cells were then infected by the bacu
lovirus possessing Vernonia or Euphorbia DGAT and cul
tured for 4 days and the cells were collected. Another set of 
cultured cells was infected by the baculovirus without cloned 
genes as a control. Their lipids were extracted with chloro
form:methanol (2: 1 ), lipid fractions were separated with thin 
layer chromatography (TLC) using hexane: ethyl ether: ace
tic acid, 90: 10: 1, followed by visualization with primulin and 
the fatty acids were methylated and analyzed with capillary 
gas chromatography (GC). 

40 1h up the plate ( -10 em). Then, the plate was moved into the 
second solvent, hexane:diethyl ether:acetic acid (100:100:2, 
v/v )+0.0001% BHT and developed until solvent was approxi
mately 1 em from the top. After development, the plate was 
dried, and subsequently sprayed with 0.005% primulin in 

Yeast Microsome Assays. 
Vernonia, Arabidopsis, Glycine, and Euphorbia DGATs 

were cloned into yeast vector p YES2 (Invitrogen, Carlsbad, 
Calif.). The constructs along with the void vector were used to 
transform yeast (Saccharomyces cerevisiae) strain INVSc1 
(Invitrogen, Carlsbad, Calif.). Transformed yeasts were cul
tured and the microsome fractions were prepared according 
to standard protocols (Dahlqvist et a!., 2000). The reaction 
mixture (1 00 f.LL) contained 20 mM radio labeled linoleic acid 
CoA, 300 mM dioleyl diacylglycerol, 0.02% Tween 20, 100 
mM Tris-HCl (pH 7.1), 1 mM MgC12 , 0.5 mM CoASH, 0.5 
mM ATP and micro somes (corresponding to 50 flg protein). 
The suspension was incubated at 30° C. with shaking (1 00 
rpm) for 1 hour. The reaction was stopped by first placing the 
test tubes with the reaction mixture in ice and followed by 
adding 100 flg of soybean triacylglycerol as carrier. The lipid 
was then extracted with chloroform:methanol (2:1, v/v). 

45 80% acetone, followed by visualizing under UV light and 
marking the bands of interest. The bands were scraped and 
transferred to a Pasteur pipette with a glass wool plug washed 
with CHC13 :CH30H. The lipid samples were eluted with 0.5 
mL of CHC13 :CH30H+0.001% BHT twice. Finally, eluted 

50 lipid samples were analyzed by GC as described above. 
Seed-Specific Expression Vector Construction and Soy

bean Somatic Embryo Transformation. 
An expression vector for soybean transformation was con

structed using the plant expression vector pCAMBIA1301 
55 containing the hygromycin resistance gene as a selector and 

the GUS gene as a reporter (Cambia, ACT, Australia; GEN
BANK® No. AF234297). The coding sequences for VgD
GATl and V gDGAT2 were amplified by a high fidelity poly
merase (Invitrogen, Carlsbad, Calif.) using end-specific 

60 primers containing restriction sites. The amplification prod
uct was then subcloned into the respective sites ofpPHI4752 
vector containing a phaseolin promoter, which confers strong 
seed-specific expression of transgenes (Slightom et a!., 
1983 ). The phaseolin promoter cassette containing the coding 

65 region of each target gene was transferred into the corre
sponding sites of the binary pCAMBIA1301, T-DNA vector. 
These recombinant expression vectors were subsequently 
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introduced into somatic embryos of soybean ( cv. 'Jack') 
using the particle bombardment method of transformation. 

Soybean somatic embryo induction and culture was carried 
out using a protocol modified from prior procedures (Collins 
et a!., 1991; Finer and Nagasawa, 1988a; Finer and 5 

Nagasawa, 1988b; Samoylov eta!., 1998; Trick eta!., 1997). 
Briefly, immature soybean seeds at 3-5 mm length were dis
sected, and cotyledons were placed on D40 ( 40 mg/L 2,4-D in 
MS media) solid medium for one-month induction of somatic 
embryo induction. The induced embryos were transferred to 10 

D20 plates for proliferation. The globular embryogenic cul
tures from D20 (20 mg/L 2,4-D in MS media) plates were 
then moved into FN (Finer and Nagasawa, 1988a) liquid 
medium for one-month suspension culture. Small embryo 
clumps were selected for particle bombardment gene deliv- 15 

ery. 
Plasmid DNA/gold preparation for the particle bombard

ment was conducted according to standard protocols (Trick et 
a!., 1997). A DuPont Biolistic PDS 1 000/HE instrument (he
lium retrofit) was used for all transformations. After born- 20 

bardment the embryo clumps were transferred into FN liquid 
medium containing 30 mg/L hygromycin for selective culture 
for four to five weeks. The positive transformed embryos 
obtained by hygromycin selection were then moved into fresh 
FN liquid medium for culture and simultaneously for GUS 25 

test and identification of the trans gene presence by PCR. The 
PCR-positive transgenic embryo lines were transferred into 
maturation medium (SHaM) (Schmidt et a!., 2005) for three 
to five weeks. Matured individual embryos were desiccated 
for 4-7 days, and then were placed on 1h strength MS solid 30 

medium for germination. Germinated plantlets were trans
ferred to closed sterile soil cups for growth in a culture room 
under 23:1 (light:dark) photoperiod cycle and 25° C. Once 
seedlings reached a proper height (approximately 13 em), the 
seedlings were transferred to a greenhouse for flowering and 35 

seed set under a 16:8 (light: dark) cycle, 25/21 o C. 
For the transgenic lines, one set of matured somatic 

embryos were sampled for lipid extraction and subsequent 
GC analysis. The rest of the matured somatic embryos were 
desiccated, germinated and grown to maturity in a green- 40 

house. Mature seeds were harvested from each regenerated 
soybean plant separately. Seed were chipped for genotyping 
by PCR and fatty acid analysis by GC. TAG levels of the 
somatic embryos and the 1st generation zygotic seeds were 
assessed by addition of tri-heptadecanoin to seed/embryo 45 

chips ofknown dry weight after lyophilization and GC analy
sis. Lines showing higher levels by this assessment and the 
presence of the introduced genes by PCR were selected for 
further analysis. 

18 
2011 ). Gravimetric determination of moisture levels of seed 
samples involved drying samples in a convection oven at 103 o 

C. for 36-72 h or until the weights stopped changing. 

Example 1 

Expression of Diacylglycerol Acyl transferase in 
Cells 

To examine the oil synthesis activity of TAG biosynthetic 
enzymes, five eDNA clones were isolated, namely: Soybean 
DGATla and 1b, Euphorbia DGATla, and Vernonia 
DGATla and 1 b, and it was found that Glycine max, E. 
lagascae and V. galamensis have at least two DGAT1s. Full
length DGATl cDNAs were then produced from all three 
species, including GmDGATla, GmDGATlb, EIDGATla, 
VgDGATla and VgDGATlb cDNAs. 

In previous studies ofDGATl s of plants accumulating high 
levels of industrially valuable epoxy fatty acids, it was found 
that two DGAT1 shave much more activity than other known 
plant DGAT1 s. In particular, it was found that both Vernonia 
galamensis and Euphorbia lagascae accumulate 60% or 
more of an epoxy fatty acid in their seed oil. Furthermore, in 
experiments relating to the expression of DGAT1 from Ver
nonia and Euphorbia in insect cells, a much higher accumu
lation of TAG was found in the Vernonia DGAT1 expressing 
cells than in the Euphorbia DGATl expressing cells (Ha
tanaka eta!., 2003); however, that information and data was 
not sufficient to conclude that Vernonia DGAT1 had any 
unique capacity for TAG synthesis in plants as the Vernonia 
DGAT1 was only compared to one other DGAT and it was 
thought that the transcripts for the Vernonia DGAT1s were 
accumulating in insect cells at levels higher that the Euphor
bia DGAT1 transcript levels. As such, to further examine the 
TAG biosynthetic activity of these DGATs, the TAG biosyn
thetic activity of a number ofDGAT1 s were analyzed in yeast 
using the above-described system for microsomal analysis, 
which utilizes 300-fold lower concentrations ofmicrosomes 
compared to most studies, and results in lower background 
and more accurate activity determinations than previous 
methods. In the yeast system, six DGATs were studied: the 
five DGATs mentioned above and Arabidopsis DGATl. 
Upon analysis of the results from these experiments, it was 
observed that the Arabidopsis DGATl showed only slightly 
higher activity than the vector control (FIG. 1) as did the 
Euphorbia DGATl (data not shown). The soybean DGATls 
showed moderately higher activity, while both the 
VgDGATla and VgDGATlb appeared to have unusually 
high activity in synthesis of oil or TAG, and were therefore 

Determination of Protein and Oil Levels. 50 thought to be useful for increasing renewable oil production 
in a number of species, including plant species. This finding 
was believed to be consistent with a nnique grouping of 
VgDGATla and VgDGATlb sequences compared to other 
DGATs (see, e.g., Yu eta!., 2008; FIG. 2). 

The protein and oil levels of subsequent generations of 
progeny of lines selected for higher oil contents were deter
mined in bulk by near infrared (NIR) spectroscopy using a 
Perten (Springfield, Ill.) DA7200. This NIR seed analyzer 
was calibrated with greater than one hundred soybean 55 

samples varying in protein and oil levels with the protein and 
oil levels of the calibration samples determined by combus
tion for protein and Soxhlet for oil (AOAC, 1995; de Castro 
and Priego-Capote, 2010; Rotundo et a!., 2011; Soxhlet, 
1879). Protein levels were calculated as total nitrogenx6.25. 60 

Every set of NIR determinations was validated by running 
13-20 calibration standards ofknown values and adjusting the 
bias settings if needed such that the protein and oil readings 
are in ± 1% of the wet chemistry values. These core set of 
standards were also analyzed for protein and oil by Kjeldahl, 65 

acid hydrolysis (Mojonnier flask method) and NMR (Ashraf
Khorassani et a!., 2002; Hakoda et a!., 2011; Ullah et a!., 

Example 2 

Expression of Vernonia galamensis Diacylglycerol 
Acyltransferase 1a (VgDGAT1a) in Petunia Leaves 

and in Soybean Somatic Embryos 

To further examine the ability ofVgDGATls to increase 
renewable oil production, particularly in plants, V gDGATl a 
was further expressed in petunia leaves and in soybean 
somatic embryos. Briefly, soybean somatic embryos express
ing V gDGAT1 a were regenerated, grown out in a greenhouse 
and mature T2 seeds were collected. The protein and oil 
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content of the mature seeds was then measured and many of 
the VgDGAT1a transformed soybean seeds showed 3-5% 
increases in oil content per seed dry weight, most without any 
decrease in protein levels. Seeds of these higher oil soybean 
lines were grown out in both greenhouse and field environ
ments and progeny were again analyzed for protein and oil 
contents. Again 3-5% increases in oil content per seed dry 
weight were observed and little or no decrease in protein 
levels was seen (FIG. 3; Table 1). 

TABLE 1 

Soybean oil and protein levels ofmatnre seeds produced 
on a research farm in a line expressing a Vernonia 

galamensisVgDGATla, Li-67, versus ahigb oil line from 
breeding, NC-381 and control line. 'Jack'. SE ~standard errors. 

Line 

Li-67 
NC-381 

Jack 

Protein 

40.2 
35.4 
38.6 

SE 

0.5 
0.03 
0.13 

Oil 

27.2 
26.1 
22.3 

SE 

0.5 
0.2 
0.2 

These increases in oil and oil+protein were then corrobo
rated by oil and protein analyses of individual seeds of plants 
from these lines by an independent set of analyses backed by 
standard wet chemical determination of protein and oil levels 
(FIG. 4). The estimated meal protein levels of such lines were 
also believed to be higher making meal more valuable for 
animal feed, food, and many industrial applications (FIG. 5). 

To further examine the lines, and their commercial feasi
bility, the lines highest in oil and oil+protein were grown out 
in the field following standard farming conditions, and again 
showed stable increases in oil and oil+protein with several 
lines consistently about 7% higher in oil+protein than the 
parental line or normal high yielding soybean cultivars (FIG. 
6; Table 2), indicating that expression of a VgDGATl 
polypeptide is useful for increasing an amount of renewable 
oil production in a plant. 

TABLE2 

Soybean oil and protein levels of matnre seeds 
produced on a research fann in various line 

expressing a Vernonia galamensis VgDGATla. 

Line Protein SE Oil 

vector contr 38.0 0.4 22.4 
control 38.2 0.1 21.5 

9648-2-A 41.6 0.1 25.2 
9652-3-F 40.8 0.3 24.1 
9652-1-D 44.5 0.4 18.3 
9652-A-3 40.0 0.1 24.3 
9652-A-4 37.3 0.3 25.2 
9652-A-6 36.5 0.3 26.0 
9652-A-7 39.3 0.2 24.7 
9652-2-B 39.3 0.2 24.2 
9652-3-B 39.0 0.1 24.7 
9652-3-D 38.8 0.1 25.1 
9654-3-B 39.9 0.3 24.5 
9654-3-C 42.1 0.1 25.1 
9654-3-E 43.4 0.0 25.1 
9654-3-F 41.3 0.0 24.5 

Example 3 

SE 

0.3 
0.3 
0.1 
0.1 
0.3 
0.1 
0.3 
0.2 
0.1 
0.2 
0.2 
0.3 
0.4 
0.1 
0.0 
0.1 

Effect of Co-Expression of Vernonia galamensis 
Diacylglycerol Acyl transferase 1 and 2 and Stokesia 
Laevis Epoxygenase on Oil Content of Transgenic 

Plants 

To assess the effect of co-expressing Vernonia galamensis 
diacylglycerol acyltransferase 1 and 2 (VgDGATl & 2) and 

20 
Stokesia laevis epoxygenase (SIEPX) polypeptide in trans
genic plants, transgenic plant regeneration and identification 
of the transgenic expressions were first performed as 
described in detail previously (Li eta!., 2010). Briefly, the 
expression vector for soybean transformation was con
structed using the pCAMBIA1301 vector containing a hygro
mycin resistance gene and the GUS gene as a reporter (Cam
bia, ACT, Australia; GENBANK® No. AF234297). The 
ORFs of Stokesia epoxygenase (SIEPX) and Vernonia 

10 DGATs (VgDGATla and VgDGAT2) were each driven by a 
seed-specific phaseolin promoter. The construct was intro
duced into soybean somatic embryo cultures using a particle 
delivery system (Gene Gun). Positive somatic embryos after 
hygromycin selection culture were confirmed by PCR, and 

15 then cultured to mature soybean somatic embryos. Matured 
embryos were subsequently germinated in germination 
media, and the seedlings were transferred to soil pots for 
growth and production of the transgenic seeds, which were 
subsequently grown on a research farm for two generations. 

20 The soybean seeds were then collected for analysis from the 
soybean plants grown on the farm, and protein and oil levels 
were analyzed with a Perten DA 7200 NIR seed analyzer with 
extensive calibrations for soybean seeds. The NIR levels were 
verified by Soxhlet gravimetric determination of lipid levels 

25 and Kjeldahl analysis of nitrogen. Each replicate was mea
sured by three times. A total of 6 replicates were measured for 
each line. 

It has previously been observed that additional seed-spe
cific expression of either VgDGATla or VgDGAT2 in 

30 SIEPX-transgenic soybeans results in vemolic acid accumu
lation up to 17% and 27.8% in the seeds and normal fatty acid 
profiles, with the exception of a decreased 18:2level (Li eta!., 
2010). Upon analysis of the results from the present experi
ments, however, it was surprisingly found that co-expression 

35 of VgDGATla or VgDGAT2 with SIEPX was capable of 
increasing total seed oil content in the transgenic plants. As 
shown in FIG. 7, the reduced oil content observed in seeds 
expressing the SIEPX gene alone changed markedly when 
either VgDGATla or VgDGAT2 was co-expressed with 

40 SIEPX. In these double-transgenic plants, seed oil contents 
were returned to normal levels (20-21% ), similar to levels in 
the non-transgenic and the vector control soybeans, regard
less of the level ofvemolic acid accumulation. Furthermore, 
although statistical analysis (t-test) showed that the difference 

45 of seed oil level was not significant (P<0.05) between the 
control and the double transgenic lines, a significant differ
ence (P<0.05) was found between the controls and SIEPX
expressing lines and it was also observed that a number of the 
double transgenic lines produced higher seed oil levels 

50 (22.4% ). Moreover, the V gDGAT-mediated restoration of oil 
levels in SIEPX-transgenic soybean seeds showed stable 
inheritance in two subsequent generations examined so far 
under field conditions. 

In soybean seeds, the oil content is usually inversely cor-
55 related with protein levels (Clemente and Cahoon, 2009). 

However, in conjunction with a reduction in oil content in the 
SIEPX-transgenic seeds, it was observed that seed protein 
levels showed dramatic changes, increasing in some trans
genic lines and decreasing in others (FIG. 8). As in the case of 

60 total oil content, however, seed protein levels in the transgenic 
lines co-expressing SIEPX and either of the VgDGATs were 
restored to normal levels (approximately 40%) regardless of 
higher or lower protein level in soybean seeds only expressing 
SIEPX. Again, no statistical difference (P<0.05) in seed pro-

65 tein level was found between the control and the V gDGAT
SIEPX co-expressing lines, but significant differences 
(P<0.05) were detected between the control and SIEPX 
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expressing lines and a number of the double transgenic lines 
showed higher seed protein levels than what was observed in 
the control lines. These data indicate that V gDGATs are also 
able to overcome the unstable seed protein accumulation 
caused by SIEPX and/or vemolic acid accumulation in soy- 5 

bean seeds, further indicating that co-expression ofV gDGAT 
and SIEPX polypeptides are useful for increasing an amount 
of renewable oil in a plant. 

Throughout this document, various references are men
tioned. All such references are incorporated herein by refer- 10 

ence, including the references set forth in the following list: 

REFERENCES 

l.Anon. 2010. Historical Oil Prices [Online]. 
2. Bates, P. D., T. P. Durrett, J. B. Ohlrogge, and M. Pollard. 

2009. Analysis of Acyl Fluxes through Multiple Pathways 

15 

22 
15. Pocks, N., and C. Benning. 1998. wrinkled!: A Novel, 

Low-Seed-Oil Mutant of Arabi do psis with a Deficiency in 
the Seed-Specific Regulation of Carbohydrate Metabo
lism. Plant Physiol. 118:91-101. 

16. Franzosi, G., E. Battiste!, M. Santoro, and R. Iannacone. 
1998. LPAAT and DAGAT Activity and Specificity in 
Rapeseed (Brassica napus L. var. Canola) and Sunflower 
(Helianthus annuus) Developing Seeds. J. Sanchez, eta!. 
(ed.) Advances in Plant Lipid Research, Sevilla, Spain. 
Universidad De Sevilla. Secretariado de Publicaciones. 

17. Gavilano, L. B., N. P. Coleman, L. E. Burnley, M. L. 
Bowman, N. E. Kalengamaliro, A. Hayes, L. Bush, and B. 
Siminszky. 2006. Genetic Engineering of Nicotiana 
tabacum for Reduced Nornicotine Content. J. Agric. Food 
Chern. 54:9071-9078. 

18. Goldberg, R. B., S. J. Barker, and L. Perez-Grau. 1989. 
Regulation of gene expression during plant embryogen
esis. Cell56:149-160. of Triacylglycerol Synthesis in Developing Soybean 

Embryos. Plant Physiol. 150:55-72. 
3. Baud, S., and L. Lepiniec. 2009. Regulation of de novo 

fatty acid synthesis in maturing oilseeds of Arabidopsis. 
Plant Physiology and Biochemistry 47:448-455. 

20 19. Harwood, J. L.1997. Plant Lipid Metabolism, p. 237-272, 
In P.M. Dey and J. B. Harbome, eds. Plant Biochemistry. 
Academic Press, London. 

4. Baud, S., S. Wuilleme, A. To, C. Rochat, and L. Lepiniec. 
2009. Role of WRINKLED! in the transcriptional regula- 25 

tion of glycolytic and fatty acid biosynthetic genes inAra
bidopsis. Plant Journal 60:933-947. 

5. Bewley, J., and M. Black. 1994. Seeds: Physiology of 
Development and Germination. 2nd ed. Plenum Press, 
New York. 

6. Cases, S., S. J. Stone, P. Zhou, E. Yen, B. Tow, K. D. 
Lardizabal, T. Voelker, and R. V. Farese, Jr. 2001. Cloning 
ofDGAT2, a second mmalian diacylglycerol acyltrans
ferase, and related family members. J Bioi Chern 276: 
38870-6. 

7. Cases, S., S. J. Smith, Y. Zheng, H. M. Myers, S. R. Lear, E. 

30 

35 

Sande, S. Novak, C. Collins, C. B. Welch, A. J. Lusis, S. K. 
Erickson, and R. V. Farese, Jr. 1998. Identification of a gene 
encoding an acyl CoA:diacylglycerol acyltransferase, a 
key enzyme in triacylglycerol synthesis. Proceedings of 40 

the National Academy of Sciences of the United States of 
America 95:13018-13023. 

8. Cemac, A., and C. Benning. 2004. WRINKLED! encodes 
an AP2/EREB domain protein involved in the control of 
storage compound biosynthesis inArabidopsis. The Plant 45 

Journal 40:575-585. 
9. Clemente, T. E., Cahoon, E. B., 2009. Soybean Oil: Genetic 

Approaches for Modification of Functionality and Total 
Content. Plant Physiol. 151, 1030-1040. 

10. Dahlqvist, A., U. Stahl, M. Lenman, A. Banas, M. Lee, L. 50 

Sandager, H. Ronne, and S. Stymne. 2000. Phospholipid: 
diacylglycerol acyltransferase: an enzyme that catalyzes 
the acyl-CoA-independent formation oftriacylglycerol in 
yeast and plants. Proc Nat! Acad Sci USA 97:6487-92. 

11. Dahmer, M. L., G. B. Collins, and D. F. Hildebrand. 1991. 55 

Lipid concentration and composition of soybean zygotic 
embryos maturing in vitro and in planta. Crop Sci. 31:735-
740. 

12. Dewey, R. E., R. F. Wilson, W. P. Novitzky, and J. H. 
Goode.1994. TheAAPTl GeneofSoybeanComplements 60 

a Cholinephosphotransferase-Deficient Mutant of Yeast. 
Plant Cell6:1495-1507. 

13. Egli, D. B. 2008a. Comparisonofcomandsoybeanyields 
in the United States: Historical trends and future prospects. 
Agron. J. 100:S79-S80. 

14. Egli, D. B. 2008b. Soybean yield trends from 1972 to 
2003 in mid-western USA. Field Crops Res. 106:53-59. 

65 

20. Harwood, J. L., andR.A. Page. 1994. Biochemistry of oil 
synthesis., p. 165-194, In D. J. Murphy, ed. Designer Oil 
Crops. VCH, Weinheim. 

21. Hildebrand, D. F., R. Li, and T. Hatanaka. 2008. Genom
ics of soybean oil traits, p. 185-210, In G. Stacey, ed. 
Genetics and Genomics of Soybean. Springer, N.Y. 

22. Hiramine, Y., H. Emoto, S. Takasuga, and R. Hiramatsu. 
2010. Novel acyl-coenzyme A:monoacylglycerol acyl
transferase (MGAT) plays an important role in hepatic 
triacylglycerol secretion. J. Lipid Res. 51:1424-1431. 

23. Hiraoka, M., A. Abe, and J. A. Shayman. 2002. Cloning 
and Characterization of a Lysosomal Phospholipase A2, 
1-0-Acylceramide Synthase. J. Bioi. Chern. 277:10090-
10099. 

24. Hobbs, D. H., and M. J. Hills. 2000. Expression and 
characterization of diacylglycerol acyltransferase from 
Arabidopsis thaliana in insect cell cultures. Biochem Soc 
Trans 28:687-9. 

25. Hobbs, D. H., C. Lu, and M. J. Hills. 1999. Cloning of a 
eDNA encoding diacylglycerol acyl transferase from Ara
bidopsis thaliana and its functional expression. FEBS Lett 
452:145-9. 

26. Jackson, F. M., L. Michaelson, T. C. M. Fraser, A. K. 
Stobart, and G. Griffiths. 1998. Biosynthesis of triacylg
lycerol in the filamentous fungus Mucor circinelloides. 
Microbiology 144:2639-2645. 

27. Kalinski, A., D. S. Loer, J. M. Weisemann, B. F. Mat
thews, and E. M. Herman. 1991. I so forms of soybean seed 
oil body membrane protein 24 kDa oleosin are encoded by 
closely related cDNAs. Plant-molecular-biology 17:1095-
8. 

28. Kamisaka, Y., S. Mishra, and T. Nakahara. 1997. Purifi
cation and characterization of diacylglycerol acyltrans
ferase from the lipid body fraction of an oleaginous fungus. 
J Biochem 121:1107-14. 

29. Katavic, V., D. W. Reed, D. C. Taylor, E. M. Giblin, D. L. 
Barton, J. Zou, S. L. Mackenzie, P. S. Covello, and L. 
Kunst. 1995. Alteration of seed fatty acid composition by 
an ethyl methanesulfonate-induced mutation inArabidop-
sis thaliana affecting diacylglycerol acyltransferase activ
ity. Plant Physiol108:399-409. 

30. Kwanyuen, P., and R. F. Wilson. 1986. Isolation and 
purification of diacylglycerol acyltransferase from germi
nating soybean cotyledons. Biochim Biophys Acta 877: 
238-245. 



US 9,133,469 Bl 
23 

31. K wanyuen, P., and R. F. Wilson. 1990. Subunit and amino 
acid composition of diacylglycerol acyltransferase from 
germinating soybean cotyledons. Biochim Biophys Acta 
1039:67-72. 

24 
46. Mu, J. Y., H. L. Tan, Q. Zheng, F. Y. Fu, Y. Liang, J. A. 

Zhang, X. H. Yang, T. Wang, K. Chong, X. J. Wang, and J. 
R. Zuo. 2008. LEAFY COTYLEDON! is a key regulator 
offatty acid biosynthesis inArabidopsis. Plant Physiology 
148:1042-1054. 

47. Nosarzewski, M., and D. D. Archbold. 2007. Tissue
specific expression of SORBITOL DEHYDROGENASE 
in apple fruit during early development. J Exp Bot 
58:1863-1872. 

32. Kwanyuen, P., R. F. Wilson, and J. W. Burton. 1988. 5 

Substrate specificity of diacylglycerol acyltransferase 
purified from soybean. Proceedings: World Conference on 
Biotechnology for the Fats and Oils Industry/edited by 
Thomas H. Applewhite. Champaign, Ill. American Oil 
Chemists' Society, c1988. p.:294-297. 10 48. Oelkers, P.,A. Tinkelenberg, N. Erdeniz, D. Cromley, J. T. 

33. Lardizabal, K., R. Effertz, C. Levering, J. Mai, M. C. 
Pedroso, T. Jury, E. Aasen, K. Gruys, and K. Bennett. 2008. 
Expression of Umbel apsis ramanniana DGAT2A in Seed 
Increases Oil in Soybean. Plant Physiol. 148:89-96. 

34. Lardizabal, K. D., J. T. Mai, N. W. Wagner, A. Wyrick, T. 15 

Voelker, and D. J. Hawkins. 2001. DGAT2 Is a new dia
cylglycerol acyl transferase gene family. Purification, clon
ing, and expression in insect sells of two polypeptides from 
Mortierella ramanniana with diacylglycerol acyltrans
ferase activity. J. Bioi. Chern. 276:38862-38869. 20 

35. Le, B. H., J. A. Wagmaister, T. Kawashima, A. Q. Bui, J. 
J. Harada, and R. B. Goldberg. 2007. Using genomics to 
study legume seed development. Plant Physiology 144: 
562-574. 

36. Lehner, R., andA. Kuksis. 1993. Triacylglycerol synthe- 25 

sis by an sn-1,2(2,3)-diacylglycerol transacylase from rat 
intestinal microsomes. J Bioi Chern 268:8781-6. 

3 7. Li, R., K. Yu, and D. Hildebrand. 201 Oa. DGATl, DGAT2 
and PDAT Expression in Seeds and Other Tissues of Epoxy 
and Hydroxy Fatty Acid Accumulating Plants. Lipids 30 

45:145-157. 
38. Li, R., K. Yu, T. Hatanaka, and D. F. Hildebrand. 2010b. 

Vernonia DGATs increase accumulation of epoxy fatty 
acids in oil. Plant Biotechnology Journal 8:184-195. 

39. Loer, D. S., and E. M. Herman. 1993. Cotranslational 35 

integration of soybean (Glycine max) oil body membrane 
protein oleosin into microsomal membranes. Plant-physi
ology; March 1993; 101(3): 993-998 101:993-998. 

40. Lonien, J., and J. Schwender. 2009. Analysis ofMetabolic 
Flux Phenotypes forTwoArabidopsis Mutants with Severe 40 

Impairment in Seed Storage Lipid Synthesis. Plant 
Physiol. 151:1617-1634. 

41. Lu, C., and M. J. Hills. 2002. Arabidopsis mutants defi
cient in diacylglycerol acyltransferase display increased 
sensitivity to abscisic acid, sugars, and osmotic stress dur- 45 

ing germination and seedling development. Plant Physiol 
129:1352-1358. 

42. Lu, C., Z. Xin, Z. Ren, M. Miguel, and J. Browse. 2009. 
An enzyme regulating triacylglycerol composition is 
encoded by the ROD 1 gene of Arabidopsis. Proceedings of 50 

the National Academy of Sciences 106:18837-18842. 
43. Lu, C. L., S. B. de Noyer, D. H. Hobbs, J. Kang, Y. Wen, 

D. Krachtus, and M. J. Hills. 2003. Expression pattern of 
diacylglycerol acyltransferase-1, an enzyme involved in 
triacylglycerol biosynthesis, inArabidopsis thaliana. Plant 55 

Mol Bioi 52:31-41. 
44. Maeo, K., T. Tokuda, A. Ayame, N. Mitsui, T. Kawai, H. 

Tsukagoshi, S. Ishiguro, and K. Nakamura. 2009. AnAP2-
type transcription factor, WRINKLED!, of Arabidopsis 
thaliana binds to the A W-box sequence conserved among 60 

proximal upstream regions of genes involved in fatty acid 
synthesis. The Plant Journal 60:476-487. 

Billheimer, and S. L. Sturley. 2000. A Lecithin Cholesterol 
Acyltransferase-like Gene Mediates Diacylglycerol 
Esterification in Yeast. J. Bioi. Chern. 275:15609-15612. 

49. Ohlrogge, J., D. Allen, B. Berguson, D. DellaPenna, Y. 
Shachar-Hill, and S. Stynme. 2009. Driving on Biomass. 
Science 324:1019-1020. 

50. Ohlrogge, J. B., andJ. Browse. 1995. Lipid biosynthesis. 
Plant Cell 7:957-970. 

51. Rao, S., and D. Hildebrand. 2009. Changes in Oil Content 
of Transgenic Soybeans Expressing the Yeast SLCl Gene. 
Lipids 44:945-951. 

52. Routaboul, J.-M., C. Benning, N. Bechtold, M. Caboche, 
and L. Lepiniec. 1999. The TAG! locus of Arabidopsis 
encodes for a diacylglycerol acyltransferase. Plant Physi
ology and Biochemistry 37:831-840. 

53. Saha, S., B. Enugutti, S. Rajakumari, and R. Rajasekha
ran. 2006. Cytosolic Triacylglycerol Biosynthetic Pathway 
in Oilseeds. Molecular Cloning and Expression of Peanut 
Cytosolic Diacylglycerol Acyltransferase. Plant Physiol
ogy 141:1533-1543. 

54. Sarmiento, C., J. H. Ross, E. Herman, and D. J. Murphy. 
1997. Expression and subcellular targeting of a soybean 
oleo sin in transgenic rapeseed. Implications for the mecha
nism of oil-body formation in seeds. Plant Journalll :783-
796. 

55. Schmutz, J., S. B. Cannon, J. Schlueter, J. Ma, T. Mitros, 
W. Nelson, D. L. Hyten, Q. Song, J. J. Thelen, J. Cheng, D. 
Xu, U. Hellsten, G. D. May, Y. Yu, T. Sakurai, T. Umezawa, 
M. K. Bhattacharyya, D. Sandhu, B. Valliyodan, E. 
Lindquist, M. Peto, D. Grant, S. Shu, D. Goodstein, K. 
Barry, M. Futrell-Griggs, B. Abernathy, J. Du, Z. Tian, L. 
Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X.-C. 
Zhang, K. Shinozaki, H. T. Nguyen, R.A. Wing, P. Cregan, 
J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R. C. 
Shoemaker, and S. A. Jackson. 2010. Genome sequence of 
the palaeopolyploid soybean. Nature 463:178-183. 

56. Settlage, S. B., P. Kwanyuen, and R. F. Wilson. 1998. 
Relation between diacylglycerol acyltransferase activity 
and oil concentration in soybean. J Am Oil Chern Soc 
75:775-781. 

57. Sherr, B., W. B. Allen, P. Zheng, C. Li, K. Glassman, J. 
Ranch, D. Nubel, and M. C. Tarczynski. 2010. Expression 
of ZmLECl and Zm WRil Increases Seed Oil Production 
in Maize. Plant Physiol.:pp. 110.157537. 

58. Siloto, R. M. P., K. Findlay, A. Lopez-Villalobos, E. C. 
Yeung, C. L. Nykiforuk, and M. M. Moloney. 2006. The 
Accumulation of Oleosins Determines the Size of Seed 
Oilbodies inArabidopsis. Plant Cell18:1961-1974. 

59. Slack, C. R., P. G. Roughan, J. A. Browse, and S. E. 
Gardiner. 1985. Some properties of choline phosphotrans
ferase from developing safflower cotyledons. Biochim 
Biophys Acta 833:438-448. 

60. Stahl, U., A. Carlsson, M. Lenman, A. Dahlqvist, B. 
Huang, W. Barra, A. Barra, and S. 

45. Mhaske, V., K. Beldjilali, J. Ohlrogge, and M. Pollard. 
2005. Isolation and characterization of an Arabidopsis 
thaliana knockout line for phospholipid: diacylglycerol 
transacylase gene (At5g13640). Plant Physiol Biochem 
43:413-417. 

65 Stynme. 2004. Cloning and Functional Characterization of a 
Phospholipid:Diacylglycerol Acyltransferase from Arabi
dopsis Plant Physiol. 135:1324-1335. 



US 9,133,469 Bl 
25 

61. Stobart, K., M. Mancha, M. Lenman, A. Dahlqvist, and S. 
S. 1997. Triacylglycerols are synthesised and utilized by 
transacylation reactions in microsomal preparations of 
developing safflower (Carthamus tinctorius L.) seeds. 
Planta 203:58-66. 

62. Taylor, D. C., Z. Yan, A. Kumar, T. Francis, E. M. Giblin, 
D. L. Barton, J. R. Ferrie, A. Laroche, S. Shah, Z. Weiming, 

26 
70. Wang, H.-W., J.-S. Zhang, J.-Y. Gai, and S.-Y. Chen. 

2006. Cloning and comparative analysis of the gene en cod
ing diacylglycerol acyltransferase from wild type and cul
tivated soybean. Theoretical and Applied Genetics 112: 
1086-1097. 

71. Wang, H. W., B. Zhang,Y. J. Hao, J. Huang, A. G. Tian,Y. 
Liao, J. S. Zhang, and S. Y. Chen. 2007a. The soybean 
Dof-type transcription factor genes, GmDof4 and 
GmDofll, enhance lipid content in the seeds of transgenic C. L. Snyder, L. Hall, G. Rakow, J. L. Harwood, and R. J. 

Weselake. 2009. Molecular modification oftriacylglycerol 
accumulation by over-expression of DGATl to produce 
canola with increased seed oil content under field condi
tions. Botany 87:533-543. 

10 
Arabidopsis plants. Plant Journal 52:716-729. 

72. Wang, H.Y., J. H. Guo, K. N. Lambert, andY. Lin. 2007b. 

63. Triki, S., J. BenHamida, andP. Mazliak. 1998.Aboutthe 
reversibility of the cholinephosphotransferase in develop-

15 
ing sunflower seed micro somes, p. 236-239, In J. Sanchez, 
eta!., eds. Advances in Plant Lipid Research. Univ. Sevilla, 
Sevilla. 

Developmental control of Arabidopsis seed oil biosynthe
sis. Planta 226:773-783. 

73. Weselake, R. J., D. C. Taylor, M. H. Rahman, S. Shah, A. 
Laroche, P. B. E. McVetty, and J. L. Harwood. 2009. 
Increasing the flow of carbon into seed oil. Biotechnology 
Advances 27:866-878. 

74. Wilson, R. F., and D. Hildebrand. 2010. Engineering 
Status, Challenges and Advantages of Oil crops, In P. Mas
cia, et a!., eds. Plant Biotechnology for Sustainable Pro
duction of Energy and Coproducts. Springer. 

75. Yu, K., R. Li, T. Hatanaka and D. Hildebrand. 2008. 
Cloning and functional analysis of two type 1 diacylglyc
erol acyltransferases from Vernonia galamensis, Phy
tochemistry 69:1119-1127. 

64. Turkish, A. R., A. L. Henneberry, D. Cromley, M. Pad
amsee, P. Oelkers, H. Bazzi,A. M. Christiano, J. T. Billhe- 20 

imer, and S. L. Sturley. 2005. Identification of Two Novel 
Human Acyl-CoA Wax Alcohol Acyltransferases: MEM
BERS OF THE DIACYLGLYCEROL ACYLTRANS
FERASE 2 (DGAT2) GENE SUPERFAMILY. Journal of 
biological chemistry 280:14755-14764. 25 76. Zhang, F.-Y., M.-F.Yang, andY.-N.Xu. 2005. Silencing of 

DGATl in tobacco causes a reduction in seed oil content. 
Plant science 169:689-694. 

65. Tzen, J. T. C., Y. K. Lai, K. L. Chan, and A. H. C. Huang. 
1990. Oleosin isoforms ofhigh and low molecular weights 
are present in the oil bodies of diverse seed species. Plant
physiology 94: 1282-1289. 

66. USDA. 2009a. World Agricultural Supply and Demand 30 

Estimates, WASDE-477, In E. R. Service, (ed.), Washing
ton, D.C. 

67. USDA. 2009b. Oilseeds: World Markets and Trade, FOP 
10-09, In F. A. Service, (ed.), Washington, D.C. 

68. Vogel, G., and J. Browse. 1996. Cholinephosphotrans- 35 

ferase and diacylglycerol acyl transferase: Substrate speci
ficities at a key branch point in seed lipid metabolism. Plant 
physiol110:923-931. 

69. Vyacheslav,A., B. Nikolai, P. Natalia, B.Anita, D. Joseph, 
S. Sergei, F. John, M. Paulina, A. Karolina, L. Marilyn, G. 40 

Maxim, and K. Hilary. 2009. Tobacco as a production 
platform for bio fuel: overexpression of Arabidopsis 
DGAT and LEC2 genes increases accumulation and shifts 
the composition oflipids in green biomass. Plant Biotech
nology Joumal8:1-11. 

<160> NUMBER OF SEQ ID NOS, 19 

<210> SEQ ID NO 1 
<211> LENGTH, 1828 
<212> TYPE, DNA 

SEQUENCE LISTING 

<213> ORGANISM: Vernonia galamensis 

<400> SEQUENCE, 1 

77. Zhang, M., J. Fan, D. C. Taylor, and J. B. Ohlrogge. 2009. 
DGATl and PDATl Acyltransferases Have Overlapping 
Functions inArabidopsis Triacylglycerol Biosynthesis and 
Are Essential for Normal Pollen and Seed Development. 
Plant Cell21:3885-3901. 

78. Zou, J., Y. Wei, and D. C. Taylor. 1999. TheArabidopsis 
thaliana TAG I mutant has a mutation in a diacylglycerol 
acyl transferase gene. Plant Joumal19:645-654. 

79. Zou, J. T., V. Katavic, E. M. Giblin, D. L. Barton, S. L. 
MacKenzie, W. A. Keller, X. Hu, and D. C. Taylor. 1997. 
Modification of seed oil content and acyl composition in 
the Brassicaceae by expression of a yeast sn-2 acyltrans
ferase gene. Plant Cell 9:909-923. 
It will be understood that various details of the presently 

disclosed subject matter can be changed without departing 
from the scope of the subject matter disclosed herein. Fur
thermore, the foregoing description is for the purpose of 
illustration only, and not for the purpose of limitation. 

tctgagctca aatcaaattt ctgcgactca tacaggattc aactcaatac tttcttgatc 60 

ggttctgctg ttcatttact tgtaatttct acttctgctt tgctttcatt tcaagctttt 120 

ttccttaata atggcgttat tagatacgcc tcagattgga gaaataacga ccaccgccac 180 

cacaactata agacggcgga ccactgtcaa gcctgatgct ggaatcggag atggattgtt 240 

tgattcttcg tcgtcttcca aaaccaactc atccttcgag gatggtgaca gtttgaatgg 300 

tgatttcaat gacaaattta aggaacagat cggagctggt gatgaatcca aggacgactc 360 
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-continued 

caaggggaac ggacagaaga tagatcacgg aggagttaaa aagggacgtg aaacgactgt 

ggtgcattat gcttatcggc cttcttctcc ggctcatcgg agaattaaag aatctccgct 

tagctctgac gccatcttca agcagagtca tgcaggcctc tttaaccttt gcatagtggt 

gcttgttgca gtaaatggta ggctcatcat tgagaatctg atgaagtatg gactattgat 

caattccaac ttttggttca gttcgagatc attgagagac tggccacttc tgatgtgctg 

cctcactcct tctgactttc cacttgctgc ctacattgtt gagaaattgg catggaaaaa 

acgtatatcc gaccctgttg taatcacact ccatgttata ataactacaa ctgcaattct 

ttatccggtc ttcatgattc tgaggttcga ttcagttgtt ctatcaggcg tctcgttgat 

gctgtgtgct tgcattaatt ggttgaagtt ggtatctttt gtgcatacaa attatgacat 

gcggtcgctt ttgaactcaa ctgataaggg agaagtggaa cccatgtctt caaatatgga 

ttatttttat gatgtcaact tcaaaagctt ggtttatttc atggttgctc caactttgtg 

ttaccagata agctatcctc gcactgcatt tattcgaaag ggttgggtgt tacggcaact 

gatcaagcta gtaatattta cagggttcat gggattcatc attgaacaat atatcaatcc 

gattgtcaaa aattctcgtc atccattgaa aggagacttt ttatatgcga ttgagcgggt 

tttaaagctt tcagttccga atttatatgt gtggctctgt atgttctact gcttttttca 

cctttggtta aatatacttg ctgagcttct ttgttttggg gatcgtgaat tttataaaga 

ttggtggaat gcacaaacta ttgaagagta ttggaggcta tggaatatgc ctgttcataa 

atggattgtt aggcaccttt attttccatg cttgcgtaat gggataccta agggtgctgc 

catattggtt gcatttttca tgtctgccgt gttccatgag ctttgtattg ctgttccctg 

ccacattttc aagttttggg cttttatcgg gatcatgttt caggtcccgt tggtcctact 

cacaaattac ttgcagcaca agtttcaaaa ctcgatggtg ggaaatatga tcttctggtg 

ctttttcagc atttttggtc aacccatgtg tgtattactt tactaccatg atgtcatgaa 

tcaaaagggg aaaagcaaat aaaaagatgt gattgtgttg ctccatttga tctcatagca 

tgactggact aaacaaaccc aagggacaca ttttagtcct taaaggaaaa tttttgtagg 

aaaaaaaaaa aaaaaaaaaa aaaaaaaa 

<210> SEQ ID NO 2 
<211> LENGTH, 523 
<212> TYPE, PRT 
<213> ORGANISM: Vernonia galamensis 

<400> SEQUENCE, 2 

Met Ala Leu Leu Asp Thr Pro Gln Ile Gly Glu Ile Thr Thr Thr Ala 
1 5 10 15 

Thr Thr Thr Ile Arg Arg Arg Thr Thr Val Lys Pro Asp Ala Gly Ile 
20 25 30 

Gly Asp Gly Leu Phe Asp Ser Ser Ser Ser Ser Lys Thr Asn Ser Ser 
35 40 45 

Phe Glu Asp Gly Asp Ser Leu Asn Gly Asp Phe Asn Asp Lys Phe Lys 
50 55 60 

Glu Gln Ile Gly Ala Gly Asp Glu Ser Lys Asp Asp Ser Lys Gly Asn 
65 70 75 80 

Gly Gln Lys Ile Asp His Gly Gly Val Lys Lys Gly Arg Glu Thr Thr 
85 90 95 

Val Val His Tyr Ala Tyr Arg Pro Ser Ser Pro Ala His Arg Arg Ile 
100 105 110 

28 

420 

480 

540 

600 

660 

720 

780 

840 

900 

960 

1020 

1080 

1140 

1200 

1260 

1320 

1380 

1440 

1500 

1560 

1620 

1680 

1740 

1800 

1828 
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-continued 

Lys Glu Ser Pro Leu Ser Ser Asp Ala Ile Phe Lys Gln Ser His Ala 
115 120 125 

Gly Leu Phe Asn Leu Cys Ile Val Val Leu Val Ala Val Asn Gly Arg 
130 135 140 

Leu Ile Ile Glu Asn Leu Met Lys Tyr Gly Leu Leu Ile Asn Ser Asn 
145 150 155 160 

Phe Trp Phe Ser Ser Arg Ser Leu Arg Asp Trp Pro Leu Leu Met Cys 
165 170 175 

Cys Leu Thr Pro Ser Asp Phe Pro Leu Ala Ala Tyr Ile Val Glu Lys 
180 185 190 

Leu Ala Trp Lys Lys Arg Ile Ser Asp Pro Val Val Ile Thr Leu His 
195 200 205 

Val Ile Ile Thr Thr Thr Ala Ile Leu Tyr Pro Val Phe Met Ile Leu 
210 215 220 

Arg Phe Asp Ser Val Val Leu Ser Gly Val Ser Leu Met Leu Cys Ala 
225 230 235 240 

Cys Ile Asn Trp Leu Lys Leu Val Ser Phe Val His Thr Asn Tyr Asp 
245 250 255 

Met Arg Ser Leu Leu Asn Ser Thr Asp Lys Gly Glu Val Glu Pro Met 
260 265 270 

Ser Ser Asn Met Asp Tyr Phe Tyr Asp Val Asn Phe Lys Ser Leu Val 
275 280 285 

Tyr Phe Met Val Ala Pro Thr Leu Cys Tyr Gln Ile Ser Tyr Pro Arg 
290 295 300 

Thr Ala Phe Ile Arg Lys Gly Trp Val Leu Arg Gln Leu Ile Lys Leu 
305 310 315 320 

Val Ile Phe Thr Gly Phe Met Gly Phe Ile Ile Glu Gln Tyr Ile Asn 
325 330 335 

Pro Ile Val Lys Asn Ser Arg His Pro Leu Lys Gly Asp Phe Leu Tyr 
340 345 350 

Ala Ile Glu Arg Val Leu Lys Leu Ser Val Pro Asn Leu Tyr Val Trp 
355 360 365 

Leu Cys Met Phe Tyr Cys Phe Phe His Leu Trp Leu Asn Ile Leu Ala 
370 375 380 

Glu Leu Leu Cys Phe Gly Asp Arg Glu Phe Tyr Lys Asp Trp Trp Asn 
385 390 395 400 

Ala Gln Thr Ile Glu Glu Tyr Trp Arg Leu Trp Asn Met Pro Val His 
405 410 415 

Lys Trp Ile Val Arg His Leu Tyr Phe Pro Cys Leu Arg Asn Gly Ile 
420 425 430 

Pro Lys Gly Ala Ala Ile Leu Val Ala Phe Phe Met Ser Ala Val Phe 
435 440 445 

His Glu Leu Cys Ile Ala Val Pro Cys His Ile Phe Lys Phe Trp Ala 
450 455 460 

Phe Ile Gly Ile Met Phe Gln Val Pro Leu Val Leu Leu Thr Asn Tyr 
465 470 475 480 

Leu Gln His Lys Phe Gln Asn Ser Met Val Gly Asn Met Ile Phe Trp 
485 490 495 

Cys Phe Phe Ser Ile Phe Gly Gln Pro Met Cys Val Leu Leu Tyr Tyr 
500 505 510 

His Asp Val Met Asn Gln Lys Gly Lys Ser Lys 
515 520 

30 



<210> SEQ ID NO 3 
<211> LENGTH, 1738 
<212> TYPE, DNA 

31 

<213> ORGANISM: Vernonia galamensis 

<400> SEQUENCE, 3 

US 9,133,469 Bl 

-continued 

gttcgtaatt cggctgtggt ttcctttcca acatttctac gtaatcatgg cgttgttaga 60 

tacgcctcaa attggagaaa taacgacgac cgcaacaacg accattaggc agcaccccct 120 

gggcaagcct gatgctggaa ttggagatgg attgttttct tcgtcgtctt ccaaaaccaa 180 

ctcatccttc gaggatggtg acagtttgaa tggtgatttc aatgacaaat ttaaggaaca 

gatcggagct ggtgatgaat ccaagaaggg gaacggaaag atagatcacg gaggagttaa 

aaagggacgt gaaacgactg tggtgcatta tgcttatcgg ccttcttctc cggctcatcg 

gagaattaaa gaatctccgc ttagctctga cgccatcttc aagcagagtc atgcaggcct 

ctttaacctt tgcatagtgg tgcttgttgc agtaaatggt aggctcatca tcgagaatct 

gatgaagtat ggactattga ttaattccaa attttggttc agttcgagat cattgagaga 

ctggccgctt ctgatgtgtt ggctgacccc ctccgacttc cccctcgccg cctacattgt 

cgagaaattg gcatggaaaa aacgtatatc cgaccctgtt gtaatcacac tccatgttgt 

aataactaca actgcaattc tctatccgat cttcatgatt ctgaggttcg actcggtcgt 

tctattaggc gtctcgttga tgctgtgtgc ttgcattaat tggttgaagt tggtatcttt 

tgtgcataca aattatgaca tgcggtcgct attgaactca actggtaagg gagaagtgga 

gcccatgtct tcaaatatgg actactttta tgatatcaac ttcaaaagct tggtttattt 

catggttgct ccaactttgt gttaccagat aagctatcct cgcaccgcct ttattcgaaa 

gggctgggtg ttccggcaac tgatcaagct agtaatattt acagggttca tgggattcat 

cattgaacaa tatatcaatc cgattgtcaa aaattctcgg catccattga acggagactt 

tttatatgcg attgaacgag tattaaaggt ttcagttccg aatttatatg tgtggctctg 

tatgttctat tgcttttttc acctttggtt aaatatactt gctgagcttc tttggtttgg 

ggatcgtgaa ttttataaag attggtggaa tacacaaact attgaagagt attggaggct 

atggaatatg cctgttcata agtggattgt taggcacctc tattttccat gcttgcgtaa 

tgggatatct aagggtgctg ccatattggt tgcttttttc atgtctgccg tgttccacga 

gctttgcata gctgttccct gccacatttt aaagttttgg gctttcatcg ggatcatgtt 

ccaggtcccg ttggtactac tcacaaatta cttgcagcac aagtttcaaa actcgatggt 

gggaaacatg atcttttggt gcttcttcag cattttcggt caacccatgt gtgtatttct 

ttactaccat gaagtcaatc aaaaggggaa aagcaaatga aaggacgtta tcgtatttcc 

ccaatctttc ttatatcgtg aatctaatat ccataacaaa gcaaaacaat taagtcactg 

gagaatacta ttagcaggta ataaagaacc aaacaaaaaa aaaaaaaaaa aaaaaaaa 

<210> SEQ ID NO 4 
<211> LENGTH, 517 
<212> TYPE, PRT 
<213> ORGANISM: Vernonia galamensis 

<400> SEQUENCE, 4 

Met Ala Leu Leu Asp Thr Pro Gln Ile Gly Glu Ile Thr Thr Thr Ala 
1 5 10 15 

Thr Thr Thr Ile Arg Gln His Pro Leu Gly Lys Pro Asp Ala Gly Ile 
20 25 30 

240 

300 

360 

420 

480 

540 

600 

660 

720 

780 

840 

900 

960 

1020 

1080 

1140 

1200 

1260 

1320 

1380 

1440 

1500 

1560 

1620 

1680 

1738 

32 
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Gly Asp Gly Leu Phe Ser Ser Ser Ser Ser Lys Thr Asn Ser Ser Phe 
35 40 45 

Glu Asp Gly Asp Ser Leu Asn Gly Asp Phe Asn Asp Lys Phe Lys Glu 
50 55 60 

Gln Ile Gly Ala Gly Asp Glu Ser Lys Lys Gly Asn Gly Lys Ile Asp 
65 70 75 80 

His Gly Gly Val Lys Lys Gly Arg Glu Thr Thr Val Val His Tyr Ala 
85 90 95 

Tyr Arg Pro Ser Ser Pro Ala His Arg Arg Ile Lys Glu Ser Pro Leu 
100 105 110 

Ser Ser Asp Ala Ile Phe Lys Gln Ser His Ala Gly Leu Phe Asn Leu 
115 120 125 

Cys Ile Val Val Leu Val Ala Val Asn Gly Arg Leu Ile Ile Glu Asn 
130 135 140 

Leu Met Lys Tyr Gly Leu Leu Ile Asn Ser Lys Phe Trp Phe Ser Ser 
145 150 155 160 

Arg Ser Leu Arg Asp Trp Pro Leu Leu Met Cys Trp Leu Thr Pro Ser 
165 170 175 

Asp Phe Pro Leu Ala Ala Tyr Ile Val Glu Lys Leu Ala Trp Lys Lys 
180 185 190 

Arg Ile Ser Asp Pro Val Val Ile Thr Leu His Val Val Ile Thr Thr 
195 200 205 

Thr Ala Ile Leu Tyr Pro Ile Phe Met Ile Leu Arg Phe Asp Ser Val 
210 215 220 

Val Leu Leu Gly Val Ser Leu Met Leu Cys Ala Cys Ile Asn Trp Leu 
225 230 235 240 

Lys Leu Val Ser Phe Val His Thr Asn Tyr Asp Met Arg Ser Leu Leu 
245 250 255 

Asn Ser Thr Gly Lys Gly Glu Val Glu Pro Met Ser Ser Asn Met Asp 
260 265 270 

Tyr Phe Tyr Asp Ile Asn Phe Lys Ser Leu Val Tyr Phe Met Val Ala 
275 280 285 

Pro Thr Leu Cys Tyr Gln Ile Ser Tyr Pro Arg Thr Ala Phe Ile Arg 
290 295 300 

Lys Gly Trp Val Phe Arg Gln Leu Ile Lys Leu Val Ile Phe Thr Gly 
305 310 315 320 

Phe Met Gly Phe Ile Ile Glu Gln Tyr Ile Asn Pro Ile Val Lys Asn 
325 330 335 

Ser Arg His Pro Leu Asn Gly Asp Phe Leu Tyr Ala Ile Glu Arg Val 
340 345 350 

Leu Lys Val Ser Val Pro Asn Leu Tyr Val Trp Leu Cys Met Phe Tyr 
355 360 365 

Cys Phe Phe His Leu Trp Leu Asn Ile Leu Ala Glu Leu Leu Trp Phe 
370 375 380 

Gly Asp Arg Glu Phe Tyr Lys Asp Trp Trp Asn Thr Gln Thr Ile Glu 
385 390 395 400 

Glu Tyr Trp Arg Leu Trp Asn Met Pro Val His Lys Trp Ile Val Arg 
405 410 415 

His Leu Tyr Phe Pro Cys Leu Arg Asn Gly Ile Ser Lys Gly Ala Ala 
420 425 430 

Ile Leu Val Ala Phe Phe Met Ser Ala Val Phe His Glu Leu Cys Ile 
435 440 445 

Ala Val Pro Cys His Ile Leu Lys Phe Trp Ala Phe Ile Gly Ile Met 

34 
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450 455 460 

Phe Gln Val Pro Leu Val Leu Leu Thr Asn Tyr Leu Gln His Lys Phe 
465 470 475 480 

Gln Asn Ser Met Val Gly Asn Met Ile Phe Trp Cys Phe Phe Ser Ile 
485 490 495 

Phe Gly Gln Pro Met Cys Val Phe Leu Tyr Tyr His Glu Val Asn Gln 
500 

Lys Gly Lys Ser Lys 
515 

<210> SEQ ID NO 5 
<211> LENGTH, 1017 
<212> TYPE, DNA 

505 

<213> ORGANISM, Vernonia galamensis 

<400> SEQUENCE, 5 

atgggtgaat ttgctaatca 

ggcaacagcc gtgtcttcaa 

atagcattga gtttgtggat 

tatatcttgt tcagtcctcc 

gtactaccac tcgatgaaaa 

tacgttatgg gacattttcc 

aaccgagcct atgtgtttgg 

ctttgcgaac acctggctgt 

atcttcagaa ctcctgttct 

aaaaagaact tcacggctta 

gttcaggaga ttctccatat 

agaaagggct ttatcaaggt 

ttcggacagg ctcatacgta 

gctagggcta ttaggttcgg 

tgtaagaatc ccacggttgt 

cctacgatcg atgagatcag 

ttcgacaaat acaagacgga 

<210> SEQ ID NO 6 
<211> LENGTH, 338 
<212> TYPE, PRT 

taacagaatt aatagtaacg 

tggacgagaa atctatcaca 

agggagtata cactttatat 

cacgagcgct atggttatcg 

tagtaaattc ggcctccgaa 

cgttaccctc tatgtagagg 

gttccatcct catagtgtct 

gatcccaatt cccaatatca 

gaggcagatt tggagttggt 

tctcagcgca ggttacactt 

gagacagggt gctgagagtg 

cgctatacag acggtaaccc 

caagtggtgg agacccaagt 

acctaccgta ttctggggaa 

cgtagtgggt agacctatca 

caagttccag agagagtaca 

gatcggtcac cctggtctgg 

<213> ORGANISM: Vernonia galamensis 

<400> SEQUENCE, 

510 

atgttaaaaa cgaggaaaag 

ctagtatccc tcgggcatta 

tgttcttgtt attcatcagt 

gatttcaggt aattctgatg 

tctttagtta tgtcagtaaa 

atatgaaatg cttccaaagc 

tcccgctggg tgttgctatc 

agttcctgac cagtaaccct 

gcggtgctat tgccgctagc 

gcgttgtgat tcccggtgga 

ataacgtctt tatcagcagg 

cgctagtacc tgtcttcttt 

gcgaattcta cgtactgaag 

ggctcggaag ccatctgcca 

ctgtagagaa aacgctcaag 

cggtcagtct aaggaatctc 

agttgaagat cttgtga 

Met Gly Glu Phe Ala Asn His Asn Arg Ile Asn Ser Asn Asp Val Lys 
1 5 10 15 

Asn Glu Glu Lys Gly Asn Ser Arg Val Phe Asn Gly Arg Glu Ile Tyr 
20 25 30 

His Thr Ser Ile Pro Arg Ala Leu Ile Ala Leu Ser Leu Trp Ile Gly 
35 40 45 

Ser Ile His Phe Ile Leu Phe Leu Leu Phe Ile Ser Tyr Ile Leu Phe 
50 55 60 

Ser Pro Pro Thr Ser Ala Met Val Ile Gly Phe Gln Val Ile Leu Met 
65 70 75 80 

36 

60 

120 

180 

240 

300 

360 

420 

480 

540 

600 

660 

720 

780 

840 

900 

960 

1017 
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Val Leu Pro Leu Asp Glu Asn Ser Lys Phe Gly Leu Arg Ile Phe Ser 
85 90 95 

Tyr Val Ser Lys Tyr Val Met Gly His Phe Pro Val Thr Leu Tyr Val 
100 105 110 

Glu Asp Met Lys Cys Phe Gln Ser Asn Arg Ala Tyr Val Phe Gly Phe 
115 120 125 

His Pro His Ser Val Phe Pro Leu Gly Val Ala Ile Leu Cys Glu His 
130 135 140 

Leu Ala Val Ile Pro Ile Pro Asn Ile Lys Phe Leu Thr Ser Asn Pro 
145 150 155 160 

Ile Phe Arg Thr Pro Val Leu Arg Gln Ile Trp Ser Trp Cys Gly Ala 
165 170 175 

Ile Ala Ala Ser Lys Lys Asn Phe Thr Ala Tyr Leu Ser Ala Gly Tyr 
180 185 190 

Thr Cys Val Val Ile Pro Gly Gly Val Gln Glu Ile Leu His Met Arg 
195 200 205 

Gln Gly Ala Glu Ser Asp Asn Val Phe Ile Ser Arg Arg Lys Gly Phe 
210 215 220 

Ile Lys Val Ala Ile Gln Thr Val Thr Pro Leu Val Pro Val Phe Phe 
225 230 235 240 

Phe Gly Gln Ala His Thr Tyr Lys Trp Trp Arg Pro Lys Cys Glu Phe 
245 250 255 

Tyr Val Leu Lys Ala Arg Ala Ile Arg Phe Gly Pro Thr Val Phe Trp 
260 265 270 

Gly Arg Leu Gly Ser His Leu Pro Cys Lys Asn Pro Thr Val Val Val 
275 280 285 

Val Gly Arg Pro Ile Thr Val Glu Lys Thr Leu Lys Pro Thr Ile Asp 
290 295 300 

Glu Ile Ser Lys Phe Gln Arg Glu Tyr Thr Val Ser Leu Arg Asn Leu 
305 310 315 320 

Phe Asp Lys Tyr Lys Thr Glu Ile Gly His Pro Gly Leu Glu Leu Lys 
325 330 335 

Ile Leu 

<210> SEQ ID NO 7 
<211> LENGTH, 22 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Forward Primer 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (6) .. (6) 
<223> OTHER INFORMATION, y is equal to any pyrimidine 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (9) .. (9) 
<223> OTHER INFORMATION: w is equal to adenine or thymine or uracil 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (19) .. (19) 
<223> OTHER INFORMATION, s is equal to guanine or cytosine 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (21) .. (21) 
<223> OTHER INFORMATION, r is equal to any purine 

<400> SEQUENCE, 7 

gctccyacwt tgtgttatsa rc 

38 

22 



<210> SEQ ID NO 8 
<211> LENGTH, 24 
<212> TYPE, DNA 

39 

<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Reverse Primer 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (4) .. (4) 
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<223> OTHER INFORMATION, y is equal to any pyrimidine 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (7) .. (7) 
<223> OTHER INFORMATION, r is equal to any purine 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (10) .. (10) 
<223> OTHER INFORMATION, r is equal to any purine 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (13) .. (13) 
<223> OTHER INFORMATION, r is equal to any purine 
<220> FEATURE, 
<221> NAME/KEY, misc_feature 
<222> LOCATION, (16) .. (16) 
<223> OTHER INFORMATION, s is equal to guanine or cytosine 

<400> SEQUENCE, 8 

ccayttrtgr acrggsatat tcca 

<210> SEQ ID NO 9 
<211> LENGTH, 7 
<212> TYPE, PRT 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 

24 

<223> OTHER INFORMATION, Conserved Amino Acid Sequence of Diacyghlycerol 
Acyltransferases from Arabidopsis Thaliana and Mus Musculus 

<220> FEATURE, 
<221> NAME/KEY, MOD_RES 
<222> LOCATION, (7) .. (7) 

<223> OTHER INFORMATION, X is equal to glutamic acid or glutamine 

<400> SEQUENCE, 9 

Ala Pro Thr Leu Cys Tyr Xaa 
1 5 

<210> SEQ ID NO 10 
<211> LENGTH, 8 
<212> TYPE, PRT 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Conserved Amino Acid Sequence of Diacylglycerol 

Acyltransferases from Arabidopsis Thaliana and Mus Musculus 
<220> FEATURE, 
<221> NAME/KEY, MOD_RES 
<222> LOCATION, (3) .. (3) 
<223> OTHER INFORMATION: X is equal to isoleucine or methionine 

<400> SEQUENCE, 10 

Trp Asn Xaa Pro Val His Lys Trp 
1 5 

<210> SEQ ID NO 11 
<211> LENGTH, 28 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, VgDGAT2 Forward Primer 

<400> SEQUENCE, 11 

tcgaaagggt tgggtgttac ggcaactg 28 

40 



<210> SEQ ID NO 12 
<211> LENGTH, 28 
<212> TYPE, DNA 

41 

<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
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<223> OTHER INFORMATION, VgDGAT Reverse Primer 

<400> SEQUENCE, 12 

cagttgccgt aacacccaac cctttcga 

<210> SEQ ID NO 13 
<211> LENGTH, 26 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Euphorbia Forward Primer 

<400> SEQUENCE, 13 

caacttgaca aactgacgga acaccc 

<210> SEQ ID NO 14 
<211> LENGTH, 26 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Euphorbia Reverse Primer 

<400> SEQUENCE, 14 

gggtgttccg tcagtttgtc aagttg 

<210> SEQ ID NO 15 
<211> LENGTH, 30 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Glycine Max Forward Primer 1 

<400> SEQUENCE, 15 

gcgtaaagaa ggtttccctt gagaggatgc 

<210> SEQ ID NO 16 
<211> LENGTH, 30 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Glycine max Reverse Primer 1 

<400> SEQUENCE, 16 

gttgccccta cattatgtta ccagccaagc 

<210> SEQ ID NO 17 
<211> LENGTH, 22 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Glycine max Forward Primer 2 

<400> SEQUENCE, 17 

gaaaacacgc tcggtcttct tc 

<210> SEQ ID NO 18 
<211> LENGTH, 22 
<212> TYPE, DNA 
<213> ORGANISM, Artificial Sequence 
<220> FEATURE, 
<223> OTHER INFORMATION, Glycine max Reverse Primer 2 

42 

28 

26 

26 

30 

30 

22 
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-continued 

<400> SEQUENCE, 18 

tacaattgcc agaggagagt tg 

<210> SEQ ID NO 19 
<211> LENGTH, 1344 
<212> TYPE, DNA 
<213> ORGANISM, Stokesia laevis 

<400> SEQUENCE, 19 

gagaagttga ccataaatca tttatcaaca tgggtgccgg cggtcgtggt 

aaaaatcggt catggaacgt gtctcagttg atccagtaac cttctcactg 

agcaagcaat ccctccccat tgcttccaga gatctgtaat ccgctcatct 

ttcaagatct cattattgcc tacatcttct acttccttgc caacacatat 

ttcctactag tctagcctac ttagcttggc ccgtttactg gttctgtcaa 

tcactggctt atggatcctc ggccacgaat gtggtcacca tgcctttagc 

ggtttgacga cactgtgggc ttcatcctcc actcatttct cctcaccccg 

ggaaattcag tcaccggaat caccattcca acacaagttc gattgataac 

acattccgaa aagcaagtcc aaactcgcgc gtatctataa acttcttaac 

gtcggctgtt ggttttgatt atcatgttca ccctaggatt tcctttatac 

atatttccgg caagaaatac gacaggtttg ccaaccactt cgaccccatg 

tcaaagaacg tgagcggttt caggtcttcc tttcggatct tggtcttctt 

atggaattaa agttgctgta gcaaataaag gagctgcttg ggtagcgtgc 

ttccggtatt aggcgtattt acctttttcg atgtgatcac cttcttgcac 

agtcgtcgcc tcattatgat tcaactgaat ggaactggat cagaggggcc 

tcgataggga ctttggattc ctgaatagtg ttttccatga tgttacacac 

tgcatcattt gttttcatac attccacact atcatgcaaa ggaggcaagg 

agccaatctt gggcgacttt tatatgatcg acaggactcc aattttaaaa 

gagagggcag ggagtgcatg tacatcgagc ctgatagcaa gctcaaaggt 

atcataaatt gtgatcatat gcaaaatgca catgcatttt caaaccctct 

gttctatgta taataaaccg ccggtccttt ggttgactat gcctaagcca 

ttaaataata tcggtatgat gtgtaatgaa agtatgtggt tgtctggttt 

aaagaaagta tgtggttgtc ggtc 

What is claimed is: 
1. A method of increasing renewable oil production in a 

plant, comprising transforming a plant cell with an isolated 
nucleic acid encoding a Vernonia galamensis diacylglycerol 

55 
acyl transferase 1 (V gDGATl) polypeptide, wherein expres
sion of the V gDGATl polypeptide increases the total amount 
of renewable oil in the plant relative to a control plant that is 
not transformed with the isolated nucleic acid encoding the 
V gDGATl polypeptide. 

2. The method of claim 1, wherein the increase in the total 60 

amount of renewable oil in the plant is at least about a 2 
percent increase as compared to an amount of renewable oil in 
the control plant. 

3. The method of claim 1, wherein the increase in the total 
amount of renewable oil in the plant is at least about a 5 65 

percent increase as compared to an amount of renewable oil in 
the control plant. 

22 

cggacatcgg 60 

agtgaattga 120 

tactatgttg 180 

atccctactc 240 

gctagcgtcc 300 

aactacacat 360 

tatttctctt 420 

gatgaagttt 480 

aacccacctg 540 

ctcttgacaa 600 

agtccaattt 660 

gccgtgtttt 720 

atgtatggag 780 

cacacccatc 840 

ttgtcagcaa 900 

actcatgtca 960 

gatgcaatca 1020 

gcaatgtgga 1080 

gtttattggt 1140 

agttacgttt 1200 

ggcgaaacag 1260 

tgttgctatg 1320 

1344 

4. The method of claim 1, wherein the plant is selected 
from the group consisting of Arachis hypogaea, Bora go ojfi
cinalis, Brassica campestris, Brassica napus, Brassica rapa, 
Camelina sativa, Cannabis sativa, Carthamus tinctorius, 
Cocos nucifera, Crambe abyssinica, Cuphea species, Gly
cine max, Gossypium hirsutum, Gossypium barbadense, 
Gossypium herbaceum, Helianthus annuus, Linum usitatis
simum, Oenothera biennis, Olea europaea, Oryza sativa, 
Perilla frutescens, Ricinus communis, Salvia hispanica, 
Sesamum indicum, Sinapis alba, Theobroma cacao, Triticum 
species, Zea mays, Juglans species, and Prunis dulcis. 

5. The method of claim 1, wherein increasing the total 
amount of renewable oil in the plant relative to the control 
plant comprises increasing the total amount of renewable oil 
in a seed of the plant. 
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6. The method of claim 1, wherein increasing the total 
amount of renewable oil in the plant relative to the control 
plant comprises increasing the amount of triacylglycerol 
(TAG) in the plant. 

7. The method of claim 1, wherein a total amount of protein 5 

in the plant is about equal to a total amount of protein in the 
control plant. 

8. The method of claim 1, wherein a total amount of protein 
in the plant is increased relative to the control plant. 
. 9 .. The method of claim 1, wherein the V gDGATl polypep- 10 

tide 1s a VgDGATla polypeptide. 
10. The method of claim 9, wherein the VgDGATla 

polypeptide is encoded by a nucleic acid molecule having the 
sequence of SEQ ID NO: 1. 

11. The method of claim 9, wherein the VgDGATla 15 

polypeptide comprises the amino acid sequence of SEQ ID 
N0:2. 

12. The method of claim 1, wherein the VgDGATl 
polypeptide is a V gDGATl b polypeptide. 

13. The method of claim 12, wherein the VgDGATlb 20 

polypeptide is encoded by a nucleic acid molecule having the 
sequence of SEQ ID NO: 3. 

14. The method of claim 12, wherein the VgDGATlb 
polypeptide comprises the amino acid sequence of SEQ ID 
N0:4. 25 

15. The method of claim 1, further comprising transform
ing a plant cell with an isolated nucleic acid encoding a 
Vernonia galamensis diacylglycerol acyl transferase 2 (V gD
GAT2) polypeptide, wherein expression of the VgDGATl 
polypeptide and the V gDGAT2 polypeptide increases a total 30 

amount of renewable oil in the plant relative to a control plant 
that is not transformed with the isolated nucleic acid encoding 
the V gDGAT2 polypeptide. 

16. The method of claim 15, wherein the VgDGAT2 
polypeptide is encoded by a nucleic acid molecule having the 35 

sequence of SEQ ID NO: 5. 

46 
transferase 1 (V gDGATl) polypeptide, wherein expression 
of the V gDGATl polypeptide increases the total amount of 
renewable oil in the plant cell relative to a control cell that is 
not transformed with the isolated nucleic acid encoding the 
V gDGATl polypeptide. 

21. The transgenic plant cell of claim 20, wherein the 
isolated nucleic acid is operably linked to an expression con
trol sequence. 

22. The transgenic plant cell of claim 21, wherein the 
expression control sequence comprises a constitutive pro
moter or a seed-specific promoter. 

23. A method of increasing renewable oil production in a 
plant, comprising transforming a plant cell with a first iso
lated nucleic acid encoding a Vernonia galamensis diacylg
lycerol acyl transferase (V gDGAT) polypeptide and a second 
isolated nucleic acid encoding an epoxygenase polypeptide, 
wherein expression of the VgDGAT polypeptide and the 
epoxygenase polypeptide increases an amount of renewable 
oil in the plant. 

24. The method of claim 23, wherein the VgDGAT 
polypeptide is a VgDGATla polypeptide. 

25. The method of claim 24, wherein the VgDGATla 
polypeptide is encoded by a nucleic acid molecule having the 
sequence of SEQ ID NO: 1. 

26. The method of claim 24, wherein the VgDGATla 
polypeptide comprises the amino acid sequence of SEQ ID 
N0:2. 

27. The method of claim 23, wherein the VgDGAT 
polypeptide is a V gDGATl b polypeptide. 

28. The method of claim 27, wherein the VgDGATlb 
polypeptide is encoded by a nucleic acid molecule having the 
sequence of SEQ ID NO: 3. 

29. The method of claim 27, wherein the VgDGATlb 
polypeptide comprises the amino acid sequence of SEQ ID 
N0:4. 

30. The method of claim 23, wherein the VgDGAT 
polypeptide is a V gDGAT2 polypeptide. 17. The method of claim 15, wherein the VgDGAT2 

polypeptide comprises the amino acid sequence of SEQ ID 
NO: 6. 

. 1~. A method of producing a triacylglycerol (TAG), com
pnsmg transforming a cell with an isolated nucleic acid that 
encodes a Vernonia galamensis diacylglycerol acyltrans
ferase 1 (V gDGATl) polypeptide, wherein expression of the 

31. The method of claim 30, wherein the VgDGAT2 
polypeptide is encoded by a nucleic acid molecule having the 

40 sequence of SEQ ID NO: 5 . 

V gDGATl polypeptide increases the total amount of TAG in 
the cell relative to a control cell that is not transformed with 45 

the isolated nucleic acid encoding the V gDGATl polypep
tide. 

19. The method of claim 18, wherein the transformed cell 
is an animal cell, a plant cell, an algal cell, a fungal cell, or a 
yeast cell. 

20. A transgenic plant cell comprising an isolated nucleic 
acid encoding a Vernonia galamensis diacylglycerol acyl-

50 

32. The method of claim 30, wherein the VgDGAT2 
polypeptide comprises the amino acid sequence of SEQ ID 
NO: 6. 

33. The method of claim 23, wherein the epoxygenase 
polypeptide is encoded by a nucleic acid sequence compris
ing the sequence of SEQ ID NO: 19. 

34. The method of claim 23, wherein an amount of protein 
in the plant is substantially unchanged as compared to a 
control plant. 

35. The method of claim 23, wherein an amount of protein 
in the plant is increased as compared to a control plant. 

* * * * * 
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