

University of Kentucky UKnowledge

Pharmaceutical Sciences Faculty Patents

Pharmaceutical Sciences

5-27-2003

Synthases

Joe Chappell University of Kentucky, chappell@uky.edu

Kathleen R. Manna

Joseph P. Noel

Courtney M. Starks

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ps_patents

Part of the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation

Chappell, Joe; Manna, Kathleen R.; Noel, Joseph P.; and Starks, Courtney M., "Synthases" (2003). Pharmaceutical Sciences Faculty Patents. 65.

https://uknowledge.uky.edu/ps_patents/65

This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US006569656B2

(12) United States Patent

Chappell et al.

(10) Patent No.: US 6,569,656 B2

(45) **Date of Patent:** *May 27, 2003

(54) SYNTHASES

(75) Inventors: Joseph Chappell, Lexington, KY (US); Kathleen R. Manna, Georgetown, IN (US); Joseph P. Noel, San Diego, CA (US); Courtney M. Starks, La Jolla,

CA (US)

(73) Assignees: The University of Kentucky Research

Foundation, Lexington, KY (US); The Salk Institute for Biological Studies,

La Jolla, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/903,012

(22) Filed: Jul. 11, 2001

(65) **Prior Publication Data**

US 2002/0094557 A1 Jul. 18, 2002

Related U.S. Application Data

- (63) Continuation of application No. 09/398,395, filed on Sep. 17, 1999, now Pat. No. 6,468,772.
- (60) Provisional application No. 60/150,262, filed on Aug. 23, 1999, provisional application No. 60/130,628, filed on Apr. 22, 1999, and provisional application No. 60/100,993, filed on Sep. 18, 1998.
- (51) **Int. Cl.**⁷ **C12N 9/00**; C12N 9/88; C07H 21/04

524/9

- - 524/9; 558/12

(56) References Cited

U.S. PATENT DOCUMENTS

5,589,619 A 12/1996 Chappell et al.

5,824,774 A	10/1998	Chappell et al.
5,849,526 A	12/1998	Pichersky
5,871,988 A	2/1999	Croteau et al.
5,876,964 A	3/1999	Croteau et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

EP	0 768 381	4/1997
WO	WO 95/11913	5/1995
WO	WO 96/36697	11/1996
WO	WO 97/15584	5/1997
WO	WO 97/38571	10/1997

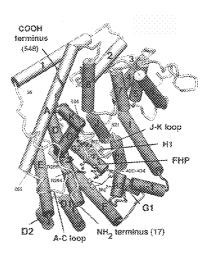
(List continued on next page.)

OTHER PUBLICATIONS

Back et al. PNAS USA 1996 vol. 93 pp. 6841–6845.* Lesburg et al., *Current Opinion in Structural Biology*, 1998, 8:695–703.

Starks et al., "Structural Basis for Cyclic Terpene Biosynthesis by Tobacco 5–Epi–Aristolochene Synthase," *Science*, 1997, 227:1815–1820.

Chappell, "The Biochemistry and Molecular Biology of Isoprenoid Metabolism," *Plant Physiol.*, 1995, 107:1–6.


(List continued on next page.)

Primary Examiner—Marianne P. Allen Assistant Examiner—Lori A. Clow (74) Attorney, Agent, or Firm—Fish & Richardson P.C., P.A.

(57) ABSTRACT

Novel synthases and the corresponding nucleic acids encoding such synthases are disclosed herein. Such synthases possess an active site pocket that includes key amino acid residues that are modified to generate desired terpenoid reaction intermediates and products. Synthase modifications are designed based on, e.g., the three-dimensional coordinates of tobacco 5-epi-aristolochene synthase, with or without a substrate bound in the active site.

11 Claims, 4 Drawing Sheets

U.S. PATENT DOCUMENTS

5,891,697 A	4/1999	Croteau et al.
5,981,843 A	11/1999	Chappell et al
5,994,114 A	11/1999	Croteau et al.
6,008,043 A	12/1999	Croteau et al.

FOREIGN PATENT DOCUMENTS

WO	WO 97/38703	10/1997
WO	WO 99/02030	1/1999
WO	WO 99/15624	4/1999
WO	WO 99/18118	4/1999
WO	WO 99/19460	4/1999
WO	WO 99/37139	7/1999
WO	WO 99/38957	8/1999

OTHER PUBLICATIONS

Facchini et al, "Gene family for an elicitor-induced sesquiterpene cyclase in tobacco," *Proc. Natl. Acad. Sci. USA*, 1992, 89:11088–11092.

Corey et al., "Isolation of an *Arabidopsis thaliana* gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen," *Proc. Natl. Acad. Sci. USA*, 1993, 90:11628–11632.

Bohlmann et al., "Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)- α -bisabolene synthase from grand fir (*Abies grandis*)," *Proc. Natl. Acad. Sci. USA*, 1998, 95:6756–6761.

Colby et al., "Germacrene C synthase from *Lycopersicon esculentum* cv. VFNT Cherry tomato: cDNA isolation, characterization, and bacterial expression of the multiple product sesquiterpene cyclase," *Proc. Natl. Acad. Sci. USA*, 1998, 95:2216–2221.

Devarenne et al., "Molecular Characterization of Tobacco Squalene Synthase and Regulation in Response to Fungal Elicitor," *Arch. Biochem. Biophys.*, 1998, 349(2):205–215.

Back et al., "Cloning and Bacterial Expression of a Sesquiterpene Cyclase from *Hyoscyamus muticus* and Its Molecular Comparison to Related Terpene Cyclases," *J. Biol. Chem.*, 1995, 270(13):7375–7381.

Yin et al., "Regulation of Sesquiterpene Cyclase Gene Expression—Characterization of an Elicitor—and Pathogen—Inducible Promoter," *Plant Physiol.*, 1997, 115:437–451.

Mathis et al., "Pre-Steady-State Study of Recombinant Sesquiterpene Cyclases," *Biochemistry*, 36(27):8340-8348.

Back et al., "Identifying functional domains with terpene cyclases using a domain-swapping strategy," *Proc. Natl. Acad. Sci. USA*, 1996, 93:6841–6845.

Newman et al., "Characterization of the TAC box, a cis-element within an elicitor-inducible sesquiterpene cyclase promoter," *Plant J.*, 1998, 16(1):1–12.

Crock et al., "Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (*Mentha xpiperita*, L.) that produces the aphid alarm pheromone (E)– β -farnesene," *Proc. Natl. Acad. Sci. USA*, 1997, 94:12833–12838.

Wildung et al., "A cDNA Clone for Taxadiene Synthase, the Diterpene Cyclase That Catalyzes the Committed Step of Taxol Biosynthesis," *J. Biol. Chem.*, 1996, 271(16):9201–9204.

Chen et al., "Cloning, Expression, and Characterization of (+)-\(\delta\)-Cadinene Synthase: A Catalyst for Cotton Phytoalexin Biosynthesis," *Arch. Biochem. Biophys.*, 1995, 324(2):255–266.

Bohlmann et al., "Plant terpenoid synthases: Molecular biology and phylogenetic analysis," *Proc. Natl. Acad. Sci. USA*, 1998, 95:4126–4133.

Cane et al., "Trichodiene Synthase. Substrate Specificity and Inhibition," *Biochemistry*, 1995, 34:2471–2479.

Pyun et al., "Regiospecificiy and Isotope Effects Associated with the Methyl-Methylene Eliminations in the Enzyme-Catalyzed Biosynthesis of (R)– and (S)–Limonene," *J. Org. Chem.*, 1993, 58(15)3998–4009.

Anderson et al., "Farnesyl Diphosphate Synthetase—Molecular Cloning, Sequence, and Expression of an Essential Gene From *Saccharomyces cerevisiae*," *J. Biol. Chem.*, 1989, 264(32):19176–19184.

Song et al., "Yeast farnesyl-diphosphate synthase: Site-directed mutagenesis of residues in highly conserved prenyl-transferase domains I and II," *Proc. Natl. Acad. Sci. USA*, 1994, 91:3044–3048.

Ohnuma et al., "A Role of the Amino Acid Residue Located on the Fifth Position before the First Aspartate—rich Motif of Farnesyl Diphosphate Synthase on Determination of the Final Product," *J. Biol. Chem.*, 1996, 271(48):30748–30754. Tarshis et al., "Regulation of product chain length by isoprenyl disphosphate synthases," *Proc. Natl. Acad. Sci. USA*, 1996, 93:15018–15023.

Tarshis et al., "Crystal Structure of Recombinant Farnesyl Diphosphate Synthase at 2.6-Å Resolution," *Biochemistry*, 1994, 33:10871–10877.

Mau et al., "Cloning of casbene synthase cDNA: Evidence for conserved structural features among terpenoid cyclases in plants," *Proc. Natl. Acad. Sci. USA*, 1994, 91:8497–8501. Wendt et al., "Structure and Function of a Squalene Cyclase," *Science*, 1997, 277:1811–1815.

Cane et al., "Trichodiene Synthase. Identification of Active Site Residues by Site–Directed Mutagenesis," *Biochemistry*, 1995, 34:2480–2488.

Cane et al., "Trichodiene Biosynthesis and the Stereochemistry of the Enzymatic Cyclization of Farnesyl Pyrophosphate," *Bioorg. Chem.*, 1985, 13(3):246–265.

Wheeler et al., "Direct demonstration of the isomerization component of the monoterpene cyclase reaction using a cyclopropylcarbinyl pyrophosphate substrate analog," *Proc. Natl. Acad. Sci. USA*, 1987, 84(14):4856–4859.

Pyun et al., "Sterochemistry of the Proton Elimination in the Formation of (+)- and (-)- α -Pinene by Monterpene Cyclases from Sage (Salvia Officinalis)," Arch. Biochem. Biophys., 1994, 308(2):488–496.

Croteau, "Evidence for the Ionization Steps in Monoterpene Cyclization Reactions Using 2–Fluorogeranyl and 2–Fluorolinalyl Pyrophosphates as Substrates," *Arch. Biochem. Biophys.*, 1986, 251(2):777–782.

Croteau et al., "Irreversible Inactivation of Monoterpene Cyclases by a Mechanism–Based Inhibitor," *Arch. Biochem. Biophys.*, 1993, 307(2):397–404.

Rajaonarivony et al., "Characterization and Mechanism of (4S)–Limonene Synthase, A Monoterpene Cyclase from the Glandular Trichomes of Peppermint (*Mentha ×piperita*)," *Arch. Biochem. Biophys.*, 1992, 296(1):49–57.

Rajaonarivony et al., "Evidence for an Essential Histidine Residue in 4S-Limonene Synthase and Other Terpene Cyclases," *Arch. Biochem. Biophys.* 1992, 299(1):77-82.

Aleshin et al., "Refined Crystal Structures of Glucoamylase from Aspergillus awamori var. X100," J. Mol. Biol., 1994, 238:575-591.

Juy et al., "Three-dimensional structure of a thermostable bacterial cellulase," Nature, 1992, 357(6373):89-91.

Altschul et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res., 1997, 25(17):3389-3402.

Back et al., "Expression of a Plant Sesquiterpene Cyclase Gene in Escherichia coli." Arch. Biochem. Biophys., 1994, 315(2):527-532.

Cane, "Enzymatic Formation of Sesquiterpenes," Chem. Rev., 90:1089-1103.

Cane et. al., "Aristolochene Biosynthesis and Enzymatic Cyclization of Farnesyl Pyrophosphate," J. Am. Chem. Soc., 1989, 111:8914-8916.

Cane et al., "Overexpression in Escherichia coli of Soluble Aristolochene Synthase from Penicillium roqueforti," Arch. Biochem. Biophys., 1993, 304(2):415-419.

Hohn et al., "Purification and Characterization of the Sesquiterpene Cyclase Aristolochene Synthase from Penicil-Arch. Biochem. Biophys., 1989, lium roqueforti," 272(1):137-143.

Laskovics et al., "Prenyltransferase: Determination of the Binding Mechanism and Individual Kinetic Constants for Farnesylpyrophosphate Synthetase by Rapid Quench and Isotope Partitioning Experiments," Biochemistry, 1981, 20(7):1893-1901.

Lesburg et al., "Crystal Structure of Pentalenene Synthase: Mechanistic Insights on Terpenoid Cyclization Reactions in Biology," Science, 1997, 277(5333):1820-1824.

Munck et al., "Purification and Characterization of the Sesquiterpene Cyclase Patchoulol Synthase from Pogostemon cablin," Arch. Biochm. Biophys., 1990, 282(1):58-64. Proctor et al., "Aristolochene Synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Aril) from Penicillium roqueforti," J. Biol. Chem., 1993, 268(6):4543-4548.

Vogel et al., "Abietadiene Synthase from Grand Fir (Abies grandis)", J. Biol. Chem., 1996, 271(38):23262-23268. Bohlmann et al., "Monoterpene Synthases from Grand Fir grandis)", (Abies J. Biol. Chem.,

272(35):21784-21792.

Starks et al., "Structural Basis for Cyclic Terpene Biosynthesis by Tobacco 5-Epi-Aristolochene Synthase", Science, 1997, 277:1815-1819.

Genbank Accession No: Q40577. Genbank Accession No: AB022598. Genbank Accession No: Y18484. Genbank Accession No: U48796. Genbank Accession No: AF035631. Genbank Accession No: L13459. Genbank Accession No: AF051901. Genbank Accession No: AF051900. Genbank Accession No: AF051899.

Genbank Accession No: AF006194. Genbank Accession No: U92267.

Genbank Accession No: U92266. Genbank Accession No: AF024615.

Genbank Accession No: U87909.

Genbank Accession No: U87908. Genbank Accession No: AF006193.

Genbank Accession No: U50768.

Genbank Accession No: L32134.

Genbank Accession No: AF006195. Genbank Accession No: AJ005588.

Genbank Accession No: Q43714.

Genbank Accession No: AF061285.

Genbank Accession No: AF043299.

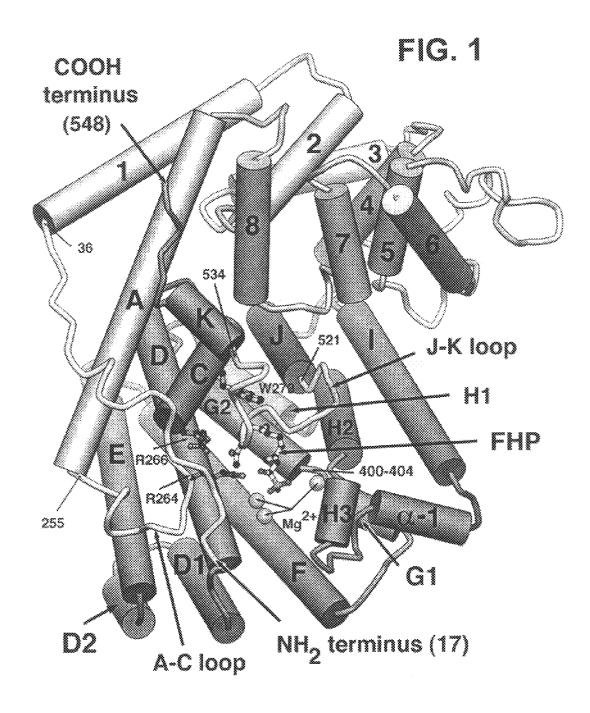
Genbank Accession No: AB022719.

Genbank Accession No: AB023816.

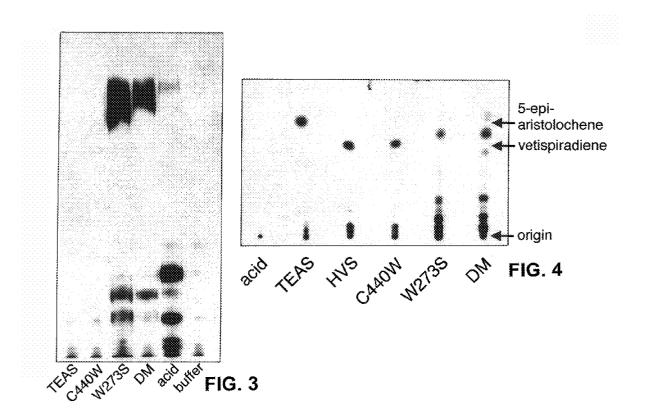
Genbank Accession No: AF043298.

Genbank Accession No: AF043300. Genbank Accession No: AF042382.

Genbank Accession No: B56118.


Genbank Accession No: C56118.

Genbank Accession No: U20187.


Genbank Accession No: U20189.

Genbank Accession No: U20190.

^{*} cited by examiner

May 27, 2003

SYNTHASES

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority under 35 U.S.C. §120 to U.S. application Ser. No. 09/398, 395, filed Sep. 17, 1999 now U.S. Pat. No. 6,468,772, which claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/150,252, filed Aug. 23, 1999, U.S. Provisional Application No. 60/130,628, filed Apr. 22, 1999, and U.S. Provisional Application No. 60/100,993, filed Sep. 18, 1998.

This work was supported, in part, with funding from NIH (GM54029 and GM07240) and NSF (IBW-9408152). Therefore, the United States Federal Government may have certain rights in the invention.

BACKGROUND OF THE INVENTION

Isoprenoid compounds are organic molecules produced 20 by a wide range of organisms (e.g., plants, bacteria, fungi, etc). To date, over 23,000 individual isoprenoid molecules have been characterized with tens to hundreds of new structures identified each year. These molecules can fulfill a variety of roles. For example, monoterpenes can be used as fragrances and flavors. Sesquiterpenes and diterpenes can serve as pheromones, defensive agents, visual pigments, antitumor drugs, and components of signal transduction pathways. Triterpenes can serve important functions as membrane constituents and precursors of steroid hormones and bile acids. Polyprenols function as photoreceptive agents and cofactor side chains, and can also exist as natural polymers.

The diverse molecular compounds produced by the isoprenoid pathway are created from diphosphate esters of monounsaturated isoprene units.

Isoprenes are added together in multiples of 2, 3, or 4 by prenyl transferases to make C_{10} , C_{15} , and C_{20} units, respectively. The C_{10} , C_{15} , and C_{20} molecules, named geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP), respectively, serve as substrates for terpene synthases.

Terpene synthases catalyze the production of isoprenoid chemistry or biology. In general, terpene synthases are moderately sized enzymes having molecular weights of about 40 to 100 kD. As an enzyme, terpene synthases can be classified as having low to moderate turnover rates coupled with exquisite reaction specificity and preservation of chirality. Turnover comprises binding of substrate to the enzyme, establishment of substrate conformation, conversion of substrate to product and product release. Reactions can be performed in vitro in aqueous solvents, typically require magnesium ions as cofactors, and the resulting products, 55 which are often highly hydrophobic, can be recovered by partitioning into an organic solvent.

Terpene synthase genes are found in a variety of organisms including bacteria, fungi and plants. Swapping regions approximating exons between different terpene synthases has identified functional domains responsible for terminal enzymatic steps. For example, work performed on 5-epiaristolochene synthase (TEAS) from Nicotiana tabacum (tobacco) and Hyoscyamus muticus vetispiradiene synthase (HVS) from henbane revealed that exon 4 and exon 6, 65 respectively, were responsible for reaction product specificity. Combining functional domains resulted in novel

enzymes capable of synthesizing new reaction products (U.S. Pat. No. 5,824,774).

Studies have led to proposed reaction mechanisms for isoprenoid production; see, e.g., Cane et al., 1985, Bioorg. Chem., 13:246–265; Wheeler and Croteau, 1987, Proc. Natl. Acad. Sci. USA, 84:4856–4859; and Pyun et al., 1994, Arch. Biochem. Biophys., 308:488-496. The studies used substrate analogs and suicide inhibitors (Croteau, 1994, Arch. Biochem. Biophys., 251:777-782; Cane et al., 1995, Biochemistry, 34:2471-2479; and Croteau et al., 1993, Arch. Biochem. Biophys., 307:397-404), as well as chemical-modifying reagents and site-directed mutagenesis in efforts to identify amino acids essential for catalysis (Cane et al., 1995, Biochemistry, 34:2480-2488; Rajaonarivony et al., 1992, Arch. Biochem. Biophys., 296:49-57; and Rajaonarivony et al., 1992, Arch. Biochem. Biophys., 299:77-82). However, these studies have resulted in limited success in defining the active site due to inherent limitations with these techniques.

SUMMARY OF THE INVENTION

The invention describes a method of identifying alphacarbon atoms found in the active site of a terpene synthase and describes these atoms in three-dimensional space as well as the spatial relationships among them. The present invention also describes R-groups associated with such alphacarbons and methods of altering these R-groups in order to create novel terpene synthases capable of generating novel reaction products.

Until the invention taught in this present application, the active site of synthase proteins, the amino acid residues located therein, the amino acid residues involved in catalysis, and the configuration of α-carbons and R-groups within the active site have not been known. The current invention now teaches the structure of synthases, as well as provides the means of making and using the information obtained therefrom to develop and produce new and novel synthases having new and novel synthetic capabilities. The 40 data generated using the methods described herein are useful for creation and production of synthase mutants that can use a variety of isoprenoid substrates and produce a variety of isoprenoid products.

In one embodiment, the invention features an isolated compounds via one of the most complex reactions known in 45 terpene synthase having about 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2. Such a synthase comprises nine α-carbons having interatomic distances in Angstroms between the α -carbons that are ± 2.3 Angstroms of the interatomic distances shown in Table 6. The center point of each α -carbon is positioned within a sphere having a radius of 2.3 Angstroms. The center point of each such sphere has the structural coordinates given in Table 5. Each α-carbon has an associated R-group, and the synthase has an ordered arrangement of R-groups associated with each alpha-carbon other than the ordered arrangements of R-groups shown in Table 9. The synthase can have about 25% or greater sequence identity to residues 265 to 535 of SEQ ID 2, or about 35% or greater sequence identity to residues 265 to 535 of SEQ ID 2. Such a synthase can catalyse the formation of a terpenoid product from a monoterpene substrate, a sesquiterpene substrate, or a diterpene substrate. The product can be a cyclic terpenoid hydrocarbon or an acydic terpenoid hydrocarbon. Either type of product can be hydroxylated or non-hydroxylated. The R-group associated with α-carbon 1 can be selected from one of the following groups: the group consisting of Cys, Ser, and Thr, the group consisting of Phe, Tyr and Trp, the group consist-

ing of Pro, Gly, and Ala, the group consisting of Glu and Asp, the group consisting of Met, Ile, Val and Leu, the group consisting of Arg and Lys, and the group consisting of Gin, As and His. R-groups associated with α -carbons 2 to 9 can be any amino acid except those having the ordered arrangements of Table 9. Similarly, the R-group associated with each of α -carbons 2–9 can be selected independently from the group consisting of Cys, Ser and Thr, the group consisting of Phe, Tyr and Trp, the group consisting of Pro, Gly, and Ala, the group consisting of Glu and Asp, the group consisting of Met, Ile, Val and Leu, the group consisting of Arg and Lys, and the group consisting of Gin, Asn and His. In these embodiments, R-groups associated with the remaining eight α-carbons except those having the ordered arrangements of Table 9.

In some embodiments, the ordered arrangement of R-groups associated with α -carbons 1 to 9 is Trp, Ile, Thr, Thr, Tyr, Leu, Cys, Thr and Phe, respectively, Ser, Ile, Thr, Thr, Tyr, Leu, Cys, Thr and Tyr, respectively, Trp, Ile, Thr, Thr, Tyr, Leu, Trp, Thr and Tyr, respectively, Ser, Ile, Thr, 20 Thr, Tyr, Leu, Trp, Thr and Tyr, respectively, or Glu, Ile, Thr, Thr, Tyr, Leu, Cys, Thr and Tyr, respectively.

The invention also features a terpene synthase made by aligning the primary amino acid sequence of a preselected terpene synthase polypeptide to the amino acid sequence of residues 265 to 535 of SEQ ID NO:2, mutating a nucleic acid encoding the preselected polypepxide at one or more codons for nine amino acid residues in a region of the polypeptide primary amino acid sequence having about 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, the nine residues in the polypeptide aligning with residues 273, 294, 402, 403, 404, 407, 440, 519 and 520 of SEQ ID NO:2; and expressing the mutated nucleic acid so that a mutated terpene synthase is made.

The invention also features an isolated terpene synthase 35 having about 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, the synthase comprising sixteen \alpha-carbons having interatomic distances in Angstroms between the α -carbons that are ± 2.3 Angstroms of the interatomic distances given in Table 4. The center point of each α-carbon is positioned within a sphere having a radius of 2.3 Angstroms. The center point of each of the spheres has the structural coordinates given in Table 3. Each α -carbon has an associated R-group, and the synthase has an ordered arrangement of R-groups other than the ordered arrange- 45 ments of R-groups given in Table 8. The synthase can have about 25% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, or about 35% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2. The synthase can catalyse the formation of a terpenoid product 50 from a monoterpene substrate, a sesquiterpene substrate, or a diterpene substrate. The product can be, for example, a cyclic terpenoid hydrocarbon. The ordered arrangement of R-groups in the synthase associated with α -carbons 1 to 16 Thr, Tyr, Asp, Phe and Thr, respectively.

The invention also features an isolated terpene synthase having about 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, the synthase comprising nineteen α-carbons having interatomic distances in Angstroms between the α -carbons that are ± 2.3 Angstroms of the interatomic distances given in Table 2. The center point of each α-carbon is positioned within a sphere having a radius of 2.3 Angstroms. The center points of each sphere have the structural coordinates given in Table 1. Each α -carbon has $_{65}$ a synthase. an associated R-group, and the synthase has an ordered arrangement of the R-groups other than the ordered arrange-

ments of R-groups given in Table 7. The synthase can have about 25% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, or about 35% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2. The synthase can catalyse the formation of a terpenoid product from a monoterpene substrate, a sesquiterpene substrate, or a diterpene substrate. The product can be, for example, a cyclic terpenoid hydrocarbon.

The invention also features an isolated protein comprising 10 a first domain having an amino terminal end and a carboxyl terminal end. The first domain comprises amino acids that align structurally in three-dimensional space with a glycosyl hydrolase catalytic core, the glycosyl hydrolase catalytic core selected from the group consisting of amino acids 36 to 230 of glucoamylase protein databank (PDB) code 3GLY of Aspergillus awamori and amino acids 36 to 230 of endoglucanase CelD PDB code 1 CLC. The isolated protein also comprises a second domain having an amino terminal end and carboxyl terminal end. The second domain comprises amino acids that align structurally in three-dimensional space with avian FPP synthase. The carboxyl terminal end of the first domain is linked to the amino terminal end of the second domain. The second domain has about 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, and comprises nine α -carbons having interatomic distances in Angstroms between the α -carbons that are ± 2.3 Angstroms of the interatomic distances given in Table 6. The center point of each α -carbon is positioned within a sphere having a radius of 2.3 Angstroms, the center point of each sphere having the structural coordinates given in Table 5. Each α-carbon has an associated R-group, and the synthase has an ordered arrangement of R-groups other than the ordered arrangements of R-groups given in Table 9. The protein can have about 25% or greater sequence identity to SEQ ID NO:2, or about 35% or greater sequence identity to SEQ ID NO:2. The synthase can catalyse the formation of a terpenoid product from a monoterpene substrate, a sesquiterpene substrate, or a diterpene substrate. The product can be, for example, a cyclic terpenoid hydrocarbon.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 343 to 606 of SEQ ID NO:20, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 348, 351, 372, 375, 376, 454, 479, 480, 481, 482, 485, 519, 523, 597, 600, 601, 605, 607 and 608 of SEQ ID NO:20 are residues other than amino acids Y, L, C, I, T, Y, S, C, G, H, S, L, G, F, G, Y, D, Y and S, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to can be Cys, Trp, Ile, Ile, Ser, Thr, Tyr, Leu, Cys, Val, 55 residues 316 to 586 of SEQ ID NO:22, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 321, 324, 345, 348, 349, 427, 452, 453, 454, 455, 458, 492. 496, 569, 572, 573, 577, 579 and 580 of SEO ID NO:22 are residues other than amino acids C, W, N, I, T, Y, S, I, S, G, M, L, D, A, M, Y, D, H and G, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more ordered arrangements of residues as given in Table 7 are not found in such

> The invention also features an isolated synthase having a region with about 40% or greater sequence identity to

residues 352 to 622 of SEQ ID NO:58, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 357, 360, 381, 384, 385, 463, 487, 488, 489, 490, 493, 528, 532, 606, 609, 610, 614, 616 and 617 of SEQ ID NO:58 are residues other than amino acids Y, M, C, V, T, F, V, S, S, G, I, L, G, F, V, Y, D, Y and T, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found 10 in such a synthase. in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to amino acid residues 272 to 540 encoded by SEQ ID NO:33, wherein one or more amino acid residues of the synthase that align with amino add residues at positions 277, 280, 301, 304, 305, 383, 408, 409, 410, 411, 414, 448, 452, 524, 527, 528, 532, 534 and 535 encoded by SEO ID NO: 33 are residues other than amino acids G, W, I, A, S, Y, T, S, G, Y, L, C, D, M, L, Y, D, Y and T, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 319 to 571 of SEQ ID NO:42, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 324, 327, 348, 351, 352, 430, 455, 456, 457, 458, 461, 495, 499, 571, 574, 575, 579, 581 and 582 of SEQ ID NO:42 are residues other than amino acids I, W, V, I, S, Y, T, T, G, L, V, I, N, T, S, Y, D, Y, and T, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 579 to 847 of SEQ ID NO:44, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 584, 587, 606, 609, 610, 688, 713, 714, 715, 716, 719, 753, 757, 831, 834, 835, 839, 841 and 842 of SEQ ID NO:44 are residues other than amino acids V, S, G, Q, V, Y, S, V, G, L, C, W, N, V, F, Y, D, Y and G, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 495 to 767 of SEQ ID NO:46, wherein one or more amino acid residues of the synthase that align with amino 55 acid residues at positions 500, 503, 524, 527, 528, 606, 631, 632, 633, 634, 637, 674, 678, 751, 754, 755, 759, 761 and 762 of SEQ ID NO:46 are residues other than amino acids F, L, A, Q, T, Y, S, I, G, Q, L, S, D, T, I, F, D, F and G, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

region with about 40% or greater sequence identity to residues 295 to 564 of SEQ ID NO:48, wherein one or more

amino acid residues of the synthase that align with amino acid residues at positions 300, 303, 324, 327, 328, 406, 431, 432, 433, 434, 437, 471, 475, 548, 551, 552, 556, 558 and 559 of SEO ID NO:48 are residues other than amino acids Y, W, A, C, T, Y, S, S, G, M, L, G, D, L, I, Y, D, L and Y, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 307 to 578 of SEQ ID NO:50, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 312, 315, 336, 339, 340, 419, 444, 445, 446, 447, 450, 484, 488, 562, 565, 566, 570, 572 and 573 of SEQ ID NO:50 are residues other than amino acids F, W, A, M, T, Y, N, T, G, M, L, S, D, I, M, Y, D, F and S, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 264 to 533 of SEQ ID NO:52, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 269, 272, 293, 296, 297, 375, 401, 402, 403, 404, 407, 441, 445, 517, 520, 521, 525, 527 and 528 of SEQ ID NO:52 are residues other than amino acids C, W, L, T, S, Y, S, A, G, Y, I, A, N, A, L, Y, D, Y and S, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 585 to 853 of SEQ ID NO:56, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 590, 593, 614, 617, 618, 696, 721, 722, 723, 724, 727, 761, 765, 837, 840, 841, 845, 847 and 848 of SEQ ID NO:56 are residues other than amino acids I, S, S, T, V, Y, S, I, A, L, V, G, N, M, F, Y, D, L and T, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 307 to 574 of SEQ ID NO:54, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 312, 315, 336, 339, 340, 418, 443, 444, 445, 446, 449, 483, 487, 560, 563, 564, 566, 568 and 569 of SEQ ID NO:54 are residues other than amino acids C, W, I, I, T, Y, S, I, S, A, I, L, D, A, I, Y, D, D and G, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a The invention also features an isolated synthase having a 65 region with about 40% or greater sequence identity to residues 309 to 577 of SEQ ID NO:24, wherein one or more amino acid residues of the synthase that align with amino

acid residues at positions 314, 317, 338, 341, 342, 420, 446, 447, 448, 449, 452, 485, 489, 560, 563, 564, 569, 571 and 572 of SEQ ID NO:24 are residues other than amino acids C, W, N, V, T, Y, I, G, G, I, L, L, D, A, I, Y, D, F and G, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

region with about 40% or greater sequence identity to residues 315 to 584 of SEO ID NO:26, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 320, 323, 344, 347, 348, 426, 451, 452, 453, 454, 457, 492, 496, 568, 571, 572, 576, 578 and 579 of SEQ ID NO:26 are residues other than amino acids S, W, I, A, T, Y, S, V, A, S, I, L, D, A, I, Y, D. F, and G, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered $\ ^{20}$ arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 265 to 536 of SEQ ID NO:28, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 270, 273, 294, 297, 298, 376, 401, 402, 403, 404, 407, 440, 444, 518, 521, 522, 528, 530 and 531 of SEQ ID NO:28 are residues other than amino acids A, W, V, C, G, F, T, S, C, I, M, G, N, C, S, Y, D, Y and S, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features an isolated synthase having a region with about 40% or greater sequence identity to residues 342 to 612 of SEQ ID NO:30, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 347, 350, 371, 374, 375, 453, 478, 479, 480, 481, 483, 518, 522, 596, 599, 600, 604, 606 and 607 of SEQ ID NO:30 are residues other than amino acids F, L, C, V, T, Y, S, S, A, Y, V, L, G, L, L, Y, D, F and S, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more of the ordered arrangements of residues as given in Table 7 are not found in such a synthase.

region with about 40% or greater sequence identity to residues 273 to 541 of SEQ ID NO:32, wherein one or more amino acid residues of the synthase that align with amino acid residues at positions 278, 281, 302, 305, 306, 384, 409, 410, 411, 412, 415, 448, 452, 524, 527, 528, 533, 535 and 536 of SEQ ID NO:32 are residues other than amino acids C, W, I, I, S, Y, T, S, T, Y, L, C, D, I, T, Y, D, Y and T, respectively. In some embodiments, the sequence identity can be about 20% or greater, 25% or greater, or 35% or greater. In some embodiments, one or more ordered arrangements of residues as given in Table 7 are not found in such a synthase.

The invention also features a method for making a terpene synthase, comprising identifying, in a preselected polypeptide having a region with 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, nine amino acid residues whose α-carbons have interatomic distances in

Angstroms between the α -carbons that are ± 2.3 Angstroms of the interatomic distances given in Table 6. The center point of each α -carbon is positioned with a sphere having a radius of 2.3 Angstroms. The center point of each sphere has the structural coordinates given in Table 5. The method then comprises synthesizing a polypeptide that is modified from the preselected polypeptide. The modified polypeptide has one or more R-groups associated with the nine α-carbons other than the R-groups associated with the α -carbons in the The invention also features an isolated synthase having a 10 preselected polypeptide. The synthesizing step can comprise the formation of a nucleic acid encoding the preselected polypeptide in which the coding sequence for one or more amino acids corresponding to the nine α -carbons is replaced by a coding sequence that codes for an amino acid different from the amino acid present in the preselected polypeptide. The preselected polypeptide can be, for example, any one of the polypeptides given in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 20, 22, 24, 26, 28, 30, 32, 34–40, 42, 44, 46, 48, 50, 52, 54, 56, or 58.

The invention also features a method of using a terpene synthase, comprising identifying, in a preselected polypeptide having a region with 20% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, amino acid residues at nine positions that align with amino acid residues 273, 294, 402, 403, 404, 407, 440, 519 and 520 of SEQ ID NO:2; and synthesizing a polypeptide that is modified from the preselected polypeptide. The novel polypeptide is modified by having amino acid residues at one or more of the nine positions other than the amino acid residues present in the preselected polypeptide. In some embodiments, the identifying step can comprise identifying sixteen amino acid residues in the preselected polypeptide that align with amino acid residues 270, 273, 294, 297, 298, 402, 403, 404, 407, 440, 516, 519, 520, 525, 527 and 528 of SEQ ID NO:2, and 35 the synthesizing step can comprise synthesizing a polypeptide that is modified from the preselected polypeptide, the modified polypeptide having amino acid residues at one or more of the sixteen positions other than the amino add residues present in the preselected polypeptide. In some embodiments, the identifying step can comprise identifying nineteen amino acid residues in the preselected polypeptide that align with amino acid residues 270, 273, 294, 297, 298, 376, 401, 402, 403, 404, 407, 440, 444, 516, 519, 520, 525, 527 and 528 of SEQ ID NO:2, and the synthesizing step can 45 comprise synthesizing a polypeptide that is modified from the preselected polypeptide, the modified polypeptide having amino acid residues at one or more of the nineteen positions other than the amino acid residues present in the preselected polypeptide. The synthesizing step can comprise The invention also features an isolated synthase having a 50 the formation of a nucleic acid encoding the preselected polypeptide in which the coding sequence in the nucleic acid coding for one or more of the identified amino acid residues is replaced by a coding sequence that encodes an amino acid different from the amino acid present in the preselected polypeptide. The preselected polypeptide can be, for example, any one of the polypeptides given in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 20, 22, 24, 26, 28, 30, 32, 34–40, 42, 44, 46, 48, 50, 52, 54, 56, or 58. The method can further comprise: contacting the modified polypeptide with an isopreanoid substrate under conditions effective for the compound to bind the polypeptide; and measuring the ability of the modified polypeptide to catalyze the formation of a reaction product from the isoprenoid substrate. The isoprenoid substrate can be a monoterpene, a sesquiterpene, or 65 a diterpene.

> The invention also features a method of making a terpene synthase, comprising creating a population of nucleic acid

molecules that encode polypeptides, the population having members that differ from one another at one or more of nine codons specifying amino acids of a preselected terpene synthase having a region with about 20% or greater sequence identity to residues 265 to 535 of SEO ID NO:2, α-carbons of the nine amino acids having interatomic distances in Angstroms between the α -carbons that are ± 2.3 Angstroms of the interatomic distances given in Table 6. The center point of each α -carbon is positioned within a sphere having a radius of 2.3 Angstroms, and the center point of each sphere has the structural coordinates given in Table 5. In some embodiments, the codons specify amino acids as described in Tables 1-2 or 3-4 of a preselected terpene synthase. A portion, or all, of the nucleic acid population is expressed so that a population of polypeptides is made. At least one member of the population of polypeptides is a mutant terpene synthase. The expressing step can comprise in vitro transcription and in vitro translation of the nucleic acid population. In some embodiments, the expressing step comprises cloning members of the nucleic acid population 20 into an expression vector, introducing the expression vector into host cells and expressing the cloned nucleic acid population members in the host cells so that the population of polypeptides is made. The preselected terpene synthase polypeptide can be a monoterpene synthase, a sesquiterpene synthase, or a diterpene synthase. The host cells can be prokaryotic cells or eukaryotic cells, including, without limitation, bacterial cells, fungal cells, and animal cells, e.g., mammalian cells or insect cells. The host cells can also be plant cells, e.g., a cell from a Graminaceae plant, a cell from a Legumineae plant, a cell from a Solanaceae plant, a cell from a Brassicaeae plant or a cell from a Conifereae plant.

The invention also features a nucleic acid encoding a synthase as described herein, and a host cell containing such a nucleic acid. The invention also features a transgenic plant containing such a nucleic acid, or a transgenic animal cell culture containing such a nucleic acid.

In some embodiments, a synthase polypeptide of the invention comprises a domain that contains an active site comprised of nine α -carbon atoms having the coordinates of 40 Table 5, and interatomic distances between the α -carbons ±2.3 angstroms of the distances given in Table 6. The α-carbon atoms align structurally in three dimensional space in the presence or absence of bound substrate or substrate analogue, with avian FPP synthase. In another embodiment, 45 a synthase of this invention comprises the following: (i) a first domain containing amino acid residues that align in three-dimensional space (in solution or crystal form, and either having a bound or unbound substrate) with a glycosyl hydrolase catalytic core selected from the group consisting 50 calculated from the center point of each sphere. of (a) amino acids 36-230 of glycosyl hydrolase (PDB code 3GLY) of Aspergillus awarmori, and (b) amino acids 36-230 of endogluconase CellB (PDB code 1CLC), and (ii) a second domain that aligns structurally in three dimensional space with or without substrate or substrate analogues bound 55 in the active site with avian FPP synthase. The second domain contains an active site comprised of nine, sixteen or nineteen α -carbon atoms having the structural coordinates and interatomic distances of Tables 1-2, 3-4 or 5-6. These α-carbon atoms have R-groups attached thereto that can interact, either directly or indirectly, with an isoprenoid substrate.

The invention also features a method for generating mutant terpene synthases possessing catalytic activity. The method comprises the steps of (a) providing a crystallo- 65 the substrate analog FHP bound in the active site. graphic model of a preselected catalytically active terpene synthase having an active site, and (b) using the model to

10

design a terpene synthase having at least one altered R-group in the active site relative to the preselected synthase. The invention also features terpene synthases having altered substrate specificity, methods of making the same, and procedures for generating three-dimensional structures thereof.

Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety.

Other aspects, embodiments, advantages, and features of the present invention will become apparent from the speci-

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 Schematic representation of tobacco 5-epiaristolochene synthase (TEAS) with bound farnesyl hydroxyphosphonate (FHP), prepared using the RIBBONS software program of Carson, M. and Bugg, C., J. Mol. Graphics 4:121 (1986). Cylinders 1-8 and A represent α-helices in the NH₂-terminal domain; cylinders C, D, D1, D2, E, F, G1, G2, H1, H2, H3, I and α -1 represent α -helices in the COOH-terminal domain.

FIG. 2. Structure of twenty natural amino acids showing α-carbons and associated R-groups.

FIG. 3. Autoradiogram of an argentation thin-layer chro-30 matogram of terpenoid hydrocarbon products made by TEAS and mutant TEAS enzymes using GGPP as a substrate. DM: W273S/C440W mutant TEAS enzyme.

FIG. 4. Autoradiogram of an argentation thin-layer chromatogram of terpenoid hydrocarbon products made by $^{35}\;$ TEAS and mutant TEAS enzymes using FPP as a substrate.

BRIEF DESCRIPTION OF TABLES

Table 1. X-ray crystallographic structural coordinates for 19 α -carbons found in the active site of a terpene synthase.

Table 2. Interatomic distances in Angstroms between each α-carbon of Table 1. Each α-carbon occupies a sphere having a radius of 2.3 Angstroms. Interatomic distances are calculated from the center point of each sphere.

Table 3. X-ray crystallographic structural coordinates for 16 α -carbons found in the active site of a terpene synthase.

Table 4. Interatomic distances in Angstroms between each α-carbon of Table 3. Each α-carbon occupies a sphere having a radius of 2.3 Angstroms. Interatomic distances are

Table 5. X-ray crystallographic structural coordinates for nine α -carbons found in the active site of a terpene synthase.

Table 6. Interatomic distances in Angstroms between each α-carbon of Table 5. Each α-carbon occupies a sphere having a radius of 2.3 Angstroms. Interatomic distances are calculated from the center point of each sphere.

Table 7. Ordered arrangement of R-groups not found associated with the α -carbons of Table 1.

Table 8. Ordered arrangement of R-groups not found associated with the α -carbons of Table 3.

Table 9. Ordered arrangement of R-groups not found associated with the α -carbons of Table 5.

Table 10. X-ray structural coordinates for TEAS having

Table 11. X-ray structural coordinates for TEAS in the absence of substrate.

Table 12. Alignment of residues 265-535 of TEAS with a limonene synthase, SEQ ID NO:22, using the BLASTp alignment program.

Table 13. Alignment of residues 579 to 847 of SEQ ID NO:44 with SEQ ID NO:26, using the BLASTp program.

Table 14. Alignment of residues 265 to 535 of TEAS with SEQ ID NO:48, using the BLASTp program.

Table 15. Alignment of residues 307 to 593 of SEQ ID NO:50 with SEQ ID NO:56 using the BLASTp program.

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

SEQ ID NO:1 is the DNA coding sequence for a tobacco 5-epi-aristolochene synthase (TEAS) protein. Genbank No: 15 O40577.

SEQ ID NO:2 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:1.

SEQ ID NO:3 is the DNA coding sequence for a TEAS protein in which the codon for Trp273 has been changed to 20 a codon for Glu.

SEQ ID NO:4 is the amino acid sequence for the W273E protein encoded by the TEAS DNA of SEQ ID NO:3.

SEQ ID NO:5 is the DNA coding sequence for a TEAS protein in which the codon for Tyr520 has been changed to 25 a codon for Phe.

SEQ ID NO:6 is the amino add sequence for the Y520F protein encoded by the TEAS DNA of SEQ ID NO:5.

SEQ ID NO:7 is the DNA coding sequence for a TEAS protein in which the codon for Tyr527 has been changed to a codon for Phe.

SEQ ID NO:8 is the amino acid sequence for the Y527F protein encoded by the TEAS DNA of SEQ ID NO:7.

SEQ ID NO:9 is the DNA coding sequence for a TEAS 35 protein in which the codon for Trp273 has been changed to a codon for Ser and the codon for Cys440 has been changed to a codon for Trp.

SEQ ID NO:10 is the amino acid sequence for the W273S/C440W protein encoded by the TEAS DNA of SEQ 40 ID NO:9.

SEQ ID NO:11 is the DNA coding sequence for TEAS proteins in which the codons for Tyr406 and Leu407 have each been changed to the nucleotides NNS.

SEQ ID NO:12 is the amino acid sequence for the population of Y406X/L407X proteins encoded by the TEAS DNA of SEQ ID NO:11, where X is any naturally occurring

SEQ ID NO:13 is a DNA primer sequence.

SEQ ID NO:14 is a DNA primer sequence.

SEQ ID NO:15 is a DNA primer sequence.

SEQ ID NO:16 is a DNA primer sequence.

SEQ ID NO:17 is a DNA primer sequence.

SEQ ID NO:18 is a DNA primer sequence.

SEQ ID NO:19 is the DNA coding sequence for a grand fir pinene synthase. Genbank Accession No: U87909.

SEQ ID NO:20 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:19.

SEQ ID NO:21 is the DNA coding sequence for a spearmint limonene synthase. Genbank Accession No: L13459.

SEQ ID NO:22 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:21.

SEQ ID NO:23 is the DNA coding sequence for a sage 1, 8 cineole synthase. Genbank Accession No: AF051899.

12

SEO ID NO:24 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:23.

SEQ ID NO:25 is the DNA coding sequence for a sage bornyl diphosphate synthase. Genbank Accession No: AF051900.

SEQ ID NO:26 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:25.

SEQ ID NO:27 is the DNA coding sequence for a mint E-b-farnesene synthase. Genbank Accession No: AF024615.

SEQ ID NO:28 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:27.

SEQ ID NO:29 is the DNA coding sequence for a grand fir myrcene synthase. Genbank Accession No: U87908.

SEQ ID NO:30 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:29.

SEQ ID NO:31 is the DNA coding sequence for a potato vetaspiradiene synthase. Genbank Accession No: AB022598.

SEQ ID NO:32 is the amino acid sequence for the pratein encoded by the DNA of SEQ ID NO:31.

SEQ ID NO:33 is the genomic DNA coding sequence for a cotton delta-cadinene synthase. Genbank Accession No:

SEQ ID NOS: 34–40 are the amino acid sequences for the exons encoded by the DNA of SEQ ID NO:33.

SEQ ID NO:41 is the DNA coding sequence for a castor bean casbene synthase. Genbank Accession No: L32134.

SEQ ID NO:42 is the amino add sequence for the protein encoded by the DNA of SEQ ID NO:41.

SEQ ID NO:43 is the DNA coding sequence for a yew taxadiene synthase. Genbank Accession No: U48796.

SEQ ID NO:44 is the amino add sequence for the protein encoded by the DNA of SEQ ID NO:43.

SEQ ID NO:45 is the DNA coding sequence for a grand fir E-alpha-bisabolene synthase. Genbank Accession No: AF006194.

SEQ ID NO:46 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:45.

SEQ ID NO:47 is the DNA coding sequence for a grand fir delta-selinene synthase. Genbank Accession No: U92266.

SEQ ID NO:48 is the amino acid sequence for the protein 45 encoded by the DNA of SEQ ID NO:47.

SEQ ID NO:49 is the DNA coding sequence for a grand fir gamma-humulene synthase. Genbank Accession No: U92267.

SEQ ID NO:50 is the amino acid sequence for the protein 50 encoded by the DNA of SEQ ID NO:49.

SEQ ID NO:51 is the DNA coding sequence for a tomato germacrene C synthase. Genbank Accession No: AF035631.

SEQ ID NO:52 is the amino add sequence for the protein encoded by the DNA of SEQ ID NO:51.

SEQ ID NO:53 is the DNA coding sequence for a sage +sabinene synthase. Genbank Accession No: AF051901.

SEQ ID NO:54 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:53.

SEQ ID NO:55 is the DNA coding sequence for a grand fir abietadiene synthase. Genbank Accession No: U50768.

SEQ ID NO:56 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:55.

SEQ ID NO:57 is the. DNA coding sequence for a grand 65 fir limonene synthase. Genbank Accession No: AF06193.

SEQ ID NO:58 is the amino acid sequence for the protein encoded by the DNA of SEQ ID NO:57.

DETAILED DESCRIPTION

The following terms are used herein:

" α -carbon" refers to the chiral carbon atom found in an amino acid residue. Four substituents are covalently bound to the α -carbon, including an amino group, a carboxyl group, a hydrogen atom, and an R-group.

"R-group" refers to a substituent attached to the α -carbon of an amino acid residue that is not involved in peptide bond formation in a protein. An R-group is an important determinant of the overall chemical character of an amino acid. The twenty naturally occurring amino acids found in proteins and the R-groups associated with the α -carbon of each amino acid are listed in FIG. 2. The three-letter and one-letter abbreviations for naturally occurring amino acids are 15 sometimes used herein to refer to the R-group associated with a particular amino acid.

"Naturally occurring amino acid" includes L-isomers of the twenty amino acids naturally occurring in proteins. Naturally occurring amino acids are glycine, alanine, valine, 20 leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, and lysine. Unless specially indicated, all amino acids referred to in this application are in the 25 L-form. Three-letter and one-letter abbreviations are sometimes used herein to refer to naturally occurring amino acids. These abbreviations are known in the art.

"Unnatural amino add" includes amino acids that are not naturally found in proteins. Examples of unnatural amino 30 acids included herein are racemic mixtures of selenocysteine and selenomethionine. In addition, unnatural amino acids include the D or L forms of norleucine, paranitrophenylalanine, homophenylalanine, parafluorophenylalanine, 3-amino-2-benzylpropionic acid, 35 homoarginine, D-phenylalanine, and the like.

"Positively charged amino acid" includes any naturally occurring or unnatural amino acid having an R-group that carries a positive charge under normal physiological conditions. Examples of positively charged, naturally occurring amino acids include arginine and lysine.

"Negatively charged amino acid" includes any naturally occurring or unnatural amino acid having an R-group that carries a negative charge under normal physiological conditions. Examples of negatively charged, naturally occurring amino acids include aspartic add and glutamic acid.

"Hydrophobic amino acid" includes any naturally occurring or unnatural amino acid having an uncharged, nonpolar side chain under normal physiological conditions. Examples of naturally occurring hydrophobic amino acids are leucine, isoleucine, valine and methionine.

"Hydrophilic amino acid" includes any naturally occurring or unnatural amino acid having a charged polar side chain. Examples of naturally occurring hydrophilic amino 55 acids include serine, threonine and cysteine.

"Mutant terpene synthase" or "mutated terpene synthase" refers to a synthase polypeptide having a primary amino acid sequence. The center point of the α -carbon of nine residues of the polypeptide is positioned within a sphere having a radius of 2.3 Angstroms; the center points of the nine spheres have the structural coordinates of Table 5 or coordinates which can be rotated and/or translated to coincide with the coordinates of Table 5. The relative interatomic distances between the nine α -carbons is ± 2.3 angstroms of the nine distances between the nine α -carbons is ± 2.3 angstroms of the nine code. Table 5. The relative interatomic distances given in Table 6. Each α -carbon has an associated R-group. A mutant synthase differs from a

14

non-mutant synthase in the ordered arrangement of R-groups associated with the nine $\alpha\text{-carbons}$. A mutant synthase has an ordered arrangement of R-groups on the nine $\alpha\text{-carbons}$ other than the ordered arrangements of R-groups listed in Table 9. R-groups associated with other carbons of the synthase primary amino acid sequence mayor may not be the same as in a non-mutated synthase.

In some embodiments, a mutant synthase refers to a synthase in which the center point of the α -carbon of sixteen residues of the polypeptide is positioned within a sphere having a radius of 2.3 Angstroms; the center points of the sixteen spheres have the structural coordinates of Table 3 or coordinates which can be rotated and/or translated to coincide with the coordinates of Table 3. The relative interatomic distances between the nine α -carbons is ± 2.3 angstroms of the interatomic distances given in Table 4. Each α -carbon has an associated R-group. A mutant synthase differs from a non-mutant synthase in the ordered arrangement of R-groups associated with the sixteen α -carbons. A mutant synthase has an ordered arrangement of R-groups on the sixteen \alpha-carbons other than the ordered arrangements of R-groups listed in Table 8. R-groups associated with other α-carbons of the synthase primary amino acid sequence may or may not be the same as in a non-mutated synthase.

In some embodiments, a mutant synthase refers to a synthase in which the center point of the α -carbon of nineteen residues of the polypeptide is positioned within a sphere having a radius of 2.3 Angstroms; the center points of the nineteen spheres have the three dimensional coordinates of Table 1 or coordinates which can be rotated and/or translated to coincide with the coordinates of Table 1. The relative interatomic distances between the nineteen α -carbons is ± 2.3 angstroms of the interatomic distances given in Table 2. Each α-carbon has an associated R-group. A mutant synthase differs from a non-mutant synthase in the ordered arrangement of R-groups associated with the nineteen α-carbons. A mutant synthase has an ordered arrangement of R-groups on the nineteen α-carbons other than the ordered arrangements of R-groups listed in Table 7. R-groups associated with other α -carbons of the synthase primary amino acid sequence may or may not be the same as in a non-mutated synthase.

"Nonmutated synthase" or "non-mutant synthase" includes a synthase having a primary amino acid sequence comprising nine, sixteen, or nineteen amino acid residues.

The center point of each α-carbon of these residues is positioned within a sphere having a radius of 2.3 Angstroms; the center points of the spheres have the three dimensional coordinates of Tables 5, 3, or 1, respectively, or coordinates which can be rotated and/or translated to coincide with the coordinates of Tables 5, 3, or 1. The relative interatomic distances between the nine, sixteen, or nineteen α-carbons is ±2.3 angstroms of the interatomic distances given in Tables 6, 4, or 2, respectively. Each α-carbon has an associated R-group. A non-mutant synthase has an ordered arrangement of R-groups on the nine, sixteen, or nineteen α-carbons as listed in Tables 9, 8, or 7, respectively.

"Degenerate variations thereof" refers to variants of a gene coding sequence by which the same polypeptide is encoded by different nucleotide sequences, due to the degeneracy of the genetic code. For example, synthases of the present invention have a primary amino acid sequence. Degenerate synthase variations are different nucleic acid coding sequences that nevertheless encode the same primary amino acid sequence due to the degeneracy of the genetic code.

"Expression" refers to transcription of a gene or nucleic acid molecule and the translation of that nucleic acid into a

polypeptide. Expression of genes also involves processing of RNA into mRNA in eukaryotic systems. It is not necessary for the genes to integrate into the genome of a cell in order to achieve expression. This definition is not limited to expression in a particular system or a particular cell type and includes, without limitation, stable, transient, in vitro, and in vivo expression.

"Promoter" and "promoter regulatory element", refers to a nucleic acid that is involved in controlling expression of a gene. Promoter regulatory elements, and the like, from a ¹⁰ variety of sources can be used efficiently to promote gene expression. Promoter regulatory elements include constitutive, tissue-specific, developmental-specific, inducible, subgenomic promoters, and the like. Promoter regulatory elements may also include certain enhancer ele- ¹⁵ ments or silencing elements that improve or regulate transcriptional efficiency.

"Active Site" refers to a site in a terpene synthase that binds the hydrophobic portion of a terpene substrate, GPP, FPP, and/or GGPP. The active site can, under certain conditions, catalyze a biosynthetic reaction that allows one or more reaction products to be produced.

"Altered enzymatic specificity" includes an alteration in the ability of a mutant synthase to use a particular terpene substrate or a change in the profile of reaction product(s) from a mutant synthase, compared to the substrate specificity of and the reaction products made by a corresponding non-mutated synthase. Altered specificity may include the ability of a synthase to exhibit different enzymatic parameters relative to a non-mutated synthase (Km, Vmax, etc), and/or to produce products that are different from those that are produced by a corresponding non-mutant synthase.

"Structure coordinates" or "structural coordinates" refers to Cartesian coordinates (x, y, and z positions) derived from mathematical equations involving Fourier synthesis as determined from patterns obtained via diffraction of a monochromatic beam of X-rays by the atoms (scattering centers) of a synthase molecule in crystal form. Diffraction data are used to calculate electron density maps of repeating protein 40 lated gene. units in the crystal (unit cell). Electron density maps are used to establish the positions of individual atoms within a crystal's unit cell. The absolute values for structural coordinates listed herein convey relative spatial relationships between atoms because the absolute values ascribed to 45 structural coordinates can be changed by rotational and/or translational movement along the x, y and/or z axes, together or separately, while maintaining the same relative spatial relationships among atoms. Thus, a terpene synthase whose absolute values for a set of structural coordinates can be 50 rotationally or translationally adjusted to coincide with the particular values listed in Tables 1, 3, or 5 is considered to have the same structural coordinates as those of Tables 1, 3 or 5. An example of structural coordinates that coincide with the absolute values listed herein after rotation and/or trans- 55 lation are the coordinates of Table 11.

"Heavy atom derivatization" refers to a method of Producing a chemically modified form of a synthase crystal. In practice, a crystal is soaked in a solution containing heavy atom salts or organometallic compounds, e.g., lead chloride, 60 gold thiomalate, thimerosal, uranyl acetate and the like, which can diffuse through the crystal and bind to the protein's surface. Locations of the bound heavy atoms can be determined by X-ray diffraction analysis of the soaked crystal. The information is then used to construct phase 65 information which can then be used to construct three-dimensional structures of the enzyme as described in

16

Blundel, T. L., and Johnson, N. L., Protein Crystallography, Academic Press (1976).

"Unit cell" refers to a basic parallelepiped shaped block. Regular assembly of such blocks may construct the entire volume of a crystal. Each unit cell comprises a complete representation of the unit pattern, the repetition of which builds up the crystal.

"Mutagenesis" refers to the substitution of a different amino acid residue at a particular position in the primary amino acid sequence of a protein, thereby changing the R-group present at that position. Mutagenesis can be most easily performed by changing the coding sequence of a nucleic acid encoding the protein so that the coding sequence in the nucleic acid specifies an amino acid residue different from the residue initially present at that position.

"Space Group" refers to the arrangement of symmetry elements within a crystal.

"Molecular replacement" refers to the generation of a 20 preliminary model of a synthase whose structural coordinates are unknown, by orienting and positioning a molecule whose structural coordinates are known within the unit cell of the unknown crystal so as best to account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This in turn can be subject to any of the several forms of refinement to provide a final, accurate structure of the unknown crystal (Lattman, E., 1985, in Methods in Enzymology, 115:55-77; Rossmann, MG., ed., "The Molecular Replacement Method" 1972, Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York). Using structure coordinates and interatomic distance matrices, molecular 35 replacement may be used to determine the structural coordinates of a crystalline mutant, homologue, or a different crystal form of terpene synthase.

"Recombinant protein" includes a protein that is chemically synthesized or derived biosynthetically from an isolated gene.

"Gene" includes naturally derived or genetically manipulated nucleic acids that contain the information needed to produce a polypeptide.

"Nucleic acid" includes any genetic material comprised of the nucleotides guanine, adenine, thymine, cytosine, uracil, inosine and the like. Nucleic acids may be single-, double, or triple stranded. Nucleic acids may be deoxyribonucleic acid or ribonucleic acid.

"Genetically manipulated" includes genes that have been modified to contain a different nucleotide sequence from that present in a preselected nucleic acid. Genes can be manipulated by synthetically or via traditional cloning, PCR, chemical gene synthesis, direct or random mutagenesis, and gene shuffling. Genetically manipulated also includes the process of making genes that are degenerate variations of nucleic acids encoding preselected proteins.

"First domain" includes polypeptides having a first and second end wherein the first end can have an amino terminal amino acid with a free amino group and can be linked by a peptide bond to a second amino acid. The first end may also be modified through acetylation and the like. The second end of the first domain may or may not have a free carboxyl terminal group.

"Second domain" includes polypeptides having a first and second end wherein the first end can have an amino terminal amino add and can be linked by a peptide bond to a second

amino acid. The second end of the second domain may or may not have a carboxyl terminal group. Typically, the first end of the second domain is linked to the second end of the first domain via a peptide bond.

"Isoprenoid substrate" refers to the C_{10} , C_{15} , and C_{20} molecules, named geranyl diphosphate (GPP), farnesyl diphosphate (FPP), and geranylgeranyl diphosphate (GGPP), respectively.

"Sequence identity" or "percent sequence identity" refers to the percentage of amino acids or nucleotides that occupy the same relative position when two protein sequences or nucleic acid sequences, a query sequence and a subject sequence, are aligned. The number of amino acid or nucleotide residues that are identical between both the subject and query sequences are counted, divided by the number of residues in the query sequence, and multiplied by 100. The process is repeated until the alignment resulting in the highest percent sequence identity is found. Percent sequence identity can be determined by visual inspection and/or by using various computer programs, e.g., MegAlign (DNASTAR, Inc., Madison, Wisconsin) or BLAST programs available on the world wide web from the National Center for Biotechnology Information (NCBI). Gaps of one or more residues may sometimes be inserted to maximize sequence alignments to structurally conserved domains of the query sequence, i.e., α -helices, β -sheets and loops.

"Monoterpene product" refers to linear, cyclized, and/or hydroxylated reaction products made from the substrate GPP. "Sesquiterpene product" refers to linear, cyclized, and/or hydroxylated reaction products made from the substrate FPP. "Diterpene product" refers to linear, cyclized, and/or hydroxylated reaction products made from the substrate GGPP.

The present invention relates to terpene synthases and mutants thereof from which the position of specific α-carbon atoms and R-groups associated therewith comprising the active site can be determined in three-dimensional space. The invention also relates to structural coordinates of the synthases, use of the structural coordinates to develop structural information related to synthase homologues, mutants, and the like, and to crystal forms of such synthases. Furthermore, the invention provides a method whereby α-carbon structural coordinates for atoms comprising the active site of a preselected terpene synthase can be used to develop synthases in which R-groups associated with active site α-carbon atoms are different from the R-groups found in the preselected terpene synthase. In addition, the present invention provides for the production of novel terpene synthases based on the structural information provided herein and for the use of such synthases to make a variety of isoprenoid compounds.

The present invention further provides, for the first time, crystals of a synthase, as exemplified by tobacco 5-epi-aristolochene synthase (TEAS), which are grown in the 55 presence or absence of substrate and substrate analogues, thus allowing definition of the structural coordinates associated therewith. The structural coordinates allow determination of the carbon atoms comprising the active site and R-groups associated therewith. The crystals of the present invention belong to the tetragonal space group $P4_12_12$; the unit cell dimensions vary by a few angstroms between crystals but on average a=126 angstroms, c=122 angstroms, a=b, α =90°, β =90°, and γ =90°.

Structural coordinates are preferably obtained at a reso- 65 lution of about 2.2 to about 2.8 angstroms for a synthase in the presence and in the absence of bound substrate or

18

substrate analog. Coordinates for a synthase with a substrate analog bound in the active site are given in Table 10. Coordinates for a synthase in the absence of a substrate analog bound in the active site are given in Table 11. Those skilled in the art understand that a set of structure coordinates determined by X-ray crystallography is not without standard error. Therefore, for the purpose of this invention, any set of structure coordinates wherein the active site α -carbons of a synthase, synthase homologue, or mutants thereof, have a root mean square deviation less than ± 2.3 angstroms when superimposed using the structural coordinates listed in Table 1–3, or 5, are considered identical.

A schematic representation of the three-dimensional shape of a synthase is shown in FIG. 1 which was prepared by RIBBONS (Carson and Bugg, 1986, J. Mol. Graphics, 4:121). The synthase shown in FIG. 1 consists entirely of α -helices and short connecting loops and turns, organized into first and second structural domains.

In one embodiment, an isolated synthase of the invention 20 comprises sixteen active site carbons having the structural coordinates of Table 3 and the relative distances ±2.3 angstroms of the distances given in Table 4. The active site α-carbons of Table 3 generally are not all contiguous, i.e., are not adjacent to one another in the primary amino acid sequence of a synthase, due to intervening amino acid residues between various active site α -carbons. On the other hand, it should be appreciated that some of the active site α -carbons can be adjacent to one another in some instances. In the embodiment depicted in the TEAS Y527F protein (SEQ ID NO:8), for example, active site α -carbons are adjacent to one another in the primary amino acid sequence at positions 402, 403 and 404, respectively, whereas active site α -carbons at residues 273 and 294 are separated and thus are not adjacent. Thus, the numbering of active site α -carbons given in Tables 1, 2, 3, 4, 5, or 6 is merely for convenience and such α -carbons may reside at any position in the primary amino acid sequence that achieves the structural coordinates given in Tables 1, 3, or 5 and the relative interatomic distances ±2.3 angstroms given in Tables 2, 4, or

An appropriate combination of R-groups, linked to active site \alpha-carbons, can facilitate the formation of one or more desired reaction products. The combination of R-groups selected for use in a terpene synthase of the invention can be 45 any combination other than the ordered arrangements of R-groups and corresponding active site α -carbons shown in Tables 7, 8, or 9. An illustrative example of a suitable arrangement of R-groups and α -carbons is Cys, Trp, Ile, Ile, Ser, Thr, Thr, Tyr, Leu, Cys, Val, Thr, Phe, Asp, Tyr and Thr, associated with active site α -carbons 1 to 16, respectively, of Table 3. Another example of a suitable arrangement of R-groups and α -carbons is Cys, Trp, Ile, Ile, Ser, Thr, Thr, Tyr, Leu, Cys, Val, Thr, Tyr, Asp, Phe, and Thr at active site alpha-carbons 1 to 16, respectively, of Table 3. In some embodiments, a synthase of the invention may have primary amino acid sequences as listed in SEO ID NO:4, SEO ID NO:6, SEQ ID NO:8, and SEQ ID NO:10, DNA molecules encoding the same, which are listed in SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, and SEQ ID NO:9, respectively, and degenerate variations thereof. Typically, R-groups found on active site α -carbons are those found in naturally occurring amino acids. See, e.g., FIG. 2. In some embodiments, however, R-groups other than naturally occurring amino acids can be used.

Some arrangements of R-groups and active site α -carbons result in mutant terpene synthases that form reaction products. Such enzymatically active synthases and their corre-

sponding genes are useful to make known terpenoid hydrocarbons, e.g., monoterpenes such as pinene, sesquiterpenes such as delta-cadinene and diterpenes such as abietadiene. Other enzymatically active synthases can be used to make novel terpenoid products.

Some arrangements of R-groups and active site α-carbons may result in mutant terpene synthases that do not form reaction product(s) at a desired rate. Such synthases and their genes are useful as controls in analyses of product formation by enzymatically active mutant synthases. Such synthases and their genes can also be useful in analyses of translation of enzymatically active mutant synthase genes, or as nutritional supplements. Such synthases can be attached to Sepharose beads and used for affinity purification of isoprenoid compounds from crude preparations. In addition, such synthases and their genes can also be useful to develop reagents for various purposes, e.g., immunological reagents to monitor expression of a terpene synthase protein or nucleic acid probes or primers to monitor inheritance of a terpene synthase gene in a plant breeding

In some embodiments, the α -carbon backbone of a synthase first domain aligns structurally with the catalytic core of glycosyl hydrolases, as exemplified by glucoamylase (Brookhaven Protein Database (PDB) code 3GLY) from Aspergillus awamori (Aleshin et al., 1994, J. Mol. Biol., 25 238:575) and endoglucanase CelD (PDB code ICLC) from Clostridium thermocelum (Juy et al., 1992, Nature, 357:89), and the α -carbon backbone of a synthase second domain, which contains the active site, aligns structurally with avian farnesyl diphosphate synthase (FPS), wherein the active site is comprised of 9, 16, or 19 amino acid residues with α-carbon structural coordinates as listed in Tables 1, 3, or 5 and interatomic distances as described in Tables 2, 4, or 6. Such α-carbons have an ordered arrangement of R-groups different from that observed in a non-mutated synthase.

In the present invention, the first domain forms a twisted α-barrel made up of eight short (10 to 15 amino acid residues) helices surrounding a surface cavity filled by ordered water molecules when hydrated. The second domain comprises a two-layered barrel of a-helices surrounding a 40 hydrophobic and aromatic-rich active site pocket. Typically, the second domain contains a substrate binding site. As exemplified in FIG. 1, helix H is disrupted between segments H1 and H2 by an amino acid such as proline, but its corresponding kink in helix G between G1 and G2. Within this kink, hydrogen bonds between a hydroxyl group, such as that found on a threonine, and the carbonyl oxygen of other amino acids disrupt the main chain intrahelical hydrostructure as determined.

As exemplified by TEAS, terpene synthases of the present invention can have a first domain segment comprising helices A and C (an A-C loop), and a second domain comprising helices J and K (a J-K loop) (FIG. 1). The 55 ordering of these loops upon substrate binding results in a closed, solvent-inaccessible active site pocket. As the J-K loop becomes ordered, a lid-type structure is formed that clamps down over the active site entrance in the presence of substrate and an extended aromatic patch deep within the active site pocket is formed. As the A-C loop becomes ordered, it translates inward toward the active site, positioning certain R groups in this loop at or near the active site. Thus, substrate binding to the active site results in a change in protein conformation.

To identify or create mutant terpene synthases, sequence alignments can be performed to locate specific residues and 20

α-carbons in a preselected polypeptide that have the structural coordinates and interatomic distances of Tables 1-2, 3-4 or 5-6. The preselected polypeptide is used as the subject sequence in the alignment, e.g., the full-length primary amino acid sequence, a region 190 residues in length, a region 220 residues in length, or a region 300 residues in length. The alignment can use residues 265 to 535 of TEAS (SEQ ID NO:2), which includes the α -carbons of Tables 1, 3 or 5, as the query sequence to align with the 10 preselected polypeptide. The preselected polypeptide and the query sequence can be aligned using the BLASTp 2.0.9 computer program with a BLOSUM 62 scoring matrix, an expect value of 10, a gap open value of 11, an x_dropoff value of 50, a gap extension value of 1, a wordsize of 3 and no filtering of low complexity sequences. As an alternative, the BLASTp 2.0.9 program can be used with a BLOSUM 50 scoring matrix, an expect value of 10, a gap open value 13, an x_dropoff value of 50, a gap extension value of 2, a wordsize of 3 and no filtering of low complexity sequences. Other parameter values can also be used, e.g., a gap extension value from 0 to 4. See Altschul, et al., Nucl. Acids Res. 25:3389-3402.

Regions of the preselected polypeptide with significant sequence identity to residues 265–535 of TEAS, e.g., 20% or greater sequence identity, 25% or greater sequence identity, 35% or greater sequence identity, 40% or greater sequence identity, 50% or greater sequence identity, 60% or greater sequence identity, 70% or greater sequence identity, or 80% or greater sequence identity are examined for specific residues that align with the TEAS residues corresponding to those listed in Tables 1, 3, or 5. In some cases, the output of the computer program alignment identifies a specific residue in the preselected polypeptide for each of the nine, sixteen, or nineteen residues in the query sequence 35 having the structural coordinates and interatomic distances of Tables 1–2, 3–4 or 5–6, with or without gaps introduced by the alignment program. In other cases, a gap is introduced by the alignment program in either the query sequence or the subject sequence such that no direct alignment or a misalignment occurs between one or more of the nine, sixteen, or nineteen residues in the query sequence that are of interest In either case, the output can be visually inspected, and specific residues can be chosen in the subject sequence after adjusting the alignment so that alpha-helices and beta-sheet interhelical packing with helix G is accommodated by a 45 regions in the query sequence are maintained and that gaps or insertions in the subject sequence align with loop regions of the query sentence.

Sequence alignments suggest that other terpene synthases have regions with 20% or greater sequence identity to gen bonding of helix G thus assisting in producing the 50 residues 265-535 of TEAS. Therefore, a region of a terpene synthase other than TEAS can be used as the query sequence, e.g., regions of terpene synthases given in SEQ ID NOS: 4, 6, 8, 10, 12, 20, 22, 24, 26, 28, 30, 32, 34–40, 42, 44, 46, 48, 50, 52, 54, 56, or 58, that have significant sequence identity to residues 265–535 of SEQ ID NO:2. For example, large sequence insertions are present at the amino terminus in taxadiene synthase (SEQ ID NO:44) with respect to TEAS, or are within solvent-exposed loops in the amino-terminal domain. Thus, regions of taxadiene synthase with greater than 20% sequence identity to SEQ ID NO:2 are doser to the carboxy-terminal end, e.g., from residue 579 to residue 847 of SEO ID NO:44.

> Useful regions of other terpene synthases that can be used as the query sequence include, without limitation, residues 65 343 to 606 of SEQ ID NO:20, 316 to 586 of SEQ ID NO:22, residues 352 to 622 of SEQ ID NO:58, residues 272 to 540 encoded by SEQ ID NO:33, residues 319 to 571 of SEQ ID

NO:42, residues 579 to 847 of SEQ ID NO:44, residues 495 to 767 of SEQ ID NO:46, residues 295 to 564 of SEQ ID NO:48, residues 307 to 578 of SEQ 10 NO:50, residues 264 to 533 of SEQ ID NO:52, residues 585 to 853 of SEQ ID NO:56, residues 307 to 574 of SEQ ID NO:54, residues 309 to 577 of SEQ ID NO:24, residues 315 to 584 of SEQ ID NO:26, residues 265 to 536 of SEQ ID NO:28, residues 342 to 612 of SEQ ID NO:30 and residues 273 to 541 of SEQ ID NO:32

One or more of the specific residues in the subject sequence that align with residues in the query sequence are mutated in the preselected polypeptide, e.g, by making mutations in a nucleic acid encoding the polypeptide. The mutant terpene synthase thus created can then be expressed in a host cell and the protein evaluated for enzymatic activity, if desired.

Mutant proteins of the present invention may be prepared in a number of ways including but not limited to oligonucleotide-directed mutagenesis, deletion, chemical mutagenesis, and the like. One or more R-groups associated 20 with the active site α -carbon atoms in a terpene synthase are changed by altering the nucleotide sequence of the corresponding gene. For example, a mutation can be introduced into SEQ ID NO:1, the nucleotide sequence for TEAS, at codons encoding one or more of the following sixteen 25 α-carbons: α-carbon 1=Cys 270; α-carbon 2=Trp 273; α-carbon 3=Ile 294; α-carbon 4=Ile 297; α-carbon 5=Ser298; α -carbon 6=Thr 402; α -carbon 7=Thr 403; α-carbon 8=Tyr 404; α-carbon 9=Leu 407; α-carbon 10=Cys 440; α-carbon 11=Val 516; α-carbon 12=Thr 519; α-carbon 13=Tyr 520; α-carbon 14=Asp 525; α-carbon 15=Tyr 527; or α-carbon 16=Thr 528. The protein encoded by the mutant gene is then produced by expressing the gene in, for example, a bacterial or plant expression system. Alteratively, synthase mutants may be generated by site specific replacement of a particular amino acid with an unnaturally occurring amino acid. As such, synthase mutants may be generated through replacement of an amino acid residue or a particular cysteine or methionine residue with selenocysteine or selenomethionine. This may be achieved by growing a host organism capable of expressing either the wild-type or mutant polypeptide on a growth medium depleted of natural cysteine or methionine or both and growing on medium enriched with either selenocysteine, described in Sambrook et al., (Molecular Cloning, A Laboratory Manual, 2nd Ed. (1989) Cold Spring Harbor Laboratory Press).

Another suitable method of creating mutant synthases of the present invention is based on a procedure described in 50 Noel and Tsal (1989) J. Cell. Biochem., 40:309–320. In so doing, the nucleic acid encoding the synthase can be synthetically produced using oligonucleotides having overlapping regions, the oligonucleotides being degenerate at specific bases so that mutations are induced.

According to the present invention, nucleic acid sequences encoding a mutated synthase can be produced by the methods described herein, or any alternative methods available to the skilled artisan. In designing the nucleic acid sequence (gene) of interest, it may be desirable to reengineer the gene for improved expression in a particular expression system. For example, it has been shown that many bacterially derived genes do not express well in plant systems. In some cases, plant-derived genes do not express well in bacteria. This phenomenon may be due to the non-optimal G+C content or A+T content of the gene relative to the expression system being used. For example, the very low

22

G+C content of many bacterial genes results in the generation of sequences mimicking or duplicating plant gene control sequences that are highly A+T rich. The presence of A+T rich sequences within the genes introduced into plants (e.g., TATA box regions normally found in gene promoters) may result in aberrant transcription of the gene(s). In addition, the presence of other regulatory sequences residing in the transcribed mRNA (e.g. polyadenylation signal sequences (AAUAAA) or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing) may lead to RNA instability. Therefore, one goal in the design of genes is to generate nucleic acid sequences that have a G+C content that affords mRNA stability and translation accuracy for a particular expression system.

Due to the plasticity afforded by the redundancy of the genetic code (i.e., some amino acids are specified by more than one codon), evolution of the genomes of different organisms or classes of organisms has resulted in differential usage of redundant codons. This "codon bias" is reflected in the mean base composition of protein coding regions. For example, organisms with relatively low G+C contents utilize codons having A or T in the third position of redundant codons, whereas those having higher G+C contents utilize codons having G or C in the third position. Therefore, in reengineering genes for expression, one may wish to determine the codon bias of the organism in which the gene is to be expressed. Looking at the usage of the codons as determined for genes of a particular organism deposited in GenBank can provide this information. After determining the bias thereof, the new gene sequence can be analyzed for restriction enzyme sites as well as other sites that could affect transcription such as exon:intron junctions, polyA addition signals, or RNA polymerase termination signals.

Genes encoding synthases can be placed in an appropriate vector, depending on the artisan's interest, and can be expressed using a suitable expression system. An expression vector, as is well known in the art, typically includes elements that permit replication of said vector within the host cell and may contain one or more phenotypic markers for selection of cells containing said gene. The expression vector will typically contain sequences that control expression such as promoter sequences, ribosome binding sites, and translational initiation and termination sequences. Expression vectors may also contain elements such as selenomethionine, or both. These and similar techniques are 45 subgenomic promoters, a repressor gene or various activator genes. The artisan may also choose to include nucleic acid sequences that result in secretion, of the gene product movement of said product to a particular organelle such as a plant plastid (see U.S. Pat. Nos. 4,762,785; 5,451,513 and 5,545,817), or other sequences that increase the ease of peptide purification, such as an affinity tag.

A wide variety of expression control sequences are useful in expressing mutated synthases when operably linked thereto. Such expression control sequences include, for example, the early and late promoters of SV40 for animal cells, the lac system, the trp system, major operator and promoter systems of phage λ, and the control regions of coat proteins, particularly those from RNA viruses in plants. In *E. coli*, a useful transcriptional control sequence is the T7 RNA polymerase binding promoter, which can be incorporated into a pET vector as described by Studier et al., (1990) Methods Enzymology, 185:60–89.

For expression, a desired gene should be operably linked to the expression control sequence and maintain the appropriate reading frame to permit production of the desired synthase. Any of a wide variety of well-known expression vectors are of use in the present invention. These include, for

example, vectors consisting of segments of chromosomal, non-chromosomal and synthetic DNA sequences such as those derived from SV40, bacterial plasmids (including those from $E.\ coli$ such as col E1, pCR1, pBR322 and derivatives thereof, pMB9), wider host range plasmids such as RP4, phage DNA such as phage λ , NM989, M13, and other such systems as described by Sambrook et al., (Molecular Cloning, A Laboratory Manual, 2^{nd} Ed. (1989) Cold Spring Harbor Laboratory Press).

A wide variety of host cells are available for expressing synthase mutants of the present invention. Such host cells include, without limitation, bacteria such as *E. coli*, Bacillus and Streptomyces, fungi, yeast, animal cells, plant cells, insect cells, and the like. Preferred embodiments of the present invention include terpene synthase mutants that are expressed in *E. coli* or in plant cells. Said plant cells can either be in suspension culture or a culture on a solid support such as an agar-based medium.

Genes encoding synthases of the present invention can also be expressed in transgenic plant cells. In order to 20 produce transgenic plants, vectors containing a nucleic acid construct encoding a mutant terpene synthase are inserted into the plant genome. Preferably, these recombinant vectors are capable of stable integration into the plant genome. One variable in making a transgenic plant is the choice of a selectable marker gene. A selectable marker gene is used to identify transformed cells against a high background of untransformed cells. Such selectable marker genes include but are not limited to aminoglycoside phosphotransferase gene of transposon Tn5 (Aph II) which encodes resistance to 30 the antibiotics kanamycin, neomycin, and G418, as well as those genes which encode for resistance or tolerance to glyphosate, hygromycin, methotrexate, phosphinothricin, imidazolinones, sulfonylureas, and triazolophyrimidine herbicides, such as chlorosulfuron, bromoxynil, dalapon and the like. In addition to a selectable marker gene, it may be desirable to use a reporter gene. In some instances a reporter gene may be used with a selectable marker. Reporter genes allow the detection of transformed cell and may be used at the discretion of the artisan. A list of these reporter genes is 40 provided in K. Weising et al., 1988, Ann. Rev. Genetics,

The genes are expressed either by promoters expressing in all tissues at all times (constitutive promoters), by promoters expressing in specific tissues (tissue-specific promoters), 45 promoters expressing at specific stages of development (developmental promoters), and/or promoter expression in response to a stimulus or stimuli (inducible promoters). The choice of these is at the discretion of the artisan.

Several techniques exist for introducing foreign genes 50 into plant cells, and for obtaining plants that stably maintain and express the introduced gene. Such techniques include acceleration of genetic material coated directly into cells (U.S. Pat. No. 4,945,050). Plant may also be transformed using Agrobacterium technology (U.S. Pat. Nos. 5,177,010, 55 5,104,310, 5,149,645, 5,469,976, 5,464,763, 4,940,838, 4,693,976, 5,591,616, 5,231,019, 5,463,174, 4,762,785, 5,004,863, and 5,159,135; European Patent Applications 116718, 290799, 320500, 604662, 627752, 0267159, and 0292435. Other transformation technologies include whiskers technology, see U.S. Pat. Nos. 5,302,523 and 5,464, 765. Electroporation technology has also been used to transform plants, see WO 87/06614, WO 92/09696 and WO 93/21335 and U.S. Pat. Nos. 5,472,869 and 5,384,253. Viral vector expression systems can also be used such as those 65 described in U.S. Pat. Nos. 5,316,931, 5,589,367, 5,811,653, and 5,866,785.

24

In addition to numerous technologies for transforming plants, the type of tissue that is contacted with the genes of interest may vary as well. Suitable tissue includes, but is not limited to, embryogenic tissue, callus tissue, hypocotyl, meristem and the like. Almost all plant tissues may be transformed during dedifferentiation using the appropriate techniques described herein.

Regardless of the transformation system used, a gene encoding a mutant synthase is preferably incorporated into a gene transfer vector adapted to express said gene in a plant cell by including in the vector an expression control sequence (plant promoter regulatory element). In addition to plant promoter regulatory elements, promoter regulatory elements from a variety of sources can be used efficiently in plant cells to express foreign genes. For example, promoter regulatory elements of bacterial origin, such as the octopine synthase promoter, the nopaline synthase promoter, the mannopine synthase promoter may be used. Promoters of viral origin, such as the cauliflower mosaic virus (35S and 19S) are also desirable. Plant promoter regulatory elements also include, but are not limited to, ribulose-1,6bisphosphate carboxylase small subunit promoter, betaconglycinin promoter, phaseolin promoter, ADH promoter, heat-shock promoters, and tissue specific promoters and the like. Numerous promoters are available to skilled artisans for use at their discretion.

It should be understood that not all expression vectors and expression systems function in the same way to express the mutated gene sequences of the present invention. Neither do all host cells function equally well with the same expression system. However, one skilled in the art may make a selection among these vectors, expression control sequences, and host without undue experimentation and without departing from the scope of this invention.

Once a synthase of the present invention is expressed, the protein obtained therefrom can be purified so that structural analysis, modeling, and/or biochemical analysis can be performed, as exemplified herein. The nature of the protein obtained can be dependent on the expression system used. For example, genes, when expressed in mammalian or other eukaryotic cells, may contain latent signal sequences that may result in glycosylation, phosphorylation, or other posttranslational modifications, which may or may not alter function. Once the proteins are expressed, they can be easily isolated and purified using techniques common to the person having ordinary skill in the art of protein biochemistry and as described in Colligan et al., (1997) Current Protocols in Protein Science, Chanda, V. B., Ed., John Wiley & Sons, Inc. Such techniques often include the use of cation-exchange or anion-exchange chromatography, gel filtration-size exclusion chromatography, and the like. Another technique that may be commonly used is affinity chromatography. Affinity chromatography can include the use of antibodies, substrate analogs, or histidine residues (His-tag technology).

Once purified, mutants of the present invention may be characterized by any of several different properties. For example, such mutants may have altered active site surface charges of one or more charge units. In addition, the mutants may have an altered substrate specificity or spectrum of reaction product relative to a non-mutated synthase.

The present invention allows for the characterization of mutant terpene synthase by crystallization followed by X-ray diffraction. Polypeptide crystallization occurs in solutions where the polypeptide concentration exceeds it solubility maximum (i.e., the polypeptide solution is supersaturated). Such solutions may be restored to equilib-

rium by reducing the polypeptide concentration, preferably through precipitation of the polypeptide crystals. Often polypeptides may be induced to crystallize from supersaturated solutions by adding agents that alter the polypeptide surface charges or perturb the interaction between the polypeptide and bulk water to promote associations that lead to crystallization.

Compounds known as "precipitants" are often used to decrease the solubility of the polypeptide in a concentrated solution by forming an energetically unfavorable precipitating depleted layer around the polypeptide molecules (Weber, 1991, Advances in Protein Chemistry, 41:1–36). In addition to precipitants, other materials are sometimes added to the polypeptide crystallization solution. These include buffers to adjust the pH of the solution and salts to reduce the solubility of the polypeptide. Various precipitants are known in the art and include the following: ethanol, 3-ethyl-2-4 pentanediol, and many of the polyglycols, such as polyethylene glycol.

Commonly used polypeptide crystallization methods include the following techniques: batch, hanging drop, seed initiation, and dialysis. In each of these methods, it is important to promote continued crystallization after nucleation by maintaining a supersaturated solution. In the batch method, polypeptide is mixed with precipitants to achieve supersaturation, the vessel is sealed and set aside until crystals appear. In the dialysis method, polypeptide is retained in a sealed dialysis membrane that is placed into a solution containing precipitant. Equilibration across the membrane increases the polypeptide and precipitant concentrations thereby causing the polypeptide to reach supersaturation levels.

In the preferred hanging drop technique (McPherson, 1976, J. Biol. Chem., 6300-6306), an initial polypeptide mixture is created by adding a precipitant to a concentrated polypeptide solution. The concentrations of the polypeptide and precipitants are such that in this initial form, the polypeptide does not crystallize. A small drop of this mixture is placed on a glass slide that is inverted and suspended over a reservoir of a second solution. The system is then sealed. Typically, the second solution contains a higher concentration of precipitant or other dehydrating agent. The difference in the precipitant concentrations causes the protein solution to have a higher vapor pressure than the solution. Since the system containing the two solutions is sealed, an equilibrium is established, and water from the polypeptide mixture transfers to the second solution. This equilibrium increases the polypeptide and precipitant concentration in the polypeptide solution. At the critical concentration of polypeptide and precipitant, a crystal of the polypeptide may

Another method of crystallization introduces a nucleation site into a concentrated polypeptide solution. Generally, a concentrated polypeptide solution is prepared and a seed the concentration of the polypeptide and any precipitants are correct, the seed crystal will provide a nucleation site around which larger crystal forms. In preferred embodiments, the crystals of the present invention are formed in hanging drops with 15% PEG 8000; 200 mM magnesium acetate or magnesium chloride, 100 mM 3-(N-morpholino)-2hydroxypropanesulfonic acid (pH 7.0), 1 mM dithiothreitol as precipitant.

Some proteins may be recalcitrant to crystallization. However, several techniques are available to the skilled artisan to induce crystallization. The removal of polypeptide segments at the amino or carboxyl terminal end of the

protein may facilitate production of crystalline protein samples. Removal of such segments can be done using molecular biology techniques or treatment of the protein with proteases such as trypsin, chymotrypsin, subtlisin. Such procedures can result in the removal of flexible polypeptide segments that may negatively affect crystallization.

26

The crystals so produced have a wide range of uses. For example, high quality crystals are suitable for X-ray or neutron diffraction analysis to determine the threedimensional structure of a mutant synthase and to design additional mutants thereof. In addition, crystallization can serve as a further purification method. In some instances, a polypeptide or protein will crystallize from a heterogeneous mixture into crystals. Isolation of such crystals by filtration, centrifugation, etc., followed by redissolving the polypeptide affords a purified solution suitable for use in growing the high-quality crystals needed for diffraction studies. The high-quality crystals may also be dissolved in water and then formulated to provide an aqueous solution having other uses as desired.

Because synthases may crystallize in more than one crystal form, the structural coordinates of α -carbons of an active site determined from a synthase or portions thereof, as provided by this invention, are particularly useful to solve the structure of other crystal forms of synthases. The structural coordinates, as provided herein, may also be used to solve the structure of synthases having α -carbons position within the active sites in a manner similar to the wild-type yet having R-groups that may or may not be identical. Furthermore, the structural coordinates disclosed herein may be used to determine the structure of the crystalline form of other proteins with significant amino acid or structural homology to any functional domain of a synthase. One method that may be employed for such purpose is molecular replacement. In this method, the unknown crystal structure, whether it is another crystal form of a synthase, a synthase having a mutated active site, or the crystal of some other protein with significant sequence identity and/or structural homology of a synthase may be determined using the 40 coordinates given in Tables 10 and/or 11. This method provides sufficient structural form for the unknown crystal more efficiently than attempting to determine such information ab initio. In addition, this method can be used to determine whether or not a given synthase in question falls 45 within the scope of this invention.

As further disclosed herein, synthases and mutants thereof may be crystallized in the presence or absence of substrates and substrate analogs. The crystal structures of a series of complexes may then be solved by molecular replacement 50 and compared to that of the wild-type to assist in determination of suitable replacements for R-groups within the active site, thus making synthase mutants according to the present invention.

All mutants of the present inventions may be modeled crystal of the polypeptide is introduced into this solution. If 55 using the information disclosed herein without necessarily having to crystallize and solve the structure for each and every mutant. For example, one skilled in the art may use one of several specialized computer programs to assist in the process of designing synthases having mutated active sites. Examples of such programs can be as follows: GRID (Goodford, 1985, J. Med. Chem., 28:849-857); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function and Genetics, 11:29-34); AUTODOCK (Goodsell and Olsen, 1990, Proteins: Structure, Function, and Genetics, 8:195202); and DOCK (Kuntz et al., 1982, J. Mol. Biol., 161:269-288). In addition, specific computer programs are also available to evaluate specific substrate-active site inter-

actions and the deformation energies and electrostatic interactions resulting therefrom. MODELLER is a computer program often used for homology or comparative modeling of the three-dimensional structure of a protein. A. Sali & T. L. Blundell. J. Mol. Biol. 234, 779-815,1993. A preselected polypeptide sequence to be modeled is aligned with one or more terpene synthases whose crystal structures are known and the MODELLER program is used to calculate a fullatom model, based on optimum satisfaction of spatial restraints. Such restraints can include, inter alia, homolo- 10 incubated for two hours with Dpnl, ethanol precipitated, and gous structures, fluorescence spectroscopy, NMR experiments, or atom—atom potentials of mean force.

The present invention enables synthase mutants to be made and crystal structures thereof to be solved. Moreover, by virtue of the present invention, the location of the active site and the interface of substrate therewith permit the identification of desirable R-groups for mutagenesis. The particular embodiments of this invention are further exemplified in the Examples. However, those skilled in the art will readily appreciate that the specific experiments detailed 20 competent BL-21 (DE3) cells. are only illustrative of the invention as described more fully in the claims, which follow thereafter.

EXAMPLE 1

Generation of Mutant TEAS Genes

Construct Generation and Expression.

All mutant enzymes were constructed by the Quick-Change method (Stratagene). Manufacturer's instructions were followed, except as noted. Mutations were confirmed by DNA sequencing, and plasmids containing the desired mutation were used to transform BL-21 (DE3) expression cells. Protein was expressed, purified, and stored at -80° C.

TEAS W273S. The TEAS W273S mutant was generated from a TEAS-pET28b(+) template using the following primers: GTTGAATGCTACTTTTCGGCATTAGGAGTTTTAT (sense) (SEQ ID NO:13) and ATAAACTCCTAATGC-CGAAAAGTAGCATTCAAC (antisense) (SEQ ID NO:14). Mutagenesis was carried out according to the manufacturer's instructions, except that sense and antisense strands were generated in separate reactions. For each, 30 plasmidcopying cycles of one minute, annealing at 55° C. and 16 minutes extension at 68° C. were carried out. The two reaction mixtures were then combined, heated to 95° C. for 2.5 minutes, and cooled to room temperature before Dpnl treatment.

TEAS C440W The TEAS C440W mutant was generated from the TEAS-pET28b(+) template using the following primers: GCTAGTGTAATTATATGGCGAGTTATC-GATGAC (sense) (SEQ ID NO:15) and GTCATCGATM-CTCGCCATATMTTACACTAGC (antisense) (SEQ ID NO:16).

TEAS W273S/C440W. The TEAS C440W/W273S mutant was constructed from a TEAS W273S-pET28b(+) 55 template using the primers described for generation of TEAS C440W.

TEAS 406/407 random library. For generation of a library of TEAS mutants with random amino acids at positions 406 and 407, two 50 microliter QuickChange reactions were carried out with the TEAS-pET28b(+) template and the GCACTAGCMCTACCACATATprimers TACNNSNNSGCGACMCATCGTATTTGGGCATG (sense) (SEQ ID NO:17) and CATGCCCAAATACGATGT-TGTCGCSNNSNNGTAATATGTGGTAGTTGCTAGTGC (antisense) (SEQ ID NO:18), in which N denotes A, C, G, or T and S denotes C or G. By this choice of nucleotides, the

28

reaction included primers which coded for all possible amino acid combinations at positions 406 and 407. No adjustment was made for differing numbers of codons among amino acids. In order to ensure efficient reactions, and to minimize the preference for hybridization of wildtype primers to the template, the primers were designed to be longer than those used to generate the mutations described above. In addition, they were HPLC purified prior to use. After 18 cycles of plasmid copying, the reaction was redissolved in 5 microliters water. Each of four 40 microliter aliquots of E. coli NovaBlue (Novagen) cells were electroporated with 1.5 microliters of the redissolved DNA. After a recovery period, the cells were plated on kanamycin-LB-agar plates. In order to transfer the newly constructed plasmids to expression cells, the colonies were scraped from all four plates, and used to start an 8 mL culture grown in liquid LB medium at 37° C. for 8 hours. Plasmid purified from this culture was used to transform 20 microliters of

For storage of the constructs, each individual colony was used to inoculate 100 microliters of LB medium containing kanamycin (50 micrograms/mL) in 96-well culture plates. The cells were grown at 37° C. until the A_{600} reached ²⁵ approximately one; 100 microliters of 30% glycerol in LB were then added, and the plates were frozen at -80° C. A set of randomly selected colonies were grown from individual glycerol stocks of some colonies, and plasmids were extracted for sequencing. Approximately 30 percent of the colonies were found to be wild-type. Nudeotide and amino acid sequences for TEAS 406/407 mutant genes and proteins are shown in SEQ ID NOS: 11 and 12.

TEAS Y520F The tyrosine residue at position 520 of SEQ ID No: 2 was changed to a phenylalanine residue by site-directed mutagenesis with primers, in a manner similar to that described above. For Y520F the TAT codon was changed to TTC. The nucleotide sequence of the mutant gene is shown in SEQ ID No: 5.

TEAS Y527F The tyrosine residue at position 527 of SEQ ID No: 2 was changed to a phenylalanine residue by site-directed mutagenesis with primers, in a manner similar to that described above. For Y527F, the TAC codon at position 527 of the TEAS amino acid sequence was changed to TTC. The nucleotide sequence of the mutant TEAS Y527F gene is shown in SEQ ID No: 7.

TEAS W273E The tryptophan residue at position 273 of SEQ ID No: 2 was changed to a phenylalanine residue by site-directed mutagenesis with primers, in a manner similar to that described above. For W273E, the TGG codon at position 273 of the TEAS amino acid sequence was changed to GAG. The nucleotide sequence of the mutant gene is shown in SEQ ID No.: 3.

EXAMPLE 2

Expression and Isolation of Synthase Polypeptides

Unless otherwise noted, mutated and non-mutated TEAS proteins were expressed in Escherichia coli, purified by metal chelation, anion exchange, and gel filtration chroma-

Constructs of TEAS and mutant TEAS proteins in the vector pET-28b(+) (Novagen) were expressed in E. coli cells. For a typical protein preparation of any of these 65 enzymes, E. coli strain BL21 (DE3) cells containing the plasmid construct were grown at 37° C. in 4 X 1 L terrific broth to an A_{600} =1.0. The temperature was dropped to 22°

C., and protein expression was induced by adding IPTG to a final concentration of 0.1 mM. After 15-20 h, the cells were harvested by centrifugation, resuspended in 5 mL buffer A (20 mM Tris, 500 mM NaCl, 20 mM imidazole, pH 7.9) per 1 g cells (wet weight), and stirred for 0.5 h at 4° C. The cells were then lysed by sonication, and the resulting lysate was centrifuged for 0.7 h at 82,000×g. The supernatant, containing the protein, was loaded over a 2-3 mL Ni²⁺ chelating histidine affinity column (Qiagen) equilibrated in buffer A, and the column was washed with addi- 10 tional buffer A until the A₂₈₀ of the eluent returned to baseline. The protein was then eluted with a 20-200 mM imidazole gradient in buffer A. Protein-containing fractions were pooled and dialyzed against buffer B (50 mM HEPES, 5 mM MgCl2, 1 mM DTT), then loaded onto an 8 mL 15 MonoQ cation-exchange column (Pharmacia). The column was washed with 20 column volumes buffer B, and the protein was eluted with a 0-500 mM NaCl gradient in buffer B. The resulting protein was further purified by gel filtration on a Superdex-200 column (Pharmacia) in 50 mM Tris, 100 20 mM NaCl, 5 mM MgCl2, 1 mM DTT, pH 8.0. Purified protein was then dialyzed against 5 mM Tris, 5 mM NaCl, 1 mM DTT, pH 8.0, concentrated to 18-22 mg/mL, and stored at -80° C. in 100° L aliquots until needed.

EXAMPLE 3

Crystallization and Structural Analysis of Synthase Polypetides

Crystal Growth and Microseeding: All crystallization 30 attempts were carried out by the hanging-drop vapor diffusion method. Concentrated protein was mixed with an equal volume (2-5 uL each) of reservoir solution on a plastic cover slip. The cover slip was then inverted over a well of a plastic 24-well tissue culture plate, containing 0.5-1.0 mL of reservoir solution, and sealed by a layer of vacuum grease between the well and cover slip. The plates were incubated at 4° C. while the protein concentration in the hanging drop slowly increased by vapor diffusion. Approximately 300 different reservoir solutions, ranging pH 4.5–9 with a variety 40 of precipitants and added salts, were assayed for crystallization of TEAS (SEQ ID NO:2). TEAS crystallized with a reservoir solution of 15% PEG 8000, 100 mM MOPSO (3-[N-morpholino]-2-hydroxypropanesulfonic acid), 200 microseeding, an existing crystal was crushed in a few uL of precipitant solution, then diluted to 50 microliters. After initial centrifugation to remove large partides, the suspension was serially diluted with additional precipitant solution, and a small volume of a diluted seed stock was added to each 50 new crystallization drop. For macroseeding, crystals which were no longer rapidly growing (usually 2 weeks after drops were set up), were "rinsed" by serially transferring them through two to three drops of reservoir solution. The crystal was then transferred to a fresh drop containing protein and 55 reservoir solution, and equilibrated against a reservoir solution as in the initial growth. Individual crystals varied in their degree of internal order. In some cases, several crystals were screened to identify a well-diffracting crystal with low mosaicity.

Data collection: Prior to data collection, crystals were transferred to a drop of reservoir solution, or reservoir solution containing a compound to be soaked into the crystal A small volume of cryoprotectant solution (15% PEG8000, 100 mM MOPSO, 200 mM Mg acetate, 20% ethylene 65 glycol, 1 mM DTT, pH 7) was then added to the drop. After a short equilibration time (1-5 minutes), the crystal was

30

transferred to a drop of cryoprotectant, or cryoprotectant with soaking compound added. After another short equilibration time, the crystal was picked up on a nylon loop, and quickly mounted for data collection in a stream of cold nitrogen gas (90-110 K).

The TEAS crystals belonged to the tetragonal space group P4₁2₁2; the unit cell dimensions varied by a few angstroms between crystals, but on average a=126 Å, c=122 Å. The uncomplexed TEAS structure was initially refined to 2.8 Å (Table 11) against data collected from a crystal grown in the presence of 2 mM FHP (Table 10). Electron density at the active site allowed unambiguous modeling of FHP, the A-C and J-K loops, and nine additional residues at the NH₂ terminus, The refined TEAS-FHP model consisted of residues 17 to 548, three Mg²+ ions. 150 water molecules, and one FHP molecule. The three-dimensional coordinates, or TEAS in the presence of bound substrate is shown in Table 10. The three-dimensional coordinates for TEAS in the absence of FHP is shown in Table 11.

Crystals of TEAS complexed with trifluoro-farnesyl diphosphate (F3-FPP) were also prepared. In these crystals, a well-ordered diphosphate binding pocket was also observed. The A-C loop and the NH2-terminal segment exhibited well-defined electron density, the A-C loop was translated toward the active site, and there was strong electron density for the diphosphate moiety of F3-FPP. The hydrophobic pocket, however, remained flexible; the J-K loop and the farnesyl moiety of F3-FPP were disordered.

Homology models were created and energy-minimized using the Swiss PDB viewer interface of the SwissModel program (Peitsch MC (1996), Biochem. Soc. Trans., 24:274-279 and Guex N. and Peitsch MC, 1997, Electrophoresis., 18:2714-2723). Active site volumes were calculated with VOIDOO (Kleywegt, G. J., and Jones, T. A., CCP4/ESF-EACBM Newsletter on Protein Crystallography., 29, 26-28, 1993). To make dosed active site cavities, the energy-minimized diphosphate moiety from the modeled TEAS cyclase reaction was appended to the residue equivalent to TEAS D301.

TEAS W273S crystal structures. Two TEAS W273S structures, in the presence of FHP, were determined from different crystals; both crystals appeared to be well ordered, as dear main-chain and side-chain density were apparent for mM magnesium acetate, 1 mM DTT, pH 6.9-7.3. For 45 residues throughout the protein, including the frequently mobile helices D1, D2, and E. Initial difference electron density maps from both crystals immediately revealed the W273S mutations. The two crystals were designated W273S-1 and W273S-2.

> In each structure, the loops surrounding the active site were ordered, resulting in a closed active site pocket. The A/C loop in each structure was translated toward the active site, forming part of its outer rim, as observed in the wild-type TEAS/FHP complex. However, while the JIK loop of W273S-1 adopted the same conformation observed in the wild-type TEAS/FHP complex, the same loop in W273S-2 adopted a different conformation. In this conformation of the J/K loop, Tyr527 moved away from the side chain of residue 273. In addition, Tyr520 and Asp525 were placed distal to the side chain of Asp444. Hydrogen bonds previously observed between the J/K loop, Arg266, and the N-terminal loop were also missing in the W273S-2 structure.

> The W273S-2 conformation does not appear to be an effect of the W273S mutation, as it was also observed in a wild-type TEAS crystal soaked with the epi-aristolochene mimic deoxycapsidioi, despite the fact that no electron density was readily apparent for the deoxycapsidioi mol

ecule in that structure. Further, the TEAS active site loops were distant from crystal contacts, and their conformations were not likely to be artifacts of crystal packing. It is possible that at different stages of the TEAS reaction, the enzyme's J/K loop exists in different, defined conformations, and that each of these crystal structures has captured an image of a different conformation. In both W273S structures, residues other than Arg266 and those on the J/K loop did not undergo significant rearrangement from the conformations observed in wild-type TEAS.

In each W273S crystal structure, electron density in the active site suggested that the substrate mimic FHP binds in multiple conformations. Some regions of this density possibly represented bound water molecules in the mutant active site. The presence of water molecules in the mutant active site is consistent with the observation that TEAS W273S gives rise to multiple hydroxylated terpenoid reaction products.

The FHP electron density in each W273S crystal structure was sufficient to suggest that FHP existed in a more extended conformation in the W273S structure, compared to the more $\ ^{20}$ tightly folded conformation of FHP in the wild-type TEAS/ FHP complex. The observation that the active site of W273S binds multiple conformations of FHP is consistent with the fact that W273S converts FPP to multiple terpenoid hydrocarbon products.

TEAS C440W/W273S: TEAS C440W/W273S crystallized under conditions identical to wild-type TEAS. A 0.3 mm crystal was soaked for 20 minutes in reservoir solution saturated in farnesyl hydroxy phosphate (FHP). After cryoprotection and flash freezing as described for wild-type TEAS, data were collected on a laboratory source with Cu-Kα radiation (MacScience Corp., Japan). A starting model of uncomplexed TEAS (Table 11) (Brookhaven Protein Database Code 5EAT (PDB 5EAT), with waters and magnesiums removed, was positioned against the mutant data with the rigid body module of the software program X-PLOR (A. T. Brunge, X-PLOR Version 3.1—A System for X-Ray Crystallography and NMR Yale University Press, New Haven, 1992, pp. 187-207). Rounds of positional and restrained b-factor refinement with bulk solvent modeling were also carried out in X-PLOR, with manual model building and adjustment carried out in the software program O (Jones, TA, Zou, JY, Cowan, SW, and Kjeldgaard, M., Acta Cryst. D., 49:148-157, 1993). Additional rounds of refinement and map calculation using the CNS program ment was likely due to improved bulk solvent modeling.

TEAS C440W: TEAS C440W crystallized under conditions identical to wild-type TEAS, except that crystals nucleated less readily and were generally smaller. A mutant crystal was soaked for 6 hours in reservoir solution saturated in FHP before flash-freezing and data collection at SSRL beamline 7-1 (Stanford Synchrotoon Radiation Laboratory, Menlo Park, Calif.). A starting model of TEAS-FHP (Table 10), with water molecules, ligands, and residues 523–532 of SEQ ID NO:2 removed, was positioned against the data with 55 the rigid body module of X-PLOR. Rounds of positional and restrained b-factor refinement with bulk solvent and overall anisotropic temperature factor modeling were also carried out in X-PLOR, and manual model building and adjustment were carried out in the software program O. As with the double mutant, electron density maps were noticeably improved after refinement and map calculation in CNS.

EXAMPLE 4

Terpene Synthase Enzyme Assays

Synthase activity assays were carried out based on the assay described in Vogeli and Chappell, Plant Physiol.

94:1860 (1990) and Vogeli, et al., Plant Physiol. 93:182 (1990). In general, radio-labeled (³H or ¹⁴C) substrate was incubated with enzyme at room temperature in a buffered magnesium salt solution (200 mM Tris, pH 8, 50 mM Mg chloride, 1 mM DTT, unless otherwise noted); hydrocarbon products were then selectively extracted into an organic solvent such as hexane. The hexane extract generally was treated with silica gel to remove prenyl alcohols and other oxygenated compounds generated by non-enzymatic 10 hydrolysis of substrate, which partition inefficiently into hexane. Hydrocarbon products present in the hexane phase were quantitated by scintillation counting.

A subsequent extraction with a more polar organic solvent such as ethyl acetate was sometimes carried out. Oxygenated compounds more efficiently partition into ethyl acetate-type solvents. Compounds present in the ethyl acetate phase were also quantitated by scintillation counting.

Substrate concentrations typically ranged from 0.1 nanomolar to 100 micromolar. In some assays, the substrate was not radiolabeled. Reactions generally were carried out in triplicate for each substrate concentration. Protein concentration was determined by the Bradford method. For determination of steady-state kinetic parameters, enzyme concentrations were chosen such that generation of products over time was linear throughout the course of the reaction.

Diterpene synthase assays typically were earned out using ³H geranylgeranyl diphosphate (GGPP) and enzyme in 250 mM Trs, 10 mM Mg chloride, 1 mM DTT, pH 8.0. Sesquiterpene synthase assays typically were carried out using ¹⁴C or ³H FPP and enzyme in 100 mM Tris, 30 mM Mg chloride, 1 mM DTT, pH 8.0. Monoterpene synthase assays typically were carried out using ³H GPP and enzyme. As a control for nonspecific binding of GPP by protein, identical reactions were set up which contained BSA, rather than enzyme.

Product analysis of wild type and mutant TEAS enzymes by Ag-TLC. Terpenoid hydrocarbon products are not readily separated by thin layer chromatography on normal or reverse-phase plates; however, some can be separated by 40 argentation TLC (Ag-TLC), in which silica plates are first treated with silver nitrate. Ag-TLC described here generally followed the procedure described by Back et al., Arch. Biochem. Biophys. 315:527 (1994). A silica TLC plate was dipped in 15% silver nitrate (aqueous), then dried for 3-5 suite resulted in significantly improved maps; this improve- 45 hours at 110° C. After spotting of tritiated enzymatic products (solvent extract), the plate was developed in benzene:hexane, ethyl acetate (50:50:1, by volume), sprayed with En³Hance (NEN) fluorography spray, placed on film, and exposed for several days to several weeks. Long exposure times were generally necessary, as silver-nitrate treatment of the TLC plate appeared to cause quenching of the fluorography reagent's fluorescence. Alternatively, ¹⁴C labelled products were detected after one to two days without the use of fluorography spray.

EXAMPLE 5

Activity of TEAS W273S

Diterpene Synthase Activity of TEAS W273S. The TEAS W273S enzyme and radiolabelled GGPP were incubated as described above and hydrocarbon products were extracted with hexane. Oxygenated products were then extracted with ethyl acetate. Reactions using wild-type TEAS gave counts lower than buffer alone. TEAS W273S, on the other hand, gave counts that were significantly higher for both the hexane and ethyl acetate extracts. Hydrocarbon products formed from GGPP by W273S were distinct from the

products made by acid-catalyzed loss of diphosphates from GGPP. See FIG. 3.

Sesquiterpene Synthase Activity of TEAS W273S. Products of FPP turnover by the purified TEAS W273S mutant were analyzed by argentation thin-layer chromatography 5 (Ag-TLC). One major reaction product had an R_f of 0.7 by Ag-TLC, which was distinct from both 5-epi-aristolochene (R_f =0.78) and vetispiradiene (R_f =0.63). See FIG. 4. Preliminary GC/MS data showed that hexane extracts from FPP turnover by TEAS W273S contained at least four terpene 10 hydrocarbons, with mass spectra distinct from either 5-epi-aristolochene or vetispiradiene. One of these products had a mass spectrum similar to germacrene A.

EXAMPLE 6

Activity of TEAS C440W/W273S

Diterpene Synthase Activity of TEAS C440W/W273S. The mutant TEAS C440W/W273S protein contains a tryptophan residue at position 440 and a serine residue at position 273. Assays with GGPP were carried out using 0.5 micromolar ³H GGPP, various concentrations of unlabelled GGPP (Echelon), and enzyme. Reactions were incubated for 60 minutes at room temperature. The TEAS C440W/W273S mutant protein converted GGPP to hexane-extractable products, whereas the wild-type enzyme did not. The results indicated that the product profile was altered compared to wild-type TEAS. Hexane-extractable products of GGPP turnover by the double mutant were analyzed by Ag-TLC. The products included two species (R_f =0.11 and 0.28) that were distinct from the hydrolysis product geranyl geraniol (R_f=0.0). To verify that products generated by TEAS C440W/W273S from GGPP were not the hydrolysis product, geranylgeraniol, a sample was analyzed by Ag-TLC. A reaction containing ³H GGPP (5 μm) and enzyme (40 μ m) in 100 microliters buffer was incubated overnight at room temperature. As controls, ³H GGPP was incubated in reaction buffer alone and in reaction buffer adjusted to pH 1.5. Both the enzymatic and control reactions were extracted with hexane, which was spotted on an argentation TLC plate, and developed and exposed as described above. The results, shown in FIG. 3, demonstrated that the products formed by TEAS C440W/W273S were different from those generated by non-enzymatic degradation of geranylgeranyl diphosphate.

Sesquiterpene Synthase Activity of TEAS C440W/W273S. Reactions with FPP as substrate were carried out with ^{14}C FPP (9 μ m) and enzyme (160 μ m) in reaction buffer (20 μ l). After incubating for 30 minutes at room temperatures products made by TEAS C440W/W273S wee analyzed by Ag-TLC. The product profile of the double mutant was similar to that of TEAS W273S, with the addition of a major product having an R_f of 0.57. The new product was distinct from both 5-epi-aristolochene and vetispiradiene. Several other products were also formed, many of which migrated slowly upon argentation TLC. See FIG. 4.

EXAMPLE 7

Activity of TEAS C440W

Diterpene Synthase Activity of TEAS C440W Enzyme assays with TEAS C440W were carried out as described in Example 6. As shown in FIG. 3, no hexane-extractable products were detectable by Ag-TLC after an overnight 65 incubation at room temperature with $160 \mu m$ of enzyme and $9 \mu m$ radiolabeled GGPP in $20 \mu l$ volume.

34

Sesquiterpene Synthase Activity of TEAS C440W. Ag-TLC analysis of the products made from radiolabelled by purified TEAS C440W detected the formation at least one major terpenoid hydrocarbon product (R_f 0.63) that was distinct from 5epi-aristolochene (R_f 0.78) and vetispiradiene. The reactions product profile on Ag-TLC is shown in FIG. 4. Small amounts of slowly-migrating products (R_f 0-0.09) were also formed.

GC/MS analysis of the hexane extract of TEAS C440W terpenoid hydrocarbon reaction products confirmed that this mutant formed a single major sesquiterpene hydrocarbon product as well as a small number of minor hydroxylated products. The mass spectrum of the major product closely matched the published mass spectrum of the spirocydic compound hinesene. Hinesene differs from vetispiradiene in the stereochemistry at the C3 methyl group.

EXAMPLE 8

Activity of TEAS W273E

Sesquiterpene Synthase Activity of TEAS W273E. Reactions to determine the products made by TEAS W273E using FPP as substrate were carried out essentially as described above, using radiolabelled FPP. The results indicated that at least one product other than 5epi-aristolochene was formed. The results also indicated that alkylation of TEAS by FPP had occurred. The alkylation was dependent upon the presence of MgCl₂ in the reaction mixture. In control experiments, boiled W273E-TEAS, as well as wild-type TEAS and BSA, were not alkylated. These results indicate that alkylation had occurred at position 273 and that the amino acid residue at position 273 is part of the active site.

EXAMPLE 9

Activity of TEAS Y520F

Sesquiterpene Synthase Activity of TEAS Y520F. Reactions with radiolabeled FPP and TEAS Y520F enzyme were carried out essentially as described above. Reaction products were analysed by Ag-TLC and by GC/MS. A major product of the TEAS Y520F reaction had the same GC retention time as authentic germacrene A and the same mass spectrum as authentic germacrene A. The retention time and mass spectrum of this product were different from 5-epi-aristolochene.

EXAMPLE 10

Activity of TEAS Y527F

Enzymatic Activity of TEAS Y527F. A crude extract of TEAS Y527F enzyme was made by inducing expression in *E. coli* cells, and sonicating the cells. The sonicate was clarified and the supernatant used for enzyme assays. No products were observed in assays using GPP as a substrate, indicating that TEAS Y527F does not have monoterpene synthase activity. Reaction products were obtained using FPP as a substrate. Analysis of these products by Ag-TLC indicated that products other than 5epi-aristolochene were generated by the TEAS Y527F enzyme.

EXAMPLE 11

Alignment of Terpene Synthase Sequences

Residues 265 to 535 of the TEAS primary amino acid sequence (SEQ ID NO:2) were aligned with the full-length amino acid sequence of a limonene synthase (SEQ ID

NO:22), using the BLASTp program (NCBI) with a BLO-SUM 62 scoring matrix, a gap open value of 11, a gap extension value of 1, an x_dropoff value of 50, an expect value of 10, a wordsize of 3 and no filtering of low complexity sequences. The output of the alignment program, shown in Table 12, included a gap between residues 527 and 528 of the TEAS sequence (numbered as 263 and 264 in the alignment output). Residues 321, 324, 345, 348, 349, 427, 452, 453, 454, 455, 458, 492, 496, 569, 572, 573, 577, 579 and 580 were selected as having the most suitable alignment with the 19 TEAS residues. Residue 580 of limonene cyclase instead of residue 583 was selected as aligning with residue 528 of TEAS, in order to maintain the spatial orientation of structural aspects found in TEAS, i.e., α -helices, β -sheets and loops shown in FIG. 1 and Table 10.

A region including residues 579 to 847 of the taxadiene primary amino acid sequence of SEQ ID NO:44 was aligned with the full-length amino acid sequence of a bornyl diphosphate synthase (SEQ ID NO:26), using the BLASTp program (NCBI) with a BLOSUM 62 scoring matrix, a gap open value of 11, a gap extension value of 1, an x_dropoff value of 50, an expect value of 10, a wordsize of 3 and no 20 filtering of low complexity sequences. The output of the alignment program, shown in Table 13, included a gap between residues 453 and 454 of the bornyl diphosphate synthase sequence. Residues 321, 324, 344, 347, 348, 426, 451, 452, 453, 454, 457, 492, 496, 568, 571, 572, 576, 578 and 579 of the bornyl diphosphate synthase were selected as having the most suitable alignment with residues 584, 587, 606, 609, 610, 688, 713, 714, 715, 716, 719, 753, 757, 831, 834, 835, 839, 841 and 842 of the query region sequence of SEQ ID NO:44. Residues 453 and 454 of bornyl diphosphate synthase were selected to align with residues 715 and 716 of taxadiene synthase, in order to maintain the spatial orientation of structural aspects expected to be present in taxadiene synthase, i.e., α -helices, β -sheets and loops shown in FIG. 1 and Table 10.

Residues 265 to 535 of the TEAS primary amino acid sequence (SEQ ID NO:2) were aligned with the full-length amino acid sequence of a δ-selinene synthase (SEQ ID NO:48), using the BLASTp program (NCBI) with a BLO-SUM 50 scoring matrix, a gap open value of 13, a gap extension value of 2, an x_dropoff value of 50, an expect value of 10, a wordsize of 3 and no filtering of low complexity sequences. The output of the alignment program is shown in Table 14. Residues 300, 303, 324, 327, 328, 406, 431, 432, 433, 434, 437, 471, 475, 548, 551, 552, 556, 558 and 559 of SEQ ID NO:48 were selected as having the most suitable alignment with residues 270, 273, 294, 297, 298, 376, 401, 402, 403, 404, 407, 440, 444, 516, 519, 520, 525, 527 and 528 of SEQ ID NO:2.

Residues 307 to 593 of the primary amino acid sequence of γ -humulene synthase (SEQ ID NO:50) were aligned with the full-length amino acid sequence of abietadiene synthase (SEQ ID NO:56), using the BLASTp program (NCBI) with a BLOSUM 62 scoring matrix, a gap open value of 11, a gap extension value of 1, an x_dropoff value of 50, an expect value of 10, a wordsize of 3 and no filtering of low complexity sequences. The output of the alignment program is shown in Table 15. Residues 590, 593, 614, 617, 618, 696, 721, 722, 723, 724, 727, 761, 765, 837, 840, 841, 845, 847 and 848 of the diterpene synthase (SEQ ID NO:56) were selected as having the most suitable alignment with residues 312, 315, 336, 339, 340, 419, 444, 445, 446, 447, 450, 484, 488, 562, 565, 566, 570, 572 and 573 of the sesquiterpene synthase query sequence (SEQ ID NO:50).

EXAMPLE 12

Generation of Novel Monoterpene Synthase Genes

A DNA sequence encoding a pinene synthase (SEQ ID NO:20) is used to construct a library of mutant pinene

36

synthase genes. Random mutations are introduced at nucleotides encoding one or more of the following nine amino acid residues: L, C, C, G, H, S, L, G and Y, which correspond to positions 351, 372, 480, 481, 482, 485, 519, 600 and 601 of SEQ ID NO:20.

In some cases, the pinene synthase coding sequence is randomly mutated at nucleotides encoding one or more of amino acid residues 348, 375, 376, 597, 605, 607 and 608, which correspond to positions Y, I, T, F, D, Y and S of SEQ ID NO:20. The pinene synthase coding sequence is sometimes mutated at nucleotides encoding one or more of the following amino acid residues: Y, S and G, which correspond to positions 454, 479 and 523 of SEQ ID NO:20. In some cases, mutations at these ten positions are made in addition to mutations at nucleotides encoding the nine residues mentioned above. In other cases, mutations at these ten positions are made without introducing mutations at the nine residues mentioned above.

The pinene synthase coding sequence DNA is inserted in the pET28b(+) vector and mutagenized using the Quick-Change® method, following a protocol similar to that described in Example 1 for the TEAS 406/407 random library. The primers used to generate mutations are synthesized as indicated in Example 1, using N or S as nucleotides in the desired codons in order to generate random mutants.

Specific mutations at one or more of the above 19 pinene synthase amino acid residues are made by site-directed mutagenesis using a protocol similar to that described in Example 1 for TEAS. Primers are made that have specific A, T, C or G substitutions in the codons to be mutated, in order to generate the desired mutant(s).

Random and/or specific mutations are prepared in a manner similar to that described above to alter amino acid residues of other monoterpene synthases, e.g., limonene synthase, (SEQ ID NOS: 22 or 58), myrcene synthase (SEQ ID NO:30), +sabinene synthase (SEQ ID NO:54), 1, 8 cincole synthase (SEQ ID NO:24) and +bornyl diphosphate synthase (SEQ ID NO:26), at residues whose α -carbons have the interatomic distances and structural coordinates described in Tables 1–6.

EXAMPLE 13

Generation of Novel Sesquiterpene Synthase Genes

A DNA sequence encoding a cadinene synthase (SEQ ID NO:33) is used construct a library of mutant cadinene synthases. Random mutations are introduced at nucleotides encoding one or more of the following nine amino acid residues: W, I, S, G, Y, L, C, L and Y, which correspond to amino acid residues 280, 301, 409, 410, 411, 414, 448, 527 and 528 encoded by SEQ ID NO:33.

In some cases, the cadinene synthase coding sequence is mutated at nucleotides encoding one or more of amino acid residues G, A, S, M, D, Y and T, which correspond to amino acid residues 277, 304, 305, 524, 532, 534 and 535 encoded by SEQ ID NO:33. In addition, the cadinene synthase coding sequence is sometimes mutated at nucleotides encoding one or more of the following amino acid residues: 383, 408 and 452, which correspond to amino acids Y, T and D encoded by SEQ ID NO:33. In some cases, these mutations are made in addition to mutations at the nine residues mentioned above. In other cases, mutations at these ten residues are made without introducing mutations at the nine residues mentioned above.

The cadinene synthase coding sequence is mutated using the QuickChange® method in the pET28b(+) vector, fol-

lowing a protocol similar to that described in Example 1 for the TEAS 406/407 random library. The primers used to generate mutations are synthesized as indicated in Example 11.

Specific mutations at one or more of the above cadinene ⁵ synthase amino acid residues are made by site-directed mutagenesis using a protocol similar to that described in Example 1 for TEAS.

Random and/or specific mutations are prepared in a manner similar to that described above to alter amino acid residues of other sesquiterpene synthases, e.g., vetispiradiene synthase (SEQ ID NO:32), germacrene C synthase (SEQ ID NO:52), E-alpha-bisabolene synthase (SEQ ID NO:46), gamma-humulene synthase (SEQ ID NO:50), δ -selinene synthase (SEQ ID NO:48), e-b-farnesene synthase (SEQ ID NO:28), at residues whose α -carbons have the interatomic distances and structural coordinates described in Tables 1–6.

EXAMPLE 14

Generation of Novel Diterpene Synthase Genes

A DNA sequence encoding an abietadiene synthase (SEQ ID NO:56) is used construct a library of mutant abietadiene synthases. Random mutations are introduced at nucleotides encoding one or more of the following nine amino acid residues: S, S, I, A, L, V, G, F and Y, which correspond to positions 593, 614, 722, 723, 724, 727, 761, 840 and 841 of SEQ ID NO:56.

In some cases, the abietadiene synthase coding sequence is mutated at nucleotides encoding one or more of amino acid residues I, S, T, M, D, L and T, which correspond to positions 590, 617, 618, 837, 845, 847 and 848 of SEQ ID NO:56. The abietadiene synthase coding sequence is sometimes mutated at nucleotides encoding one or more of the following amino acid residues: Y, S and N, which correspond to positions 696, 721 and 765 of SEQ ID NO:56. In some cases, these mutations are made in addition to mutations at the nine residues mentioned above. In other cases, 40 mutations are made at these ten residues without introducing mutations at the nine residues mentioned above.

The abietadiene synthase coding sequence is mutated using the QuickChange® method in the pET28b(+) vector, following a protocol similar to that described in Example 1 to the TEAS 406/407 random library. The primers used to generate mutations are synthesized as indicated in Example 11.

Specific mutations at one or more of the above abietadiene synthase amino acid residues are made by site-directed mutagenesis using a protocol similar to that described in Example 1 for TEAS.

Random and/or specific mutations are prepared in a manner similar to that described above to alter amino acid residues of other diterpene synthases at amino acid residues whose α -carbons have the interatomic distances and structural coordinates described in Tables 1–6, e.g., casbene synthase (SEQ ID NO:42) and taxadiene synthase (SEQ ID NO:44).

EXAMPLE 15

60

65

Expression of Mutant Synthases in Insect, Mammalian and Bacterial Cells

Constructs containing nucleic acids encoding mutant synthases of Examples 12, 13 and/or 14 are introduced into

38

cultured cells of the insect *Spodoptera frugiperda* using a baculovirus expression vector. After expression of the gene, the mutant enzyme is isolated and purified from each done.

Constructs containing nucleic acids encoding mutant synthases of Examples 12, 13 and/or 14 are introduced into cultured HeLa cells using an expression vector having an SV40 promoter. After expression of the gene, the mutant enzyme is isolated and purified from each clone.

Constructs containing nucleic acids encoding mutant synthases of Examples 12, 13 and/or 14 are introduced into *E. coli* BL-21 on a plasmid vector as described in Example 1. The mutant synthase gene is expressed and the mutant enzyme is isolated and purified as described in Example 2.

Other Embodiments

To the extent not already indicated, it will be understood by those of ordinary skill in the art that any one of the various specific embodiments herein described and illustrated may be further modified to incorporate features shown in other of the specific embodiments.

It is to be understood that while the invention has been described in conjunction with the Detailed Description thereof, that the foregoing description is intended to illustrate, and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

TABLE 1

α- Carbon	X Position	Y Position	Z Position
1	119.144	43.487	44.133
2	120.203	38.695	43.506
3	114.058	43.884	41.015
4	109.327	46.145	41.743
5	110.682	46.410	45.284
6	99.381	42.920	45.148
7	103.445	38.054	44.605
8	106.807	36.336	45.151
9	107.629	38.010	41.804
10	109.375	34.842	40.617
11	111.944	37.854	37.602
12	110.233	31.098	47.361
13	109.178	33.314	52.875
14	115.915	32.218	48.369
15	118.846	34.443	51.796
16	116.461	32.848	54.290
17	114.100	38.006	55.620
18	116.617	41.285	51.702
19	114.855	43.486	54.238

39

TABLE 2

α-carbon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	0.0	5.0	6.0	10.5	9.0	19.8	16.6	14.3	13.0	13.5	11.2	15.6	16.7	12.5	11.8	15.0	13.7	8.3	11.0
2	5.0	0.0	8.4	13.3	12.4	21.3	16.8	13.7	12.7	11.9	10.2	13.1	15.4	9.2	9.4	12.8	13.6	9.3	12.9
3	6.0	8.4	0.0	5.3	6.0	15.3	12.6	11.3	8.7	10.2	7.2	14.8	16.6	13.9	15.1	17.4	15.7	11.3	13.3
4	10.5	13.3	5.3	0.0	3.8	11.0	10.4	10.7	8.3	11.4	9.6	16.1	17.0	16.8	18.1	19.6	16.8	13.3	13.9
5	9.0	12.4	6.0	3.8	0.0	11.8	11.1	10.8	9.6	12.5	11.6	15.5	15.2	15.4	15.9	17.3	13.8	10.1	10.3
6	19.8	21.3	15.3	11.0	11.8	0.0	6.4	9.9	10.2	13.6	15.5	16.2	15.8	20.0	22.2	21.8	18.7	18.5	18.0
7	16.6	16.8	12.6	10.4	11.1	6.4	0.0	3.8	5.0	7.8	11.0	10.1	11.1	14.3	17.4	17.0	15.3	15.3	15.9
8	14.3	13.7	11.3	10.7	10.8	9.9	3.8	0.0	3.8	5.4	9.3	6.6	8.6	10.5	13.9	13.7	12.9	12.8	14.1
9	13.0	12.7	8.7	8.3	9.6	10.2	5.0	3.8	0.0	3.8	6.0	9.2	12.1	12.1	15.4	16.1	15.3	13.8	15.4
10	13.5	11.9	10.2	11.4	12.5	13.6	7.8	5.4	3.8	0.0	5.0	7.8	12.4	10.5	14.6	15.5	16.0	14.7	17.0
11	11.2	10.2	7.2	9.6	11.6	15.5	11.0	9.3	6.0	5.0	0.0	12.0	16.2	12.8	16.1	18.0	18.2	15.3	17.8
12	15.6	13.1	14.8	16.1	15.5	16.2	10.1	6.6	9.2	7.8	12.0	0.0	6.0	5.9	10.2	9.5	11.4	12.8	14.9
13	16.7	15.4	16.6	17.0	15.2	15.8	11.1	8.6	12.1	12.4	16.2	6.0	0.0	8.2	9.8	7.4	7.3	11.0	11.7
14	12.5	9.2	13.9	16.8	15.4	20.0	14.3	10.5	12.1	10.5	12.8	5.9	8.2	0.0	5.0	6.0	9.5	9.7	12.8
15	11.8	9.4	15.1	18.1	15.9	22.2	17.4	13.9	15.4	14.6	16.1	10.2	9.8	5.0	0.0	3.8	7.1	7.2	10.2
16	15.0	12.8	17.4	19.6	17.3	21.8	17.0	13.7	16.1	15.5	18.0	9.5	7.4	6.0	3.8	0.0	5.8	8.8	10.8
17	13.7	13.6	15.7	16.8	13.8	18.7	15.3	12.9	15.3	16.0	18.2	11.4	7.3	9.5	7.1	5.8	0.0	5.7	5.7
18	8.3	9.3	11.3	13.3	10.1	18.5	15.3	12.8	13.8	14.7	15.3	12.8	11.0	9.7	7.2	8.8	5.7	0.0	3.8
19	11.0	12.9	13.3	13.9	10.3	18.0	15.9	14.1	15.4	17.0	17.8	14.9	11.7	12.8	10.2	10.8	5.7	3.8	0.0

TABLE 3 TABLE 5

α- Carbon	X Position	Y Position	Z Position		α-	X	Y	Z
1	119.144	43.487	44.133	30	Carbon	Position	Position	Position
2	120.203	38.695	43.506					
3	114.058	43.884	41.015		1	120.203	38.695	43.506
4	109.327	46.145	41.743		2	114.058	43.884	41.015
5	110.682	46.410	45.284		3	106.807	36.336	45.151
6	106.807	36.336	45.151	25				
7	107.629	38.010	41.804	35	4	107.629	38.010	41.804
8	109.375	34.842	40.617		5	109.375	34.842	40.617
9	111.944	37.854	37.602		6	111.944	37.854	37.602
10	110.233	31.098	47.361					
11	115.915	32.218	48.369		7	110.233	31.098	47.361
12	118.846	34.443	51.796	40	8	118.846	34.443	51.796
13	116.461	32.848	54.290	_	9	116.461	32.848	54.290
14	114.100	38.006	55.620			110.101	22.010	51.256
15	116.617	41.285	51.702	_				
16	114.855	43.486	54.238					

TABLE 4

α-Carbon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0.0	5.0	6.0	10.5	9.0	14.3	13.0	13.5	11.2	15.6	12.5	11.8	15.0	13.7	8.3	11.0
2	5.0	0.0	8.4	13.3	12.4	13.7	12.7	11.9	10.2	13.1	9.2	9.4	12.8	13.6	9.3	12.9
3	6.0	8.4	0.0	5.3	6.0	11.3	8.7	10.2	7.2	14.8	13.9	15.1	17.4	15.7	11.3	13.3
4	10.5	13.3	5.3	0.0	3.8	10.7	8.3	11.4	9.6	16.1	16.8	18.1	19.6	16.8	13.3	13.9
5	9.0	12.4	6.0	3.8	0.0	10.8	9.6	12.5	11.6	15.5	15.4	15.9	17.3	13.8	10.1	10.3
6	14.3	13.7	11.3	10.7	10.8	0.0	3.8	5.4	9.3	6.6	10.5	13.9	13.7	12.9	12.8	14.1
7	13.0	12.7	8.7	8.3	9.6	3.8	0.0	3.8	6.0	9.2	12.1	15.4	16.1	15.3	13.8	15.4
8	13.5	11.9	10.2	11.4	12.5	5.4	3.8	0.0	5.0	7.8	10.5	14.6	15.5	16.0	14.7	17.0
9	11.2	10.2	7.2	9.6	11.6	9.3	6.0	5.0	0.0	12.0	12.8	16.1	18.0	18.2	15.3	17.8
10	15.6	13.1	14.8	16.1	15.5	6.6	9.2	7.8	12.0	0.0	5.9	12.2	9.5	11.4	12.8	14.9
11	12.5	9.2	13.9	16.8	15.4	10.5	12.1	10.5	12.8	5.9	0.0	5.0	6.0	9.5	9.7	12.8
12	11.8	9.4	15.1	18.1	15.9	13.9	15.4	14.6	16.1	12.2	5.0	0.0	3.8	7.1	7.2	10.2
13	15.0	12.8	17.4	19.6	17.3	13.7	16.1	15.5	18.0	9.5	6.0	3.8	0.0	5.8	8.8	10.8
14	13.7	13.6	15.7	16.8	13.8	12.9	15.3	16.0	18.2	11.4	9.5	7.1	5.8	0.0	5.7	5.7
15	8.3	9.3	11.3	13.3	10.1	12.8	13.8	14.7	15.3	12.8	9.7	7.2	8.8	5.7	0.0	3.8
16	11.0	12.9	13.3	13.9	10.3	14.1	15.4	17.0	17.8	14.9	12.8	10.2	10.8	5.7	3.8	0.0

TABLE 6	TABLE 6-continued

α- Carbon	1	2	3	4	5	6	7	8	9	5	α- Carbon	1	2	3	4	5	6	7	8	9
1	0	8.4	13.7	12.7	11.9	10.2	13.1	9.4	12.8		6	10.2	7.2	9.3	6	5	0	12	16.1	18
2	8.4	0	11.3	8.7	10.2	7.2	14.8	15.1	17.4		7	13.1	14.8	6.6	9.2	7.8	12	0	10.2	9.5
3	13.7	11.3	0	3.8	5.4	9.3	6.6	13.9	13.7		8	9.4	15.1	13.9	15.4	14.6	16.1	10.2	0	3.8
4	12.7	8.7	3.8	0	3.8	6	9.2	15.4	16.1		9	12.8	17.4	13.7	16.1	15.5	18	9.5	3.8	0
5	11 0	10.2	5.4	20	0	5	70	146	15.5											

TABLE 7

				Ord	ered	Arra	ngem	ent c	of R-	Grou	ne at	Ot-C2	rbon	· 1_1	0				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
A	C	W	I	I	S	Y	T	T	T	Y	L	С	D	V	T	Y	D	Y	T
B C	C G	W	I I	I A	S S	Y Y	T T	S C	T G	Y	L L	C	D D	I M	T L	Y Y	D D	Y Y	T T
D	G	w	Ī	A	s	Ŷ	T	S	G	Ŷ	L	Č	D	M	L	Ý	Ď	Ý	Ť
E	С	W	L	T	S	Y	S	Α	G	Y	I	Α	N	Α	L	Y	D	Y	T
F	G	W	L	L	S	Y	S	T	V	H	L	G	D	A	V	Y	D	Y	T
G H	C L	W	L I	T T	S T	Y	S S	A V	G G	Y N	I L	A F	N D	A V	L L	Y	D D	Y F	S T
I	P	W	I	V	D	Ý	S	Ť	A	G	L	S	D	A	Č	Y	D	Y	T
J	A	W	V	C	G	F	T	S	C	I	M	G	N	С	S	Y	D	Y	S
K	N	F	F	L	G	Α	Е	I	T	A	T	G	N	Ι	T	Y	E	F	T
L M	C S	W	N V	I L	T T	Y Y	S S	I S	S S	G Y	M L	L G	D G	A V	M L	Y	D D	H F	Q T
N	N	F	F	L	V	N	A	T	L	A	L	G	N	L	S	Y	E	F	Т
O	C	w	N	I	Т	Y	I	S	G	P	L	L	D	A	M	Y	D	Н	G
P	С	W	N	V	T	Y	I	G	G	I	L	L	D	Α	I	Y	D	F	G
Q	С	Y	L	L	T	F Y	A	V	T	M	T	G	N	I	T	Y	D	Y	T
R S	C S	W	I F	I	T V	F	S S	I S	S S	A V	I	L L	D N	A V	I	Y Y	D D	D H	G G
T	S	w	I	A	T	Y	S	v	A	s	I	L	D	Å	I	Y	D	F	G
U	N	W	N	L	T	Y	S	I	S	S	I	F	N	\mathbf{S}	M	Y	D	Η	G
V	F	L	A	Q	Т	Y	S	I	G	Q	L	S	D	T	I	F	D	F	G
W X	I Y	S L	S	T I	V T	Y Y	S S	I	A G	L H	V S	G L	N G	M F	F G	Y Y	D D	$\frac{\mathbf{L}}{\mathbf{Y}}$	T S
Y	G	S	F	I	T	F	S	S	S	V	I	L	N	A	V	Y	D	H	G
ż	Y	w	A	Ĉ	Ť	Ŷ	s	S	Ğ	M	Ĺ	G	D	L	Ì	Ŷ	Ď	Ĺ	Ÿ
AA	Α	Α	N	L	T	N	Α	L	T	S	T	С	M	L	L	Y	D	Y	N
BB	F	L	C	V	T	Y	S	S	A	Y	V	L	G	L	L	Y	D	F	S
CC DD	F Y	W M	A C	M V	T T	Y F	N V	T S	G S	M G	L I	S L	D G	I F	M V	Y	D D	F Y	S T
EE	v	S	G	Q	v	Y	s	v	G	L	Ċ	w	N	V	F	Ý	Ď	Ý	Ĝ
FF	С	S	G	T	T	M	F	Α	L	G	V	G	N	L	F	Y	D	F	T
GG	C	S	G	T	T	M	S	F	A	L	I	G	N	L	F	Y	D	F	T
HH II	C	A W	G V	T I	T S	M Y	S T	F T	A G	L L	I V	G I	N N	V T	F S	Y	D D	Y	T T
II	Y	W	A	C	T	Y	S	S	G	M	L	G	D	L	I	Y	D D	L	Y
KK	Ĉ	w	I	I	s	Y	T	S	T	Y	L	C	D	V	T	Y	D	Y	T
LL	С	W	I	I	S	Y	T	T	T	Y	L	С	D	I	T	Y	D	Y	\mathbf{T}
MM	С	W	N	I	T	Y	S	I	S	G	M	L	D	A	M	Y	D	Н	G
NN	F	A	A	Q	T	Y	S	I	G	Q	L	S	D	T	I	F	D	F	G
00	F	A	I	A	Т	Y	S	V	A	S	I	L	D	A	I	Y	D	F	G

TABLE 8

	Ordered Arrangement of R-Groups at α-carbons 1–16															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A	С	W	I	I	S	Т	Т	Y	L	С	V	Т	Y	D	Y	Т
В	C	W	I	I	S	S	T	Y	L	C	I	Т	Y	D	Y	T
C	G	W	I	Α	\mathbf{S}	С	G	Y	L	С	M	L	Y	D	Y	T
D	G	W	I	Α	S	S	G	Y	L	С	M	L	Y	D	Y	T
E	C	W	L	T	S	Α	G	Y	I	Α	Α	L	Y	D	Y	T
F	G	W	L	L	\mathbf{S}	T	V	Η	L	G	Α	V	Y	D	Y	T
G	C	W	L	T	S	Α	G	Y	I	A	Α	L	Y	D	Y	S
H	L	W	I	T	T	V	G	N	L	F	V	L	Y	D	F	T
I	P	W	I	V	D	T	Α	G	L	S	Α	С	Y	D	Y	T
J	Α	W	V	С	G	\mathbf{S}	С	I	M	G	С	S	Y	D	Y	S

TABLE 8-continued

	Ordered Arrangement of R-Groups at α-carbons 1–16															
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15															16
K	N	F	F	L	G	I	Т	A	Т	G	I	Т	Y	Е	F	Т
L	C	W	N	I	T	I	S	G	M	L	Α	M	Y	D	Η	Q
M	S	W	V	L	T	S	S	Y	L	G	V	L	Y	D	F	T
N	N	F	F	L	V	T	L	Α	L	G	L	S	Y	E	F	T
O	С	W	N	I	T	S	G	P	L	L	Α	M	Y	D	Η	G
P	C	W	N	V	T	G	G	I	L	L	Α	I	Y	D	F	G
Q	C	Y	L	L	T	V	T	M	T	G	I	T	Y	D	Y	T
R	C	W	I	I	Т	I	S	Α	I	L	Α	I	Y	D	D	G
S	S	W	F	I	V	S	S	V	I	L	V	I	Y	D	Н	G
T	S	W	I	Α	Т	V	Α	S	I	L	Α	I	Y	D	F	G
U	N	W	N	L	Т	I	S	S	I	F	S	M	Y	D	Н	G
V	F	L	Α	Q	Т	I	G	Q	L	S	Т	I	F	D	F	G
W	I	S	S	Т	V	I	Α	L	V	G	M	F	Y	D	L	T
X	Y	L	С	I	T	С	G	Н	S	L	F	G	Y	D	Y	S
Y	G	S	F	I	Т	S	S	V	I	L	Α	V	Y	D	Η	G
Z	Y	W	Α	C	T	S	G	M	L	G	L	I	Y	D	L	Y
AA	Α	Α	N	L	T	L	T	S	T	С	L	L	Y	D	Y	N
BB	F	L	С	V	T	S	Α	\mathbf{Y}	V	L	L	L	Y	D	F	S
CC	F	W	Α	M	Т	Т	G	M	L	S	I	M	Y	D	F	S
DD	Y	M	С	V	Т	S	S	G	I	L	F	V	Y	D	Y	T
EE	V	S	G	O	V	V	G	L	С	W	V	F	Y	D	Y	G
FF	С	S	G	T	T	Α	L	G	V	G	L	F	Y	D	F	T
GG	С	S	G	Т	Т	F	Α	L	I	G	L	F	Y	D	F	Т
HH	Ċ	Ā	G	T	T	F	A	L	Ī	G	$\bar{\mathbf{v}}$	F	Ÿ	D	Y	T
II	Ī	W	v	Ī	s	T	G	L	v	Ī	Т	s	Ÿ	D	Ÿ	T
JJ	Ÿ	W	A	Ċ	Т	s	Ğ	M	L	G	Ĺ	I	Ÿ	D	Ĺ	Ÿ
KK	Č	W	I	Ī	s	s	T	Y	L	Ċ	v	T	Ÿ	D	Y	T
LL	Č	w	Î	Î	š	Ť	Ť	Ŷ	Ĺ	č	İ	Ť	Ŷ	Ď	Ŷ	Ť
MM	Č	w	Ñ	Î	Ť	Î	ŝ	Ĝ	M	Ľ	Ā	M	Ŷ	Ď	Ĥ	Ĝ
NN	F	A	A	Q	T	Î	Ğ	Q	L	s	Т	I	F	Ď	F	Ğ
00	F	A	I	Ā	T	v	A	s	Ī	Ĺ	Ā	Ī	Y	D	F	G

A W I T T Y L C T Y 40 HH A G F A L	6 7 I G V I L G L C L C M L	8 9 F Y S Y I Y T Y T Y
A W I T T Y L C T Y 40 HH A G F A L	I G V I L G L C L C	F Y S Y I Y T Y
	V I L G L C L C M L	S Y I Y T Y T Y
	L G L C L C M L	I Y T Y T Y
B W I S T Y L C T Y II W V T G L	L C L C M L	T Y T Y
C W I C G Y L C L Y JJ W A S G M	L C M L	T Y
D W I S G Y L C L Y KK W I S T Y	M L	
E W L A G Y I A L Y LL W I T T Y		
		M Y
G W L A G Y I A L Y 45 NN A A I G O	L S	I F
H WIVGNLFLY OO AIVAS	I L	I Y
I W I T A G L S C Y		
J W V S C I M G S Y		
K F F I T A T G T Y		
L W N I S G M L M Y M W V S S V I G I V TABLE 10		
M W V S S I L G L I 70		
N F F I L A L G S I		G 41
O W N S G P L L M Y Structural Coordinates of Tobacco 5-Epi-Ar		~
P W N G G I L L I Y <u>With Farnesyl Hydroxyphosphon</u> .	ate Boun	<u>d</u>
Q Y L V T M T G T Y		ъ
R W I I S A I L I Y Atom Resi-	Z	B- OCC factor
3 W F 3 3 V I L I I		OCC factor
T W I V A S I L I Y 55 1 CB VAL 17 105.641 55.031	61.062	1.00 98.26
U W N I S S I F M I	61.269	1.00 96.24
V L A I G Q L S I F	62.133	1.00 94.24
W S S I A L V G F Y	59.190	1.00 98.89
A L C C G H S L G I 5 O VAI 17 107 108 52 650	59.359	1.00 96.64
Y S F S S V I L V Y 6 N VAI 17 104 381 53 419	59.594	1.00 99.88
Z W A S G M L G I Y 60 7 CA VAL 17 105.495 54.412	59.646	1.00 99.06
AA A N L T S T C L Y 8 N AIA 18 107.671 54.719	58.615	1.00 98.95
BB L C S A Y V L L Y 9 CA ALA 18 109.015 54.419	58.088	1.00 98.55
CC W A T G M L S M Y 10 CB ALA 18 110.007 55.478	58.572	1.00 98.55
DD M C S S G I L V Y 11 C ALA 18 109.570 53.012	58.346	1.00 97.37
EE S G V G L C W F Y 12 O ALA 18 109.580 52.170	57.447	1.00 100.00
FF S G A L G V G F Y 65 13 N ASP 19 110.068 52.793	59.562	1.00 100.00
GG S G F A L I G F Y 14 CA ASP 19 110.616 51.508	60.010	1.00 97.13

TABLE 10-continued

March Marc	Structur			of Tobacco				hase	5	S	tructur			of Tobacco l Hydroxy				hase
16 California 19 19 19 19 19 19 19 1				X	Y	z	OCC		Ü					x	Y	z	OCC	
18	15 CB	ASP	19	109.507	50.447	60.064	1.00	96.62		88	CG	GLN	28	131.624	50.781	49.615	1.00	32.15
18									40									
19 C									10									
20																		
22 Ca		ASP		112.812								GLN						
24 Co																		
24 Col. PHE 20									15									
27 CE PHE 20 1110.56 48.42 55.93 10.0 77.18									15			PHE						
2																		
28 CE2 PHE 20																		
20 CZ PHE 20																		
31 O PHIB 20 114-400 \$21.07 \$75.57 \$1.00 \$4.00 \$4.00 \$1.00 \$4.00 \$1.00 \$	29 CZ	PHE			48.092				20	102	CZ	PHE		129.466	47.311			16.26
32 CA SER 21 115.294 50.998 57.893 1.00 78.899									20									
34 CA																		
35 C M SER 21 117,449 48.259 57.731 1.00 80.91 21 108 CG 18.91 30 C SER 21 117.07 51.03 56.02 1.00 70.74 110 CD2 118.11 22.13 56.091 1.00 60.32 111 C 12.00 43.05 8.00 8.00 22 118.17 32.29 57.887 1.00 60.39 112 C 12.00 30 13.03 34.764 42.090 1.00 44.10 41 CB PRO 22 119.360 53.98 55.01 1.00 53.56 111 C LEU 30 13.03.84 \$4.977 1.00 44.10 41 C PRO 22 119.367 53.688 55.89 1.00 55.70 1.10 C SER 31 13.35.67 55.33 44.20 1.00 53.74 4.00 8.00 8.20 1.00 \$5.70 1.0		SER										LEU						
36 C SER 21 117,305 51,063 56,062 1,00 69,07 25 109 CDI LEU 30 127,508 58,033 44,036 1,00 54,01 38,07 70,07 4,07 50,07 51,00 54,01 50,00 54,00 5																		
38 N PRO 22 1117070 50.513 55.525 1.00 70.74									25									
38 N PRO 22 118.111 52.134 56.991 1.00 63.25																		
41 CB PRO 22 118,773 \$2,680 \$5,501 1,00 \$6,04 \$10 \$3,56 \$4,07 \$10,00 \$4,40 \$4,10 \$4,	38 N	PRO	22	118.111	52.134		1.00			111	C	LEU		130.433	54.764	42.009	1.00	40.75
42 CG PRO 22 119.362 53.994 56.018 1.00 53.56																		
42 CG PRO 22 119.657 \$3.688 \$7.458 \$1.00 \$6.07 \$1.00 \$5.70 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$4.0 \$1.00 \$5.70 \$4.0 \$1.00 \$4.0 \$1.00 \$4.0 \$1.00 \$4.0 \$4.0 \$1.0 \$4.0 \$4.0 \$4.0 \$4.0 \$4.0 \$4.0 \$4.0 \$4																		
44 O PRO 22 120,236 50,771 55,589 1.00 52,85 45 N SER 23 120,301 52,038 53,724 1.00 56,96 46 CA SER 23 121,327 51,233 53,065 1.00 53,59 47 CB SER 23 121,327 51,233 53,065 1.00 53,59 48 OG SER 23 122,607 51,200 53,787 1.00 54,50 48 OG SER 23 122,574 50,995 50,991 1.00 45,40 49 C SER 23 122,574 50,995 50,991 1.00 45,40 40 C SER 23 122,574 50,995 50,991 1.00 45,40 40 C SER 23 122,574 50,995 50,991 1.00 45,40 40 C SER 23 122,574 50,995 50,991 1.00 45,40 40 C SER 23 122,574 50,995 50,991 1.00 45,40 40 C SER 24 123,101 50,004 54,168 1.00 52,60 40 C SER 25 125,472 50,267 51,341 1.00 61,76 40 C SER 26 124 124,545 48,301 52,40 45 C SER 27 125,404 50,40 45 C SER 28 125,40 45 C SER 29 125,40									30									
46 CA SER 23 120,301 \$20,38 \$3,724 1.00 \$5.669 \$19 N \$FIR 23 134,905 \$2,743 42,782 1.00 \$43.37 \$47.08 \$FIR 23 121,605 \$1,775 \$1,660 1.00 \$1,75 \$1.00 \$45.45 \$48.09 \$1.00 \$45.45 \$49.00 \$40.00 \$1.00 \$43.37 \$49.00 \$49.00 \$49.00 \$40.00 \$4												SER						
46 CA																		
48 CB SER 23 121,600 51,775 51,660 1.00 51,377 51,660 1.00 45,264 48 CG SER 23 122,675 50,995 50,991																		
49 C SER 23 122,620 51,210 53,878 1.00 57,52 122 CG PHE 32 13,181 49,670 40,073 1.00 32,225 51 N LEU 24 123,101 50,004 54,168 1.00 58,09 124 CD2 PHE 32 13,526 48,984 38,888 1.00 32,90 52 CA LEU 24 124,354 48,301 55,911 1.00 60,64 126 CE2 PHE 32 13,709 48,407 40,875 1.00 22,739 54 CG LEU 24 123,810 45,944 55,851 1.00 60,64 126 CE2 PHE 32 13,7179 47,737 30,655 1.00 20,275 55 CDI LEU 24 125,554 50,313 54,808 1.00 50,23 131 CA SER 33 13,449 40,00 32,22																		
Ser									35									
51 N LEU 24 123,101 50,004 54,168 1,00 58,09 124 CD2 PHE 32 135,266 48,944 88,858 1,00 52,09 52 CA LEU 24 124,545 48,301 55,191 1,00 60,64 126 CE2 PHE 32 137,096 48,407 1,00 28,42 55 CD1 LEU 24 123,413 47,379 55,651 1,00 60,70 40 127,02 PHE 32 137,696 43,073 36,565 1,00 60,70 40 127,02 PHE 32 136,661 48,023 38,667 1,00 28,24 56 CD2 LEU 24 125,554 50,30 51,712 1,00 70,77 129 0 PHE 32 134,988 52,256 37,829 1,00 45,11 50 78 134,988 50,205 38,889 1,00 50,24 130 CR																		
53 CB LEU 24 124,454 48,301 55,191 1.00 60,64 4 126 CE2 PHE 32 136,201 48,023 38,647 1.00 27,39 56 CD1 LEU 24 123,810 45,934 55,885 1.00 70,70 40 128 CZ PHE 32 135,601 52,388 38,896 1.00 50,82 56 CD2 LEU 24 123,809 47,596 57,124 1.00 70,77 129 0 PHE 32 135,601 52,388 38,896 1.00 50,265 57 C LEU 24 126,503 53,189 1.00 50,267 50,318 1.00 50,267 50,00 50,267 50,00 50,267 50,00 50,267 1.00 46,22 45 132 CB BER 33 136,201 48,023 38,647 1.00 61,21 50 LE 125																		
55 CG LEU 24 123.413 47.379 55.651 1.00 67.70 40 127 CZ PHE 32 137.179 47.737 39.655 1.00 50.87 56 CD2 LEU 24 123.808 47.596 57.124 1.00 70.77 129 0 PHE 32 133.601 52.358 38.896 1.00 50.87 57 C LEU 24 125.554 50.313 54.198 1.00 51.07 129 0 PHE 32 134.988 52.256 38.899 1.00 43.81 58 O LEU 24 125.554 50.515 48.88 1.00 50.23 3 136.689 52.266 38.989 1.00 45.50 60 CA TRP 25 125.635 50.636 51.977 1.00 44.22 45 132 CB SER 33 138.541 51.250 38.300 1.00 60																		
55 CD1 LEU 24 123,810 45,934 55,385 1,00 70,07 70,07 129 0 PHE 32 135,601 52,388 38,896 1,00 50,87 56 CD2 LEU 24 123,554 50,313 54,198 1,00 51,07 129 0 PHE 32 134,988 52,256 38,899 1,00 55,26 58 O LEU 24 126,529 50,754 54,808 1,00 50,23 131 CA SER 33 137,755 52,816 37,841 1,00 61,21 59 N TRP 25 126,656 50,636 51,977 1,00 44,22 45 134 C SER 33 138,587 50,404 38,017 50,066 1,00 40,22 45 134 C SER 33 138,641 51,583 33,731 1,00 60,09 139 60 SER 33 138,4																		
56 CD2 LEU 24 123,098 47,596 57,124 1.00 70.77 129 O PHE 32 134,988 52,256 37,829 1.00 43,81 57 C LEU 24 125,554 50,313 54,198 1.00 51,07 130 N SER 33 136,899 52,626 38,899 1.00 55,26 58 N TRP 25 125,472 50,267 52,873 1.00 45,50 132 CB SER 33 138,557 50,404 38,017 1.00 61,62 CG TRP 25 126,563 69,08 50,645 1.00 46,22 45 134 CG SER 33 138,641 51,583 31,731 1.00 60,09 61 CB TRP 25 125,853 48,510 50,867 1.00 46,22 45 134 CB SER 33 139,048 51,00 50,49 63									40									
58 O LEU 24 126,529 50,754 54,808 1.00 50,23 131 CA SER 33 137,755 52,816 37,841 1.00 61,21 59 N TRP 25 125,672 50,267 52,873 1.00 44,50 133 06 SER 33 138,587 54,094 38,017 1.00 61,06 61 CA TRP 25 126,636 49,908 50,645 1.00 44,22 45 134 C SER 33 138,541 51,833 37,311 1.00 59,79 62 CG TRP 25 126,604 47,407 51,884 1.00 50,67 136 N ILE 34 138,641 51,883 37,731 1.00 59,49 63 CD2 TRP 25 126,604 47,219 51,729 1.00 45,66 138 N ILE 34 139,128 49,525 36,48						57.124												
59 N TRP 25 125.472 50.267 52.873 1.00 45.50 132 CB SER 33 138.587 54.094 38.017 1.00 61.87 60 CA TRP 25 126.563 50.636 51.977 1.00 46.22 45 133 OG SER 33 139.024 54.250 39.360 1.00 57.75 62 CG TRP 25 126.564 49.908 50.645 1.00 47.97 136 O SER 33 139.488 51.329 38.589 1.00 59.49 63 CD2 TRP 25 125.853 48.510 50.87 1.00 50.67 136 N ILE 34 139.488 51.329 36.486 1.00 60.14 64 CEZ TRP 25 124.567 48.070 50.732 1.00 46.22 1 1.38 CB ILE 34 139.291 47.406 48.639 35.142 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
60 CA TRP 25 126,563 50,636 51,977 1.00 44,42 45 133 OG SER 33 139,024 54,250 39,360 1.00 67,09 61 CB TRP 25 126,856 49,908 50,645 1.00 47,97 136 O SER 33 139,048 51,239 38,589 1.00 59,49 63 CD2 TRP 25 126,604 47,407 51,384 1.00 50,67 136 N ILE 34 139,128 49,552 36,718 1.00 60,14 65 CE3 TRP 25 127,948 47,219 51,729 1.00 45,66 138 CB ILE 34 138,426 48,639 35,442 1.00 66,50 66 CD1 TRP 25 124,567 48,070 50,732 1.00 47,16 50 140 CG1 ILE 34 138,099 49,																		
61 CB TRP 25 126.356 49.908 50.645 1.00 46.22 45 134 C SER 33 138.641 51.583 37.731 1.00 59.75 62 CG TRP 25 125.853 485.10 50.867 1.00 47.97 136 O SER 33 139.488 51.329 38.589 1.00 59.49 63 CD2 TRP 25 125.700 46.331 51.553 1.00 50.67 1.36 N ILE 34 139.128 49.552 36.486 1.00 66.15 65 CE3 TRP 25 124.567 48.709 50.732 1.00 49.99 139 CG2 ILE 34 138.09 94.23 34.100 69.50 66 CD1 TRP 25 124.466 46.765 51.147 1.00 47.77 1.00 47.77 1.00 47.77 1.00 47.77 1.00 <																		
63 CD2 TRP									45									
64 CE2 TRP 25 125.700 46.331 51.553 1.00 50.91 137 CA ILE 34 139.128 49.552 36.486 1.00 66.15 65 CE3 TRP 25 127.948 47.219 51.729 1.00 45.66 CD1 TRP 25 124.567 48.070 50.732 1.00 49.99 139 CG2 ILE 34 138.099 49.423 34.163 1.00 65.50 for Ne1 TRP 25 124.466 46.765 51.147 1.00 47.16 50 140 CG1 ILE 34 138.099 49.423 34.163 1.00 65.37 for Ne1 TRP 25 124.466 46.765 51.147 1.00 47.16 50 140 CG1 ILE 34 139.128 49.552 36.486 1.00 65.37 for Ne1 TRP 25 124.466 46.765 51.147 1.00 47.16 50 140 CG1 ILE 34 139.128 49.423 34.163 1.00 69.37 for Ne1 TRP 25 126.101 45.088 52.053 1.00 52.99 141 CD1 ILE 34 139.715 46.458 34.122 1.00 63.17 for CH2 TRP 25 126.893 52.105 51.00 47.77 142 C ILE 34 140.544 49.875 36.013 1.00 70.13 70 CH2 TRP 25 126.893 52.110 51.744 1.00 44.49 144 N ASP 35 141.545 49.454 36.782 1.00 73.05 72 O TRP 25 126.99 52.550 52.063 1.00 43.75 73 N GILY 26 126.210 54.267 50.894 1.00 43.75 74 CA GILY 26 126.210 54.267 50.894 1.00 39.84 75 C GILY 26 126.575 53.696 48.580 1.00 46.59 78 CA ASP 35 143.895 49.419 37.558 1.00 76.13 76 O GILY 26 126.210 54.267 50.894 1.00 39.84 147 CG ASP 35 143.895 49.419 37.558 1.00 76.13 76 O GILY 26 126.210 55.744 49.483 1.00 44.69 148 OD1 ASP 35 143.155 49.030 39.784 1.00 92.06 76 O GILY 26 126.210 55.748 49.287 1.00 46.59 148 OD1 ASP 35 143.155 49.030 39.784 1.00 86.08 79 CB ASP 27 127.620 55.748 49.287 1.00 46.59 150 C ASP 35 143.155 49.030 39.784 1.00 86.08 79 CB ASP 27 127.307 58.091 47.770 1.00 66.06 60 153 CA ASP 35 143.155 49.430 31.577 1.00 66.576 ASP 27 127.307 58.091 47.770 1.00 66.06 60 153 CA ASP 35 143.155 49.430 31.577 1.00 67.50 85 CG ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 35 143.895 50.497 31.804 1.00 79.82 83 C ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 35 143.895 50.497 31.804 1.00 79.82 84 O ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 35 143.895 50.497 31.804 1.00 79.82 84 O ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 35 143.895 50.497 31.804 1.00 79.82 84 O ASP 27 120.441 54.855 47.592 47.686 1.00 66.06 60 60.66 60 60.66 60 60.66 60																		
65 CE3 TRP 25 127.948 47.219 51.729 1.00 45.66 CD1 TRP 25 124.567 48.070 50.732 1.00 49.99 139 CG2 ILE 34 138.426 48.639 35.442 1.00 65.50 66 CD1 TRP 25 124.567 48.070 50.732 1.00 49.99 139 CG2 ILE 34 138.099 49.423 34.163 1.00 69.37 68 CZ2 TRP 25 126.101 45.088 52.053 1.00 52.99 141 CD1 ILE 34 139.291 47.406 35.157 1.00 63.17 69 CZ3 TRP 25 128.347 45.983 52.227 1.00 47.77 142 C ILE 34 134.555 46.458 34.122 1.00 63.17 70 CH2 TRP 25 127.423 44.934 52.384 1.00 51.93 143 O ILE 34 140.725 50.551 35.001 1.00 76.00 70.13 70 CH2 TRP 25 126.893 52.110 51.744 1.00 44.49 144 N ASP 35 141.545 49.454 36.782 1.00 76.00 70.72																		
67 NE1 TRP 25 124.466 46.765 51.147 1.00 47.16 50 140 CG1 ILE 34 139.291 47.406 35.157 1.00 65.37 68 CZ2 TRP 25 126.101 45.088 52.053 1.00 52.99 141 CD1 ILE 34 138.715 46.458 34.122 1.00 63.17 69 CZ3 TRP 25 128.347 45.983 52.227 1.00 47.77 142 C ILE 34 140.544 49.875 36.013 1.00 70.13 70 CH2 TRP 25 127.423 44.934 52.384 1.00 51.93 143 O ILE 34 140.725 50.551 35.001 1.00 76.00 71 C TRP 25 126.893 52.110 51.744 1.00 44.49 144 N ASP 35 141.545 49.454 36.782 1.00 73.05 72 O TRP 25 127.997 52.550 52.063 1.00 43.75 145 CA ASP 35 142.935 49.673 36.388 1.00 70.88 73 N GLY 26 125.958 52.862 51.172 1.00 47.80 55 146 CB ASP 35 143.895 49.419 37.558 1.00 76.13 74 CA GLY 26 126.210 54.267 50.894 1.00 44.69 148 OD1 ASP 35 142.931 47.387 38.344 1.00 92.06 76 O GLY 26 126.744 54.449 49.483 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 77 N ASP 27 127.620 55.434 49.287 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 78 CA ASP 27 128.200 55.708 47.966 1.00 50.38 10 OD1 ASP 27 128.200 55.708 47.966 1.00 50.38 80 CG ASP 27 127.307 58.091 47.770 1.00 66.50 66.06 81 OD1 ASP 27 127.482 59.318 47.597 1.00 66.76 81 OD1 ASP 27 127.482 59.318 47.597 1.00 66.76 81 OD1 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 36 143.083 48.471 32.765 1.00 72.78 82 OD2 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 36 144.461 46.704 31.906 1.00 68.26 86 CA GLN 28 130.759 52.921 48.461 1.00 47.50 158 C ASN 36 144.2319 51.756 31.853 1.00 84.96 85 N GLN 28 129.642 53.855 48.536 1.00 40.05 158 C ASN 36 144.461 46.704 31.906 1.00 65.02 86 CA GLN 28 130.759 52.921 48.461 1.00 47.50 158 C ASN 36 144.461 46.704 31.906 1.00 65.02 86 CA GLN 28 130.759 52.921 48.461 1.00 47.50 158 C ASN 36 144.461 46.704 31.906 1.00 65.02 86 CA GLN 28 130.759 52.921 48.461 1.00 47.50 158 C ASN 36 144.461 46.704 31.906 1.00 65.02 86 CA GLN 28 130.759 52.921 48.461 1.00 47.50 158 C ASN 36 144.461 46.704 31.906 1.00 65.02 86 CA GLN 28 130.759 52.921 48.461 1.00 47.50 158 C ASN 36 144.461 46.704 31.906 1.00 65.02 86 CA GLN 28 130.759 52.921 48.461 1.0																		
68 CZ2 TRP 25 126.101 45.088 52.053 1.00 52.99 141 CD1 ILE 34 138.715 46.458 34.122 1.00 63.17 69 CZ3 TRP 25 128.347 45.983 52.227 1.00 47.77 142 C ILE 34 140.544 49.875 36.013 1.00 70.13 70 CH2 TRP 25 127.423 44.934 52.384 1.00 44.49 144 N ASP 35 141.545 49.445 36.782 1.00 70.00 71 C TRP 25 126.893 52.105 1.00 43.75 145 CA ASP 35 141.545 49.445 36.782 1.00 70.88 73 N GLY 26 125.958 52.862 51.172 1.00 47.80 55 146 CB ASP 35 142.935 49.419 37.558 1									50									
69 CZ3 TRP 25 128.347 45.983 52.227 1.00 47.77 142 C ILE 34 140.544 49.875 36.013 1.00 70.13 70 CH2 TRP 25 127.423 44.934 52.384 1.00 51.93 143 O ILE 34 140.525 50.551 35.001 1.00 76.00 72 O TRP 25 127.997 52.550 52.063 1.00 43.75 145 CA ASP 35 141.545 49.454 36.782 1.00 73.05 72 O TRP 25 126.893 52.103 1.00 43.75 145 CA ASP 35 141.545 49.454 36.388 1.00 70.05 73 N GLY 26 126.210 54.267 50.894 1.00 39.84 147 CG ASP 35 143.895 49.419 37.558 1.00 76									50									
71 C TRP 25 126.893 52.110 51.744 1.00 44.49 144 N ASP 35 141.545 49.454 36.782 1.00 73.05 72 O TRP 25 127.997 52.550 52.063 1.00 43.75 145 CA ASP 35 142.935 49.673 36.388 1.00 70.88 73 N GLY 26 126.210 54.267 50.894 1.00 39.84 147 CG ASP 35 143.895 49.419 37.558 1.00 76.13 75 C GLY 26 126.375 53.696 48.580 1.00 46.55 149 OD2 ASP 35 143.288 48.547 38.344 1.00 92.06 76 O GLY 26 126.375 53.696 48.580 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 77 N ASP 27 127.620 55.434 49.287 1.00 46.92 150 C ASP 35 143.155 49.030 39.784 1.00 86.52 78 CA ASP 27 128.200 55.708 47.966 1.00 57.61 80 CG ASP 27 128.200 55.708 47.966 1.00 57.61 80 CG ASP 27 127.307 58.091 47.770 1.00 66.06 81 OD1 ASP 27 126.168 57.582 47.895 1.00 64.78 150 C ASP 35 143.083 48.471 32.765 1.00 67.50 81 OD1 ASP 27 127.482 59.318 47.597 1.00 66.478 150 C ASP 35 143.083 48.471 32.765 1.00 67.50 81 OD1 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 142.949 49.430 31.577 1.00 72.78 81 OD1 ASP 27 129.441 54.857 47.686 1.00 46.14 156 OD1 ASN 36 142.319 51.756 31.853 1.00 84.96 85 N GLN 28 129.642 53.855 48.536 1.00 40.05 158 C ASN 36 144.461 46.704 31.906 1.00 68.26 86 CA GLN 28 130.759 52.921 48.461 1.00 28.69 65 159 O ASN 36 144.461 46.704 31.906 1.00 65.00																		
72 O TRP 25 127.997 52.550 52.063 1.00 43.75 145 CA ASP 35 142.935 49.673 36.388 1.00 70.88 73 N GLY 26 125.958 52.862 51.172 1.00 47.80 55 146 CB ASP 35 143.288 49.49 37.558 1.00 76.13 75 C GLY 26 126.744 54.49 49.483 1.00 44.69 148 OD1 ASP 35 143.288 48.547 38.344 1.00 92.06 76 O GLY 26 126.375 53.696 48.580 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 77 N ASP 27 127.602 55.434 49.287 1.00 46.92 150 C ASP 35 143.198 48.714 35.227<	70 CH2	TRP	25	127.423	44.934	52.384	1.00	51.93		143	O	ILE		140.725	50.551	35.001	1.00	76.00
73 N GLY 26 125.958 52.862 51.172 1.00 47.80 55 146 CB ASP 35 143.895 49.419 37.558 1.00 76.13 74 CA GLY 26 126.210 54.267 50.894 1.00 39.84 147 CG ASP 35 143.288 48.547 38.638 1.00 84.32 75 C GLY 26 126.744 54.449 49.483 1.00 44.69 146.50 148 OD1 ASP 35 142.931 47.387 38.344 1.00 92.06 76 O GLY 26 126.375 53.696 48.580 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 77 N ASP 27 127.620 55.434 49.287 1.00 46.92 150 C ASP 35 143.155 49.030 39.784 1.00 86.52 78 CA ASP 27 128.200 55.708 47.966 1.00 50.38 151 O ASP 35 143.155 49.030 39.784 1.00 68.52 150 C ASP 35 143.155 49.030 39.784 1.00 66.576 152 N ASN 36 142.940 49.214 34.019 1.00 66.53 152 N ASN 36 142.940 49.214 34.019 1.00 66.53 152 N ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 36 142.949 49.430 31.577 1.00 72.78 152 N ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASP 36 142.949 49.430 31.577 1.00 72.78 152 N ASP 27 129.441 54.857 47.686 1.00 46.14 156 OD1 ASP 36 142.349 50.497 31.804 1.00 79.82 150 C ASP 36 143.083 48.471 32.765 1.00 67.50 152 N ASP 36 142.949 49.430 31.577 1.00 72.78 152 N ASP 36 142.949 49.430 31.577 1.00 79.82 150 C ASP 37 129.441 54.857 47.686 1.00 46.14 156 OD1 ASP 36 144.889 50.497 31.804 1.00 79.82 150 C ASP 37 129.441 54.857 47.686 1.00 46.14 156 OD1 ASP 36 144.383 47.686 32.646 1.00 68.26 150 C ASP 37 129.442 53.855 48.536 1.00 40.05 158 C ASP 36 144.461 46.704 31.906 1.00 68.26 150 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 160 C ASP 36 144.461 46.704 31.906 1.00 65.02 1																		
74 CA GLY 26 126.210 54.267 50.894 1.00 39.84 147 CG ASP 35 143.288 48.547 38.638 1.00 84.32 75 C GLY 26 126.744 54.449 49.483 1.00 44.69 148 OD1 ASP 35 143.155 49.030 39.784 1.00 92.06 76 O GLY 26 126.375 53.696 48.580 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 77 N ASP 27 128.200 55.434 49.287 1.00 46.92 150 C ASP 35 143.198 48.714 35.227 1.00 68.52 78 CA ASP 27 128.504 57.196 1.00 57.61 60 152 N ASN 36 142.940 49.214 34.019 1.00									55									
76 O GLY 26 126.375 53.696 48.580 1.00 46.55 149 OD2 ASP 35 143.155 49.030 39.784 1.00 86.08 77 N ASP 27 127.620 55.434 49.287 1.00 46.92 150 C ASP 35 143.155 49.030 39.784 1.00 86.08 78 CA ASP 27 128.200 55.708 47.966 1.00 50.38 151 O ASP 35 143.155 49.030 39.784 1.00 65.76 79 CB ASP 27 128.504 57.196 47.827 1.00 55.01 60.06 152 N ASN 36 142.940 49.214 34.019 1.00 66.53 80 CG ASP 27 126.168 57.582 47.895 1.00 64.78 154 CB ASN 36 142.949 49.214 34	74 CA	GLY	26	126.210	54.267	50.894	1.00	39.84	55	147	CG	ASP	35	143.288	48.547	38.638	1.00	84.32
77 N ASP 27 127.620 55.434 49.287 1.00 46.92 150 C ASP 35 143.198 48.714 35.227 1.00 68.52 78 CA ASP 27 128.200 55.708 47.966 1.00 50.38 151 O ASP 35 143.198 48.714 35.227 1.00 68.52 79 CB ASP 27 128.504 57.196 47.827 1.00 57.61 152 N ASN 36 142.940 49.214 34.019 1.00 66.53 80 CG ASP 27 127.307 58.091 47.770 1.00 66.06 153 CA ASN 36 143.983 48.471 32.765 1.00 66.53 81 OD1 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 142.949 49.430 31.577																		
78 CA ASP 27 128.200 55.708 47.966 1.00 50.38 151 O ASP 35 143.555 47.552 35.425 1.00 65.76 79 CB ASP 27 128.544 57.196 47.877 1.00 57.51 60 152 N ASN 36 142.940 49.214 34.019 1.00 66.53 80 CG ASP 27 126.168 57.582 47.895 1.00 64.78 154 CB ASN 36 142.940 49.214 34.019 1.00 65.50 81 OD1 ASP 27 126.168 57.582 47.895 1.00 64.78 154 CB ASN 36 142.940 49.430 31.577 1.00 72.78 82 OD2 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 142.949 49.430 3																		
79 CB ASP 27 128.544 57.196 47.827 1.00 57.61 60 152 N ASN 36 142.940 49.214 34.019 1.00 66.53 80 CG ASP 27 127.307 58.091 47.770 1.00 66.06 153 CA ASN 36 142.940 49.214 34.019 1.00 67.50 81 OD1 ASP 27 126.168 57.582 47.895 1.00 64.78 154 CB ASN 36 142.940 49.430 31.577 1.00 67.50 82 OD2 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 142.949 49.430 31.577 1.00 72.78 83 C ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 141.889 50.497 3														143.555				
81 OD1 ASP 27 126.168 57.582 47.895 1.00 64.78 154 CB ASN 36 142.949 49.430 31.577 1.00 72.78 82 OD2 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 142.949 49.430 31.577 1.00 72.88 83 C ASP 27 129.441 54.857 47.686 1.00 46.14 156 OD1 ASN 36 140.708 50.194 31.962 1.00 78.35 84 O ASP 27 130.165 55.082 46.711 1.00 47.50 157 ND2 ASN 36 142.319 51.756 31.853 1.00 84.96 85 N GLN 28 129.642 53.855 48.536 1.00 40.05 158 C ASN 36 144.383 47.686 32.646 1.00 68.26 86 CA GLN 28 130.759 52.921 48.461 1.00 28.69 65 159 O ASN 36 144.461 46.704 31.906 1.00 65.02	79 CB	ASP	27	128.544		47.827	1.00	57.61	60	152	N	ASN	36	142.940	49.214	34.019	1.00	66.53
82 OD2 ASP 27 127.482 59.318 47.597 1.00 67.46 155 CG ASN 36 141.889 50.497 31.804 1.00 79.82 83 C ASP 27 129.441 54.857 47.686 1.00 46.14 156 OD1 ASN 36 140.708 50.194 31.962 1.00 79.83 84 O ASP 27 130.165 55.082 46.711 1.00 47.50 157 ND2 ASN 36 142.319 51.756 31.853 1.00 84.96 85 N GLN 28 129.642 53.855 48.536 1.00 40.05 158 C ASN 36 144.613 46.704 31.906 1.00 68.26 86 CA GLN 28 130.759 52.921 48.461 1.00 28.69 65 159 O ASN 36 144.461 46.704 31.									50									
83 C ASP 27 129.441 54.857 47.686 1.00 46.14 156 OD1 ASN 36 140.708 50.194 31.962 1.00 78.35 84 O ASP 27 130.165 55.082 46.711 1.00 47.50 157 ND2 ASN 36 142.319 51.756 31.853 1.00 84.96 85 N GLN 28 129.642 53.855 48.536 1.00 40.05 158 C ASN 36 144.383 47.686 32.646 1.00 68.26 86 CA GLN 28 130.759 52.921 48.461 1.00 28.69 65 159 O ASN 36 144.461 46.704 31.906 1.00 65.02																		
85 N GLN 28 129.642 53.855 48.536 1.00 40.05 158 C ASN 36 144.383 47.686 32.646 1.00 68.26 86 CA GLN 28 130.759 52.921 48.461 1.00 28.69 65 159 O ASN 36 144.461 46.704 31.906 1.00 65.02	83 C	ASP	27	129.441	54.857	47.686	1.00	46.14		156	OD1	ASN		140.708	50.194	31.962	1.00	78.35
86 CA GLN 28 130.759 52.921 48.461 1.00 28.69 ⁶⁵ 159 O ASN 36 144.461 46.704 31.906 1.00 65.02																		
									65									

TABLE 10-continued

Structur			of Tobacco				hase	5	Structural Coordinates of Tobacco 5-Epi-Aristolochene S With Farnesyl Hydroxyphosphonate Bound								nase
Atom Atom Type	Resi- due	Resi- due #	х	Y	z	occ	B- factor		Atom T		Resi- due	Resi- due #	х	Y	z	OCC	B- factor
161 CA	GLN	37	146.709	47.500	33.370	1.00	71.18		234 N		ILE	46	145.415	34.225	32.299	1.00	34.27
162 CB 163 CG	GLN GLN	37 37	147.721 149.005	48.431 47.761	34.048 34.524	$\frac{1.00}{1.00}$	78.38 90.52	10	235 C 236 C		ILE ILE	46 46	144.239 142.942	33.358 34.181	32.373 32.608	1.00 1.00	30.12 33.74
164 CD	GLN	37	149.198	47.904	36.027	1.00	100.00	10		G2	ILE	46	141.706	33.420	32.123	1.00	32.63
165 OE1	GLN	37	148.538	48.718	36.673	1.00	100.00			G1	ILE	46	142.812	34.534	34.093	1.00	34.26
166 NE2 167 C	GLN GLN	37 37	150.106 146.651	47.105 46.131	36.592 34.069	1.00 1.00	100.00 65.44		239 C 240 C	D1	ILE ILE	46 46	141.644 144.099	35.444 32.518	34.407 31.110	1.00 1.00	30.01 29.77
168 O	GLN	37	147.138	45.138	33.533	1.00	63.18		241 O		ILE	46	143.850	31.315	31.186	1.00	30.24
169 N	VAL	38	146.023	46.086	35.244	1.00	57.92	15	242 N		GLU	47	144.283	33.156	29.956	1.00	31.42
170 CA 171 CB	VAL VAL	38 38	145.883 145.388	44.849 45.152	36.021 37.461	1.00 1.00	51.76 50.39		243 C 244 C		GLU GLU	47 47	144.185 144.460	32.482 33.476	28.666 27.537	1.00 1.00	37.34 45.72
172 CG1	VAL	38	145.198	43.862	38.251	1.00	44.02		245 C		GLU	47	144.290	32.896	26.137	1.00	68.61
173 CG2	VAL	38	146.371	46.071	38.166	1.00	43.36		246 C		GLU	47	144.808	33.813	25.035	1.00	79.62
174 C 175 O	VAL VAL	38 38	144.916 145.142	43.870 42.656	35.349 35.348	1.00 1.00	52.33 48.70		247 O 248 O)E1)E2	GLU GLU	47 47	145.302 144.728	34.922 33.417	25.339 23.852	1.00 1.00	89.55 86.41
176 N	ALA	39	143.858	44.412	34.752	1.00	49.41	20	249 C		GLU	47	145.169	31.314	28.580	1.00	37.12
177 CA	ALA	39	142.848	43.610	34.068	1.00	48.03		250 O		GLU	47	144.860	30.275	27.997	1.00	45.60
178 CB 179 C	ALA ALA	39 39	141.722 143.434	44.502 42.823	33.584 32.900	1.00 1.00	56.98 47.68		251 N 252 C		ALA ALA	48 48	146.348 147.378	31.492 30.459	29.171 29.170	1.00 1.00	33.83 30.76
180 O	ALA	39	143.178	41.627	32.759	1.00	52.03		253 C		ALA	48	148.720	31.054	29.575	1.00	33.78
181 N	GLU	40	144.219	43.501	32.068	1.00	46.51	25	254 C		ALA	48	146.986	29.323	30.110	1.00	33.08
182 CA 183 CB	GLU GLU	40 40	144.855 145.507	42.881 43.952	30.908 30.036	$\frac{1.00}{1.00}$	40.96 49.36	23	255 O 256 N		ALA LEU	48 49	147.071 146.542	28.150 29.685	29.743 31.312	1.00 1.00	30.80 27.01
184 CG	GLU	40	144.507	44.896	29.383	1.00	62.86		257 C	ĊΑ	LEU	49	146.110	28.720	32.321	1.00	23.68
185 CD	GLU	40	145.161	46.109	28.745	1.00	67.78		258 C		LEU	49	145.793	29.445	33.628	1.00	19.74
186 OE1 187 OE2	GLU GLU	40 40	146.229 144.601	45.957 47.218	28.112 28.880	$\frac{1.00}{1.00}$	67.66 70.01		259 C 260 C	G D1	LEU LEU	49 49	146.936 146.368	30.167 31.161	34.337 35.328	1.00 1.00	15.12 8.67
188 C	GLU	40	145.893	41.852	31.337	1.00	38.90	30	261 C		LEU	49	147.844	29.164	35.033	1.00	12.64
189 O	GLU	40	146.076	40.832	30.878	1.00	39.36		262 C		LEU	49	144.862	27.985	31.836	1.00	24.27
190 N 191 CA	LYS LYS	41 41	146.569 147.584	42.135 41.243	32.447 32.998	$\frac{1.00}{1.00}$	41.55 38.43		263 O 264 N		LEU LYS	49 50	144.610 144.101	26.842 28.663	32.214 30.983	1.00 1.00	31.26 27.77
192 CB	LYS	41	148.219	41.884	34.236	1.00	43.42		265 C	CA	LYS	50	142.863	28.154	30.394	1.00	30.88
193 CG	LYS	41	149.304	41.056	34.903	1.00	55.00		266 C		LYS	50	142.247	29.263	29.548	1.00	31.45
194 CD 195 CE	LYS LYS	41 41	149.864 151.040	41.780 41.028	36.119 36.721	$\frac{1.00}{1.00}$	61.88 62.99	35	267 C 268 C		LYS LYS	50 50	140.775 140.333	29.153 30.468	29.242 28.621	1.00 1.00	31.65 33.98
196 NZ	LYS	41	151.665	41.794	37.835	1.00	69.92		269 C	E	LYS	50	138.871	30.468	28.250	1.00	42.53
197 C 198 O	LYS LYS	41	146.914	39.926 38.855	33.373 32.966	$\frac{1.00}{1.00}$	36.30 34.80		270 N 271 C		LYS	50 50	138.455	31.817 26.925	27.773 29.527	1.00 1.00	47.24 32.84
198 O 199 N	TYR	41 42	147.362 145.823	40.027	34.132	1.00	35.61		271 C 272 O		LYS LYS	50	143.120 142.449	25.901	29.527	1.00	31.46
200 CA	TYR	42	145.051	38.868	34.572	1.00	29.43	40	273 N	I	GLU	51	144.092	27.033	28.625	1.00	33.57
201 CB 202 CG	TYR TYR	42 42	143.880 144.229	39.307 39.658	35.457 36.890	1.00 1.00	29.64 30.55	10	274 C 275 C		GLU GLU	51 51	144.439 145.286	25.927 26.416	27.741 26.566	1.00 1.00	38.44 45.31
202 CO 203 CD1	TYR	42	145.556	39.697	37.330	1.00	37.21		276 C		GLU	51	145.241	25.501	25.339	1.00	54.99
204 CE1	TYR	42	145.866	40.002	38.660	1.00	37.30			D	GLU	51	143.953	25.633	24.532	1.00	61.58
205 CD2 206 CE2	TYR TYR	42 42	143.222 143.519	39.937 40.241	37.814 39.139	1.00 1.00	28.62 37.07		278 O 279 O)E1	GLU GLU	51 51	143.086 143.815	26.463 24.912	24.893 23.519	1.00 1.00	63.41 63.99
200 CE2 207 CZ	TYR	42	144.839	40.241	39.139	1.00	40.82	45	280 C		GLU	51	145.179	24.912	28.501	1.00	37.86
208 OH	TYR	42	145.121	40.567	40.869	1.00	43.81		281 O)	GLU	51	145.145	23.662	28.097	1.00	43.06
209 C 210 O	TYR TYR	42 42	144.499 144.603	38.097 36.872	33.377 33.318	$\frac{1.00}{1.00}$	30.40 29.10		282 N 283 C		GLN GLN	52 52	145.867 146.592	25.192 24.212	29.582 30.397	1.00 1.00	36.20 38.10
210 O 211 N	ALA	43	143.920	38.827	32.426	1.00	24.33		284 C		GLN	52	147.453	24.897	31.465	1.00	41.72
212 CA	ALA	43	143.340	38.227	31.227	1.00	29.09		285 C	G	GLN	52	148.691	25.615	30.943	1.00	47.34
213 CB 214 C	ALA ALA	43 43	142.713 144.358	39.308 37.423	30.356 30.421	$\frac{1.00}{1.00}$	19.04 29.23	50	286 C 287 O		GLN GLN	52 52	149.505 149.640	26.249 25.683	32.061 33.145	$\frac{1.00}{1.00}$	49.46 43.98
214 C 215 O	ALA	43	144.074	36.308	29.984	1.00	29.23		288 N		GLN	52	150.049	27.438	31.799	1.00	53.90
216 N	LYS	44	145.559	37.972	30.260	1.00	37.81		289 C		GLN	52	145.563	23.339	31.093	1.00	38.87
217 CA 218 C	LYS LYS	44 44	146.637 147.069	37.371 36.041	29.491 30.095	$\frac{1.00}{1.00}$	40.64 34.80		290 O 291 N		GLN THR	52 53	145.732 144.501	22.122 23.991	31.219 31.554	$\frac{1.00}{1.00}$	40.47 37.87
219 O	LYS	44	147.221	35.048	29.357	1.00	35.25	55	291 IN		THR	53	143.407	23.323	32.236	1.00	32.77
220 CB	LYS	44	147.824	38.329	29.396	1.00	54.18	33	293 C		THR	53	142.541	24.347	32.992	1.00	31.08
221 CG 222 CD	LYS LYS	44 44	149.001 150.141	37.784 38.787	28.605 28.552	$\frac{1.00}{1.00}$	67.03 79.04		294 O 295 C		THR THR	53 53	143.315 141.296	24.933 23.685	34.050 33.569	1.00 1.00	28.04 32.90
222 CD 223 CE	LYS	44	151.313	38.247	27.750	1.00	20.00		293 C 296 C		THR	53	142.570	22.522	31.233	1.00	32.90
224 NZ	LYS	44	152.431	39.227	27.673	1.00	20.00		297 O)	THR	53	142.013	21.476	31.573	1.00	29.73
225 N 226 CA	GLU GLU	45 45	147.332 147.771	36.000 34.779	31.397 32.070	1.00 1.00	31.47 30.36	60	298 N 299 C		ARG ARG	54 54	142.529 141.785	22.992 22.312	29.988 28.933	1.00 1.00	28.01 23.69
226 CA 227 CB	GLU	45	148.288	35.080	33.480	1.00	26.58		300 C		ARG	54 54	141.723	23.176	27.673	1.00	23.31
228 CG	GLU	45	149.071	33.920	34.105	1.00	19.97		301 C	G	ARG	54	140.724	22.682	26.633	1.00	24.23
229 CD 230 OE1	GLU GLU	45 45	149.394 149.791	34.128 33.146	35.580 36.246	1.00 1.00	33.35 31.26		302 C 303 N		ARG ARG	54 54	140.755 140.674	23.527 24.969	25.360 25.619	1 00 1.00	30.78 45.26
230 OE1 231 OE2	GLU	45	149.791	35.264	36.080	1.00	37.21		304 C		ARG	54	139.564	25.633	25.942	1.00	46.57
232 C	GLU	45	146.649	33.747	32.142	1.00	31.64	65	305 N	H1	ARG	54	138.405	24.999	26.058	1.00	51.75
233 O	GLU	45	146.902	32.545	32.058	1.00	38.67		306 N	H2	ARG	54	139.608	26.946	26.140	1.00	43.00

TABLE 10-continued

Structur	Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase With Farnesyl Hydroxyphosphonate Bound										Structural Coordinates of Tobacco 5-Epi-Aristolochen With Farnesyl Hydroxyphosphonate Bound						
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom Ty _I		Resi- due	Resi- due #	X	Y	z	OCC	B- factor
307 C	ARG	54	142.487	20.998	28.617	1.00	30.27		380 C		LEU	64	137.184	8.363	37.778	1.00	32.66
308 O 309 N	ARG ASN	54 55	141.842 143.821	19.965 21.050	28.479 28.526	$\frac{1.00}{1.00}$	33.41 33.72	10	381 O 382 N		LEU ALA	64 65	136.773 137.664	9.515 7.881	37.650 38.923	$\frac{1.00}{1.00}$	32.91 26.30
310 CA	ASN	55 55	144.648	19.899	28.240	1.00	33.22	10	383 CA		ALA	65	137.721	8.683	40.141	1.00	27.29
311 C	ASN	55	144.538	18.872	29.348	1.00	35.28		384 CB	3	ALA	65	138.362	7.885	41.265	1.00	26.12
312 O 313 CB	ASN ASN	55 55	144.679 146.080	17.660 20.341	29.105 27.963	$\frac{1.00}{1.00}$	35.19 36.29		385 C 386 O		ALA ALA	65 65	138.482 138.019	9.988 11.057	39.919 40.318	$\frac{1.00}{1.00}$	33.96 35.01
314 CG	ASN	55	146.150	21.264	26.761	1.00	20.00		387 N		ASP	66	139.630	9.897	39.250	1.00	35.46
315 OD1	ASN	55	145.473	21.038	25.754	1.00	20.00	15	388 CA		ASP	66	140.459	11.064	38.961	1.00	35.10
316 ND2 317 N	ASN MET	55 56	146.963 144.309	22.307 19.330	26.857 30.581	1.00 1.00	20.00 34.89		389 CB 390 CG		ASP ASP	66 66	141.776 142.685	10.646 9.867	38.298 39.229	1.00 1.00	36.60 34.65
318 CA	MET	56	144.150	18.442	31.734	1.00	34.60		391 OE		ASP	66	142.611	10.067	40.461	1.00	25.86
319 CB	MET	56 56	144.058	19.241	33.039 33.544	1.00	27.26		392 OE 393 C)2	ASP	66	143.488	9.057	38.717	1.00 1.00	44.77
320 CG 321 SD	MET MET	56	145.378 145.237	19.792 20.594	35.159	1.00 1.00	38.81 40.35		393 C 394 O		ASP ASP	66 66	139.746 139.846	12.065 13.276	38.059 38.266	1.00	31.14 31.51
322 CE	MET	56	145.790	22.242	34.734	1.00	41.02	20	395 N		THR	67	139.045	11.552	37.051	1.00	26.69
323 C 324 O	MET MET	56 56	142.880 142.871	17.606 16.406	31.560 31.847	1.00 1.00	38.38 36.10		396 CA 397 CB		THR THR	67 67	138.316 137.793	12.392 11.571	36.105 34.918	1.00 1.00	26.40 26.70
325 N	LEU	57	141.816	18.253	31.084	1.00	33.14		398 OG		THR	67	138.891	10.917	34.270	1.00	27.33
326 CA	LEU	57	140.535	17.593	30.852	1.00	33.61		399 CG	ì2	THR	67	137.095	12.474	33.918	1.00	28.90
327 CB 328 CG	LEU LEU	57 57	139.444 138.939	18.633 19.472	30.566 31.742	$\frac{1.00}{1.00}$	24.13 25.14	25	400 C 401 O		THR THR	67 67	137.146 136.899	13.113 14.290	36.769 36.502	1.00 1.00	24.73 27.41
329 CD1	LEU	57	138.092	20.624	31.235	1.00	18.69		402 N		LEU	68	136.425	12.401	37.629	1.00	23.13
330 CD2	LEU	57	138.143	18.604	32.703	1.00	10.16		403 CA		LEU	68	135.295	12.985	38.333	1.00	18.00
331 C 332 O	LEU LEU	57 57	140.610 139.922	16.611 15.588	29.686 29.679	$\frac{1.00}{1.00}$	37.09 34.95		404 CB 405 CG		LEU LEU	68 58	134.504 133.804	11.909 10.871	39.078 38.201	$\frac{1.00}{1.00}$	13.23 16.24
333 N	LEU	58	141.453	16.924	28.703	1.00	35.34		406 CD		LEU	68	133.109	9.843	39.078	1.00	17.55
334 CA	LEU	58	141.605	16.071	27.533	1.00	35.75	30	407 CD)2	LEU	68	132.811	11.552	37.272	1.00	7.96
335 CB 336 CG	LEU LEU	58 58	141.930 140.886	16.926 17.987	26.304 25.951	$\frac{1.00}{1.00}$	33.37 36.57		408 C 409 O		LEU LEU	68 68	135.787 135.181	14.047 15.113	39.305 39.420	$\frac{1.00}{1.00}$	19.40 21.96
337 CD1	LEU	58	141.334	18.779	24.736	1.00	34.54		410 N		ASN	69	136.899	13.766	39.980	1.00	17.72
338 CD2	LEU LEU	58 58	139.540	17.333	25.691 27.688	1.00 1.00	38.57 40.17		411 CA 412 CB		ASN	69 60	137.471	14.714	40.931 41.728	1.00 1.00	23.29 27.45
339 C 340 O	LEU	58 58	142.628 143.001	14.946 14.298	26.710	1.00	38.69	35	412 CB 413 CG		ASN ASN	69 69	138.608 138.102	14.071 13.102	42.783	1.00	44.15
341 N	ALA	59	143.066	14.697	28.922	1.00	45.53	33	414 OE	01	ASN	69	137.171	13.413	43.530	1.00	45.05
342 CA 343 CB	ALA ALA	59 59	144.038 144.562	13.637 13.754	29.198 30.626	$\frac{1.00}{1.00}$	52.73 52.29		415 NE 416 C	02	ASN ASN	69 69	138.709 137.954	11.921 15.985	42.846 40.240	$\frac{1.00}{1.00}$	48.60 21.73
344 C	ALA	59	143.402	12.263	28.950	1.00	60.58		417 O		ASN	69	137.784	17.083	40.764	1.00	19.56
345 O	ALA	59	142.320	11.962	29.450	1.00	62.17		418 N		LEU	70	138.526	15.834	39.050	1.00	19.22
346 N 347 CA	THR THR	60 60	144.084 143.575	11.432 10.109	28.168 27.794	1.00 1.00	63.55 63.50	40	419 CA 420 CB		LEU LEU	70 70	139.012 139.736	16.979 16.522	38.293 37.025	1.00 1.00	18.06 14.83
348 CB	THR	60	144.405	9.528	26.641	1.00	63.61		421 CG	ì	LEU	70	140.274	17.650	36.141	1.00	18.22
349 OG1	THR	60	145.776	9.434	27.039	1.00	67.85		422 CD		LEU	70	141.330 140.845	18.440	36.889	1.00	15.05
350 CG2 351 C	THR THR	60 60	144.302 143.372	10.426 9.004	25.420 28.844	1.00 1.00	59.57 64.51		423 CD 424 C) _	LEU LEU	70 70	137.835	17.078 17.871	34.862 37.925	1.00 1.00	20.94 20.53
352 O	THR	60	142.237	8.681	29.198	1.00	69.94	45	425 O		LEU	70	137.844	19.069	38.212	1.00	23.73
353 N 354 CA	GLY GLY	61 61	144.470 144.394	8.435 7.339	29.337 30.294	$\frac{1.00}{1.00}$	59.72 59.70	45	426 N 427 CA		ILE ILE	71 71	136.817 135.613	17.269 17.986	37.312 36.901	1.00 1.00	19.75 16.33
355 C	GLY	61	144.087	7.572	31.767	1.00	60.15		428 CB		ILE	71	134.617	17.043	36.184	1.00	19.20
356 O	GLY	61	144.627	6.862	32.620	1.00	62.75		429 CG		ILE	71	133.278		35.950	1.00	17.41
357 N 358 CA	MET MET	62 62	143.233 142.904	8.546 8.860	32.098 33.482	$\frac{1.00}{1.00}$	62.09 62.20		430 CG 431 CD		ILE ILE	71 71	135.216 134.273	16.574 15.748	34.856 34.009	$\frac{1.00}{1.00}$	25.29 21.71
359 C	MET	62	141.787	7.962	34.001	1.00	57.87	50	432 C	_	ILE	71	134.927	18.661	38.088	1.00	15.45
360 O 361 CB	MET MET	62 62	140.858 142.512	7.592 10.333	33.304 33.619	$\frac{1.00}{1.00}$	60.93 65.78		433 O 434 N		ILE ASP	71 72	134.507 134.846	19.813 17.952	37.991 39.212	$\frac{1.00}{1.00}$	10.60 14.16
362 CG	MET	62	142.312	10.333	35.057	1.00	71.62		434 N 435 CA		ASP	72	134.222	18.477	40.425	1.00	13.13
363 SD	MET	62	141.924	12.547	35.177	1.00	20.00		436 CB	3	ASP	72	134.206	17.400	41.516	1.00	9.28
364 CE 365 N	MET LYS	62 63	141.630 141.877	12.940 7.621	33.455 35.308	$\frac{1.00}{1.00}$	20.00 53.67		437 CG 438 OE		ASP ASP	72 72	133.456 132.472	17.828 18.591	42.766 42.660	$\frac{1.00}{1.00}$	8.19 19.56
366 CA	LYS	63	140.886	6.787	35.975	1.00	51.44	55	439 OE		ASP	72	133.842	17.381	43.865	1.00	24.87
367 CB	LYS	63	141.401	6.323	37.342	1.00	55.26		440 C		ASP	72	134.969	19.709	40.926	1.00	20.93
368 CG 369 CD	LYS LYS	63 63	142.607 142.968	5.402 4.915	37.287 38.682	$\frac{1.00}{1.00}$	65.11 69.24		441 O 442 N		ASP THR	72 73	134.357 136.298	20.734 19.618	41.230 40.980	1.00 1.00	31.87 26.21
370 CE	LYS	63	144.127	3.936	38.635	1.00	76.58		443 CA		THR	73	137.162	20.689	41.452	1.00	17.72
371 NZ	LYS	63	144.434	3.376	39.980	1.00	78.96	60	444 C		THR	73	137.051	21.912	40.558	1.00	16.99
372 C 373 O	LYS LYS	63 63	139.576 139.559	7.543 8.778	36.173 36.167	$\frac{1.00}{1.00}$	48.71 48.30		445 O 446 CB	3	THR THR	73 73	136.913 138.627	23.046 20.258	41.054 41.508	1.00 1.00	15.04 18.68
374 N	LEU	64	138.490	6.802	36.386	1.00	44.07		447 OC	ì 1	THR	73	138.771	19.152	42.406	1.00	20.00
375 CA 376 CB	LEU LEU	64 64	137.182 136.100	7.413 6.343	36.586 36.778	$\frac{1.00}{1.00}$	38.53 40.14		448 CG 449 N	ì2	THR ILE	73 74	139.503 137.124	21.413 21.732	41.971 39.245	1.00 1.00	23.27 13.35
377 CG	LEU	64	134.671	6.886	36.899	1.00	35.60		450 CA		ILE	74	137.124	22.837	38.298	1.00	15.24
378 CD1	LEU	64	134.283	7.589	35.606	1.00	32.53	65	451 CB	3	ILE	74	137.214	22.342	36.844	1.00	17.48
379 CD2	LEU	64	133.689	5.773	37.203	1.00	30.12		452 CG	r 2	ILE	74	136.841	23.434	35.843	1.00	10.21

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structural Coordinates of Tobacco 5-Epi-Aristolochene With Farnesyl Hydroxyphosphonate Bound								hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom T		Resi- due	Resi- due #	х	Y	z	occ	B- factor
453 CG1	ILE	74	138.658	21.881	36.637	1.00	16.00		526 C		PHE	83	134.774	24.241	29.475	1.00	32.99
454 CD1 455 C	ILE ILE	74 74	138.936 135.677	21.335 23.554	35.253 38.431	$\frac{1.00}{1.00}$	19.68 21.97	10		CB CG	PHE PHE	83 83	135.829 137.052	23.389 24.157	30.191 30.603	1.00 1.00	38.74 40.58
456 O	ILE	74	135.603	23.334	38.285	1.00	37.27	10		CD1	PHE	83	137.032	24.137	31.921	1.00	40.36
457 N	GLU	75	134.620	22.793	38.712	1.00	24.94		530 C	CD2	PHE	83	138.041	24.476	29.675	1.00	41.50
458 CA 459 CB	GLU GLU	75 75	133.283 132.216	23.362	38.869 38.893	$\frac{1.00}{1.00}$	17.86 22.45		531 C 532 C	CE1	PHE PHE	83 83	138.320	25.318 25.211	32.309 30.050	1.00 1.00	43.27
459 CB 460 CG	GLU	75 75	131.998	22.266 21.565	37.557	1.00	23.19			CZ	PHE	83	139.163 139.303	25.634	31.371	1.00	38.18 46.92
461 CD	GLU	75	130.753	20.685	37.539	1.00	24.24	15	534 C	2	PHE	83	133.444	23.496	29.471	1.00	32.87
462 OE1 463 OE2	GLU GLU	75 75	130.485 130.041	19.984	38.540 36.513	1.00 1.00	11.68 19.29		535 O 538 N		PHE GLU	83 84	133.378	22.340 24.133	29.886 28.960	1.00 1.00	31.33
463 OE2 464 C	GLU	75	133.194	20.699 24.181	40.142	1.00	16.49		537 C		GLU	84	132.397 131.086	23.496	28.929	1.00	33.76 38.03
465 O	GLU	75	132.739	25.323	40.119	1.00	18.93		538 C	СВ	GLU	84	129.991	24.514	28.601	1.00	47.83
466 N 467 CA	ARG	76 76	133.640	23.590	41.248 42.552	1.00 1.00	11.73			CG CD	GLU	84	129.901 129.403	25.690	29.578 30.975	1.00 1.00	58.57
468 CB	ARG ARG	76	133.626 134.114	24.248 23.282	43.636	1.00	15.45 7.10	20		DE1	GLU GLU	84 84	129.719	25.312 24.208	31.479	1.00	69.66 74.44
469 CG	ARG	76	133.198	22.097	43.899	1.00	15.61		542 O	DE2	GLU	84	128.695	26.146	31.586	1.00	66.21
470 CD	ARG	76 76	133.785 132.824	21.197 20.231	44.975 45.508	1.00 1.00	12.16		543 C 544 O		GLU GLU	84 84	131.030 130.339	22.314 21.328	27.966 28.228	1.00 1.00	39.30 37.93
471 NE 472 CZ	ARG ARG	76 76	132.824	20.231	46.789	1.00	16.00 19.23		545 N		LYS	85	130.339	22.401	26.228	1.00	37.93 37.65
473 NH1	ARG	76	132.982	21.010	47.670	1.00	26.80	2.5	546 C	CA	LYS	85	131.815	21.329	25.886	1.00	40.19
474 NH2	ARG	76	131.618	19.234	47.202	1.00	29.06	25		CB	LYS	85	132.367	21.839	24.551	1.00	49.51
475 C 476 O	ARG ARG	76 76	134.488 134.214	25.519 26.454	42.564 43.319	$\frac{1.00}{1.00}$	20.45 19.47			CG CD	LYS LYS	85 85	132.443 133.176	20.770 21.261	23.469 22.237	$\frac{1.00}{1.00}$	57.11 73.34
477 N	LEU	77	135.525	25.539	41.732	1.00	20.12		550 C	Œ	LYS	85	133.280	20.160	21.180	1.00	81.58
478 CA	LEU	77	136.419	26.692	41.634	1.00	19.40		551 N		LYS	85	134.029	20.532	19.952	1.00	94.03
479 CB 480 CG	LEU LEU	77 77	137.756 138.678	26.281 25.382	41.014 41.843	$\frac{1.00}{1.00}$	12.91 12.12	30	552 C 553 O		LYS LYS	85 85	132.661 132.200	20.151 19.018	26.381 26.404	1.00 1.00	37.98 43.86
481 CD1	LEU	77	139.825	24.903	40.973	1.00	2.00	30	554 N		GLU	86	133.894	20.461	26.784	1.00	36.06
482 CD2	LEU	77	139.201	26.125	43.070	1.00	4.07		555 C		GLU	86	134.825	19.448	27.277	1.00	32.72
483 C 484 O	LEU LEU	77 77	135.796 136.374	27.823 28.906	40.818 40.702	$\frac{1.00}{1.00}$	22.31 30.09			CB CG	GLU GLU	86 86	136.122 136.998	20.102 20.743	27.774 26.698	1.00 1.00	36.71 42.45
485 N	GLY	78	134.628	27.551	40.702	1.00	26.16			CD	GLU	86	136.500	22.103	26.219	1.00	44.54
486 CA	GLY	78	133.915	28.542	39.447	1.00	20.26	35	559 O	E1	GLU	86	135.646	22.720	26.891	1.00	49.68
487 C	GLY	78 78	134.496	28.855	38.082	1.00	16.66			DE2	GLU	86	136.977	22.566	25.162	1.00	47.77
488 O 489 N	GLY ILE	76 79	134.185 135.323	29.898 27.959	37.504 37.553	$\frac{1.00}{1.00}$	19.22 13.23		561 C 562 O		GLU GLU	86 86	134.213 134.254	18.618 17.389	28.402 28.370	1.00 1.00	29.96 32.06
490 CA	ILE	79	135.938	28.179	36.247	1.00	16.00		563 N	J	ILE	87	133.638	19.303	29.388	1.00	28.21
491 CB	ILE	79 70	137.488	28.083	36.321	1.00	14.32		564 C		ILE	87	133.013	18.648	30.534	1.00	27.11
492 CG2 493 CG1	ILE ILE	79 79	138.055 137.909	29.257 26.751	37.111 36.944	1.00 1.00	9.65 15.84	40	565 C 566 C	.в СG2	ILE ILE	87 87	132.618 131.813	19.672 18.996	31.617 32.729	1.00 1.00	28.37 28.34
494 CD1	ILE	79	139.413	26.574	37.082	1.00	20.69		567 C	CG1	ILE	87	133.880	20.338	32.179	1.00	22.12
495 C	ILE	79 70	135.420	27.216	35.185	1.00	17.13		568 C		ILE	87	133.613	21.386	33.241	1.00	21.16
496 O 497 N	ILE SER	79 80	135.860 134.459	27.256 26.377	34.033 35.567	1.00 1.00	20.55 21.41		569 C 570 O		ILE ILE	87 87	131.795 131.581	17.815 16.735	30.150 30.700	1.00 1.00	27.00 29.31
498 CA	SER	80	133.878	25.392	34.654	1.00	23.76		571 N	J	ASP	88	131.007	18.309	29.200	1.00	31.52
499 CB	SER	80	133.004	24.393	35.419	1.00	20.88	45		CA	ASP	88	129.815	17.593	28.751	1.00	39.20
500 OG 501 C	SER SER	80 80	131.996 133.093	25.047 25.977	36.170 33.485	1.00 1.00	23.54 20.44		573 C 574 C		ASP ASP	88 88	129.009 127.717	18.445 17.774	27.764 27.330	1.00 1.00	40.43 36.63
502 O	SER	80	132.839	25.280	32.505	1.00	28.56		575 O		ASP	88	126.845		28.194	1.00	36.19
503 N	TYR	81	132.723		33.577	1.00	18.39		576 O			88	127.577		26.125	1.00	42.80
504 CA 505 CB	TYR TYR	81 81	131.972 131.389	27.907 29.244	32.507 32.986	$\frac{1.00}{1.00}$	19.66 10.58	50	577 C 578 O		ASP ASP	88 88	130.173 129.660	16.253 15.210	28.107 28.513	$\frac{1.00}{1.00}$	40.12 41.11
506 CG	TYR	81	132.396	30.362	33.170	1.00	19.55	-	579 N		ASP	89	131.088	16.251	27.130	1.00	37.03
507 CD1	TYR	81	132.635	31.285	32.151	1.00	26.56		580 C		ASP	89	131.496	15.096	26.397	1.00	33.87
508 CE1 509 CD2	TYR TYR	81 81	133.540 133.092	32.331 30.513	32.320 34.367	$\frac{1.00}{1.00}$	23.18 12.72		581 C 582 O		ASP ASP	89 89	132.107 132.047	14.047 12.832	27.304 26.978	1.00 1.00	33.85 33.37
510 CE2	TYR	81	133.998	31.555	34.546	1.00	18.75		583 C		ASP	89	132.464	15.574	25.325	1.00	27.32
511 CZ	TYR	81	134.218	32.460	33.519	1.00	21.59	55	584 C		ASP	89	131.779	16.561	24.391	1.00	34.13
512 OH 513 C	TYR TYR	81 81	135.122 132.814	33.487 28.103	33.688 31.240	$\frac{1.00}{1.00}$	23.90 23.33		585 O 586 O		ASP ASP	89 89	130.528 132.481	16.553 17.345	24.341 23.721	1.00 1.00	20.00 20.00
514 O	TYR	81	132.294	28.498	30.195	1.00	26.36		587 N		ILE	90	132.765	14.453	28.372	1.00	31.52
515 N	HIS	82	134.114	27.835	31.352	1.00	27.33		588 C		ILE	90	133.385	13.527	29.308	1.00	25.50
516 CA 517 CB	HIS HIS	82 82	135.044 136.471	27.955 28.227	30.229 30.724	$\frac{1.00}{1.00}$	28.77 20.70		589 C 590 C		ILE ILE	90 90	134.370 134.861	14.245 13.285	30.258 31.328	1.00 1.00	22.28 22.91
517 CB 518 CG	HIS	82	136.676	29.592	31.301	1.00	18.33	60	591 C		ILE	90	135.549	14.818	29.465	1.00	31.26
519 CD2	HIS	82	137.002	29.989	32.553	1.00	7.90		592 C	CD1	ILE	90	136.543	15.620	30.301	1.00	31.23
520 ND1 521 CE1	HIS HIS	82 82	136.574 136.829	30.742 31.788	30.548 31.312	1.00 1.00	14.62 11.77		593 C 594 O		ILE ILE	90 90	132.297 132.331	12.836 11.620	30.124 30.316	1.00 1.00	23.61 27.20
521 CE1 522 NE2	HIS	82	137.091	31.359	32.533	1.00	13.85		595 N		LEU	91	131.331	13.622	30.593	1.00	23.72
523 C	HIS	82	135.085	26.654	29.440	1.00	28.78	65	596 C		LEU	91	130.218	13.099	31.379	1.00	20.80
524 O 525 N	HIS PHE	82 83	135.456 134.719	26.643	28.265 30.098	1.00 1.00	31.36 30.57	65	597 C 598 C		LEU LEU	91 91	129.469 130.232	14.238	32.071 33.225	1.00 1.00	20.19 17.15
323 IN	LIII	0.5	107./17	20.001	50.050	1.00	50.57		376 C		LLU	71	100.202	17.000	22.223	1.00	11.13

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	S	tructur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom	Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
599 CD1	LEU	91	129.464	16.078	33.772	1.00	13.18		672		ASN	100	131.294	0.473	37.995	1.00	100.00
600 CD2	LEU	91	130.479	13.852	34.318	1.00	9.86	10		CB	ASN	100	130.733	-0.892	38.382	1.00	97.11
601 C 602 O	LEU LEU	91 91	129.270 128.649	12.281 11.334	30.510 30.988	$\frac{1.00}{1.00}$	22.03 22.93	10	674 675	OD1	ASN ASN	100 100	129.297 128.429	-1.056 -0.279	37.956 38.360	1.00 1.00	95.75 86.86
603 N	ASP	92	129.183	12.640	29.231	1.00	21.86		676	ND2	ASN	100	129.028	-2.069	37.139	1.00	94.51
604 CA 605 CB	ASP ASP	92 92	128.337 128.314	11.930 12.668	28.276 26.933	$\frac{1.00}{1.00}$	23.86 30.84		677 678		ASN ASN	100 100	132.513 133.196	0.784 -0.133	38.857 39.303	1.00 1.00	100.00 100.00
606 CG	ASP	92	127.282	12.105	25.973	1.00	37.16			N	CYS	101	132.829	2.068	39.047	1.00	98.98
607 OD1	ASP	92	126.182	12.690	25.879	1.00	34.52	15	680		CYS	101	133.942	2.429	39.953	1.00	94.29
608 OD2 609 C	ASP ASP	92 92	127.568 128.928	11.083 10.539	25.309 28.090	1.00 1.00	45.02 30.87			CB SG	CYS CYS	101 101	134.350 135.708	3.905 4.382	39.872 41.017	1.00 1.00	96.36 100.00
610 O	ASP	92	128.208	9.542	28.106	1.00	38.64		683		CYS	101	133.700	2.160	41.226	1.00	90.03
611 N	GLN	93	130.247	10.490	27.914	1.00	33.31		684		CYS	101	132.261	2.914	41.595	1.00	89.78
612 CA 613 CB	GLN GLN	93 93	130.974 132.454	9.239 9.531	27.738 27.466	1.00 1.00	34.79 46.61		685 686		ASN ASN	102 102	133.483 132.753	1.057 0.573	41.870 43.043	1.00 1.00	85.97 81.73
614 CG	GLN	93	133.345	8.300	27.331	1.00	60.12	20		CB	ASN	102	133.072	-0.902	43.238	1.00	86.41
615 CD	GLN	93	134.831	8.640	27.354	1.00	75.57			CG	ASN	102	132.971	-1.688	41.962	1.00	88.71
616 OE1 617 NE2	GLN GLN	93 93	135.217 135.672	9.801 7.621	27.510 27.208	1.00 1.00	79.60 81.92		689 690	OD1	ASN ASN	102 102	133.978 131.750	-2.107 -1.869	41.412 41.462	1.00 1.00	90.82 81.79
618 C	GLN	93	130.833	8.380	28.994	1.00	35.74		691		ASN	102	132.652	1.257	44.413	1.00	74.07
619 O	GLN	93	130.620	7.171	28.906	1.00	39.97	25	692		ASN	102	131.770	0.881	45.187	1.00	77.40
620 N 621 CA	ILE ILE	94 94	130.933 130.817	9.019 8.326	30.159 31.441	$\frac{1.00}{1.00}$	32.85 35.57	25	693 694	N CA	ASP ASP	103 103	133.474 133.377	2.260 2.904	44.713 46.037	$\frac{1.00}{1.00}$	58.82 48.91
622 CB	ILE	94	131.191	9.266	32.625	1.00	33.17		695		ASP	103	134.746	3.418	46.524	1.00	50.06
623 CG2	ILE	94	130.909	8.588	33.969	1.00	25.21			CG	ASP	103	135.346	4.487	45.622	1.00	54.31
624 CG1 625 CD1	ILE ILE	94 94	132.671 133.120	9.652 10.631	32.538 33.603	1.00 1.00	32.16 32.74		697 698	OD2	ASP ASP	103 103	135.589 135.616	4.210 5.599	44.429 46.128	$\frac{1.00}{1.00}$	68.60 47.23
626 C	ILE	94	129.407	7.770	31.645	1.00	38.37	30	699		ASP	103	132.290	3.974	46.178	1.00	38.98
627 O	ILE	94	129.224	6.716	32.260	1.00	45.31		700		ASP	103	131.875	4.585	45.198	1.00	30.42
628 N 629 CA	TYR TYR	95 95	128.421 127.021	8.477 8.082	31.102 31.212	$\frac{1.00}{1.00}$	38.86 39.68		701 702		LEU LEU	104 104	131.820 130.764	4.168 5.139	47.408 47.702	$\frac{1.00}{1.00}$	25.79 26.09
630 CB	TYR	95	126.122	9.249	30.784	1.00	34.17			CB	LEU	104	130.414	5.114	49.195	1.00	14.86
631 CG	TYR	95	124.637	8.974	30.877	1.00	27.88		704		LEU	104	129.294	6.042	49.674	1.00	13.82
632 CD1 633 CE1	TYR TYR	95 95	124.060 122.697	8.539 8.279	32.070 32.155	1.00 1.00	26.18 24.69	35		CD1 CD2	LEU LEU	104 104	127.971 129.171	5.654 5.996	49.031 51.191	1.00 1.00	10.36 7.52
634 CD2	TYR	95	123.810	9.144	29.770	1.00	21.67		707		LEU	104	131.082	6.567	47.274	1.00	26.59
635 CE2	TYR	95	122.447	8.888	29.845	1.00	22.88		708		LEU	104	130.232	7.240	46.696	1.00	27.23
636 CZ 637 OH	TYR TYR	95 95	121.896 120.546	8.454 8.185	31.039 31.112	1.00 1.00	23.25 32.19		709 710	N CA	CYS CYS	105 105	132.297 132.735	7.021 8.370	47.574 47.225	1.00 1.00	28.20 24.21
638 C	TYR	95	126.715	6.846	30.369	1.00	40.10	40	711		CYS	105	134.164	8.606	47.721	1.00	29.54
639 O	TYR	95	125.987	5.953	30.803	1.00	41.67	40	712		CYS	105	134.889	10.178	47.188	1.00	32.14
640 N 641 CA	ASN ASN	96 96	127.291 127.073	6.796 5.682	29.173 28.261	1.00 1.00	40.40 50.10		713 714		CYS CYS	105 105	132.659 132.062	8.634 9.618	45.724 45.285	1.00 1.00	20.98 24.94
642 CB	ASN	96	127.273	6.146	26.815	1.00	50.46		715		THR	106	133.258	7.744	44.941	1.00	22.03
643 CG	ASN	96	126.252	7.189	26.392	1.00	53.74		716		THR	106	133.261	7.890	43.489	1.00	23.52
644 OD1 645 ND2	ASN ASN	96 96	125.093 126.679	7.141 8.138	26.806 25.567	1.00 1.00	52.90 56.55	45	717 718		THR THR	106 106	134.197 135.481	6.858 6.893	42.823 43.461	$\frac{1.00}{1.00}$	18.21 20.18
646 C	ASN	96	127.911	4.434	28.545	1.00	54.46		719	CG2	THR	106	134.372	7.183	41.349	1.00	18.22
647 O	ASN	96	127.502	3.324	28.202	1.00	58.60		720		THR	106	131.858	7.739	42.906	1.00	22.72
648 N 649 CA	GLN GLN	97 97	129.067 129.933	4.606 3.469	29.183 29.494	$\frac{1.00}{1.00}$	57.00 62.35		721 722		THR SER	106 107	131.481 131.092	8.465 6.802	41.984 43.461	$\frac{1.00}{1.00}$	21.14 26.53
650 CB	GLN	97	131.385	3.924	29.690	1.00	63.17		723	CA	SER	107	129.730	6.532	43.009	1.00	24.15
651 CG 652 CD	GLN GLN	97 97	131.622 133.052	4.834 5.351	30.885 30.970	$\frac{1.00}{1.00}$	68.59	50	724 725		SER SER	107 107	129.158 129.913	5.312 4.147	43.735 43.453	$\frac{1.00}{1.00}$	24.72 34.14
653 OE1	GLN	97	133.659	5.357	32.040	1.00	68.54 66.32		726		SER	107	128.818	7.731	43.228	1.00	20.49
654 NE2	GLN	97	133.594	5.798	29.836	1.00	59.07		727	O	SER	107	128.128	8.170	42.306	1.00	15.26
655 C 656 O	GLN GLN	97 97	129.458 129.682	2.654 1.442	30.698 30.754	$\frac{1.00}{1.00}$	66.41 66.29		728 729		ALA ALA	108 108	128.822 128.002	8.254 9.408	44.453 44.810	$\frac{1.00}{1.00}$	18.95 16.79
657 N	ASN	98	128.790	3.317	31.642	1.00	75.07	55	730		ALA	108	128.168	9.732	46.282	1.00	13.84
658 CA	ASN	98	128.274	2.676	32.854	1.00	85.32	55	731		ALA	108	128.349	10.623	43.953	1.00	15.33
659 CB 660 CG	ASN ASN	98 98	127.000 125.798	1.878 2.771	32.554 32.325	1.00 1.00	92.56 97.44		732 733		ALA LEU	108 109	127.455 129.644	11.340 10.836	43.499 43.722	1.00 1.00	19.47 10.72
661 OD1	ASN	98	125.798	3.375	33.262	1.00	97.44		734		LEU	109	130.106	11.954	42.907	1.00	11.35
662 ND2	ASN	98	125.357	2.865	31.074	1.00	98.68		735	CB	LEU	109	131.627	12.093	42.993	1.00	15.00
663 C 664 O	ASN ASN	98 98	129.314 129.073	1.791 0.612	33.535 33.812	1.00 1.00	89.40 88.19	60	736 737		LEU LEU	109 109	132.277 131.670	13.237 14.577	42.203 42.596	1.00 1.00	19.48 15.00
665 N	SER	99	130.486	2.369	33.779	1.00	94.53		738		LEU	109	133.778	13.239	42.390	1.00	17.22
666 CA	SER	99	131.560	1.640	34.435	1.00	98.60		739	С	LEU	109	129.673	11.754	41.459	1.00	15.76
667 CB 668 OG	SER SER	99 99	132.918 132.996	2.248 3.591	34.106 34.559	1.00 1.00	99.63 100.00		740 741		LEU GLN	109 110	129.216 129.813	12.692 10.526	40.807 40.966	1.00 1.00	28.55 19.50
669 C	SER	99	131.332	1.673	35.926	1.00	99.96		742		GLN	110	129.417	10.184	39.600	1.00	20.50
670 O	SER	99	131.030	2.717	36.500	1.00	98.72	65	743	CB	GLN	110	129.679	8.699	39.339	1.00	24.06
671 N	ASN	100	131.508	0.532	36.566	1.00	100.00		744	CG	GLN	110	129.287	8.221	37.949	1.00	31.51

TABLE 10-continued

Structu			of Tobacco l Hydroxy				hase	Structural Coordinates of Tobacco 5-Epi-Aris With Farnesyl Hydroxyphosphona									
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom		Resi- due	Resi- due #	X	Y	z	OCC	B- factor
745 CD	GLN	110	129.373	6.711	37.797	1.00	31.57		818	N	GLY	118	121.872	16.813	33.613	1.00	17.98
746 OE1	GLN	110	129.661	5.990	38.756	1.00	35.16		819		GLY	118	120.756	16.292	32.839	1.00	21.36
747 NE2	GLN	110	129.117	6.225	36.586	1.00	34.19	10		C	GLY	118	120.761	14.808	32.521	1.00	21.11
748 C 749 O	GLN GLN	110 110	127.926 127.508	10.478 11.009	39.414 38.389	1.00 1.00	21.12 20.13		821 822	O N	GLY PHE	118 119	119.760 121.880	14.284 14.134	32.032 32.773	1.00 1.00	23.89 20.97
750 N	PHE	111	127.139	10.140	40.431	1.00	23.63			CA	PHE	119	121.994	12.702	32.773	1.00	15.97
751 CA	PHE	111	125.699	10.356	40.409	1.00	21.06			CB	PHE	119	123.465	12.282	32.477	1.00	13.26
752 CB	PHE	111	125.065	9.729	41.655	1.00	21.44			CG	PHE	119	124.281	13.007	31.439	1.00	19.34
753 CG	PHE	111	123.565	9.806	41.685 40.924	1.00	18.29 18.70	15		CD1	PHE	119	125.155	14.025	31.808 30.090	1.00	18.10
754 CD1 755 CD2	PHE PHE	111 111	122.795 122.921	8.933 10.744	40.924	1.00 1.00	14.43			CD2 CE1	PHE PHE	119 119	124.160 125.896	12.686 14.714	30.090	1.00 1.00	17.78 14.61
756 CE1	PHE	111	121.404	8.990	40.959	1.00	18.31			CE2	PHE	119	124.896	13.370	29.122	1.00	16.11
757 CE2	PHE	111	121.533	10.810	42.523	1.00	21.91		830		PHE	119	125.765	14.386	29.503	1.00	22.05
758 CZ	PHE	111	120.773	9.929	41.758	1.00	17.47		831		PHE	119	121.238	11.917	33.576	1.00	20.90
759 C 760 O	PHE PHE	111 111	125.373 124.731	11.846 12.305	40.345 39.399	1.00 1.00	19.49 17.88	20	832 833		PHE ASN	119 120	121.620 120.157	11.910 11.263	34.749 33.161	1.00 1.00	17.99 20.78
761 N	ARG	112	125.857	12.598	41.332	1.00	16.34			CA	ASN	120	119.326	10.494	34.078	1.00	23.46
762 CA	ARG	112	125.606	14.033	41.407	1.00	8.21			CB	ASN	120	117.928	10.307	33.477	1.00	23.75
763 CB	ARG	112	126.326	14.651	42.608	1.00	7.94			CG	ASN	120	116.919	9.766	34.481	1.00	23.50
764 CG 765 CD	ARG ARG	112 112	126.081 126.507	16.153 16.703	42.745 44.100	$\frac{1.00}{1.00}$	14.61 22.36		837 838	ND2	ASN ASN	120 120	117.147 115.786	9.782 9.295	35.695 33.973	1.00 1.00	18.94 24.72
766 NE	ARG	112	127.955	16.745	44.291	1.00	19.69	25		C C	ASN	120	119.780	9.145	34.447	1.00	29.37
767 CZ	ARG	112	128.777	17.561	43.639	1.00	22.41		840		ASN	120	119.467	8.092	34.011	1.00	37.56
768 NH1	ARG	112	128.300	18.407	42.737	1.00	29.76			N	ILE	121	120.999	9.183	35.251	1.00	30.57
769 NH 2 770 C	ARG ARG	112 112	130.073 125.961	17.555 14.808	43.915 40.145	$\frac{1.00}{1.00}$	26.92 13.57			CA CB	ILE ILE	121 121	121.674 123.118	7.965 8.250	35.691 36.202	1.00 1.00	28.30 31.51
770 C	ARG	112	125.113	15.505	39.588	1.00	17.92			CG2	ILE	121	123.116	9.395	37.212	1.00	18.33
772 N	LEU	113	127.205	14.676	39.693	1.00	11.94	30		CG1	ILE	121	123.734	6.970	36.784	1.00	34.25
773 CA	LEU	113	127.671	15.385	38.504	1.00	14.83			CD1	ILE	121	125.160	7.119	37.270	1.00	35.18
774 CB	LEU	113	129.151	15.088	38.239 39.322	1.00	20.65			C	ILE	121	120.862	7.263	36.774	1.00	24.20
775 CG 776 CD1	LEU LEU	113 113	130.149 131.568	15.516 15.259	38.847	$\frac{1.00}{1.00}$	16.72 15.77			O N	ILE SER	121 122	120.435 120.654	7.888 5.963	37.746 36.594	1.00 1.00	29.58 28.31
777 CD2	LEU	113	129.970	16.985	39.651	1.00	21.06			CA	SER	122	119.886	5.158	31.538	1.00	31.22
778 C	LEU	113	126.840	15.108	37.256	1.00	19.17	35		CB	SER	122	119.782	3.711	37.040	1.00	37.94
779 O	LEU	113	126.484	16.034	36.532	1.00	26.79		852		SER	122	119.046	2.907	37.948	1.00	37.31
780 N 781 CA	LEU LEU	114 114	126.516 125.717	13.841 13.464	37.014 35.849	$\frac{1.00}{1.00}$	23.83 14.66		853 854	0	SER SER	122 122	120.471 121.690	5.193 5.086	38.942 39.121	1.00 1.00	26.25 36.49
782 CB	LEU	114	125.668	11.943	35.703	1.00	18.52			N	PRO	123	119.606	5.367	39.956	1.00	25.72
783 CG	LEU	114	126.969	11.251	35.287	1.00	19.65			CD	PRO	123	118.162	5.626	39.787	1.00	24.10
784 CD1	LEU	114	126.800	9.746	35.362	1.00	22.06	40		CA	PRO	123	119.995	5.427	41.367	1.00	24.12
785 CD2 786 C	LEU LEU	114 114	127.352 124.300	11.666 14.030	33.882 35.939	1.00 1.00	21.06 15.67			CB CG	PRO PRO	123 123	118.807 117.635	6.139 5.620	42.015 41.222	1.00 1.00	14.52 18.26
787 O	LEU	114	123.787	14.596	34.972	1.00	18.67			C	PRO	123	120.266	4.057	41.978	1.00	26.29
788 N	ARG	115	123.678	13.883	37.104	1.00	9.26		861		PRO	123	120.649	3.957	43.143	1.00	26.93
789 CA	ARG	115	122.328	14.387	37.328	1.00	7.86		862		GLU	124	120.106	3.007	41.176	1.00	31.58
790 CB 791 CG	ARG ARG	115 115	121.849 121.450	14.021 12.562	38.736 38.901	$\frac{1.00}{1.00}$	10.49 12.35	45	863 864	CA CB	GLU GLU	124 124	120.362 119.734	1.656 0.614	41.665 40.749	1.00 1.00	42.38 52.63
792 CD	ARG	115	120.323	12.202	37.949	1.00	17.12			CG	GLU	124	118.661	-0.182	41.472	1.00	66.87
793 NE	ARG	115	119.807	10.857	38.179	1.00	21.26			CD	GLU	124	117.857	-1.078	40.558	1.00	84.70
794 CZ 795 NH1	ARG ARG	115	118.803	10.570	39.000	1.00	15.94 8.20		867 868		GLU	124	118.072	-1.045 -1.820	39.323 41.075	$\frac{1.00}{1.00}$	92.92 95.72
795 NH1 796 NH2	ARG	115 115	118.199 118.406	11.537 9.314	39.676 39.152	$\frac{1.00}{1.00}$	17.38		868 869		GLU GLU	124 124	116.995 121.850	1.396	41.860	1.00	40.43
797 C	ARG	115	122.250	15.899	37.126	1.00	13.44	50	870		GLU	124	122.243	0.345	42.359	1.00	40.69
798 O	ARG	115	121.379	16.390	36.402	1.00	8.27		871		ILE	125	122.685	2.383	41.493	1.00	40.56
799 N	GLN	116	123.180	16.629	37.743	1.00	14.35		872		ILE	125	124.113 124.796	2.311	41.658	1.00	33.74
800 CA 801 CB	GLN GLN	116 116	123.225 124.364	18.086 18.664	37.629 38.471	$\frac{1.00}{1.00}$	11.93 4.12		873 874		ILE ILE	125 125	124.796	3.532 4.828	40.995 41.567	$\frac{1.00}{1.00}$	34.47 35.94
802 CG	GLN	116	124.165	18.534	39.968	1.00	5.13		875		ILE	125	126.317	3.471	41.176	1.00	33.47
803 CD	GLN	116	125.303	19.142	40.768	1.00	11.78	55	876		ILE	125	127.051	4.648	40.560	1.00	33.54
804 OE1 805 NE2	GLN	116	125.080 126.530	19.950	41.669 40.451	1.00	21.37		877 878		ILE	125	124.397	2.311	43.166	1.00	27.96 32.46
806 C	GLN GLN	116 116	123.392	18.747 18.530	36.183	1.03 1.00	11.47 15.48		878 879		ILE PHE	125 126	125.450 123.422	1.867 2.783	43.612 43.938	1.00 1.00	24.55
807 O	GLN	116	123.126	19.682	35.851	1.00	19.88			CA	PHE	126	123.518	2.850	45.393	1.00	31.56
808 N	HIS	117	123.827	17.607	35.328	1.00	19.55		881	CB	PHE	126	122.701	4.034	45.925	1.00	31.55
809 CA	HIS	117	124.031	17.893	33.912	1.00	15.02	60	882		PHE	126	123.245	5.377	45.536	1.00	36.38
810 CB 811 CG	HIS HIS	117 117	125.405 126.538	17.392 18.253	33.460 33.925	1.00 1.00	13.78 17.44		883 884		PHE PHE	126 126	122.701 124.300	6.079 5.946	44.465 46.245	1.00 1.00	32.78 35.39
811 CO 812 CD2	HIS	117	126.999	18.525	35.169	1.00	18.38		885		PHE	126	123.197	7.328	44.105	1.00	32.25
813 ND1	HIS	117	127.322	18.983	33.059	1.00	19.26		886	CE2	PHE	126	124.805	7.194	45.894	1.00	31.56
814 CE1	HIS	117	128.216	19.668	33.748	1.00	20.36		887		PHE	126	124.252	7.889	44.820	1.00	28.07
815 NE2 816 C	HIS HIS	117 117	128.042 122.930	19.408 17.349	35.031 33.006	1.00 1.00	17.37 16.42	65	888 889		PHE PHE	126 126	123.042 122.939	1.568 1.520	46.079 47.308	1.00 1.00	37.75 36.32
817 O	HIS	117	123.036	17.419	31.780	1.00	15.29		890		SER	127	122.730	0.542	45.289	1.00	42.49

TABLE 10-continued

Structur			of Tobacco I Hydroxy				hase	5	Structur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor	-	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
891 CA	SER	127	122.268	-0.732	45.836	1.00	43.38		964 CA	PHE	136	122.619	2.066	53.929	1.00	37.70
892 CB 893 OG	SER SER	127 127	121.659 120.465	-1.601 -1.025	44.733 44.233	$\frac{1.00}{1.00}$	48.30 59.77	10	965 CB 966 CG	PHE PHE	136 136	123.082 122.848	3.525 4.238	53.941 52.644	$\frac{1.00}{1.00}$	30.32 18.97
894 C	SER	127	123.401	-1.482	46.527	1.00	39.67	10	967 CD1	PHE	136	121.752	5.079	52.485	1.00	16.88
895 O	SER	127	123.228	-2.001	47.632	1.00	35.01		968 CD2	PHE	136	123.708	4.044	51.569	1.00	2.95
896 N 897 CA	LYS LYS	128 128	124.567 125.743	-1.503 -2.179	45.886 46.426	$\frac{1.00}{1.00}$	35.16 36.47		969 CE1 970 CE2	PHE PHE	136 138	121.512 123.478	5.714 4.674	51.269 50.350	1.00 1.00	9.36 8.37
898 CB	LYS	128	126.877	-2.180	45.389	1.00	33.52		971 CZ	PHE	136	122.376	5.510	50.200	1.00	11.64
899 CG	LYS	128	127.146	-0.834	44.732	1.00	37.85	15	972 C	PHE	136	123.368	1.280	54.992	1.00	40.03
900 CD 901 CE	LYS LYS	128 128	128.170 128.353	-0.947 0.388	43.606 42.892	1.00 1.00	37.35 50.12		973 O 974 N	PHE LYS	136 137	123.007 124.404	1.310 0.564	56.173 54.554	1.00 1.00	36.07 35.20
902 NZ	LYS	128	129.338	0.328	41.776	1.00	54.36		975 CA	LYS	137	125.232	-0.232	55.451	1.00	37.62
903 C	LYS	128	126.233	-1.623	47.769	1.00	38.71		976 CB	LYS	137	126.333	-0.957	54.670	1.00	36.07
904 O 905 N	LYS PHE	128 129	127.102 125.656	-2.217 -0.501	48.412 48.199	1.00 1.00	46.49 38.63		977 CG 978 CD	LYS LYS	137 137	125.845 127.016	-2.039 -2.672	53.721 52.985	1.00 1.00	43.95 45.68
906 CA	PHE	129	126.028	0.135	49.466	1.00	31.98	20	979 CE	LYS	137	126.558	-3.745	52.011	1.00	46.97
907 CB	PHE	129	126.309	1.626	49.256	1.00	24.98		980 NZ	LYS	137	127.709	-4.340	51.276	1.00	45.41
908 CG 909 CD1	PHE PHE	129 129	127.324 126.946	1.904 2.506	48.191 46.997	1.00 1.00	20.86 19.33		981 C 982 O	LYS LYS	137 137	125.872 126.612	0.698 1.614	56.472 56.108	1.00 1.00	42.74 49.71
910 CD2	PHE	129	128.653	1.537	48.368	1.00	17.79		983 N	GLU	138	125.569	0.472	57.747	1.00	44.30
911 CE1	PHE	129	127.877	2.735	45.988	1.00	22.73	25	984 CA	GLU	138	126.116	1.290	58.824	1.00	43.35
912 CE2 913 CZ	PHE PHE	129 129	129.590 129.201	1.760 2.361	47.368 46.174	$\frac{1.00}{1.00}$	19.77 17.69	25	985 CB 986 CG	GLU GLU	138 138	125.482 123.997	0.895 1.184	60.157 60.285	$\frac{1.00}{1.00}$	48.22 55.55
914 C	PHE	129	124.929	-0.024	50.509	1.00	31.84		987 CD	GLU	138	123.703	2.650	60.528	1.00	59.82
915 O	PHE	129	125.051	0.462	51.635	1.00	32.60		988 OE1	GLU	138	124.127	3.180	61.577	1.00	58.06
916 N 917 CA	GLN	130	123.854	-0.700	50.123	1.00	40.45		989 OE2	GLU GLU	138	123.040	3.272	59.674	1.00	70.04
917 CA 918 CB	GLN GLN	130 130	122.720 121.456	-0.922 -0.310	51.010 50.403	$\frac{1.00}{1.00}$	47.58 51.16	30	990 C 991 O	GLU	138 138	127.641 128.283	1.172 1.909	58.913 59.662	$\frac{1.00}{1.00}$	46.10 51.05
919 CG	GLN	130	121.515	1.197	50.231	1.00	50.70		992 N	SER	139	128.210	0.242	58.149	1.00	40.33
920 CD	GLN	130	120.308	1.755	49.505	1.00	54.25		993 CA	SER	139	129.653	0.027	58.122	1.00	37.26
921 OE1 922 NE2	GLN GLN	130 130	119.310 120.394	1.063 3.017	49.303 49.105	$\frac{1.00}{1.00}$	62.26 58.79		994 CB 995 OG	SER SER	139 139	129.975 129.518	-1.354 -1.477	57.541 56.204	1.00 1.00	42.99 42.44
923 C	GLN	130	122.496	-2.405	51.263	1.00	51.99		996 C	SER	139	130.384	1.114	57.326	1.00	38.83
924 O	GLN	130	122.818	-3.245	50.419	1.00	55.44	35	997 O	SER	139	131.606	1.247	57.423	1.00	44.35
925 N 926 CA	ASP ASP	131 131	121.945 121.665	-2.723 -4.108	52.431 52.789	1.00 1.00	53.38 60.28		998 N 999 CA	LEU LEU	140 140	129.633 130.191	1.875 2.960	56.531 55.721	1.00 1.00	35.64 26.87
927 CB	ASP	131	121.556	-4.258	54.314	1.00	58.61		1000 CB	LEU	140	129.289	3.244	54.514	1.00	27.15
928 CG	ASP	131	120.311	-3.596	54.892	1.00	62.05		1001 CG	LEU	140	129.037	2.148	53.476	1.00	27.17
929 OD1 930 OD2	ASP ASP	131 131	119.749 119.893	-4.145 -2.532	55.860 54.391	1.00 1.00	69.31 65.85		1002 CD1 1003 CD2	LEU LEU	140 140	127.955 130.317	2.607 1.814	52.511 52.726	1.00 1.00	23.24 21.35
930 OD2 931 C	ASP	131	120.382	-4.583	52.103	1.00	64.98	40	1003 CD2	LEU	140	130.317	4.241	56.547	1.00	23.48
932 O	ASP	131	119.762	-3.837	51.341	1.00	64.40		1005 O	LEU	140	130.817	5.254	56.054	1.00	18.12
933 N 934 CA	GLU GLU	132 132	119.989 118.786	-5.823 -6.415	52.383 51.803	1.00 1.00	70.50 72.09		1006 N 1007 CA	ALA ALA	141 141	129.883 129.916	4.178 5.311	57.803 58.725	1.00 1.00	21.14 23.07
935 CB	GLU	132	118.735	-7.913	52.120	1.00	78.41		1007 CA 1008 CB	ALA	141	129.910	4.951	60.007	1.00	13.93
936 CG	GLU	132	119.098	-8.253	53.562	1.00	92.85	15	1009 C	ALA	141	131.316	5.829	59.053	1.00	29.68
937 CD	GLU GLU	132 132	117.997	-8.995	54.303 54.037	1.00 1.00	100.00	45	1010 O	ALA	141	131.465	6.917	59.614 58.710	1.00	34.02
938 OE1 939 OE2	GLU	132	116.803 118.331	-8.735 -9.837	55.165	1.00	100.00 100.00		1011 N 1012 CA	SER SER	142 142	132.334 133.723	5.045 5.413	58.963	1.00 1.00	31.98 25.78
940 C	GLU	132	117.486	-5.729	52.236	1.00	69.60		1013 CB	SER	142	134.482	4.211	59.534	1.00	27.76
941 O	GLU	132	116.424	-5.985	51.666	1.00	67.84		1014 OG	SER	142	134.293 134.436	3.059	58.731	1.00	23.34
942 N 943 CA	ASN ASN	133 133	117.575 116.408	-4.849 -4.124	53.230 53.726	$\frac{1.00}{1.00}$	69.95 71.81	50	1015 C 1016 O	SER SER	142 142	135.629	5.957 6.255	57.719 57.761	$\frac{1.00}{1.00}$	26.37 36.05
944 CB	ASN	133	116.540	-3.882	55.235	1.00	76.32		1017 N	ASP	143	133.699	6.078	56.617	1.00	19.43
945 CG	ASN	133	115.238	-3.425	55.873	1.00	85.38		1018 CA 1019 CB	ASP	143	134.237	6.596	55.361 54.194	1.00	13.45
946 OD1 947 ND2	ASN ASN	133 133	114.202 115.288	-4.076 -2.303	55.731 56.583	$\frac{1.00}{1.00}$	89.18 85.57		1019 CB 1020 CG	ASP ASP	143 143	133.794 134.284	5.701 6.196	54.194	$\frac{1.00}{1.00}$	12.41 22.67
948 C	ASN	133	116.214	-2.794	52.982	1.00	70.23		1021 OD1	ASP	143	133.710	5.759	51.811	1.00	21.93
949 O	ASN	133	115.184	-2.132	53.136	1.00	67.90	55	1022 OD2	ASP	143	135.239	7.004	52.778	1.00	35.17
950 N 951 CA	GLY GLY	134 134	117.204 117.120	-2.414 -1.177	52.176 51.416	$\frac{1.00}{1.00}$	67.24 63.86		1023 C 1024 O	ASP ASP	143 143	133.727 132.675	8.025 8.238	55.162 54.559	$\frac{1.00}{1.00}$	19.69 21.70
952 C	GLY	134	117.758	0.036	52.072	1.00	61.93		1024 O	VAL	144	134.485	8.997	55.664	1.00	21.88
953 O	GLY	134	117.712	1.138	51.520	1.00	64.71		1026 CA	VAL	144	134.120	10.411	55.566	1.00	19.30
954 N 955 CA	LYS LYS	135 135	118.332 118.989	-0.158 0.921	53.257 53.993	$\frac{1.00}{1.00}$	57.80 52.54		1027 CB 1028 CG1	VAL VAL	144 144	135.093 134.789	11.295 12.769	56.376 56.155	1.00 1.00	16.67 22.12
956 CB	LYS	135	118.628	0.565	55.482	1.00	54.50	60	1028 CG1 1029 CG2	VAL	144	134.789	10.961	57.857	1.00	20.43
957 CG	LYS	135	117.298	1.519	55.845	1.00	58.81		1030 C	VAL	144	133.997	10.942	54.136	1.00	18.93
958 CD 959 CE	LYS LYS	135 135	116.106	0.776	55.259 55.666	1.00	65.64 66.94		1031 O 1032 N	VAL	144	133.012	11.603	53.801	1.00	23.53
960 NZ	LYS	135	114.795 114.629	1.428 1.450	57.145	$\frac{1.00}{1.00}$	67.92		1032 N 1033 CA	LEU LEU	145 145	134.984 134.940	10.657 11.122	53.293 51.912	1.00 1.00	15.19 18.54
961 C	LYS	135	120.505	0.859	53.827	1.00	46.30	C.F.	1034 CB	LEU	145	136.238	10.780	51.181	1.00	22.93
962 O 963 N	LYS	135	121.062	-0.191	53.506 54.058	1.00 1.00	39.34 40.70	65	1035 CG 1038 CD1	LEU	145 145	137.524 138.647	11.410	51.722	1.00	23.25
903 IN	PHE	136	121.168	1.988	24.038	1.00	40.70		1038 CD1	LEU	145	130.04/	11.189	50.715	1.00	24.40

TABLE 10-continued

Structur			of Tobacco d Hydroxy				hase	5	Structui			of Tobacco d Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
1037 CD2	LEU	145	137.327	12.898	51.968	1.00	18.75		1110 CB	HIS	155	120.920	18.177	47.928	1.00	2.00
1038 C	LEU	145	133.744	10.535	51.168	1.00	23.90		1111 CG	HIS	155	120.932	18.340	49.415	1.00	2.00
1039 O	LEU	145	133.236	11.135	50.219	1.00	26.81	10	1112 CD2	HIS	155	120.036	18.914	50.255	1.00	3.97
1040 N 1041 CA	GLY GLY	146 146	133.303 132.159	9.358 8.705	51.610 50.999	1.00 1.00	24.92 21.44		1113 ND1 1114 CE1	HIS HIS	155 155	121.946 121.676	17.856 18.123	50.211 51.476	1.00 1.00	3.74 12.80
1041 CA 1042 C	GLY	146	130.868	9.313	51.512	1.00	19.58		1114 CE1 1115 NE2	HIS	155	120.522	18.764	51.529	1.00	11.17
1043 O	GLY	146	129.953	9.591	50.740	1.00	22.50		1116 C	HIS	155	119.742	17.092	45.997	1.00	10.18
1044 N	LEU	147	130.805	9.524	52.823	1.00	9.20		1117 O	HIS	155	119.025	18.030	45.645	1.00	16.07
1045 CA	LEU	147	129.643	10.116	53.467	1.00	7.33	15	1118 N	VAL	156	120.182	16.163	45.152	1.00	6.86
1046 CB 1047 CG	LEU LEU	147 147	129.849 129.927	10.163 8.831	54.980 55.721	1.00 1.00	7.87 12.02		1119 CA 1120 CB	VAL VAL	156 156	119.843 121.109	16.202 16.099	43.733 42.823	1.00 1.00	7.09 5.97
1048 CD1	LEU	147	130.341	9.066	57.157	1.00	8.20		1121 CG1	VAL	156	122.161	17.113	43.248	1.00	2.00
1049 CD2	LEU	147	128.583	8.122	55.656	1.00	15.08		1122 CG2	VAL	156	121.678	14.682	42.841	1.00	4.04
1050 C	LEU	147	129.388	11.527	52.945	1.00	20.24		1123 C	VAL	156	118.866	15.087	43.354	1.00	11.84
1051 O 1052 N	LEU LEU	147 148	128.244 130.462	11.900 12.333	52.680 52.795	1.00 1.00	27.36 20.47	20	1124 O 1125 N	VAL ARG	156 157	118.644 118.264	14.827 14.443	42.170 44.351	1.00 1.00	13.76 12.59
1052 IX	LEU	148	130.371	13.676	52.304	1.00	20.11		1126 CA	ARG	157	117.329	13.357	44.074	1.00	21.43
1054 CB	LEU	148	131.751	14.347	52.330	1.00	16.79		1127 CB	ARG	157	117.224	12.398	45.271	1.00	17.56
1055 CG	LEU	148	131.829	15.805	51.857	1.00	13.41		1128 CG	ARG	157	116.482	12.908	46.491	1.00	22.45
1066 CD1 1057 CD2	LEU LEU	148 148	130.897 133.256	16.833 16.306	52.683 51.961	1.00 1.00	6.32 9.98		1129 CD 1130 NE	ARG ARG	157 157	116.525 115.512	11.846 12.037	47.583 48.620	1.00 1.00	26.00 35.19
1057 CD2	LEU	148	129.777	13.758	50.895	1.00	16.22	25	1130 NE	ARG	157	114.360	11.370	48.676	1.00	40.41
1059 O	LEU	148	128.838	14.520	50.657	1.00	19.05		1132 NH1	ARG	157	114.064	10.465	47.753	1.00	42.25
1060 N	ASN	149	130.332	12.985	49.965	1.00	14.19		1133 NH2	ARG	157	113.505	11.598	49.664	1.00	42.66
1061 CA 1062 CB	ASN ASN	149 149	129.840 130.776	12.986 12.199	48.592 47.678	$\frac{1.00}{1.00}$	19.68 17.57		1134 C 1135 O	ARG ARG	157 157	115.945	13.815 14.885	43.609 43.985	1.00 1.00	22.46 28.62
1062 CB 1063 CG	ASN	149	130.776	12.199	47.306	1.00	21.68		1135 O 1136 N	THR	157	115.473 115.334	13.012	42.740	1.00	30.57
1064 OD1	ASN	149	132.904	13.181	48.129	1.00	27.23	30	1137 CA	THR	158	114.003	13.287	42.200	1.00	23.48
1065 ND2	ASN	149	132.055	13.469	46.067	1.00	17.93		1138 CB	THR	158	113.951	13.012	40.675	1.00	18.85
1066 C	ASN	149	128.414	12.461	48.486	1.00	24.02		1139 OG1	THR	158	114.132	11.613	40.424	1.00	23.14
1067 O 1068 N	ASN LEU	149 150	127.676 128.033	12.829 11.596	47.571 49.424	$\frac{1.00}{1.00}$	25.30 23.15		1140 CG2 1141 C	THR THR	158 158	115.044 112.962	13.781 12.409	39.959 42.911	1.00 1.00	5.29 26.07
1069 CA	LEU	150	126.685	11.049	49.449	1.00	19.85		1142 O	THR	158	113.258	11.786	43.936	1.00	29.73
1070 CB	LEU	150	126.606	9.844	50.391	1.00	15.00	35	1143 N	HIS	159	111.745	12.362	42.373	1.00	25.85
1071 CG	LEU	150	125.224	9.198	50.548	1.00	14.74		1144 CA	HIS	159	110.681	11.551	42.967	1.00	24.71
1072 CD1 1073 CD2	LEU LEU	150 150	124.735 125.287	8.634 8.115	49.215 51.600	$\frac{1.00}{1.00}$	8.02 2.00		1145 CB 1146 CG	HIS HIS	159 159	109.312 108.903	11.987 13.358	42.435 42.872	1.00 1.00	24.02 20.05
1074 C	LEU	150	125.745	12.153	49.925	1.00	20.18		1147 CD2	HIS	159	108.888	14.538	42.209	1.00	14.66
1075 O	LEU	150	124.640	12.304	49.404	1.00	22.47		1148 ND1	HIS	159	108.453	13.629	44.147	1.00	22.06
1076 N	TYR	151	126.209	12.930	50.904	1.00	18.20	40	1149 CE1	HIS	159	108.179	14.917	44.250	1.00	20.70
1077 CA 1078 CB	TYR TYR	151 151	125.440 126.226	14.041 14.739	51.455 52.569	1.00 1.00	18.43 10.57		1150 NE2 1151 C	HIS HIS	159 159	108.434 110.893	15.492 10.054	43.088 42.723	1.00 1.00	18.69 28.82
1079 CG	TYR	151	125.598	16.032	53.044	1.00	11.49		1152 O	HIS	159	110.377	9.211	43.464	1.00	29.90
1080 CD1	TYR	151	124.759	16.056	54.156	1.00	5.47		1153 N	ALA	160	111.674	9.733	41.695	1.00	22.36
1081 CE1	TYR	151	124.171	17.242	54.586	1.00	8.73		1154 CA	ALA	160	111.966	8.351	41.341	1.00	16.69
1082 CD2 1083 CE2	TYR TYR	151 151	125.835 125.250	17.234 18.421	52.372 52.791	$\frac{1.00}{1.00}$	10.72 9.08	45	1155 CB 1156 C	ALA ALA	160 160	112.118 113.218	8.233 7.821	39.835 42.038	1.00 1.00	12.78 24.25
1084 CZ	TYR	151	124.421	18.420	53.898	1.00	11.39		1157 O	ALA	160	113.748	6.775	41.655	1.00	30.58
1085 OH	TYR	151	123.845	19.598	54.316	1.00	11.19		1158 N	ASP	161	113.679	8.531	43.066	1.00	27.69
1086 C	TYR	151	125.117	15.041	50.355 50.256	1.00	17.39		1159 CA	ASP	161	114.880	8.134	43.800	1.00	24.25
1087 O 1088 N	TYR GLU	151 152	123.990 126.121	15.521 15.374	49.552	$\frac{1.00}{1.00}$	26.93 15.23		1160 CB 1161 CG	ASP ASP	161 161	115.968 116.356	9.212 9.495	43.669 42.222	$\frac{1.00}{1.00}$	22.91 29.35
1089 CA	GLU	152	125.937	16.316	48.455	1.00	18.45	50	1162 OD1	ASP	161	116.405	8.550	41.404	1.00	29.54
1090 CB	GLU	152	127.282	16.649	47.798	1.00	14.61		1163 OD2	ASP	161	116.623	10.672	41.906	1.00	19.16
1091 CG 1092 CD	GLU	152	128.316	17.293	48.727	1.00	17.73		1164 C	ASP	161	114.626 115.308	7.840	45.281	1.00	26.01
1092 CD 1093 OE1	GLU GLU	152 152	127.962 126.980	18.712 19.292	49.169 48.662	$\frac{1.00}{1.00}$	16.74 16.63		1165 O 1166 N	ASP ASP	161 162	113.670	8.380 6.957	46.154 45.561	$\frac{1.00}{1.00}$	34.22 28.71
1094 OE2	GLU	152	128.681	19.252	50.034	1.00	22.78		1167 CA	ASP	162	113.339	6.590	46.939	1.00	28.70
1095 C	GLU	152	124.977	15.750	47.413	1.00	13.63	55	1168 CB	ASP	162	111.999	5.859	46.993	1.00	34.90
1096 O	GLU	152	124.114	16.463	46.904	1.00	20.19		1169 CG	ASP	162	110.851	6.726	46.536	1.00	42.80
1097 N 1098 CA	ALA ALA	153 153	125.115 124.271	14.458 13.778	47.125 48.143	$\frac{1.00}{1.00}$	18.04 14.37		1170 OD1 1171 OD2	ASP ASP	162 162	110.426 110.386	7.600 6.543	47.322 45.389	1.00 1.00	36.44 43.54
1099 CB	ALA	153	124.859	12.417	45.794	1.00	13.44		1172 C	ASP	162	114.423	5.728	47.573	1.00	27.14
1100 C	ALA	153	122.815	13.624	46.580	1.00	13.36		1173 O	ASP	162	114.386	5.441	48.769	1.00	28.39
1101 O	ALA	153	121.921	13.577	45.738	1.00	11.20	60	1174 N	ILE	163	115.378	5.302	46.756	1.00	26.67
1102 N 1103 CA	SER SER	154 154	122.574 121.218	13.568 13.413	47.889 48.416	1.00 1.00	16.02 13.22		1175 CA 1176 CB	ILE ILE	163 163	116.485 117.250	4.486 3.866	47.229 46.030	1.00 1.00	27.39 24.84
1103 CA 1104 CB	SER	154	121.250	13.157	49.928	1.00	8.73		1170 CB	ILE	163	118.201	4.881	45.412	1.00	29.37
1105 CG	SER	154	121.581	14.330	50.651	1.00	16.49		1178 CG1	ILE	163	118.015	2.623	46.471	1.00	30.57
1106 C	SER	154	120.312	14.607	48.118	1.00	14.26		1179 CD1	ILE	163	118.639	1.863	45.323	1.00	43.90
1107 O 1108 N	SER HIS	154 155	119.087 120.915	14.504 15.735	48.207 47.757	1.00 1.00	26.54 14.00	65	1180 C 1181 O	ILE ILE	163 163	117.407 118.169	5.372 4.881	48.078 48.912	1.00 1.00	28.12 29.38
1109 CA	HIS	155	120.154	16.942	47.457	1.00	8.22		1181 O	LEU	164	117.277	6.686	47.890	1.00	30.46

TABLE 10-continued

Structur			of Tobacco l Hydroxy				nase	5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor
1183 CA	LEU	164	118.070	7.684	48.607	1.00	24.33		1256 O	ILE	173	126.481	11.801	62.754	1.00	30.04
1184 CB 1185 CG	LEU LEU	164 164	118.646 119.602	8.695 8.181	47.612 46.538	$\frac{1.00}{1.00}$	16.04 20.33	10	1257 N 1258 CA	HIS HIS	174 174	126.404 127.757	10.972 10.441	60.662 60.721	1.00 1.00	18.99 26.30
1186 CD1	LEU	164	119.864	9.271	45.514	1.00	22.74	10	1259 CB	HIS	174	127.737	9.228	59.799	1.00	36.54
1187 CD2	LEU	164	120.894	7.720	47.184	1.00	17.92		1260 CG	HIS	174	127.114	8.034	60.257	1.00	41.37
1188 C 1189 O	LEU LEU	164 164	117.259 117.667	8.441 9.518	49.658 50.101	$\frac{1.00}{1.00}$	23.88 32.16		1261 CD2 1262 ND1	HIS HIS	174 174	126.355 127.057	7.147 7.644	59.571 61.579	1.00 1.00	35.65 39.38
1190 N	GLU	165	116.120	7.882	50.061	1.00	21.56		1263 CE1	HIS	174	126.295	6.569	61.687	1.00	33.20
1191 CA	GLU	165	115.256	8.529	51.043	1.00	18.89	15	1264 NE2	HIS	174	125.857	6.248	60.483	1.00	35.00
1192 CB 1193 CG	GLU GLU	165 165	113.947 114.127	7.755 6.324	51.202 51.689	1.00 1.00	24.79 48.18		1265 C 1266 O	HIS HIS	174 174	128.804 129.945	11.504 11.419	60.407 60.872	1.00 1.00	27.93 25.80
1194 CD	GLU	165	112.819	5.561	51.814	1.00	57.24		1267 N	LEU	175	128.410	12.508	59.626	1.00	25.88
1195 OE1	GLU	165	111.765	6.076	51.375	1.00	63.77		1268 CA	LEU	175	129.312	13.600	59.280	1.00	17.20
1196 OE2 1197 C	GLU GLU	165 165	112.850 115.907	4.434 8.727	52.353 52.405	1.00 1.00	62.32 16.81		1269 CB 1270 CG	LEU LEU	175 175	128.804 129.069	14.376 13.747	58.066 56.696	1.00 1.00	12.92 4.37
1198 O	GLU	165	115.598	9.687	53.106	1.00	18.04	20	1271 CD1	LEU	175	128.472	14.624	55.606	1.00	2.00
1199 N	ASP	166	116.817	7.828	52.771	1.00	23.03		1272 CD2	LEU	175	130.566	13.572	56.482	1.00	6.69
1200 CA 1201 CB	ASP ASP	166 166	117.497 117.383	7.914 6.579	54.061 54.811	1.00 1.00	27.94 35.23		1273 C 1274 O	LEU LEU	175 175	129.459 130.534	14.530 15.074	60.470 60.705	1.00 1.00	17.96 30.10
1202 CG	ASP	166	115.936	6.177	55.082	1.00	50.03		1275 N	GLU	176	128.375	14.699	61.225	1.00	17.67
1203 OD1	ASP	166	115.565	5.024	54.771	1.00	57.17	25	1276 CA	GLU	176	128.386	15.550	62.412	1.00	27.17
1204 OD2 1205 C	ASP ASP	166 166	115.169 118.966	7.013 8.330	55.606 53.943	$\frac{1.00}{1.00}$	53.93 24.13	23	1277 CB 1278 CG	GLU GLU	176 176	126.969 125.997	15.740 16.452	62.959 62.037	$\frac{1.00}{1.00}$	26.19 39.91
1206 O	ASP	166	119.674	8.409	54.950	1.00	23.24		1279 CD	GLU	176	124.606	16.584	62.645	1.00	51.08
1207 N	ALA	167	119.401	8.638	52.721	1.00	14.78		1280 OE1	GLU	176	124.184	15.676	63.398	1.00	49.19
1208 CA 1209 CB	ALA ALA	167 167	120.780 120.993	9.044 9.169	52.443 50.948	$\frac{1.00}{1.00}$	16.72 12.70		1281 OE2 1282 C	GLU GLU	176 176	123.932 129.241	17.600 14.913	62.368 63.505	$\frac{1.00}{1.00}$	52.29 29.58
1210 C	ALA	167	121.215	10.333	53.136	1.00	24.13	30	1283 O	GLU	176	129.953	15.604	64.237	1.00	37.29
1211 O	ALA	167	122.355	10.443	53.590	1.00	29.67		1284 N	SER	177	129.156	13.589	63.604	1.00	31.69
1212 N 1213 CA	LEU LEU	168 168	120.317 120.614	11.313 12.590	53.193 53.831	1.00 1.00	27.80 19.27		1285 CA 1286 CB	SER SER	177 177	129.883 129.310	12.816 11.395	64.607 64.678	1.00 1.00	28.71 24.94
1214 CB	LEU	168	119.540	13.623	53.487	1.00	23.80		1287 OG	SER	177	129.868	10.660	65.755	1.00	27.40
1215 CG	LEU	168	119.706	15.016	54.099	1.00	18.12		1288 C	SER	177	131.392	12.758	64.370	1.00	25.55
1216 CD1 1217 CD2	LEU LEU	168 168	121.006 118.524	15.642 15.890	53.626 53.719	$\frac{1.00}{1.00}$	19.21 17.36	35	1289 O 1290 N	SER ALA	177 178	132.177 131.787	12.795 12.682	65.324 63.102	1.00 1.00	17.66 17.70
1218 C	LEU	168	120.730	12.450	55.343	1.00	20.39		1291 CA	ALA	178	133.195	12.600	62.723	1.00	19.27
1219 O	LEU	168	121.663	12.973	55.943 55.954	1.00	26.94		1292 CB	ALA	178	133.330	11.789 13.948	61.441	1.00	22.41
1220 N 1221 CA	ALA ALA	169 169	119.776 119.784	11.755 11.555	57.400	1.00 1.00	22.95 28.99		1293 C 1294 O	ALA ALA	178 178	133.897 135.107	14.054	62.558 62.769	1.00 1.00	24.31 24.74
1222 CB	ALA	169	118.472	10.934	57.856	1.00	26.34	40	1295 N	ALA	179	133.124	14.975	62.214	1.00	25.32
1223 C 1224 O	ALA ALA	169 169	120.959 121.529	10.676 10.855	57.816 58.895	1.00 1.00	31.11 32.24	10	1296 CA 1297 CB	ALA ALA	179 179	133.630 132.460	16.326 17.289	61.971 61.779	1.00 1.00	25.36 32.63
1224 O 1225 N	PHE	170	121.329	9.736	56.944	1.00	26.27		1297 CB 1298 C	ALA	179	134.658	16.943	62.928	1.00	23.67
1226 CA	PHE	170	122.423	8.819	57.197	1.00	22.01		1299 O	ALA	179	135.706	17.420	62.487	1.00	23.47
1227 CB 1228 CG	PHE PHE	170 170	122.448 123.592	7.714 6.747	56.135 56.284	1.00 1.00	20.64 28.63		1300 N 1301 CD	PRO PRO	180 180	134.384 133.196	16.929 16.355	64.244 64.900	1.00 1.00	21.48 20.79
1228 CO 1229 CD1	PHE	170	123.622	5.837	57.338	1.00	28.29	45	1301 CD 1302 CA	PRO	180	135.291	17.505	65.247	1.00	20.79
1230 CD2	PHE	170	124.642	6.745	55.368	1.00	25.46		1303 CB	PRO	180	134.601	17.155	66.568	1.00	10.68
1231 CE1 1232 CE2	PHE PHE	170 170	124.683 125.706	4.938 5.850	57.479 55.500	$\frac{1.00}{1.00}$	27.46 24.24		1304 CG 1305 C	PRO PRO	180 180	133.162 136.747		66.203 65.264	$\frac{1.00}{1.00}$	16.34 21.05
1232 CE2	PHE	170	125.726	4.945	56.558	1.00	22.35		1306 O	PRO	180	137.623		65.722	1.00	30.38
1234 C	PHE	170	123.752	9.564	57.205	1.00	20.63		1307 N	HIS	181	137.015	15.846	64.750	1.00	24.41
1235 O 1236 N	PHE SER	170 171	124.440 124.095	9.610 10.156	58.224 56.066	$\frac{1.00}{1.00}$	23.76 16.15	50	1308 CA 1309 CB	HIS HIS	181 181	138.372 138.359	15.310 13.955	64.785 65.498	$\frac{1.00}{1.00}$	20.38 22.19
1237 CA	SER	171	125.340	10.130	55.918	1.00	12.93		1310 CG	HIS	181	137.686	13.989	66.837	1.00	20.19
1238 CB	SER	171	125.476	11.429	54.488	1.00	12.97		1311 CD2	HIS	181	138.077	14.524	68.018	1.00	22.10
1239 OG 1240 C	SER SER	171 171	124.397 125.479	12.281 12.047	54.152 56.912	$\frac{1.00}{1.00}$	12.50 13.92		1312 ND1 1313 CE1	HIS HIS	181 181	136.437 136.086	13.448 13.649	67.055 68.313	$\frac{1.00}{1.00}$	24.79 28.39
1241 O	SER	171	126.567	12.297	57.420	1.00	15.50	55	1314 NE2	HIS	181	137.064	14.300	68.919	1.00	34.90
1242 N	THR	172	124.372	12.726	57.205	1.00	16.38	55	1315 C	HIS	181	139.073	15.184	63.443	1.00	16.56
1243 CA 1244 CB	THR THR	172 172	124.383 123.000	13.854 14.564	58.137 58.196	$\frac{1.00}{1.00}$	16.69 14.70		1316 O 1317 N	HIS LEU	181 182	140.138 138.496	14.575 15.775	63.351 62.407	1.00 1.00	20.78 19.38
1245 OG1	THR	172	122.758	15.259	56.966	1.00	12.00		1317 IV 1318 CA	LEU	182	139.095	15.698	61.082	1.00	19.81
1246 CG2	THR	172	122.946	15.559	59.348	1.00	6.76		1319 CB	LEU	182	138.023	15.838	59.999	1.00	12.64
1247 C 1248 O	THR THR	172 172	124.813 125.759	13.486 14.067	59.556 60.086	$\frac{1.00}{1.00}$	19.18 22.93	60	1320 CG 1321 CD1	LEU LEU	182 182	136.883 135.883	14.822 15.191	60.017 58.946	1.00 1.00	9.36 6.26
1249 N	ILE	173	123.739	12.516	60.160	1.00	22.35		1321 CD1 1322 CD2	LEU	182	137.414	13.405	59.808	1.00	5.44
1250 CA	ILE	173	124.439	12.112	61.529	1.00	26.29		1323 C	LEU	182	140.164	16.760	60.884	1.00	23.01
1251 CB 1252 CG2	ILE ILE	173 173	123.428 123.553	11.061 9.747	62.070 61.305	1.00 1.00	29.19 26.89		1324 O 1325 N	LEU LYS	182 183	140.177 141.071	17.787 16.492	61.567 59.953	1.00 1.00	24.75 23.75
1252 CG2 1253 CG1	ILE	173	123.657	10.844	63.572	1.00	34.59		1325 IV 1326 CA	LYS	183	142.139	17.426	59.648	1.00	25.95
1254 CD1	ILE	173	122.655	9.928	64.240	1.00	35.92	65	1327 CB	LYS	183	143.300	16.712	58.948	1.00	25.08
1255 C	ILE	173	125.868	11.602	61.702	1.00	27.07		1328 CG	LYS	183	142.946	16.106	57.600	1.00	32.88

TABLE 10-continued

Structur			of Tobacco l Hydroxy				nase	· 5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor
1329 CD	LYS	183	144.157	15.465	56.949	1.00	39.75		1402 CD2	HIS	192	130.320	25.503	52.428	1.00	14.30
1330 CE	LYS	183	143.804	14.905	55.581	1.00	45.64	10	1403 ND1 1404 CE1	HIS	192 192	129.981	26.814	54.141	1.00	17.04
1331 NZ 1332 C	LYS LYS	183 183	144.980 141.590	14.277 18.522	54.913 58.747	$\frac{1.00}{1.00}$	50.66 26.52	10	1404 CE1 1405 NE2	HIS HIS	192	129.488 129.681	27.425 26.651	53.078 52.025	1.00 1.00	22.40 9.94
1333 O	LYS	183	140.579	18.333	58.068	1.00	31.05		1406 C	HIS	192	129.061	23.321	54.939	1.00	15.72
1334 N	SER	184	142.247	19.675	58.769	1.00	25.24		1407 O	HIS	192	128.002	23.896	54.696	1.00	19.37
1335 CA 1336 CB	SER SER	184 184	141.842 142.202	20.806 22.111	57.949 58.656	$\frac{1.00}{1.00}$	18.75 15.62		1408 N 1409 CA	ALA ALA	193 193	129.331 128.367	22.085 21.288	54.524 53.766	1.00 1.00	22.40 17.47
1337 OG	SER	184	141.536	22.111	59.906	1.00	17.72	15	1410 CB	ALA	193	128.993	19.976	53.333	1.00	13.16
1338 C	SER	184	142.553	20.707	56.605	1.00	13.85	10	1411 C	ALA	193	127.104	21.027	54.584	1.00	18.46
1339 O 1340 N	SER PRO	184 185	143.666 141.930	20.186 21.221	56.528 55.526	1.00 1.00	23.56 14.69		1412 O 1413 N	ALA LEU	193 194	125.991 127.285	21.093 20.747	54.063 55.870	1.00 1.00	20.11 13.26
1341 CD	PRO	185	142.636	21.342	54.235	1.00	6.08		1414 CA	LEU	194	126.165	20.747	56.763	1.00	18.67
1342 CA	PRO	185	140.622	21.886	55.462	1.00	13.32		1415 CB	LEU	194	126.669	19.948	58.103	1.00	22.98
1343 CB	PRO	185	140.758	22.747	54.213	1.00	7.14	20	1416 CG	LEU	194	127.424	18.615	58.050	1.00	17.83
1344 CG 1345 C	PRO PRO	185 185	141.553 139.378	21.860 20.990	53.309 55.368	1.00 1.00	4.25 19.26		1417 CD1 1418 CD2	LEU LEU	194 194	127.913 126.526	18.249 17.524	59.439 57.494	1.00 1.00	22.28 9.41
1346 O	PRO	185	138.268	21.502	55.198	1.00	22.11		1419 C	LEU	194	125.325	21.745	56.977	1.00	20.18
1347 N	LEU	186	139.547	19.671	55.478	1.00	15.43		1420 O	LEU	194	124.169	21.662	57.390	1.00	28.31
1348 CA 1349 CB	LEU LEU	186 186	138.410 138.859	18.757 17.304	55.385 55.533	$\frac{1.00}{1.00}$	7.82 10.45		1421 N 1422 CA	GLU GLU	195 195	125.913 125.217	22.906 24.182	56.701 56.845	1.00 1.00	23.69 23.91
1350 CG	LEU	186	137.743	16.259	55.379	1.00	14.68	25	1423 CB	GLU	195	126.145	25.235	57.459	1.00	28.38
1351 CD1	LEU	186	137.199	16.257	53.953	1.00	2.00		1424 CG	GLU	195	126.558	24.930	58.897	1.00	48.57
1352 CD2 1353 C	LEU LEU	186 186	138.269 137.339	14.885 19.061	55.744 56.424	$\frac{1.00}{1.00}$	10.39 14.43		1425 CD 1426 OE1	GLU GLU	195 195	127.591 128.341	25.905 26.515	59.449 58.652	$\frac{1.00}{1.00}$	61.92 66.87
1354 O	LEU	186	136.147	19.062	56.114	1.00	15.11		1427 OE2	GLU	195	127.658	26.052	60.690	1.00	55.96
1355 N	ARG	187	137.774	19.318	57.653	1.00	11.19		1428 C	GLU	195	124.693	24.670	55.497	1.00	14.54
1356 CA 1357 CB	ARG ARG	187 187	136.868 137.675	19.626 19.929	58.755 60.019	$\frac{1.00}{1.00}$	10.77 9.64	30	1429 O 1430 N	GLU GLN	195 196	123.721 125.327	25.422 24.207	55.436 54.422	$\frac{1.00}{1.00}$	17.77 10.51
1358 CG	ARG	187	136.839	20.202	61.251	1.00	12.29		1431 CA	GLN	196	124.951	24.584	53.064	1.00	9.57
1359 CD	ARG	187	137.724	20.530	62.429	1.00	17.99		1432 CB	GLN	196	125.488	25.984	52.740	1.00	9.74
1360 NE 1361 CZ	ARG ARG	187 187	136.944 137.468	20.796 20.982	63.633 64.841	$\frac{1.00}{1.00}$	40.99 53.63		1433 CG 1434 CD	GLN GLN	196 196	125.212 123.737	26.461 26.672	51.321 51.051	1.00 1.00	13.51 18.27
1362 NH1	ARG	187	138.785	20.932	65.014	1.00	54.42	35	1435 OE1	GLN	196	123.111	27.556	51.633	1.00	31.94
1363 NH2	ARG	187	136.674	21.217	65.879	1.00	49.07	55	1436 NE2	GLN	196	123.174	25.862	50.162	1.00	21.35
1364 C 1365 O	ARG ARG	187 187	135.949 134.754	20.804 20.771	58.424 58.731	$\frac{1.00}{1.00}$	19.68 20.19		1437 C 1438 O	GLN GLN	196 196	125.484 126.695	23.583 23.481	52.039 51.830	$\frac{1.00}{1.00}$	8.87 16.57
1366 N	GLU	188	136.512	21.831	57.789	1.00	19.04		1439 N	CYS	197	124.577	22.837	51.415	1.00	11.72
1367 CA	GLU	188	135.758	23.026	57.405	1.00	14.75		1440 CA	CYS	197	124.963	21.865	50.398	1.00	13.36
1368 CB 1369 CG	GLU GLU	188 188	136.708 137.416	24.179 24.825	57.052 58.248	$\frac{1.00}{1.00}$	18.38 25.44	40	1441 CB 1442 SG	CYS CYS	197 197	123.821 122.310	20.882 21.605	50.114 49.432	1.00 1.00	20.25 16.36
1370 CD	GLU	188	138.326	23.865	59.000	1.00	37.02		1442 SG 1443 C	CYS	197	125.351	22.614	49.126	1.00	11.32
1371 OE1	GLU	188	138.143	23.708	60.228	1.00	36.96		1444 O	CYS	197	124.948	23.758	48.924	1.00	16.69
1372 OE2 1373 C	GLU GLU	188 188	139.224 134.819	23.271 22.758	58.362 56.236	1.00 1.00	33.70 15.06		1445 N 1446 CA	LEU LEU	198 198	126.134 126.594	21.965 22.580	48.274 47.038	1.00 1.00	14.40 14.31
1374 O	GLU	188	133.720	23.317	56.176	1.00	16.38		1447 CB	LEU	198	127.688	21.717	46.394	1.00	14.46
1375 N	GLN	189	135.263	21.920	55.301	1.00	12.50	45	1448 CG	LEU	198	128.283	22.186	45.060	1.00	13.58
1376 CA 1377 CB	GLN GLN	189 189	134.458 135.269	21.567 20.711	54.134 53.153	1.00 1.00	10.80 10.38		1449 CD1 1450 CD2	LEU LEU	198 198	128.949 129.279	23.541 21.162	45.225 44.547	1.00 1.00	9.55 12.33
1377 CB 1378 CG	GLN	189	133.209	20.711	51.856	1.00	9.35		1450 CD2 1451 C	LEU	198	125.478	22.848	46.034	1.00	12.33 18.46
1379 CD	GLN	189	135.415	19.722	50.811	1.00	16.04		1452 O	LEU	198	125.389	23.945	45.481	1.00	26.64
1380 OE1	GLN	189	135.319	20.022	49.617	1.00	8.08	50	1453 N 1454 CA	HIS	199 199	124.614	21.857	45.829	1.00	20.84
1381 NE2 1382 C	GLN GLN	189 189	136.277 133.204	18.812 20.814	51.254 54.574	$\frac{1.00}{1.00}$	11.78 12.51	50	1454 CA 1455 CB	HIS HIS	199	123.519 122.756	21.965 20.640	44.869 44.781	$\frac{1.00}{1.00}$	13.67 11.33
1383 O	GLN	189	132.117	21.057	54.059	1.00	19.40		1456 CG	HIS	199	121.733	20.603	43.688	1.00	6.17
1384 N	VAL	190	133.363 132.250	19.920	55.546	1.00	11.87		1457 CD2	HIS	199	120.389	20.445	43.729	1.00	12.38
1385 CA 1386 CB	VAL VAL	190 190	132.250	19.139 17.975	56.070 56.967	$\frac{1.00}{1.00}$	14.05 18.34		1458 ND1 1459 CE1	HIS HIS	199 199	122.061 120.964	20.738 20.663	42.356 41.624	$\frac{1.00}{1.00}$	10.08 10.18
1384 CG1	VAL	190	131.574	17.265	57.637	1.00	19.94	55	1460 NE2	HIS	199	119.935	20.486	42.432	1.00	2.01
1388 CG2	VAL	190	133.556	16.986	56.135	1.00	2.59		1461 C	HIS	199	122.540	23.111	45.108	1.00	14.52
1389 C 1390 O	VAL VAL	190 190	131.300 130.091	20.031 20.012	56.865 56.642	$\frac{1.00}{1.00}$	12.69 16.38		1462 O 1463 N	HIS LYS	199 200	122.174 122.120	23.813 23.300	44.166 46.357	1.00 1.00	13.39 15.92
1391 N	THR	191	131.858	20.822	57.777	1.00	19.11		1464 CA	LYS	200	121.161	24.353	46.698	1.00	14.65
1392 CA	THR	191	131.065	21.727	58.606	1.00	20.76		1465 CB	LYS	200	120.205	23.859	47.789	1.00	15.18
1393 CB 1394 OG1	THR THR	191 191	131.964 132.681	22.557 21.675	59.551 60.424	$\frac{1.00}{1.00}$	23.59 29.20	60	1466 CG 1467 CD	LYS LYS	200 200	119.425 118.523	22.609 22.158	47.416 48.554	1.00 1.00	12.45 3.23
1395 CG2	THR	191	131.130	23.511	50.391	1.00	29.68		1468 CE	LYS	200	117.827	20.849	48.213	1.00	14.66
1396 C	THR	191	130.241	22.664	57.731	1.00	19.82		1469 NZ	LYS	200	116.966	20.369	49.332	1.00	22.03
1397 O 1398 N	THR HIS	191 192	129.073 130.843	22.927 23.136	58.023 56.641	1.00 1.00	24.05 11.94		1470 C 1471 O	LYS LYS	200 200	121.786 121.101	25.688 26.541	47.120 47.693	$\frac{1.00}{1.00}$	22.11 20.41
1399 CA	HIS	192	130.160	24.032	55.719	1.00	13.13	, -	1472 N	GLY	201	123.078	25.860	46.844	1.00	21.90
1400 CB	HIS	192	131.148	24.658	54.741	1.00	14.49	65	1473 CA	GLY	201	123.764	27.097	47.191	1.00	14.85
1401 CG	HIS	192	130.512	25.600	53.764	1.00	13.85		1474 C	GLY	201	124.040	27.969	45.978	1.00	16.72

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
1475 O	GLY	201	123.992	27.489	44.842	1.00	12.09		1548 CB	PHE	210	135.384	26.105	46.901	1.00	5.35
1476 N 1477 CA	VAL VAL	202 202	124.329 124.627	29.253 30.183	46.209 45.114	$\frac{1.00}{1.00}$	11.53 11.31	10	1549 CG 1550 CD1	PHE PHE	210 210	136.131 136.182	24.854 23.773	46.525 47.392	1.00 1.00	2.00 7.13
1478 CB	VAL	202	124.437	31.661	45.555	1.00	9.93	10	1551 CD2	PHE	210	136.794	24.763	45.307	1.00	13.50
1479 CG1	VAL	202	124.960	32.617	44.491	1.00	2.00		1552 CE1	PHE	210	136.883	22.617	47.052	1.00	13.12
1480 CG2 1481 C	VAL VAL	202 202	122.964 126.054	31.937 29.940	45.803 44.612	1.00 1.00	6.34 10.17		1553 CE2 1554 CZ	PHE PHE	210 210	137.498 137.542	23.613 22.539	44.956 45.830	1.00 1.00	10.64 12.55
1482 O	VAL	202	126.997	29.883	45.405	1.00	8.95		1555 C	PHE	210	137.342	27.297	47.844	1.00	15.50
1483 N	PRO	203	126.222	29.774	43.286	1.00	2.10	15	1556 O	PHE	210	138.339	26.801	48.436	1.00	21.01
1484 CD 1485 CA	PRO PRO	203 203	125.136 127.509	29.796 29.524	42.290 42.628	1.00 1.00	5.19 8.34		1557 N 1558 CA	ILE ILE	211 211	137.500 138.798	28.290 28.834	46.970 46.601	1.00 1.00	11.89 14.18
1486 CB	PRO	203	127.168	29.704	41.154	1.00	5.82		1559 CB	ILE	211	138.663	30.000	45.604	1.00	13.95
1487 CG	PRO	203	125.785	29.152	41.087	1.00	2.00		1560 CG2	ILE	211	140.040	30.517	45.218	1.00	23.94
1488 C 1489 O	PRO PRO	203 203	128.699 129.709	30.381 29.836	43.069 43.516	1.00 1.00	18.54 26.42		1561 CG1 1562 CD1	ILE ILE	211 211	137.925 137.734	29.547 30.656	44.346 43.335	1.00 1.00	14.06 19.84
1490 N	ARG	204	128.591	31.704	42.951	1.00	11.17	20	1563 C	ILE	211	139.622	29.318	47.790	1.00	11.48
1491 CA	ARG	204	129.687	32.582	43.357	1.00	5.94		1564 O	ILE	211	140.730	28.838	48.010	1.00	22.99
1492 CB 1493 CG	ARG ARG	204 204	129.366 129.405	34.047 34.440	43.061 41.587	1.00 1.00	4.29 10.69		1565 N 1566 CA	SER SER	212 212	139.069 139.799	30.238 30.797	48.574 49.708	1.00 1.00	11.99 19.48
1494 CD	ARG	204	130.821	34.543	41.033	1.00	8.35		1567 CB	SER	212	139.279	32.205	50.044	1.00	10.83
1495 NE	ARG	204	131.410	33.242	40.725	1.00	21.05	25	1568 OG	SER	212	137.939	32.174	50.500	1.00	32.56
1496 CZ 1497 NH1	ARG ARG	204 204	132.555 133.250	33.071 34.121	40.068 39.644	$\frac{1.00}{1.00}$	20.78 14.75	23	1569 C 1570 O	SER SER	212 212	139.902 140.992	29.954 29.800	50.979 51.530	1.00 1.00	15.60 26.35
1498 NH2	ARG	204	132.996	31.844	39.818	1.00	16.69		1571 N	SER	213	138.785	29.398	51.437	1.00	18.79
1499 C 1500 O	ARG	204	130.016	32.420	44.836	1.00	6.43		1572 CA	SER	213	138.780	28.607	52.665	1.00	15.21
1500 O 1501 N	ARG VAL	204 205	131.185 128.983	32.304 32.380	45.207 45.672	$\frac{1.00}{1.00}$	15.01 2.00		1573 CB 1574 OG	SER SER	213 213	137.426 137.168	28.737 30.074	53.372 53.766	$\frac{1.00}{1.00}$	13.39 19.66
1502 CA	VAL	205	129.159	32.238	47.116	1.00	3.42	30	1575 C	SER	213	139.141	27.126	52.543	1.00	21.19
1503 CB	VAL	205	127.809	32.238	47.855	1.00	2.00		1576 O	SER	213	139.540	26.503	53.534	1.00	22.69
1504 CG1 1505 CG2	VAL VAL	205 205	128.027 127.064	32.047 33.530	49.342 47.594	$\frac{1.00}{1.00}$	13.49 2.00		1577 N 1578 CA	ILE ILE	214 214	139.021 139.308	26.558 25.138	51.345 51.177	1.00 1.00	16.22 12.65
1506 C	VAL	205	129.904	30.963	47.488	1.00	7.19		1579 CB	ILE	214	138.047	24.354	50.712	1.00	17.01
1507 O	VAL	205	130.785	30.982	48.342	1.00	17.39		1580 CG2	ILE	214	138.343	22.853	50.628	1.00	14.54
1508 N 1509 CA	GLU GLU	206 206	129.543 130.188	29.854 28.579	46.851 47.136	$\frac{1.00}{1.00}$	11.33 11.44	35	1581 CG1 1582 CD1	ILE ILE	214 214	136.879 137.175	24.602 24.247	51.673 53.124	1.00 1.00	7.09 2.16
1510 CB	GLU	206	129.348	27.417	46.606	1.00	10.75		1583 C	ILE	214	140.477	24.759	50.276	1.00	14.51
1511 CG 1512 CD	GLU GLU	206 206	128.033 128.208	27.237 27.226	47.340 48.845	$\frac{1.00}{1.00}$	4.42 7.68		1584 O 1585 N	ILE TYR	214 215	141.486 140.342	24.247 25.006	50.759 48.975	1.00 1.00	20.94 10.71
1512 CD 1513 OE1	GLU	206	128.858	26.298	49.366	1.00	15.79		1586 CA	TYR	215	141.378	24.634	48.016	1.00	16.76
1514 OE2	GLU	206	127.700	28.153	49.509	1.00	12.42	40	1587 CB	TYR	215	140.914	24.914	46.587	1.00	10.15
1515 C 1516 O	GLU GLU	206 206	131.598 132.484	28.528 27.897	46.568 47.144	1.00 1.00	13.88 16.22	10	1588 CG 1589 CD1	TYR TYR	215 215	141.523 141.526	23.975 22.595	45.569 45.777	1.00 1.00	16.49 14.36
1510 O 1517 N	THR	207	131.792	29.199	45.438	1.00	9.73		1599 CD1 1590 CE1	TYR	215	142.079	21.722	44.837	1.00	16.84
1518 CA	THR	207	133.090	29.268	44.785	1.00	13.84		1591 CD2	TYR	215	142.090	24.463	44.393	1.00	18.93
1519 CB 1520 OG1	THR THR	207 207	132.970 132.272	29.928 29.045	43.400 42.513	1.00 1.00	15.72 13.12		1592 CE2 1593 CZ	TYR TYR	215 215	142.645 142.636	23.601 22.232	43.447 43.676	1.00 1.00	14.61 18.72
1520 CG1	THR	207	134.338	30.250	42.827	1.00	11.92	45	1593 CZ 1594 OH	TYR	215	143.191	21.375	42.749	1.00	21.97
1522 C	THR	207	134.059	30.066	45.658	1.00	19.41		1595 C	TYR	215	142.753	25.251	48.256	1.00	22.56
1523 O 1524 N	THR ARG	207 208	135.177 133.608	29.623 31.226	45.917 46.133	$\frac{1.00}{1.00}$	27.17 22.15		1596 O 1597 N	TYR ASP	215 216	143.772 142.780	24.567 26.538	48.154 48.582	$\frac{1.00}{1.00}$	21.88 25.86
1525 CA	ARG	208	134.417	32.091	46.988	1.00	17.49		1598 CA	ASP	216	144.032	27.239	48.841	1.00	28.90
1526 CB	ARG	208	133.595	33.309	47.429	1.00	23.71		1599 CB	ASP	216	143.745	28.708	49.155	1.00	35.55
1527 CG 1528 CD	ARG ARG	208 208	134.349 135.532	34.352 34.935	48.264 47.501	$\frac{1.00}{1.00}$	24.20 35.41	50	1600 CG 1601 OD1	ASP ASP	216 216	145.000 145.170	29.514 30.035	49.373 50.494	$\frac{1.00}{1.00}$	32.91 33.80
1529 NE	ARG	208	136.060	36.169	48.090	1.00	40.81		1602 OD2	ASP	216	145.811	29.630	48.427	1.00	38.29
1530 CZ	ARG	208	136.736	36.242	49.235	1.00	40.71		1603 C	ASP	216	144.782	26.590	50.002	1.00	28.68
1531 NH1 1532 NH2	ARG ARG	208 208	136.978 137.194	35.150 37.412	49.947 49.658	$\frac{1.00}{1.00}$	42.82 37.98		1604 O 1605 N	ASP LYS	216 217	146.013 144.026	26.552 26.052	50.017 50.954	1.00 1.00	35.11 24.04
1533 C	ARG	208	134.906	31.313	48.208	1.00	19.76	55	1606 CA	LYS	217	144.604	25.406	52.129	1.00	25.31
1534 O	ARG	208	136.075	31.395	48.576	1.00	27.03	55	1607 CB	LYS	217	143.768	25.741	53.368	1.00	17.45
1535 N 1536 CA	PHE PHE	209 209	134.010 134.350	30.534 29.734	48.809 49.979	$\frac{1.00}{1.00}$	16.90 12.93		1608 CG 1609 CD	LYS LYS	217 217	143.687 142.811	27.234 27.551	53.646 54.844	1.00 1.00	28.42 36.77
1537 CB	PHE	209	133.090	29.165	50.632	1.00	3.91		1610 CE	LYS	217	142.729	29.057	55.071	1.00	36.92
1538 CG	PHE	209	133.377	28.292	51.818	1.00	8.27		1611 NZ	LYS	217	141.758	29.426	56.143	1.00	37.10
1539 CD1 1540 CD2	PHE PHE	209 209	133.605 133.472	28.852 26.912	53.070 51.676	1.00 1.00	5.35 11.24	60	1612 C 1613 O	LYS LYS	217 217	144.754 145.170	23.892 23.201	51.973 52.905	1.00 1.00	25.97 23.71
1540 CD2 1541 CE1	PHE	209	133.472	28.052	54.162	1.00	10.99		1614 N	GLU	218	144.429	23.385	50.788	1.00	30.40
1542 CE2	PHE	209	133.794	26.105	52.760	1.00	7.23		1615 CA	GLU	218	144.528	21.958	50.504	1.00	34.37
1543 CZ 1544 C	PHE PHE	209 209	134.023 135.305	26.677 28.581	54.007 49.664	1.00 1.00	2.00 16.94		1616 CB 1617 CG	GLU GLU	218 218	143.655 143.462	21.603 20.114	49.297 49.073	1.00 1.00	41.93 45.33
1545 O	PHE	209	136.176	28.248	50.473	1.00	13.43		1618 CD	GLU	218	142.740	19.451	50.226	1.00	52.39
1546 N	PHE	210	135.112	27.942	48.514	1.00	11.91	65	1619 OE1	GLU	218	141.553	19.780	50.449	1.00	49.41
1547 CA	PHE	210	135.960	26.823	48.126	1.00	12.01		1620 OE2	GLU	218	143.364	18.612	50.918	1.00	46.07

TABLE 10-continued

Structur			of Tobacco l Hydroxy				nase	· 5	Structur			of Tobacco d Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	x	Y	z	OCC	B- factor
1621 C	GLU	218	145.982	21.585	50.228	1.00	34.68		1694 NH2	ARG	227	149.963	35.561	38.831	1.00	19.58
1622 O 1623 N	GLU	218	146.624 146.493	22.166	49.356 50.974	1.00	31.92	10	1695 C	ARG	227	144.911	30.745	39.367	1.00	17.48
1623 N 1624 CA	GLN GLN	219 219	140.493	20.611 20.156	50.827	$\frac{1.00}{1.00}$	37.87 41.61	10	1696 O 1697 N	ARG PHE	227 228	144.475 144.474	31.894 29.822	39.402 38.516	1.00 1.00	22.08 17.49
1625 CB	GLN	219	148.180	19.105	51.896	1.00	52.08		1698 CA	PHE	228	143.439	30.073	37.516	1.00	20.78
1626 CG 1627 CD	GLN GLN	219 219	149.617 149.709	18.615 17.102	51.900 51.943	$\frac{1.00}{1.00}$	67.09 78.27		1699 CB 1700 CG	PHE PHE	228 228	143.484 142.261	28.770 28.908	36.741 35.556	1.00 1.00	17.58 10.74
1627 CD 1628 OE1	GLN	219	149.709	16.470	52.917	1.00	81.71		1700 CO 1701 CD1	PHE	228	141.685	30.128	35.214	1.00	18.32
1629 NE2	GLN	219	150.233	16.510	50.870	1.00	80.10	15	1702 CD2	PHE	228	141.958	27.791	34.785	1.00	13.57
1630 C 1631 O	GLN GLN	219 219	148.173 149.260	19.583 19.789	49.438 48.893	$\frac{1.00}{1.00}$	38.79 34.89		1703 CE1 1704 CE2	PHE PHE	228 228	140.819 141.095	30.230 27.883	34.122 33.692	1.00 1.00	18.76 18.93
1631 O	SER	220	147.205	18.867	48.874	1.00	39.35		1704 CE2 1705 CZ	PHE	228	140.525	29.106	33.361	1.00	12.22
1633 CA	SER	220	147.359	18.252	47.556	1.00	36.65		1706 C	PHE	228	142.158	30.552	38.205	1.00	20.33
1634 CB 1635 OG	SER	220 220	146.658	16.891 17.018	47.537 47.899	1.00 1.00	48.69		1707 O	PHE	228 229	141.585 141.746	31.580 29.817	37.834 39.233	1.00 1.00	17.12
1636 C	SER SER	220	145.291 146.824	19.117	46.418	1.00	58.57 30.45	20	1708 N 1709 CA	ALA ALA	229	140.541	30.125	39.233	1.00	15.85 14.57
1637 O	SER	220	146.651	18.639	45.297	1.00	31.98		1710 CB	ALA	229	140.320	29.069	41.059	1.00	11.49
1638 N	LYS	221	146.581	20.392	46.704	1.00	25.39		1711 C	ALA	229 229	140.572	31.513	40.619	1.00	22.21
1639 CA 1640 CB	LYS LYS	221 221	146.052 145.949	21.327 22.731	45.716 46.316	$\frac{1.00}{1.00}$	18.20 17.94		1712 O 1713 N	ALA LYS	230	139.606 141.683	32.272 31.841	40.505 41.278	$\frac{1.00}{1.00}$	26.82 17.14
1641 CG	LYS	221	147.292	23.352	46.659	1.00	24.63		1714 CA	LYS	230	141.836	33.136	41.933	1.00	13.72
1642 CD	LYS	221	147.136	24.772	47.155	1.00	32.69	25	1715 CB	LYS	230	143.118	33.168	42.766	1.00	17.71
1643 CE 1644 NZ	LYS LYS	221 221	148.444 149.547	25.312 25.257	47.716 46.720	$\frac{1.00}{1.00}$	42.07 42.25		1716 CG 1717 CD	LYS LYS	230 230	143.067 144.343	32.332 32.505	44.030 44.835	$\frac{1.00}{1.00}$	14.07 23.37
1645 C	LYS	221	146.879	21.412	44.444	1.00	15.22		1718 CE	LYS	230	144.253	31.802	46.177	1.00	31.01
1646 O	LYS	221	148.097	21.243	44.467	1.00	21.32		1719 NZ	LYS	230	145.477	32.021	46.994	1.00	32.57
1647 N 1648 CA	ASN ASN	222 222	146.196 146.853	21.660 21.818	43.333 42.048	$\frac{1.00}{1.00}$	11.20 9.54	30	1720 C 1721 O	LYS LYS	230 230	141.816 141.111	34.310 35.292	40.956 41.176	1.00 1.00	16.07 15.73
1649 CB	ASN	222	145.993	21.250	40.919	1.00	2.46	30	1721 O 1722 N	LEU	231	142.585	34.202	39.876	1.00	17.93
1650 CG	ASN	222	146.599	21.488	39.550	1.00	12.07		1723 CA	LEU	231	142.646	35.260	38.872	1.00	20.80
1651 OD1 1652 ND2	ASN ASN	222 222	146.698 147.003	22.626 20.414	39.097 38.881	$\frac{1.00}{1.00}$	10.03		1724 CB 1725 CG	LEU LEU	231 231	143.653 145.141	34.911 34.870	37.775 38.116	1.00 1.00	18.38 16.32
1653 C	ASN	222	147.003	23.322	41.885	1.00	11.12 17.59		1725 CO 1726 CD1	LEU	231	145.920	34.518	36.863	1.00	14.82
1654 O	ASN	222	146.060	24.061	41.717	1.00	21.24	35	1727 CD2	LEU	231	145.593	36.212	38.658	1.00	15.83
1655 N	ASN	223	148.281	23.765	41.958	1.00	18.52		1728 C	LEU	231	141.287	35.506	38.233	1.00	24.81
1656 CA 1657 CB	ASN ASN	223 223	148.619 150.127	25.175 25.349	41.850 41.972	$\frac{1.00}{1.00}$	9.91 11.52		1729 O 1730 N	LEU ASP	231 232	140.828 140.648	36.647 34.427	38.151 37.790	1.00 1.00	28.14 28.52
1658 CG	ASN	223	150.664	24.821	43.282	1.00	23.77		1731 CA	ASP	232	139.344	34.503	37.139	1.00	23.60
1659 OD1	ASN	223	150.579	25.491	44.311	1.00	21.40		1732 CB	ASP	232	138.878	33.104	36.736	1.00	20.22
1660 ND2 1661 C	ASN ASN	223 223	151.208 148.104	23.605 25.870	43.258 40.594	$\frac{1.00}{1.00}$	21.52 15.35	40	1733 CG 1734 OD1	ASP ASP	232 232	137.737 138.019	33.137 33.223	35.742 34.527	1.00 1.00	29.93 24.38
1662 O	ASN	223	147.668	27.019	40.662	1.00	21.88		1735 OD2	ASP	232	136.564	33.079	36.174	1.00	26.36
1663 N	VAL	224	148.157	25.184	39.455	1.00	10.58		1736 C	ASP	232	138.300	35.170	38.032	1.00	20.67
1664 CA 1665 CB	VAL VAL	224 224	147.677 147.957	25.755 24.811	38.195 37.001	1.00 1.00	18.60 24.63		1737 O 1738 N	ASP PHE	232 233	137.622 138.203	36.111 34.707	37.612 39.274	1.00 1.00	15.86 12.27
1666 CG1	VAL	224	147.405	25.406	35.709	1.00	25.94		1739 CA	PHE	233	137.244	35.260	40.219	1.00	12.59
1667 CG2	VAL	224	149.449	24.558	36.873	1.00	17.27	45	1740 CB	PHE	233	137.355	34.549	41.569	1.00	14.20
1668 C 1669 O	VAL VAL	224 224	146.177 145.716	26.049 27.071	38.259 37.746	$\frac{1.00}{1.00}$	23.24 25.12		1741 CG 1742 CD1	PHE PHE	233 233	136.243 135.130	34.887 34.058	42.524 42.634	1.00 1.00	30.75 33.32
1670 N	LEU	225	145.423	25.146	38.886	1.00	23.80		1743 CD2	PHE	233	136.298	36.042	43.302	1.00	29.41
1671 CA	LEU	225	143.980	25.313	39.032	1.00	18.51		1744 CE1	PHE	233	134.088	34.372	43.502	1.00	34.63
1672 CB 1673 CG	LEU LEU	225 225	143.314 143.337	23.994 22.844	39.434 38.424	$\frac{1.00}{1.00}$	18.23 20.30	50	1745 CE2 1746 CZ	PHE PHE	233 233	135.263 134.155	36.365 35.528	44.172 44.272	$\frac{1.00}{1.00}$	31.81 32.38
1674 CD1	LEU	225	142.613	21.645	39.010	1.00	18.77		1747 C	PHE	233	137.452	36.760	40.407	1.00	18.84
1675 CD2	LEU	225	142.691	23.270	37.115	1.00	10.44		1748 O	PHE	233	136.495	37.534	40.394	1.00	24.79
1676 C 1677 O	LEU LEU	225 225	143.652 142.710	26.392 27.162	40.061 39.872	$\frac{1.00}{1.00}$	18.24 22.06		1749 N 1750 CA	ASN ASN	234 234	138.710 139.057	37.160 38.563	40.572 40.770	$\frac{1.00}{1.00}$	25.72 20.56
1678 N	LEU	226	144.431	26.448	41.141	1.00	18.51		1751 CB	ASN	234	140.509	38.694	41.239	1.00	25.13
1679 CA	LEU	226	144.230	27.445	42.197	1.00	17.64	55	1752 CG	ASN	234	140.702	38.249	42.683	1.00	30.65
1680 CB 1681 CG	LEU LEU	226 226	145.128 145.013	27.149 28.096	43.401 44.605	$\frac{1.00}{1.00}$	15.88 19.63		1753 OD1 1754 ND2	ASN ASN	234 234	139.738 141.957	37.996 38.162	43.406 43.109	1.00 1.00	21.26 35.99
1682 CD1	LEU	226	143.633	27.996	45.235	1.00	8.24		1755 C	ASN	234	138.818	39.427	39.536	1.00	18.33
1683 CD2	LEU	226	146.086	27.764	45.627	1.00	2.89		1756 O	ASN	234	138.457	40.599	39.662	1.00	15.79
1684 C 1685 O	LEU LEU	226 226	144.507 143.753	28.855 29.785	41.681 41.966	$\frac{1.00}{1.00}$	15.54 28.19		1757 N 1758 CA	LEU LEU	235 235	139.019 138.814	38.848 39.567	38.353 37.097	1.00 1.00	17.45 16.13
1686 N	ARG	227	145.735	29.763	40.927	1.00	22.25	60	1759 CB	LEU	235	139.402	38.789	35.920	1.00	14.09
1687 CA	ARG	227	145.995	30.282	40.338	1.00	21.24		1760 CG	LEU	235	139.233	39.426	34.534	1.00	25.16
1688 CB 1689 CG	ARG ARG	227 227	147.320 147.831	30.108 31.335	39.587 38.844	1.00 1.00	25.23 26.56		1761 CD1 1762 CD2	LEU LEU	235 235	139.947 139.762	40.774 38.487	34.472 33.458	1.00 1.00	16.26 11.51
1690 CD	ARG	227	148.575	32.292	39.760	1.00	33.23		1762 CD2 1763 C	LEU	235	137.329	39.812	36.866	1.00	23.53
1691 N E	ARG	227	149.114	33.433	39.021	1.00	27.48	65	1764 O	LEU	235	136.929	40.918	36.502	1.00	30.18
1692 CZ 1693 NH1	ARG ARG	227 227	149.516 149.447	34.568 34.722	39.585 40.902	1.00 1.00	29.44 31.95	65	1765 N 1766 CA	LEU LEU	236 236	136.517 135.071	38.773 38.894	37.065 36.900	1.00 1.00	26.97 21.97
1073 INII	ANO	221	<u> </u>	57.122	TO.702	1.00	31.73		1700 CA	LEO	230	100.071	20.024	50.500	1.00	21.71

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor
1767 CB	LEU	236	134.375	37.538	37.041	1.00	22.99		1840 CD2	LEU	244	127.780	46.582	43.908	1.00	9.05
1768 CG 1769 CD1	LEU LEU	236 236	134.550 133.601	36.506 35.347	35.931 36.187	$\frac{1.00}{1.00}$	24.74 22.83	10	1841 C 1842 O	LEU LEU	244 244	127.213 126.328	49.191 49.868	40.335 40.863	1.00 1.00	22.78 27.46
1770 CD2	LEU	236	134.259	37.133	34.579	1.00	26.05	10	1843 N	ALA	245	128.325	49.725	39.838	1.00	31.72
1771 C	LEU	236	134.511	39.858	37.935	1.00	15.40		1844 CA	ALA	245	128.560	51.167	39.856	1.00	30.71
1772 O 1773 N	LEU GLN	236 237	133.581 135.080	40.602 39.837	37.646 39.139	$\frac{1.00}{1.00}$	21.06 13.42		1845 CB 1846 C	ALA ALA	245 245	129.998 127.589	51.476 51.860	39.466 38.893	1.00 1.00	26.12 29.98
1773 I N 1774 CA	GLN	237	134.645	40.721	40.217	1.00	14.55		1847 O	ALA	245	127.005	52.887	39.226	1.00	32.44
1775 CB	GLN	237	135.477	40.481	41.475	1.00	14.51	15	1848 N	GLN	246	127.410	51.256	37.718	1.00	29.03
1776 CG 1777 CD	GLN GLN	237 237	135.051 135.967	41.318 41.131	42.671 43.862	1.00 1.00	12.72 12.21		1849 CA 1850 CB	GLN GLN	246 246	126.528 126.689	51.754 50.868	36.668 35.430	1.00 1.00	31.14 31.92
1777 CD 1778 OE1	GLN	237	137.121	41.566	43.847	1.00	18.76		1851 CG	GLN	246	125.845	51.244	34.232	1.00	41.36
1779 NE2	GLN	237	135.460	40.483	44.900	1.00	4.88		1852 CD	GLN	246	125.970	50.235	33.109	1.00	48.09
1780 C 1781 O	GLN GLN	237 237	134.760 133.950	42.180 43.011	39.788 40.192	1.00 1.00	22.23 28.74		1853 OE1 1854 NE2	GLN GLN	246 246	127.023 124.887	49.627 50.043	32.919 32.361	1.00 1.00	49.29 55.11
1781 O 1782 N	MET	238	135.770	42.481	38.970	1.00	29.92	20	1855 C	GLN	246	125.074	51.762	37.119	1.00	34.84
1783 CA	MET	238	135.985	43.833	38.458	1.00	23.66		1856 O	GLN	246	124.297	52.637	36.732	1.00	42.31
1784 CB 1785 CG	MET MET	238 238	137.275 138.552	43.906 43.791	37.638 38.454	1.00 1.00	25.72 26.38		1857 N 1858 CA	VAL VAL	247 247	124.719 123.360	50.762 50.631	37.921 38.441	1.00 1.00	39.27 38.03
1786 SD	MET	238	140.030	43.684	37.408	1.00	30.42		1859 CB	VAL	247	123.069	49.138	38.742	1.00	38.04
1787 CE	MET	238	141.233	43.058	38.580	1.00	23.83	25	1860 CG1	VAL	247	122.330	48.954	40.059	1.00	39.31
1788 C	MET MET	238 238	134.801	44.227	37.584 37.628	$\frac{1.00}{1.00}$	20.92 20.70	25	1861 CG2	VAL VAL	247	122.270	48.526 51.507	37.603 39.667	1.00	37.60
1789 O 1790 N	LEU	239	134.344 134.310	45.367 43.274	36.792	1.00	23.17		1862 C 1863 O	VAL	247 247	123.144 122.012	51.862	39.007	$\frac{1.00}{1.00}$	37.49 33.11
1791 CA	LEU	239	133.159	43.509	35.920	1.00	21.15		1864 N	SER	248	124.231	51.871	40.340	1.00	39.80
1792 CB	LEU	239	132.938	42.323	34.978	1.00	10.92		1865 CA	SER	248	124.173	52.736	41.515	1.00	43.54
1793 CG 1794 CD1	LEU LEU	239 239	131.684 131.748	42.381 43.579	34.100 33.166	$\frac{1.00}{1.00}$	20.20 9.66	30	1866 CB 1867 OG	SER SER	248 248	125.456 125.482	52.604 51.368	42.352 43.057	1.00 1.00	41.35 23.81
1795 CD2	LEU	239	131.541	41.089	33.309	1.00	10.55		1868 C	SER	248	123.963	54.195	41.093	1.00	41.56
1796 C	LEU	239	131.908	43.732	36.764	1.00	14.68		1869 O	SER	248	123.288	54.976	41.783	1.00	39.28
1797 O 1798 N	LEU HIS	239 240	131.129 131.735	44.645 42.904	36.501 37.788	$\frac{1.00}{1.00}$	23.63 15.07		1870 N 1871 CA	ARG ARG	249 249	124.591 124.467	54.559 55.901	39.974 39.421	1.00 1.00	40.01 47.97
1799 CA	HIS	240	130.587	43.015	38.680	1.00	19.33		1872 CB	ARG	249	125.475	56.127	38.290	1.00	51.84
1800 CB	HIS	240	130.619	41.913	39.746	1.00	16.76	35	1873 CG	ARG	249	126.912	56.292	38.747	1.00	62.62
1801 CG 1802 CD2	HIS HIS	240 240	130.661 130.296	40.525 40.039	39.185 37.973	1.00 1.00	12.10 12.51		1874 CD 1875 NE	ARG ARG	249 249	127.836 129.065	56.501 55.731	37.563 37.713	1.00 1.00	69.45 78.07
1802 CD2 1803 ND1	HIS	240	131.144	39.449	39.897	1.00	8.57		1876 CZ	ARG	249	129.003	54.824	36.840	1.00	81.11
1834 CE1	HIS	240	131.077	38.362	39.150	1.00	16.05		1877 NH 1	ARG	249	128.795	54.570	35.737	1.00	75.69
1805 NE2	HIS HIS	240 240	130.567 130.610	38.692 44.383	37.979 39.344	1.00 1.00	13.30 21.46		1878 NH 2 1879 C	ARG ARG	249 249	130.602 123.051	54.145 56.058	37.087 38.890	1.00 1.00	86.20 43.68
1806 C 1807 O	HIS	240	129.572	45.034	39.344	1.00	28.61	40	1880 O	ARG	249	122.402	57.072	39.127	1.00	45.81
1808 N	LYS	241	131.809	44.819	39.728	1.00	24.98		1881 N	TRP	250	122.588	55.030	38.183	1.00	38.57
1809 CA 1810 CB	LYS LYS	241 241	132.008 133.469	46.118 46.281	40.364 40.782	1.00 1.00	19.85		1882 CA 1883 CB	TRP TRP	250 250	121.247 121.060	55.000 53.682	37.613 36.851	1.00 1.00	34.46 37.42
1810 CB 1811 CG	LYS	241	133.855	45.556	42.057	1.00	18.41 18.41		1884 CG	TRP	250	119.635	53.325	36.531	1.00	37.42 37.50
1812 CD	LYS	241	135.348	45.688	42.297	1.00	29.39		1885 CD2	TRP	250	118.745	52.545	37.341	1.00	32.98
1813 CE	LYS	241	135.667	45.861	43.769	1.00	43.69	45	1886 CE2	TRP	250	117.516	52.464	36.652	1.00	39.28
1814 NZ 1815 C	LYS LYS	241 241	137.131 131.604	45.987 47.252	43.991 39.419	1.00 1.00	46.04 23.69		1887 CE3 1888 CD1	TRP TRP	250 250	118.867 118.931	51.909 53.672	38.585 35.413	1.00 1.00	32.90 28.29
1816 O	LYS	241	130.983	48.229	39.845	1.00	14.81		1889 NE1	TRP	250		53.159	35.479	1.00	36.07
1817 N	GLN	242	131.954	47.107	38.140	1.00	20.70		1890 CZ2	TRP	250	116.411		37.167	1.00	40.28
1818 CA 1819 CB	GLN GLN	242 242	131.615 132.262	48.099 47.748	37.120 35.775	$\frac{1.00}{1.00}$	28.94 29.06	50	1891 CZ3 1892 CH2	TRP TRP	250 250	117.770 116.557	51.221 51.159	39.098 38.388	$\frac{1.00}{1.00}$	33.00 34.10
1820 CG	GLN	242	133.775	47.862	35.748	1.00	39.14	50	1893 C	TRP	250	120.215	55.131	38.731	1.00	31.76
1821 CD	GLN	242	134.359	47.517	34.392	1.00	42.97		1894 O	TRP	250	119.207	55.820	38.583	1.00	38.62
1822 OE1 1823 NE2	GLN GLN	242 242	134.324 134.904	46.363 48.519	33.962 33.710	$\frac{1.00}{1.00}$	48.36 39.66		1895 N 1896 CA	TRP TRP	251 251	120.499 119.611	54.493 54.513	39.861 41.017	$\frac{1.00}{1.00}$	29.34 28.23
1824 C	GLN	242	130.103	48.163	36.943	1.00	33.40		1897 CB	TRP	251	120.041	53.431	42.003	1.00	24.43
1825 O	GLN	242	129.514	49.246	36.938	1.00	40.80	55	1898 CG	TRP	251	119.164	53.309	43.196	1.00	27.54
1826 N 1827 CA	GLU GLU	243 243	129.487 128.044	46.992 46.884	36.807 36.631	$\frac{1.00}{1.00}$	33.80 22.54		1899 CD2 1900 CE2	TRP TRP	251 251	117.813 117.394	52.824 52.848	43.224 44.576	1.00 1.00	28.47 30.61
1828 CB	GLU	243	127.647	45.420	36.466	1.00	15.53		1900 CE2 1901 CE3	TRP	251	117.394	52.373	42.246	1.00	22.56
1829 CG	GLU	243	128.204	44.778	35.210	1.00	15.70		1902 CD1	TRP	251	119.493	53.603	44.486	1.00	29.85
1830 CD 1831 OE1	GLU GLU	243 243	127.938 127.639	43.290	35.137 36.178	$\frac{1.00}{1.00}$	18.78		1903 NE1 1904 CZ2	TRP TRP	251 251	118.439 116.117	53.127 52.434	45.321 44.974	1.00 1.00	28.21 27.80
1831 OE1 1832 OE2	GLU	243 243	127.039	42.675 42.727	34.032	1.00	18.01 15.89	60	1904 CZ2 1905 CZ3	TRP	251	116.117	52.434	44.974	1.00	27.80 16.40
1833 C	GLU	243	127.290	47.495	37.806	1.00	20.49		1906 CH2	TRP	251	115.261	51.995	43.993	1.00	23.32
1834 O 1835 N	GLU	243	126.351	48.266	37.611	1.00 1.00	18.81		1907 C 1908 O	TRP TRP	251 251	119.675	55.877	41.703 42.309	1.00	37.98 45.16
1836 CA	LEU LEU	244 244	127.715 127.079	47.159 47.675	39.022 40.231	1.00	12.97 15.01		1908 U 1909 N	LYS	251	118.564 120.685	56.243 56.610	41.636	1.00 1.00	45.16 42.00
1837 CB	LEU	244	127.676	46.999	41.467	1.00	12.34		1910 CA	LYS	252	120.758	57.938	42.238	1.00	42.12
1838 CG 1830 CD1	LEU LEU	244 244	127.144	47.436	42.832	1.00 1.00	12.62 24.09	65	1911 CB	LYS LYS	252 252	122.198 122.598	58.328 58.028	42.551	1.00 1.00	47.95 54.42
1839 CD1	LEU	∠44	125.628	47.332	42.881	1.00	24.09		1912 CG	LIS	232	122.398	58.028	43.975	1.00	54.42

TABLE 10-continued

Structur			of Tobacco l Hydroxy				nase	5	Structui			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
1913 CD	LYS	252	123.720	58.943	44.418	1.00	63.61		1986 CG	PRO	261	109.865	59.476	51.972	1.00	61.83
1914 CE 1915 N Z	LYS LYS	252 252	123.889 124.827	58.896 59.944	45.923 46.407	$\frac{1.00}{1.00}$	76.47 82.00	10	1987 C 1988 O	PRO PRO	261 261	110.685 111.317	56.401 55.811	52.265 53.143	$\frac{1.00}{1.00}$	56.67 54.94
1916 C	LYS	252	120.113	58.992	41.348	1.00	43.32	10	1989 N	TYR	262	109.475	56.019	51.869	1.00	55.28
1917 O	LYS	252	119.528	59.955	41.845	1.00	40.24		1990 CA	TYR	262	108.813	54.855	52.455	1.00	52.74
1918 N 1919 CA	ASP ASP	253 253	120.220 119.621	58.802 59.715	40.033 39.061	$\frac{1.00}{1.00}$	41.81 42.20		1991 CB 1992 CG	TYR TYR	262 262	107.309 106.954	54.898 54.869	52.167 50.695	$\frac{1.00}{1.00}$	46.52 38.58
1920 CB	ASP	253	119.991	59.305	37.632	1.00	46.23		1992 CO 1993 CD1	TYR	262	106.624	53.671	50.062	1.00	30.09
1921 CG	ASP	253	121.475	59.448	37.340	1.00	56.62	15	1994 CE1	TYR	262	106.295	53.636	48.711	1.00	29.27
1922 OD1 1923 OD2	ASP ASP	253 253	122.222 121.896	59.973 59.029	38.197 36.240	1.00 1.00	59.66 59.43		1995 CD2 1996 CE2	TYR TYR	262 262	106.944 106.614	56.039 56.015	49.936 48.581	1.00 1.00	34.60 37.08
1924 C	ASP	253	118.100	59.701	39.208	1.00	46.95		1997 CZ	TYR	262	106.290	54.809	47.974	1.00	32.64
1925 O	ASP	253	117.404	60.508	38.597	1.00	47.82		1998 OH	TYR	262	105.961	54.776	46.635	1.00	17.43
1926 N 1927 CA	LEU LEU	254 254	117.600 116.172	58.743 58.596	39.987 40.253	1.00 1.00	50.43 52.57		1999 C 2000 O	TYR TYR	262 262	109.398 109.356	53.534 52.522	51.956 52.658	1.00 1.00	52.07 51.95
1928 CB	LEU	254	115.777	57.116	40.236	1.00	51.09	20	2000 O 2001 N	ALA	263	109.957	53.565	50.748	1.00	48.22
1929 CG	LEU	254	116.036	56.357	38.930	1.00	52.73		2002 CA	ALA	263	110.545	52.386	50.120	1.00	49.01
1930 CD1 1931 CD2	LEU LEU	254 254	115.673 115.244	54.894 56.974	39.102 37.788	$\frac{1.00}{1.00}$	50.16 48.48		2003 CB 2004 C	ALA ALA	263 263	110.701 111.879	52.527 51.943	48.623 50.723	1.00 1.00	44.24 52.04
1932 C	LEU	254	115.867	59.205	41.619	1.00	50.66		2005 O	ALA	263	112.458	52.631	51.567	1.00	52.30
1933 O	LEU	254	114.780	59.735	41.848	1.00	48.89	25	2006 N	ARG	264	112.333	50.766	50.297	1.00	53.43
1934 N 1935 CA	ASP ASP	255 255	116.838 116.750	59.099 59.641	42.522 43.875	$\frac{1.00}{1.00}$	54.73 59.42	25	2007 CA 2008 CB	ARG ARG	264 264	113.592 113.499	50.196 48.670	50.752 50.889	$\frac{1.00}{1.00}$	48.17 40.34
1936 CB	ASP	255	116.930	61.167	43.829	1.00	63.16		2009 CG	ARG	264	112.624	48.166	52.030	1.00	43.53
1937 CG	ASP	255	117.232	61.774	45.193	1.00	70.47		2010 CD	ARG	264	112.450	46.639	51.998	1.00	35.92
1938 OD1 1939 OD2	ASP ASP	255 255	117.674 117.030	61.045 62.997	46.110 45.344	$\frac{1.00}{1.00}$	70.14 79.11		2011 NE 2012 CZ	ARG ARG	264 264	111.772 110.964	46.200 45.144	50.774 50.679	$\frac{1.00}{1.00}$	44.75 49.82
1940 C	ASP	255	115.476	59.260	44.640	1.00	56.10	30	2012 CZ 2013 NH1	ARG	264	110.714	44.385	51.738	1.00	51.07
1941 O	ASP	255	114.834	60.106	45.263	1.00	54.97		2014 NH2	ARG	264	110.385	44.857	49.518	1.00	37.04
1942 N 1943 CA	PHE PHE	256 256	115.127 113.946	57.977 57.486	44.602 45.308	$\frac{1.00}{1.00}$	55.78 55.28		2015 C 2016 O	ARG ARG	264 264	114.676 114.453	50.512 50.444	49.742 48.527	1.00 1.00	49.03 47.55
1944 CB	PHE	256	113.556	56.093	44.808	1.00	51.79		2010 O 2017 N	ASP	265	115.848	50.870	50.252	1.00	50.80
1945 CG	PHE	256	113.024	56.079	43.407	1.00	52.55		2018 CA	ASP	265	116.987	51.164	49.392	1.00	51.29
1946 CD1 1947 CD2	PHE PHE	256 256	113.356 112.186	55.051 57.091	42.537 42.955	$\frac{1.00}{1.00}$	55.14 58.21	35	2019 CB 2020 CG	ASP ASP	265 265	117.728 118.690	52.418 52.955	49.877 48.843	1.00 1.00	52.76 54.37
1948 CE1	PHE	256	112.160	55.028	41.236	1.00	57.90		2020 CG 2021 OD1	ASP	265	118.782	52.363	47.747	1.00	50.00
1949 CE2	PHE	256	111.687	57.077	41.656	1.00	60.53		2022 OD2	ASP	265	119.358	53.972	49.120	1.00	60.30
1950 CZ 1951 C	PHE PHE	256 256	112.026 114.199	56.042 57.438	40.796 46.812	1.00 1.00	57.76 60.70		2023 C 2024 O	ASP ASP	265 265	117.903 118.824	49.933 49.846	49.419 50.238	1.00 1.00	45.08 39.53
1952 O	PHE	256	113.292	57.162	47.596	1.00	62.84	40	2025 N	ARG	266	117.614	48.973	48.541	1.00	41.67
1953 N	VAL	257	115.442	57.704	47.203	1.00	64.41	40	2026 CA	ARG	266	118.377	47.732	48.482	1.00	37.99
1954 CA 1955 CB	VAL VAL	257 257	115.834 117.373	57.697 57.799	48.606 48.757	1.00 1.00	64.01 62.36		2027 CB 2028 CG	ARG ARG	266 266	117.528 116.957	48.574 46.771	48.983 50.372	1.00 1.00	38.78 29.99
1956 CG1	VAL	257	117.789	57.482	50.187	1.00	60.29		2029 CD	ARG	266	118.028	48.593	51.418	1.00	37.48
1957 CG2	VAL	257	118.068	56.864	47.774	1.00	58.27		2030 NE	ARG	266	117.503	46.781	52.764	1.00	38.27
1958 C 1959 O	VAL VAL	257 257	115.179 114.849	58.870 58.771	49.333 50.517	$\frac{1.00}{1.00}$	65.72 64.55	45	2031 CZ 2032 NH1	ARG ARG	266 266	117.416 117.822	47.958 49.066	53.376 52.763	$\frac{1.00}{1.00}$	45.66 38.28
1960 N	THR	258	114.977	59.971	48.609	1.00	66.40		2032 NH1 2033 NH2	ARG	266	116.920	48.027	54.603	1.00	42.90
1961 CA	THR	258	114.364	61.171	49.175	1.00	65.40		2034 C	ARG	266	118.826	47.429	47.034	1.00	33.86
1962 CB 1963 CG1	THR THR	258 258	115.200 115.282	62.437 62.633	48.870 47.453	$\frac{1.00}{1.00}$	65.98 65.25		2035 O 2036 N	ARG VAL	266 267	118.671 119.392	46.306 48.431	46.542 48.371	$\frac{1.00}{1.00}$	40.81 25.69
1964 CG2	THR	258	116.608	62.302	49.442	1.00	64.28		2037 CA	VAL	267	119.845	48.257	45.000	1.00	20.97
1965 C	THR	258	112.919	61.399	48.716	1.00	62.28	50	2038 CB	VAL	267	120.143	49.611	44.326	1.00	21.69
1966 O 1967 N	THR THR	258 259	112.066 112.649	61.769 61.182	49.524 47.428	$\frac{1.00}{1.00}$	62.30 58.00		2039 CG1 2040 CG2	VAL VAL	267 267	121.384 120.292	50.264 49.420	44.933 42.828	$\frac{1.00}{1.00}$	20.36 8.30
1968 CA	THR	259	111.303	61.372	46.879	1.00	53.45		2040 CG2 2041 C	VAL	267	121.058	47.333	44.913	1.00	27.40
1969 CB	THR	259	111.300	61.402	45.332	1.00	48.24		2042 O	VAL	267	121.231	46.616	43.926	1.00	36.12
1970 OG1 1971 CG2	THR THR	259 259	111.730 112.221	60.136 62.496	44.818 44.817	$\frac{1.00}{1.00}$	47.10 44.78		2043 N 2044 CA	VAL VAL	268 268	121.889 123.080	47.347 46.503	45.952 46.008	$\frac{1.00}{1.00}$	30.76 32.68
1971 CG2 1972 C	THR	259	110.320	60.303	47.358	1.00	54.85	55	2045 CB	VAL	268	123.998	46.904	47.190	1.00	35.53
1973 O	THR	259	109.147	60.593	47.593	1.00	58.40		2046 CG1	VAL	268	125.220	46.001	47.245	1.00	32.24
1974 N 1975 CA	LEU LEU	260 260	110.802 109.977	59.069 57.952	47.492 47.958	$\frac{1.00}{1.00}$	54.85 57.07		2047 CG2 2048 C	VAL VAL	268 268	124.420 122.623	48.355 45.058	47.058 46.196	1.00 1.00	33.69 29.06
1975 CA 1976 CB	LEU	260	109.977	56.907	46.845	1.00	54.53		2048 C 2049 O	VAL	268	123.119	44.144	45.533	1.00	25.58
1977 CG	LEU	260	109.191	57.346	45.511	1.00	54.02	60	2050 N	GLU	269	121.662	44.878	47.100	1.00	24.94
1978 CD1 1979 CD2	LEU LEU	260 260	109.216 107.765	56.192 57.838	44.523 45.715	$\frac{1.00}{1.00}$	47.30 53.62		2051 CA 2052 CB	GLU GLU	269 269	121.087 120.083	43.573 43.692	47.406 48.558	1.00 1.00	22.59 16.86
1979 CD2 1980 C	LEU	260	110.655	57.326	49.183	1.00	59.06		2052 CB 2053 CG	GLU	269	120.083	43.939	49.942	1.00	22.84
1981 O	LEU	260	111.135	56.190	49.132	1.00	61.18		2054 CD	GLU	269	121.136	45.385	50.200	1.00	25.18
1982 N 1983 CD	PRO PRO	261 261	110.672 110.004	58.057 59.362	50.314 50.474	1.00 1.00	59.80 57.03		2055 OE1 2056 OE2	GLU GLU	269 269	121.417 121.194	45.713 46.198	51.374 49.255	1.00 1.00	24.26 23.69
1983 CD 1984 CA	PRO	261	111.281	57.634	51.582	1.00	60.02	65	2056 OE2 2057 C	GLU	269	120.404	43.001	46.167	1.00	23.69
1985 CB	PRO	261	111.144	58.883	52.452	1.00	59.64		2058 O	GLU	269	120.423	41.789	45.941	1.00	22.99

TABLE 10-continued

2059 N	ase
2060 CA	B- factor
2061 CB CYS 270 118.305 44.637 43.577 1.00 14.26 10 2134 CZ TYR 278 120.371 37.012 33.800 1.00 2.006 C CYS 270 120.191 43.065 43.117 1.00 19.83 2136 C TYR 278 125.253 35.423 36.790 1.00 2.006 CO TYR 271 121.382 43.648 43.220 1.00 25.82 21.38 N PHE 279 126.654 43.830 36.756 1.00 2.006 CO TYR 271 122.464 43.290 42.315 1.00 12.56 1.00 12.50 1.00 1	10.48
2062 CYS 270 16.923 45.097 44.637 1.00 24.62 21.35 CH TYR 278 19.341 37.820 33.432 1.00 2.006 CA CYS 270 119.922 42.239 42.245 1.00 25.94 21.37 C TYR 278 125.024 36.609 37.052 1.00 2.006 CA TYR 271 12.362 43.268 43.200 1.00 2.531 21.30 CA FHE 279 127.665 36.662 36.998 1.00 2.006 CA TYR 271 123.616 43.290 42.315 1.00 22.31 21.30 CA FHE 279 127.665 36.662 36.998 1.00 2.006 CA TYR 271 124.715 43.715 43.715 1.00 22.31 21.30 CA FHE 279 127.665 36.662 36.998 1.00 2.006 CA TYR 271 124.715 43.715 43.715 1.00 22.31 21.30 CA FHE 279 127.665 36.662 36.998 1.00 2.006 CD TYR 271 124.715 43.715 31.00 12.75 2.007 CC1 TYR 271 124.512 43.715 43.105 1.00 2.231 2.140 CB FHE 279 127.653 43.630 43.720 1.00 2.007 CD TYR 271 125.534 43.705 39.135 1.00 12.75 2.007 CC2 TYR 271 125.767 42.709 40.946 1.00 6.39 2.007 CC2 TYR 271 127.752 42.467 38.702 1.00 2.007 CD TYR 271 127.973 41.00 42.092 1.00 2.007 CD TYR 271 123.318 41.00 41.802 1.00 2.007 2.144 CE1 PHE 279 123.403 40.316 40.00 40.00 6.94 2.145 CC2 PHE 279 123.003 41.603 43.997 1.00 17.87 2.145 CC2 PHE 279 123.003 41.603 43.907 1.00 2.292 2.147 CM FME 2.008 2.008 CM PHE 272 123.403 40.333 1.00 2.008 CM PHE 272 123.403 40.333 1.00 2.009 CM PHE 272 123.403 40.303 1.000 2.009 CM PHE 272 123.403 40.333 40.000 1.000 4.000	15.32 20.32
2066 CA TYR 271 121.882 43.648 43.220 42.345 1.00 25.94	16.49
2066 CA TYR 271 121.882 43.648 43.220 1.00 25.82 21.88 N PHE 279 126.454 34.883 36.756 1.00 2.2066 CA TYR 271 123.616 44.296 42.366 1.00 15.29 1.5 21.40 CB PHE 279 126.454 35.036 38.140 1.00 1.20 1.00 2.006 CD1 TYR 271 124.572 44.174 40.043 1.00 9.23 21.42 CD1 PHE 279 126.847 35.003 33.694 37.800 1.00 2.20 2	22.42
2066 CA TYR 271 124.64 43.290 42.315 1.00 22.31 21.906 27.906	24.68 20.65
2008 CG	24.23
2006 CDI TYR 271 124.592 44.174 40.043 1.00 9.23 2.142 CDI PHE 279 130.278 33.600 37.124 1.00 2.2 2.070 CEI TYR 271 125.534 43.705 39.135 1.00 6.59 2.144 CEI PHE 279 128.387 32.523 38.120 1.00 2.2 2.073 CC TYR 271 126.676 42.709 40.946 1.00 6.59 2.144 CEI PHE 279 128.906 31.283 36.770 1.00 2.2 2.073 CC TYR 271 126.755 42.407 38.702 1.00 9.47 2.004 OH TYR 271 126.755 42.407 38.702 1.00 9.47 2.007 CC TYR 271 122.318 41.04 41.820 1.00 22.92 2.076 O TYR 271 123.318 41.04 41.820 1.00 22.92 2.149 N GLU 280 128.404 34.893 34.811 0.00 2.2 2.078 CA PHE 272 123.481 40.329 46.033 1.00 20.14 2.070 2.076 CB PHE 272 123.481 40.329 46.033 1.00 20.14 2.081 2.080 CG PHE 272 123.481 40.329 46.033 1.00 20.70 2.154 CEI GLU 280 129.004 32.392 33.056 1.00 2.080 CG PHE 272 124.99 38.409 46.631 1.00 2.070 2.154 CEI GLU 280 129.004 32.392 33.056 1.00 2.080 CG PHE 272 124.998 38.409 46.631 1.00 2.070 2.154 CEI GLU 280 129.004 32.392 33.056 1.00 2.080 CG PHE 272 124.998 38.409 46.631 1.00 2.070 2.154 CEI GLU 280 129.004 32.392 33.056 1.00 2.080 CG PHE 272 122.499 38.409 47.690 1.00 17.71 2.157 O GLU 280 128.169 36.294 32.388 30.00 3.080 CG PHE 272 122.499 38.409 46.631 1.00 2.070 2.154 CEI GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.004 32.392 33.056 1.00 2.005 2.155 CE2 GLU 280 129.0	19.97
2070 CE1 TYR 271 125.534 43.705 39.135 1.00 12.75 2145 CD2 PHE 279 128.387 32.523 38.120 1.00 2.2072 CD2 TYR 271 125.676 42.709 40.946 1.00 6.94 2145 CE2 PHE 279 128.906 31.283 36.770 1.00 2.2073 CZ TYR 271 125.615 42.970 39.594 1.00 11.07 20.075 C TYR 271 122.973 41.904 42.692 1.00 9.47 20.075 C TYR 271 122.973 41.904 42.692 1.00 23.07 2148 C PHE 279 128.906 31.283 37.770 1.00 2.2076 C TYR 271 122.973 41.904 42.692 1.00 23.07 2148 C PHE 279 128.906 35.727 1.00 2.2077 N PHE 272 123.318 41.104 41.820 1.00 17.89 21.50 C A GIU 280 128.404 34.893 34.811 1.00 2.2078 CA PHE 272 123.481 40.329 46.033 1.00 20.14 20.80 CD2 PHE 272 123.481 40.329 46.033 1.00 20.14 20.80 CD2 PHE 272 123.481 40.329 46.033 1.00 20.70 21.55 CE2 GIU 280 127.873 31.806 33.899 1.00 4.2082 CD2 PHE 272 123.529 38.232 47.160 1.00 15.25 21.55 CE2 GIU 280 127.873 31.806 33.899 1.00 4.2082 CD2 PHE 272 125.249 38.230 47.699 1.00 15.25 21.55 CE2 GIU 280 129.195 36.276 32.928 1.00 2.2080 CG PHE 272 125.249 38.200 43.550 1.00 12.72 21.85 CP PHE 272 125.249 38.200 43.550 1.00 20.50 21.55 CE2 GIU 280 128.169 30.552 32.988 1.00 2.2080 CG PHE 273 11.831 39.335 43.724 1.00 20.50 21.55 CE2 GIU 280 128.169 30.552 32.988 1.00 2.2093 CE2 PHE 273 11.633 37.193 47.550 1.00 20.50 21.55 CE2 GIU 280 128.169 30.552 32.988 1.00 2.2090 CD2 TRP 273 11.633 37.193 47.550 1.00 20.50 21.55 CE2 GIU 280 128.169 30.552 32.988 1.00 2.2090 CD2 TRP 273 11.633 37.193 47.550 1.00 20.50 21.55 CE2 GIU 280 128.143 33.343 30.522 1.00 32.000 CD TRP 273 11.633 37.193 47.550 1.00 22.50 21.55 CE2 GIU 280 128.143	27.50 27.56
2072 CE2 TYR 271 126.767 42.709 40.946 1.00 6.94 2145 CE2 PHE 279 128.906 31.283 37.770 1.00 2 2 2 2 2 2 2 2 2	26.31
2073 CZ TYR 271 126.615 42.970 39.594 1.00 11.07 20 2146 CZ PHE 279 130.116 31.202 37.093 1.00 2 2075 C TYR 271 122.5273 41.904 41.820 1.00 23.07 2148 O PHE 279 129.420 36.681 35.727 1.00 2 2076 O TYR 271 123.318 41.104 41.820 1.00 22.92 2148 O PHE 279 129.420 36.681 35.727 1.00 2 2 2 2 2 2 2 2 2	27.48 27.51
2075 C TYR 271 122,973 41,904 42,692 1.00 23,07 2148 O PHE 279 129,420 36,681 35,727 1.00 2 2076 O TYR 271 123,318 41,104 41,820 1.00 22,92 2149 N GLU 280 128,404 34,893 34,811 1.00 2 2077 N PHE 272 123,484 40,344 44,500 1.00 17,87 2151 CB GLU 280 129,217 34,909 33,599 1.00 2 2078 CA PHE 272 123,484 40,344 44,500 1.00 17,87 2151 CB GLU 280 129,217 34,909 33,599 1.00 2 2080 CG PHE 272 123,484 40,344 44,500 1.00 17,87 2151 CB GLU 280 129,77 34,909 33,599 1.00 2 2080 CG PHE 272 123,484 40,344 44,500 1.00 18,24 25 2153 CB GLU 280 129,75 34,832 32,608 1.00 3 2080 CG PHE 272 124,998 38,409 46,631 1.00 20,70 2154 CB1 GLU 280 127,807 31,806 33,899 1.00 4 2082 CD2 PHE 272 122,669 38,232 47,160 1.00 19,50 2155 CE2 GLU 280 127,909 30,581 34,149 1.00 4 2082 CD2 PHE 272 122,881 36,961 47,690 1.00 19,50 2155 CE2 GLU 280 129,195 36,276 32,928 1.00 2 2085 CZ PHE 272 122,881 36,961 47,690 1.00 15,25 2156 C GLU 280 129,195 36,276 32,928 1.00 2 2085 CZ PHE 272 122,840 39,273 43,972 1.00 20,61 30 2159 CD PRO 281 130,511 37,988 31,697 1.00 3 2086 C PHE 272 122,974 38,200 43,550 1.00 26,50 2160 CA PRO 281 130,511 37,988 31,697 1.00 3 2089 CA TRP 273 12,248 39,594 43,982 1.00 24,31 2161 CB PRO 281 130,511 37,988 31,697 1.00 3 2090 CB TRP 273 118,831 39,335 43,724 1.00 22,07 2163 C PRO 281 129,561 38,213 30,522 1.00 2 2092 CD2 TRP 273 117,890 38,789 46,851 1.00 16,10 18,77 2166 CA GLN 282 128,153 37,194 38,205 45,661 1.00 18,77 2166 CA GLN 282 128,153 37,194 38,205 45,661 1.00 18,77 2166 CA GLN 282 128,153 37,194 28,722 1.00 2 2090 CG TRP 273 116,250 36,794 44,442 1.00 15,33 2166 CD GLN 282 128,53 3,301 28,264 1.00 4 2090 CH2 TRP 273 116,428 37,339 48,088 1.00 25,09 2166 CG GLN 282 128,543 33,012 22,986 1.00 2 2090 CG TRP 273 116,428 37,339 48,088 1.00 25,09 2166 CG GLN 282 128,543 33,012 22,00 2 2000 C TRP 273 116,428 37,339 48,088 1.00 25,09 2171 NE2 GLN 282 126,661 38,071 28,294 1.00 2 2090 CG TRP 273 116,428 37,339 48,088 1.00 25,09 2171 NE2 GLN 282 126,661 38,071 28,294 1.00 2 2000 C TRP 273 116,428 37,339 48,088 1.00 25,09 2171	26.58
2076 O TYR 271 123.318 41.104 41.820 1.00 22.92 2149 N GLU 280 128.404 34.893 34.811 1.00 22.078 N PHE 272 123.037 41.639 43.997 1.00 17.89 2150 CG GLU 280 128.759 33.832 32.608 1.00 23.079 CB PHE 272 123.481 40.329 46.033 1.00 20.14 2151 CB GLU 280 128.759 33.832 32.608 1.00 23.079 CB PHE 272 123.722 38.967 46.625 1.00 18.24 25 2153 CD GLU 280 127.873 31.806 33.899 1.00 42.081 CD1 PHE 272 124.998 38.409 46.631 1.00 20.70 2154 CE1 GLU 280 127.873 31.806 33.899 1.00 42.081 CD1 PHE 272 122.669 38.232 47.160 1.00 19.50 2155 CE2 GLU 280 127.909 30.581 34.149 1.00 42.082 CD2 PHE 272 122.69 38.232 47.160 1.00 15.25 2156 C GLU 280 126.949 32.549 34.307 1.00 32.088 CE PHE 272 122.881 36.961 47.690 1.00 17.71 2157 O GLU 280 129.195 36.276 32.928 1.00 22.085 CZ PHE 272 122.540 39.273 43.972 1.00 26.50 2160 CA PRO 281 130.341 37.988 31.697 1.00 32.088 N TRP 273 118.831 39.335 41.724 1.00 22.07 2162 CG PRO 281 130.511 37.988 31.697 1.00 32.089 CA TRP 273 118.831 39.335 44.280 1.00 22.07 2162 CG PRO 281 130.511 37.988 31.697 1.00 32.089 CB TRP 273 117.499 38.205 45.661 1.00 17.16 35.00 21.60 CA PRO 281 132.274 36.479 31.137 1.00 32.095 CD1 TRP 273 116.513 37.193 47.576 1.00 18.77 2166 CA GLN 282 127.613 35.512 28.647 1.00 22.90 CD2 TRP 273 116.428 37.339 48.088 1.00 22.90 2166 CG GLN 282 127.630 34.717 28.912 1.00 24.00	22.60
2077 N PHE 272 123.037 41.639 43.997 1.00 17.89 2150 CA GLU 280 129.217 34.909 33.832 32.608 1.00 2.009 2.009 CB PHE 272 123.481 40.324 44.500 1.00 17.87 2151 CB GLU 280 128.759 33.832 32.608 1.00 2.009 2.009 CB PHE 272 123.722 38.967 46.625 1.00 18.24 25 2153 CD GLU 280 129.704 32.392 33.832 33.056 1.00 2.009 2.009 CB PHE 272 124.998 38.409 46.631 1.00 20.70 2154 CE1 GLU 280 127.873 31.806 33.899 1.00 4.009 2.009 CB PHE 272 122.540 38.232 47.160 1.00 19.50 2155 CE2 GLU 280 127.873 31.806 33.899 1.00 2.009 2.009 CB PHE 272 122.540 39.273 43.972 1.00 15.25 2156 C GLU 280 129.109 36.256 32.928 1.00 2.009 2.009 CB TRP 273 118.831 39.335 43.524 43.982 1.00 22.07 2162 CG PRO 281 131.976 37.949 31.246 1.00 3.009 CB TRP 273 117.499 38.205 45.561 1.00 17.16 2.009 CD2 TRP 273 117.499 38.709 44.442 1.00 17.16 2.009 CD2 TRP 273 117.499 38.709 44.442 1.00 17.16 2.009 CD2 TRP 273 117.499 38.799 44.980 1.00 22.07 2168 CG GLN 282 128.151 35.832 28.028 1.00 2.009 CD2 TRP 273 117.499 38.799 44.980 1.00 22.07 2166 CA GLN 282 128.151 37.194 38.205 45.661 1.00 17.16 2167 CB GLN 282 128.153 30.522 1.00 2.009 CD2 TRP 273 117.499 38.799 44.980 1.00 22.07 2168 CG GLN 282 128.153 30.522 1.00 2.009 CD2 TRP 273 117.490 38.799 44.942 1.00 15.33 2169 CD GLN 282 128.153 37.194 28.722 1.00 2.009 CD2 TRP 273 116.250 36.794 44.442 1.00 15.33 2169 CD GLN 282 128.543 33.101 27.285 1.00 4.009 CD2 TRP 273 117.490 38.799 48.088 1.00 25.09 2170 CD TRP 273 117.490 38.799 48.088 1.00 25.09 2170 CD TRP 273 117.490 38.799 48.088 1.00 25.09 2170 CD GLN 282 126.656	29.14 26.53
2079 CB PHE 272 123.481 40.329 46.033 1.00 20.14 25 2152 CG GLU 280 129.004 32.392 33.056 1.00 2 2 2 2 2 2 123.722 38.967 46.625 1.00 18.24 25 2153 CD GLU 280 127.873 31.806 33.899 1.00 4 2 2 2 2 2 2 124.998 38.409 46.631 1.00 20.70 2154 CE1 GLU 280 127.873 31.806 33.899 1.00 4 2 2 2 2 2 2 2 2 124.998 38.409 46.631 1.00 20.70 2155 CE2 GLU 280 127.909 30.581 34.149 1.00 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.23
2080 CG	31.74
2081 CD1 PHE 272 124.998 38.409 46.631 1.00 20.70 21.54 CE1 GLU 280 127.909 30.581 34.149 1.00 4.0082 CD2 PHE 272 122.669 38.232 47.160 1.00 19.50 21.55 CE2 GLU 280 126.949 32.549 34.307 1.00 3.0083 CE2 PHE 272 122.881 36.961 47.690 1.00 17.71 21.57 O GLU 280 129.195 36.276 32.928 1.00 2.0085 CZ PHE 272 122.881 36.961 47.690 1.00 17.71 21.57 O GLU 280 128.169 36.958 32.918 1.00 2.0086 C PHE 272 122.540 39.273 43.972 1.00 20.61 30 21.59 CD PRO 281 130.346 36.702 32.382 1.00 3.0088 N TRP 273 121.248 39.594 43.982 1.00 24.31 2161 CB PRO 281 131.607 37.949 31.467 1.00 3.0089 CA TRP 273 120.203 38.695 43.506 1.00 22.07 2163 C PRO 281 132.274 36.479 31.137 1.00 3.0090 CB TRP 273 117.893 38.395 44.280 1.00 22.07 2163 C PRO 281 129.561 38.213 30.522 1.00 2.093 CE2 TRP 273 116.513 37.193 45.726 1.00 17.16 35 2165 N GLN 282 128.154 35.832 28.028 1.00 3.0095 2094 CE3 TRP 273 116.513 37.193 45.726 1.00 15.33 2166 CA GLN 282 128.174 35.832 28.028 1.00 3.0095 2096 CPI TRP 273 116.250 36.794 44.442 1.00 15.33 2166 CA GLN 282 128.174 33.351 28.264 1.00 4.0095 2096 CPI TRP 273 116.428 37.339 48.088 1.00 25.09 2168 CG GLN 282 128.543 32.523 37.942 28.024 1.00 4.0095 2172 C GLN 282 126.848 33.101 27.285 1.00 2.0095 2100 C TRP 273 116.428 37.339 48.088 1.00 25.09 2172 C GLN 282 126.848 33.101 27.285 1.00 2.0095 2100 C TRP 273 120.291 37.239 41.965 1.00 26.32 2173 O GLN 282 126.851 37.640 29.133 1.00 2.0095 2100 C TRP 273 120.291 37.239 41.965 1.00 26.32 2174 N TYR 283 125.554 37.910 30.972 1.00 2.0095 2.000 C TRP 273 120.291 37.239 41.965 1.0	26.55 40.41
2083 CE1 PHE 272 125.219 37.139 47.159 1.00 15.25 2156 C GLU 280 129.195 36.276 32.928 1.00 2 2084 CE2 PHE 272 122.881 36.961 47.690 1.00 17.71 2157 O GLU 280 129.195 36.276 32.928 1.00 2 2085 CZ PHE 272 124.159 36.414 47.689 1.00 22.61 30 2159 CD PRO 281 130.346 36.702 32.382 1.00 2 2087 O PHE 272 122.974 38.200 43.550 1.00 26.50 2160 CA PRO 281 131.607 35.949 31.246 1.00 2 2088 N TRP 273 121.248 39.594 43.982 1.00 20.50 2160 CA PRO 281 131.976 37.949 31.246 1.00 2 20.11 2161 CB PRO 281 132.974 </td <td>41.01</td>	41.01
2084 CE2 PHE 272 122.881 36.961 47.690 1.00 17.71 2157 O GLU 280 128.169 36.958 32.918 1.00 2 2085 CZ PHE 272 124.159 36.414 47.689 1.00 12.72 2158 N PRO 281 130.346 36.702 32.382 1.00 3 2087 O PHE 272 122.974 38.200 43.550 1.00 26.50 2160 CA PRO 281 130.511 37.988 31.697 1.00 3 2088 N TRP 273 121.248 39.594 43.982 1.00 24.31 2161 CB PRO 281 130.511 37.949 31.246 1.00 3 2089 CA TRP 273 118.831 39.354 43.724 1.00 22.07 2163 C PRO 281 131.976 37.949 31.137 1.00 3 2091 CB TRP 273 117.820 38.395 <td>31.27 28.72</td>	31.27 28.72
2086 C PHE 272 122.540 39.273 43.972 1.00 20.61 30 2159 CD PRO 281 131.607 35.942 32.368 1.00 2 2087 O PHE 272 122.974 38.200 43.550 1.00 26.50 2160 CA PRO 281 130.511 37.988 31.697 1.00 3 2088 N TRP 273 121.248 39.594 43.982 1.00 24.31 2161 CB PRO 281 131.976 37.949 31.246 1.00 3 2089 CA TRP 273 120.203 38.695 43.506 1.00 20.50 2162 CG PRO 281 132.274 36.479 31.137 1.00 2 2091 CG TRP 273 117.820 38.395 44.280 1.00 22.11 2164 O PRO 281 129.196 39.352 30.226 1.00 2 2092 CD2 TRP 273 117.949 38.278	21.31
2087 O PHE 272 122.974 38.200 43.550 1.00 26.50 2160 CA PRO 281 130.511 37.988 31.697 1.00 3 2088 N TRP 273 121.248 39.594 43.982 1.00 24.31 2161 CB PRO 281 131.976 37.949 31.246 1.00 3 2089 CA TRP 273 120.203 38.695 43.506 1.00 20.50 2162 CG PRO 281 132.274 36.479 31.137 1.00 3 2091 CG TRP 273 117.820 38.395 44.280 1.00 22.11 2163 C PRO 281 129.561 38.213 30.522 1.00 2 2091 CG TRP 273 117.499 38.205 45.661 1.00 17.16 35 2165 N GLN 282 129.161 37.126 29.866 1.00 2 2093 CE2 TRP 273 117.499	31.20
2088 N TRP 273 121.248 39.594 43.982 1.00 24.31 2161 CB PRO 281 131.976 37.949 31.246 1.00 3 2089 CA TRP 273 120.203 38.695 43.506 1.00 20.50 2162 CG PRO 281 132.274 36.479 31.137 1.00 3 2090 CB TRP 273 117.820 38.395 44.280 1.00 22.07 2163 C PRO 281 129.561 38.213 30.522 1.00 2 2092 CD2 TRP 273 117.499 38.205 45.661 1.00 17.16 35 2164 O PRO 281 129.196 39.352 30.226 1.00 2 2092 CD2 TRP 273 116.513 37.193 45.726 1.00 18.77 2166 CA GLN 282 129.161 37.126 29.866 1.00 2 2094 CE3 TRP 273 117.036 37.522 43.580	29.80 31.18
2090 CB TRP 273 118.831 39.335 43.724 1.00 22.07 2163 C PRO 281 129.561 38.213 30.522 1.00 2 2091 CG TRP 273 117.820 38.395 44.280 1.00 22.11 2164 O PRO 281 129.196 39.352 30.226 1.00 2 2092 CD2 TRP 273 117.499 38.205 45.661 1.00 17.16 35 2165 N GLN 282 129.161 37.126 29.866 1.00 2 2093 CE2 TRP 273 117.949 38.789 46.851 1.00 16.10 2166 CA GLN 282 128.174 35.832 28.028 1.00 2 2095 OD1 TRP 273 116.250 36.794 44.442 1.00 15.33 2169 CD GLN 282 127.714 33.351 28.264 1.00 4 2097 CZ2 TRP 273 117.408 <td>36.16</td>	36.16
2091 CG TRP 273 117.820 38.395 44.280 1.00 22.11 2164 O PRO 281 129.196 39.352 30.226 1.00 2 2092 CD2 TRP 273 117.499 38.205 45.661 1.00 17.16 35 2165 N GLN 282 129.161 37.126 29.866 1.00 2 2093 CE2 TRP 273 116.513 37.193 45.726 1.00 18.77 2166 CA GLN 282 129.161 37.126 29.866 1.00 2 2094 CE3 TRP 273 117.949 38.789 46.851 1.00 16.10 2166 CA GLN 282 128.174 35.832 28.028 1.00 2 2095 OD1 TRP 273 116.250 36.794 44.442 1.00 15.33 2169 CD GLN 282 127.714 33.351 28.264 1.00 4 2095 CZ3 TRP 273 117.408<	35.87
2092 CD2 TRP 273 117.499 38.205 45.661 1.00 17.16 35 2165 N GLN 282 129.161 37.126 29.866 1.00 2 2093 CE2 TRP 273 116.513 37.193 45.726 1.00 18.77 2166 CA GLN 282 129.161 37.126 29.866 1.00 2 2094 CE3 TRP 273 117.949 38.789 46.851 1.00 16.10 2167 CB GLN 282 128.174 35.832 28.028 1.00 2 2095 OD1 TRP 273 117.036 37.522 43.580 1.00 12.90 2168 CG GLN 282 127.630 34.717 28.912 1.00 4 2096 NE1 TRP 273 116.250 36.750 46.938 1.00 8.52 2170 OE1 GLN 282 127.714 33.351 28.264 1.00 4 2098 CZ3 TRP 273 116.42	29.70 29.95
2094 CE3 TRP 273 117.949 38.789 46.851 1.00 16.10 2167 CB GLN 282 128.174 35.832 28.028 1.00 3 2095 OD1 TRP 273 117.036 37.522 43.580 1.00 22.90 2168 CG GLN 282 128.174 35.832 28.028 1.00 3 2096 NE1 TRP 273 115.250 36.794 44.442 1.00 15.33 2169 CD GLN 282 127.714 33.351 28.264 1.00 4 2097 CZ2 TRP 273 115.969 36.750 46.938 1.00 8.52 2170 OE1 GLN 282 128.543 32.523 28.647 1.00 5 2098 CZ3 TRP 273 116.428 37.339 48.088 1.00 25.09 2171 NE2 GLN 282 126.848 33.101 27.285 1.00 4 2100 C TRP 273 120.401 3	27.63
2095 OD1 TRP 273 117.036 37.522 43.580 1.00 22.90 2168 CG GLN 282 127.630 34.717 28.912 1.00 4 2096 NE1 TRP 273 116.250 36.794 44.442 1.00 15.33 2169 CD GLN 282 127.714 33.351 28.264 1.00 4 2097 CZ2 TRP 273 115.969 36.750 46.938 1.00 8.52 2170 OE1 GLN 282 128.543 32.523 28.647 1.00 5 2098 CZ3 TRP 273 117.408 38.351 48.057 1.00 19.38 40 2171 NE2 GLN 282 128.543 33.101 27.285 1.00 4 2999 CH2 TRP 273 116.428 37.339 48.088 1.00 25.09 2172 C GLN 282 126.848 33.101 27.285 1.00 2 2100 C TRP 273 120.401 38.389 42.024 1.00 19.25 2173 O GLN 282 <td< td=""><td>28.39 34.10</td></td<>	28.39 34.10
2096 NE1 TRP 273 116.250 36.794 44.442 1.00 15.33 2169 CD GLN 282 127.714 33.351 28.264 1.00 4 2097 CZ2 TRP 273 115.969 36.750 46.938 1.00 8.52 2170 OE1 GLN 282 127.714 33.351 28.264 1.00 4 2098 CZ3 TRP 273 117.408 38.351 48.057 1.00 19.38 40 2171 NE2 GLN 282 126.848 33.101 27.285 1.00 4 2090 CH2 TRP 273 120.401 38.389 42.024 1.00 19.25 2173 O GLN 282 126.848 33.101 27.285 1.00 4 2101 O TRP 273 120.291 37.239 41.596 1.00 26.32 2174 N TYR 283 126.553 37.521 30.425 1.00 2 2102 N ALA 274 120.705 39.424 41.247 1.00 15.42 2175 CA TYR 283 125.254 37.910 </td <td>45.80</td>	45.80
2098 CZ3 TRP 273 117.408 38.351 48.057 1.00 19.38 40 2171 NE2 GLN 282 126.848 33.101 27.285 1.00 4 2099 CH2 TRP 273 116.428 37.339 48.088 1.00 25.09 2172 C GLN 282 126.851 37.640 29.133 1.00 2 2100 C TRP 273 120.401 38.389 42.024 1.00 19.25 2173 O GLN 282 126.851 37.640 29.133 1.00 2 2101 O TRP 273 120.291 37.239 41.596 1.00 26.32 2174 N TYR 283 126.051 38.071 27.285 1.00 2 2102 N ALA 274 120.705 39.424 41.247 1.00 15.42 2175 CA TYR 283 126.051 37.910 30.972 1.00 2	47.83
2099 CH2 TRP 273 116.428 37.339 48.088 1.00 25.09 40 2172 C GLN 282 126.851 37.640 29.133 1.00 2 2100 C TRP 273 120.401 38.389 42.024 1.00 19.25 2173 O GLN 282 126.061 38.071 28.294 1.00 3 2101 O TRP 273 120.291 37.239 41.596 1.00 26.32 2174 N TYR 283 126.553 37.521 30.425 1.00 2 2102 N ALA 274 120.705 39.424 41.247 1.00 15.42 2175 CA TYR 283 125.254 37.910 30.972 1.00 2	54.06 41.38
2101 O TRP 273 120.291 37.239 41.596 1.00 26.32 2174 N TYR 283 126.553 37.521 30.425 1.00 2 2102 N ALA 274 120.705 39.424 41.247 1.00 15.42 2175 CA TYR 283 125.254 37.910 30.972 1.00 2	25.75
2102 N ALA 274 120.705 39.424 41.247 1.00 15.42 2175 CA TYR 283 125.254 37.910 30.972 1.00 2	34.41
	26.54 26.30
	19.61
	13.47 13.33
	15.49
	18.67
	23.42 14.24
	22.41
	29.24
	27.80 29.09
2114 O LEU 275 125.130 35.731 40.206 1.00 17.59 2187 CA SER 284 126.438 41.401 31.673 1.00 2	24.35
	29.60 29.67
	23.95
2118 O GLY 276 122.574 32.885 40.641 1.00 21.39 2191 O SER 284 124.647 42.882 32.396 1.00 1	16.24
	29.77 36.37
2121 CB VAL 277 119.950 35.238 38.201 1.00 4.45 2194 CB GLN 285 123.313 43.138 28.339 1.00 3	36.36
	42.33 47.38
	47.38
2125 O VAL 277 121.872 32.807 37.042 1.00 17.27 2198 NE2 GLN 285 121.321 44.981 25.832 1.00 4	47.01
	40.35 46.67
2128 CB TYR 278 123.644 34.476 35.067 1.00 14.31 2201 N ALA 286 122.242 41.312 30.686 1.00 3	38.34
	27.14 34.43
	24.71

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
2205 O	ALA	286	119.996	41.319	33.346	1.00	32.18		2278 CA	MET	296	111.843	48.816	40.685	1.00	33.20
2206 N	ARG	287	122.203	40.891	33.526	$\frac{1.00}{1.00}$	17.67	10	2279 CB	MET	296 296	111.659 110.820	48.829	39.165 38.637	1.00	33.02
2207 CA 2208 CB	ARG ARG	287 287	122.261 123.680	41.212 41.046	34.951 35.504	1.00	17.77 14.04	10	2280 CG 2281 SD	MET MET	296	111.653	49.978 51.571	38.807	1.00 1.00	34.84 40.22
2209 CG	ARG	287	124.013	39.659	36.008	1.00	21.57		2282 CE	MET	296	110.937	52.162	40.336	1.00	31.58
2210 CD	ARG ARG	287 287	125.294	39.673 40.078	36.828 36.033	$\frac{1.00}{1.00}$	20.38 14.48		2283 C	MET MET	296 296	110.617	48.181 48.871	41.343 41.997	1.00 1.00	36.25 35.27
2211 NE 2212 CZ	ARG	287	126.451 127.080	39.293	35.162	1.00	22.09		2284 O 2285 N	ILE	290 297	109.831 110.462	46.867	41.172	1.00	36.41
2213 NH1	ARG	287	126.670	38.049	34.959	1.00	17.96	15	2286 CA	ILE	297	109.327	46.145	41.743	1.00	31.22
2214 NH2 2215 C	ARG ARG	287 287	128.132 121.802	39.749 42.642	34.497 35.207	1.00 1.00	25.61 24.30		2287 CB 2288 CG2	ILE ILE	297 297	109.240 110.401	44.681 43.850	41.222 41.748	1.00 1.00	30.61 32.13
2216 O	ARG	287	120.942	42.877	36.046	1.00	22.53		2289 CG1	ILE	297	107.915	44.039	41.647	1.00	25.21
2217 N	VAL	288	122.358	43.583	34.449	1.00	32.79		2290 CD1	ILE	297	106.681	44.725	41.088	1.00	9.77
2218 CA 2219 CB	VAL	288 288	122.031	45.001	34.586 33.543	1.00 1.00	35.93		2291 C	ILE ILE	297 297	109.362 108.333	46.151 45.964	43.266 43.914	1.00 1.00	28.01
2220 CG1	VAL VAL	288	122.800 122.484	45.853 47.329	33.718	1.00	42.80 45.42	20	2292 O 2293 N	SER	298	110.544	46.369	43.834	1.00	33.37 26.49
2221 CG2	VAL	288	124.294	45.622	33.682	1.00	39.26		2294 CA	SER	298	110.682	46.410	45.284	1.00	31.31
2222 C	VAL	288	120.525 119.927	45.246 45.888	34.470 35.339	1.00	30.79		2295 CB	SER	298 298	112.152	46.511	45.692	1.00	36.65
2223 O 2224 N	VAL MET	288 289	119.927	43.888	33.422	$\frac{1.00}{1.00}$	27.62 25.59		2296 OG 2297 C	SER SER	298 298	112.281 109.921	46.533 47.616	47.106 45.810	$\frac{1.00}{1.00}$	34.52 31.13
2225 CA	MET	289	118.473	44.837	33.202	1.00	20.40		2298 O	SER	298	109.331	47.567	46.888	1.00	32.44
2226 CB	MET	289	118.055	44.123	31.908	1.00	11.02	25	2299 N	ILE	299	109.932	48.693	45.029	1.00	31.80
2227 CG 2228 SD	MET MET	289 289	118.675 118.236	44.684 43.769	30.646 29.151	$\frac{1.00}{1.00}$	17.69 29.61		2300 CA 2301 CB	ILE ILE	299 299	109.239 109.648	49.023 51.086	45.390 44.462	$\frac{1.00}{1.00}$	37.55 44.76
2229 CE	MET	289	117.076	44.873	28.424	1.00	23.00		2302 CG2	ILE	299	108.809	52.326	44.753	1.00	45.64
2230 C	MET	289	117.692	44.240	34.383	1.00	20.89		2303 CG1	ILE	299	111.135	51.390	44.645	1.00	46.63
2231 O 2232 N	MET LEU	289 290	116.762 118.104	44.861 43.063	34.901 34.825	$\frac{1.00}{1.00}$	25.06 20.72	30	2304 CD1 2305 C	LE ILE	299 299	111.656 107.735	52.438 49.710	43.707 45.315	1.00 1.00	51.58 31.48
2232 IN 2233 CA	LEU	290	117.448	42.379	35.935	1.00	15.74	30	2306 O	ILE	299	107.733	50.072	46.238	1.00	32.42
2234 CB	LEU	290	118.020	40.969	36.078	1.00	14.98		2307 N	VAL	300	107.277	49.101	44.224	1.00	27.09
2235 CG 2236 CD1	LEU LEU	290 290	117.497 115.981	40.044 39.981	37.174 37.142	$\frac{1.00}{1.00}$	16.12 16.37		2308 CA 2309 CB	VAL VAL	300 300	105.855 105.598	43.824 48.080	44.037 42.709	1.00 1.00	23.95 22.51
2230 CD1 2237 CD2	LEU	290	118.098	38.659	36.964	1.00	19.76		2310 CG1	VAL	300	103.398	47.876	42.494	1.00	20.37
2238 C	LEU	290	117.530	43.139	37.261	1.00	21.50	35	2311 CG2	VAL	300	106.190	48.867	41.552	1.00	20.21
2239 O	LEU	290 291	116.561	43.172	38.019	1.00 1.00	23.53 24.67		2312 C	VAL	300 300	105.349	47.990 48.204	45.211 45.714	1.00	23.59 30.31
2240 N 2241 CA	VAL VAL	291	118.675 118.858	43.761 44.518	37.534 38.773	1.00	28.92		2313 O 2314 N	VAL ASP	301	104.247 106.186	47.072	45.674	1.00 1.00	24.66
2242 CB	VAL	291	120.280	45.113	38.893	1.00	30.77		2315 CA	ASP	301	105.837	46.226	46.802	1.00	31.65
2243 CG1 2244 CG2	VAL VAL	291 291	120.439 121.324	45.822 44.033	40.234 38.742	1.00 1.00	27.10 35.91		2316 CB 2317 CG	ASP ASP	301 301	106.879 106.523	45.121 44.163	46.975 48.087	1.00 1.00	25.48 24.95
2244 CG2 2245 C	VAL	291	117.872	45.679	38.826	1.00	33.69	40	2317 CG 2318 OD1	ASP	301	105.672	43.277	47.869	1.00	37.24
2246 O	VAL	291	117.266	45.950	39.867	1.00	38.64		2319 OD2	ASP	301	107.075	44.309	49.193	1.00	32.62
2247 N 2248 CA	LYS LYS	292 292	117.722 116.819	46.360 47.500	37.693 37.589	1.00 1.00	32.65 29.16		2320 C 2321 O	ASP ASP	301 301	105.762 104.847	47.078 46.930	48.065 48.874	1.00 1.00	33.30 36.41
2248 CA 2249 CB	LYS	292	116.819	48.155	36.213	1.00	28.67		2321 U 2322 N	ASP	302	104.847	47.971	48.218	1.00	41.65
2250 CG	LYS	292	118.314	48.814	35.986	1.00	28.14	4.~	2323 CA	ASP	302	106.805	48.866	49.369	1.00	43.94
2251 CD	LYS	292 292	118.440	49.353	34.575	1.00	36.09	45	2324 CB	ASP	302	108.124	49.650	49.353 49.744	1.00	49.38
2252 CE 2253 NZ	LYS LYS	292	119.765 119.962	50.059 50.417	34.370 32.940	1.00 1.00	37.49 42.24		2325 CG 2326 OD1	ASP ASP	302 302	109.322 109.246	48.798 48.101	50.780	1.00 1.00	55.74 59.49
2254 C	LYS	292	115.369	47.102	37.849	1.00	25.46		2327 OD2	ASP	302	110.344	48.833	49.024	1.00	52.10
2255 O	LYS	292		47.829	38.514	1.00	23.99		2328 C	ASP	302	105.619		49.416	1.00	43.11
2256 N 2257 CA	THR THR	293 293	114.984 113.627	45.922 45.401	37.365 37.536	$\frac{1.00}{1.00}$	28.08 20.11	50	2329 O 2330 N	ASP THR	302 303	105.198 105.081	50.257 50.159	50.493 48.243	$\frac{1.00}{1.00}$	44.18 38.88
2258 CB	THR	293	113.385	44.183	36.617	1.00	19.93		2331 CA	THR	303	103.945	51.069	48.123	1.00	33.20
2259 OG1 2260 CG2	THR	293	113.325	44.619	35.252	1.00	19.22		2332 CB	THR	303		51.514	46.660 46.158	1.00	41.14
2260 CG2 2261 C	THR THR	293 293	112.095 113.326	43.472 45.026	36.972 38.987	$\frac{1.00}{1.00}$	14.44 22.63		2333 OG1 2334 CG2	THR THR	303 303	104.965 102.643	52.075 52.555	46.564	$\frac{1.00}{1.00}$	39.42 44.39
2262 O	THR	293	112.286	45.405	39.524	1.00	30.10		2335 C	THR	303	102.652	50.426	48.624	1.00	36.28
2263 N	ILE	294	114.239	44.295	39.621	1.00	23.15	55	2336 O	THR	303	101.930	51.016	49.425	1.00	44.91
2264 CA 2265 CB	ILE ILE	294 294	114.058 115.232	43.884 43.007	41.015 41.522	$\frac{1.00}{1.00}$	22.01 19.34		2337 N 2338 CA	PHE PHE	304 304	102.367 101.167	49.218 48.478	48.143 48.532	1.00 1.00	33.21 26.28
2266 CG2	ILE	294	114.962	42.546	42.958	1.00	19.45		2339 CB	PHE	304	101.005	47.234	47.653	1.00	23.04
2267 CG1	ILE	294	115.430	41.799	40.604	1.00	12.44		2340 CG	PHE	304	100.431	47.509	46.293	1.00	14.95
2268 CD1 2269 C	ILE ILE	294 294	116.564 113.959	40.876 45.113	41.017 41.910	$\frac{1.00}{1.00}$	23.70 21.14		2341 CD1 2342 CD2	PHE PHE	304 304	101.250 99.068	47.901 47.352	45.239 46.059	1.00 1.00	16.64 16.64
2270 O	ILE	294	113.097	45.113	42.789	1.00	23.19	60	2342 CD2 2343 CE1	PHE	304	100.720	48.132	43.968	1.00	20.58
2271 N	SER	295	114.841	46.075	41.664	1.00	27.23		2344 CE2	PHE	304	98.527	47.580	44.793	1.00	13.24
2272 CA 2273 CB	SER SER	295 295	114.879 116.063	47.310 48.167	42.435 41.979	1.00 1.00	36.44 38.02		2345 CZ 2346 C	PHE PHE	304 304	99.355 101.183	47.971 48.032	43.746 49.993	1.00 1.00	15.28 34.53
2274 OG	SER	295	116.508	49.015	43.021	1.00	50.33		2347 O	PHE	304	100.135	47.926	50.632	1.00	38.46
2275 C	SER	295	113.566	48.077	42.265	1.00	33.20	65	2348 N	ASP	305	102.379	47.778	50.515	1.00	40.19
2276 O 2277 N	SER MET	295 296	112.984 113.083	48.562 48.124	43.239 41.026	1.00 1.00	27.63 32.18	65	2349 CA 2350 CB	ASP ASP	305 305	102.544 103.774	47.300 46.399	51.881 51.968	1.00 1.00	46.42 58.96
22// IN	WILLI	230	110.003	TO.127	71.020	1.00	J2.10		2330 CD	V231	505	105.774	TU.333	51.700	1.00	50.50

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
2351 CG	ASP	305	103.431	44.933	51.845	1.00	70.39		2424 C	GLU	314	93.417	51.357	41.880	1.00	38.64
2352 OD1 2353 OD2	ASP ASP	305 305	102.647 103.957	44.572 44.140	50.940 52.656	$\frac{1.00}{1.00}$	75.74 75.60	10	2425 O 2426 N	GLU ALA	314 315	93.315 93.742	50.828 52.634	40.772 42.047	$\frac{1.00}{1.00}$	41.77 37.56
2354 C	ASP	305	102.605	48.324	53.001	1.00	47.79	10	2427 CA	ALA	315	94.012	53.513	40.917	1.00	37.09
2355 O	ASP	305	101.936	48.161	54.022	1.00	46.25		2428 CB	ALA	315	94.024	54.961	41.375	1.00	41.02
2356 N 2357 CA	ALA ALA	306 306	103.425 103.574	49.357 50.362	52.831 53.875	$\frac{1.00}{1.00}$	52.07 54.53		2429 C 2430 O	ALA ALA	315 315	95.354 95.522	53.146 53.222	40.292 39.074	1.00 1.00	37.51 40.72
2358 CB	ALA	306	103.574	50.240	54.518	1.00	57.28		2430 O 2431 N	TYR	316	96.301	52.741	41.138	1.00	37.47
2359 C	ALA	306	103.312	51.807	53.462	1.00	53.39	15	2432 CA	TYR	316	97.641	52.351	40.698	1.00	36.60
2360 O 2361 N	ALA TYR	306 307	103.971 102.345	52.718 52.030	53.965 52.576	1.00 1.00	58.62 51.30		2433 CB 2434 CG	TYR TYR	316 316	98.567 100.045	52.189 52.214	41.908 41.576	1.00 1.00	42.76 47.70
2362 CA	TYR	307	102.045	53.395	52.165	1.00	53.81		2435 CD1	TYR	316	100.701	53.421	41.323	1.00	50.35
2363 CB	TYR	307	103.107	53.918	51.195	1.00	48.52		2436 CE1	TYR	316	102.064	53.456	41.029	1.00	47.09
2364 CG 2365 CD1	TYR TYR	307 307	103.396 103.963	55.388 55.847	51.392 52.581	1.00 1.00	55.69 59.86		2437 CD2 2438 CE2	TYR TYR	316 316	100.792 102.158	51.038 51.063	41.526 41.232	1.00 1.00	50.58 51.96
2366 CE1	TYR	307	104.206	57.200	52.789	1.00	62.54	20	2439 CZ	TYR	316	102.785	52.276	40.988	1.00	46.31
2367 CD2	TYR	307	103.077	56.324	50.411	1.00	56.20		2440 OH	TYR	316	104.130	52.308	40.697	1.00	45.69
2368 CE2 2369 CZ	TYR TYR	307 307	103.315 103.878	57.683 58.112	50.608 51.801	1.00 1.00	59.89 62.92		2441 C 2442 O	TYR TYR	316 316	97.582 98.142	51.047 50.949	39.909 38.812	1.00 1.00	38.30 29.96
2370 OH	TYR	307	103.878	59.451	52.009	1.00	66.19		2442 O 2443 N	THR	317	96.890	50.058	40.473	1.00	34.49
2371 C	TYR	307	100.647	53.640	51.597	1.00	59.33	25	2444 CA	THR	317	96.731	48.752	39.839	1.00	33.58
2372 O 2373 N	TYR GLY	307 308	99.752 100.473	54.078 53.364	52.320 50.307	$\frac{1.00}{1.00}$	66.09 59.69	25	2445 CB 2446 OG1	THR THR	317 317	95.811 96.347	47.831 47.676	40.671 41.990	1.00 1.00	29.35 30.19
2374 CA	GLY	308	99.199	53.580	49.636	1.00	58.39		2447 CG2	THR	317	95.691	46.460	40.020	1.00	28.64
2375 C	GLY	308	97.924	53.122	50.326	1.00	60.86		2448 C	THR	317	96.125	48.922	38.448	1.00	38.84
2376 O	GLY THR	308 309	97.925 96.833	52.163	51.101 50.044	$\frac{1.00}{1.00}$	61.04 60.72		2449 O 2450 N	THR ASP	317	96.624 95.070	48.363 49.731	37.470 38.369	1.00	37.70 39.63
2377 N 2378 CA	THR	309	95.522	53.833 53.524	50.609	1.00	57.07	30	2450 N 2451 CA	ASP	318 318	94.385	49.731	37.110	$\frac{1.00}{1.00}$	43.25
2379 CB	THR	309	94.751	54.807	50.989	1.00	55.19		2452 CB	ASP	318	93.115	50.806	37.351	1.00	53.81
2380 OG1	THR	309	94.651	55.667	49.847	1.00	47.62		2453 CG	ASP	318	92.282	50.972	36.094	1.00	64.26
2381 CG2 2382 C	THR THR	309 309	95.461 94.693	55.538 52.722	52.117 49.609	$\frac{1.00}{1.00}$	46.57 59.08		2454 OD1 2455 OD2	ASP ASP	318 318	91.830 92.088	49.947 52.126	35.538 35.656	1.00 1.00	68.93 69.91
2383 O	THR	309	94.996	52.709	48.415	1.00	56.21		2456 C	ASP	318	95.292	50.706	36.118	1.00	38.89
2384 N	VAL	310	93.631	52.089	50.107	1.00	60.80	35	2457 O	ASP	318	95.280	50.406	34.922	1.00	35.65
2385 CA 2386 CB	VAL VAL	310 310	92.737 91.430	51.264 50.932	49.295 50.059	1.00 1.00	62.84 64.23		2458 N 2459 CA	ALA ALA	319 319	96.081 97.001	51.651 52.409	36.622 35.783	1.00 1.00	39.85 39.48
2387 CG1	VAL	310	90.667	49.821	49.351	1.00	66.80		2460 CB	ALA	319	97.716	53.462	36.610	1.00	45.21
2388 CG2	VAL	310	91.737	50.534	51.498	1.00	61.87		2461 C	ALA	319	98.007	51.469	35.123	1.00	36.47
2389 C 2390 O	VAL VAL	310 310	92.390 92.469	51.903 51.244	47.947 46.904	1.00 1.00	63.74 60.65		2462 O 2463 N	ALA ILE	319 320	98.261 98.547	51.564 50.541	33.920 35.912	1.00 1.00	28.06 36.88
2391 N	LYS	311	92.038	53.189	47.972	1.00	65.40	40	2464 CA	ILE	320	99.514	49.560	35.422	1.00	35.98
2392 CA	LYS	311	91.687	53.926	46.755	1.00	65.81		2465 CB	ILE	320	99.994	48.620	36.561	1.00	43.40
2393 CB 2394 CG	LYS LYS	311 311	91.121 89.696	55.301 55.305	47.105 47.621	1.00 1.00	70.45 74.65		2466 CG2 2467 CG1	ILE ILE	320 320	100.784 100.834	47.443 49.397	35.991 37.582	1.00 1.00	44.99 45.58
2395 CD	LYS	311	89.175	56.734	47.692	1.00	77.16		2468 CD1	ILE	320	102.173	49.891	37.054	1.00	39.26
2396 CE	LYS	311	87.719	56.787	48.120	1.00	75.45	45	2469 C	ILE	320	98.911	48.712	34.307	1.00	31.85
2397 NZ 2398 C	LYS LYS	311 311	87.239 92.889	58.194 54.116	48.137 45.842	1.00 1.00	78.70 63.97	43	2470 O 2471 N	ILE GLN	320 321	99.544 97.680	48.506 48.245	33.271 34.518	1.00 1.00	32.45 27.13
2399 O	LYS	311	92.840	53.788	44.658	1.00	64.41		2472 CA	GLN	321	96.980	47.414	33.538	1.00	29.80
2400 N	GLU	312	93.961	54.670	46.403	1.00	60.54		2473 CB	GLN	321	95.592	47.021	34.053	1.00	37.41
2401 CA 2402 CB	GLU GLU	312 312	95.195 96.263	54.931 55.516	45.665 46.596	$\frac{1.00}{1.00}$	57.43 59.85		2474 CG 2475 CD	GLN GLN	321 321	95.581 96.510	46.336 45.136	35.422 35.508	$\frac{1.00}{1.00}$	37.33 42.33
2403 CG	GLU	312	95.900	56.859	47.194	1.00	66.27	50	2476 OE1	GLN	321	96.690	44.398	34.536	1.00	43.16
2404 CD	GLU	312	97.024	57.438	48.033	1.00	69.45		2477 NE2	GLN	321	97.108	44.938	36.679	1.00	35.06
2405 OE1 2406 OE2	GLU GLU	312 312	97.396 97.544	56.817 58.514	49.051 47.666	$\frac{1.00}{1.00}$	71.29 70.23		2478 C 2479 O	GLN GLN	321 321	96.856 97.066	48.101 47.474	32.180 31.139	1.00 1.00	30.46 25.13
2407 C	GLU	312	95.750	53.679	44.989	1.00	53.28		2480 N	ARG	322	96.519	49.390	32.199	1.00	36.61
2408 O	GLU	312	96.133	53.715	43.815	1.00	44.50		2481 CA	ARG	322	96.384	50.171	30.971	1.00	40.97
2409 N 2410 CA	LEU LEU	313 313	95.787 96.290	52.577 51.310	45.736 45.222	$\frac{1.00}{1.00}$	45.10 40.42	55	2482 CB 2483 CG	ARG ARG	322 322	95.779 94.261	51.549 51.612	31.264 31.176	1.00 1.00	48.13 58.29
2411 CB	LEU	313	96.361	50.267	46.343	1.00	35.64		2484 CD	ARG	322	93.581	50.838	32.290	1.00	66.64
2412 CG	LEU	313	97.263	50.614	47.534	1.00	32.14		2485 NE	ARG	322	92.125	50.822	32.134	1.00	76.38
2413 CD1 2414 CD2	LEU LEU	313 313	97.226 98.687	49.501 50.861	48.569 47.061	$\frac{1.00}{1.00}$	28.15 26.11		2486 CZ 2487 NH1	ARG ARG	322 322	91.326 91.827	51.868 53.035	32.344 32.727	$\frac{1.00}{1.00}$	74.78 73.98
2414 CD2 2415 C	LEU	313	95.430	50.800	44.071	1.00	41.37	<i>c</i> o	2488 NH2	ARG	322	90.019	51.751	32.127	1.00	73.96 73.84
2416 O	LEU	313	95.950	50.275	43.085	1.00	39.82	60	2489 C	ARG	322	97.737	50.347	30.290	1.00	39.65
2417 N 2418 CA	GLU GLU	314 314	94.116 93.180	50.981 50.553	44.193 43.156	$\frac{1.00}{1.00}$	41.16 41.35		2490 O 2491 N	ARG TRP	322 323	97.848 98.757	50.233 50.635	29.067 31.094	1.00 1.00	46.16 37.39
2418 CA 2419 CB	GLU	314	93.180	50.728	43.150	1.00	45.36		2491 N 2492 CA	TRP	323 323	100.118	50.828	30.607	1.00	37.39 35.58
2420 CG	GLU	314	90.674	50.326	42.612	1.00	51.16		2493 CB	TRP	323	100.663	49.535	29.990	1.00	36.83
2421 CD 2422 OE1	GLU GLU	314	90.717 90.469	48.848	42.251 43.144	1.00 1.00	56.61 55.46	65	2494 CG 2495 CD2	TRP TRP	323 323	102.169 103.017	49.447 49.048	29.979 31.063	1.00 1.00	41.47
2422 OE1 2423 OE2	GLU	314 314	90.469	48.007 48.530	43.144	1.00	55.46 49.16		2495 CD2 2496 CE2	TRP	323 323	103.017	49.048	30.594	1.00	38.37 38.29

TABLE 10-continued

Structur			of Tobacco yl Hydroxy				hase	5	Structur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor
2497 CE3	TRP	323	102.779	48.656	32.390	1.00	36.27		2570 CD2	LEU	331	97.789	55.739	39.806	1.00	72.35
2498 CD1	TRP	323 323	103.003	49.714	28.922	1.00	40.25	10	2571 C	LEU	331	98.081	60.056	41.057	1.00	59.96
2499 NE1 2500 CZ2	TRP TRP	323	104.312 105.439	49.500 48.753	29.286 31.402	$\frac{1.00}{1.00}$	39.37 30.80	10	2572 O 2573 N	LEU PRO	331 332	98.432 98.145	61.069 59.962	40.456 42.397	1.00 1.00	60.57 56.66
2501 CZ3	TRP	323	103.863	48.322	33.192	1.00	34.06		2574 CD	PRO	332	97.661	58.870	43.257	1.00	52.18
2502 CH2	TRP	323	105.178 100.182	48.374	32.691	1.00	37.92		2575 CA	PRO	332	98.666	61.070	43.204	1.00	60.33
2503 C 2504 O	TRP TRP	323 323	100.182	51.976 51.788	29.606 28.437	1.00 1.00	36.88 30.80		2576 CB 2577 CG	PRO PRO	332 332	98.458 98.462	60.578 59.090	44.640 44.507	1.00 1.00	54.14 53.96
2505 N	ASP	324	99.781	53.157	30.066	1.00	48.71	15	2578 C	PRO	332	100.144	61.294	42.871	1.00	65.03
2506 CA	ASP	324	99.797	54.366	29.249	1.00	54.17		2579 O	PRO	332	100.817	60.386	42.381	1.00	68.68
2507 CB 2508 CG	ASP ASP	324 324	98.462 98.585	54.586 55.547	28.537 27.366	1.00 1.00	56.16 58.43		2580 N 2581 CA	ASP ASP	333 333	100.637 102.021	62.500 62.876	43.138 42.839	1.00 1.00	70.86 72.50
2509 OD1	ASP	324	98.956	56.724	27.575	1.00	59.06		2582 CB	ASP	333	102.362	64.220	43.489	1.00	76.30
2510 OD2	ASP	324	98.328	55.120	26.222	1.00	57.24		2583 CG	ASP	333	101.737	65.396	42.760	1.00	73.02
2511 C 2512 O	ASP ASP	324 324	100.076 99.468	55.543 55.671	30.165 31.230	1.00 1.00	57.09 54.89	20	2584 OD1 2585 OD2	ASP ASP	333 333	101.290 101.700	66.343 65.378	43.438 41.510	1.00 1.00	75.36 70.83
2513 N	ILE	325	100.977	56.414	29.729	1.00	60.16		2586 C	ASP	333	103.146	61.873	43.105	1.00	69.45
2514 CA	ILE	325	101.377	57.584	30.495	1.00	64.12		2587 O	ASP	333	104.019	61.694	42.254	1.00	64.53
2515 CB 2516 CG2	ILE ILE	325 325	102.559 102.072	58.286 59.013	29.788 28.542	$\frac{1.00}{1.00}$	67.78 68.84		2588 N 2589 CA	TYR TYR	334 334	103.139 104.195	61.226 60.267	44.269 44.590	$\frac{1.00}{1.00}$	65.65 64.14
2517 CG1	ILE	325	103.325	59.185	30.768	1.00	71.40		2590 CB	TYR	334	104.180	59.900	48.080	1.00	67.04
2518 CD1	ILE	325	104.716	59.579	30.273	1.00	78.93	25	2591 CG	TYR	334	103.162	58.858	46.484	1.00	71.84
2519 C 2520 O	ILE ILE	325 325	100.219 100.248	58.560 59.325	30.760 31.723	$\frac{1.00}{1.00}$	62.87 55.53		2592 CD1 2593 CE1	TYR TYR	334 334	101.827 100.895	59.199 58.243	46.688 47.086	1.00 1.00	74.21 74.47
2521 N	ASN	326	99.181	58.489	29.931	1.00	63.16		2594 CD2	TYR	334	103.542	57.531	46.685	1.00	72.86
2522 CA	ASN	326	98.008	59.347	30.075	1.00	60.43		2595 CE2	TYR	334	102.620	56.570	47.081	1.00	72.07
2523 CB 2524 CG	ASN ASN	326 326	97.060 97.208	59.157 60.240	28.891 27.858	$\frac{1.00}{1.00}$	58.85 58.26	30	2596 CZ 2597 OH	TYR TYR	334 334	101.299 100.386	56.932 55.962	47.281 47.675	1.00 1.00	72.74 69.90
2525 OD1	ASN	326	97.005	61.420	28.150	1.00	61.96	20	2598 C	TYR	334	104.143	59.015	43.714	1.00	59.49
2526 ND2	ASN	326	97.564	59.854	26.640	1.00	59.50		2599 O	TYR	334	105.181	58.466	43.341	1.00	58.89
2527 C 2528 O	ASN ASN	326 326	97.247 96.561	59.093 59.982	31.370 31.875	1.00 1.00	61.39 62.82		2600 N 2601 CA	MET MET	335 335	102.933 102.762	58.575 57.401	43.379 42.533	1.00 1.00	51.53 48.12
2529 N	GLU	327	97.378	57.881	31.904	1.00	59.66		2602 CB	MET	335	101.340	56.854	42.637	1.00	45.40
2530 CA	GLU	327	96.691	57.498	33.136	1.00	62.98	35	2603 CG	MET	335	100.979 99.387	56.325	44.006	1.00	34.82
2531 CB 2532 CG	GLU GLU	327 327	96.563 96.087	55.973 55.299	33.216 31.933	1.00 1.00	64.39 69.30		2604 SD 2605 CE	MET MET	335 335	99.387 99.776	55.502 53.904	44.005 44.867	1.00 1.00	37.30 41.41
2533 CD	GLU	327	94.708	55.750	31.491	1.00	70.48		2606 C	MET	335	103.082	57.727	41.081	1.00	48.13
2534 OE1 2535 OE2	GLU GLU	327 327	93.784 94.548	55.783 56.067	32.335 30.291	1.00 1.00	72.78 63.31		2607 O 2608 N	MET LYS	335 336	103.354 103.032	56.826 59.013	40.287 40.738	1.00 1.00	55.57 48.65
2536 C	GLU	327	97.414	58.011	34.380	1.00	62.97		2609 CA	LYS	336	103.032	59.465	39.380	1.00	50.84
2537 O	GLU	327	96.972	57.771	35.505	1.00	62.71	40	2610 CB	LYS	336	103.004	60.953	39.213	1.00	55.94
2538 N 2539 CA	ILE ILE	328 328	98.510 99.316	58.734 59.270	34.169 35.264	1.00 1.00	64.24 67.30		2611 CG 2612 CD	LYS LYS	336 336	101.524 101.298	61.301 62.758	39.255 38.857	1.00 1.00	63.40 63.31
2540 CB	ILE	328	100.636	59.886	34.729	1.00	69.70		2612 CD 2613 CE	LYS	336	99.820	63.092	38.764	1.00	60.22
2541 CG2	ILE	328	100.372	61.245	34.069	1.00	69.85		2614 NZ	LYS	336	99.580	64.473	38.271	1.00	62.57
2542 CG1 2543 CD1	ILE ILE	328 328	101.657 103.047	60.013 60.424	35.863 35.409	1.00 1.00	72.49 71.67	45	2615 C 2616 O	LYS LYS	336 336	104.810 105.187	59.237 58.938	39.080 37.943	$\frac{1.00}{1.00}$	51.33 47.74
2544 C	ILE	328	98.577	60.298	36.122	1.00	66.37		2617 N	ILE	337	105.638	59.382	40.114	1.00	45.10
2545 O	ILE	328	98.763	60.349	37.340	1.00	61.63		2618 CA	ILE	337	107.079	59.195	39.996	1.00	46.36
2546 N 2547 CA	ASP ASP	329 329	97.711 96.950	61.082 62.128	35.485 36.163	$\frac{1.00}{1.00}$	70.35 73.14		2619 CB 2620 CG2	ILE ILE	337 337	107.805 109.309	59.607 59.641	41.297 41.067	$\frac{1.00}{1.00}$	48.91 50.47
2548 CB	ASP	329	96.212	62.987	35.134	1.00	73.34		2621 CG1	ILE	337	107.330	60.986	41.759	1.00	50.88
2549 CG	ASP	329	97.154	63.620	34.123	1.00	75.99	50	2622 OD1	ILE	337	107.888	61.407	43.105	1.00	47.89
2550 OD1 2551 OD2	ASP ASP	329 329	97.861 97.193	64.584 63.140	34.486 32.970	$\frac{1.00}{1.00}$	75.75 74.82		2623 C 2624 O	ILE ILE	337 337	107.380 108.140	57.725 57.402	39.712 38.795	$\frac{1.00}{1.00}$	47.32 52.27
2552 C	ASP	329	95.978	61.611	37.219	1.00	73.26		2625 N	SER	338	106.755	56.844	40.491	1.00	42.57
2553 O	ASP	329	95.637	62.332	38.159	1.00	73.84		2626 CA	SER	338	106.928	55.401	40.351	1.00	32.89
2554 N 2555 CA	ARG ARG	330 330	95.539 94.616	60.366 59.756	37.065 38.019	$\frac{1.00}{1.00}$	70.87 70.53	55	2627 CB 2628 OG	SER SER	338 338	106.120 106.339	54.663 55.198	41.424 42.718	1.00 1.00	29.02 33.47
2556 CB	ARG	330	93.932	58.535	37.393	1.00	71.49	33	2629 C	SER	338	106.465	54.933	38.975	1.00	31.60
2557 CG	ARG	330	93.145	58.845	36.129	1.00	73.19		2630 O	SER	338	107.214	54.287	38.243	1.00	27.59
2558 CD 2559 NE	ARG ARG	330 330	92.435 91.756	57.612 57.889	35.591 34.326	1.00 1.00	85.11 94.74		2631 N 2632 CA	TYR TYR	339 339	105.239 104.622	55.311 54.932	38.621 37.353	1.00 1.00	33.89 39.75
2560 CZ	ARG	330	90.865	57.082	33.754	1.00	98.54		2633 CB	TYR	339	103.204	55.508	37.265	1.00	42.11
2561 NH1 2562 NH2	ARG ARG	330	90.532 90.309	55.934 57.424	34.331 32.599	1.00	100.00 94.40	60	2634 CG 2635 CD1	TYR TYR	339 339	102.367	54.908 53.700	36.157 36.348	1.00	46.50
2562 NH2 2563 C	ARG	330 330	95.358	57.424 59.345	32.599	1.00 1.00	67.20		2636 CE1	TYR	339 339	101.682 100.924	53.709 53.144	35.327	1.00 1.00	48.25 52.79
2564 O	ARG	330	94.749	59.145	40.345	1.00	61.95		2637 CD2	TYR	339	102.270	55.530	34.915	1.00	42.98
2565 N	LEU	331	96.681	59.252 58.857	39.183	1.00	66.11		2638 CE2	TYR	339	101.515	54.976 53.784	33.890	1.00	51.56 54.20
2566 CA 2567 CB	LEU LEU	331 331	97.539 98.727	58.857 58.047	40.295 39.768	$\frac{1.00}{1.00}$	65.38 70.15		2639 CZ 2640 OH	TYR TYR	339 339	100.845 100.100	53.784 53.236	34.100 33.080	1.00 1.00	54.29 56.73
2568 CG	LEU	331	98.430	56.802	38.933	1.00	71.98	65	2641 C	TYR	339	105.414	55.309	36.101	1.00	43.13
2569 CD1	LEU	331	99.710	56.289	38.300	1.00	67.56		2642 O	TYR	339	105.531	54.502	35.174	1.00	41.07

TABLE 10-continued

Si	tructur			of Tobacco				hase	5	s _	Structur			of Tobacco				hase
Atom	Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom	Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
2643	N	LYS	340	105.941	56.531	36.064	1.00	49.11		2716	C	ASP	348	115.308	50.325	27.394	1.00	44.57
2644		LYS	340	106.706	56.989	34.903	1.00	49.74		2717		ASP	348	116.186	50.116	26.555	1.00	45.03
2645		LYS	340	106.894	58.508	34.934	1.00	58.08	10	2718		TYR	349	114.586	49.355	27.959	1.00	43.55
2646 2647		LYS LYS	340 340	107.553 107.642	59.059 60.573	33.674 33.694	1.00 1.00	64.41 69.77		2719 2720		TYR TYR	349 349	114.773 113.813	47.943 47.054	27.627 28.429	1.00 1.00	42.30 41.29
2648		LYS	340	108.246	61.097	32.403	1.00	73.44		2721		TYR	349	114.128	46.916	29.906	1.00	37.24
2649		LYS	340	108.256	62.584	32.365	1.00	82.14		2722		TYR	349	113.181	46.393	30.785	1.00	30.06
2650		LYS	340	108.062	56.297	34.800	1.00	44.71		2723		TYR	349	113.458	46.247	32.142	1.00	36.46
2651		LYS	340	108.506	55.938	33.703	1.00	34.93	15	2724		TYR	349	115.368	47.293	30.424	1.00	41.76
2652 2653		ALA ALA	341 341	108.712 110.013	56.114 55.456	35.948 36.003	1.00 1.00	36.45 36.97		2725 2726		TYR TYR	349 349	115.656 114.694	47.151 46.627	31.783 32.633	1.00 1.00	40.50 36.99
2654		ALA	341	110.517	55.415	37.439	1.00	35.42		2727		TYR	349	114.960	46.491	33.975	1.00	36.59
2655		ALA	341	109.897	54.041	35.444	1.00	35.71		2728		TYR	349	114.520	47.741	26.139	1.00	42.51
2656		ALA	341	110.791	53.561	34.746	1.00	34.74		2729		TYR	349	115.308	47.094	25.446	1.00	42.03
2657		ILE	342	108.766	53.399	35.734	1.00	29.99	20	2730		GLU	350	113.411	48.296	25.656	1.00	44.24
2658		ILE ILE	342 342	108.487	52.041 51.472	35.283 35.982	1.00	21.08		2731		GLU	350 350	113.053	48.199 48.929	24.244 23.969	1.00	46.89
2659 2660		ILE	342 342	107.231 106.786	50.171	35.309	1.00 1.00	16.81 10.96		2732 2733		GLU GLU	350	111.734 110.509	48.270	24.589	1.00 1.00	49.81 54.69
2661		ILE	342	107.523	51.275	37.476	1.00	10.78		2734		GLU	350	109.214	49.033	24.347	1.00	58.54
2662		ILE	342	106.333	50.884	38.324	1.00	2.00		2735		GLU	350	108.144	48.491	24.695	1.00	62.24
2663		ILE	342	108.336	51.939	33.771	1.00	28.67	25	2736		GLU	350	109.253	50.168	23.822	1.00	64.71
2664		ILE	342	108.949	51.071	33.150	1.00	32.50	25	2737		GLU	350	114.162	48.811	23.397	1.00	48.29
2665 2666		LEU LEU	343 343	107.530 107.320	52.821 52.809	33.180 31.732	$\frac{1.00}{1.00}$	33.81 37.97		2738 2739		GLU LYS	350 351	114.491 114.763	48.294 49.884	22.334 23.909	1.00 1.00	45.94 53.89
2667		LEU	343	106.208	53,774	31.732	1.00	41.50		2740		LYS	351	115.841	50.591	23.222	1.00	58.14
2668		LEU	343	104.822	53.594	31.932	1.00	46.77		2741		LYS	351	116.053	51.971	23.855	1.00	63.43
2669		LEU	343	103.831	54.537	31.267	1.00	48.11		2742		LYS	351	116.916	52.921	23.031	1.00	71.72
2670		LEU	343	104.375	52.165	31.759	1.00	43.32	30	2743		LYS	351	116.247	53.286	21.711	1.00	77.97
2671		LEU	343	108.596	53.177	30.995	1.00	41.41		2744		LYS	351	117.122	54.218	20.885	1.00	83.68
2672 2673		LEU ASP	343 344	108.880 109.348	52.626 54.126	29.932 31.552	$\frac{1.00}{1.00}$	43.16 45.08		2745 2746		LYS LYS	351 351	116.483 117.155	54.588 49.795	19.591 23.215	1.00 1.00	83.73 57.54
2674		ASP	344	110.601	54.563	30.942	1.00	51.08		2747		LYS	351	117.133	49.784	22.209	1.00	56.27
2675		ASP	344	111.144	55.820	31.628	1.00	57.96		2748		GLU	352	117.465	49.142	24.336	1.00	56.46
2676	OG	ASP	344	110.754	57.098	30.903	1.00	64.16	35	2749	CA	GLU	352	118.684	48.334	24.458	1.00	52.60
2677		ASP	344	110.680	57.090	29.654	1.00	69.36		2750		GLU	352	118.847	47.801	25.390	1.00	50.25
2678		ASP	344 344	110.526	58.117	31.588	1.00	65.04		2751		GLU	352 352	119.239	48.828	26.943	1.00	58.10
2679 2680		ASP ASP	344	111.643 112.415	53.461 53.301	30.980 30.034	1.00 1.00	50.69 53.80		2752 2753		GLU GLU	352 352	119.464 118.655	48.194 48.447	28.311 29.232	1.00 1.00	59.00 57.55
2681		LEU	345	111.661	52.709	32.078	1.00	47.98		2754		GLU	352	120.447	47.435	28.468	1.00	53.94
2682		LEU	345	112.594	51.599	32.242	1.00	43.23	40	2755		GLU	352	118.645	47.140	23.508	1.00	49.57
2683		LEU	345	112.384	50.925	33.599	1.00	45.16	40	2756		GLU	352	119.671	46.735	22.957	1.00	45.55
2684		LEU	345	113.317	49.773	33.977	1.00	44.62		2757		LEU	353	117.448	46.587	23.327	1.00	44.88
2685 2686		LEU LEU	345 345	114.752 112.875	50.267 49.186	34.070 35.307	1.00 1.00	45.63 42.33		2758 2759		LEU LEU	353 353	117.239	45.432 44.561	22.463 23.034	1.00 1.00	44.80 35.61
2687		LEU	345	112.364	50.585	31.129	1.00	42.33		2760		LEU	353	116.116 116.304	44.125	24.489	1.00	30.68
2688		LEU	345	113.315	50.068	30.541	1.00	47.47		2761		LEU	353	115.030	43.507	25.030	1.00	31.93
2689	N	TYR	346	111.094	50.311	30.844	1.00	38.09	45	2762		LEU	353	117.468	43.156	24.597	1.00	32.93
2690		TYR	346	110.731	49.372	29.793	1.00	36.61		2763		LEU	353	116.937	45.806	21.011	1.00	48.25
2691		TYR	346	109.298	48.878	29.983	1.00	32.28		2764		LEU	353	116.878	44.933	20.140	1.00	48.95
2692 2693		TYR TYR	346 346	109.211 108.903	47.802 48.110	31.038 32.361	$\frac{1.00}{1.00}$	30.73 22.11		2765 2766		SER SER	354 354	116.756 116.468	47.101 47.595	20.751 19.403	$\frac{1.00}{1.00}$	54.12 58.83
2694		TYR	346	108.895	47.122	33.346	1.00	24.69		2767		SER	354	116.358	49.122	19.395	1.00	64.47
2695		TYR	346	109.503	46.477	30.722	1.00	35.15	50	2768		SER	354	115.196	49.571	20.072	1.00	73.04
2696		TYR	346	109.499	45.484	31.694	1.00	26.34		2769		SER	354	117.534	47.171	18.400	1.00	58.85
2697		TYR	346	109.198	45.809	33.000	1.00	27.54		2770		SER	354	117.228	46.900	17.237	1.00	60.25
2698		TYR	346	109.224	44.812	33.948	1.00	22.51		2771		SER	355	118.784	47.119	18.857	1.00	59.55
2699 2700		TYR TYR	346 346	110.954 111.086	49.953 49.213	28.403 27.429	$\frac{1.00}{1.00}$	39.45 37.79		2772 2773		SER SER	355 355	119.918 121.219	46.731 46.840	18.022 18.823	$\frac{1.00}{1.00}$	60.93 58.82
2701		LYS	347	110.995	51.281	28.320	1.00	44.42	55	2774		SER	355	122.333	46.392	18.071	1.00	61.05
2702		LYS	347	111.256	51.958	27.056	1.00	45.72	55	2775		SER	355	119.772	45.316	17.455	1.00	67.50
2703		LYS	347	110.797	53.418	27.105	1.00	49.09		2776	O	SER	355	119.753	45.125	16.239	1.00	72.60
2704		LYS	347	109.313	53.604	26.824	1.00	54.73		2777		ALA	356	119.640	44.338	18.345	1.00	68.57
2705		LYS	347 347	108.959 107.471	53.084	25.433	1.00	58.88 58.70		2778		ALA	356 356	119.501	42.943	17.946	1.00	67.55
2706 2707		LYS LYS	347 347	107.471	53.195 52.632	25.149 23.816	$\frac{1.00}{1.00}$	58.70 45.34		2779 2780		ALA ALA	356	119.690 118.163	42.040 42.642	19.152 17.278	1.00 1.00	63.74 69.18
2708		LYS	347	112.756	51.874	26.810	1.00	44.56	60	2781		ALA	356	118.103	41.754	16.434	1.00	70.23
2709		LYS	347	113.201	51.803	25.666	1.00	44.20		2782		GLY	357	117.131	43.385	17.661	1.00	69.13
2710	N	ASP	348	113.524	51.865	27.901	1.00	45.25		2783		GLY	357	115.811	43.152	17.102	1.00	62.21
2711		ASP	348	114.977	51.748	27.829	1.00	43.43		2784		GLY	357	115.027	42.258	18.039	1.00	59.93
2712		ASP	348	115.630	52.041	29.188	1.00	41.08		2785		GLY	357 358	114.203	41.443	17.604	1.00	60.71 54.34
2713 2714		ASP ASP	348 348	115.545 115.741	53.509 54.388	29.584 28.716	1.00 1.00	45.56 50.29	65	2786 2787		ARG ARG	358 358	115.322 114.669	42.391 41.616	19.332 20.385	1.00 1.00	54.34 52.71
2715		ASP	348	115.293	53.787	30.775	1.00	46.84		2788		ARG	358	115.713	40.882	21.231	1.00	45.26
2,13	JD2	2101	270	110.200	55.101	50.115	1.00	10.07		2700	٠.,	1110	220	110.110	10.002	21.201	1.00	-10.20

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
2789 CG	ARG	358	116.561	39.896	20.442	1.00	47.78		2862 OE1	GLU	367	99.829	41.633	29.321	1.00	48.68
2790 CD	ARG	358 358	117.644 117.083	39.275	21.309	1.00	47.12	10	2863 OE2	GLU	367	101.083	42.670	27.841	1.00	43.16
2791 NE 2792 CZ	ARG ARG	358	117.206	38.456 38.724	22.383 23.681	$\frac{1.00}{1.00}$	44.42 39.46	10	2864 C 2865 O	GLU GLU	367 367	102.539 101.555	40.448 40.297	32.585 33.314	1.00 1.00	20.02 20.91
2793 NH1	ARG	358	117.871	39.797	24.083	1.00	37.90		2866 N	ARG	368	103.766	40.057	32.923	1.00	21.53
2794 NH2 2795 C	ARG ARG	356 358	116.684 113.817	37.905 42.522	24.583 21.282	1.00 1.00	43.78 55.62		2867 CA 2868 CB	ARG ARG	368 368	104.055 105.406	39.422 38.709	34.205 34.159	1.00 1.00	14.50 17.59
2796 O	ARG	358	113.676	42.322	22.479	1.00	60.74		2869 CG	ARG	368	105.427	37.442	33.319	1.00	17.39
2797 N	SER	359	113.286	43.596	20.699	1.00	54.17	15	2870 CD	ARG	368	104.602	36.338	33.960	1.00	17.58
2798 CA 2799 CB	SER SER	359 359	112.440 112.373	44.548 45.887	21.419 20.671	1.00 1.00	49.75 46.10		2871 NE 2872 CZ	ARG ARG	368 368	104.843 104.380	35.044 33.884	33.325 33.784	1.00 1.00	25.37 29.88
2800 OG	SER	359	112.575	46.424	20.441	1.00	39.24		2872 CZ 2873 NH1	ARG	368	104.560	33.847	34.887	1.00	15.72
2801 C	SER	359	111.030	43.979	21.584	1.00	51.35		2874 NH2	ARG	368	104.669	32.757	33.146	1.00	25.60
2802 O 2803 N	SER HIS	359 360	110.321 110.642	44.294 43.145	22.549 20.619	1.00 1.00	51.03		2875 C	ARG	368	104.058 103.674	40.473 40.193	35.306 36.444	1.00 1.00	22.28
2804 CA	HIS	360	10.042	42.484	20.566	1.00	48.18 49.55	20	2876 O 2877 N	ARG MET	368 369	103.074	41.686	34.965	1.00	25.28 23.23
2805 CB	HIS	360	109.165	41.769	19.214	1.00	55.45		2878 CA	MET	369	104.513	42.774	35.933	1.00	22.69
2806 CG	HIS	360	110.191	40.706 40.791	18.955	1.00	57.94		2879 CB 2880 CG	MET	369	105.234 105.216	44.001 45.178	35.371	1.00	21.94 33.04
2807 CD2 2808 ND1	HIS HIS	360 360	111.485 109.933	39.363	18.565 19.134	$\frac{1.00}{1.00}$	58.70 62.62		2881 SD	MET MET	369 369	105.216	46.580	36.332 35.855	$\frac{1.00}{1.00}$	30.05
2809 CE1	HIS	360	111.028	38.668	18.875.	1.00	63.83		2882 CE	MET	369	106.788	47.105	37.492	1.00	22.46
2810 NE2	HIS	360	111.985	39.511	18.527	1.00	63.77	25	2883 C	MET	369	103.088	43.138	36.329	1.00	21.30
2811 C 2812 O	HIS HIS	360 360	109.105 108.023	41.483 40.886	21.705 21.795	1.00 1.00	51.67 56.00		2884 O 2885 N	MET LYS	369 370	102.794 102.207	43.316 43.230	37.513 35.332	$\frac{1.00}{1.00}$	25.30 22.42
2813 N	ILE	361	110.115	41.294	22.552	1.00	44.35		2886 CA	LYS	370	100.798	43.555	35.562	1.00	21.17
2814 CA	ILE	361	110.005	40.352	23.659	1.00	40.02		2887 CB	LYS	370	100.033	43.596	34.237	1.00	18.37
2815 CB 2816 CG2	ILE ILE	361 361	111.217 111.350	39.396 38.631	23.719 22.412	$\frac{1.00}{1.00}$	40.34 38.81	30	2888 CG 2889 CD	LYS LYS	370 370	100.498 99.724	44.679 44.628	33.272 31.959	$\frac{1.00}{1.00}$	19.38 22.90
2817 CG1	ILE	361	112.490	40.174	24.052	1.00	45.99	30	2890 CE	LYS	370	100.144	45.754	31.026	1.00	25.30
2818 CD1	ILE	361	113.742	39.324	24.096	1.00	38.31		2891 NZ	LYS	370	99.370	45.760	29.753	1.00	26.14
2819 C 2820 O	ILE ILE	361 361	109.837 109.629	41.012 40.323	25.022 26.018	$\frac{1.00}{1.00}$	38.58 46.53		2892 C 2893 O	LYS LYS	370 370	100.184 99.433	42.503 42.830	36.480 37.404	1.00 1.00	22.60 22.82
2820 O 2821 N	VAL	362	109.029	42.339	25.068	1.00	34.37		2894 N	GLU	370	100.540	41.243	36.233	1.00	20.87
2822 CA	VAL	362	109.784	43.073	26.323	1.00	36.05	35	2895 CA	GLU	371	100.060	40.117	37.027	1.00	17.91
2823 CB	VAL	362	110.133	44.567	26.131	1.00	44.38		2896 CB	GLU	371	100.633	38.805	36.473	1.00	17.04
2824 CG1 2825 CG2	VAL VAL	362 362	110.157 111.470	45.290 44.705	27.474 25.420	$\frac{1.00}{1.00}$	28.09 50.90		2897 CG 2898 CD	GLU GLU	371 371	100.291 100.951	37.558 36.307	37.281 36.737	1.00 1.00	14.89 33.96
2826 C	VAL	362	108.372	42.959	26.899	1.00	35.07		2899 OE1	GLU	371	100.246	35.281	36.624	1.00	49.48
2827 O	VAL	362	108.187	43.012	28.113	1.00	27.77		2900 OE2	GLU	371	102.162	36.342	36.433	1.00	39.35
2828 N 2829 CA	CYS CYS	363 363	107.383 105.980	42.770 42.653	26.025 26.437	1.00 1.00	37.13 34.16	40	2901 C 2902 O	GLU GLU	371 371	100.459 99.629	40.291 40.146	38.491 39.389	1.00 1.00	14.70 15.00
2830 CB	CYS	363	105.066	42.483	25.215	1.00	29.73		2903 N	VAL	372	101.727	40.624	38.718	1.00	16.52
2831 SG	CYS	363	105.447	41.051	24.179	1.00	41.96		2904 CA	VAL	372	102.246	40.830	40.066 40.043	1.00	17.45
2832 C 2833 O	CYS CYS	363 363	105.730 104.887	41.520 41.646	27.434 28.325	1.00 1.00	32.61 25.38		2905 CB 2906 CG1	VAL VAL	372 372	103.747 104.258	41.232 41.453	41.450	1.00 1.00	17.58 3.56
2834 N	HIS	364	106.481	40.429	27.292	1.00	28.31		2907 CG2	VAL	372	104.575	40.156	39.365	1.00	18.80
2835 CA	HIS	364	106.356	39.267	28.168	1.00	20.38	45	2908 C	VAL	372	101.455	41.919	40.782	1.00	21.27
2836 CB 2837 CG	HIS HIS	364 364	107.304 107.064	38.159 37.696	27.713 26.309	1.00 1.00	19.91 25.64		2909 O 2910 N	VAL VAL	372 373	101.101 101.155	41.767 43.000	41.952 40.063	1.00 1.00	23.46 26.12
2838 CD2	HIS	364	107.777	37.887	25.173	1.00	29.90		2911 CA	VAL	373	100.407	44.123	40.629	1.00	29.37
2839 ND1	HIS	364	105.976	36.929	25.954	1.00	34.65		2912 CB	VAL	373	100.425	45.356	39.694	1.00	33.84
2840 CE1 2841 NE2	HIS HIS	364 364	106.028 107.111	36.667 37.237	24.659 24.162	$\frac{1.00}{1.00}$	33.79 27.05	50	2913 CG1 2914 CG2	VAL VAL	373 373	99.736 101.861	46.537 45.724	40.366 39.335	$\frac{1.00}{1.00}$	27.54 29.76
2842 C	HIS	364	106.646	39.635	29.622	1.00	28.17	50	2915 C	VAL	373	98.962	43.754	40.969	1.00	29.64
2843 O	HIS	364	105.942	39.200	30.537	1.00	27.54		2916 O	VAL	373	98.462	44.135	42.030	1.00	27.43
2844 N 2845 CA	ALA ALA	365 365	107.685 108.067	40.440 40.880	29.826 31.163	$\frac{1.00}{1.00}$	30.22 30.86		2917 N 2918 CA	ARG ARG	374 374	98.298 96.916	43.015 42.587	40.078 40.315	$\frac{1.00}{1.00}$	27.06 22.92
2846 CB	ALA	365	109.427	41.574	31.120	1.00	34.60		2919 CB	ARG	374	96.438	41.626	39.225	1.00	20.10
2847 C	ALA	365	107.007	41.822	31.725	1.00	31.03	55	2920 CG	ARG	374	96.101	42.257	37.897	1.00	18.80
2848 O	ALA	365	106.752	41.838	32.931	1.00	31.19		2921 CD 2922 NE	ARG	374	95.627	41.191	36.924 35.692	1.00	11.40
2849 N 2850 CA	ILE ILE	366 366	106.389 105.347	42.596 43.550	30.835 31.208	$\frac{1.00}{1.00}$	36.30 36.55		2922 NE 2923 CZ	ARG ARG	374 374	96.410 96.956	41.194 40.112	35.146	1.00 1.00	20.17 19.94
2851 CB	ILE	366	105.016	44.504	30.034	1.00	41.23		2924 NH1	ARG	374	96.810	38.924	35.720	1.00	26.31
2852 CG2	ILE	366	103.857	45.419	30.403	1.00	40.62		2925 NH2	ARG	374	97.655	40.218	34.025	1.00	24.45
2853 CG1 2854 CD1	ILE ILE	366 366	106.253 106.065	45.331 46.231	29.668 28.468	1.00 1.00	35.62 29.32	60	2926 C 2927 O	ARG ARG	374 374	96.835 95.964	41.858 42.134	41.646 42.472	1.00 1.00	26.89 32.47
2855 C	ILE	366	104.070	42.845	31.667	1.00	30.85		2928 N	ASN	375	97.766	40.931	41.842	1.00	27.68
2856 O	ILE	366	103.524	43.173	32.722	1.00	28.50		2929 CA	ASN	375	97.827	40.133	43.055	1.00	25.57
2857 N 2858 CA	GLU GLU	367 367	103.613 102.404	41.867 41.117	30.886 31.223	$\frac{1.00}{1.00}$	25.21 22.77		2930 CB 2931 CG	ASN ASN	375 375	98.776 98.299	38.955 38.009	42.850 41.756	1.00 1.00	30.36 32.94
2859 CB	GLU	367	102.095	40.069	30.153	1.00	32.06		2932 OD1	ASN	375	97.594	38.415	40.827	1.00	25.76
2860 CG	GLU	367	101.926	40.626	28.736	1.00	41.69	65	2933 ND2	ASN	375	98.677	36.741	41.865	1.00	30.37
2861 CD	GLU	367	100.870	41.721	28.629	1.00	48.62		2934 C	ASN	375	98.213	40.958	44.279	1.00	26.96

TABLE 10-continued

Structur			of Tobacco			-	hase	5	Structur				o 5-Epi-A yphosphor			hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	x	Y	z	OCC	B- factor
2935 O	ASN	375	97.819	40.632	45.399	1.00	21.31		3008 C	PHE	383	93.045	43.296	55.144	1.00	38.45
2936 N 2937 CA	TYR TYR	376 376	98.980 99.381	42.026 42.920	44.062 45.148	$\frac{1.00}{1.00}$	33.99 33.87	10	3009 O 3010 N	PHE ILE	383 384	92.793 92.436	43.223 44.144	56.351 54.315	1.00 1.00	36.37 36.46
2938 CB	TYR	376	100.382	43.986	44.645	1.00	39.17	10	3010 IV	ILE	384	91.410	45.091	54.756	1.00	34.56
2939 CG	TYR	376	101.823	43.579	44.628	1.00	42.30		3012 CB	ILE	384	91.025	46.062	53.615	1.00	27.26
2940 CD1 2941 CE1	TYR TYR	376 376	102.765 104.111	44.344 43.997	43.940 43.934	1.00 1.00	40.53 45.46		3013 CG2 3014 CG1	ILE ILE	384 384	89.917 92.249	46.996 46.870	54.066 53.171	1.00 1.00	33.92 30.39
2941 CE1 2942 CD2	TYR	376	102.268	42.446	45.312	1.00	43.05		3014 CO1	ILE	384	92.881	47.691	54.278	1.00	31.10
2943 CE2	TYR	376	103.614	42.088	45.313	1.00	42.63	15	3016 C	ILE	384	90.145	44.391	55.255	1.00	34.50
2944 CZ 2945 OH	TYR TYR	376 376	104.531 105.865	42.868 42.523	44.623 44.621	1.00 1.00	48.37 39.23		3017 O 3018 N	ILE GLU	384 385	89.634 89.643	44.702 43.453	56.333 54.460	1.00 1.00	36.61 26.50
2946 C	TYR	376	98.122	43.605	45.668	1.00	29.88		3019 CA	GLU	385	88.443	42.703	54.811	1.00	26.95
2947 O	TYR	376	97.942	43.773	46.874	1.00	27.89		3020 CB	GLU	385	87.937	41.926	53.595	1.00	21.63
2948 N 2949 CA	ASN ASN	377 377	97.252 95.987	43.984 44.642	44.733 45.043	1.00 1.00	29.64 31.75		3021 CG 3022 CD	GLU GLU	385 385	87.650 87.418	42.790 41.976	52.375 51.115	1.00 1.00	29.50 38.78
2950 CB	ASN	377	95.304	45.094	43.748	1.00	34.90	20	3023 OE1	GLU	385	87.706	40.758	51.124	1.00	42.45
2951 CG	ASN	377	94.116	45.999	43.999	1.00	40.49		3024 OE2	GLU	385	86.955	42.560	50.110	1.00	36.35
2952 OD1 2953 ND2	ASN ASN	377 377	92.992 94.360	45.532 47.303	44.178 44.011	1.00 1.00	42.59 34.81		3025 C 3026 O	GLU GLU	385 385	88.711 87.778	41.732 41.289	55.954 56.629	1.00 1.00	32.21 43.97
2954 C	ASN	377	95.084	43.674	45.804	1.00	28.41		3027 N	GLY	386	89.985	41.419	56.184	1.00	30.98
2955 O	ASN	377	94.538	44.015	46.857	1.00	30.58	25	3028 CA	GLY	386	90.341	40.486	57.238	1.00	29.71
2956 N 2957 CA	VAL VAL	378 378	94.952 94.131	42.460 41.426	45.274 45.900	$\frac{1.00}{1.00}$	17.90 17.33	23	3029 C 3030 O	GLY GLY	386 386	90.069 89.738	39.071 38.178	56.767 57.557	1.00 1.00	29.59 27.61
2958 CB	VAL	378	94.186	40.112	45.086	1.00	10.51		3031 N	TYR	387	90.238	38.877	55.461	1.00	23.79
2959 CG1	VAL	378	93.423	39.012	45.789	1.00	11.35		3032 CA	TYR	387	89.999	37.595	54.816	1.00	27.24
2960 CG2 2961 C	VAL VAL	378 378	93.612 94.616	40.332 41.163	43.698 47.327	1.00 1.00	13.48 25.35		3033 CB 3034 CG	TYR TYR	387 387	89.744 89.248	37.802 36.570	53.319 52.580	$\frac{1.00}{1.00}$	29.04 23.98
2962 O	VAL	378	93.813	40.997	48.248	1.00	27.43	30	3035 CD1	TYR	387	88.361	35.675	53.179	1.00	22.30
2963 N	GLU	379	95.936	41.176	47.497	1.00	31.20		3036 CE1	TYR	387	87.891	34.552	52.493	1.00	29.04
2964 CA 2965 CB	GLU GLU	379 379	96.575 98.100	40.938 40.924	48.787 48.613	$\frac{1.00}{1.00}$	33.04 40.56		3037 CD2 3038 CE2	TYR TYR	387 387	89.657 89.192	36.311 35.194	51.271 50.575	1.00 1.00	26.35 24.90
2966 CG	GLU	379	98.888	40.454	49.836	1.00	52.37		3039 CZ	TYR	387	88.311	34.320	51.191	1.00	29.66
2967 CD	GLU	379	100.392	40.399	49.591	1.00	57.31		3040 OH	TYR	387	87.848	33.218	50.510	1.00	26.42
2968 OE1 2969 OE2	GLU GLU	379 379	101.158 100.810	40.762 39.986	50.510 48.485	$\frac{1.00}{1.00}$	59.83 55.53	35	3041 C 3042 O	TYR TYR	387 387	91.127 92.311	36.591 36.917	55.014 54.874	1.00 1.00	30.82 39.13
2970 C	GLU	379	96.166	41.984	49.825	1.00	31.53		3043 N	THR	388	90.721	35.375	55.364	1.00	37.65
2971 O	GLU	379 380	95.922	41.650	50.987 49.402	1.00 1.00	29.16		3044 CA	THR	388	91.623	34.247	55.568 57.025	1.00	31.40
2972 N 2973 CA	SER SER	380	96.092 95.706	43.245 44.331	50.300	1.00	32.96 37.42		3045 CB 3046 OG1	THR THR	388 388	91.576 92.090	33.728 34.729	57.023	1.00 1.00	33.01 35.43
2974 CB	SER	380	96.066	45.695	49.698	1.00	38.70	40	3047 CG2	THR	388	92.416	32.482	57.179	1.00	38.16
2975 OG 2976 C	SER SER	380 380	95.348 94.212	45.945 44.264	48.504 50.604	1.00 1.00	49.17 38.16	10	3048 C 3049 O	THR THR	388 388	91.140 90.343	33.148 32.282	54.609 54.981	1.00 1.00	31.72 39.68
2970 C 2977 O	SER	380	93.789	44.512	51.737	1.00	31.46		3049 O 3050 N	PRO	389	91.581	33.203	53.335	1.00	25.34
2978 N	THR	381	93.424	43.915	49.587	1.00	36.08		3051 CD	PRO	389	92.494	34.204	52.755	1.00	23.99
2979 CA 2980 CB	THR THR	381 381	91.976 91.320	43.790 43.333	49.729 48.413	1.00 1.00	27.53 22.85		3052 CA 3053 CB	PRO PRO	389 389	91.190 91.717	32.214 32.829	52.323 51.030	1.00 1.00	26.01 21.95
2981 OG1	THR	381	91.706	44.212	47.350	1.00	16.53	45	3053 CB	PRO	389	92.953	33.531	51.475	1.00	17.85
2982 CG2	THR	381	89.812	43.351	48.543	1.00	23.91		3055 C	PRO	389	91.779	30.825	52.537	1.00	30.44
2983 C 2984 O	THR THR	381 381	91.662 90.813	42.762 42.996	50.814 51.670	$\frac{1.00}{1.00}$	27.68 29.54		3056 O 3057 N	PRO PRO	389 390	92.711 91.177	30.651 29.805	53.324 51.909	$\frac{1.00}{1.00}$	28.62 32.36
2985 N	TRP	382	92.375	41.637	50.779	1.00	28.31		3058 CD	PRO	390	89.921	29.814	51.135	1.00	26.81
2986 CA	TRP	382	92.199	40.563	51.755	1.00	28.12		3059 CA	PRO	390	91.691	28.442	52.047	1.00	33.56
2987 CB 2988 CG	TRP TRP	382 382	93.063 92.583	39.353 38.570	51.386 50.195	$\frac{1.00}{1.00}$	36.50 38.50	50	3060 CB 3061 CG	PRO PRO	390 390	90.600 90.024	27.601 28.532	51.379 50.356	$\frac{1.00}{1.00}$	32.56 23.42
2989 CD2	TRP	382	93.258	37.475	49.565	1.00	42.33		3062 C	PRO	390	93.016	28.383	51.277	1.00	34.49
2990 CE2	TRP	382	92.430	37.022	48.516	1.00	44.37		3063 O	PRO	390	93.222	29.160	50.335	1.00	30.76
2991 CE3 2992 CD1	TRP TRP	382 382	94.483 91.408	36.830 38.735	49.787 49.518	$\frac{1.00}{1.00}$	47.90 36.49		3064 N 3065 CA	VAL VAL	391 391	93.920 95.230	27.494 27.360	51.689 51.046	1.00 1.00	29.65 25.79
2993 NE1	TRP	382	91.308	31.808	48.511	1.00	36.31	55	3066 CB	VAL	391	95.943	26.061	51.479	1.00	23.80
2994 CZ2	TRP	382	92.787	35.951	47.688	1.00	51.17		3067 CG1	VAL	391	97.314	25.969	50.831	1.00	20.24
2995 CZ3 2996 CH2	TRP TRP	382 382	94.838 93.991	35.764 35.337	48.963 47.927	$\frac{1.00}{1.00}$	43.35 45.79		3068 CG2 3069 C	VAL VAL	391 391	96.078 95.155	26.017 27.393	52.981 49.523	1.00 1.00	16.75 25.32
2990 CH2 2997 C	TRP	382	93.991	41.030	53.157	1.00	30.09		3070 O	VAL	391	95.133	28.075	48.868	1.00	27.66
2998 O	TRP	382	91.926	40.651	54.137	1.00	31.61		3071 N	SER	392	94.178	26.683	48.970	1.00	25.00
2999 N 3000 CA	PHE PHE	383 383	93.617 94.092	41.841 42.378	53.240 54.510	1.00 1.00	36.62 38.24	60	3072 CA 3073 CB	SER SER	392 392	93.993 92.727	26.621 25.827	47.527 47.194	1.00 1.00	25.90 26.67
3000 CA 3001 CB	PHE	383	95.41l	43.138	54.298	1.00	36.46		3074 OG	SER	392	92.727	25.684	45.794	1.00	47.32
3002 CG	PHE	383	95.885	43.880	55.516	1.00	32.91		3075 C	SER	392	93.911	28.015	46.918	1.00	18.85
3003 CD1 3004 CD2	PHE PHE	383 383	96.157 96.020	43.202 45.264	56.701 55.490	1.00 1.00	32.24 33.47		3076 O 3077 N	SER GLU	392 393	94.671 93.013	28.350 28.837	46.011 47.450	1.00 1.00	19.28 16.74
3004 CD2 3005 CE1	PHE	383	96.553	43.892	57.843	1.00	34.44		3078 CA	GLU	393	92.827	30.191	46.949	1.00	24.04
3006 CE2	PHE	383	96.415	45.963	56.628	1.00	34.81	65	3079 CB	GLU	393	91.579	30.821	47.565	1.00	27.67
3007 CZ	PHE	383	96.081	45.275	57.807	1.00	35.83		3080 CG	GLU	393	91.105	32.067	46.831	1.00	20.67

TABLE 10-continued

Structur			of Tobacco				nase	5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor
3081 CD	GLU	393	90.095	32.873	47.618	1.00	19.63		3154 CB	THR	403	108.446	39.288	42.167	1.00	15.80
3082 OE1	GLU	393	89.550	32.362	48.619	1.00	20.04		3155 OG1	THR	403	109.662	38.922	42.827	1.00	16.98
3083 OE2 3084 C	GLU GLU	393 393	89.853 94.044	34.032 31.071	47.232 47.226	$\frac{1.00}{1.00}$	26.17 27.53	10	3156 CG2 3157 C	THR THR	403 403	107.647 108.515	40.210 37.084	43.071 40.980	1.00 1.00	14.55 17.52
3085 O	GLU	393	94.474	31.837	46.361	1.00	22.89		3157 C	THR	403	109.136	37.523	40.013	1.00	14.77
3086 N	TYR	394	94.590	30.960	48.435	1.00	26.05		3159 N	TYR	404	108.533	35.799	41.326	1.00	19.57
3087 CA	TYR	394	95.762	31.736 31.293	48.829	1.00	26.22		3160 CA 3161 CB	TYR	404	109.375	34.842	40.617	1.00	16.03
3088 CB 3089 CG	TYR TYR	394 394	96.252 97.597	31.868	50.211 50.595	1.00 1.00	32.15 37.24	15	3162 CG	TYR TYR	404 404	109.560 110.799	33.560 33.611	41.431 42.295	1.00 1.00	23.52 19.00
3090 CD1	TYR	394	97.739	33.224	50.890	1.00	37.33	15	3163 CD1	TYR	404	111.271	34.828	42.785	1.00	20.18
3091 CE1	TYR	394	98.980	33.762	51.214	1.00	33.89		3164 CE1	TYR	404	112.430	34.903	43.536	1.00	26.20
3092 CD2 3093 CE2	TYR TYR	394 394	98.733 99.979	31.061 31.590	50.639 50.961	1.00 1.00	35.64 31.95		3165 CD2 3166 CE2	TYR TYR	404 404	111.527 112.695	32.459 32.523	42.586 43.345	1.00 1.00	21.26 26.60
3094 CZ	TYR	394	100.095	32.941	51.248	1.00	34.89		3167 CZ	TYR	404	113.139	33.753	43.813	1.00	25.95
3095 OH	TYR	394	101.324	33.471	51.562	1.00	35.44	20	3168 OH	TYR	404	114.291	33.853	44.553	1.00	17.83
3096 C 3097 O	TYR TYR	394 394	96.900 97.400	31.615 32.622	47.813 47.310	$\frac{1.00}{1.00}$	27.71 30.17		3169 C 3170 O	TYR TYR	404 404	109.040 109.945	34.545 34.265	39.164 38.375	1.00 1.00	16.09 15.20
3097 O 3098 N	LEU	395	97.400	30.379	47.496	1.00	19.47		3170 O	TYR	405	109.943	34.593	38.803	1.00	14.07
3099 CA	LEU	395	98.356	30.112	46.551	1.00	18.70		3172 CA	TYR	405	107.375	34.360	37.411	1.00	18.64
3100 CB	LEU	395	98.664	28.615	46.506	1.00	23.07		3173 CB	TYR	405	105.852	34.353	37.250	1.00	21.43
3101 CG 3102 CD1	LEU LEU	395 395	99.219 99.416	28.005 26.512	47.796 47.609	$\frac{1.00}{1.00}$	25.20 19.35	25	3174 CG 3175 CD1	TYR TYR	405 405	105.096 104.458	33.276 33.557	37.991 39.196	1.00 1.00	14.20 25.61
3103 CD2	LEU	395	100.532	28.681	48.180	1.00	17.74		3176 CE1	TYR	405	103.687	32.599	39.844	1.00	26.54
3104 C	LEU	395	98.106	30.630	45.140	1.00	19.62		3177 CD2	TYR	405	104.949	31.998	37.452	1.00	18.03
3105 O 3106 N	LEU SER	395 396	99.030 96.862	31.112 30.549	44.485 44.676	$\frac{1.00}{1.00}$	19.16 25.13		3178 CE2 3179 CZ	TYR TYR	405 405	104.178 103.550	31.031 31.341	38.094 39.290	1.00 1.00	15.71 17.50
3100 N 3107 CA	SER	396	96.521	31.018	43.332	1.00	19.88		3179 CZ 3180 OH	TYR	405	103.330	30.404	39.290	1.00	14.13
3108 CB	SER	396	95.047	30.749	43.022	1.00	25.09	30	3181 C	TYR	405	107.922	35.558	36.638	1.00	16.83
3109 OG	SER	396	94.196	31.513	43.858	1.00	39.87		3182 O	TYR	405	108.450	35.433	35.532	1.00	12.99
3110 C 3111 O	SER SER	396 396	96.828 96.920	32.504 33.005	43.165 42.040	$\frac{1.00}{1.00}$	19.03 15.70		3183 N 3184 CA	TYR TYR	406 406	107.784 108.213	36.718 38.005	37.271 36.749	1.00 1.00	19.05 20.07
3112 N	ASN	397	96.999	33.198	44.290	1.00	14.51		3185 CB	TYR	406	107.708	39.095	37.709	1.00	20.76
3113 CA	ASN	397	97.308	34.624	44.281	1.00	20.25		3186 CG	TYR	406	108.060	40.523	37.365	1.00	13.44
3114 CB 3115 CG	ASN ASN	397 397	96.252 96.348	35.401 36.901	45.072 44.858	$\frac{1.00}{1.00}$	21.33 25.70	35	3187 CD1 3188 CE1	TYR TYR	406 406	108.092 108.412	40.965 42.284	36.044 35.739	1.00 1.00	16.24 19.34
3116 OD1	ASN	397	95.985	37.411	43.795	1.00	26.44		3189 CD2	TYR	406	108.412	41.436	38.373	1.00	2.00
3117 ND2	ASN	397	96.840	37.617	45.868	1.00	14.18		3190 CE2	TYR	406	108.673	42.751	38.081	1.00	7.86
3118 C	ASN	397 397	98.702 99.446	34.926 35.727	44.844 44.277	1.00 1.00	21.44		3191 CZ 3192 OH	TYR	406 406	108.701	43.171 44.481	36.764 36.481	1.00 1.00	14.60 12.74
3119 O 3120 N	ASN ALA	397 398	99.446	34.263	45.944	1.00	16.68 21.43		3192 OH 3193 C	TYR TYR	406	109.015 109.735	38.068	36.570	1.00	18.51
3121 CA	ALA	398	100.339	34.463	48.611	1.00	18.24	40	3194 O	TYR	406	110.222	38.302	35.462	1.00	20.47
3122 CB	ALA	398	100.303	33.853	47.996	1.00	9.21		3195 N	LEU	407	110.478	37.822	37.647	1.00	18.49
3123 C 3124 O	ALA ALA	398 398	101.576 102.693	33.973 34.375	45.861 48.183	$\frac{1.00}{1.00}$	22.03 27.40		3196 CA 3197 CB	LEU LEU	407 407	111.944 112.536	37.854 37.617	37.602 38.994	1.00 1.00	17.48 9.18
3125 N	LEU	399	101.392	33.099	44.878	1.00	24.29		3198 CG	LEU	407	112.066	38.535	40.125	1.00	11.41
3126 CA	LEU	399	102.530	32.590	44.123	1.00	21.14	45	3199 CD1	LEU	407	112.894	38.261	41.366	1.00	4.35
3127 CB 3128 CG	LEU LEU	399 399	102.133 101.814	31.379 30.092	43.276 44.047	$\frac{1.00}{1.00}$	16.51 22.47	45	3200 CD2 3201 C	LEU LEU	407 407	112.179 112.533	40.001 36.843	39.714 36.619	1.00 1.00	14.20 17.93
3129 CD1	LEU	399	101.475	28.979	43.068	1.00	23.59		3201 C	LEU	407	113.506	37.142	35.925	1.00	23.70
3130 CD2	LEU	399	102.986	29.686	44.929	1.00	24.50		3203 N	ALA	408	111.944	35.650	36.568	1.00	17.24
3131 C 3132 O	LEU LEU	399 399	103.189 104.414	33.656 33.724	43.256 43.181	$\frac{1.00}{1.00}$	21.08 27.40		3204 CA 3205 CB	ALA ALA	408 408	112.402 111.636	34.603 33.320	35.662 35.913	$\frac{1.00}{1.00}$	15.77 20.39
3132 U 3133 N	ALA	<i>3</i> 99 400	104.414	34.499	43.181	1.00	23.35	50	3205 CB 3206 C	ALA	408 408	111.636	35.046	35.913	1.00	20.39 15.32
3134 CA	ALA	400	102.921	35.556	41.762	1.00	25.45		3207 O	ALA	408	113.108	34.820	33.383	1.00	19.31
3135 CB	ALA	400	101.860	36.050	40.782	1.00	20.16		3208 N	THR	409	111.106	35.685	33.919	1.00	18.97
3138 C 3137 O	ALA ALA	400 400	103.500 104.438	36.724 37.380	42.562 42.109	$\frac{1.00}{1.00}$	21.72 16.17		3209 CA 3210 CB	THR THR	409 409	110.830 109.382	36.174 36.705	32.570 32.455	1.00 1.00	20.42 12.64
3138 N	THR	401	102.960	36.966	43.757	1.00	16.96		3211 OG1	THR	409	108.465	35.679	32.853	1.00	23.03
3139 CA	THR	401	103.445	38.054	44.605	1.00	19.18	55	3212 CG2	THR	409	109.074	37.116	31.023	1.00	8.86
3140 CB 3141 OG1	THR THR	401 401	102.535 102.407	38.294 37.090	45.832 46.592	$\frac{1.00}{1.00}$	15.54 24.65		3213 C 3214 O	THR THR	409 409	111.804 112.269	37.302 37.426	32.233 31.096	1.00 1.00	18.76 14.71
3141 OG1 3142 CG2	THR	401	102.407	38.752	45.393	1.00	12.23		3214 O 3215 N	THR	410	112.209	38.105	33.245	1.00	23.19
3143 C	THR	401	104.893	37.842	45.055	1.00	25.46		3216 CA	THR	410	113.031	39.232	33.105	1.00	22.03
3144 O 3145 N	THR	401	105.512	38.743	45.624 44.813	1.00	34.91		3217 CB 3218 OG1	THR	410 410	113.060 111.751	40.078 40.600	34.390	1.00	17.23
3145 N 3146 CA	THR THR	402 402	105.421 106.807	36.644 36.336	44.813	$\frac{1.00}{1.00}$	25.90 21.29	60	3218 OG1 3219 CG2	THR THR	410 410	111.751	41.228	34.652 34.251	1.00 1.00	20.47 18.91
3147 CB	THR	402	107.092	34.812	45.138	1.00	19.71		3220 C	THR	410	114.453	38.781	32.790	1.00	25.12
3148 OG1	THR	402	106.944	34.300	43.806	1.00	12.44		3221 O	THR	410	115.109	39.356	31.918	1.00	24.94
3149 CG2 3150 C	THR THR	402 402	106.152 107.674	34.080 36.988	46.070 44.076	1.00 1.00	17.92 22.11		3222 N 3223 CA	SER SER	411 411	114.913 116.264	37.741 37.221	33.486 33.298	1.00 1.00	18.76 11.15
3151 O	THR	402	108.881	37.135	44.245	1.00	21.20		3224 CB	SER	411	116.517	36.026	34.224	1.00	9.23
3152 N	THR	403	107.022	37.366	42.974	1.00	21.28	65	3225 OG	SER	411	115.722	34.911	33.871	1.00	10.06
3153 CA	THR	403	107.629	38.010	41.804	1.00	18.85		3226 C	SER	411	116.586	36.859	31.848	1.00	15.22

TABLE 10-continued

Structur			of Tobacco				nase	5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor
3227 O	SER	411	117.744	36.915	31.431	1.00	22.78		3300 CD	GLN	421	110.206	27.813	18.564	1.00	74.05
3228 N 3229 CA	TYR TYR	412 412	115.555 115.715	36.525 36.165	31.078 29.673	$\frac{1.00}{1.00}$	12.29 14.56	10	3301 OE1 3302 NE2	GLN GLN	421 421	110.596 110.190	26.786 27.941	19.128 17.242	1.00 1.00	68.24 83.42
3230 CB	TYR	412	114.473	35.428	29.160	1.00	21.66	10	3303 C	GLN	421	109.999	29.826	23.128	1.00	31.12
3231 CG	TYR	412	114.284	34.000	29.630	1.00	31.85		3304 O	GLN	421	109.336	29.041	23.807	1.00	35.81
3232 CD1 3233 CE1	TYR TYR	412 412	113.510 113.285	33.110 31.807	28.884 29.315	$\frac{1.00}{1.00}$	25.46 25.33		3305 N 3306 CA	ASP ASP	422 422	111.071 111.527	30.466 30.304	23.592 24.971	1.00 1.00	27.52 25.90
3234 CD2	TYR	412	114.837	33.544	30.829	1.00	33.63		3307 CB	ASP	422	112.963	30.821	25.137	1.00	25.75
3235 CE2 3236 CZ	TYR TYR	412 412	114.617	32.236 31.377	31.271 30.508	$\frac{1.00}{1.00}$	30.87 30.43	15	3308 CG 3309 OD1	ASP ASP	422 422	113.985 114.983	29.971 30.537	24.396 23.902	1.00 1.00	29.11 33.41
3230 CZ 3237 OH	TYR	412	113.837 113.589	30.095	30.308	1.00	25.14		3310 OD2	ASP	422	114.983	28.736	24.311	1.00	32.66
3238 C	TYR	412	115.938	37.382	28.775	1.00	18.89		3311 C	ASP	422	110.590	31.020	25.936	1.00	21.80
3239 O 3240 N	TYR LEU	412 413	116.473 115.501	37.252 38.553	27.672 29.235	1.00 1.00	21.47 22.06		3312 O 3313 N	ASP PHE	422 423	110.282 110.145	30.502 32.213	27.011 25.545	1.00 1.00	19.43 24.75
3241 CA	LEU	413	115.620	39.790	28.460	1.00	21.99	20	3314 CA	PHE	423	109.223	33.004	26.357	1.00	26.23
3242 CB	LEU	413	115.120	40.988	29.274	1.00	21.82	20	3315 CB	PHE	423	109.117	34.432	25.818	1.00	30.85
3243 CG 3244 CD1	LEU LEU	413 413	113.623 113.286	40.999 42.192	29.600 30.481	1.00 1.00	28.58 24.87		3316 CG 3317 CD1	PHE PHE	423 423	110.290 111.336	35.306 35.482	26.166 25.268	1.00 1.00	32.84 34.61
3245 CD2	LEU	413	112.806	41.026	28.316	1.00	20.55		3318 CD2	PHE	423	110.338	35.972	27.388	1.00	33.51
3246 C 3247 O	LEU LEU	413 413	117.008 117.157	40.081 40.329	27.901 26.702	$\frac{1.00}{1.00}$	23.58 27.31		3319 CE1 3320 CE2	PHE PHE	423 423	112.412 111.410	36.312 36.805	25.579 27.708	1.00 1.00	30.52 35.27
3248 N	GLY	414	118.018	40.041	28.764	1.00	17.88	25	3320 CE2	PHE	423	112.448	36.974	26.801	1.00	23.59
3249 CA	GLY	414	119.376	40.309	28.324	1.00	19.54		3322 C	PHE	423	107.849	32.354	26.330	1.00	24.84
3250 C 3251 O	GLY GLY	414 414	120.063 121.088	39.141 39.319	27.644 26.981	$\frac{1.00}{1.00}$	21.66 32.10		3323 O 3324 N	PHE GLU	423 424	107.106 107.530	32.392 31.751	27.311 25.191	1.00 1.00	31.10 29.70
3252 N	MET	415	119.500	37.947	27.804	1.00	20.71		3325 CA	GLU	424	106.261	31.070	24.982	1.00	36.07
3253 CA	MET	415	120.062	36.741	27.209	1.00	18.08	20	3326 CB	GLU	424	106.187	30.588	23.535	1.00	40.70
3254 CB 3255 CG	MET MET	415 415	119.440 119.705	35.504 35.424	27.850 29.345	$\frac{1.00}{1.00}$	15.67 19.68	30	3327 CG 3328 CD	GLU GLU	424 424	104.785 104.759	30.391 30.296	22.992 21.473	1.00 1.00	63.10 75.17
3256 SD	MET	415	118.883	34.052	30.144	1.00	21.56		3329 OE1	GLU	424	105.781	29.898	20.867	1.00	75.10
3257 CE 3258 C	MET MET	415 415	119.945 119.870	32.725 36.734	29.700 25.702	$\frac{1.00}{1.00}$	15.56 23.08		3330 OE2 3331 C	GLU GLU	424 424	103.710 106.164	30.630 29.892	20.880 25.949	1.00 1.00	85.30 31.83
3259 O	MET	415	118.808	36.379	25.199	1.00	35.78		3332 O	GLU	424	105.138	29.687	26.595	1.00	35.87
3260 N	LYS	416	120.930	37.112	24.996	1.00	32.44	35	3333 N	TRP	425	107.258	29.148	26.066	1.00	29.46
3261 CA 3262 CB	LYS LYS	416 416	120.953 122.360	37.207 37.608	23.538 23.090	$\frac{1.00}{1.00}$	38.05 47.08		3334 CA 3335 CB	TRP TRP	425 425	107.339 108.680	27.999 27.285	26.958 26.753	1.00 1.00	23.86 25.55
3263 CG	LYS	416	122.865	38.875	23.776	1.00	61.44		3336 CG	TRP	425	108.991	26.265	27.803	1.00	29.41
3264 CD 3265 CE	LYS LYS	416	124.358	39.084	23.581 24.399	1.00 1.00	67.69		3337 CD2 3338 CE2	TRP	425 425	109.808 109.779	26.455 25.249	28.965 29.697	1.00 1.00	27.61
3266 NZ	LYS	416 416	124.846 126.319	40.273 40.457	24.399	1.00	67.49 75.93		3339 CE3	TRP TRP	425	110.557	23.249	29.697	1.00	24.31 30.25
3267 C	LYS	416	120.486	35.970	22.767	1.00	39.94	40	3340 CD1	TRP	425	108.521	24.984	27.871	1.00	28.89
3268 O 3269 N	LYS SER	416 417	120.113 120.493	36.070 34.813	21.597 23.422	1.00 1.00	44.84 39.76		3341 NE1 3342 CZ2	TRP TRP	425 425	108.987 110.473	24.369 25.087	29.007 30.900	1.00 1.00	29.83 16.37
3270 CA	SER	417	120.071	33.571	22.780	1.00	39.16		3343 CZ3	TRP	425	111.245	27.367	30.658	1.00	25.72
3271 CB	SER	417	120.900	32.398	23.304	1.00	38.83		3344 CH2	TRP	425	111.196	26.154	31.363	1.00	19.53
3272 OG 3273 C	SER SER	417 417	122.282 118.581	32.610 33.270	23.076 22.956	$\frac{1.00}{1.00}$	46.53 40.99	45	3345 C 3346 O	TRP TRP	425 425	107.205 106.523	28.437 27.792	28.414 29.213	$\frac{1.00}{1.00}$	25.64 26.99
3274 O	SER	417	118.040	32.385	22.289	1.00	41.33		3347 N	LEU	426	107.852	29.553	28.739	1.00	26.42
3275 N 3276 CA	ALA ALA	418 418	117.925 116.501	34.005 33.814	23.853 24.122	$\frac{1.00}{1.00}$	38.28 31.24		3348 CA 3349 CB	LEU LEU	426 426	107.853 108.922	30.103 31.191	30.088 30.195	$\frac{1.00}{1.00}$	21.18 21.43
3277 CB	ALA	418	116.087	34.610	25.348	1.00	30.62		3350 CG	LEU	426	109.379	31.600	31.595	1.00	14.19
3278 C	ALA	418	115.628	34.186	22.930	1.00	31.48	~ 0	3351 CD1	LEU	426	110.106	30.441	32.251	1.00	14.14
3279 O 3280 N	ALA THR	418 419	115.674 114.841	35.317 33.219	22.440 22.468	$\frac{1.00}{1.00}$	35.02 27.95	50	3352 CD2 3353 C	LEU LEU	426 426	110.297 106.504	32.798 30.664	31.499 30.523	$\frac{1.00}{1.00}$	12.82 23.80
3281 CA	THR	419	113.942	33.409	21.332	1.00	26.20		3354 O	LEU	426	106.153	30.596	31.702	1.00	31.77
3282 CB 3283 OG1	THR THR	419 419	113.996 113.511	32.197 31.027	20.370 21.039	$\frac{1.00}{1.00}$	26.76 27.32		3355 N 3356 CA	SER SER	427 427	105.754 104.444	31.221 31.802	29.575 29.871	$\frac{1.00}{1.00}$	28.08 30.28
3284 CG2	THR	419	115.424	31.945	19.901	1.00	18.56		3357 CB	SER	427	103.915	32.592	28.665	1.00	26.14
3285 C	THR	419	112.502	33.595	21.806	1.00	30.31	55	3358 OG	SER	427	103.742	31.763	27.528	1.00	29.08
3286 O 3287 N	THR GLU	419 420	112.241 111.573	33.693 33.662	23.005 20.857	$\frac{1.00}{1.00}$	33.17 35.12		3359 C 3360 O	SER SER	427 427	103.406 102.497	30.773 31.099	30.325 31.088	1.00 1.00	29.36 31.12
3288 CA	GLU	420	110.158	33.818	21.183	1.00	39.51		3361 N	LYS	428	103.558	29.530	29.873	1.00	27.92
3289 CB 3290 CG	GLU GLU	420 420	109.349 108.972	34.179 35.653	19.935 19.828	1.00 1.00	46.05 51.65		3362 CA 3363 CB	LYS LYS	428 428	102.637 102.770	28.455 27.290	30.230 29.251	1.00 1.00	20.58 23.24
3290 CG 3291 CD	GLU	420	108.972	36.104	20.919	1.00	54.36	60	3364 CG	LYS	428 428	102.770	27.613	29.231	1.00	23.24 22.85
3292 OE1	GLU	420	107.027	35.384	21.192	1.00	55.36	60	3365 CD	LYS	428	102.509	26.335	26.976	1.00	42.29
3293 OE2 3294 C	GLU GLU	420 420	108.245 109.620	37.186 32.527	21.500 21.781	$\frac{1.00}{1.00}$	58.01 37.05		3366 CE 3367 NZ	LYS LYS	428 428	102.338 102.345	26.597 25.316	25.493 24.727	1.00 1.00	49.89 62.04
3295 O	GLU	420	108.852	32.550	22.742	1.00	36.79		3368 C	LYS	428	102.844	27.935	31.654	1.00	20.72
3296 N 3297 CA	GLN GLN	421 421	110.050 109.624	31.404 30.090	21.215 21.676	1.00 1.00	37.04 33.78		3369 O 3370 N	LYS ASN	428 429	102.183 103.762	26.980 28.557	32.067 32.391	1.00 1.00	29.09 20.35
3298 CB	GLN	421	110.218	28.999	20.792	1.00	40.49	65	3371 CA	ASN	429	104.072	28.170	33.770	1.00	14.44
3299 CG	GLN	421	109.711	29.009	19.363	1.00	57.72		3372 CB	ASN	429		28.406	34.685	1.00	13.93

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structui			of Tobacco d Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
3373 CG	ASN	429	102.581	29.876	34.910	1.00	21.29		3446 CA	ILE	439	110.033	27.307	47.188	1.00	9.89
3374 OD1	ASN	429	103.306	30.747	34.431	1.00	26.38		3447 CB	ILE	439	111.369	26.901	46.525	1.00	12.54
3375 ND2	ASN	429	101.522	30.159	35.657	1.00	28.12	10	3448 CG2	ILE	439	112.540	27.161	47.459	1.00	11.31
3376 C	ASN	429	104.545	26.724	33.900	1.00	19.87		3449 CG1	ILE	439	111.321	25.424	46.136	1.00	2.00
3377 O 3378 N	ASN PRO	429 430	103.831 105.764	25.868 26.433	34.426 33.418	$\frac{1.00}{1.00}$	27.89 18.35		3450 CD1 3451 C	ILE ILE	439 439	112.441 110.152	24.990 28.706	45.233 47.783	1.00 1.00	14.05 9.52
3379 CD	PRO	430	106.650	27.362	32.701	1.00	19.00		3452 O	ILE	439	110.132	28.871	49.003	1.00	10.13
3380 CA	PRO	430	106.358	25.096	33.468	1.00	11.22		3453 N	CYS	440	110.135	29.714	46.918	1.00	8.13
3381 CB	PRO	430	107.711	25.309	32.808	1.00	15.49	15	3454 CA	CYS	440	110.233	31.098	47.361	1.00	12.62
3382 CG 3383 C	PRO PRO	430 430	107.444 106.518	26.425 24.612	31.859 34.902	1.00 1.00	26.05 17.61		3455 CB 3456 SG	CYS CYS	440 440	110.267 110.449	32.036 33.774	46.153 46.599	1.00 1.00	5.84 11.97
3384 O	PRO	430	106.617	25.416	35.828	1.00	19.92		3457 C	CYS	440	109.073	31.482	48.283	1.00	17.47
3385 N	LYS	431	106.569	23.294	35.073	1.00	18.71		3458 O	CYS	440	109.264	32.175	49.287	1.00	18.40
3386 CA	LYS	431	106.699	22.681	36.389	1.00	14.83		3459 N	ARG	441	107.875	31.012	47.940	1.00	18.94
3387 CB	LYS	431	106.682	21.157	36.256	1.00	15.08	20	3460 CA	ARG	441	106.669	31.296	48.714	1.00	11.76
3388 CG 3389 CD	LYS LYS	431 431	106.353 106.103	20.409 18.937	37.539 37.244	1.00 1.00	26.85 41.27		3461 CB 3462 CG	ARG ARG	441 441	105.433 104.093	30.810 31.083	47.949 48.629	1.00 1.00	10.60 6.45
3390 CE	LYS	431	105.561	18.195	38.455	1.00	49.80		3463 CD	ARG	441	103.718	32.559	48.590	1.00	19.08
3391 NZ	LYS	431	105.297	16.760	38.140	1.00	45.04		3464 NE	ARG	441	104.454	33.353	49.571	1.00	23.16
3392 C	LYS	431	107.959	23.137	37.121	1.00	19.80		3465 CZ	ARG	441	104.623	34.670	49.500	1.00	20.47
3393 O 3394 N	LYS ILE	431 432	107.937 109.051	23.333 23.316	38.338 36.380	$\frac{1.00}{1.00}$	20.81 15.93	25	3466 NH1 3467 NH2	ARG ARG	441 441	104.108 105.307	35.353 35.307	48.489 50.441	1.00 1.00	12.16 30.69
3394 N 3395 CA	ILE	432	110.306	23.757	36.979	1.00	16.86		3467 NH2	ARG	441	105.307	30.637	50.089	1.00	17.00
3396 CB	ILE	432	111.497	23.632	35.994	1.00	20.40		3469 O	ARG	441	106.629	31.307	51.120	1.00	25.77
3397 CG2	ILE	432	111.278	24.502	34.756	1.00	16.63		3470 N	VAL	442	106.858	29.317	50.086	1.00	22.16
3398 CG1	ILE	432	112.804	23.985	36.709	1.00	14.19		3471 CA	VAL	442	106.920	28.518	51.306	1.00	22.25
3399 CD1 3400 C	ILE ILE	432 432	114.048 110.182	23.649 25.187	35.920 37.499	$\frac{1.00}{1.00}$	13.37 17.42	30	3472 CB 3473 CG1	VAL VAL	442 442	107.112 107.624	27.032 26.261	50.959 52.164	$\frac{1.00}{1.00}$	23.82 26.50
3401 O	ILE	432	113.681	25.508	38.579	1.00	24.54	50	3474 CG2	VAL	442	105.796	26.450	50.471	1.00	31.37
3402 N	LEU	433	109.488	26.035	36.742	1.00	15.09		3475 C	VAL	442	108.004	28.969	52.283	1.00	21.17
3403 CA	LEU	433	109.277	27.420	37.146	1.00	14.83		3476 O	VAL	442	107.765	29.058	53.488	1.00	25.05
3404 CB 3405 CG	LEU LEU	433 433	108.728 108.378	28.245 29.708	35.978 36.272	$\frac{1.00}{1.00}$	13.49 10.45		3477 N 3478 CA	ILE ILE	443 443	109.195 110.305	29.243 29.685	51.761 52.596	1.00 1.00	22.99 27.94
3406 CD1	LEU	433	109.564	30.430	36.896	1.00	15.23	35	3479 CB	ILE	443	111.628	29.710	51.805	1.00	34.71
3407 CD2	LEU	433	107.939	30.400	34.993	1.00	9.30	33	3480 CG2	ILE	443	112.721	30.396	52.612	1.00	32.63
3408 C	LEU	433	108.289	27.433	38.304	1.00	18.07		3481 CG1	ILE	443	112.041	28.279	51.458	1.00	35.15
3409 O 3410 N	LEU GLU	433 434	108.481 107.245	28.140 26.621	39.295 38.173	1.00 1.00	21.14 21.38		3482 CD1 3483 C	ILE ILE	443 443	113.322 110.024	28.183 31.054	50.669 53.208	1.00 1.00	41.45 24.50
3410 N 3411 CA	GLU	434	106.209	26.503	39.188	1.00	16.25		3484 O	ILE	443	110.024	31.263	54.400	1.00	25.69
3412 CB	GLU	434	105.184	25.452	38.753	1.00	23.52	40	3485 N	ASP	444	109.500	31.972	52.398	1.00	24.21
3413 CG	GLU	434	103.812	25.605	39.385	1.00	38.66	40	3486 CA	ASP	444	109.178	33.314	52.875	1.00	26.25
3414 CD 3415 OE1	GLU GLU	434 434	103.161 102.828	26.933 27.148	39.037 37.851	1.00 1.00	42.62 32.73		3487 CB 3488 CG	ASP	444 444	108.695 108.365	34.203 35.624	51.721 52.169	1.00 1.00	29.76 39.45
3416 OE2	GLU	434	102.828	27.765	39.953	1.00	37.72		3489 OD1	ASP ASP	444	108.303	36.535	51.910	1.00	45.87
3417 C	GLU	434	106.850	26.095	40.511	1.00	14.12		3490 OD2	ASP	444	107.288	35.841	52.768	1.00	45.57
3418 O	GLU	434	106.561	26.676	41.556	1.00	14.76	45	3491 C	ASP	444	108.103	33.247	53.952	1.00	28.37
3419 N	ALA	435	107.753	25.120	40.440	1.00	17.75	45	3492 O	ASP	444	108.228	33.883	54.995	1.00	29.64
3420 CA 3421 CB	ALA ALA	435 435	108.465 109.303	24.610 23.410	41.610 41.214	1.00 1.00	16.67 8.83		3493 N 3494 CA	ASP ASP	445 445	107.061 105.950	32.458 32.318	53.700 54.637	1.00 1.00	30.42 32.30
3422 C	ALA	435	109.344	25.683	42.254	1.00	11.99		3495 CB	ASP	445	104.797	31.544	53.994	1.00	33.98
3423 O	ALA	435	109.372	25.827	43.477	1.00	7.99		3496 CG	ASP	445	104.151	32.302	52.838	1.00	37.92
3424 N	SER	436	110.057	26.435	41.422	1.00	15.97	50	3497 OD1	ASP	445	104.356	33.532	52.717	1.00	38.86
3425 CA 3426 CB	SER SER	436 436	110.924 111.636	27.508 28.163	41.900 40.713	$\frac{1.00}{1.00}$	21.95 24.20	50	3498 OD2 3499 C	ASP ASP	445 445	103.429 106.335	31.662 31.690	52.047 55.970	$\frac{1.00}{1.00}$	28.07 33.30
3427 OG	SER	436	112.489	29.212	41.135	1.00	40.93		3500 O	ASP	445	105.762	32.030	57.009	1.00	42.91
3428 C	SER	436	110.110	28.554	42.674	1.00	21.39		3501 N	THR	446	107.302	30.778	55.946	1.00	33.28
3429 O	SER	436	110.519	29.009	43.748	1.00	24.40		3502 CA	THR	446	107.758	30.124	57.168	1.00	30.88
3430 N 3431 CA	VAL VAL	437 437	108.951 108.054	28.912 29.889	42.125 42.739	$\frac{1.00}{1.00}$	18.68 8.95		3503 CB 3504 OG1	THR THR	446 446	108.625 107.873	28.887 27.969	56.855 56.050	1.00 1.00	26.02 21.99
3432 CB	VAL	437	106.855	30.188	41.818	1.00	11.54	55	3504 CG1	THR	446	107.873	28.188	58.143	1.00	25.74
3433 CG1	VAL	437	105.917	31.169	42.478	1.00	11.34		3506 C	THR	446	108.570	31.110	58.014	1.00	32.83
3434 CG2	VAL	437	107.339	30.734	40.486	1.00	5.44		3507 O	THR	446	108.459	31.131	59.238	1.00	33.61
3435 C	VAL	437 437	107.533	29.401	44.092 45.048	1.00	9.21		3508 N	ALA	447 447	109.357	31.944	57.339 57.996	1.00	40.56 45.46
3436 O 3437 N	VAL ILE	437 438	107.452 107.185	30.176 28.115	45.048	$\frac{1.00}{1.00}$	12.18 9.76		3509 CA 3510 CB	ALA ALA	447 447	110.202 111.313	32.937 33.374	57.996 57.056	1.00 1.00	45.46 42.21
3438 CA	ILE	438	106.673	27.504	45.388	1.00	8.03	60	3510 CB	ALA	447	109.434	34.155	58.468	1.00	46.97
3439 CB	ILE	438	106.309	26.015	45.171	1.00	14.49		3512 O	ALA	447	109.596	34.617	59.599	1.00	54.11
3440 CG2	ILE	438	105.931	25.380	46.500	1.00	10.62		3513 N	THR	448	108.599	34.690	57.581	1.00	47.28
3441 CG1 3442 CD1	ILE ILE	438 438	105.162 104.753	25.896 24.468	44.164 43.853	$\frac{1.00}{1.00}$	23.13 31.20		3514 CA 3515 CB	THR THR	448 448	107.832 107.689	35.884 36.787	57.879 56.618	1.00 1.00	46.44 41.12
3443 C	ILE	438	107.692	27.603	46.520	1.00	12.21		3516 OG1	THR	448	106.943	36.112	55.607	1.00	30.26
3444 O	ILE	438	107.349	27.982	47.639	1.00	18.63	65	3517 CG2	THR	448	109.064	37.170	56.071	1.00	32.60
3445 N	ILE	439	108.941	27.258	46.216	1.00	14.08		3518 C	THR	448	106.446	35.694	58.497	1.00	51.30

TABLE 10-continued

Structu			of Tobacco				hase	5	Structur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
3519 O	THR	448	105.708	36.657	58.620	1.00	53.69		3592 OE1	GLN	457	102.099	41.389	56.428	1.00	87.45
3520 N 3521 CA	TYR TYR	449	106.080	34.481	58.912 59.492	1.00	53.28	10	3593 NE2 3594 C	GLN	457	101.140	42.651	54.840	1.00 1.00	80.41
3521 CA 3522 CB	TYR	449 449	104.751 104.497	34.282 32.811	59.492 59.888	$\frac{1.00}{1.00}$	58.27 58.98	10	3594 C 3595 O	GLN GLN	457 457	97.755 98.645	38.879 38.020	58.197 58.262	1.00	66.56 70.53
3523 CG	TYR	449	103.175	32.661	60.637	1.00	61.56		3596 N	ILE	458	96.475	38.616	58.384	1.00	64.43
3524 CD1	TYR	449	101.973	33.066	60.055	1.00	66.72		3597 CA	ILE	458	95.976	37.272	58.664	1.00	60.84
3525 CE1 3526 CD2	TYR TYR	449 449	100.772 103.147	33.026 32.198	60.769 61.957	1.00 1.00	64.98 62.94		3598 CB 3599 CG2	ILE ILE	458 458	94.652 94.940	37.317 37.397	59.458 60.958	1.00 1.00	62.21 64.20
3527 CE2	TYR	449	101.956	32.155	62.672	1.00	66.76	15	3600 CG1	ILE	458	93.769	38.462	58.943	1.00	60.42
3528 CZ 3529 OH	TYR	449	100.773	32.575	62.080	1.00	67.45		3601 CD1	ILE	458	92.437	38.608	59.656	1.00	66.77
3529 OH 3530 C	TYR TYR	449 449	99.601 104.462	32.590 35.189	62.810 60.691	1.00 1.00	73.04 59.96		3602 C 3603 O	ILE ILE	458 458	95.768 95.281	36.440 35.310	57.403 57.468	1.00 1.00	55.84 51.58
3531 O	TYR	449	103.576	36.051	60.638	1.00	60.11		3604 N	ALA	459	96.145	37.005	56.259	1.00	58.27
3532 N	GLU	450	105.199	34.975	61.771	1.00	61.73		3605 CA	ALA	459	96.011	36.318	54.979	1.00	56.90
3533 CA 3534 CB	GLU GLU	450 450	105.029 106.071	35.733 35.308	62.995 64.025	1.00 1.00	61.61 65.21	20	3606 CB 3607 C	ALA ALA	459 459	95.609 97.296	37.305 35.587	53.888 54.579	1.00 1.00	56.20 54.74
3535 CG	GLU	450	105.833	33.912	64.589	1.00	75.41		3608 O	ALA	459	97.434	35.158	53.433	1.00	54.48
3536 CD	GLU	450 450	106.887	33.502	65.610	1.00	85.43		3609 N	THR	460	98.236	35.455 34.779	55.513 55.224	1.00	49.39
3537 OE1 3538 OE2	GLU GLU	450 450	107.416 107.196	34.375 32.293	66.331 65.686	1.00 1.00	91.32 90.42		3610 CA 3611 CB	THR THR	460 460	99.494 100.603	35.180	56.200	1.00 1.00	47.02 50.43
3539 C	GLU	450	105.026	37.251	62.841	1.00	59.86	2.5	3612 OG1	THR	460	100.077	35.259	57.532	1.00	52.34
3540 O	GLU	450	104.144	37.918	63.377	1.00	59.89	25	3613 CG2	THR	460	101.194	36.507	55.781	1.00	56.05
3541 N 3542 CA	VAL VAL	451 451	105.995 106.092	37.787 39.234	62.098 61.873	$\frac{1.00}{1.00}$	61.44 63.11		3614 C 3615 O	THR THR	460 460	99.399 98.566	33.264 32.651	55.164 55.832	$\frac{1.00}{1.00}$	45.28 47.09
3543 CB	VAL	451	107.408	39.596	61.116	1.00	64.01		3616 N	GLY	461	100.303	32.676	54.386	1.00	45.02
3544 CG1	VAL	451	107.256	40.886	60.304	1.00	63.92		3617 CA	GLY	461	100.351	31.238	54.190	1.00	41.47
3545 CG2 3546 C	VAL VAL	451 451	108.541 104.881	39.761 39.809	62.123 61.152	$\frac{1.00}{1.00}$	71.39 62.77	30	3618 C 3619 O	GLY GLY	461 461	100.107 99.172	30.318 29.516	55.367 55.341	$\frac{1.00}{1.00}$	38.12 41.90
3547 O	VAL	451	104.336	40.841	61.555	1.00	65.95		3620 N	ILE	462	100.962	30.399	56.380	1.00	36.28
3548 N	GLU	452	104.450	39.118	60.103	1.00	62.77		3621 CA	ILE	462	100.825	29.545	57.552	1.00	41.08
3549 CA 3550 CB	GLU GLU	452 452	103.304 103.275	39.545 38.782	59.315 57.991	1.00 1.00	57.61 56.30		3622 CB 3623 CG2	ILE ILE	462 462	101.954 101.814	29.813 28.893	58.580 59.792	1.00 1.00	34.80 33.01
3551 CG	GLU	452	104.444	39.130	57.058	1.00	59.48		3624 CG1	ILE	462	103.319	29.613	57.917	1.00	21.22
3552 CD	GLU	452	104.469	38.317	55.787	1.00	60.10	35	3625 CD1	ILE	462	103.525	28.231	57.322	1.00	17.74
3553 OE1 3554 OE2	GLU GLU	452 452	104.787 104.183	38.899 37.106	54.728 55.843	1.00 1.00	62.60 61.28		3626 C 3627 O	ILE ILE	462 462	99.444 98.823	29.683 28.682	58.197 58.556	1.00 1.00	47.74 53.27
3555 C	GLU	452	101.984	39.392	60.081	1.00	56.17		3628 N	GLU	463	98.940	30.915	58.266	1.00	49.04
3556 O	GLU	452	101.034	40.136	59.838	1.00	51.59		3629 CA	GLU	463	97.626	31.178	58.852	1.00	46.29
3557 N 3558 CA	LYS LYS	453 453	101.946 100.753	38.486 38.241	61.040 61.858	1.00 1.00	58.80 58.04		3630 CB 3631 CG	GLU GLU	463 463	97.358 96.076	32.687 33.063	58.929 59.677	1.00 1.00	44.06 51.03
3559 CB	LYS	453	100.863	36.913	62.611	1.00	59.76	40	3632 CD	GLU	463	96.101	32.673	61.150	1.00	55.15
3560 CG	LYS	453	99.644	36.565	63.453	1.00	60.02		3633 OE1	GLU	463	96.861	33.290	61.931	1.00	50.13
3561 CD 3562 CE	LYS LYS	453 453	99.925 98.732	35.384 35.093	64.366 65.262	1.00 1.00	58.67 61.72		3634 OE2 3635 C	GLU GLU	463 463	95.348 96.530	31.752 30.483	61.529 58.041	1.00 1.00	55.86 44.39
3563 NZ	LYS	453	99.013	33.991	66.222	1.00	58.55		3636 O	GLU	463	95.690	29.774	58.600	1.00	47.37
3564 C	LYS	453	100.584	39.385	62.863	1.00	57.99	45	3637 N	CYS	464	96.559	30.680	56.723	1.00	39.81
3565 O 3566 N	LYS SER	453 454	99.461 101.709	39.769 39.920	63.195 63.339	1.00 1.00	57.81 62.23	15	3638 CA 3639 CB	CYS CYS	464 464	95.589 95.916	30.068 30.426	55.816 54.362	1.00 1.00	37.44 29.94
3567 CA	SER	454	101.712	41.026	64.295	1.00	61.09		3640 SG	CYS	464	95.879	32.186	53.990	1.00	33.66
3568 CB	SER	454	103.125 103.548		64.837	1.00	60.66		3641 C	CYS	464	95.630	28.556	55.973	1.00	39.78
3569 OG 3570 C	SER SER	454 454	103.346	40.191 42.311	65.654 63.665	$\frac{1.00}{1.00}$	66.36 58.28		3642 O 3643 N	CYS CYS	464 465	94.594 96.846	27.903 28.016	56.091 55.995	$\frac{1.00}{1.00}$	43.58 44.06
3571 O	SER	454	100.632	43.163	64.360	1.00	56.27	50	3644 CA	CYS	465	97.072	26.583	56.133	1.00	43.89
3572 N	ARG	455	101.373	42.447	62.354	1.00	58.50		3645 CB	CYS	465	98.568	26.275	56.009	1.00	39.41
3573 CA 3574 CB	ARG ARG	455 455	100.916 101.827	43.623 43.885	61.619 60.414	$\frac{1.00}{1.00}$	62.35 67.55		3646 SG 3647 C	CYS CYS	465 465	98.961 96.532	24.513 26.052	55.936 57.454	1.00 1.00	40.79 44.77
3575 CG	ARG	455	103.261	44.228	60.797	1.00	76.19		3648 O	CYS	465	95.883	25.004	57.490	1.00	43.29
3576 CD	ARG	455 455	104.115	44.547 45.024	59.581 59.964	1.00 1.00	85.72 96.37		3649 N 3650 CA	MET	466 466	96.788	26.794	58.530	1.00 1.00	50.46
3577 NE 3578 CZ	ARG ARG	455	105.444 106.292	45.634	59.964	1.00	96.37 100.00	55	3651 CB	MET MET	466 466	96.342 96.838	26.418 27.429	59.870 60.916	1.00	59.83 58.39
3579 NH1	ARG	455	105.960	45.845	57.872	1.00	100.00		3652 CG	MET	466	98.343	27.424	61.149	1.00	55.57
3580 NH2	ARG	455 455	107.470	46.051	59.587	1.00	99.29		3653 SD	MET	466 466	98.825	28.416	62.560	1.00	56.88 50.47
3581 C 3582 O	ARG ARG	455 455	99.457 98.922	43.503 44.399	61.176 60.519	$\frac{1.00}{1.00}$	60.13 58.35		3654 CE 3655 C	MET MET	466 466	98.266 94.825	29.965 26.271	62.036 59.979	$\frac{1.00}{1.00}$	50.47 64.16
3583 N	GLY	456	98.824	42.391	61.546	1.00	60.37	60	3656 O	MET	466	94.334	25.227	60.409	1.00	65.97
3584 CA	GLY	456 456	97.432	42.164	61.201	1.00	62.20	00	3657 N	ARG	467	94.094	27.319	59.598	1.00	67.84
3585 C 3586 O	GLY GLY	456 456	97.183 96.036	41.378 41.048	59.925 59.626	1.00 1.00	67.18 70.98		3658 CA 3659 CB	ARG ARG	467 467	92.631 92.083	27.320 28.744	59.654 59.512	1.00 1.00	69.35 75.34
3587 N	GLN	457	98.238	41.091	59.166	1.00	69.31		3660 CG	ARG	467	92.397	29.655	60.684	1.00	84.97
3588 CA	GLN	457	98.108	40.340	57.917	1.00	68.54		3661 CD	ARG	467	91.640	30.965	60.560	1.00	96.41
3589 CB 3590 CG	GLN GLN	457 457	99.397 99.764	40.438 41.859	57.089 56.671	1.00 1.00	69.51 74.48	65	3662 NE 3663 CZ	ARG ARG	467 467	92.020 91.475	31.944 33.152	61.578 61.696	1.00 1.00	100.00 100.00
3591 CD	GLN	457	101.105	41.941	55.965	1.00	78.04		3664 NH1	ARG	467	90.515	33.541	60.862	1.00	100.00

TABLE 10-continued

Structur			of Tobacco yl Hydroxy				hase	5	Structur			of Tobacco				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
3665 NH2	ARG	467	91.901	33.982	62.639	1.00	100.00		3738 CB	MET	477	106.097	25.600	59.777	1.00	41.69
3666 C	ARG	467	91.965	26.415	58.620	1.00	64.55	10	3739 CG	MET	477	105.533	26.906	60.286	1.00	40.46
3667 O 3668 N	ARG ASP	467 468	90.863 92.631	25.907 26.222	58.853 57.485	$\frac{1.00}{1.00}$	66.78 52.01	10	3740 SD 3741 CE	MET MET	477 477	106.643 106.373	27.743 29.438	61.402 60.922	1.00 1.00	51.90 53.11
3669 CA	ASP	468	92.108	25.383	56.412	1.00	45.50		3742 C	MET	477	105.882	23.659	58.213	1.00	47.15
3670 CB	ASP	468	92.825	25.707	55.097	1.00	38.83		3743 O	MET	477	106.580	23.637	57.196	1.00	43.34
3671 CG 3672 OD1	ASP ASP	468 468	92.140 92.817	25.103 24.928	53.886 52.852	$\frac{1.00}{1.00}$	38.56 35.49		3744 N 3745 CA	ALA ALA	478 478	105.617 106.146	22.580 21.262	58.948 58.617	1.00 1.00	44.29 43.92
3673 OD2	ASP	468	90.925	24.814	53.953	1.00	52.91	15	3745 CA 3746 CB	ALA	478	105.808	20.264	59.716	1.00	37.80
3674 C	ASP	468	92.201	23.882	56.718	1.00	49.65	13	3747 C	ALA	478	105.601	20.732	57.272	1.00	43.29
3675 O	ASP	468	91.302	23.120	56.358	1.00	53.89		3748 O	ALA	478	106.312 104.346	20.127 21.116	56.509	1.00	44.64
3676 N 3677 CA	TYR TYR	469 469	93.271 93.475	23.469 22.059	57.397 57.740	1.00 1.00	48.30 47.34		3749 N 3750 CA	LYS LYS	479 479	104.346	20.723	56.981 55.715	1.00 1.00	45.34 50.82
3678 CB	TYR	469	94.887	21.611	57.345	1.00	49.69		3751 CB	LYS	479	102.214	20.847	55.762	1.00	57.75
3679 CG	TYR	469	95.110	21.555	55.851	1.00	50.72	20	3752 CG	LYS	479	101.555	20.268	54.522	1.00	65.44
3680 CD1 3681 CE1	TYR TYR	469 469	95.085 95.255	20.339 20.284	55.169 53.787	1.00 1.00	53.63 51.76		3753 CD 3754 CE	LYS LYS	479 479	100.167 99.651	20.814 20.332	54.286 52.943	1.00 1.00	68.93 68.91
3682 CD2	TYR	469	95.318	22.719	55.113	1.00	50.18		3755 NZ	LYS	479	93.384	20.999	52.566	1.00	74.62
3683 CE2	TYR	469	95.489	22.675	53.732	1.00	50.61		3756 C	LYS	479	104.283	21.581	54.581	1.00	47.22
3684 CZ 3685 OH	TYR TYR	469 469	95.455 95.615	21.456 21.407	53.075 51.708	1.00 1.00	54.80 57.11		3757 O 3758 N	LYS PHE	479 480	104.451 104.526	21.109 22.854	53.455 54.878	1.00 1.00	50.00 43.15
3686 C	TYR	469	93.013	21.743	59.215	1.00	46.62	25	3759 CA	PHE	480	104.326	23.776	53.894	1.00	43.13
3687 O	TYR	469	93.180	20.573	59.605	1.00	47.10		3760 CB	PHE	480	105.089	25.204	54.443	1.00	41.63
3688 N	GLY	470	93.069	22.788	60.026	1.00	43.51		3761 CG	PHE	480	103.894	26.021	54.033	1.00	44.23
3689 CA 3690 C	GLY GLY	470 470	92.837 94.055	22.610 22.038	61.449 62.146	$\frac{1.00}{1.00}$	43.21 45.56		3762 CD1 3763 CD2	PHE PHE	480 480	102.638 104.026	25.432 27.379	53.905 53.756	1.00 1.00	41.42 39.25
3691 O	GLY	470	93.952	21.077	62.912	1.00	44.25		3764 CE1	PHE	480	101.535	26.182	53.503	1.00	36.23
3692 N	ILE	471	95.215	22.624	61.860	1.00	50.47	30	3765 CE2	PHE	480	102.929	28.136	53.353	1.00	32.42
3693 CA 3694 CB	ILE ILE	471 471	96.488 97.415	22.188 21.596	62.433 61.342	1.00 1.00	49.97 47.18		3766 CZ 3767 C	PHE PHE	480 480	101.682 106.485	27.536 23.334	53.227 53.515	$\frac{1.00}{1.00}$	29.83 41.98
3695 CG2	ILE	471	96.844	20.285	60.811	1.00	47.32		3767 C	PHE	480	106.881	23.434	52.353	1.00	37.95
3696 CG1	ILE	471	97.613	22.611	60.211	1.00	41.43		3769 N	GLN	481	107.229	22.824	54.495	1.00	41.79
3697 CD1	ILE	471	98.427	22.094	59.049	1.00	46.18		3770 CA	GLN	481	108.585	22.342	54.256	1.00	41.10
3698 C 3699 O	ILE ILE	471 471	97.217 96.894	23.339 24.508	63.124 62.907	$\frac{1.00}{1.00}$	49.28 49.58	35	3771 CB 3772 CG	GLN GLN	481 481	109.238 109.603	21.868 22.993	55.559 56.513	1.00 1.00	39.98 47.39
3700 N	SER	472	98.204	23.000	63.949	1.00	49.04		3773 CD	GLN	481	110.507	24.034	55.870	1.00	56.58
3701 CA	SER	472	98.986	23.998	64.674	1.00	52.64		3774 OE1	GLN	481	111.605	23.720	55.406	1.00	55.49
3702 CB 3703 OG	SER SER	472 472	99.748 100.699	23.340 22.404	65.829 65.351	1.00 1.00	54.48 56.26		3775 NE2 3776 C	GLN GLN	481 481	110.042 108.553	25.279 21.204	55.834 53.245	1.00 1.00	58.30 38.69
3704 C	SER	472	99.969	24.716	63.753	1.00	53.26	40	3777 O	GLN	481	109.386	21.148	52.340	1.00	37.55
3705 O	SER	472	100.101	24.369	62.578	1.00	53.95	40	3778 N	ASN	482	107.564	20.324	53.391	1.00	35.14
3706 N 3707 CA	THR THR	473 473	100.650 101.634	25.725 26.491	64.292 63.531	1.00 1.00	53.55 54.18		3779 CA 3780 CB	ASN ASN	482 482	107.394 106.302	19.189 18.250	52.491 53.009	1.00 1.00	35.59 41.18
3708 CB	THR	473	102.233	27.639	64.384	1.00	60.37		3781 CG	ASN	482	106.647	17.642	54.355	1.00	52.28
3709 OG1	THR	473	101.180	28.490	64.855	1.00	61.07		3782 OD1	ASN	482	107.756	17.148	54.560	1.00	53.57
3710 CG2 3711 C	THR THR	473 473	103.210 102.760	28.469 25.550	63.562 63.105	$\frac{1.00}{1.00}$	58.84 51.25	45	3783 ND2 3784 C	ASN ASN	482 482	105.697 107.057	17.678 19.657	55.282 51.081	$\frac{1.00}{1.00}$	61.08 32.00
3711 C 3712 O	THR	473	103.203	25.573	61.956	1.00	44.22		3784 C	ASN	482	107.057	18.971	50.105	1.00	35.80
3713 N	LYS	474	103.173	24.697	64.038	1.00	49.57		3786 N	MET	483	106.421	20.822	50.981	1.00	30.00
3714 CA	LYS	474	104.236	23.722	63.821 65.098	1.00	51.50		3787 CA 3788 CB	MET	483	106.063	21.391	49.687	1.00	29.42
3715 CB 3716 CG	LYS LYS	474 474	104.440 105.605	22.903 21.930	65.063	$\frac{1.00}{1.00}$	55.84 60.97		3789 CG	MET MET	483 483	105.092 103.693	22.562 22.173	49.855 50.303	$\frac{1.00}{1.00}$	33.61 33.22
3717 CD	LYS	474	105.778	21.266	66.421	1.00	66.81	50	3790 SD	MET	483	102.589	23.605	50.374	1.00	34.18
3718 CE	LYS	474	107.011	20.382	66.482	1.00	71.89		3791 CE	MET	483	102.294	23.881	48.638	1.00	31.57
3719 NZ 3720 C	LYS LYS	474 474	107.261 103.924	19.853 22.797	67.832 62.646	$\frac{1.00}{1.00}$	72.76 53.47		3792 C 3793 O	MET MET	483 483	107.330 107.453	21.870 21.778	48.991 47.769	$\frac{1.00}{1.00}$	26.58 26.98
3721 O	LYS	474	104.759	22.603	61.759	1.00	56.55		3794 N	ALA	484	108.267	22.386	49.782	1.00	24.14
3722 N	GLU	475	102.712	22.249	62.637	1.00	54.30		3795 CA	ALA	484	109.539	22.874	49.261	1.00	20.18
3723 CA 3724 CB	GLU GLU	475 475	102.271 100.921	21.342 20.719	61.578 61.946	$\frac{1.00}{1.00}$	54.12 49.93	55	3796 CB 3797 C	ALA ALA	484 484	110.260 110.399	23.687 21.694	50.323 48.812	1.00 1.00	15.48 18.99
3724 CB 3725 CG	GLU	475	100.921	19.925	63.244	1.00	54.09		3797 C	ALA	484	111.070	21.762	47.777	1.00	18.13
3726 CD	GLU	475	99.559	19.471	63.673	1.00	56.55		3799 N	GLU	485	110.360	20.610	49.587	1.00	15.88
3727 OE1 3728 OE2	GLU	475 475	99.055 98.977	18.476 20.109	63.111	1.00	59.40 54.88		3800 CA	GLU	485 485	111.115	19.398	49.274 50.391	1.00	22.72
3728 OE2 3729 C	GLU GLU	475 475	102.170	20.109	54.577 60.224	$\frac{1.00}{1.00}$	54.88 48.29		3301 CB 3802 CG	GLU GLU	485 485	110.965 111.571	18.367 18.811	51.719	1.00 1.00	26.33 57.96
3730 O	GLU	475	102.514	21.485	59.192	1.00	43.53	60	3803 CD	GLU	485	111.355	17.814	52.853	1.00	66.33
3731 N	ALA	476	101.706	23.291	60.240	1.00	47.85		3804 OE1	GLU	485	110.840	16.702	52.602	1.00	74.62
3732 CA 3733 CB	ALA ALA	476 476	101.556 100.857	24.085 25.400	59.023 59.335	1.00 1.00	48.40 44.20		3805 OE2 3806 C	GLU GLU	485 485	111.704 110.625	18.149 18.806	54.006 47.962	1.00 1.00	72.14 19.07
3734 C	ALA	476	102.906	24.348	58.367	1.00	45.69		3807 O	GLU	485	111.422	18.403	47.114	1.00	23.09
3735 O	ALA	476	103.043	24.246	57.148	1.00	40.88	65	3808 N	THR	486	109.306	13.768	47.802	1.00	18.34
3736 N 3737 CA	MET MET	477 477	103.897 105.241	24.690 24.956	59.185 58.687	1.00 1.00	46.31 47.60	65	3809 CA 3810 CB	THR THR	486 486	108.680 107.132	18.247 18.239	46.594 46.724	1.00 1.00	13.68 19.42
3131 CA	WILLI	7//	100.241	۵۳.۶۵0	30.007	1.00	77.00		2010 CD	1111	700	101.132	10.239	70.724	1.00	17.42

TABLE 10-continued

Structur			of Tobacco l Hydroxy			_	hase	· 5	Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	occ	B- factor		Atom Atom Type	Resi- due	Resi- due #	x	Y	z	OCC	B- factor
3811 OG1	THR	486	106.740	17.320	47.753	1.00	18.34		3884 CD1	LEU	495	118.788	20.781	37.650	1.00	2.00
3812 CG2	THR	486 486	106.474	17.832	45.409	1.00	7.13	10	3885 CD2 3886 C	LEU	495 495	117.866	22.164	35.771	1.00	6.14
3813 C 3814 O	THR THR	486	109.084 109.432	19.126 18.628	45.418 44.347	$\frac{1.00}{1.00}$	12.40 12.64	10	3887 O	LEU LEU	495	117.279 118.146	18.289 18.366	33.593 32.717	1.00 1.00	21.97 20.13
3815 N	ALA	487	109.054	20.437	45.641	1.00	18.37		3888 N	LEU	496	116.602	17.171	33.849	1.00	21.91
3816 CA 3817 CB	ALA ALA	487 487	109.420 109.224	21.406 22.812	44.618 45.137	1.00 1.00	14.12 12.83		3889 CA 3890 CB	LEU LEU	496 496	116.851 116.126	15.931 14.760	33.118 33.784	1.00 1.00	15.41 8.37
3818 C	ALA	487	110.863	21.195	44.178	1.00	11.72		3891 CG	LEU	496	116.126	14.435	35.204	1.00	10.05
3819 O	ALA	487	111.182	21.312	42.993	1.00	14.71	15	3892 CD1	LEU	496	115.819	13.269	35.769	1.00	2.00
3820 N 3821 CA	TRP TRP	488 488	111.731 113.129	20.860 20.616	45.128 44.801	1.00 1.00	11.21 9.48		3893 CD2 3894 C	LEU LEU	496 496	118.094 116.492	14.121 16.017	35.206 31.641	1.00 1.00	5.54 14.28
3822 CB	TRP	488	113.129	20.541	46.061	1.00	2.00		3895 O	LEU	496	115.471	16.593	31.269	1.00	19.94
3823 CG	TRP	488	114.586	21.864	46.394	1.00	10.22		3896 N	ARG	497	117.360	15.454	30.808	1.00	16.05
3824 CD2 3825 CE2	TRP TRP	488 488	115.535	22.596	45.602 46.279	1.00 1.00	8.75		3897 CA 3898 CB	ARG	497 497	117.184 118.516	15.456 15.107	29.359 28.682	1.00 1.00	18.50
3826 CE2	TRP	488	115.798 116.186	23.807 22.345	44.384	1.00	8.09 8.76	20	3899 CG	ARG ARG	497	119.665	16.035	29.066	1.00	19.50 28.42
3827 CD1	TRP	488	114.322	22.636	47.488	1.00	2.81		3900 CD	ARG	497	121.024	15.363	28.908	1.00	24.39
3828 NE1 3829 CZ2	TRP TRP	488 488	115.045 116.686	23.807 24.768	47.425 45.780	$\frac{1.00}{1.00}$	14.28 4.43		3901 NE 3902 CZ	ARG ARG	497 497	121.803 122.978	15.905 16.517	27.797 27.927	1.00 1.00	27.16 26.59
3830 CZ3	TRP	488	117.072	23.301	43.885	1.00	8.98		3902 CZ 3903 NH1	ARG	497	123.525	16.677	29.125	1.00	14.53
3831 CH2	TRP	488	117.312	24.497	44.585	1.00	9.72	25	3904 NH2	ARG	497	123.618	16.955	26.850	1.00	32.59
3832 C 3833 O	TRP TRP	488 488	113.306 114.112	19.378 19.380	43.936 43.005	$\frac{1.00}{1.00}$	9.87 11.24	25	3905 C 3906 O	ARG ARG	497 497	116.099 115.890	14.471 13.441	28.922 29.566	$\frac{1.00}{1.00}$	23.25 25.86
3834 N	LYS	489	112.526	18.335	44.214	1.00	7.93		3900 O 3907 N	PRO	498	115.369	14.793	27.838	1.00	22.25
3835 CA	LYS	489	112.601	17.110	43.427	1.00	2.00		3908 CD	PRO	498	114.524	13.808	27.150	1.00	25.52
3836 CB 3837 CG	LYS LYS	489 489	111.815	15.987	44.096	1.00 1.00	7.82 9.24		3909 CA 3910 CB	PRO	498 498	115.491	16.003	27.017 25.715	$\frac{1.00}{1.00}$	25.55 17.40
3838 CD	LYS	489	112.350 111.550	15.603 14.471	45.470 46.069	1.00	2.14	30	3910 CB 3911 CG	PRO PRO	498 498	114.781 114.819	15.612 14.122	25.715	1.00	25.69
3839 CE	LYS	489	111.921	14.248	47.517	1.00	16.24		3912 C	PRO	498	114.785	17.192	27.662	1.00	28.98
3840 NZ 3841 C	LYS LYS	489 489	111.056 112.051	13.208 17.390	48.146 42.037	$\frac{1.00}{1.00}$	26.26 7.99		3913 O 3914 N	PRO THR	498 499	113.609 115.506	17.104 18.299	28.021 27.804	1.00 1.00	33.06 24.14
3842 O	LYS	489	112.480	16.784	41.055	1.00	11.24		3914 N 3915 CA	THR	499	114.949	19.511	28.391	1.00	15.92
3843 N	ASP	490	111.115	18.333	41.960	1.00	9.24		3916 CB	THR	499	116.070	20.473	28.835	1.00	16.49
3844 CA 3845 CB	ASP ASP	490 490	110.518 109.234	18.716 19.514	40.687 40.901	$\frac{1.00}{1.00}$	12.50 15.83	35	3917 OG1 3918 CG2	THR THR	499 499	116.946 116.870	20.735 19.862	27.730 29.983	1.00 1.00	6.47 10.26
3846 CG	ASP	490	109.234	18.648	41.360	1.00	23.66		3918 CG2	THR	499	114.043	20.205	27.374	1.00	19.26
3847 OD1	ASP	490	107.949	17.509	40.856	1.00	20.17		3920 O	THR	499	114.329	20.205	26.174	1.00	30.87
3848 OD2 3849 C	ASP ASP	490 490	107.308 111.501	19.111 19.522	42.221 39.856	1.00 1.00	28.73 11.20		3921 N 3922 CD	PRO PRO	500 500	112.919 112.472	20.776 20.794	27.836 29.239	1.00 1.00	16.60 9.65
3850 O	ASP	490	111.501	19.409	38.629	1.00	17.78	40	3922 CD 3923 CA	PRO	500	111.959	21.473	26.971	1.00	19.15
3851 N	ILE	491	112.308	20.345	40.523	1.00	16.49	40	3924 CB	PRO	500	110.870	21.907	27.954	1.00	16.41
3852 CA 3853 CB	ILE ILE	491 491	113.311 113.973	21.149 22.183	39.831 40.766	1.00 1.00	15.96 14.10		3925 CG 3926 C	PRO PRO	500 500	111.599 112.569	22.004 22.656	29.267 26.213	1.00 1.00	14.64 26.43
3854 CG2	ILE	491	115.138	22.870	40.058	1.00	17.39		3927 O	PRO	500	112.131	23.001	25.111	1.00	28.97
3855 CG1	ILE	491	112.938	23.221	41.209	1.00	20.61		3928 N	VAL	501	113.580	23.266	26.824	1.00	27.74
3856 CD1 3857 C	ILE ILE	491 491	113.493 114.372	24.319 20.207	42.097 39.279	$\frac{1.00}{1.00}$	6.59 11.72	45	3929 CA 3930 CB	VAL VAL	501 501	114.317 113.874	24.393 25.749	26.253 26.867	$\frac{1.00}{1.00}$	27.33 25.49
3858 O	ILE	491	114.802	20.342	38.132	1.00	18.27		3931 CG1	VAL	501	112.495	26.136	26.367	1.00	27.78
3859 N	ASN	492	114.744	19.217	40.084	1.00	9.30		3932 CG2	VAL	501	113.880	25.675	28.386	1.00	25.11
3860 CA 3861 CB	ASN ASN	492 492	115.739 116.078	18.232 17.320	39.684 40.866	$\frac{1.00}{1.00}$	8.49 8.53		3933 C 3934 O	VAL VAL	501 501	115.792 116.118	24.149 23.190	26.572 27.268	$\frac{1.00}{1.00}$	27.50 34.26
3862 CG	ASN	492	116.793	18.062	41.986	1.00	2.00		3935 N	SER	502	116.685	24.991	26.059	1.00	27.56
3863 OD1	ASN	492	117.444	19.081	41.756	1.00	2.00	50	3936 CA	SER	502	118.111	24.821	26.336	1.00	26.62
3864 ND2 3865 C	ASN ASN	492 492	116.674 115.296	17.554 17.421	43.204 38.458	$\frac{1.00}{1.00}$	9.30 6.69		3937 CB 3938 OG	SER SER	502 502	118.942 118.853	25.802 25.497	25.513 24.133	$\frac{1.00}{1.00}$	31.78 55.84
3866 O	ASN	492	116.120	17.067	37.618	1.00	15.10		3939 C	SER	502	118.407	25.000	27.823	1.00	30.86
3867 N	GLU	493	113.994	17.157	38.345	1.00	11.11		3940 O	SER	502	117.759	25.801	28.505	1.00	31.25
3868 CA 3869 CB	GLU GLU	493 493	113.452 112.036	16.420 15.929	37.203 37.490	$\frac{1.00}{1.00}$	6.79 14.43	55	3941 N 3942 CA	THR THR	503 503	119.387 119.785	24.247 24.296	28.318 29.726	1.00 1.00	31.45 32.20
3870 CG	GLU	493	111.966	14.681	38.344	1.00	35.11	33	3943 CB	THR	503	121.008	23.389	29.989	1.00	33.25
3871 CD	GLU	493	110.554	14.143	38.504	1.00	39.54		3944 OG1	THR	503	120.732	22.067	29.511	1.00	46.44
3872 OE1 3873 OE2	GLU GLU	493 493	109.669 110.335	14.505 13.345	37.695 39.441	$\frac{1.00}{1.00}$	36.96 44.74		3945 CG2 3946 C	THR THR	503 503	121.316 120.119	23.320 25.722	31.478 30.162	1.00 1.00	33.35 25.43
3874 C	GLU	493	113.420	17.284	35.947	1.00	15.20		3947 O	THR	503	119.955	26.087	31.331	1.00	17.17
3875 O	GLU	493	113.539	16.777	34.828	1.00	19.79	60	3948 N	GLU	504	120.569	26.522	29.200	1.00	21.60
3876 N 3877 CA	GLY GLY	494 494	113.234 113.176	18.588 19.512	36.140 35.021	1.00 1.00	15.92 13.61	-	3949 CA 3950 CB	GLU GLU	504 504	120.931 121.355	27.914 28.549	29.433 28.104	1.00 1.00	21.35 16.54
3878 C	GLY	494	114.488	19.613	34.276	1.00	18.91		3951 CG	GLU	504	121.779	30.009	28.189	1.00	26.78
3879 O	GLY	494	114.507	19.822	33.061	1.00	23.19		3952 CD	GLU	504	122.043	30.642	26.825	1.00	35.29
3880 N 3881 CA	LEU LEU	495 495	115.583 116.927	19.437 19.508	35.008 34.445	1.00 1.00	18.93 18.10		3953 OE1 3954 OE2	GLU GLU	504 504	121.832 122.460	29.971 31.821	25.789 26.793	1.00 1.00	38.25 34.16
3882 CB	LEU	495	117.955	19.662	35.571	1.00	12.15	65	3955 C	GLU	504	119.747	28.680	30.028	1.00	20.56
3883 CG	LEU	495	117.764	20.846	36.527	1.00	11.37		3956 O	GLU	504	119.924	29.595	30.837	1.00	14.15

TABLE 10-continued

Struct			of Tobacco				hase	· 5	Structur			of Tobacco				hase
Ato Atom Typ	m Resi- e due	Resi- due #	X	Y	z	OCC	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
3957 N	PHE	505	118.541	28.251	29.665	1.00	18.81		4030 CG	ARG	514	120.493	27.229	43.863	1.00	4.10
3958 CA 3959 CB	PHE PHE	505 505	117.320 116.330	28.896 28.995	30.126 28.966	$\frac{1.00}{1.00}$	15.87 13.36	10	4031 CD 4032 NE	ARG ARG	514 514	121.602 121.943	27.170 15.793	42.823 42.471	$\frac{1.00}{1.00}$	9.06
3939 CB 3960 CG	PHE	505	116.892	29.710	27.769	1.00	20.57	10	4032 NE 4033 CZ	ARG	514	121.943	25.434	41.403	1.00	17.13 16.59
3961 CD:	PHE	505	117.193	29.013	26.602	1.00	24.10		4034 NH 1	ARG	514	123.107	26.346	40.554	1.00	8.47
3962 CD: 3963 CE:		505 505	117.183 117.782	31.070 29.658	27.831 25.517	$\frac{1.00}{1.00}$	20.76 19.64		4035 NH2 4036 C	ARG ARG	514 514	122.929 119.190	24.154 30.106	41.197 46.084	1.00 1.00	15.58 13.80
3964 CE2		505	117.772	31.724	26.754	1.00	25.52		4030 C 4037 O	ARG	514	119.190	30.100	47.270	1.00	10.51
3965 CZ	PHE	505	118.072	31.015	25.595	1.00	26.72	15	4038 N	ILE	515	118.901	31.247	45.466	1.00	15.59
3966 C 3967 O	PHE PHE	505 505	116.675 115.703	28.274 28.808	31.358 31.886	1.00 1.00	15.98 16.03		4039 CA 4040 CB	ILE ILE	515 515	119.011 118.764	32.535 33.718	46.147 45.194	1.00 1.00	20.36 12.70
3967 O	LEU	506	117.232	27.162	31.829	1.00	16.47		4040 CB 4041 CG2	ILE	515	119.221	35.007	45.851	1.00	25.50
3969 CA	LEU	506	116.712	26.492	33.018	1.00	10.03		4042 CG1	ILE	515	119.567	33.534	43.910	1.00	19.52
3970 CB 3971 CG	LEU LEU	506 506	116.774 115.962	24.972 24.330	32.856 31.729	1.00 1.00	19.45		4043 CD1 4044 C	ILE ILE	515 515	119.220 118.085	34.523 32.672	42.828 47.353	1.00 1.00	29.86 17.44
3971 CO 3972 CD:		506	116.268	22.852	31.729	1.00	25.84 29.46	20	4044 C 4045 O	ILE	515	118.477	33.257	48.359	1.00	19.69
3973 CD	2 LEU	506	114.473	24.557	31.928	1.00	24.50		4046 N	VAL	516	116.868	32.136	47.258	1.00	21.26
3974 C 3975 O	LEU LEU	506 506	117.503 116.967	26.895 26.926	34.254 35.365	1.00 1.00	11.68 15.18		4047 CA 4048 CB	VAL VAL	516 516	115.915 114.504	32.218 31.679	48.369 48.008	1.00 1.00	23.09 32.21
3975 O 3976 N	THR	507	118.781	27.210	34.054	1.00	10.27		4049 CG1	VAL	516	113.444	32.441	48.787	1.00	27.43
3977 CA	THR	507	119.662	27.601	35.151	1.00	7.47	25	4050 CG2	VAL	516	114.244	31.755	46.526	1.00	29.34
3978 CB 3979 OG:	THR I THR	507 507	121.108 121.492	27.838 26.798	34.671 33.762	$\frac{1.00}{1.00}$	10.86 20.06	25	4051 C 4052 O	VAL	516 516	116.424	31.382 31.835	49.535 50.681	1.00 1.00	20.11 22.46
3980 CG		507	121.492	27.824	35.852	1.00	2.66		4052 O 4053 N	VAL GLU	517	116.429 116.833	30.154	49.229	1.00	21.26
3981 C	THR	507	119.181	28.824	35.936	1.00	10.65		4054 CA	GLU	517	117.352	29.230	50.231	1.00	23.87
3982 O 3983 N	THR PRO	507 508	119.229 118.718	28.821 29.887	37.167 35.242	$\frac{1.00}{1.00}$	14.58 8.73		4055 CB 4056 CG	GLU GLU	517 517	117.859 116.765	27.949 27.008	49.555 49.049	$\frac{1.00}{1.00}$	24.13 27.64
3984 CD	PRO	508	118.680	30.110	33.784	1.00	7.34	30	4050 CG 4057 CD	GLU	517	116.763	26.132	50.143	1.00	36.07
3985 CA	PRO	508	118.244	31.080	35.956	1.00	5.70		4058 OE1	GLU	517	116.480	26.314	51.336	1.00	40.38
3986 CB 3987 CG	PRO PRO	508 508	117.717 118.630	31.959 31.616	34.826 33.688	$\frac{1.00}{1.00}$	8.88 2.00		4059 OE2 4060 C	GLU GLU	517 517	115.338 118.484	25.248 29.872	49.804 51.024	1.00 1.00	38.38 25.33
3988 C	PRO	508	117.141	30.742	36.955	1.00	16.13		4061 O	GLU	517	118.488	29.840	52.255	1.00	28.96
3989 O	PRO	508	117.109	31.282	38.064	1.00	19.06		4062 N	VAL	518	119.411	30.492	50.297	1.00	22.43
3990 N 3991 CA	ILE ILE	509 509	116.254 115.149	29.831 29.390	36.555 37.401	$\frac{1.00}{1.00}$	12.82 7.60	35	4063 CA 4064 CB	VAL VAL	518 518	120.577 121.605	31.156 31.482	50.874 49.762	1.00 1.00	22.95 24.42
3991 CA 3992 CB	ILE	509	114.201	28.444	36.635	1.00	13.85		4065 CG1	VAL	518	122.767	32.289	50.313	1.00	23.12
3993 CG:	2 ILE	509	113.160	27.865	37.577	1.00	3.89		4066 CG2	VAL	518	122.105	30.194	49.125	1.00	20.43
3994 CG: 3995 CD:		509 509	113.533 112.681	29.189 28.301	35.477 34.597	1.00 1.00	8.63 16.09		4067 C 4068 O	VAL VAL	518 518	120.239 120.850	32.436 32.725	51.649 52.683	1.00 1.00	24.42 23.34
3996 CD	ILE	509	115.723	28.657	38.604	1.00	10.09	40	4069 N	THR	519	119.267	33.192	51.145	1.00	22.60
3997 O	ILE	509	115.320	28.906	39.744	1.00	13.81	40	4070 CA	THR	519	118.846	34.443	51.769	1.00	20.24
3998 N 3999 CA	LEU LEU	510 510	116.670 117.347	27.759 26.983	38.335 39.376	1.00 1.00	10.69 8.28		4071 CB 4072 OG1	THR THR	519 519	118.044 118.872	35.305 35.615	50.773 49.648	1.00 1.00	23.46 23.28
4000 CB	LEU	510	118.381	26.047	38.738	1.00	13.30		4073 CG2	THR	519	117.597	36.601	51.410	1.00	22.46
4001 CG	LEU	510	119.429	25.349	39.612	1.00	10.83		4074 C	THR	519	118.051	34.232	53.058	1.00	25.34
4002 CD: 4003 CD:		510 510	118.781 120.267	24.553 24.444	40.736 38.728	$\frac{1.00}{1.00}$	9.01 2.40	45	4075 O 4076 N	THR TYR	519 520	118.164 117.261	35.020 33.162	54.000 53.105	1.00 1.00	24.48 30.17
4004 C	LEU	510	118.033	27.927	40.358	1.00	4.13		4077 CA	TYR	520	116.461	32.848	54.290	1.00	34.43
4005 O	LEU	510	117.860	27.806	41.570	1.00	2.43		4078 CB	TYR	520	115.017	32.528	53.892	1.00	35.49
4006 N 4007 CA	ASN ASN	511 511	118.778 119.487	28.890 29.875	39.819 40.627	$\frac{1.00}{1.00}$	12.14 11.57		4079 CG 4080 CD1	TYR TYR	520 520	114.238 114.481	33.696 34.171	53.330 52.041	$\frac{1.00}{1.00}$	32.60 27.24
4008 CB	ASN	511	120.347	30.773	39.743	1.00	12.88		4081 CE1	TYR	520	113.758	35.242	51.520	1.00	34.38
4009 CG	ASN	511	121.567	30.054	39.208	1.00	18.35	50	4082 CD2	TYR	520	113.247	34.321	54.087	1.00	30.57
4010 OD: 4011 ND:		511 511	122.137 121.972	29.196 30.396	39.881 37.991	$\frac{1.00}{1.00}$	15.86 27.20		4083 CE2 4084 CZ	TYR TYR	520 520	112.516 112.777	35.392 35.848	53.577 52.294	$\frac{1.00}{1.00}$	22.83 34.91
4012 C	ASN	511	118.553	30.710	41.487	1.00	11.23		4085 OH	TYR	520	112.070	36.916	51.787	1.00	38.85
4013 O	ASN	511	118.883	31.018	42.634	1.00	9.07		4086 C	TYR	520	117.047	31.663	55.058	1.00	37.02
4014 N 4015 CA	LEU LEU	512 512	117.387 116.393	31.058 31.837	40.941 41.683	$\frac{1.00}{1.00}$	13.33 8.79	55	4087 O 4088 N	TYR ILE	520 521	116.321 118.361	30.937 31.483	55.740 54.956	1.00 1.00	41.01 39.45
4016 CB	LEU	512	115.168	32.131	40.814	1.00	13.75	55	4089 CA	ILE	521	119.048	30.380	55.621	1.00	41.53
4017 CG	LEU	512	115.255	33.332	39.865	1.00	12.09		4090 CB	ILE	521	120.561	30.363	55.251	1.00	34.97
4018 CD: 4019 CD:		512 512	114.100 115.256	33.306 34.623	38.884 40.667	$\frac{1.00}{1.00}$	2.00 2.00		4091 CG2 4092 CG1	ILE ILE	521 521	121.263 121.228	31.607 29.087	55.775 55.770	1.00 1.00	33.59 32.90
4020 C	LEU	512	115.975	31.083	42.940	1.00	10.14		4093 CD1	ILE	521	122.620	28.865	55.224	1.00	16.56
4021 O	LEU	512	115.810	31.682	44.002	1.00	13.04	60	4094 C	ILE	521	118.841	30.384	57.140	1.00	51.61
4022 N 4023 CA	ALA ALA	513 513	115.836 115.464	29.764 28.916	42.819 43.951	1.00 1.00	10.74 12.16	-	4095 O 4096 N	ILE HIS	521 522	118.649 118.840	29.329 31.573	57.750 57.737	1.00 1.00	55.56 57.98
4024 CB	ALA	513	115.097	27.523	43.464	1.00	14.93		4097 CA	HIS	522	118.634	31.715	59.176	1.00	63.52
4025 C	ALA	513	116.621	28.842	44.947	1.00	13.31		4098 CB	HIS	522	119.500	32.851	59.730	1.00	73.38
4026 O 4027 N	ALA ARG	513 514	116.408 117.846	28.757 28.879	46.157 44.424	1.00 1.00	9.13 19.25		4099 CG 4100 CD2	HIS HIS	522 522	120.971 122.020	32.581 33.405	59.659 59.421	1.00 1.00	84.65 85.52
4028 CA	ARG	514	119.048	28.834	45.253	1.00	17.40	65	4101 ND1	HIS	522	121.508	31.324	59.848	1.00	37.86
4029 CB	ARG	514	120.294	28.644	44.382	1.00	14.56		4102 CE1	HIS	522	122.822	31.386	59.729	1.00	88.53

TABLE 10-continued

Structur			of Tobacco l Hydroxy				nase	5	Structui			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor	_	Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
4103 NE2	HIS	522	123.158	32.637	59.470	1.00	88.81		4176 OE2	GLU	531	124.142	44.448	61.986	1.00	83.48
4104 C 4105 O	HIS HIS	522	117.159 116.816	31.977	59.482 60.546	1.00	63.87	10	4177 C	GLU	531	123.843 125.042	41.312 41.026	58.106 58.066	1.00	71.16
4105 U 4106 N	ASN	522 523	116.300	32.500 31.606	58.534	$\frac{1.00}{1.00}$	62.90 61.66	10	4178 O 4179 N	GLU GLU	531 532	123.042	40.470	58.563	$\frac{1.00}{1.00}$	69.83 69.84
4107 CA	ASN	523	114.850	31.771	58.635	1.00	60.61		4180 CA	GLU	532	123.299	39.151	59.064	1.00	69.95
4108 CB	ASN	523	114.273	30.822	59.691	1.00	60.04		4181 CB	GLU	532	122.239	38.621	60.028	1.00	76.12
4109 CG 4110 OD1	ASN ASN	523 523	112.807 112.388	30.509 30.266	59.453 58.319	1.00 1.00	59.80 62.26		4182 CG 4183 CD	GLU GLU	532 532	122.200 121.231	39.350 38.719	61.360 62.343	1.00 1.00	90.10 99.66
4111 ND2	ASN	523	112.021	30.510	60.522	1.00	59.58	15	4184 OE1	GLU	532	121.294	37.485	62.540	1.00	100.00
4112 C	ASN	523	114.434	33.220	58.910	1.00	60.32		4185 OE2	GLU	532	120.407	39.460	62.922	1.00	100.00
4113 O 4114 N	ASN LEU	523 524	113.481 115.162	33.486 34.149	59.649 58.295	1.00 1.00	55.47 61.14		4186 C 4187 O	GLU GLU	532 532	123.601 124.484	38.095 37.257	58.006 58.202	1.00 1.00	65.98 65.68
4115 CA	LEU	524	114.905	35.577	58.436	1.00	59.79		4188 N	VAL	533	122.878	38.136	56.891	1.00	60.94
4116 CB	LEU	524	115.935	36.223	59.371	1.00	62.62		4189 CA	VAL	533	123.071	37.152	55.829	1.00	51.25
4117 CG 4118 CD1	LEU LEU	524 524	115.945 117.147	35.764 36.347	60.835 61.567	1.00 1.00	65.24 65.21	20	4190 CB 4191 CG1	VAL VAL	533 533	121.727 121.983	36.491 35.305	55.419 54.492	1.00 1.00	57.84 49.96
4119 CD2	LEU	524	114.642	36.163	61.521	1.00	62.62		4192 CG2	VAL	533	120.942	36.054	56.655	1.00	58.45
4120 C 4121 O	LEU LEU	524 524	114.966	36.235 35.800	57.065 56.189	$\frac{1.00}{1.00}$	59.79 56.91		4193 C 4194 O	VAL VAL	533 533	123.741 124.834	37.704 37.270	54.574 54.208	1.00 1.00	44.33 42.16
4121 O 4122 N	ASP	525	115.721 114.156	37.274	56.882	1.00	62.76		4194 O 4195 N	LEU	534	123.085	38.662	53.925	1.00	37.63
4123 CA	ASP	525	114.100	38.006	55.620	1.00	59.59	25	4196 CA	LEU	534	123.590	39.249	52.687	1.00	27.92
4124 CB 4125 CG	ASP ASP	525 525	112.987 112.641	39.055 39.608	55.670 54.302	$\frac{1.00}{1.00}$	58.10 60.27	25	4197 CB 4198 CG	LEU LEU	534 534	122.499 121.258	40.068 39.299	52.002 51.554	$\frac{1.00}{1.00}$	24.48 25.70
4126 OD1	ASP	525	113.331	39.276	53.315	1.00	58.07		4199 CD1	LEU	534	120.395	40.207	50.696	1.00	29.78
4127 OD2	ASP	525	111.660	40.374	54.210	1.00	64.63		4200 CD2	LEU	534	121.657	38.064	50.769	1.00	19.34
4128 C	ASP ASP	525 525	115.448	38.668 39.740	55.332 55.854	1.00	59.32		4201 C	LEU LEU	534 534	124.864 125.661	40.076 40.069	52.770 51.834	$\frac{1.00}{1.00}$	29.24 31.85
4129 O 4130 N	GLY	525 526	115.753 116.239	38.028	54.478	$\frac{1.00}{1.00}$	63.36 58.65	30	4202 O 4203 N	LYS	535	125.053	40.793	53.875	1.00	30.62
4131 CA	GLY	526	117.557	38.536	54.149	1.00	55.69		4204 CA	LYS	535	126.239	41.632	54.047	1.00	30.24
4132 C	GLY	526 526	117.641	39.797	53.316	$\frac{1.00}{1.00}$	53.62		4205 CB	LYS	535 535	126.251 127.412	42.276 43.232	55.439 55.692	1.00 1.00	33.69
4133 O 4134 N	GLY TYR	527	118.648 116.607	40.502 40.085	53.372 52.534	1.00	60.05 51.88		4206 CG 4207 CD	LYS LYS	535	127.412	43.699	57.142	1.00	38.92 43.85
4135 CA	TYR	527	116.617	41.285	51.702	1.00	55.73		4208 CE	LYS	535	128.605	44.617	57.425	1.00	46.39
4136 CB 4137 CG	TYR TYR	527 527	115.648 115.562	41.119 42.295	50.545 49.598	$\frac{1.00}{1.00}$	55.31 57.45	35	4209 NZ 4210 C	LYS LYS	535 535	128.657 127.548	45.016 40.881	58.861 53.784	1.00 1.00	46.21 30.84
4138 CD1	TYR	527	116.330	42.293	48.433	1.00	58.75		4210 C 4211 O	LYS	535	128.328	41.286	52.918	1.00	28.96
4139 CE1	TYR	527	116.193	43.375	47.518	1.00	59.49		4212 N	PRO	536	127.790	39.759	54.495	1.00	26.98
4140 OD2 4141 CE2	TYR TYR	527 527	114.656 114.511	43.332 44.373	49.824 48.917	1.00 1.00	58.17 56.67		4213 CD 4214 CA	PRO PRO	536 536	126.965 129.018	39.148 38.982	55.554 54.302	1.00 1.00	30.04 22.09
4142 CZ	TYR	527	115.282	44.388	47.767	1.00	57.63	40	4215 CB	PRO	536	128.796	37.772	55.206	1.00	22.33
4143 OH	TYR	527	115.159	45.420	46.868	1.00	55.43	40	4216 CG	PRO	536	127.975	38.330	56.312	1.00	25.59
4144 C 4145 O	TYR TYR	527 527	116.266 116.862	42.524 43.593	52.517 52.342	1.00 1.00	58.54 58.64		4217 C 4218 O	PRO PRO	536 536	129.213 130.313	38.551 38.660	52.853 52.315	1.00 1.00	23.63 34.37
4146 N	THR	528	115.271	42.383	53.386	1.00	59.24		4219 N	HIS	537	128.137	38.082	52.226	1.00	21.41
4147 CA	THR	528	114.855	43.486	54.238	1.00	59.20		4220 CA	HIS	537	128.180	37.635	50.836	1.00	16.74
4148 CB 4149 OG1	THR THR	528 528	113.447 112.504	43.253 43.053	54.836 53.776	$\frac{1.00}{1.00}$	54.20 47.41	45	4221 CB 4222 CG	HIS HIS	537 537	126.812 126.392	37.108 35.849	50.393 51.086	$\frac{1.00}{1.00}$	17.36 26.82
4150 CG2	THR	528	113.010	44.458	55.655	1.00	54.59		4223 CD2	HIS	537	125.171	35.406	51.467	1.00	19.54
4151 C	THR	528	115.887	43.653	55.356	1.00	60.28		4224 ND1	HIS	537	127.289	34.872	51.465	1.00	20.86
4152 O 4153 N	THR HIS	528 529	116.168 116.464	44.773 42.533	55.787 55.792	$\frac{1.00}{1.00}$	63.64 61.45		4225 CE1 4226 NE2	HIS HIS	537 537	126.638 125.351	33.883 34.182	52.050 52.064	$\frac{1.00}{1.00}$	21.91 18.99
4154 CA	HIS	529	117.484	42.512	56.842	1.00	66.52		4227 C	HIS	537	128.611	38.757	49.910	1.00	19.57
4155 CB 4156 CG	HIS	529	116.984	41.721	58.060	1.00	66.73	50	4228 O	HIS	537	129.477	38.569	49.060	1.00	24.18
4150 CG 4157 CD2	HIS HIS	529 529	115.652 115.119	42.169 43.407	58.576 58.721	$\frac{1.00}{1.00}$	71.41 72.13		4229 N 4230 CA	ILE ILE	538 538	128.003 128.307	39.927 41.101	50.091 49.279	$\frac{1.00}{1.00}$	25.84 25.72
4158 ND1	HIS	529	114.688	41.286	59.010	1.00	74.46		4231 CB	ILE	538	127.331	42.262	49.600	1.00	25.90
4159 CE1	HIS	529	113.618	41.958	59.398 59.232	1.00	72.55		4232 CG2	ILE	538	127.739	43.536	48.856	1.00	21.31
4160 N E2 4161 C	HIS HIS	529 529	113.856 118.743	43.248 41.844	56.273	$\frac{1.00}{1.00}$	70.77 66.01	55	4233 CG1 4234 CD1	ILE ILE	538 538	125.905 124.847	41.849 42.872	49.219 49.559	$\frac{1.00}{1.00}$	14.44 19.77
4162 O	HIS	529	119.005	40.665	56.528	1.00	68.54	55	4235 C	ILE	538	129.760	41.545	49.467	1.00	24.83
4163 N	PRO	530	119.540	42.598	55.492	1.00	63.94		4236 O	ILE	538	130.419	41.957 41.440	46.510	1.00	17.63
4164 CD 4165 CA	PRO PRO	530 530	119.254 120.778	43.981 42.128	55.082 54.856	$\frac{1.00}{1.00}$	59.34 66.66		4237 N 4238 CA	ILE ILE	539 539	130.255 131.632	41.440	50.698 51.002	1.00 1.00	19.39 25.84
4166 CB	PRO	530	121.137	43.284	53.914	1.00	62.98		4239 CB	ILE	539	131.882	41.864	52.532	1.00	31.48
4167 CG	PRO	530 530	119.837	44.009 41.810	53.711 55.784	1.00 1.00	59.02 70.87	60	4240 CG2 4241 CG1	ILE ILE	539 539	133.375	41.923	52.835 53.137	1.00 1.00	28.38
4168 C 4169 O	PRO PRO	530	121.952 122.567	41.819 40.757	55.784 55.682	1.00	70.87 73.58		4241 CG1 4242 CD1	ILE	539	131.172 131.381	43.078 43.224	53.137 54.633	1.00	26.00 28.00
4170 N	GLU	531	122.248	42.762	56.676	1.00	73.21		4243 C	ILE	539	132.598	40.819	50.355	1.00	24.71
4171 CA	GLU	531	123.365	42.683	57.621	1.00	73.20		4244 O	ILE	539 540	133.587	41.218	49.742	1.00	30.21
4172 CB 4173 CG	GLU GLU	531 531	123.107 124.335	43.597 43.811	58.822 59.703	1.00 1.00	75.84 84.33		4245 N 4246 CA	ASN ASN	540 540	132.286 133.132	39.531 38.487	50.461 49.892	1.00 1.00	22.80 16.68
4174 CD	GLU	531	124.108	44.832	60.799	1.00	87.41	65	4247 CB	ASN	540	132.802	37.135	50.525	1.00	17.40
4175 OE1	GLU	531	123.904	46.021	60.474	1.00	95.89		4248 CG	ASN	540	133.009	37.126	52.032	1.00	26.52

TABLE 10-continued

Structur			of Tobacco l Hydroxy				hase	5	Structui			of Tobacco l Hydroxy			-	hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
4249 OD1	ASN	540	132.357	36.371	52.755	1.00	29.34		4322 OH2	WAT	607	124.677	19.198	47.081	1.00	15.60
4250 ND2 4251 C	ASN	540 540	133.918 133.039	37.969	52.511	1.00 1.00	25.48 16.85	10	4323 OH2 4324 OH2	WAT WAT	608 609	125.455 105.474	29.812 36.871	49.014 39.547	1.00 1.00	8.48 9.05
4251 C 4252 O	ASN ASN	540	133.933	38.386 37.832	48.371 47.733	1.00	18.60	10	4324 OH2 4325 OH2	WAT	610	133.536	36.915	40.513	1.00	19.37
4253 N	LEU	541	131.979	38.944	47.789	1.00	16.65		4326 OH2	WAT	611	126.730	22.375	41.980	1.00	17.96
4254 CA 4255 CB	LEU LEU	541 541	131.791 130.393	38.889 38.360	46.340 46.001	$\frac{1.00}{1.00}$	19.54 16.13		4327 OH2 4328 OH2	WAT WAT	612 613	133.379 136.836	23.457 31.698	50.388 39.273	1.00 1.00	16.43 23.48
4256 CG	LEU	541	130.003	36.954	46.463	1.00	16.63		4329 OH2	WAT	614	130.636	20.278	41.368	1.00	11.16
4257 CD1	LEU	541	128.588	36.662	46.017	1.00	9.71	15	4330 OH2	WAT	615	127.633	29.682	51.807	1.00	16.49
4258 CD2 4259 C	LEU LEU	541 541	130.960	35.919	45.901 45.585	1.00 1.00	11.40 22.24		4331 OH2	WAT WAT	616 617	100.533	31.281	26.832 34.150	1.00 1.00	34.28 25.91
4260 O	LEU	541	132.016 132.528	40.198 40.186	44.464	1.00	22.51		4332 OH2 4333 OH2	WAT	618	121.692 131.226	21.167 32.257	50.439	1.00	34.81
4261 N	LEU	542	131.642	41.321	46.192	1.00	23.86		4334 OH2	WAT	619	88.365	35.120	57.147	1.00	33.73
4262 CA	LEU	542	131.774	42.619	45.531	1.00	27.26		4335 OH2	WAT	620	118.147	18.317	26.341	1.00	21.70
4263 CB 4264 CG	LEU LEU	542 542	130.392 129.374	43.266 42.454	45.412 44.608	1.00 1.00	30.85 33.63	20	4336 OH2 4337 OH2	WAT WAT	621 622	113.190 125.312	8.087 30.072	35.703 37.791	1.00 1.00	36.62 30.00
4265 CD1	LEU	542	127.960	42.968	44.844	1.00	33.98		4338 OH2	WAT	623	92.432	24.852	50.099	1.00	25.65
4266 CD2	LEU	542	129.741	42.505	43.137	1.00	30.60		4339 OH2	WAT	624	108.974	15.165	49.075	1.00	21.10
4267 C 4268 O	LEU LEU	542 542	132.770 133.102	43.621 44.615	46.124 45.474	$\frac{1.00}{1.00}$	30.35 32.15		4340 OH2 4341 OH2	WAT WAT	625 626	135.431 115.012	14.884 4.805	45.393 43.826	1.00 1.00	46.74 30.43
4269 N	VAL	543	133.234	43.373	47.348	1.00	20.35		4342 OH2	WAT	627	88.415	44.463	58.820	1.00	30.86
4270 CA	VAL	543	134.192	44.263	48.008	1.00	17.15	25	4343 OH2	WAT	628	125.976	25.755	43.265	1.00	27.75
4271 CB 4272 CG1	VAL VAL	543 543	133.758 134.761	44.564 45.485	49.466 50.147	$\frac{1.00}{1.00}$	22.13 18.99		4344 OH2 4345 OH2	WAT WAT	629 630	117.921 91.157	5.153 43.104	51.682 44.532	1.00 1.00	34.87 27.09
4273 CG2	VAL	543	132.369	45.184	49.485	1.00	25.56		4346 OH2	WAT	631	114.902	63.428	42.828	1.00	30.49
4274 C	VAL	543	135.608	43.670	48.012	1.00	20.12		4347 OH2	WAT	632	99.150	43.135	52.476	1.00	17.32
4275 O 4276 N	VAL ASP	543 544	136.484 135.813	44.106 42.667	47.259 48.860	$\frac{1.00}{1.00}$	14.30 22.55	30	4348 OH2 4349 OH2	WAT WAT	633 634	116.849 136.092	14.286 41.410	50.256 33.663	1.00 1.00	20.41 26.72
4277 CA	ASP	544	137.102	41.999	48.992	1.00	17.64	20	4350 OH2	WAT	635	104.683	23.377	25.808	1.00	36.55
4278 CB	ASP	544	137.183	41.240	50.326	1.00	10.56		4351 OH2	WAT	636	133.163	25.808	57.616	1.00	29.75
4279 CG 4280 OD1	ASP ASP	544 544	137.103 136.839	42.164 41.648	51.532 52.639	$\frac{1.00}{1.00}$	22.81 23.90		4352 OH2 4353 OH2	WAT WAT	637 638	130.650 141.018	30.337 40.362	40.643 50.563	1.00 1.00	11.08 27.14
4281 OD2	ASP	544	137.313	43.390	51.385	1.00	33.46		4354 OH2	WAT	639	126.744	19.348	30.510	1.00	20.69
4282 C	ASP	544	137.389	41.018	47.868	1.00	18.71	35	4355 OH2	WAT	640	99.257	26.859	66.394	1.00	32.76
4283 O 4284 N	ASP SER	544 545	136.548 138.590	40.191 41.116	47.517 47.310	$\frac{1.00}{1.00}$	20.02 23.60		4356 OH2 4357 OH2	WAT WAT	641 642	107.042 111.411	13.044 17.702	38.812 31.576	1.00 1.00	37.53 25.63
4285 CA	SER	545	139.022	40.215	46.253	1.00	27.74		4358 OH2	WAT	643	136.247	16.841	49.081	1.00	26.74
4286 CB	SER	545	139.900	40.957	45.243	1.00	27.70		4359 OH2	WAT	644	130.107	34.877	51.432	1.00	22.05
4287 OG 4288 C	SER SER	545 545	141.043 139.823	41.512 39.098	45.871 46.920	1.00 1.00	32.50 31.23		4360 OH2 4361 OH2	WAT WAT	645 646	131.572 139.273	27.845 18.921	36.507 51.935	1.00 1.00	33.61 18.69
4289 O	SER	545	140.409	39.303	47.987	1.00	32.16	40	4362 OH2	WAT	647	102.180	34.258	26.188	1.00	38.28
4290 N	ILE	546	139.816	37.913	46.317	1.00	30.36		4363 OH2	WAT	648	123.655	36.667	26.709	1.00	23.51
4291 CA 4292 CB	ILE ILE	546 546	140.558 140.281	36.780 35.475	40.863 46.072	1.00 1.00	33.30 33.46		4364 OH2 4365 OH2	WAT WAT	649 650	126.661 106.153	35.233 21.764	55.363 42.249	1.00 1.00	32.41 20.34
4293 CG2	ILE	546	141.051	34.310	46.686	1.00	27.25		4366 OH2	WAT	651	135.834	34.833	30.691	1.00	52.17
4294 CG1	ILE	546	138.783	35.165	46.072	1.00	27.20	45	4367 OH2	WAT	652	103.106	38.892	25.426	1.00	26.00
4295 CD1 4296 C	ILE ILE	546 546	138.418 142.041	33.915 37.113	45.319 46.765	$\frac{1.00}{1.00}$	23.76 35.94	43	4368 OH2 4369 OH2	WAT WAT	653 654	140.880 112.327	35.431 13.971	50.226 50.722	1.00 1.00	26.45 46.47
4297 O	ILE	546	142.559	37.332	45.668	1.00	34.27		4370 OH2	WAT	655	142.876	32.708	49.617	1.00	38.19
4298 N	LYS			37.200	47.913	1.00	37.96		4371 OH2	WAT	656	136.448	11.686	63.277	1.00	31.93
4299 CA 4300 CB	LYS LYS	547 547	144.131 144.581	37.518 37.989	47.929 49.318	$\frac{1.00}{1.00}$	45.36 53.18		4372 OH2 4373 OH2	WAT WAT	657 658	128.522 124.837	28.120 30.666	35.575 35.131	1.00 1.00	25.65 22.56
4301 CG	LYS	547	144.193	37.086	50.476	1.00	62.91	50	4374 OH2	WAT	659	130.833	34.205	29.481	1.00	42.51
4302 CD	LYS	547	144.627	37.709	51.796	1.00	73.57		4375 OH2	WAT	660	112.306	35.037	18.431	1.00	22.73
4303 CE 4304 NZ	LYS LYS	547 547	144.241 144.683	36.839 37.440	52.982 54.274	$\frac{1.00}{1.00}$	81.58 85.95		4376 OH2 4377 OH2	WAT WAT	661 662	121.695 134.850	49.220 24.747	48.983 24.896	1.00 1.00	34.50 61.06
4305 C	LYS	547	144.986	36.359	47.425	1.00	43.05		4378 OH2	WAT	663	120.492	22.780	56.510	1.00	33.74
4306 O	LYS	547	144.897	35.236	47.921	1.00	34.62		4379 OH2	WAT	664	145.265	41.024	28.023	1.00	26.03
4307 N 4308 CA	ILE ILE	548 548	145.778 146.656	36.648 35.666	46.396 45.771	$\frac{1.00}{1.00}$	45.90 45.52	55	4380 OH2 4381 OH2	WAT WAT	665 666	92.325 122.583	61.829 51.518	41.100 33.284	1.00 1.00	63.45 48.58
4309 CB	ILE	548	147.148	36.170	44.394	1.00	41.81		4382 OH2	WAT	667	134.126	51.766	45.296	1.00	19.94
4310 CG2	ILE	548	147.927	35.073	43.679	1.00	45.55		4383 OH2	WAT	668	99.217	28.001	33.331	1.00	36.10
4311 CG1 4312 CD1	ILE ILE	548 548	145.951 146.327	36.603 37.269	43.540 42.238	$\frac{1.00}{1.00}$	39.14 45.90		4384 OH2 4385 OH2	WAT WAT	669 670	116.117 90.118	48.969 37.836	45.889 45.821	1.00 1.00	27.24 21.42
4312 CD1 4313 C	ILE	548	140.327	35.342	46.659	1.00	48.55	C 0	4386 OH2	WAT	671	140.530	43.280	48.000	1.00	25.45
4314 OT1	ILE	548	148.019	34.153	47.005	1.00	46.58	60	4387 OH2	WAT	672	91.812	21.421	53.465	1.00	25.28
4315 OT2 4316 OH2	ILE WAT	548 601	148.606	36.278 21.898	47.012 33.684	$\frac{1.00}{1.00}$	59.90 2.00		4388 OH2 4389 OH2	WAT	673 674	133.156 124.710	24.02	49.442 52.286	1.00 1.00	44.64 27.01
4316 OH2 4317 OH2	WAT	602	109.544 132.108	38.577	33.684 42.342	1.00	2.00 3.74		4389 OH2 4390 OH2	WAT WAT	675	108.046	30.183 22.156	30.804	1.00	29.23
4318 OH2	WAT	603	121.652	22.556	52.348	1.00	5.90		4391 OH2	WAT	676	141.812	18.051	53.703	1.00	33.60
4319 OH2 4320 OH2	WAT WAT	604 605	136.076 131.497	10.222	44.594 51.678	1.00 1.00	31.07 7.22	65	4392 OH2 4393 OH2	WAT WAT	677 678	122.438	4.780	34.061 27.843	1.00 1.00	22.75
4320 OH2 4321 OH2	WAT	606	131.497	21.852 14.200	51.678 45.316	1.00	17.90		4393 OH2 4394 OH2	WAT	678 679	106.890 99.813	50.310 44.123	49.703	1.00	27.59 35.15
-									_							

TABLE 10-continued

Structur			of Tobacco				hase	5		Structur			of Tobacco l Hydroxy				hase
Atom Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor		Atom	Atom Type	Resi- due	Resi- due #	X	Y	z	OCC	B- factor
4395 OH2	WAT	680	114.424	25.540	53.859	1.00	59.82		4468	OH2	WAT	753	106.996	46.067	52.208	1.00	80.89
4396 OH2	WAT	681	120.122	17.036	61.627	1.00	33.13			OH2	WAT	754	115.697	53.285	33.391	1.00	88.83
4397 OH2	WAT	682	123.491	39.726	28.595	1.00	39.84	10		OH2	WAT	755 756	107.557	43.929	23.164	1.00	97.00
4398 OH2 4399 OH2	WAT WAT	683 684	120.197 103.132	47.611 41.401	55.219 52.472	$\frac{1.00}{1.00}$	29.64 31.67		4472	OH2 MG	WAT MG	756 757	104.503 105.326	37.526 36.717	36.972 53.406	1.00 1.00	58.13 29.00
4400 OH2	WAT	685	95.409	27.232	43.768	1.00	40.36		4473		MG	758	103.375	43.256	48.861	1.00	41.96
4401 OH2	WAT	686	93.494	47.869	47.074	1.00	41.27		4474		MG	759	106.905	43.906	51.594	1.00	60.57
4402 OH2	WAT	687	101.201 117.640	66.857 29.026	39.062 61.987	1.00	78.46		4475		HPH	900	106.514 106.467	40.269 39.079	50.769 51.657	1.00	64.84
4403 OH2 4404 OH2	WAT WAT	688 689	125.779	23.773	30.324	$\frac{1.00}{1.00}$	47.48 37.41	15		O1A O2A	HPH HPH	900 900	106.467	41.560	51.467	1.00 1.00	56.34 62.50
4405 OH2	WAT	690	118.394	14.351	39.712	1.00	8.48			O3A	HPH	900	105.506	40.292	49.674	1.00	62.63
4406 OH2	WAT	691	115.774	17.384	46.942	1.00	55.16		4479		HPH	900	108.952	41.335	50.186	1.00	61.96
4407 OH2 4408 OH2	WAT WAT	692 693	125.846 134.539	32.742 32.766	40.650 51.897	1.00 1.00	30.56 52.33		4480 4481		HPH HPH	900 900	108.025 108.690	40.315 38.930	49.769 49.523	1.00 1.00	64.00 61.37
4409 OH2	WAT	694	132.231	24.088	46.766	1.00	63.16		4482		HPH	900	109.069	38.562	48.285	1.00	51.27
4410 OH2	WAT	695	120.423	11.828	28.871	1.00	44.89	20	4483		HPH	900	109.443	37.123	48.011	1.00	49.88
4411 OH2	WAT	696	109.529	18.849	35.510	1.00	41.86		4484		HPH	900	110.870	36.593	48.349	1.00	48.79
4412 OH2 4413 OH2	WAT WAT	697 698	126.344 140.761	22.049 46.564	35.670 40.929	1.00 1.00	37.93 36.10		4485 4486		HPH HPH	900 900	112.049 112.320	37.566 38.019	48.069 46.829	1.00 1.00	37.71 34.33
4414 OH2	WAT	699	149.712	28.211	43.996	1.00	63.77		4487		HPH	900	113.476	38.969	46.623	1.00	35.58
4415 OH2	WAT	700	122.788	19.483	59.019	1.00	46.07		4488		HPH	900	113.227	40.333	47.247	1.00	56.66
4416 OH2	WAT	701	133.230	48.486	44.266	1.00	36.68	25	4489		HPH	900	113.089	40.275	48.776	1.00	68.86
4417 OH2 4418 OH2	WAT WAT	702 703	121.294 129.924	17.890 31.321	56.388 53.670	$\frac{1.00}{1.00}$	45.00 28.12		4490 4491		HPH HPH	900 900	112.157 112.037	41.010 40.934	49.392 50.893	$\frac{1.00}{1.00}$	73.13 66.86
4419 OH2	WAT	703	130.041	22.759	34.128	1.00	58.80		4492		HPH	900	108.853	39.500	47.137	1.00	54.81
4420 OH2	WAT	705	120.990	14.019	62.153	1.00	90.42		4493		HPH	900	111.421	42.067	48.641	1.00	68.76
4421 OH2	WAT	706	144.565	20.274	60.540	1.00	57.31		4494	C14	HPH	900	111.753	37.299	45.656	1.00	41.06
4422 OH2 4423 OH2	WAT WAT	707 708	122.007 136.782	30.989 18.854	34.128 45.912	1.00 1.00	74.81 38.89	30									
4424 OH2	WAT	709	148.608	25.064	51.823	1.00	69.75										
4425 OH2	WAT	710	129.546	23.547	49.088	1.00	59.55						TABL	F 11			
4426 OH2	WAT	711	98.361	36.814	48.633	1.00	48.61						17 10 1.	L 11			
4427 OH2 4428 OH2	WAT WAT	712 713	135.173 125.025	8.831 32.134	61.117 55.885	$\frac{1.00}{1.00}$	57.62 46.77		S	Structur	al Coor	dinates o	of Tobacco	5-Epi-A	ristoloche	ne Syntl	hase
4429 OH2	WAT	714	109.222	19.287	57.955	1.00	58.38	35	_		I	n the Al	sence of	Bound Su	bstrate		
4430 OH2	WAT	715	137.206	8.347	56.384	1.00	48.16					Resi-					
4431 OH2	WAT	716	105.467	21.522	45.303	1.00	55.42		Atom			due					
4432 OH2 4433 OH2	WAT WAT	717 718	108.946 96.255	9.853 23.880	39.154 48.000	1.00 1.00	73.91 73.23		-		Resi-	.,	v	3 7	7		
4434 OH2	WAT									Atom	dina					α	R factor
4435 OH2		719	101.728	36.619	50.363	1.00	57.83	40	Туре	Atom	due	#	X	Y	Z	OCC	B-factor
	WAT	719 720	101.728 116.536	36.619 13.569	56.095	1.00	62.99	40	1	N	LEU	24	121.956	50.261	52.247	1.00	124.05
4436 OH2	WAT WAT	719 720 721	101.728 116.536 128.739	36.619 13.569 23.611	56.095 38.616	1.00 1.00	62.99 70.69	40	1 2	N CA	LEU LEU	24 24	121.956 122.946	50.261 50.852	52.247 53.202	1.00 1.00	124.05 125.60
4436 OH2 4437 OH2	WAT WAT WAT	719 720 721 722	101.728 116.536 128.739 126.664	36.619 13.569 23.611 3.370	56.095 38.616 36.233	1.00 1.00 1.00	62.99 70.69 79.09	40	1 2 3	N CA C	LEU LEU LEU	24 24 24	121.956 122.946 124.286	50.261 50.852 50.797	52.247 53.202 52.493	1.00 1.00 1.00	124.05 125.60 125.95
4436 OH2	WAT WAT	719 720 721	101.728 116.536 128.739	36.619 13.569 23.611	56.095 38.616	1.00 1.00	62.99 70.69	40	1 2	N CA	LEU LEU	24 24	121.956 122.946	50.261 50.852	52.247 53.202	1.00 1.00	124.05 125.60
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2	WAT WAT WAT WAT WAT	719 720 721 722 723 724 725	101.728 116.536 128.739 126.664 120.338 132.490 119.137	36.619 13.569 23.611 3.370 3.428 26.185 22.564	56.095 38.616 36.233 58.493 26.764 24.070	1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84		1 2 3 4 5 6	N CA C O CB CG	LEU LEU LEU LEU LEU LEU	24 24 24 24 24 24 24	121.956 122.946 124.286 125.338 123.008 121.748	50.261 50.852 50.797 50.615 50.020 50.062	52.247 53.202 52.493 53.099 54.477 55.337	1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2 4441 OH2	WAT WAT WAT WAT WAT WAT	719 720 721 722 723 724 725 726	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038	56.095 38.616 36.233 58.493 26.764 24.070 42.458	1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19	40	1 2 3 4 5 6 7	N CA C O CB CG CD1	LEU LEU LEU LEU LEU LEU LEU	24 24 24 24 24 24 24 24	121.956 122.946 124.286 125.338 123.008 121.748 121.898	50.261 50.852 50.797 50.615 50.020 50.062 49.121	52.247 53.202 52.493 53.099 54.477 55.337 56.526	1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2 4441 OH2 4442 OH2	WAT WAT WAT WAT WAT WAT WAT	719 720 721 722 723 724 725 726 727	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00		1 2 3 4 5 6	N CA C O CB CG CD1 CD2	LEU LEU LEU LEU LEU LEU LEU	24 24 24 24 24 24 24 24 24	121.956 122.946 124.286 125.338 123.008 121.748 121.898 121.487	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2 4441 OH2 4442 OH2 4443 OH2 4444 OH2	WAT WAT WAT WAT WAT WAT WAT WAT WAT	719 720 721 722 723 724 725 726	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848	56.095 38.616 36.233 58.493 26.764 24.070 42.458	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80		1 2 3 4 5 6 7 8	N CA C O CB CG CD1 CD2 1H 2H	LEU	24 24 24 24 24 24 24 24	121.956 122.946 124.286 125.338 123.008 121.748 121.898	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239	52.247 53.202 52.493 53.099 54.477 55.337 56.526	1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2 4441 OH2 4442 OH2 4443 OH2 4444 OH2 4444 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33		1 2 3 4 5 6 7 8 9 10 11	N CA C O CB CG CD1 CD2 1H 2H 3H	LEU	24 24 24 24 24 24 24 24 24 24 24 24	121.956 122.946 124.286 125.338 123.008 121.748 121.898 121.487 122.251 121.021 121.929	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2 4441 OH2 4442 OH2 4443 OH2 4444 OH2 4444 OH2 4446 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41	45	1 2 3 4 5 6 7 8 9 10 11 12	N CA C O CB CG CD1 CD2 1H 2H 3H N	LEU	24 24 24 24 24 24 24 24 24 24 24 24 25	121.956 122.946 124.286 125.338 123.008 121.748 121.898 121.487 122.251 121.021 121.929 124.208	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.26
4436 OH2 4437 OH2 4438 OH2 4439 OH2 4440 OH2 4441 OH2 4442 OH2 4443 OH2 4444 OH2 4444 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33		1 2 3 4 5 6 7 8 9 10 11	N CA C O CB CG CD1 CD2 1H 2H 3H	LEU	24 24 24 24 24 24 24 24 24 24 24 24	121.956 122.946 124.286 125.338 123.008 121.748 121.898 121.487 122.251 121.021 121.929	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.26 126.64
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4443 OH2 4445 OH2 4446 OH2 4446 OH2 4446 OH2 4449 OH2 4449 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751 146.260 99.632 139.029	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36	45	1 2 3 4 5 6 7 8 9 10 11 12 13	N CA C O CB CG CD1 CD2 1H 2H 3H N CA C	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP TRP TRP	24 24 24 24 24 24 24 24 24 24 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 50.953 52.322 52.480	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 25.00 128.26 126.64 128.50 130.12
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4445 OH2 4446 OH2 4446 OH2 4447 OH2 4448 OH2 4449 OH2 4449 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751 146.260 99.632 139.029 93.410	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51	45	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	N CA C O CB CG CD1 CD2 1H 2H 3H N CA C	LEU	24 24 24 24 24 24 24 24 24 24 25 25 25 25	121.956 122.946 124.286 125.338 123.008 121.748 121.898 121.487 122.251 121.021 121.929 124.208 125.348 125.348 125.910 127.131 127.131	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 50.239 50.798 51.008 50.953 52.322 52.480 50.134	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.26 126.64 128.50 130.12 122.57
4436 OH2 4437 OH2 4438 OH2 4449 OH2 4441 OH2 4443 OH2 4444 OH2 4446 OH2 4446 OH2 4447 OH2 4449 OH2 4447 OH2 4447 OH2 4448 OH2 4449 OH2 4450 OH2 4451 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367 50.411	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10	45	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	N CA C O CB CG CD1 CD2 1H 2H 3H N CA C O O CB	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP TRP TRP TRP	24 24 24 24 24 24 24 24 24 24 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,945 124,537	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 48.725	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.460	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.26 126.64 128.50 130.12 122.57 116.55
4436 OH2 4437 OH2 4438 OH2 4449 OH2 4441 OH2 4442 OH2 4443 OH2 4444 OH2 4446 OH2 4447 OH2 4449 OH2 4449 OH2 4451 OH2 4451 OH2 4451 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367 50.411 63.145	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 44.768 39.217 44.768 39.907 52.960 36.945	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71	45 50	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	N CA C O CB CG CD1 CD2 1H 2H 3H N CA C	LEU	24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,87 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,537 124,537 123,263	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 50.239 50.798 51.008 50.953 52.322 52.480 50.134	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.0780 49.513	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 25.00 128.26 128.26 126.64 128.50 130.12 122.57 116.55 111.25
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4445 OH2 4446 OH2 4447 OH2 4449 OH2 4449 OH2 4450 OH2 4451 OH2 4451 OH2 4451 OH2 4452 OH2 4454 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 16.241 43.367 50.411 63.145 52.111 2.568	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.907 52.960 36.945 47.051 44.854	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71 88.755	45	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	N CA C O CD1 2H SH CA C O CB CCD1 CD2 SH CC CD1 CD2 CD2 CD1 CD2 CD1 CD2 CD1 CD2 NE1	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP TRP TRP TRP TRP TRP TRP TRP	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25	121.956 122.946 124.286 125.338 123.008 121.748 121.898 121.487 122.251 121.021 121.929 124.208 125.348 125.910 127.131 124.945 124.537 123.263 125.407 123.302	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.098 50.953 52.322 52.480 50.134 48.725 48.214 47.685 46.911	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.613 49.513 49.877 49.947	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.66 126.64 128.50 130.12 122.57 111.25 111.25 114.36 109.76
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4446 OH2 4447 OH2 4449 OH2 4440 OH2 4450 OH2 4450 OH2 4451 OH2 4451 OH2 4452 OH2 4452 OH2 4455 OH2 4455 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 63.145 52.111 63.145 52.111 2.568 21.588	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71 59.41 87.55 65.78	45 50	1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	N CA C O CB CG CD1 2H 3H N CA C O CB CG CD1 CD2 TH CD2 CD1 CD1 CD2 CB CG CD1 CD2 NE1 CD2	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP TRP TRP TRP TRP TRP TRP TRP TRP	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,537 123,263 125,407 123,302 123,402	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 48.725 48.214 47.685 46.911 46.556	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.460 49.513 49.877 49.847 50.178	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 128.26 126.64 128.50 130.12 122.57 116.55 111.36 109.76 113.64
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4443 OH2 4444 OH2 4446 OH2 4446 OH2 4447 OH2 4448 OH2 4449 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4453 OH2 4453 OH2 4455 OH2 4455 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823 112.121	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367 50.411 63.145 52.111 2.568 21.588 15.677	56.095 38.616 36.233 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 40.10 88.71 59.41 87.55 65.78 63.57	45 50	1 2 3 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 22 22 22 22 23 24 24 25 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	N CA CC O CB CCD1 CD2 1H 2H 3H N CA C O CB CCB CCD1 CD2 NE1 CD2 NE1	LEU	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,489 121,487 122,251 121,021 124,208 125,348 125,910 127,131 124,945 124,94	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 48.725 48.214 47.685 46.556 47.577	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.078 49.513 49.877 49.947 50.036	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 25.00 128.26 128.26 128.50 130.12 122.57 111.25 111.25 114.36 109.76 114.01
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4446 OH2 4447 OH2 4449 OH2 4440 OH2 4450 OH2 4450 OH2 4451 OH2 4451 OH2 4452 OH2 4452 OH2 4455 OH2 4455 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 63.145 52.111 63.145 52.111 2.568 21.588	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71 59.41 87.55 65.75 63.57 66.58	45 50	1 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	N CA C O CB CG CD1 2H 3H N CA C O CB CG CD1 CD2 TH CD2 CD1 CD1 CD2 CB CG CD1 CD2 NE1 CD2	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP TRP TRP TRP TRP TRP TRP TRP TRP	24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,537 123,263 125,407 123,302 123,402	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 48.725 48.214 47.685 46.911 46.556	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.460 49.513 49.877 49.847 50.178	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 25.00 130.12 128.26 128.50 130.12 122.57 111.25 111.25 114.36 109.76 113.64 114.01 114.93
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4447 OH2 4447 OH2 4448 OH2 4449 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4454 OH2 4457 OH2 4457 OH2 4458 OH2 4458 OH2 4458 OH2 4458 OH2 4459 OH2 4459 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823 112.121 116.036 101.336	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 63.145 52.111 2.568 21.588 15.677 23.098 34.063 25.170	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574 23.234 30.976 29.199	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71 87.55 65.78 63.57 66.58 41.04	455055	1 2 3 4 4 5 6 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	N CA C CD1 H CCA C C CD2 HH CCA C C C C C C C C C C C C C C C C	LEU LEU LEU LEU LEU LEU LEU LEU TRP	24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,537 123,263 125,407 123,302 124,612 126,801 125,146 127,140 127,140 127,140 127,140 127,140 127,140 127,140	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 47.685 48.214 47.685 46.911 46.556 47.577 45.346 46.387 45.282	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.460 49.513 49.877 50.178 50.036 50.624 50.476 50.476 50.767	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 128.26 126.64 128.50 130.12 122.57 111.25 111.36 113.64 114.01 114.93 112.58 114.08
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4446 OH2 4447 OH2 4449 OH2 4449 OH2 4450 OH2 4450 OH2 4451 OH2 4451 OH2 4451 OH2 4452 OH2 4454 OH2 4454 OH2 4457 OH2 4457 OH2 4458 OH2 4458 OH2 4459 OH2 4459 OH2 4459 OH2 4459 OH2 4459 OH2 4459 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745	101.728 116.536 128.739 126.664 120.338 132,490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 110.5823 112.121 116.006 101.396 105.307 138.659	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367 50.411 63.145 52.111 2.568 21.588 15.677 23.098 34.063 25.170 10.582	56.095 38.616 36.233 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574 23.234 30.976 29.199 45.837	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 40.10 88.71 59.41 87.55 65.78 66.58 67.78 41.04 59.51	45 50	1 2 3 4 4 5 6 6 7 8 8 9 10 11 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 23 24 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	N CA C CD1 1H CD2 CB CG CD1 CD2 1H CD2 CB CG CD1 CD2 CB CG CD1 CD2 CB CG CD1 CD2 CC3 CC4 CD1 CD2 CC3 CC4 CD1 CD2 CC3 CC4 CD1 CD2 CC3 CC4 CH2 CC4 CD1 CD2 CC4 CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP	24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,94	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 48.725 48.214 47.685 46.911 46.556 47.577 45.346 46.387 45.282 51.275	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 50.308 49.937 49.824 49.078 49.513 49.877 49.475 50.036 50.036 50.0476 50.767 50.804	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.26 126.64 128.50 130.12 122.57 116.55 111.25 114.36 109.76 114.01 114.93 112.58 114.08 25.00
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4444 OH2 4444 OH2 4445 OH2 4446 OH2 4449 OH2 4449 OH2 4449 OH2 4449 OH2 4449 OH2 4451 OH2 4451 OH2 4453 OH2 4454 OH2 4454 OH2 4457 OH2 4458 OH2 4457 OH2 4458 OH2 4459 OH2 4459 OH2 4451 OH2 4451 OH2 4451 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 112.121 116.006 101.396 105.307 138.659 114.904	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 31.93 58.675 39.908 27.238 16.241 43.367 50.411 2.568 21.588 15.677 23.098 34.063 25.170 10.582 60.800	56.095 38.616 36.233 58.493 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 44.768 39.217 44.768 39.217 44.765 47.051 44.854 32.912 29.574 23.234 30.976 29.199 45.837 37.648	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71 59.41 87.55 65.78 63.57 66.58 67.78 41.04 59.51 51.77	455055	1 2 3 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 27 28 28 29 20 20 21 21 22 22 23 24 24 25 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	N CA C C C C C C C C C C C C C C C C C C	LEU	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,898 121,251 121,021 121,929 124,537 124,537 123,263 125,407 123,302 124,537 123,63 125,407 123,302 124,612 124,613 125,146 127,340 126,801 127,340 126,315 123,358 122,575	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.098 50.953 52.322 52.480 48.725 48.214 47.685 46.516 46.387 45.282 51.275 46.258	52.247 53.202 52.493 53.099 54.477 55.372 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.874 49.078 49.476 50.767 50.767 50.767 50.767 50.804 50.073	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 25.00 130.12 128.26 126.64 128.50 130.12 122.57 114.36 109.76 114.01 114.93 114.93 114.93 112.58 114.00 25.00 25.00
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4446 OH2 4447 OH2 4449 OH2 4449 OH2 4450 OH2 4450 OH2 4451 OH2 4451 OH2 4451 OH2 4452 OH2 4454 OH2 4454 OH2 4457 OH2 4457 OH2 4458 OH2 4458 OH2 4459 OH2 4459 OH2 4459 OH2 4459 OH2 4459 OH2 4459 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745	101.728 116.536 128.739 126.664 120.338 132,490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 110.5823 112.121 116.006 101.396 105.307 138.659	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367 50.411 63.145 52.111 2.568 21.588 15.677 23.098 34.063 25.170 10.582	56.095 38.616 36.233 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574 23.234 30.976 29.199 45.837	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 40.10 88.71 59.41 87.55 65.78 66.58 67.78 41.04 59.51	455055	1 2 3 4 4 5 6 6 7 8 8 9 10 11 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 23 24 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	N CA C CD1 1H CD2 CB CG CD1 CD2 1H CD2 CB CG CD1 CD2 CB CG CD1 CD2 CB CG CD1 CD2 CC3 CC4 CD1 CD2 CC3 CC4 CD1 CD2 CC3 CC4 CD1 CD2 CC3 CC4 CH2 CC4 CD1 CD2 CC4 CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4 CD4	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP	24 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,94	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 50.134 48.725 48.214 47.685 46.911 46.556 47.577 45.346 46.387 45.282 51.275	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 50.308 49.937 49.824 49.078 49.513 49.877 49.475 50.036 50.036 50.0476 50.767 50.804	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 25.00 128.26 126.64 128.50 130.12 122.57 116.55 111.25 114.36 109.76 114.01 114.93 112.58 114.08 25.00
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4446 OH2 4450 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4452 OH2 4453 OH2 4454 OH2 4454 OH2 4454 OH2 4454 OH2 4455 OH2 4456 OH2 4456 OH2 4459 OH2 4459 OH2 4461 OH2 4461 OH2 4461 OH2 4464 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748	101.728 116.536 128.739 126.664 120.338 132,490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823 112.121 116.006 101.396 10	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 23.568 21.588 15.677 23.098 34.063 25.170 10.582 60.800 21.252 48.310	56.095 38.616 36.233 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574 23.234 30.976 29.199 45.837 37.648 33.0364 54.546	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 40.10 88.71 59.41 87.55 65.78 66.58 67.78 41.04 59.51 51.77 63.60 96.91 50.93	455055	1 2 3 4 5 6 6 7 8 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	N CA C CD1 1H CD2 CE3 CZ2 CZ3 CZ4 H HE1 N CA C	LEU	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,537 123,263 125,407 123,302 124,612 126,515 123,302 125,146 127,340 125,146 127,340 126,515 126,515 126,515 126,516	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.482 47.685 48.214 47.685 46.911 46.556 47.577 45.346 46.387 45.282 51.275 46.258 53.306 53.306 54.647 54.744	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.460 49.513 49.877 50.178 50.036 50.624 50.476 50.767 50.804 50.073 49.824 49.482 49	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 128.26 126.64 128.50 130.12 122.57 111.25 111.25 114.01 114.01 114.93 112.58 25.00 25.00 25.00 129.29 25.00
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4443 OH2 4444 OH2 4445 OH2 4444 OH2 4445 OH2 4447 OH2 4448 OH2 4449 OH2 4449 OH2 4449 OH2 4451 OH2 4451 OH2 4451 OH2 4452 OH2 4454 OH2 4456 OH2 4461 OH2 4461 OH2 4465 OH2 4465 OH2 4465 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 750	101.728 116.536 128.739 126.664 120.338 132.490 119.137 98.004 99.674 113.394 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823 112.121 116.006 101.396 105.307 138.659 114.904 124.430 107.809 129.675 104.938	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 43.367 50.411 2.568 21.588 15.677 23.098 34.063 25.170 10.582 60.800 21.295 9.528 48.310 42.943	56.095 38.616 36.233 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574 23.234 30.976 29.199 45.837 37.648 33.036 45.664 54.5401	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 71.98 65.15 76.36 51.51 40.10 88.71 59.41 87.55 65.78 63.57 66.58 67.78 41.04 59.51 51.77 63.60 96.91 50.35 73.99	45505560	1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	N CA C C O CB CB CB CB CB CB CB CB CB CCB CC	LEU LEU LEU LEU LEU LEU LEU LEU LEU TRP	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,487 122,251 121,021 124,208 125,348 125,910 127,131 124,945 124,4537 123,263 125,407 123,361 125,146 127,340 125,146 127,340 125,146 127,340 125,515 126,515 123,358 125,028 125,028 125,028 125,028 125,029 126,019 126,0	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.480 48.725 48.214 47.685 46.556 47.577 45.346 46.556 47.577 45.346 46.258 53.306 54.647 54.744 53.929	52.247 53.202 52.493 53.099 54.477 55.337 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.877 49.978 49.460 49.513 49.877 49.978 50.036 50.624 50.476 50.767 50.764 50.773 49.785 49.480 49.432 48.049 47.177	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.91 126.52 127.81 25.00 25.00 25.00 25.00 128.26 126.64 128.50 130.12 122.57 111.25 114.36 109.76 114.01 114.93 112.58 114.08 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00
4436 OH2 4437 OH2 4438 OH2 4440 OH2 4441 OH2 4442 OH2 4445 OH2 4446 OH2 4446 OH2 4450 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4451 OH2 4452 OH2 4453 OH2 4454 OH2 4454 OH2 4454 OH2 4455 OH2 4456 OH2 4456 OH2 4459 OH2 4459 OH2 4461 OH2 4461 OH2 4461 OH2 4464 OH2	WAT	719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748	101.728 116.536 128.739 126.664 120.338 132,490 119.137 98.004 129.629 138.391 101.751 146.260 99.632 139.029 93.410 99.833 121.822 123.231 112.095 105.823 112.121 116.006 101.396 10	36.619 13.569 23.611 3.370 3.428 26.185 22.564 28.038 33.037 11.413 27.848 3.193 58.675 39.908 27.238 16.241 23.568 21.588 15.677 23.098 34.063 25.170 10.582 60.800 21.252 48.310	56.095 38.616 36.233 26.764 24.070 42.458 41.131 52.820 38.891 36.697 54.521 45.702 39.217 44.768 39.907 52.960 36.945 47.051 44.854 32.912 29.574 23.234 30.976 29.199 45.837 37.648 33.0364 54.546	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	62.99 70.69 79.09 86.19 67.03 75.84 72.19 69.00 69.11 31.80 88.33 69.41 40.10 88.71 59.41 87.55 65.78 66.58 67.78 41.04 59.51 51.77 63.60 96.91 50.93	455055	1 2 3 4 5 6 6 7 8 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	N CA C CD1 1H CD2 CE3 CZ2 CZ3 CZ4 H HE1 N CA C	LEU	24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	121,956 122,946 124,286 125,338 123,008 121,748 121,898 121,487 122,251 121,021 121,929 124,208 125,348 125,910 127,131 124,945 124,537 123,263 125,407 123,302 124,612 126,515 123,302 125,146 127,340 125,146 127,340 126,515 126,515 126,515 126,516	50.261 50.852 50.797 50.615 50.020 50.062 49.121 51.490 49.292 50.239 50.798 51.008 50.953 52.322 52.482 47.685 48.214 47.685 46.911 46.556 47.577 45.346 46.387 45.282 51.275 46.258 53.306 53.306 54.647 54.744	52.247 53.202 52.493 53.099 54.477 55.357 56.526 55.822 51.984 52.677 51.366 51.190 50.308 49.937 49.824 49.078 49.460 49.513 49.877 50.178 50.036 50.624 50.476 50.767 50.804 50.073 49.824 49.482 49	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	124.05 125.60 125.95 126.05 127.81 127.97 126.52 127.81 25.00 25.00 128.26 126.64 128.50 130.12 122.57 111.25 111.25 114.01 114.01 114.93 112.58 25.00 25.00 25.00 129.29 25.00

TABLE 11-continued

	Structur			of Tobacco			ne Synt	hase	5		Structur			of Tobacco			ne Syn	thase
Atom			Resi-							Atom			Resi-					
	Atom	Resi- due	#	X	Y	Z	OCC	B-factor			Atom	Resi- due	#	X	Y	Z	OCC	B-factor
	CA	ASP	27	127.635	55.946	46.589	1.00	126.16		105		ILE	34	138.715	50.001	34.268	1.00	123.81
35	C	ASP	27	128.786	54.971	46.340	1.00	122.14	10	106	O	ILE	34	138.869	50.556	33.177	1.00	132.56
36 37	O CB	ASP ASP	27 27	129.641 128.154	55.215 57.390	45.485 46.495	$\frac{1.00}{1.00}$	121.90 128.56		107 108	CB CG1	ILE ILE	34 34	136.483 137.227	48.884 47.570	33.865 33.595	1.00 1.00	125.22 124.19
38	CG	ASP	27	127.036	58.414	46.382	1.00	129.57		109	CG2	ILE	34	136.174	49.640	32.570	1.00	123.27
39	OD1	ASP	27	126.092	58.200	45.590	1.00	129.32			CD1	ILE	34	136.518	46.611	32.665	1.00	121.43
40 41	OD2 H	ASP ASP	27 27	127.109 127.188	59.446 56.294	47.083 48.627	$\frac{1.00}{1.00}$	128.42 25.00	15	111 112		ILE ASP	34 35	135.838 139.738	51.274 49.600	34.627 35.020	1.00 1.00	25.00 125.91
42	N	GLN	28	128.786	53.863	47.075	1.00	117.67		113		ASP	35	141.105	49.749	34.548	1.00	120.92
43	CA	GLN	28	129.811	52.833	46.950	1.00	112.25		114		ASP	35	141.437	48.728	33.464	1.00	116.38
44 45	C O	GLN GLN	28 28	129.807 130.803	52.195 51.612	45.554 45.131	1.00 1.00	112.76 110.25		115 116		ASP ASP	35 35	141.993 142.122	47.661 49.709	33.726 35.700	1.00 1.00	115.56 122.56
46	СВ	GLN	28	129.581	51.764	48.025	1.00	106.94		117		ASP	35	141.780	48.684	36.761	1.00	123.82
47	CG	GLN	28	130.657	50.691	48.117	1.00	101.12	20	118	OD1	ASP	35	141.342	47.566	36.414	1.00	129.46
48 49	CD OE1	GLN GLN	28 28	130.380 131.021	49.637 48.585	49.179 49.199	1.00 1.00	99.15 98.20		119 120	OD2 H	ASP ASP	35 35	141.952 139.577	49.002 49.234	37.955 35.909	1.00 1.00	123.01 25.00
	NE2	GLN	28	129.431	49.911	50.072	1.00	95.39		121		ASN	36	141.017	49.067	32.254	1.00	111.08
51	H	GLN	28	128.073	53.736	47.724	1.00	25.00		122		ASN	36	141.237	48.307	31.037	1.00	107.72
52 53	1HE2 2HE2	GLN	28 28	129.287 128.922	49.206 50.738	50.749 50.067	1.00 1.00	25.00 25.00	25	123 124		ASN ASN	38 36	142.508 142.486	47.482 46.361	30.983	1.00 1.00	104.04 103.31
54	N	PHE	29	128.696	52.349	44.833	1.00	116.96	25	125		ASN	36	141.160	49.215	30.443 29.783	1.00	103.31
55	CA	PHE	29	128.536	51.766	43.496	1.00	118.70		126	CG	ASN	38	141.378	50.742	30.076	1.00	113.72
56	С	PHE	29	128.026	52.717	42.398	1.00	122.05			OD1	ASN	36	141.308	51.535	29.156	1.00	115.16
57 58	O CB	PHE PHE	29 29	127.643 127.570	52.249 50.572	41.318 43.539	1.00 1.00	123.10 114.02		128	ND2 H	ASN ASN	36 36	141.666 140.490	51.127 49.899	31.309 32.196	1.00 1.00	113.86 25.00
59	CG	PHE	29	127.906	49.532	44.568	1.00	111.57	30	130	1HD2		36	141.642	52.070	31.558	1.00	25.00
60	CD1	PHE	29	128.928	48.614	44.349	1.00	109.61	-	131	2HD2		38	141.817	50.557	32.067	1.00	25.00
61 62	CD2 CE1	PHE PHE	29 29	127.148 129.193	49.429 47.609	45.731 45.274	1.00 1.00	108.83 102.49		132 133		GLN GLN	37 37	143.593 144.857	47.958 47.226	31.571 31.576	1.00 1.00	101.33 97.84
63	CE2	PHE	29	127.401	48.432	46.663	1.00	101.60		134	C	GLN	37	144.752	45.887	32.306	1.00	91.48
64	CZ	PHE	29	128.425	47.514	46.434	1.00	101.60		135		GLN	37	145.120	44.848	31.756	1.00	87.36
65 66	H N	PHE LEU	29 30	127.985 127.984	52.899 54.022	45.209 42.669	$\frac{1.00}{1.00}$	25.00 124.46	35	138 137		GLN GLN	37 37	145.964 147.329	48.079 47.907	32.204 31.541	1.00 1.00	104.38 109.27
67	CA	LEU	30	127.509	55.009	41.689	1.00	127.15		138	CD	GLN	37	147.433	48.643	30.213	1.00	112.48
68	C	LEU	30	128.208	54.874	40.335	1.00	128.12		139	OE1	GLN	37	148.192	49.604	30.088	1.00	116.42
69	O CB	LEU	30	127.578	54.916	39.277	1.00	126.56			NE2	GLN GLN	37	146.670	48.202	29.220	1.00	113.85
70 71		LEU LEU	30 30	127.732 127.357	56.433 57.672	42.230 41.388	$\frac{1.00}{1.00}$	128.23 129.74		141 142	1HE2		37 37	143.558 146.735	48.839 48.687	31.989 28.371	1.00 1.00	25.00 25.00
72	CD1	LEU	30	126.987	58.843	42.316	1.00	126.98	40		2HE2	GLN	37	146.083	47.436	29.358	1.00	25.00
73	CD2	LEU	30	128.437	58.089	40.428	1.00	126.72		144		VAL	38	144.242	45.916	33.538	1.00	85.52
74 75	H N	LEU SER	30 331	128.261 129.527	54.333 54.725	43.538 40.400	1.00 1.00	25.00 129.78		145 146	CA	VAL VAL	38 38	144.092 143.148	44.702 43.731	34.337 33.634	1.00 1.00	79.25 77.63
76	CA	SER	31	130.384	54.608	39.222	1.00	130.48		147		VAL	38	143.416	42.529	33.568	1.00	78.06
77		SER	31	131.618	53.722	39.458	1.00	129.14		148	CB	VAL	38	143.542	45.018	35.752	1.00	78.16
78 79	O CB	SER SER	31 31	132.211 130.831	53.745 56.004	40.535 38.781	1.00 1.00	127.41 133.08	45	149 150	CG1 CG2	VAL VAL	38 38	143.484 144.409	43.754 46.061	36.593 36.437	1.00 1.00	75.39 78.10
	OG	SER	31	131.461	56.700	39.845	1.00	136.17		151		VAL	38	143.943	46.770	33.907	1.00	25.00
81		SER	31	129.890	54.673	41.303	1.00	25.00		152		ALA	39	142.060	44.268	33.086	1.00	71.24
82	HG N	SER PHE	31 32	130.880 132.004	56.771 52.973	40.611 38.423	$\frac{1.00}{1.00}$	25.00 127.29		153 154		ALA ALA	39 39	141.071 141.694	43.463 42.736	32.379 31.191	1.00 1.00	66.46 65.26
	CA	PHE	32	133.156	52.065	38.458	1.00	126.38	50	155		ALA	39	141.519	41.527	31.038	1.00	59.37
85		PHE	32	134.056	52.249	37.231	1.00	129.92	50	156		ALA	39	139.910	44.338	31.916	1.00	64.84
88 87	O CB	PHE PHE	32 32	133.693 132.683	51.847 50.601	36.122 38.531	$\frac{1.00}{1.00}$	131.71 120.86		157 158		ALA GLU	39 40	141.924 142.436	45.233 43.472	33.161 30.366	1.00 1.00	25.00 66.68
	CG	PHE	32	133.805	49.581	38.475	1.00	117.02		159		GLU	40	143.086	42.896	29.190	1.00	69.85
	CD1	PHE	32	134.736	49.488	39.507	1.00	114.77		160		GLU	40	144.107	41.828	29.559	1.00	66.85
	CD2 CE1	PHE PHE	32 32	133.912 135.755	48.701 48.533	37.396 39.472	$\frac{1.00}{1.00}$	113.67 111.21	55	161 162		GLU GLU	40 40	144.233 143.744	40.818 43.985	28.859 28.342	$\frac{1.00}{1.00}$	65.59 75.56
	CE2	PHE	32	134.927	47.742	37.349	1.00	111.21		163		GLU	40	142.752	44.836	27.560	1.00	89.79
93	CZ	PHE	32	135.851	47.658	38.389	1.00	111.43		164	CD	GLU	40	143.409	45.993	26.828	1.00	98.34
94 95		PHE	32	131.485	53.046 52.861	37.602 37.434	$\frac{1.00}{1.00}$	25.00 129.98			OE1	GLU GLU	40 40	144.515 142.814	45.807	26.273 26.808	1.00	101.87
	CA	SER SER	33 33	135.219 136.179	53.082	36.355	1.00	129.98		167	OE2 H	GLU	40 40	142.551	47.092 44.427	30.550	1.00 1.00	102.72 25.00
97	C	SER	33	137.014	51.819	36.136	1.00	128.72	60	168	N	LYS	41	144.830	42.048	30.656	1.00	62.69
98		SER	33	137.973	51.561	36.865	1.00	128.38		169		LYS	41	145.821	41.079	31.112	1.00	60.33
99 100	CB OG	SER SER	33 33	137.079 137.554	54.277 54.211	36.684 38.019	1.00 1.00	130.20 130.89		170 171		LYS LYS	41 41	145.081 145.440	39.798 38.707	31.478 31.024	1.00 1.00	56.90 56.12
101		SER	33	135.440	53.163	38.329	1.00	25.00		172		LYS	41	146.588	41.603	32.331	1.00	64.30
102	HG	SER	33	136.817	54.182	38.626	1.00	25.00		173	CG	LYS	41	147.689	40.655	32.802	1.00	70.61
103		ILE	34	136.616	51.017	35.153	1.00	128.06	65	174		LYS	41	148.373	41.137	34.070	1.00	74.86
104	CA	ILE	34	137.313	49.773	34.842	1.00	127.26		175	CE	LYS	41	149.449	40.152	34.505	1.00	79.07

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-Z Type Atom due X Y Z OCC B-factor Type Atom due Х Y OCC B-factor 41 150.138 40.584 35.753 247 144.824 32,404 27.853 25.00 176 NZ LYS 1.00 86.06 Η ALA 48 1.00 10 177 Η 41 144.700 42.879 31.160 1.00 25.00 248 N 49 144.662 29,708 29.583 1.00 37.02 LYS LEU 178 1HZ 41 150.588 41.510 35.601 1.00 25.00 249 CA LEU 49 144.136 28.757 30.554 1.00 34.21 LYS 179 2HZ 41 149.443 36.524 25.00 250 С 49 142.894 28.044 30.029 33.34 40.661 1.00 LEU 1.00 LYS 180 3HZ 41 150.864 39.885 36.010 1.00 25.00 251 O LEU 49 142.694 26.860 30.296 1.00 34.71 LYS 181 TYR 144.027 39.951 32.278 1.00 54.48 252 CB LEU 143.816 29,477 31.862 1.00 32.92 42 143.200 253 49 145.013 30.132 182 CA TYR 38.831 32.712 1.00 49.46 OG LEU 32.551 1.00 29.78 15 183 TYR 42 142.687 38.048 31.508 1.00 49.51 254 CD1 LEU 49 144.541 31.096 33.621 1.00 28.55 184 О TYR 42 142.886 36.837 31.418 46.83 255 CD2 LEU 49 145.915 29.062 33.139 1.00 1.00 31.11 185 CB TYR 42 142.011 39.332 33.535 1.00 49.09 256 Н LEU 40 144.717 30.657 29.827 1.00 25.00 257 186 CG TYR 42 142,316 39.665 34.981 1.00 51.81 N LYS 50 142.083 28,759 29 254 1.00 35 43 258 187 CD1 TYR 42 143 609 39 555 35 498 1.00 55.25 CA LYS 50 140.858 28 208 28 681 1.00 36.99 188 CD2 TYR 42 141 297 40.067 35 844 1.00 51.34 259 CLYS 50 141.193 27.105 27.687 1.00 39.13 189 CE₁ TYR 42 143.873 39.836 36.843 1.00 60.63 260 O LYS 50 140.643 26.004 27.762 1.00 39.46 190 42 141.548 40.347 37.180 261 CB 50 140.056 29.307 27.981 38.20 CE2 TYR 1.00 51.18 LYS 1.00 191 42 142.832 40.231 37.677 1.00 57.44 262 50 138.670 28.882 27.520 1.00 37.82 CZTYR CG LYS ОН 42 143.064 40.503 39.009 57.29 CD29.947 192 TYR 1.00 263 LYS 50 138.021 26.638 1.00 41.56 193 Η TYR 42 143.796 40.855 32.582 1.00 25.00 264 CE LYS 50 137.926 31.297 27.341 1.00 44.73 194 HHTYR 42 142.245 40.765 39.435 1.00 25.00 265 NZ LYS 137.282 32.342 26.489 1.00 40.08 43 Н 195 ALA 142.067 38.756 30.568 1.00 48.90 266 LYS 142.323 29.682 29.055 25.00 43 141.514 29.359 49.75 1HZ 136.318 32.042 25.00 196 CA ALA 38.150 1.00 267 LYS 26.239 197 43 142.560 37.363 28.576 49.98 268 2HZ 50 137.245 33.240 27.012 25.00 ALA 1.00 LYS 1.00 LYS 198 O ALA 43 142.331 36.209 28,204 1.00 49 38 269 3HZ 50 137.841 32.474 25.620 1.00 25.00 199 CB ALA 43 140.897 39 223 28 477 1.00 46,66 270 N GLU 51 142.106 27.396 26,765 1.00 41.23 200 Н ALA 43 141.980 39,722 30.693 1.00 25.00 271 CA GLU 51 142.516 26.419 25.762 1.00 44.62 272 201 N GLN 44 143 711 37 987 22 344 1.00 52.04 C GLH51 143 174 25 226 26 446 1.00 42.95 30 273 202 44 144.796 37.352 27.607 0 24.073 26.091 CA GLN 1.00 51.53 GLU 51 142.931 1.00 43.13 203 44 145.219 274 CB 27.055 52.90 C GLN 36.030 28.257 1.00 45.51 GLU 51 143.489 24.766 1.00 44 35,002 143.846 23.581 204 O GLN 145.304 27.582 1.00 43.18 275 CG GLU 51 26.162 1.00 70.21 145.994 27.506 25.709 22.792 205 CB GLN 44 38.299 1.00 58.59 276 CD GLU 51 142.623 1.00 79.98 206 CG GLN 44 147.101 37.804 26.583 1.00 74.05 277 OE1 GW 51 141.917 26.575 22.226 1.00 86.16 207 CD GLN 44 148.364 38.649 26.658 84.03 278 OE2 GLU 51 142.368 24.486 22,739 1.00 1.00 81.08 208 OE1 GLN 148.343 39.734 27.132 1.00 90.02 279 Η GLU 51 142.510 28.293 26.751 1.00 25.00 209 NE2 GLN 44 149.475 38.092 26.167 1.00 84.98 280 GLN 143.965 25.514 27.471 1.00 48.21 210 Н 44 143.837 38.900 28.677 25.00 281 CA 52 144.662 24.480 28.223 GLN 1.00 GLN 1.00 49.28 1HE2 GLN 150.290 38.631 26.238 25.00 282 GLN 143.657 23.563 28.933 44.99 211 44 1.00 1.00 149.438 212 2HE2 GLN 44 37.187 25.820 25.00 283 O GLN 52 143.817 22.337 28.936 1.00 42.93 1.00 213 N GLU 45 145 468 36.047 29 565 1.00 40.03 284 CB GLN 52 145.609 25 138 29 230 1.00 51 94 214 CA GLU 45 145.874 34 831 30.261 1.00 37.78 285 CG GLN 52 146.728 24.247 29.736 1.00 57.86 215 CGLU 45 144.740 33.813 30.320 1.00 41 99 286 CD GLN 52 147.655 24 973 30.696 1.00 61.66 216 144 970 287 52 0 GLU 45 32,609 30 153 1.00 43 40 OE₁ GLN 147 719 26 205 30.711 1.00 53.55 146.374 38.09 CB 45 35.134 288 NE2 GLN 52 148.372 1.00 66.48 217 GLU 31.673 1.00 24.211 31.511 32.334 52 27.720 45 147.037 33.924 289 GLN 144.095 25.00 218 CG 1.00 41.87 26.453 1.00 GLU Η 148.989 219 CD 45 147.595 34.209 33.718 1.00 290 1HE2 GLN 52 24.676 1.00 25.00 GLU 52.34 32.114 220 GLU 147.678 35.393 34.116 58.77 291 2HE2 52 148.283 23.237 25.00 OE1 45 1.00 GLN 31.480 1.00 45 221 OE2 GLU 45 147.962 33.235 34,409 1.00 53.14 292 THR 53 142,615 24.160 29.512 1.00 42.37 222 Η GLU 45 145.372 36.890 30.064 1.00 25.00 293 CATHR 53 141.578 23.404 30.214 1.00 41.44 22.584 223 ILE 46 143.521 34.296 30.553 1.00 38.09 294 THR 140.753 29.220 1.00 40.96 224 CA ILE 46 142.352 33.428 30.622 1.00 35.19 295 О THR 53 140.334 21.462 29.519 1.00 38.12 225 46 142.239 32.630 29.328 37.05 296 CBTHR 53 140.648 24.338 31.027 42.33 C ILE 1.00 1.00 226 О ILE 46 141.923 31.441 29.360 40.60 297 OG1 THR 53 141.420 25.054 32.001 42.93 1.00 1.00 227 CB ILE 46 141.054 34.236 30.886 1.00 33.29 298 OG2 THR 53 139.569 23.534 31.746 1.00 41.61 228 CG1 ILE 46 140.992 34.650 32,357 1.00 25.99 299 Н THR 53 142.537 25.134 29.467 1.00 25.00 229 CG2 HF46 139.817 33 420 30.528 1.00 33.03 300 HG1 THR 53 142 088 25 586 31 555 1.00 25.00 230 139 889 140 553 CD1 H.E. 46 35,630 32,667 1.00 27.20 301 N ARG 54 23 138 28 027 1.00 42.45 25.00 231 143,414 35.255 302 CA 54 139.802 26.9976 Н ILE. 46 30.675 1.00 ARG 22.461 1.00 41.46 142.548 43.94 232 47 33.263 28.199 37.32 303 54 140.516 26.653 N GLU 1.00 ARG 21.152 1.00 C 233 CA 47 142.485 32.581 304 54 139.891 41.93 26.910 1.00 43.87 O ARG 20.088 26.607 1.00 GLU 234 47 143.420 31.379 305 CB54 139.731 23.344 25.727 C GLU 26.870 1.00 44.27 ARG 1.00 43.17 235 O 47 143.061 30.324 26.341 48.49 306 CG 138.759 22.861 24.658 49.52 GLU 1.00 ARG 1.00 236 CB GLU 47 142.817 33.537 25.765 1.00 50.83 307 CD ARG 138,792 23.763 23.428 1.00 55.06 237 CG GLU 47 141.700 34.516 25.422 1.00 72.13 308 NE ARG 138.600 25.176 23.764 1.00 65.13 47 24.970 309 25.758 23.951 238 CD GLU 140.408 33.833 1.00 80.45 CZARG 54 137.416 1.00 73.50 239 OE1 GLU 47 140.440 32.643 24.577 1.00 82.39 310 NH1ARG 136.293 25.058 23.836 1.00 78.69 240 OE2 GLU 47 139,353 34.501 25.001 87.14 311 NH2 ARG 54 137.353 27.046 24.263 1.00 72.72 1.00 241 Н GLU 47 142.813 34.208 28.233 1.00 25.00 312 Н ARG 54 140.919 24.030 27.846 1.00 25.00 N 1.00 242 ALA 48 144.610 31.538 27.444 41.56 313 HE ARG 54 139,400 25.734 23.857 1.00 25.00 243 CA ALA 48 145.597 30.464 27.489 1.00 36.13 314 1HH1ARG 136.328 24.086 23.604 1.00 25.00 244 25.505 С ALA 48 145.078 29.340 28.375 1.00 38.33 315 2HH1 ARG 54 135.410 23.976 1.00 25.00 65 245 O 48 145.027 28.176 27.964 1.00 40.71 1HH2 ARG 138.196 27.578 24.357 1.00 25.00 ALA 316 246 CB 48 28.031 2HH2 ARG 27.484 24.403 25.00 ALA 146.917 30.990 1.00 33.18 317 136.466 1.00

TABLE 11-continued

	Structura			of Tobacco osence of l			ne Synt	hase	5	\$	Structur			of Tobacco osence of l			ne Synt	thase
Atom	ı		Resi- due							Atom			Resi- due					
Туре	Atom	Resi- due	#	X	Y	Z	OCC	B-factor		Туре	Atom	Resi- due	#	X	Y	z	OCC	B-factor
318 319	N CA	SER SER	55 55	141.834 142.645	21.233 20.062	26.480 26.176	1.00 1.00	41.53 41.04	10	389 390	2HH2 N	ARG LYS	62 63	137.408 140.214	13.963 7.702	30.909 33.143	1.00 1.00	25.00 56.71
	C	SER	55	142.550	19.010	27.284	1.00	42.34		391		LYS	63	139.258	6.840	33.830	1.00	53.88
321	0	SER	55	142.587	17.810	27.005	1.00	42.66		392		LYS	63	137.986	7.614	34.170	1.00	49.91
322 323	CB OG	SER SER	55 55	144.100 144.208	20.469 21.230	25.916 24.719	1.00 1.00	46.50 41.12		393 394	O CB	LYS LYS	63 63	138.024 139.876	8.831 6.284	34.377 35.114	1.00 1.00	43.13 60.17
324	Н	SER	55	142.280	22.107	26.538	1.00	25.00	4.5	395	CG	LYS	63	141.181	5.544	34.901	1.00	72.02
	HG	SER	55	143.898	20.704	23.977	1.00	25.00	15	396	CD	LYS	63	141.807	5.141	36.225	1.00	82.26
326 327	N CA	MET MET	56 56	142.399 142.265	19.458	28.531 29.668	$\frac{1.00}{1.00}$	41.33 40.87		397 398	CE NZ	LYS LYS	63 63	143.131 143.764	4.428 4.015	36.004 37.286	1.00 1.00	90.54 94.67
328	CA	MET	56	141.003	18.544 17.703	29.501	1.00	43.46		399	H	LYS	63	140.988	8.042	33.633	1.00	25.00
329	Ō	MET	56	141.017	16.489	29.711	1.00	41.72			1HZ	LYS	63	143.130	3.366	37.795	1.00	25.00
330	CB	MET	56	142.164	19.312	30.989	1.00	44.45	20	401	2HZ	LYS	63	144.664	3.533	37.085	1.00	25.00
331 332	CG SD	MET MET	56 56	143.461 143.231	19.894 20.659	31.500 33.118	1.00 1.00	46.36 45.60	20	402 403	3HZ N	LYS LEU	63 64	143.945 136.877	4.857 6.890	37.868 34.289	1.00 1.00	25.00 44.28
	CE	MET	56	143.715	22.320	32.763	1.00	44.30		404		LEU	64	135.583	7.487	34.603	1.00	40.75
334	Н	MET	56	142.383	20.426	28.690	1.00	25.00		405	C	LEU	64	135.650	8.425	35.805	1.00	38.00
	N	LEU	57 57	139.910	18.365	29.132	1.00	42.82		406	O	LEU	64	135.273	9.592	35.708	1.00	38.34
336 337	CA C	LEU LEU	57 57	138.632 138.684	17.696 16.700	28.929 27.779	1.00 1.00	41.38 43.36	25	407 408	CB CG	LEU LEU	64 64	134.539 133.128	6.395 6.897	34.858 35.170	1.00 1.00	37.20 35.50
338	Ö	LEU	57	138.042	15.653	27.831	1.00	45.75	23	409	CD1	LEU	64	132.563	7.618	33.964	1.00	30.93
339	CB	LEU	57	137.531	18.726	28.670	1.00	34.91		410	CD2	LEU	64	132.232	5.741	35.572	1.00	32.83
340 341	CG CD1	LEU LEU	57 57	137.047 136.174	19.512 20.663	29.887 29.441	1.00 1.00	31.36 31.29		411 412	H N	LEU ALA	64 65	136.930 136.149	5.926 7.915	34.145 36.927	1.00 1.00	25.00 34.87
	CD2	LEU	57	136.287	18.592	30.833	1.00	25.33		413	CA	ALA	65	136.264	8.700	38.152	1.00	33.63
343	H	LEU	57	139.968	19.335	28.990	1.00	25.00	30	414	С	ALA	65	136.977	10.022	37.909	1.00	32.94
344	N	LEU	58	139.466	17.016	26.754	1.00	43.66		415	O	ALA	65	136.508	11.073	38.342	1.00	31.36
345 346	CA C	LEU LEU	58 58	139.577 140.659	16.145 15.059	25.591 25.683	1.00 1.00	48.27 53.11		416 417	CB H	ALA ALA	65 65	136.991 136.437	7.000 6.983	39.222 36.932	1.00 1.00	26.54 25.00
347	ŏ	LEU	58	141.005	14.441	24.672	1.00	54.87		418	N	ASP	66	138.094	9.965	37.188	1.00	36.39
348	CB	LEU	58	139.762	16.987	24.325	1.00	45.38		419	CA	ASP	66	138.887	11.151	36.882	1.00	34.98
349	CG CD1	LEU LEU	58	138.682	18.051	24.083 22.772	1.00	48.84	35	420	С	ASP	66	138.127	12.136	36.002	1.00	34.90
350 351	CD1 CD2	LEU	58 58	138.936 137.303	18.772 17.413	24.074	$\frac{1.00}{1.00}$	46.56 49.64		421 422	O CB	ASP ASP	66 66	138.200 140.202	13.352 10.755	36.210 36.202	1.00 1.00	34.81 42.66
	Н	LEU	58	139.978	17.851	26.781	1.00	25.00		423	CG	ASP	66	141.054	9.825	37.059	1.00	51.98
	N	ALA	59	141.180	14.813	26.884	1.00	58.17		424	OD1	ASP	66	141.008	9.934	38.306	1.00	48.05
354 355	CA C	ALA ALA	59 59	142.208 141.605	13.788 12.397	27.078 26.874	$\frac{1.00}{1.00}$	61.28 66.17		425 426	OD2 H	ASP ASP	66 66	141.774 138.390	8.982 9.103	36.479 36.840	1.00 1.00	59.40 25.00
356	Ö	ALA	59	140.672	11.998	27.572	1.00	65.17	40	427	N	THR	67	137.400	11.607	35.023	1.00	32.76
357		ALA	59	142.830	13.908	28.460	1.00	61.08		428	CA	THR	67	136.617	12.433	34.110	1.00	29.98
358	H	ALA THR	59 60	140.859 142.188	15.316 11.651	27.661 25.943	$\frac{1.00}{1.00}$	25.00 71.93		429 430	C O	THR THR	67 67	135.486 135.262	13.131 14.337	34.869 34.708	1.00 1.00	27.93 26.55
359 360	N CA	THR	60	141.717	10.317	25.572	1.00	78.50		431		THR	67	136.033	11.582	32.963	1.00	33.36
361	C	THR	60	141.721	9.179	26.599	1.00	77.85		432	OG1	THR	67	137.102	10.914	32.278	1.00	32.56
362	O	THR	60	140.694	8.536	26.812	1.00	82.48	45	433	OG2	THR	67	135.272	12.460	31.972	1.00	24.21
363 364	CB OG1	THR THR	60 60	142.443 143.852	9.828 10.053	24.304 24.449	1.00 1.00	80.20 82.38		434 435	H HG1	THR THR	67 67	137.385 136.746	10.635 10.375	34.900 31.566	1.00 1.00	25.00 25.00
	OG2	THR	60	141.933	10.573	23.076	1.00	82.60			N	LEU	68	134.806	12.382	35.730	1.00	24.35
366	H	THR	60	142.957	12.026	25.478	1.00	25.00		437		LEU	68	133.717	12.938	36.513	1.00	23.41
367 368	HG1	THR	60 61	144.029 142.866	10.991	24.540	1.00 1.00	25.00		438 439		LEU	68	134.223 133.644	14.025	37.449	1.00 1.00	28.28
	N CA	GLY GLY	61 61	142.866	8.914 7.813	27.217 28.165	1.00	74.94 75.87	50	440		LEU LEU	68 68	133.004	15.112 11.842	37.507 37.301	1.00	26.82 24.43
370	C	GLY	61	142.662	8.104	29.626	1.00	73.64		441	CG	LEU	68	132.221	10.841	136.447	1.00	32.03
371		GLY	61	143.494	7.804	30.484	1.00	73.89			CD1	LEU	68	131.651	9.744	37.330	1.00	23.28
372 373		GLY ARG	61 62	143.654 141.491	9.465 8.651	27.047 29.925	1.00 1.00	25.00 70.85		443 444	CD2 H	LEU LEU	68 68	131.112 135.049	11.556 11.442	35.680 35.844	1.00 1.00	27.61 25.00
374		ARG	62	141.149	8.960	31.307	1.00	67.41		445		ASN	69	135.323	13.750	38.147	1.00	26.79
375		ARG	62	140.068	8.054	31.870	1.00	61.77	55	446		ASN	69	135.894	14.724	39.072	1.00	30.78
376 377		ARG ARG	62 62	139.147 140.755	7.654 10.429	31.160 31.444	1.00 1.00	63.43 69.30		447 448		ASN ASN	69 69	136.341 136.165	15.981 17.092	38.340 38.837	1.00 1.00	28.43 30.31
378		ARG	62 62	140.755	11.309	31.444	1.00	75.81		448		ASN	69	130.103	14.125	39.867	1.00	40.14
379	CD	ARG	62	141.666	12.780	31.647	1.00	78.22		450	CG	ASN	69	136.597	13.165	40.959	1.00	53.22
380		ARG	62	140.334	13.254	32.009	1.00	79.69	60		OD1	ASN	69	135.478	13.271	41.467	1.00	52.67
381 382	CZ NH1	ARG ARG	62 62	139.335 139.508	13.405 13.118	31.143 29.859	$\frac{1.00}{1.00}$	88.12 90.62	60	452 453	ND2 H	ASN ASN	69 69	137.460 135.750	12.224 12.874	41.326 38.043	1.00 1.00	60.05 25.00
	NH2	ARG	62	138.160	13.852	31.559	1.00	92.99			1HD2		69	137.165	11.608	42.027	1.00	25.00
384	H	ARG	62	140.835	8.835	29.218	1.00	25.00		455	2HD2	ASN	69	138.335	12.185	40.893	1.00	25.00
385		ARG	62	140.163	13.477	32.948	1.00	25.00		456		LEU	70	136.884	15.813	37.140	1.00	26.00
	1HH1 2HH1		62 62	140.393 138.752	12.785 13.233	29.534 29.216	1.00 1.00	25.00 25.00	65	457 458		LEU LEU	70 70	137.327 136.135	16.958 17.867	36.358 36.053	1.00 1.00	27.21 29.79
	1HH2		62	138.022	14.076	32.524	1.00	25.00		459		LEU	70	136.192		36.287	1.00	27.18

TABLE 11-continued

Structu			of Tobacco			ne Synt	hase	5		Structur			of Tobacco			ne Syn	thase
A 4		Resi-	-						A 4			Resi-					
Atom	Resi-	due							Atom		Resi-	due					
Type Atom	due	#	X	Y	Z	OCC	B-factor		Туре	Atom	due	#	X	Y	Z	OCC	B-factor
460 CB	LEU	70 70	137.990	16.498	35.058	1.00	23.13	10	531		LEU	77	134.752	28.777	39.026	1.00	25.27
461 CG 462 CD1	LEU LEU	70 70	138.417 139.366	17.624 18.580	34.109 34.821	$\frac{1.00}{1.00}$	30.77 21.76		532 533		LEU LEU	77 77	136.131 137.076	26.167 25.352	39.372 40.258	1.00	18.34 18.25
463 CD2	LEU	70	139.062	17.045	32.860	1.00	27.07		534	CD1	LEU	77	138.266	24.893	39.443	1.00	15.60
464 H	LEU	70	136.995	14.908	36.777	1.00	25.00			CD2	LEU	77 77	137.531	26.182	41.459	1.00	17.00
465 N 466 CA	ILE ILE	71 71	135.053 133.840	17.272 18.012	35.553 35.217	$\frac{1.00}{1.00}$	30.05 24.54		536 537	н N	LEU GLY	77 78	134.063 132.958	24.649 27.455	39.546 38.668	1.00	25.00 24.42
467 C	ILE	71	133.221	18.663	36.456	1.00	23.02	15		CA	GLY	78	132.228	28.464	37.914	1.00	20.32
468 O	ILE	71	132.849	19.839	36.429	1.00	23.20		539	C	GLY	78	132.741	28.807	38.531	1.00	20.16
469 CB 470 CG1	ILE ILE	71 71	132.809 133.338	17.095 16.693	34.516 33.136	$\frac{1.00}{1.00}$	26.68 25.05		540 541		GLY GLY	78 78	132.375 132.553	29.841 26.576	35.970 38.793	1.00 1.00	22.90 25.00
471 CG2	ILE	71	131.459	17.795	34.383	1.00	23.87		542		ILE	79	133.550	27.927	335.952	1.00	22.82
472 CD1	ILE	71	132.442	15.736	32.400	1.00	27.35	20	543		ILE	79	134.099	28.170	34.623	1.00	24.96
473 H 474 N	ILE ASP	71 72	135.073 133.140	16.300 17.910	35.409 37.546	$\frac{1.00}{1.00}$	25.00 19.38	20	544 545		ILE ILE	79 79	133.577 133.991	27.204 27.273	33.560 32.398	1.00 1.00	29.01 28.78
475 CA	ASP	72	132.585	18.429	38.789	1.00	22.68		546		ILE	79	135.646	28.133	34.635	1.00	24.44
476 C	ASP	72	133.376	19.657	39.266	1.00	25.06		547	CG1	ILE	79	136.142	26.920	35.429	1.00	27.37
477 O 478 CB	ASP ASP	72 72	132.784 132.593	20.680 17.335	39.626 39.861	1.00 1.00	24.92 23.74		548 549	CG2 CD1	ILE ILE	79 79	136.195 137.632	29.426 26.715	35.210 35.381	1.00	25.45 25.03
479 CG	ASP	72	131.900	17.760	41.147	1.00	27.65	25	550		ILE	79	133.782	27.105	36.435	1.00	25.00
480 OD1	ASP	72	130.953	18.575	41.086	1.00	29.89		551		SER	80	132.629	26.347	33.935	1.00	27.52
481 OD2	ASP	72 72	132.303	17.268	42.223	1.00	30.37		552 553		SER SER	80 80	132.079	25.381	32.986 31.816	1.00	29.32 31.74
482 H 483 N	ASP ILE	73	133.459 134.705	16.986 19.565	37.512 39.228	1.00 1.00	25.00 26.02		554		SER	80 80	131.317 131.187	26.012 25.391	30.761	1.00	34.93
484 CA	ILE	73	135.589	20.656	39.654	1.00	21.86			CB	SEER	80	131.205	24.338	33.694	1.00	26.24
485 C	ILE	73	135.431	21.918	38.797	1.00	23.60	30	556	OG	SER	80	130.096	24.932	34.338	1.00	29.78
486 O 487 CB	ILE ILE	73 73	135.270 137.075	23.019 20.198	39.329 39.671	1.00 1.00	25.70 20.21		557 558		SER SER	80 80	132.308 130.432	26.358 25.530	34.857 34.992	1.00	25.00 25.00
488 CG1	ILE	73	137.245	19.066	40.684	1.00	22.84		559	N	TYR	81	130.869	27.258	31.966	1.00	25.77
489 CG2	ILE	73	137.992	21.351	40.058	1.00	17.62		560		TYR	81	130.134	27.914	30.887	1.00	23.28
490 CD1 491 H	ILE ILE	73 73	138.659 135.108	18.513 18.732	40.788 38.902	$\frac{1.00}{1.00}$	53.34 25.00		561 562		TYR TYR	81 81	130.965 130.418	28.063 28.302	29.605 28.527	1.00	30.16 32.12
492 N	ILE	74	135.450	21.755	37.476	1.00	22.39	35	563		TYR	81	129.556	29.261	31.344	1.00	24.86
493 CA	ILE	74	135.297	22.884	36.556	1.00	22.15		564		TYR	81	130.557	30.381	31.543	1.00	29.19
494 C 495 O	ILE	74 74	133.955	23.581	36.784	1.00 1.00	24.59			CD1	TYR	81 81	131.260	30.519	32.740 30.545	1.00 1.00	27.27
496 CB	ILE ILE	74	133.858 135.415	24.807 22.426	36.702 35.079	1.00	29.58 24.24			CD2 CE1	TYR TYR	81	130.768 132.148	31.329 31.575	32.935	1.00	28.18 29.22
497 CG1	ILE	74	136.835	21.909	34.811	1.00	25.85			CE2	TYR	81	131.649	32.384	30.729	1.00	29.85
498 CG2 499 CD1	ILE	74 74	135.071 137.054	23.571	34.132	1.00 1.00	19.61	40	569 570	CZ	TYR TYR	81	132.336	32.504	31.923	1.00	29.78
500 H	ILE ILE	74	135.571	21.340 20.851	33.420 37.109	1.00	23.74 25.00		571		TYR	81 81	133.220 131.028	33.547 27.734	32.084 32.805	1.00	28.93 25.00
501 N	GLU	75	132.925	22.797	37.083	1.00	23.15		572		TYR	81	133.196	34.121	31.313	1.00	25.00
502 CA	GLU	75	131.599	23.343	37.338	1.00	23.53			N	HIS	82	132.284	27.904	29.727	1.00	32.51
503 C 504 O	GLU GLU	75 75	131.548 131.040	24.092 25.208	38.658 38.722	1.00 1.00	21.84 25.34	45	574 575	CA	HIS HIS	82 82	133.194 133.237	27.991 26.669	28.581 27.828	1.00 1.00	29.34 28.19
505 CB	GLU	75	130.550	22.237	37.342	1.00	26.71	73	576	Ö	HIS	82	133.658	26.620	26.672	1.00	28.93
506 CG	GLU	75	130.274	21.647	35.978	1.00	30.84		577		HIS	82	134.631	28.280	29.038	1.00	27.19
507 CD 508 OE1	GLU GLU	75 75	129.073 128.644	20.720 20.253	35.969 37.051	1.00 1.00	36.10 29.89			CG ND1	HIS HIS	82 82	134.839 134.702	29.654 30.793	29.589 28.825	1.00	22.31 24.56
509 OE2	GLU	75	128.559	20.460	34.865	1.00	31.50			CD2	HIS	82	135.195	30.071	30.827	1.00	20.64
510 H	GLU	75	133.056	21.822	37.122	1.00	25.00	50		CE1	HIS	82	134.964	31.853	29.568	1.00	22.72
511 N 512 CA	ARG ARG	76 76	132.060 132.066	23.474 24.115	39.717 41.028	1.00 1.00	19.68 20.75		582	NE2 H	HIS HIS	82 82	135.265 132.658	31.442 27.714	30.786 30.612	1.00	23.06 25.00
513 C	ARG	76	132.925	25.385	41.017	1.00	22.83			HD1	HIS	82	134.458	30.815	27.872	1.00	25.00
514 O	ARG	76	132.699	26.303	41.803	1.00	21.89			HE2	HIS	82	135.465	32.016	31.549	1.00	25.00
515 CB 516 CG	ARG ARG	76 76	132.581 131.653	23.148 21.989	42.091 42.411	1.00 1.00	16.07 20.22		586 587		PHE PHE	83 83	132.820 132.878	25.596 24.266	28.493 27.903	1.00	26.84 33.10
517 CD	ARG	76	132.331	21.061	43.395	1.00	21.08	55	588		PHE	83	131.549	23.521	27.811	1.00	36.98
518 NE	ARG	76	131.498	19.939	43.819	1.00	18.53		589		PHE	83	131.511	22.296	27.973	1.00	34.23
519 CZ 520 NH1	ARG ARG	76 76	130.847 130.917	19.891 20.907	44.977 45.829	$\frac{1.00}{1.00}$	24.53 17.48		590 591		PHE PHE	83 83	133.895 135.171	23.426 24.159	28.683 28.985	1.00 1.00	32.26 36.23
520 NH1 521 NH2	ARG	76 76	130.917	18.802	45.311	1.00	26.65			CD1	PHE	83	136.138	24.139	27.998	1.00	36.38
522 H	ARG	76	132.440	22.577	39.618	1.00	25.00		993	CD2	PHE	83	135.381	24.724	30.241	1.00	34.95
523 HE 524 1HH1	ARG	76 76	131.417 131.459	19.172 21.717	43.218 45.606	$\frac{1.00}{1.00}$	25.00 25.00	60		CE1 CE2	PHE PHE	83 83	137.295 136.533	25.067 25.457	28.254 30.509	1.00	36.74 39.63
524 1HH1 525 2HH1		76 76	131.439	20.865	45.606	1.00	25.00		595 596		PHE	83 83	130.533	25.630	29.511	1.00	39.03 41.21
526 1HH2		76	130.146	18.021	44.691	1.00	25.00		597		PHE	83	132.457	25.694	29.394	1.00	25.00
527 2HH2		76	129.678	18.766	46.181	1.00	25.00		598		GLU	84	130.478	24.241	27.484	1.00	40.92
528 N 529 CA	LEU LEU	77 77	133.913 134.798	25.425 26.579	40.126 40.001	1.00 1.00	22.29 23.34	65	599 600		GLU GLU	84 84	129.146 129.159	23.641 22.422	27.365 26.431	1.00 1.00	46.14 42.13
529 CA 530 C	LEU	77	134.156	27.710	39.193	1.00	25.54	-	601		GLU	84	129.139		26.819		38.24
_																	

TABLE 11-continued TABLE 11-continued

	Structur			of Tobacco			ne Synt	hase	5		Structur			of Tobacco			ne Syn	hase
Ator	,,		Resi-							Atom			Resi-					
	e Atom	Resi- due	#	X	Y	Z	OCC	B-factor			Atom	Resi-	#	X	Y	z	OCC	B-factor
	CB	GLU	84	128.128	24.674	26.851	1.00	56.77		673		LEU	91	128.430	15.017	31.447	1.00	28.62
	CG	GLU	84	128.042	25.978	27.660	1.00	74.38	10	674		LEU	91	127.538	16.084	32.040	1.00	25.02
604		GLU	84	127.252	25.853	28.960	1.00	81.74			CD2	LEU	91	128.752	13.952	32.490	1.00	25.28
605		GLU	84	127.654	25.066	29.847	1.00	85.56		676	H	LEU	91	129.643	14.796	28.591	1.00	25.00
606	OE2 H	GLU GLU	84 84	126.233 130.590	26.564 25.203	29.101 27.330	$\frac{1.00}{1.00}$	84.80 25.00		677 678		ASP ASP	92 92	127.445 126.620	12.692 11.889	27.486 26.595	$\frac{1.00}{1.00}$	34.80 37.65
608		LYS	85	129.674	22.614	25.218	1.00	40.25		679	C	ASP	92	127.273	10.516	26.446	1.00	38.72
609	CA	LYS	85	129.740	21.544	24.224	1.00	41.41	15	680	O	ASP	92	126.594	9.490	26.494	1.00	41.65
610		LYS	85	130.590	20.348	24.663	1.00	36.27		681	CB	ASP	92	126.491	12.569	25.231	1.00	44.12
611	O CB	LYS LYS	85 85	130.138 130.268	19.204 22.085	24.595 22.890	1.00 1.00	35.16 46.40		682 683	CG OD1	ASP ASP	92 92	125.426 124.235	11.931 12.268	24.358 24.531	1.00 1.00	48.79 49.33
613		LYS	85	130.266	21.025	21.801	1.00	58.06			OD2	ASP	92	125.781	11.098	23.498	1.00	52.21
614		LYS	85	131.176	21.498	20.605	1.00	70.05		685		ASP	92	127.856	13.512	27.149	1.00	25.00
	CE	LYS	85	131.305	20.389	19.565	1.00	70.91	20	686	N	GLN	93	128.595	10.499	26.286	1.00	40.62
	NZ H	LYS LYS	85 85	132.101 130.016	20.809 23.501	18.379 24.992	1.00 1.00	79.32 25.00		687 688	CA C	GLN GLN	93 93	129.337 129.209	9.247 8.415	26.155 27.424	1.00 1.00	41.87 41.38
618		LYS	85	133.059	21.080	18.678	1.00	25.00		689	0	GLN	93	129.209	7.198	27.424	1.00	44.29
619		LYS	85	132.157	20.018	17.706	1.00	25.00		690	СВ	GLN	93	130.817	9.504	25.883	1.00	47.84
620		LYS	85	131.636	21.619	17.922	1.00	25.00		691	CG	GLN	93	131.124	10.061	24.511	1.00	65.26
	N	GLU	86	131.812	20.620	25.115	1.00	37.17	25	692	CD OF1	GLN	93	132.618	10.230	24.286	1.00	76.60
622 623	CA C	GLU GLU	86 86	132.736 132.162	19.573 18.714	25.545 26.663	1.00 1.00	35.98 36.73		693 694	OE1 NE2	GLN GLN	93 93	133.402 133.023	9.308 11.413	24.532 23.829	1.00 1.00	78.42 78.28
624		GLU	86	132.156	17.483	26.571	1.00	38.05		695	Н	GLN	93	129.082	11.351	26.254	1.00	25.00
625	CB	GLU	86	134.077	20.173	25.990	1.00	36.51		696	1HE2		93	133.983	11.522	23.685	1.00	25.00
626		GLU	86	134.938	20.773	24.866	1.00	40.91		697	2HE2		93	132.356	12.108	23.664	1.00	25.00
627 628		GLU GLU	86 86	134.439 133.728	22.124 22.840	24.349 25.085	$\frac{1.00}{1.00}$	43.71 42.43	30	698 699	N CA	ILE ILE	94 94	129.302 129.186	9.065 8.360	28.580 29.851	$\frac{1.00}{1.00}$	38.08 38.56
629		GLU	86	134.776	22.480	23.201	1.00	50.53		700		ILE	94	127.783	7.763	30.011	1.00	37.25
	Н	GLU	86	132.086	21.551	25.172	1.00	25.00		701		ILE	94	127.631	6.623	30.464	1.00	40.45
	N	ILE	87	131.666	19.368	27.708	1.00	35.80		702	CB	ILE	94	129.519	9.284	31.051	1.00	38.10
	CA	ILE ILE	87 97	131.092	18.662	28.845	1.00	30.66				ILE ILE	94 94	130.982	9.729 8.559	30.973 32.372	1.00 1.00	33.78
634	C 0	ILE	87 87	129.871 129.692	17.844 16.711	28.428 28.887	$\frac{1.00}{1.00}$	32.98 32.50	35		CG2 CD1	ILE	94	129.265 131.426	10.590	32.372	1.00	39.54 28.73
635		ILE	87	130.739	19.640	29.986	1.00	30.27		706		ILE	94	129.455	10.035	28.576	1.00	25.00
636		ILE	87	132.027	20.253	30.546	1.00	29.89		707		TYR	95	126.769	8.527	29.616	1.00	35.79
637		ILE	87	129.972	18.926	31.091	1.00	29.25		708		TYR	95 05	125.383	8.080	29.702	1.00	36.92
638 639		ILE ILE	87 87	131.814 131.681	21.264 20.348	31.654 27.719	1.00 1.00	25.52 25.00		709 710	C O	TYR TYR	95 95	125.219 124.681	6.814 5.812	28.869 29.340	1.00 1.00	40.95 39.72
640		ASP	88	129.054	18.393	27.534	1.00	32.95	40	711		TYR	95	124.438	9.170	29.176	1.00	31.04
641		ASP	88	127.870	17.679	27.070	1.00	36.69		712		TYR	95	122.969	8.799	29.213	1.00	35.51
642		ASP	88	128.256	16.407	26.309	1.00	39.28			CD1	TYR	95 05	122.356	8.420	30.407	1.00	37.94
643 644		ASP ASP	88 88	127.745 126.994	15.324 18.573	26.6601 26.191	1.00 1.00	40.13 40.42		714 715	CD2 CE1	TYR TYR	95 95	122.189 121.002	8.826 8.073	28.054 30.452	1.00 1.00	40.35 42.00
645		ASP	88	125.682	17.901	25.800	1.00	49.09			CE2	TYR	95	120.827	8.481	28.088	1.00	44.29
646		ASP	88	124.874	17.586	26.702	1.00	48.29	45	717	CZ	TYR	95	120.245	8.107	29.294	1.00	43.88
647		ASP	88	125.464	17.677	24.590	1.00	57.24		718		TYR	95	118.912	7.763	29.351	1.00	49.08
	H	ASP GLU	88 89	129.245 129.178	19.291 16.532	27.185 25.359	$\frac{1.00}{1.00}$	25.00 38.92		719 720	H HH	TYR TYR	95 95	126.959 118.668	9.421 7.513	29.265 30.254	$\frac{1.00}{1.00}$	25.00 25.00
	CA	GLU	89	129.621	15.385		1.00	38.06		721		ASN	96	125.744	6.861	27.649	1.00	42.27
	. C	GLU	89	130.258	14.303		1.00	35.90		722		ASN	96	125.664	5.749	26.711	1.00	45.67
	O	GLU	89	130.077	13.115	25.168	1.00	39.91	50	723 724		ASN	96	126.430	4.484	27.088	1.00	53.96
	CB CG	GLU GLU	89 89	130.572 129.871	15.829 16.622	23.466 22.379	1.00 1.00	44.42 61.34		725		ASN ASN	96 96	125.949 126.068	3.383 6.215	26.831 25.310	1.00 1.00	58.48 41.30
	CD	GLU	89	130.822	17.159	21.333	1.00	75.40		726		ASN	96	125.004	7.072	24.656	1.00	45.95
	OE1	GLU	89	131.776	17.873	21.707	1.00	80.47			OD1	ASN	96	123.922	6.590	24.339	1.00	50.40
	OE2	GLU	89	130.609	16.878	20.134	1.00	86.74				ASN	96	125.299	3.349	24.459	1.00	47.53
	H	GLU ILE	89 90	129.569 130.985	17.416 14.708	25.185 26.470	$\frac{1.00}{1.00}$	25.00 32.75	55	729 730	H 1HD2	ASN ASN	96 96	128.205 124.616	7.682 8.910	27.378 24.040	$\frac{1.00}{1.00}$	25.00 25.00
	CA	ILE	90	131.619		27.368	1.00	31.62			2HD2		96	126.172	8.686	24.743	1.00	25.00
	C	ILE	90	130.556	13.052		1.00	33.52		732		GLN	97	127.604	4.625	27.702	1.00	62.59
	O	ILE	90	130.580	11.830	28.376	1.00	35.53		733		GLN	97 07	128.397 127.898	3.453	28.081	1.00	69.96
	CB CG1	ILE ILE	90 90	132.646 133.815	14.427 14.983		1.00 1.00	31.23 32.25		734 735		GLN GLN	97 97	127.898	2.701 1.540	29.320 29.521	1.00 1.00	74.06 71.27
	CG2	ILE	90	133.153	13.431		1.00	23.52	60	736		GLN	97	129.885	3.804	28.219	1.00	74.21
666	CD1	ILE	90	134.794	15.802	28.300	1.00	27.90		737	CG	GLN	97	130.227	4.801	29.315	1.00	82.49
	H	ILE	90	131.105	15.670	26.630	1.00	25.00		738		GLN	97	131.723	5.065	29.415	1.00	85.73
	N CA	LEU LEU	91 91	129.617 128.551	13.828 13.266	28.749 29.569	1.00 1.00	33.39 33.57			OE1 NE2	GLN GLN	97 97	132.336 132.316	4.837 5.548	30.456 28.329	1.00 1.00	88.41 82.49
	CA	LEU	91 91	128.551	12.351	29.369	1.00	35.23		740		GLN	97 97	127.943	5.524	28.329	1.00	25.00
	O	LEU	91	127.145	11.346	29.269	1.00	32.55	65		1HE2		97	133.277	5.711	28.402	1.00	25.00
	CB	LEU	91	127.741	14.373		1.00	30.86			2HE2		97	131.787	5.714	27.528	1.00	25.00

TABLE 11-continued TABLE 11-continued

5	Structura				o 5-Epi-A Bound Su		ne Synt	hase		- 5	Structur			of Tobacco			ne Synt	hase
Atom		•	Resi-		Downer De				5	Atom			Resi-			obuato		
		Resi- due	#	X	Y	Z	OCC	B-factor			Atom	Resi- due	#	X	Y	z	OCC	B-factor
744		ASN	98	127.091	3.367	30.147	1.00	83.07	10	815	SG	CYS	105	133.614	9.885	45.573	1.00	53.55
745	CA	ASN	98	126.517	2.769	31.360	1.00	95.02	10	816	H	CYS	105	131.437	6.307	46.484	1.00	25.00
746 747	C O	ASN ASN	98 98	127.459 127.088	1.854 0.737	32.148 32.517	1.00 1.00	101.68 106.47		817 818	N CA	THR THR	106 106	131.761 131.697	7.679 7.890	43.236 41.797	1.00 1.00	30.74 28.00
748	CB	ASN	98	125.233	1.997	31.019	1.00	98.06		819	C	THR	106	130.301	7.663	41.227	1.00	25.73
749 750	CG OD1	ASN ASN	98 98	124.034 123.390	2.902 3.307	30.830 31.799	1.00 1.00	100.62 107.25		820 821	O CB	THR THR	106 106	129.870 132.714	8.396 7.000	40.339 41.074	1.00 1.00	28.92 33.61
751	ND2	ASN	98	123.711	3.207	29.580	1.00	107.23	15	822	OG1	THR	106	134.000	7.172	41.684	1.00	38.24
752		ASN	98	126.876	4.301	29.938	1.00	25.00			CG2	THR	106	132.807	7.369	39.598	1.00	30.78
753 754	1HD2 2HD2		98 98	122.944 124.241	3.798 2.849	29.449 28.838	$\frac{1.00}{1.00}$	25.00 25.00		824 825	H HG1	THR THR	106 106	132.208 134.270	6.874 8.093	43.564 41.602	1.00 1.00	25.00 25.00
755		SER	99	128.671	2.326	32.415	1.00	105.86		826		SER	107	129.592	6.670	41.751	1.00	23.29
756		SER	99	129.649	1.533	33.153	1.00	108.38	20	827		SER	107	128.237	6.371	41.294	1.00	27.37
757 758	C O	SER SER	999 99	129.389 129.054	1.528 2.561	34.659 35.243	1.00 1.00	109.53 110.32	20	828 829	C O	SER SER	107 107	127.268 126.518	7.540 7.932	41.539 40.643	1.00 1.00	25.50 25.99
759	CB	SER	99	131.057	2.049	32.859	1.00	107.06		830	CB	SER	107	127.721	5.101	41.978	1.00	26.16
760	OG H	SER SER	99 99	131.078 128.927	3.405 3.224	32.861 32.122	1.00 1.00	109.07 25.00		831 832	OG H	SER SER	107 107	128.552 129.981	3.993 6.113	41.676 42.456	1.00 1.00	34.57 25.00
761 762		SER	99	130.810	3.805	33.720	1.00	25.00		833		SER	107	129.981	3.864	40.726	1.00	25.00
763	N	ASN	100	129.534	0.361	35.280	1.00	111.83	25	834	N	ALA	108	127.298	8.096	42.749	1.00	23.90
764 765	CA	ASN ASN	100 100	129.325 130.612	0.223 0.548	36.720 37.462	1.00 1.00	115.28 114.16		835 836	CA	ALA ALA	108 108	126.441 126.779	9.219 10.466	43.121 42.307	1.00 1.00	23.63 25.62
766	o	ASN	100	131.577		37.402	1.00	114.16		837	o	ALA	108	125.887	11.189	41.861	1.00	27.88
767	CB	ASN	100			37.072	1.00	117.88		838	CB	ALA	108	126.566	9.509	44.608	1.00	18.25
768 769	CG OD1	ASN ASN	100 100	127.451 126.518		36.640 37.056	1.00 1.00	122.11 119.89	20	839 840	H N	ALA LEU	108 109	127.913 128.069	7.734 10.709	43.418 42.099	1.00 1.00	25.00 21.86
770	ND2	ASN	100	127.274	-2.485	35.799	1.00	124.85	30	841	CA	LEU	109	128.493	11.861	41.322	1.00	21.96
771	H	ASN	100	129.794		34.757	1.00	25.00		842		LEU	109	128.009	11.704	39.881	1.00	25.59
772 773	1HD2 2HD2		100 100	126.354 128.048		35.510 35.500	1.00 1.00	25.00 25.00		843 844	O CB	LEU LEU	109 109	127.458 130.017	12.640 12.002	39.297 41.359	1.00 1.00	26.33 21.29
774	N	CYS	101	130.622	1.678	38.162	1.00	112.97		845	CG	LEU	109	130.611	13.186	40.550	1.00	23.03
775 776	CA C	CYS CYS	101 101	131.804 132.046	2.103 1.309	38.902 40.184	1.00 1.00	109.49 104.47	35	846 847	CD1 CD2	LEU LEU	109 109	129.969 132.111	14.480 13.210	40.962 40.751	1.00 1.00	15.35 17.60
777	Ö	CYS	101	133.178	1.226	40.662	1.00	107.64		848		LEU	109	128.742	10.101	42.475	1.00	25.00
778	CB	CYS	101	131.735	3.593	39.218	1.00	112.66		849	N	GLN	110	128.205	10.509	39.325	1.00	27.12
779 780	SG H	CYS CYS	101 101	133.273 129.822	4.224 2.244	39.908 38.153	$\frac{1.00}{1.00}$	125.35 25.00		850 851		GLN GLN	110 110	127.796 126.302	10.199 10.449	37.954 37.803	1.00 1.00	28.41 24.05
781	N	ASN	102	130.976	0.765	40.756	1.00	95.01		852		GLN	110	125.849	11.049	36.825	1.00	23.84
782	CA	ASN	102	131.043	-0.0488	41.975	1.00	88.33	40	853		GLN	110	128.098	8.732	37.632	1.00	26.80
783 784	0	ASN ASN	102 102	131.235 131.005	0.673 0.074	43.315 44.367	1.00 1.00	78.73 78.57		854 855	CD	GLN GLN	110 110	127.790 127.942	8.333 6.843	36.197 35.947	1.00 1.00	34.89 37.60
785	CB	ASN	102	132.071	-1.182	41.831	1.00	94.60		856	OE1	GLN	110	128.418	6.098	36.804	1.00	43.99
786 787	CG OD1	ASN ASN	102 102	131.727 130.667		40.704 40.706	1.00 1.00	99.33 97.79			NE2 H	GLN GLN	110 110	127.538 128.641	6.401 9.810	34.765 39.852	1.00 1.00	38.91 25.00
788	ND2	ASN	102	132.618		39.727	1.00	103.54	45	859	1HE2	GLN	110	127.636	5.440	34.604	1.00	25.00
789	H	ASN	102	130.102	0.912	40.350	1.00	25.00		860	2HE2		110	127.167	7.030	34.117	1.00	25.00
	1HD2 2HD2		102 102	132.412 133.439	-2.867 -1.721	38.993 39.766	$\frac{1.00}{1.00}$	25.00 25.00		861 862		PHE PHE	111 111	125.543 124.104	9.970 10.140	38.779 38.783	1.00 1.00	20.86 24.95
792	N	ASP	103	131.684	1.926	43.301	1.00	65.57		863		PHE	111	123.760	11.633	38.792	1.00	24.87
793 794		ASP	103	131.845	2.657	44.560	1.00	56.22		864		PHE	111	123.037	12.113	37.917	1.00	27.29
794		ASP ASP	103 103	130.870 130.659	3.833 4.550	44.638 43.657	1.00 1.00	46.49 41.71	50	865 866		PHE PHE	111 111	123.511 122.019	9.442 9.568	40.008 40.120	1.00 1.00	21.47 28.99
796	CB	ASP	103	133.296	3.102	44.796	1.00	56.91		867	CD1	PHE	111	121.183	8.649	39.494	1.00	24.39
797 798	CG OD1	ASP ASP	103 103	133.767 134.215	4.133 3.735	43.802 42.707	1.00 1.00	64.49 74.22			CD2 CE1	PHE PHE	111 111	121.448 119.799	10.600 8.753	40.865 39.610	1.00 1.00	26.46 26.64
	OD2	ASP	103	133.707	5.339	44.124	1.00	67.65			CE2	PHE	111	120.072	10.713	40.985	1.00	25.60
800		ASP	103	131.912	2.367	42.461	1.00	25.00	55	871		PHE	111	119.243	9.787	40.356	1.00	30.12
801 802		LEU LEU	104 104	130.281 129.291	4.015 5.060	45.816 40.071	1.00 1.00	38.89 36.92		872 873		PHE ARG	111 112	125.966 124.323	9.482 12.372	39.513 39.747	1.00 1.00	25.00 23.80
803		LEU	104	129.672	6.457	45.591	1.00	36.45		874		ARG	112	124.055	13.802	39.858	1.00	18.05
804		LEU	104	128.898	7.109	44.895	1.00	35.19		875		ARG	112	124.384	14.598	38.601	1.00	22.05
805 806		LEU LEU	104 104	128.943 127.824	5.092 6.031	47.561 48.011	1.00 1.00	33.67 36.34		876 877		ARG ARG	112 112	123.539 124.771	15.341 14.417	38.103 41.066	1.00 1.00	28.69 18.30
807	CD1	LEU	104	126.538	5.713	47.269	1.00	35.38	60	878	CG	ARG	112	124.503	15.911	41.209	1.00	16.54
808 809	CD2	LEU	104	127.622	5.893	49.510	1.00 1.00	35.29 25.00		879 880		ARG	112	125.077	16.519	42.479	1.00 1.00	17.13
810		LEU CYS	104 105	130.509 130.872	3.401 6.895	46.542 45.951	1.00	25.00 36.36		880 881		ARG ARG	112 112	126.540 127.323	16.520 17.379	42.517 41.866	1.00	19.87 22.23
811	CA	CYS	105	131.376	8.212	45.581	1.00	35.11		882	NH1	ARG	112	126.808	18.328	41.099	1.00	19.31
812		CYS	105	131.220	8.537	44.092	1.00	34.06	65		NH2	ARG	112	128.636	17.311	42.012	1.00	25.31
813 814		CYS CYS	105 105	130.596 132.847	9.536 8.325	43.725 45.993	1.00 1.00	37.28 35.03	65	884 885		ARO ARG	112 112	124.923 126.982	11.945 15.846	40.387 43.063	1.00 1.00	25.00 25.00

TABLE 11-continued

TABLE 11-continued

No. Part P		Structura			of Tobacco			ne Syn	thase	_		Structur			of Tobacco			ne Synt	thase
No.	Atom	ı			-					5	Atom								
Sep 14 Arc 17 17 17 19 19 18 18 18 18 18 18	Туре	Atom		#	X	Y	Z	OCC	B-factor					#	X	Y	Z	OCC	B-factor
887 HILL ARC 112 127-408 13-904 46-182 1.00 25-50 98-50 PHIR 119 119-885 13-881 31-337 1.00 24-94 1.00 1.0	886	1HH1	ARG	112	125.815	18.407	40.998	1.00	25.00	10	957	С	PHE	119	119.435	11.867	32.172	1.00	28.96
See Part P										10									
No 1.00 1.																			
Sect		N	LEU		125.596	14.445	38.077	1.00	22.19		961	CD1	PHE		122.392		28.640		22.02
893 O JEU 113 17.45 14.57 14.57 15.25 14.67 15.25 14.67 14.5																			
895 CG LEU 13 19-49 15-15-15 37-54 100 28-48 96 CD LEU 13 19-20 15-15 15-10 20-20 14-90 30-20 25-10 25										15									
89 CP 16 16 17 18 18 18 18 18 18 18																			
898 H E 113 126,255 13,821 38,72 13,93 10,9 12,93 10,9 13,93 10,9 13,03																			
Sep																			
901 C 160 141 125.932 13.867 44.85 100 20.94 97.8 97.8 97.8 115.142 97.8 32.88 100 35.8 97.8 9										20									
920 C I.EU 14 122.57 13.877 34.485 1.00 23.09 97. CG ASN 120 115.142 97.96 33.286 1.00 38.24 933 CB I.EU 14 123.636 11.76 34.168 1.00 23.58 940 CG I.EU 14 125.036 13.77 13.26 13.27 13.26 1.00 35.07 950 CD1 I.EU 14 125.037 95.91 33.660 1.00 25.00 950 CD2 I.EU 14 125.058 12.97 30.002 13.00 25.00 978 N I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 14 125.058 12.97 30.002 13.00 25.00 979 R I.EU 15 10.178 13.844 37.372 1.00 20.55 970 C ARC 15 11.789 13.844 37.372 1.00 20.55 971 C ARC 15 11.789 13.844 37.372 1.00 20.55 971 S KE ARC 15 11.858 12.07 30.833 1.00 25.55 971 S KE ARC 15 11.858 12.07 30.833 1.00 25.55 971 S KE ARC 15 11.858 13.858 13.00 25.00 972 H III ARC 15 11.759 12.00 33.34 1.00 25.00 973 R III ARC 15 11.759 12.00 33.34 1.00 25.00 974 H III ARC 15 11.578 13.187 30.34 1.00 25.00 975 R III ARC 15 11.578 13.187 30.34 1.00 25.00 975 R III ARC 15 11.578 13.187 30.34 1.00 25.00 975 R III ARC 15 11.578 13.187 30.34 1.00 25.00 975 R III ARC 15 11.578 13.187 30.34 1.00 25.00 975 R III ARC 15 11.788 30.34 1.00 25.00 975 R III ARC 15 11.578 13.187 30.350 1.00 25.00 975 R III ARC 15 11.578 13.187 30.350 1.00 25.00 975 R III ARC 15 11.578 13.187 30.350 1.00 25.00 975 R III ARC 15 11.578 13.187 30.350 1.00 25.00 975 R III AR										20									
903 CG LEU 144 123.66 11.76 34.168 1.00 23.58																			
905 CDI LEU 144 125.04 1.959 3.660 1.00 25.07 905 CDI LEU 144 125.04 1.959 3.660 1.00 25.00 905 CDI LEU 144 125.04 1.959 1.959 3.660 1.00 25.00 905 CDI LEU 144 125.050 1.293 3.660 1.00 25.00 905 CDI LEU 144 125.050 1.293 3.660 1.00 25.00 905 CDI LEU 144 125.050 1.4223 5.555 1.00 25.00 905 CDI LEU 145 125.050 1.4223 5.555 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 1.00 25.00 905 CDI LEU 145 119.457 9.626 31.924 9.825 9																			
905 CDI LW 14 25.043 3.969 3.660 1.00 2.5 2.5 97.6 HIDZ ASN 120 113.277 92.46 31.576 1.00 25.00 907 H LW 14 125.059 12.97 3.00 2.00 23.00 97.8 N IL 121 119.347 91.94 33.77 10.0 29.89 909 A ARG 115 120.620 12.28 35.585 10.0 21.07 980 C IL 121 119.047 7.924 36.24 10.0 20.54 19.0 11.2 119.047 7.924 36.24 10.0 20.54 19.0 10.1 119.00 7.232 36.24 10.0 20.2 10.0 20.2 119.0 10.0 34.75 10.0 20.2 4 98.0 C IL 121.1 119.0 10.0 34.75 10.0 35.0 30.0 21.2 4 88.0 11.1 11.0																			
909 N A ARG 115 121948 13694 2505 15.748 2505 15.748 2505 15.00 21.00 25.00 90 R A ARG 115 121.948 13694 25.00 21.00 25.00 90 R A ARG 115 121.948 13694 25.00 21.00 25.00 90 C A ARG 115 121.948 13694 25.00 21.00 25.00 90 C A ARG 115 121.948 13694 25.00 21.00 25.00 90 C ARG 115 19.052 15.748 13.00 26.34 37.00 26.34 37.00 25.00 90 C ARG 115 19.052 15.748 13.00 26.34 37.00 25.00 90 C ARG 115 19.052 15.348 37.00 21.00 25.00 90 C ARG 115 19.054 13.00 36.08 90 C ARG 115 19.054 13.00 25.00 90 C ARG 115 19.054 13.00 36.08 90 C ARG 115 19.055 13.00 36.08 90 C ARG 115 19.055 13.00 36.										25									
908 N. ARG 115 121.948 13.694 35.605 1.00 23.30 909 C.A. ARG 115 120.920 14.228 35.955 1.00 23.07 910 C. ARG 115 120.521 14.578 910 C. ARG 115 120.521 14.578 911 C. ARG 115 120.788 13.814 37.372 1.00 20.57 912 CB ARG 115 120.778 13.844 37.372 1.00 20.95 913 CG ARG 115 120.778 13.844 37.372 1.00 20.95 914 CD ARG 115 118.588 120.77 36.595 1.00 24.51 915 NE ARG 115 118.588 120.77 36.595 1.00 24.51 916 NE ARG 115 118.588 120.77 36.595 1.00 24.51 917 NH1 ARG 115 116.729 12.349 37.639 1.00 25.55 918 NR1 ARG 115 118.508 19.709 37.804 1.00 25.55 918 NR1 ARG 115 118.508 19.709 37.804 1.00 25.50 919 H ARG 115 118.508 19.708 36.341 1.00 25.00 910 H ARG 115 118.508 19.708 36.341 1.00 25.00 912 H1H1 ARG 115 115.75 11.10 38.422 1.00 25.00 913 H1H2 ARG 115 115.75 11.10 38.423 1.00 25.00 914 21H12 ARG 115 115.75 11.01 38.423 1.00 25.00 914 21H12 ARG 115 115.75 11.01 38.423 1.00 25.00 915 NG ARG 115 115.75 11.00 38.425 1.00 25.00 914 21H12 ARG 115 115.75 11.04 38.942 1.00 25.00 915 NG ARG 115 115.75 11.04 38.942 1.00 25.00 915 NG ARG 115 115.75 11.04 38.942 1.00 25.00 915 NG ARG 115 115.75 11.04 38.942 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 38.425 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.33 1.00 25.00 915 NG ARG 115 115.75 11.00 36.																			
909 CA ARG 115 120,620 14,228 35,955 1,00 21,07 910 CA ARG 115 120,650 15,754 85,787 1,00 26,37 910 CA ARG 115 119,628 16,267 35,148 1,00 26,37 911 CB ARG 115 119,628 16,267 35,148 1,00 20,95 912 CB ARG 115 119,629 16,263 37,372 1,00 2,555 915 CF ARG 115 118,086 10,702 36,813 1,00 24,51 916 CZ ARG 115 116,709 11,039 36,95 1,00 24,51 918 NH2 ARG 115 116,279 12,364 37,837 1,00 25,55 918 NH2 ARG 115 118,086 11,037 36,39 1,00 25,55 918 NH2 ARG 115 115,279 11,283 37,807 1,00 25,55 918 NH2 ARG 115 115,275 11,141 38,942 1,00 25,00 923 HH2 ARG 115 115,725 11,141 8,042 1,00 25,00 924 HH2 ARG 115 115,285 11,468 36,333 1,00 25,00 29,141 1,00 25,00 924 HH2 ARG 115 115,288 1,00 36,34 1,00 25,00 29,141 1,00 25,00 29,14																			
912 CB ARG 115 119,628 16.267 35.148 1.00 20.95 20.95 20.07 34.67 34																			
913 CG ARG 115 120.178 13.844 37.372 1.00 20.95 39 98 CG ILE 121 122.130 7.046 85.300 1.00 24.57 1913 CG ARG 115 118.588 12.057 36.959 1.00 24.51 1913 CG ARG 115 118.588 12.057 36.959 1.00 24.51 1915 118.588 12.057 36.959 1.00 24.51 1915 118.588 12.057 36.913 1.00 24.55 1915 118.588 12.057 36.913 1.00 24.55 1915 117.090 10.394 37.639 1.00 25.55 1915 118.589 12.051 11.00 25.00 1916 ARG 115 116.759 1.00 23.03 1.00 25.55 1918 118.589 1.00 25.00 1918 HE ARG 115 116.759 1.00 38.23 1.00 25.00 1918 HE ARG 115 115.755 11.14 88.942 1.00 25.00 1922 2.HHI ARG 115 115.755 11.14 88.942 1.00 25.00 1923 1.HHI ARG 115 115.755 11.14 88.942 1.00 25.00 1923 1.HHI ARG 115 115.755 11.14 88.942 1.00 25.00 1923 1.HHI ARG 115 115.255 11.14 88.942 1.00 25.00 1924 2.HHI ARG 115 115.255 11.14 88.942 1.00 25.00 1925 11.14 88.942 1.00 25.00 1925 1.00 25.00 1925 1.HI ARG 115 115.255 11.14 88.942 1.00 25.00 1925																			
914 CD ARG 115 119.749 12.394 37.538 1.00 21.24 914 CD ARG 115 118.588 12.075 36.595 1.00 24.51 915 NE ARG 115 118.086 10.702 36.813 1.00 20.45 916 CZ ARG 115 118.086 10.702 36.813 1.00 20.45 917 NEI ARG 115 118.086 10.702 36.813 1.00 25.55 918 NEI ARG 115 116.473 11.347 38.327 1.00 25.55 918 NEI ARG 115 116.473 11.347 38.327 1.00 25.55 918 NEI ARG 115 116.473 11.347 38.327 1.00 25.55 918 NEI ARG 115 116.473 11.347 38.327 1.00 25.05 918 NEI ARG 115 116.475 11.347 38.327 1.00 25.05 918 NEI ARG 115 116.475 11.347 38.327 1.00 25.05 918 NEI ARG 115 116.475 11.347 38.327 1.00 25.05 918 NEI ARG 115 11.347 38.327 1.00 25.05 918 NEI ARG 115 11.347 38.327 1.00 25.00 918 NEI ARG 115 11.347 38.327 1.00 25.00 918 NEI ARG 115 11.347 38.327 1.00 25.00 918 NEI ARG 115 11.357 12.348 38.34 1.00 25.00 922 HIH ARG 115 11.573 16.348 38.42 1.00 25.00 924 SHIH ARG 115 11.5725 8.92 38.54 918 NE ARG 115 11.5980 88.901 38.342 1.00 25.00 924 SHIH ARG 115 11.5980 88.901 38.345 1.00 24.98 925 N GIN 116 121.537 16.488 36.333 1.00 24.98 926 CA GIN 116 121.537 16.488 36.333 1.00 24.98 927 C C LN 116 121.531 1.9491 34.450 1.00 23.10 928 CA GIN 116 121.331 19.991 34.450 1.00 23.10 929 CB GIN 116 122.348 18.935 39.371 1.00 25.00 930 CG GIN 116 122.348 18.935 39.371 1.00 25.00 930 CG GIN 116 122.388 18.935 39.371 1.00 25.00 930 CG GIN 116 122.388 18.935 39.371 1.00 25.00 930 CG GIN 116 122.388 18.935 39.371 1.00 25.00 930 NEE ARG 115 11.348 38.34 938 CA HIN 117 122.281 17.840 33.950 1.00 25.00 940 CB HIN 117 122.281 17.840 33.950 1.00 25.00 940 CB HIN 117 122.281 17.840 33.950 1.00 25.00 940 CB HIN 118 117 122.841 13.840 33.931 1.00 25.00 940 CB HIN 118 117 122.841 13.840 33.087 1.00 25.00 940 CB HIN 118 118.08 34.30 30.371 1.00 25.00 940 CB HIN 118 118.08 34.30 30.371 1.00 25.00 940 CB HIN 118 118.08 34.30 30.30 1.00 25.00 940 CB HIN 118 118.08 34.30 30.30 1.00 25.00 940 CB HIN 118 118 118 38.34 32.30 30.00 25.00 940 CB HIN 118 118 118 38 38.34 940 CB HIN 118 11										30									
916 CZ ARG 115 118,086 10.70 26.813 1.00 25.																			
916 CZ ARG 115 117.090 10.394 37.639 1.00 25.55 5.55																			
918 NIF ARG 115 116-478 11.34 38.37 1.00 26.55 18.09 5.04 37.695 1.00 27.80 18.00 18.0																			
1918 ARG																			
Page	918	NH2	ARG	115	116.729	9.128	37.807	1.00	21.55	35	989	C	SER	122	118.912	5.243	37.526	1.00	27.11
Part																			
Post																			
924 2HH2 ARG 115 115,980 8,901 38,425 1.00 25,098 996 CA PRO 123 118,542 5,325 38,564 1.00 27,95 926 CA GLN 116 121,537 17,917 36,235 1.00 21,36 996 CA PRO 123 118,542 5,323 39,949 1.00 27,56 927 C CLN 116 121,537 17,917 36,235 1.00 21,36 997 C PRO 123 118,941 3,904 40,372 1.00 33,55 928 C GLN 116 121,331 19,491 34,451 1.00 20,94 99 CR RO 123 116,184 5,252 39,38 1.00 20,05 930 CG GLN 116 123,278 19,335 40,252 1.00 24,07 40,118 18,342 39,337 1.00 21,53 1002 N GLU 124 119,399 39,673 31,01 00 24,07 </td <td>922</td> <td>2HH1</td> <td>ARG</td> <td>115</td> <td>115.725</td> <td>11.114</td> <td>38.942</td> <td>1.00</td> <td>25.00</td> <td></td> <td>993</td> <td>H</td> <td>SER</td> <td>122</td> <td>119.540</td> <td>5.535</td> <td>34.444</td> <td>1.00</td> <td>25.00</td>	922	2HH1	ARG	115	115.725	11.114	38.942	1.00	25.00		993	H	SER	122	119.540	5.535	34.444	1.00	25.00
925 N GLN 116 121.537 16.458 36.333 1.00 24.98 996 CA PRO 123 118.542 5.323 39.949 1.00 27.26 926 CA GLN 116 121.573 17.917 36.235 1.00 21.36 997 C PRO 123 118.541 3.904 40.372 1.00 33.55 1.00 27.00 970 PRO 123 118.941 3.904 40.372 1.00 33.55 1.00 27.00 970 PRO 123 118.941 3.904 40.372 1.00 33.55 1.00 27.00 970 PRO 123 118.941 3.904 40.372 1.00 33.55 1.00 27.00 970 PRO 123 118.941 3.904 40.372 1.00 33.55 1.00 27.00 970 PRO 123 118.941 3.904 40.372 1.00 33.55 1.00 27.00 970 PRO 123 116.184 5.252 3.903 1.00 26.86 929 CB GLN 116 122.735 18.501 1.00 24.02 45 1001 CD PRO 123 116.00 5.531 38.510 1.00 24.97 931 CD GLN 116 123.594 19.035 39.371 1.00 23.65 1.00 21.35 1.00 PRO 123 116.00 5.531 38.510 1.00 24.97 931 CD GLN 116 123.278 19.835 40.252 1.00 30.06 1.00 23.05 1.00 124 119.199 1.569 39.673 1.00 24.97 933 NE2 GLN 116 124.855 18.744 39.088 1.00 25.00 1.00 100 CG PRO 123 116.00 5.531 38.510 1.00 24.97 931 PRO 123 116.00 5.531 38.510 1.00 24.97 932 OE1 CLN 116 123.278 19.835 40.252 1.00 30.06 1.00 23.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1										4∩									
926 CA CLN 116 121.573 17.917 36.235 1.00 21.36 997 C PRO 123 118.941 3.904 40.372 1.00 33.55 928 O GLN 116 121.331 19.491 34.450 1.00 20.94 999 CB PRO 123 117.322 5.823 40.723 1.00 26.86 929 CB GLN 116 122.538 18.322 38.561 1.00 24.02 499 CB PRO 123 116.184 5.252 39.938 1.00 26.95 930 CG GLN 116 122.536 18.322 38.561 1.00 24.02 49 1001 CD PRO 123 116.184 5.252 39.938 1.00 24.02 49 1001 CD 1000 CG PRO 123 116.91 34.94 1.00 24.97 49.11 49 40.723 11.00 24.97 49.11 40.02 40.02 40.02 1000 CB 1001 CD 100										70									
928 O GLN 116 121.331 19.491 34.450 1.00 20.94 999 CB PRO 123 117.323 5.83 40.723 1.00 26.86 929 CB GLN 116 122.718 18.501 37.066 1.00 24.02 45 1000 CG PRO 123 116.184 5.252 39.938 1.00 24.02 930 CG GLN 116 122.526 18.322 38.561 1.00 24.02 45 1001 CD PRO 123 116.164 5.531 38.510 1.00 24.07 931 CEI LN 116 122.328 19.835 40.252 1.00 30.06 1003 CA GLU 124 119.199 1.569 39.631 1.00 24.02 933 NE2 GLN 116 125.588 19.210 39.609 1.00 25.00 1006 CB GLU 124 119.07 -0.73 38.24 1.00 42.02 <td>926</td> <td>CA</td> <td>GLN</td> <td>116</td> <td>121.573</td> <td>17.917</td> <td>36.235</td> <td>1.00</td> <td>21.36</td> <td></td> <td>997</td> <td>C</td> <td>PRO</td> <td>123</td> <td>118.941</td> <td>3.904</td> <td>40.372</td> <td>1.00</td> <td>33.55</td>	926	CA	GLN	116	121.573	17.917	36.235	1.00	21.36		997	C	PRO	123	118.941	3.904	40.372	1.00	33.55
929 CB GLN 116 122.718 18.501 37.066 1.00 21.35 4.00 CG PRO 123 116.184 5.252 39.938 1.00 24.97 931 CD GLN 116 122.536 18.322 38.561 1.00 24.02 45 1001 CD PRO 123 116.605 5.531 38.510 1.00 24.97 931 CD GLN 116 123.278 19.835 40.252 1.00 30.06 1003 CA GLU 124 118.94 2.967 39.431 1.00 24.28 933 NE2 GLN 116 122.848 15.983 36.814 1.00 25.00 1006 CB GLU 124 119.079 1.669 39.673 1.00 42.28 935 HE2 GLN 116 125.046 18.089 38.91 1.00 25.00 1006 CB GLU 124 119.072 0.732 38.601 1.00 48.21 937 PL GLN 117 <td></td>																			
930 CG GLN 116 122.536 18.322 38.561 1.00 24.02 45 1001 CD GLN 116 123.594 19.035 39.371 1.00 23.65 1002 N GLU 124 118.849 2.967 39.431 1.00 34.65 932 OEI CLN 116 123.278 19.835 40.252 1.00 30.06 1003 CA GLU 124 118.849 2.967 39.431 1.00 34.628 933 NE2 GLN 116 122.485 18.744 39.088 1.00 25.00 1005 O GLU 124 120.673 1.441 40.056 1.00 41.59 934 HEG GLN 116 125.508 38.891 1.00 25.00 1005 G GLU 124 119.07 -0.773 38.601 1.00 41.59 937 N HIS 117 122.2381 1.809 32.537 1.																			
932 OE1 CLN 116 123.278 19.835 40.252 1.00 30.06						18.322				45									
933 NE2 GLN 116 124.855 18.744 39.088 1.00 21.53 19.34 H GLN 116 122.246 15.983 36.814 1.00 25.00 1005 CD GLU 124 112.1072 0.492 40.735 1.00 41.59 1.00 116 125.346 18.089 38.391 1.00 25.00 1006 CB GLU 124 118.902 0.732 38.424 1.00 48.21 18.00 19.30 1.00 10.0																			
934 H GLN 116 122.246 15.983 36.814 1.00 25.00																			
936 2HE2 GLN 116 125.046 18.089 38.391 1.00 25.00 50 1007 CG GLU 124 119.074 -0.773 38.601 1.00 61.85 937 N HIS 117 122.232 17.490 33.950 1.00 21.02 1008 CD GLU 124 118.112 -1.379 39.615 1.00 71.29 938 CA HIS 117 121.264 17.235 31.366 1.00 23.62 1010 OE2 GLU 124 118.112 -1.379 39.615 1.00 71.29 939 C HIS 117 121.389 17.192 30.445 1.00 23.62 1010 OE2 GLU 124 118.522 3.203 39.851 1.00 76.07 941 CB HIS 117 123.755 17.366 32.031 1.00 23.58 941 CB HIS 117 124.863 18.267 32.475 1.00 27.17 942 CG HIS 117 125.477 19.165 31.628 1.00 28.70 945 CE1 HIS 117 125.477 19.165 31.628 1.00 26.70 945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.06 946 NE2 HIS 117 125.301 19.252 30.671 1.00 25.00 948 HD1 HIS 117 125.520 16.612 34.277 1.00 25.00 948 HD1 HIS 117 126.861 19.825 34.298 1.00 25.00 950 N GLY 118 119.050 16.258 31.562 1.00 25.00 951 CA GLY 118 119.050 16.258 31.562 1.00 25.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.0	934	H	GLN	116	122.246	15.983	36.814	1.00	25.00		1005	O	GLU	124	121.072	0.492	40.735	1.00	41.59
937 N HIS 117 122.232 17.490 33.950 1.00 21.29 938 CA HIS 117 122.381 17.804 32.537 1.00 21.02 1009 OE1 GLU 124 118.112 -1.379 39.615 1.00 71.29 938 CA HIS 117 121.389 17.192 30.445 1.00 23.65 1010 OE2 GLU 124 118.450 -2.447 40.170 1.00 76.93 940 O HIS 117 121.389 17.192 30.445 1.00 22.85 1011 H GLU 124 118.522 3.203 38.539 1.00 25.00 941 CB HIS 117 124.863 18.267 32.475 1.00 27.17 944 CD2 HIS 117 125.477 19.165 31.628 1.00 28.70 945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.00 946 NE2 HIS 117 126.364 19.464 33.562 1.00 29.17 948 HD1 HIS 117 125.520 16.612 34.277 1.00 25.00 948 HD1 HIS 117 125.520 16.612 34.277 1.00 25.00 948 HD1 HIS 117 126.364 19.825 34.298 1.00 25.00 950 N GLY 118 119.050 16.258 31.562 1.00 25.00 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 95.00																			
938 CA HIS 117 122.381 17.804 32.537 1.00 21.02 1009 OE1 GLU 124 117.022 -0.803 39.851 1.00 70.67 939 C HIS 117 121.264 17.235 31.366 1.00 23.62 1010 OE2 GLU 124 118.450 -2.447 40.170 1.00 76.93 940 O HIS 117 123.389 17.192 30.445 1.00 23.58 1011 H GLU 124 118.522 3.203 38.539 1.00 25.00 941 CB HIS 117 123.855 17.366 32.031 1.00 23.58 1012 N ILE 125 121.466 2.430 39.657 1.00 36.76 942 CG HIS 117 124.863 18.267 32.475 1.00 27.17 124.863 18.267 32.475 1.00 27.17 124.863 18.267 32.475 1.00 27.17 125.471 19.165 31.628 1.00 28.70 1.00 25.00 1015 O ILE 125 123.155 2.401 41.472 1.00 35.15 1.00 1015 O ILE 125 123.155 2.401 41.472 1.00 35.83 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 35.05 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 35.05 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 123.087 4.988 40.017 1.00 28.43 1.00 1015 O ILE 125 123.557 3.718 39.319 1.00 33.60 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1.00 1015 O ILE 125 125.789 4.705 38.586 1.00 28.58 1										50									
940 O HIS HIS 117 121.389 17.192 30.445 1.00 22.85 941 CB HIS HIS 117 123.755 17.366 32.031 1.00 23.58 942 CG HIS 117 124.863 18.267 32.475 10.00 27.17 943 ND1 HIS 117 125.477 19.165 31.628 1.00 26.70 10.13 CA ILE 125 122.892 2.458 39.955 1.00 35.15 10.00 10	938	CA	HIS	117	122.381	17.804	32.537	1.00	21.02		1009	OE1	GLU	124	117.022	-0.803	39.851	1.00	70.67
941 CB HIS 117 123.755 17.366 32.031 1.00 23.58 942 CG HIS 117 124.863 18.267 32.475 1.00 27.17 943 ND1 HIS 117 124.863 18.267 32.475 1.00 28.70 943 ND1 HIS 117 125.477 19.165 31.628 1.00 28.70 944 CD2 HIS 117 125.421 18.456 33.693 1.00 26.70 1014 C ILE 125 123.155 2.401 41.472 1.00 35.83 945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.66 1016 CB ILE 125 123.557 3.718 39.319 1.00 36.05 945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.00 1018 CG2 ILE 125 123.557 3.718 39.319 1.00 33.60 946 NE2 HIS 117 125.421 18.456 33.693 1.00 29.17 1018 CG2 ILE 125 125.582 3.610 39.368 1.00 32.56 947 H HIS 117 125.301 19.252 30.671 1.00 25.00 1018 CG2 ILE 125 125.789 4.705 38.586 1.00 28.43 948 HD1 HIS 117 126.861 19.825 34.298 1.00 25.00 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 25.00 950 N GLY 118 119.050 16.258 31.562 1.00 25.08 1022 CA PHE 126 122.145 2.733 42.276 1.00 33.00 952 C GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.46 955 N PHE 119 120.130 14.068 31.432 1.00 25.00 1025 CB PHE 126 121.937 5.218 44.030 1.00 32.56																			
942 CG HIS 117 124.863 18.267 32.475 1.00 27.17 54 1013 CA ILE 125 122.892 2.458 39.955 1.00 35.15 943 ND1 HIS 117 125.477 19.165 31.628 1.00 28.70 55 1014 C ILE 125 123.155 2.401 41.472 1.00 35.83 944 CD2 HIS 117 125.421 18.456 33.693 1.00 26.70 1015 O ILE 125 124.237 2.016 41.900 1.00 36.05 945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.66 1016 CB ILE 125 123.557 3.718 39.319 1.00 33.60 946 NE2 HIS 117 126.346 19.464 33.562 1.00 29.17 1017 CG1 ILE 125 123.557 3.718 39.319 1.00 33.60 946 NE2 HIS 117 125.301 19.252 30.671 1.00 25.00 1018 CG2 ILE 125 125.082 3.610 39.368 1.00 32.56 947 H HIS 117 125.301 19.252 30.671 1.00 25.00 1018 CG2 ILE 125 125.082 3.610 39.368 1.00 28.43 948 HD1 HIS 117 126.861 19.825 34.298 1.00 25.00 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 28.88 949 HE2 HIS 117 126.861 19.825 34.298 1.00 25.00 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 25.00 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.175 2.717 43.731 1.00 33.30 952 C GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.46 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.937 5.218 44.030 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61																			
944 CD2 HIS 117 125.421 18.456 33.693 1.00 26.70 1015 C ILE 125 123.557 3.718 39.319 1.00 36.05 945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.66 1016 CB ILE 125 123.557 3.718 39.319 1.00 33.60 946 NE2 HIS 117 126.346 19.464 33.562 1.00 29.17 1017 CG1 ILE 125 125.082 3.610 39.368 1.00 32.56 947 H HIS 117 125.501 19.252 30.671 1.00 25.00 1018 CG2 ILE 125 125.789 4.705 38.586 1.00 28.58 949 HE2 HIS 117 126.861 19.825 34.298 1.00 25.00 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 28.58 949 HE2 HIS 117 126.861 19.825 34.298 1.00 25.00 60 1020 H ILE 125 121.080 3.169 39.141 1.00 25.00 950 N GLY 118 120.183 16.784 32.301 1.00 24.12 1021 N PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.276 2.717 43.731 1.00 33.30 952 C GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 121.902 1.394 44.402 1.00 38.46 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.144 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61	942	CG	HIS	117	124.863	18.267	32.475	1.00	27.17	55	1013	CA	ILE	125	122.892	2.458	39.955	1.00	35.15
945 CE1 HIS 117 126.361 19.874 32.307 1.00 25.66 1016 CB ILE 125 123.557 3.718 39.319 1.00 33.60 946 NE2 HIS 117 126.346 19.464 33.562 1.00 29.17 1017 CG1 ILE 125 125.082 3.610 39.368 1.00 32.56 947 H HIS 117 122.526 16.612 34.277 1.00 25.00 1018 CG2 ILE 125 125.087 4.988 40.017 1.00 28.43 948 HD1 HIS 117 125.301 19.252 30.671 1.00 25.00 1019 CD1 ILE 125 125.087 4.988 40.017 1.00 28.58 949 HD2 HIS 117 126.861 19.825 34.298 1.00 25.00 60 1020 H ILE 125 125.080 3.169 39.141 1.00 25.00 950 N GLY 118 120.183 16.784 32.301 1.00 24.12 1021 N PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.276 2.717 43.731 1.00 33.30 952 C GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 121.902 1.394 44.402 1.00 38.46 953 O GLY 118 118.028 14.303 30.676 1.00 35.10 1025 CB PHE 126 121.144 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61										33									
946 NE2 HIS 117 126.346 19.464 33.562 1.00 29.17 1017 CG1 ILE 125 125.082 3.610 39.368 1.00 32.56 947 H HIS 117 122.526 16.612 34.277 1.00 25.00 1018 CG2 ILE 125 123.087 4.988 40.017 1.00 28.43 948 HD1 HIS 117 125.301 19.252 30.671 1.00 25.00 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 28.58 949 HE2 HIS 117 126.861 19.825 34.298 1.00 25.00 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 25.00 950 N GLY 118 120.183 16.784 32.301 1.00 24.12 1021 N PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.145 2.733 42.276 1.00 33.30 952 C GLY 118 119.050 16.258 31.562 1.00 30.13 1023 C PHE 126 122.276 2.717 43.731 1.00 33.30 953 O GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.46 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.944 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61																			
948 HD1 HIS 117 125.301 19.252 30.671 1.00 25.00 60 1019 CD1 ILE 125 125.789 4.705 38.586 1.00 28.58 949 HE2 HIS 117 126.861 19.825 34.298 1.00 25.00 60 1020 H ILE 125 121.080 3.169 39.141 1.00 25.00 950 N GLY 118 120.183 16.784 32.301 1.00 24.12 1021 N PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.276 2.717 43.731 1.00 33.30 952 C GLY 118 119.037 14.786 31.193 1.00 30.13 1023 C PHE 126 121.902 1.394 44.402 1.00 38.46 953 O GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 121.911 1.211 45.591 1.00 38.34 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.444 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61	946	NE2	HIS	117	126.346	19.464	33.562	1.00	29.17		1017	CG1	ILE	125	125.082	3.610	39.368	1.00	32.56
949 HE2 HIS 117 126.861 19.825 34.298 1.00 25.00 60 1020 H ILE 125 121.080 3.169 39.141 1.00 25.00 950 N GLY 118 120.183 16.784 32.301 1.00 24.12 1021 N PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.037 14.786 31.193 10.00 30.13 1022 CA PHE 126 122.276 2.717 43.731 1.00 33.30 952 C GLY 118 119.037 14.786 31.193 10.00 30.13 1023 C PHE 126 121.902 1.394 44.402 1.00 38.46 953 O GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.34 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.444 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61																			
950 N GLY 118 120.183 16.784 32.301 1.00 24.12 1021 N PHE 126 122.145 2.733 42.276 1.00 33.20 951 CA GLY 118 119.050 16.258 31.562 1.00 25.68 1022 CA PHE 126 122.276 2.717 43.731 1.00 33.30 952 C GLY 118 119.037 14.786 31.193 1.00 30.13 1023 C PHE 126 122.076 2.717 43.731 1.00 38.46 953 O GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.34 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.444 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61										60									
952 C GLY 118 119.037 14.786 31.193 1.00 30.13 1023 C PHE 126 121.902 1.394 44.402 1.00 38.46 953 O GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.34 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.444 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61	950	N	GLY	118	120.183	16.784	32.301	1.00	24.12		1021	N	PHE	126	122.145	2.733	42.276	1.00	33.20
953 O GLY 118 118.028 14.303 30.676 1.00 35.12 1024 O PHE 126 122.171 1.211 45.591 1.00 38.34 954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.444 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61																			
954 H GLY 118 120.143 16.804 33.279 1.00 25.00 1025 CB PHE 126 121.444 3.843 44.362 1.00 29.75 955 N PHE 119 120.130 14.068 31.432 1.00 29.49 65 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61																			
955 N PHE 119 120.130 14.068 31.432 1.00 29.49 ⁶⁵ 1026 CG PHE 126 121.937 5.218 44.030 1.00 32.61																			
956 CA PHE 119 120.184 12.644 31.102 1.00 26.30 1027 CD1 PHE 126 123.084 5.724 44.631 1.00 29.30										65									
	956	CA	PHE	119	120.184	12.644	31.102	1.00	26.30		1027	CD1	PHE	126	123.084	5.724	44.631	1.00	29.30

TABLE 11-continued TABLE 11-continued

Struct	ural Coo			o 5-Epi-Ai Bound Su		ne Synt	hase	5	s	Structur			of Tobacco			ne Synt	thase
A 4 =		Resi	-						A 4			Resi-					
Atom	Resi-		**	***	~	000	D. C		Atom		Resi-	due 	•	***	~	000	T. 6
Type Ator		#	X	Y	Z		B-factor		<u> </u>	Atom		#	X	Y	Z		B-factor
1028 CD2 1029 CE1	PHE PHE	126 126		6.007 6.997	43.103 44.310	$\frac{1.00}{1.00}$	33.58 31.83	10	1099 1100		ASN ASN	133 133	115.107 114.134	-2.839 -2.112	51.042 51.210	1.00 1.00	90.09 90.03
1030 CE2	PHE	126	121.726	7.279	42.775	1.00	36.03		1101	CB	ASN	133	115.492	-4.043	53.214	1.00	99.96
1031 CZ 1032 H	PHE PHE	126 126		7.776 3.004	43.380 41.891	$\frac{1.00}{1.00}$	34.15 25.00		1102	CG OD1	ASN ASN	133 133	114.389 113.275	-3.337 -3.847	53.923 54.016	1.00 1.00	106.41 108.32
1032 H	SER	127		0.477	43.662	1.00	37.94			ND2	ASN	133	114.683	-2.159	54.447	1.00	111.37
1034 CA	SER	127		-0.806	44.236	1.00	37.24	15	1105		ASN	133	117.175	-4.667	51.437	1.00	25.00
1035 C 1036 O	SER SER	127 127		-1.601 -2.210	44.855 45.908	1.00 1.00	37.05 37.94			1HD2 2HD2		133 133	113.925 115.561	-1.736 -1.741	54.889 54.365	1.00 1.00	25.00 25.00
1037 CB	SER	127	120.141	-1.658	43.201	1.00	34.22		1108	N	GLY	134	116.139	-2.501	50.284	1.00	84.16
1038 OG 1039 H	SER SER	127 127		-1.087 0.658	42.887 42.719	1.00 1.00	44.36 25.00		1109 1110		GLY GLY	134 134	116.195 116.752	-1.224 -0.121	49.597 50.479	1.00 1.00	77.66 73.68
1040 HG	SER	127		-0.202	42.539	1.00	25.00		1111		GLY	134	116.780	1.040	50.072	1.00	72.39
1041 N	LYS	128		-1.557	44.228	1.00	37.17	20	1112		GLY	134	116.840	-3.192	50.233	1.00	25.00
1042 CA 1043 C	LYS LYS	128 128		-2.280 -1.783	44.737 46.097	1.00 1.00	39.88 42.69		1113 1114		LYS LYS	135 135	117.141 117.724	-0.462 0.524	51.704 52.606	1.00 1.00	70.01 61.88
1044 O	LYS	128		-2.417	46.720	1.00	48.65		1115		LYS	135	119.229	0.556	52.361	1.00	58.01
1045 CB	LYS	128		-2.257	43.715	1.00	39.92		1116		LYS	135	119.831	-0.473	52.038	1.00	52.64
1046 CG 1047 CD	LYS LYS	128 128		-0.882 -0.983	43.210 42.061	$\frac{1.00}{1.00}$	41.79 4538	25	1117 1118		LYS LYS	135 135	117.429 116.279	0.190 0.994	54.069 54.661	1.00 1.00	52.54 69.58
1048 CE	LYS	128	127.112	0.380	41.430	1.00	57.33		1119	CD	LYS	135	114.935	0.594	54.062	1.00	74.13
1049 NZ 1050 H	LYS LYS	128 128	128.057 123.266	0.329 -1.028	40.278 43.408	1.00 1.00	63.77 25.00		1120 1121		LYS LYS	136 135	113.799 113.779	1.517 1.824	54.474 55.931	1.00 1.00	77.90 77.60
1050 H		128		-0.047	40.597	1.00	25.00		1122		LYS	135	117.045	-1.379	52.010	1.00	25.00
1052 2HZ		128		-0.293	39.541	1.00	25.00			1HZ	LYS	135	113.687	0.959	956.498	1.00	25.00
1053 3HZ 1054 N	LYS PHE	128 129	128.187 124.305	1.285 -0.656	39.892 46.556	$\frac{1.00}{1.00}$	25.00 41.03	30		2HZ 3HZ	LYS LYS	135 135	114.669 112.977	2.310 2.401	56.155 56.110	1.00 1.00	25.00 25.00
1055 CA	PHE	129	124.697	-0.090	47.844	1.00	38.56		1126		PHE	136	119.834	1.731	52.491	1.00	53.56
1056 C	PHE	129	123.574	-0.255	48.848	1.00	42.42		1127		PHE	136	121.268	1.864	52.261	1.00	46.60
1057 O 1058 CB	PHE PHE	129 129	123.617 125.013	0.319 1.396	49.940 47.695	$\frac{1.00}{1.00}$	44.74 32.52		1128 1129		PHE PHE	136 136	122.075 121.797	1.074 1.118	53.275 54.473	1.00 1.00	46.58 47.43
1059 CG	PHE	129	125.984	1.691	46.604	1.00	28.29	35	1130	CB	PHE	136	121.686	3.336	52.270	1.00	39.21
1060 CD1 1061 CD2		129 129	127.291 125.585	1.225 2.402	46.677 45.481	1.00 1.00	27.71 27.23	33	1131 1132		PHE PHE	136 136	121.382 122.171	4.056 3.854	50.990 49.863	1.00 1.00	32.34 31.37
1061 CD2	PHE	129	123.383	1.461	45.645	1.00	27.23			CD2	PHE	136	120.282	4.898	50.896	1.00	32.38
1063 CE2		129	126.473	2.644	44.442	1.00	29.82		1134		PHE	136	121.876	4.491	48.657	1.00	25.70
1064 CZ 1065 H	PHE PHE	129 129	127.776 123.617	2.172 -0.193	44.523 46.037	$\frac{1.00}{1.00}$	29.88 25.00		1135 1136		PHE PHE	136 136	119.976 120.771	5.540 5.330	49.701 48.573	1.00 1.00	34.62 28.91
1066 N	GLN			-1.036	48.482	1.00	46.51	40	1137		PHE	136	119.315	2.505	52.789	1.00	25.00
1067 CA	GLN			-1.242	49.356	1.00	52.21		1138		LYS	137	123.046	0.315	52.776	1.00	48.31
1068 C 1069 O	GLN GLN			-2.700 -3.588	49.659 48.891	1.00 1.00	60.08 57.60		1139 1140		LYS LYS	137 137	123.910 124.551	-0.487 0.429	53.829 54.656	1.00 1.00	53.52 59.01
1070 CB	GLN	130	120.173	-0.638	48.736	1.00	50.11		1141	O	LYS	137	125.408	1.247	54.316	1.00	64.30
1071 CG 1072 CD	GLN GLN			0.860 1.399	48.526 47.840	1.00 1.00	50.91 51.21	45	1142 1143		LYS LYS	137 137	125.007 124.526	-1.160 -2.258	52.801 51.872	1.00 1.00	48.57 52.37
1072 CD	GLN			0.677	47.117	1.00	52.53	43	1144		LYS	137	125.683	-2.796	51.049	1.00	56.61
1074 NE2				2.677	48.061	1.00	47.70		1145		LYS	137	125.266	-3.980	50.199	1.00	55.76
1075 H 1076 1HE	GLN 2 GLN		122.585 117.922	-1.533 2.996	47.632 47.623	1.00 1.00	25.00 25.00		1146 1147		LYS LYS	137 137	126.388 123.197	4.433 0.306	49.330 51.808	1.00 1.00	62.73 25.00
1077 2HE	2 GLN	130	119.296	3.221	48.627	1.00	25.00		1148	1HZ	LYS	137	127.197	-4.714	49.920	1.00	25.00
1078 N 1079 CA	ASP ASP	131 131	120.531 120.236	-2.944 -4.306	50.790 51.203	1.00 1.00	67.42 74.82	50	1149	2HZ 3HZ	LYS LYS	137 137	126.377 126.670	-5.245 -3.656	48.758 48.699	1.00 1.00	25.00 25.00
1080 C	ASP	131		-4.746	50.421	1.00	79.83		1151		GLU	138	124.151	0.281	55.914	1.00	61.30
1081 O	ASP	131		-3.905	49.822	1.00	81.73		1152		GLU	138	124.688	1.107	56.991	1.00	62.65
1082 CB 1083 CG	ASP ASP	131 131		4.394 -3.558	52.745 53.284	1.00 1.00	75.37 79.54		1153 1154		GLU GLU	138 138	126.219 126.855	1.035 1.862	57.078 57.732	1.00 1.00	60.08 61.14
1084 OD1	ASP	131	118.173	-2.911	52.501	1.00	89.69	55	1155	CB	GLU	138	124.049	0.720	58.324	1.00	63.46
1085 OD2 1086 H	ASP ASP	131 131		-3.540 -2.147	54.511 51.259	1.00 1.00	80.32 25.00	55	1156 1157		GLU GLU	138 138	122.561 122.276	1.033 2.499	58.457 58.743	1.00	67.41 68.98
1080 H 1087 N	GLU			-2.147 -6.041	50.521	1.00	86.92		1157		GLU	138	122.276	3.105	59.568	1.00	67.92
1088 CA	GLU	132	117.492	-6.620	49.865	1.00	93.82		1159	OE2	GLU	138	121.317	3.043	58.154	1.00	72.44
1089 C 1090 O	GLU GLU		116.183 115.084	-5.970 -6.369	50.310 49.910	$\frac{1.00}{1.00}$	94.42 95.34		1160 1161		GLU SER	138 139	123.462 126.807	-0.385 0.062	56.115 56.390	1.00 1.00	25.00 54.50
1091 CB	GLU	132	117.414	-8.108	50.165	1.00	99.58	60	1162	CA	SER	139	128.255	-0.105	56.357	1.00	54.27
1092 CG	GLU			-8.893	49.626	1.00	110.72		1163		SER	139	128.960	1.037	55.609	1.00	51.34
1093 CD 1094 OE1	GLU GLU			-10.369 -10.716	49.968 51.082	1.00 1.00	117.77 122.96		1164 1165		SER SER	139 139	130.144 128.600	1.292 -1.453	55.828 55.722	1.00 1.00	53.27 59.61
1095 OE2			118.962	-11.187	49.117	1.00	118.79		1166		SER	139	127.596	-1.846	54.800	1.00	67.84
1096 H	GLU			-6.569	50.930	1.00	25.00	65	1167		SER	139	126.266	-0.582	55.893	1.00	25.00
1097 N 1098 CA	ASN ASN		116.318 115.214	-4.957 4.208	51.145 51.715	1.00 1.00	94.58 92.72	65	1168 1169		SER LEU	139 140	127.548 128.225	-1.203 1.714	54.087 54.728	1.00 1.00	25.00 46.50

TABLE 11-continued

Structur			of Tobacco		ristolochei ibstrate	ne Synt	hase	5	Structur			of Tobacco			ne Synt	hase
A 4		Resi-							A 4		Resi-					
Atom	Resi-	due 4	v	37	7	000	D 6		Atom	Resi-	due 4	v	N/	7	000	D 6
Type Atom		#	X	Y 2.020	Z		B-factor		Type Atom		#	X 120.742	Y 12.045	Z		B-factor
1170 CA 1171 C	LEU LEU	140 140	128.751 128.861	2.839 4.092	53.953 54.826	1.00 1.00	37.91 33.78	10	1241 N 1242 CA	ASN ASN	149 149	128.742 128.210	12.845 12.801	48.203 46.850	1.00 1.00	23.38 20.71
1172 O	LEU	140	129.454	5.090	54.422	1.00	30.69		1243 C	ASN	149	126.761	12.269	46.809	1.00	25.14
1173 CB 1174 CG	LEU LEU	140 140	127.821 127.643	3.151 2.142	52.777 51.639	1.00 1.00	39.38 42.09		1244 O 1245 CB	ASN ASN	149 149	125.990 129.125	12.678 12.008	45.956 45.932	1.00 1.00	25.34 15.21
1175 CD1	LEU	140	126.330	2.417	50.919	1.00	38.48		1246 CG	ASN	149	130.320	12.817	45.489	1.00	19.96
1176 CD2	LEU	140	128.819	2.212	50.672	1.00	38.39	15	1247 OD1	ASN	149	131.340	12.856	46.167	1.00	34.43
1177 H 1178 N	LEU ALA	140 141	127.290 128.295	1.456 4.024	54.590 56.026	1.00 1.00	25.00 28.75		1248 ND2 1249 H	ASN ASN	149 149	130.185 129.509	13.505 12.271	44.369 48.444	1.00 1.00	25.72 25.00
1179 CA	ALA	141	128.288	5.141	56.964	1.00	29.20		1250 1HD2		149	130.969	14.021	44.090	1.00	25.00
1180 C	ALA	141	129.646	5.737	57.310	1.00	30.53		1251 2HD2		149	129.340	13.468	43.887	1.00	25.00
1881 O 1182 CS	ALA ALA	141 141	129.713 127.565	6.825 4.742	57.882 58.235	1.00 1.00	30.24 28.51		1252 N 1253 CA	LEU LEU	150 150	126.445 125.096	11.379 10.829	47.743 47.827	1.00 1.00	21.91 24.64
1183 H	ALA	141	127.860	3.193	56.303	1.00	25.00	20	1254 C	LEU	150	124.171	11.938	48.330	1.00	22.13
1184 N	SER	142	130.719	5.018	57.002	1.00	28.14		1255 O	LEU	150	123.058	12.104	47.831	1.00	27.92
1185 CA 1186 C	SER SER	142 142	132.062 132.788	5.500 6.004	57.297 56.051	1.00 1.00	30.43 30.66		1256 CB 1257 CG	LEU LEU	150 150	125.051 123.659	9.630 9.057	48.780 49.062	1.00 1.00	17.59 21.25
1180 C	SER	142	133.961	6.371	56.107	1.00	39.46		1257 CO 1258 CD1	LEU	150	123.054	8.510	47.780	1.00	18.26
1188 CB	SER	142	132.879	4.409	58.011	1.00	30.29		1259 CD2	LEU	150	123.739	7.976	50.118	1.00	19.18
1189 OG	SER	142	132.790	3.146	57.358	1.00	26.69	25	1260 H	LEU	150	127.125 124.652	11.076	48.382	1.00	25.00
1190 H 1191 HG	SER SER	142 142	130.627 133.417	4.148 2.568	56.569 57.780	1.00 1.00	25.00 25.00		1261 N 1262 CA	TYR TYR	151 151	123.892	12.706 13.818	49.301 49.858	1.00 1.00	20.18 20.96
1192 N	ASP	143	132.069	6.053	54.937	1.00	27.41		1263 C	TYR	151	123.533	14.798	48.738	1.00	19.39
1193 CA	ASP	143	132.614	6.512	53.663	1.00	28.00		1264 O	TYR	151	122.380	15.204	48.592	1.00	21.76
1194 C 1195 O	ASP ASP	143 143	132.168 131.211	7.966 8.232	53.447 52.714	1.00 1.00	33.02 34.43	20	1265 CB 1266 CG	TYR TYR	151 151	124.723 124.115	14.535 15.828	50.929 51.418	1.00 1.00	20.29 22.32
1196 CB	ASP	143	132.085	5.603	52.540	1.00	26.21	30	1267 CD1	TYR	151	123.202	15.834	52.470	1.00	20.29
1197 CG	ASP	143	132.609	5.978	51.160	1.00	32.37		1268 CD2	TYR	151	124.432	17.047	50.811	1.00	21.17
1198 OD1 1199 OD2	ASP ASP	143 143	133.578 132.041	6.762 5.465	51.045 50.174	1.00 1.00	34.10 37.80		1269 CE1 1270 CE2	TYR TYR	151 151	122.614 123.850	17.021 18.236	52.907 51.237	$\frac{1.00}{1.00}$	20.42 21.39
1200 H	ASP	143	131.130	5.700	54.969	1.00	25.30		1270 CE2	TYR	151	122.940	18.214	52.285	1.00	22.07
1201 N	VAL	144	132.884	8.906	54.060	1.00	31.09	35	1272 OH	TYR	151	122.337	19.377	52.696	1.00	21.54
1202 CA 1203 C	VAL VAL	144 144	132.548 132.392	10.328 10.873	53.958 52.534	1.00 1.00	27.23 27.59	55	1273 H 1274 HH	TYR TYR	151 151	125.542 121.769	12.522 19.210	49.655 53.457	$\frac{1.00}{1.00}$	25.00 25.00
1204 O	VAL	144	132.392	11.545	52.243	1.00	25.91		1274 IIII 12775 N	GLU	151	124.532	15.194	47.959	1.00	21.41
1205 CB	VAL	144	133.541	11.204	54.758	1.00	27.72		1276 CA	GLU	152	124.316	16.128	46.863	1.00	19.05
1206 CG1	VAL VAL	144	133.183	12.684 10.804	54.621	1.00 1.00	21.28 34.69		1277 C 1278 O	GLU	152 152	123.388 122.540	15.546 16.259	45.800	1.00 1.00	23.34 21.99
1207 CG2 1208 H	VAL	144 144	133.509 133.643	8.619	56.227 54.609	1.00	25.00	40	1278 O 1279 CB	GLU GLU	152	125.653	16.239	45.260 46.235	1.00	23.58
1209 N	LEU	145	133.344	10.580	51.649	1.00	25.30		1280 CG	GLU	152	126.641	17.236	47.198	1.00	23.54
1210 CA	LEU	145	133.266	11.063	50.268	1.00	27.68		1281 CD	GLU	152	126.245 125.046	18.662	47.577	1.00	27.07
1211 C 1212 O	LEU LEU	145 145	132.039 131.392	10.510 11.218	49.544 48.773	1.00 1.00	29.04 26.76		1282 OE1 1283 OE2	GLU GLU	152 152	127.145	19.009 19.444	47.529 47.935	1.00 1.00	30.35 23.20
1213 CB	LEU	145	134.541	10.722	49.487	1.00	27.26		1284 H	GLU	152	125.434	14.851	48.136	1.00	25.00
1214 CG	LEU	145	135.839	11.375	49.970	1.00	29.50	45	1285 N	ALA	153	123.530	14.248	45.526	1.00	24.42
1215 CD1 1216 CD2	LEU LEU	145 145	136.956 135.648	11.087 12.875	48.983 50.113	1.00 1.00	25.10 31.66		1286 CA 1287 C	ALA ALA	153 153	122.706 121.251	13.565 13.409	44.526 44.964	1.00 1.00	22.61 19.49
1217 H	LEU	145	134.098	10.040		1.00	25.00		1288 O	ALA	153	120.342		44.138	1.00	21.30
1218 N	GLY	146	131.717	9.247	49.806	1.00	27.11		1289 CB	ALA	153	123.300	12.203	44.186	1.00	21.47
1219 CA 1220 C	GLY GLY	146 146	130.552 129.288	8.643 9.290	49.185 49.726	1.00 1.00	25.43 27.86	~ c	1290 H 1291 N	ALA SER	153 154	124.211 121.026	13.731 13.262	46.006 46.264	1.00 1.00	25.00 16.33
1221 O	GLY	146	128.373	9.621	48.968	1.00	24.45	50	1292 CA	SER	154	119.672	13.105	46.776	1.00	21.77
1222 H	GLY	146	132.255	8.727	50.431	1.00	25.00		1293 C	SER	154	118.822	14.343	46.464	1.00	27.62
1223 N 1224 CA	LEU LEU	147 147	129.251 128.114	9.485 10.102	51.043 551.712	1.00 1.00	21.13 23.48		1294 O 1295 CB	SER SER	154 154	117.603 119.688	14.258 12.820	46.351 48.288	1.00 1.00	29.95 15.72
1224 CA 1225 C	LEU	147	127.867	11.519	51.202	1.00	23.64		1295 CB 1296 OG	SER	154	119.902	13.991	49.060	1.00	20.33
1226 O	LEU	147	126.722	11.922	51.002	1.00	25.30	55	1297 H	SER	154	121.776	13.256	46.901	1.00	25.00
1227 CB 1228 CG	LEU LEU	147 147	128.338 128.286	10.140 8.821	53.226 54.003	1.00 1.00	23.15 30.78	55	1298 HG 1299 N	SER HIS	154 155	119.193 119.470	14.609 15.489	48.898 46.291	1.00 1.00	25.00 24.50
1229 CD1	LEU	147	128.667	9.059	55.455	1.00	24.16		1300 CA	HIS	155	118.751	16.720	46.001	1.00	20.74
1230 CD2	LEU	147	126.892	8.210	53.911	1.00	22.86		1301 C	HIS	155	118.320	16.907	44.552	1.00	22.52
1231 H	LEU	147	130.010	9.196	51.584	1.00	25.00		1302 O	HIS	155	117.682	17.905	44.224	1.00	23.13
1232 N 1233 CA	LEU LEU	148 148	128.943 128.831	12.265 13.633	50.978 50.498	1.00 1.00	20.29 24.04	60	1303 CB 1304 CG	HIS HiS	155 155	119.543 119.439	17.929 18.154	46.487 47.961	$\frac{1.00}{1.00}$	19.93 14.77
1234 C	LEU	148	128.217	13.664	49.106	1.00	23.69		1305 ND1	HIS	155	120.456	17.843	48.838	1.00	20.63
1235 O	LEU	148	127.267	14.408	48.855	1.00	26.51		1306 CD2	HIS	155	118.431	18.652	48.716	1.00	13.91
1236 CB 1237 CG	LEU LEU	148 148	130.198 130.240	14.328 15.787	50.506 50.033	1.00 1.00	22.43 24.68		1307 CE1 1308 NE2	HIS HIS	155 155	120.080 118.855	18.142 18.634	50.069 50.022	1.00 1.00	21.57 17.34
1237 CO 1238 CD1	LEU	148	129.285	16.649	50.853	1.00	16.95		1309 H	HIS	155	120.451	15.494	46.346	1.00	25.00
1239 CD2	LEU	148	131.662	16.314	50.136	1.00	19.49	65	1310 HD1	HIS	155	121.317	17.420	48.603	1.00	25.00
1240 H	LEU	148	129.830	11.885	51.143	1.00	25.00		1311 HE2	HIS	155	118.336	18.952	50.793	1.00	25.00

TABLE 11-continued TABLE 11-continued

Structur			of Tobacco			ne Synt	hase	5	Stı	ructur			of Tobacco			ne Synt	hase
•		Resi-										Resi-					
Atom	Resi-	due			_				Atom		Resi-	due			_		
Type Atom		#	X	Y	Z		B-factor		Type A			#	X	Y	Z		B-factor
1312 N 1313 CA	VAL VAL	156 156	118.686 118.283	15.972 16.063	43.678 42.276	1.00 1.00	22.99 22.09	10	1383 N 1384 C		ILE ILE	163 163	114.106 115.314	4.699 4.112	45.015 45.575	1.00 1.00	41.87 43.77
1314 C	VAL	156	117.265	14.970	41.940	1.00	22.99		1385		ILE	163	116.093	5.124	46.426	1.00	42.36
1315 O	VAL	156	116.954	14.741	40.768	1.00	22.80		1386 (ILE	163	116.764	4.757	47.385	1.00	45.56
1316 CB 1317 CG1	VAL VAL	156 156	119.491 120.541	15.956 16.999	41.299 41.636	$\frac{1.00}{1.00}$	18.92 20.34		1387 C		ILE ILE	163 163	116.200 115.385	3.561 2.571	44.433 43.595	1.00 1.00	47.25 5648
1318 CG2	VAL	156	120.089	14.560	41.329	1.00	20.67	4.5	1389		ILE	163	117.433	2.870	44.986	1.00	49.93
1319 H	VAL	156	119.229	15.207	43.966	1.00	25.00	15	1390 C		ILE	163	116.134	1.994	42.404	1.00	60.37
1320 N 1321 CA	ARG ARG	157 157	116.729 115.766	14.317 13.239	42.968 42.762	1.00 1.00	19.28 25.29		1391 H 1392 N		ILE LEU	163 164	114.031 115.955	4.781 6.404	44.043 46.097	1.00 1.00	25.00 37.87
1321 CA 1322 C	ARG	157	114.394	13.708	42.702	1.00	26.91		1392 1		LEU	164	116.650	7.473	46.805	1.00	33.53
1323 O	ARG	157	113.988	14.850	42.498	1.00	27.10		1394 (2	LEU	164	115.828	8.132	47.897	1.00	32.57
1324 CB	ARG	157	115.625	12.380	44.024	1.00	19.93	20	1395 (LEU	164	116.206	9.192	48.400	1.00	36.58
1325 CG 1326 CD	ARG ARG	157 157	114.831 114.914	13.011 12.156	45.1144 46.397	1.00 1.00	19.14 20.33	20	1396 C 1397 C		LEU LEU	164 164	117.102 118.184	8.542 8.139	45.815 44.815	1.00 1.00	30.53 36.53
1327 NE	ARG	157	114.069	12.674	47.473	1.00	30.46		1398		LEU	164	118.416	9.266	43.820	1.00	26.74
1328 CZ	ARG	157	114.373	13.717	48.242	1.00	36.78		1399 (LEU	164	119.468	7.794	45.562	1.00	30.59
1329 NH1 1330 NH2	ARG ARG	157 157	115.515 113.523	14.371 14.119	48.071 49.176	1.00 1.00	39.31 36.74		1400 H 1401 N		LEU GLU	164 165	115.309 114.737	6.641 7.489	45.397 48.290	1.00 1.00	25.00 32.57
1331 H	ARG	157	116.972	14.566	43.881	1.00	25.00	25	1402 (GLU	165	113.854	8.022	49.320	1.00	32.62
1332 HE	ARG	157	113.214	12.230	47.643	1.00	25.00		1403 C		GLU	165	114.537	8.326	50.655	1.00	35.56
1333 1HH1 1334 2HH1		157 157	116.149 115.736	14.079 15.154	47.364 48.652	1.00 1.00	25.00 25.00		1404 (1405 (GUi GLU	135 165	114.298	9.338 7.058	51.267 49.551	1.00 1.00	35.70 39.90
1334 2HH1 1335 1HH2		157	112.655	13.643	49.305	1.00	25.00		1406 (GLU	165	112.683 111.645	7.571	50.549	1.00	50.03
1336 2HH2		157	113.751	14.905	49.753	1.00	25.00		1407 C		GLU	165	111.021	8.886	50.115	1.00	59.83
1337 N	THR	158	113.709	12.813	41.569	1.00	30.13	30	1408 (GLU	165	110.492	8.952	48.983	1.00	63.90
1338 CA 1339 C	THR THR	158 158	112.385 111.374	13.066 12.189	41.015 41.763	1.00 1.00	27.65 25.41		1409 (1410 I		GLU GLU	165 165	111.069 114.553	9.862 6.614	50.899 47.898	1.00 1.00	58.42 25.00
1340 O	THR	158	111.751	11.413	42.642	1.00	23.51		1411 N		ASP	166	115.411	7.431	51.091	1.00	37.81
1341 CB	THR	158	112.350	12.703	39.513	1.00	24.84		1412 (ASP	168	116.079	7.609	52.369	1.00	43.12
1342 OG1 1343 CG2	THR THR	158 158	112.630 113.391	11.307 13.496	39.355 38.738	1.00 1.00	27.71 19.09		1413 (1414 (ASP ASP	$\frac{166}{166}$	117.546 118.274	8.030 8.039	52.268 53.262	1.00 1.00	40.48 40.91
1344 H	THR	158	114.102	11.937	41.427	1.00	25.00	35	1415		ASP	166	115.899	6.352	53.234	1.00	51.99
1345 HG1	THR	158	111.995	10.771	39.817	1.00	25.00		1416 (CG	ASP	166	114.532	6.303	53.902	1.00	67.29
1346 N	HIS	159	110.103	12.268	41.377	1.00	26.77		1417 (ASP	166	114.268	7.173	54.761	1.00	74.04
1347 CA 1348 C	HIS HIS	159 159	109.051 109.196	11.473 9.971	42.016 41.741	$\frac{1.00}{1.00}$	27.30 33.58		1418 (1419 I		ASP ASP	$\frac{166}{166}$	113.712 115.669	5.423 6.693	53.552 50.506	$\frac{1.00}{1.00}$	74.06 25.00
1349 O	HIS	159	108.630	9.150	42.462	1.00	33.82		1420 N		ALA	167	117.939	8.459	51.075	1.00	34.07
1360 CB	HIS	159	107.663	11.939	41.557	1.00	26.01	40	1421 (ALA	167	119.298	8.902	50.806	1.00	30.06
1351 CG 1352 ND1	HIS HIS	159 159	107.337 106.999	13.350 13.711	41.941 43.226	1.00 1.00	23.00 24.86		1422 C 1423 C		ALA ALA	167 167	119.664 120.759	10.182 10.292	51.554 52.103	1.00 1.00	33.12 34.41
1353 CD2	HIS	159	107.311	14.490	41.210	1.00	18.70		1424		ALA	167	119.488	9.090	49.308	1.00	25.56
1354 CE1	HIS	159	106.782	15.012	43.275	1.00	24.72		1425 I		ALA	167	117.260	8.486	50.375	1.00	25.00
1355 NE2 1356 H	HIS HIS	159 159	106.966 109.879	15.509 12.878	42.064 40.646	1.00 1.00	23.55 25.00	45	1426 N 1427 C		LEU LEU	168 168	118.737 118.975	11.134 12.403	51.593 52.268	1.00 1.00	34.35 29.26
1357 HD1	HIS	159	106.924	13.094	43.988	1.00	25.00	43	1428		LEU	168	119.184	12.226	53.764	1.00	32.06
1358 HE2	HIS	159	106.880	16.460	41.845	1.00	25.00		1429 (LEU	168	120.199	12.656	54.311	1.00	34.07
1359 N	ALA	160	109.948	9.624	40.697	1.00	32.77 31.64		1430 (LEU			13.381	52.024 52.671	1.00	25.73 29.40
1360 CA 1361 C	ALA ALA	160 160	110.167 111.364	8.229 7.581	40.315 41.009	1.00 1.00	36.31		1431 C 1432 C		LEU LEU		117.980 119.241	14.767 15.454	52.153	1.00 1.00	22.56
1362 O	ALA	160	111.509	6.361	41.002	1.00	37.53	50	1433 (LEU	168	116.765	15.635	52.397	1.00	28.30
1363 CB	ALA	160	110.326	8.130	38.803	1.00	25.40		1434 H		LEU		117.879	10.944	51.168	1.00	25.00
1364 H 1365 N	ALA ASP	160 161	110.358 112.217	10.319 8.401	40.160 41.612	$\frac{1.00}{1.00}$	25.00 40.41		1435 N 1438 C		ALA ALA	169 169	118.224 118.317	11.593 11.372	54.425 55.885	$\frac{1.00}{1.00}$	32.55 37.53
1366 CA	ASP	161	113.415	7.904	42.281	1.00	40.26		1437		ALA		119.561	10.552	56.227	1.00	37.81
1367 C	ASP	161	113.123	7.414	43.689	1.00	41.77		1438 (ALA		120.273	10.873	57.185	1.00	38.90
1368 O 1369 CB	ASP ASP	$\frac{161}{161}$	113.634 114.508	7.937 8.976	44.678 42.291	$\frac{1.00}{1.00}$	41.48 34.22	55	1439 C 1440 F		ALA ALA		117.058 117.444	10.680 11.265	56.370 53.938	$\frac{1.00}{1.00}$	36.88 25.00
1370 CG	ASP	161	114.959	9.354	40.898	1.00	34.94		144i N		PHE		119.830	9.520	55.429	1.00	30.70
1371 OD1	ASP	161	114.954	8.486	40.002	1.00	33.51		1442 (PHE		120.976	8.640	55.635	1.00	29.14
1372 OD2 1373 H	ASP ASP	161 161	115.319 112.014	10.532 9.350	40.697 41.663	$\frac{1.00}{1.00}$	32.35 25.00		1443 (1444 (PHE PHE		122.296 123.048	9.413 9.432	55.592 56.573	$\frac{1.00}{1.00}$	31.93 35.80
1373 H 1374 N	ASP	162	112.014	6.342	43.742	1.00	46.26		1444 (PHE		123.048	7.538	54.569	1.00	35.80 27.52
1375 CA	ASP	162	111.932	5.726	44.985	1.00	46.59	60	1446 (CG	PHE	170	122.093	6.538	54.719	1.00	29.21
1376 C	ASP	162	113.108	5.156	45.760	1.00	44.37		1447 (PHE		122.055	5.576	55.722	1.00	32.25
1377 O 1378 CB	ASP ASP	162 162	113.127 110.916	5.172 4.630	46.990 44.670	1.00 1.00	37.28 56.78		1448 (1449 (PHE PHE		123.178 123.085	6.553 4.642	53.850 55.854	1.00 1.00	31.23 35.77
1379 CG	ASP	162	109.654	5.185	44.046	1.00	69.65		1450 (PHE		124.213	5.624	53.974	1.00	28.29
1380 OD1	ASP	162	108.899	5.870	44.766	1.00	67.08		1451	$\mathbb{C}\mathbf{Z}$	PHE	170	124.166	4.668	54.977	1.00	33.63
1381 OD2	ASP	162	109.435	4.978	42.830	1.00	79.19	65	1452 H		PHE		119.237	9.336	54.671	1.00	25.00
1382 H	ASP	162	112.114	5.949	42.869	1.00	25.00		1453 N	N.	SER	1/1	122.572	10.054	54.460	1.00	29.96

TABLE 11-continued

St	ructura			of Tobacco			ne Synt	hase	5		Structur			of Tobacco			ne Syn	thase
			Resi	-									Resi-					
Atom		Resi-	due			_				Atom		Resi-	due			_		
Туре	Atom	due	#	X	Y	Z	occ	B-factor		Туре	Atom	due	#	X	Y	Z	OCC	B-factor
1454 (1455 (SER SER	171 171	123.803 123.888	10.817 11.970	54.297 55.293	1.00 1.00	23.74 25.49	10	1525 1526		ALA ALA	179 179	131.568 132.068	15.018 16.376	60.475 60.268	1.00 1.00	25.11 25.17
1456		SER	171	124.951	12.232	55.845	1.00	30.00		1527	C	ALA	179	133.071	16.983	61.254	1.00	25.37
1457		SER	171	123.927	11.333	52.860	1.00	25.16		1528		ALA	179	134.141	17.430	60.844	1.00	25.58
1458 (1459]		SER SER	171 171	122.818 121.937	12.137 10.029	52.501 53.708	$\frac{1.00}{1.00}$	31.46 25.00		1529 1530		ALA ALA	179 179	130.903 130.617	17.340 14.840	60.044 60.325	1.00 1.00	21.50 25.00
1460 l	HG	SER	171	122.754	12.902	53.078	1.00	25.00	15	1531	N	PRO	180	132.771	16.963	62.564	1.00	27.61
1461 I 1462 (THR THR	172 172	122.761 122.728	12.025 13.746	55.557 56.490	$\frac{1.00}{1.00}$	25.72 25.18	13	1532 1533		PRO PRO	180 180	133.680 135.132	17.541 17.058	63.565 63.584	1.00 1.00	28.57 30.64
1463		THR	172	123.183	13.740	57.902	1.00	30.69		1534		PRO	180	135.132	17.724	64.155	1.00	37.22
1464		THR	172	124.122	13.961	58.438	1.00	29.76		1535		PRO	180	132.988	17.206	64.889	1.00	25.80
1465 (1466 (THR THR	172 172	121.311 120.958	14.390 14.958	56.574 55.307	1.00 1.00	24.33 19.73		1536 1537		PRO PRO	180 180	131.540 131.597	17.118 16.360	64.518 63.221	1.00 1.00	31.06 30.35
1467		THR	172	121.282	15.499	57.620	1.00	16.92	20	1538		HIS	181	135.414	15.910	62.980	1.00	28.35
1468		THR	172 172	121.932	12.351	55.113	1.00	25.00		1539		HIS	181	136.772	15.377	63.013	1.00	27.57
1469 I 1470 I		THR ILE	173	120.938 122.542	14.264 12.363	54.646 58.489	1.00 1.00	25.00 34.29		1540 1541		HIS HIS	181 181	137.470 138.529	15.237 14.611	61.672 61.584	1.00 1.00	26.99 29.22
1471		ILE	173	122.875	11.951	59.848	1.00	37.02		1542		HIS	181	136.764	14.035	63.740	1.00	30.76
1472 (1473 (ILE ILE	173 173	124.319 124.958	11.488 11.777	60.017 61.032	1.00 1.00	31.30 34.03	25	1543 1544		HIS HIS	181 181	136.153 134.893	14.103 13.619	65.104 65.379	1.00 1.00	32.51 34.64
1474		ILE	173	121.894	10.870	60.384	1.00	42.89	23		CD2	HIS	181	136.607	14.652	66.257	1.00	34.04
1475		ILE	173	122.082	10.702	61.893	1.00	46.46		1548		HIS	181	134.593	13.870	66.641	1.00	35.16
1476 (1477 (ILE ILE	173 173	122.115 121.040	9.539 9.829	59.673 62.553	1.00 1.00	43.32 58.82		1547	NE2 H	HIS HIS	181 181	135.615 134.717	14.495 15.429	67.196 62.478	1.00 1.00	38.60 25.00
1478	H	ILE	173	121.833	11.884	58.002	1.00	25.00			HD1	HIS	181	134.298	13.158	64.739	1.00	25.00
1479		HIS	174	124.848 126.220	10.790	59.020	1.00	27.02	30	1550		HIS	181	135.666 136.890	14.802	68.128	1.00	25.00
1480 (1481 (HIS HIS	174 174	120.220	10.309 11.412	59.100 58.870	1.00 1.00	30.73 30.72		1551 1552		LEU LEU	182 182	137.488	15.827 15.750	60.635 59.303	1.00 1.00	22.56 22.65
1482		HIS	174	128.261	11.477	59.574	1.00	32.05		1553	C	LEU	182	138.532	16.821	59.103	1.00	24.98
1483 (1484 (HIS HIS	174 174	126.431 125.701	9.118 7.884	58.166 58.603	$\frac{1.00}{1.00}$	32.72 42.58		1554 1555		LEU LEU	182 182	138.494 136.372	17.878 15.900	59.741 58.243	1.00 1.00	22.99 25.05
1485		HIS	174	125.738	7.418	59.902	1.00	43.81	25	1556		LEU	182	135.271	14.835	58.205	1.00	23.65
1486		HIS	174	124.891	7.036	57.925	1.00	39.61	35	1557		LEU	182	134.178	15.274	57.249	1.00	17.28
1487 (1488)		HIS HIS	174 174	124.981 124.457	6.339 6.086	60.005 58.820	$\frac{1.00}{1.00}$	38.39 38.65		1559	CD2 H	LEU LEU	182 182	135.849 136.072	13.483 16.351	57.786 60.762	1.00 1.00	20.03 25.00
1489 1	H	HIS	174	124.304	10.608	58.221	1.00	25.00		1560	N	LYS	183	139.494	16.528	58.236	1.00	22.16
1490 l 1491 l		HIS HIS	174 174	126.233 123.858	7.787 5.338	60.656 58.611	$\frac{1.00}{1.00}$	25.00 25.00		1561 1562		LYS LYS	183 183	140.556 139.982	17.469 18.573	57.926 57.045	1.00 1.00	25.90 30.39
1492		LEU	175	126.970	12.310	57.931	1.00	30.47	40	1563		LYS	183	138.898	18.429	56.468	1.00	31.71
1493		LEU	175	127.874	13.420	57.655	1.00	24.51		1564		LYS	183	141.696	16.767	57.183	1.00	27.62
1494 (1495 (LEU LEU	175 175	127.926 128.999	14.333 14.803	58.880 59.267	$\frac{1.00}{1.00}$	23.90 27.49		1565 1566		LYS LYS	183 183	141.274 142.437	16.122 15.441	555.871 55.169	1.00 1.00	37.10 45.13
1496	СВ	LEU	175	127.429	14.193	56.408	1.00	18.74		1567	CE	LYS	183	141.974	14.764	53.885	1.00	50.33
1497 (1498 (LEU LEU	175 175	127.687 127.007	13.517 14.295	55.054 53.935	1.00 1.00	19.75 19.14	45	1568 1569		LYS LYS	183 183	143.088 139.473	14.040 15.658	53.210 57.786	1.00 1.00	57.79 25.00
1499 (LEU	175	127.007	13.404	54.789	1.00	13.66	45		1HZ	LYS	183	143.846	14.713	52.975	1.00	25.00
1500 1		LEU	175	126.143	12.235	57.409	1.00	25.00			2HZ	LYS	183	143.463	13.311	53.852	1.00	25.00
1501 I 1502 (GLU GLU	176 176	126.781 126.7221	14.535 15.374	59.524 60.717	1.00 1.00	23.45 29.31		1572 1573	3HZ N	LYS SER	183 184	142.736 140.714	13.592 19.674	52.341 56.944	1.00 1.00	25.00 27.77
1503		GLU		127.596	14.788	61.814	1.00	29.58		1574	CA	SER	184	140.304	20.802	56.122	1.00	28.80
1504		GLU	176	128.222	15.519	62.580	1.00	30.33	50	1575		SER	184	140.970	20.675	54.752 54.645	1.00	27.61
1505 (1506 (GLU GLU		125.292 124.338	15.477 16.265	61.247 60.381	1.00 1.00	28.86 41.02		1576 1577		SER SER	184 184	142.084 140.702	20.158 22.109	56.805	1.00 1.00	26.37 28.03
1507	CD	GLU	176	122.976	16.431	61.032	1.00	50.96		1578	OG	SEER	184	140.003	22.254	58.031	1.00	32.93
1508 (1509 (GLU GLU		122.409 122.474	15.422 17.574	61.511 61.069	1.00 1.00	58.24 53.02		1579 1580		SER SER	184 184	141.565 140.193	19.725 21.517	57.420 58.620	1.00 1.00	25.00 25.00
1510		GLU		125.956	14.127	69.182	1.00	25.00	<i>E E</i>	1581		PRO	185	140.312	21.171	53.689	1.00	26.21
1511 1		SER		127.615	13.461	61.890	1.00	31.99	55	1582		PRO	185	139.003	21.834	53.680	1.00	23.45
1512 (1513 (SER SER	177 177	128.394 129.905	12.746 12.777	62.894 62.620	1.00 1.00	33.70 29.73		1583 1584		PRO PRO	185 185	137.767 136.638	20.926 21.425	53.597 53.589	1.00 1.00	24.54 23.22
1514	0	SER	177	130.710	12.952	63.541	1.00	31.31		1585	CB	PRO	185	139.109	22.737	52.458	1.00	21.98
1515 (1516 (SER SER	177 177	127.896 128.446	11.299 10.626	62.986 64.103	$\frac{1.00}{1.00}$	33.08 42.66		1586 1587		PRO PRO	185 185	139.858 140.949	21.876 21.263	51.503 52.381	1.00 1.00	21.03 21.80
1517		SER		127.077	12.944	61.259	1.00	25.00	60	1588		LEU	186	137.969	19.608	53.570	1.00	21.43
1518 1		SER	177	128.220	11.094	64.907	1.00	25.00		1589		LEU	186	136.852	18.666	53.483	1.00	21.42
1519 I 1520 (ALA ALA		130.283 131.692	12.652 12.641	61.352 60.970	1.00 1.00	26.67 25.61		1590 1591		LEU LEU	186 186	135.780 134.586	18.964 18.987	54.522 54.210	1.00 1.00	22.24 20.84
1521		ALA		132.351	14.013	60.858	1.00	28.58		1592		LEU	186	137.331	17.220	53.654	1.00	23.63
1522		ALA		133.540	14.162	61.153	1.00	23.60	65	1593		LEU	186	136.217	16.160	53.646	1.00	21.09
1523 (1524)		ALA ALA		131.862 129.599	11.884 12.566	59.665 60.656	1.00 1.00	22.60 25.00	65	1594 1595	CD1 CD2	LEU LEU	186 186	135.491 136.800	16.145 14.800	52.292 53.943	1.00	20.03 21.57
			2.0		12.000	55.000	2.00			2000			200	120,000	2	221210	2.00	

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-Type Atom due X Y Z OCC B-factor Type Atom due Х Y Z OCC B-factor 138.882 19.259 25.00 1667 CA 193 21.242 52,139 1596 H LEU 186 53.605 1.00 ALA 126.854 1.00 20.56 10 1597 N 187 136.221 19.208 55.751 1.00 16.73 1668 C 193 125.601 20.963 52.964 1.00 22.26 ARG ALA 1598 CA ARO 187 135.326 19.515 56.859 1.00 22.57 1669 O ALA 193 124.485 21.072 52.459 1.00 21.49 1599 C 187 134.427 20.723 56.564 27.49 1670 CB ALA 193 127.483 19.938 51.679 18.73 ARG 1.00 1.00 1.00 1600 O ARG 187 133.225 20.693 56.848 26.35 1671 H ALA 193 128.729 21.672 53.002 1.00 25.00 125.791 1601 CB ARG 187 136,146 19,777 58.117 1.00 17.71 1672 N LEU 20.623 54.236 1.00 23.86 135.325 20.344 55.136 25.16 1602 CG ARG 187 20.087 59.343 1.00 21.93 1673 CA LEU 194 124.678 1.00 15 1603 CD ARG 187 136.235 20.478 60.483 1.00 31.75 1674 C LEU 194 123.757 21.551 55.298 1.00 26.76 1604 NE ARG 187 135.507 20.685 61.727 1675 O LEU 194 122,573 21.391 55.579 1.00 46.15 1.00 28.61 1605 CZ ARG 187 136.087 20.961 62.89 1.00 58.70 1676 CB LEU 194 125.194 19.902 56.509 1.00 23.10 1606 NH1 ARG 187 137.412 21.066 62 970 1.00 57.84 1677 CG LEU 194 125.924 18.556 56.579 1.00 26.60 57 992 1607 NH2 ARG 187 135 344 21 111 63 982 1.00 58 69 1678 CD1 LEU 194 126 426 18 319 1.00 20.06 1608 H ARG 187 137.182 19.161 55,923 1.00 25.00 1679 CD2 LEU 194 124 998 17 433 56 149 1.00 18.24 1609 HE ARG 187 134.530 20.613 61.708 1.00 25.00 1680 H LEU 194 126,710 20.552 54.574 1.00 25.00 1610 1HH1 137.977 20.941 25.00 1681 N 195 124.309 22,754 55.149 1.00 33.01 ARG 187 62.156 1.00 GLU 1611 2HH1 ARG 187 137.843 21.275 63.848 1.00 25.00 1682 CA GLU 195 123.529 23.987 55.277 1.00 34.61 134.351 63.926 25.00 123.005 24.448 53.923 1612 1HH2 ARG 187 21.012 1.00 1683 C GLU 195 1.00 26.09 21.316 1613 2HH2 ARG 187 135.779 64.858 1.00 25.00 1684 O GLU 195 121.952 25.074 53.834 1.00 29.66 1614 N GLU 188 135.010 21.782 56.001 1.00 28.09 1685 CB GLU 195 124.385 25.102 55.884 1.00 38.35 57.288 1615 CA GLU 188 134.255 22.993 55.667 26.62 1686 CG GLU 195 124.885 24.816 1.00 59.66 133.293 22.726 54.516 22.97 1687 CD 125.945 25.803 16116 C GLU 1.00 GLU 195 57.751 1.00 72.22 56.927 1617 O 132.203 23.296 54.462 21.14 1688 OE1 195 126.800 26.203 75.42 GLU 188 1.00 GLU 1.00 195 1618 CB GLU 188 135.192 24.153 55.305 1.00 24.01 1689 OE2 GLU 125.931 26.169 58.947 1.00 82.70 1619 CG GLU 188 135.934 24.768 56.482 1.00 32.71 1690 H GLU 195 125,263 22.814 54.944 1.00 25.00 1620 CD GLU 188 137.045 23.878 57.014 1.00 42.50 1691 N GLN 196 123.747 24.130 52.871 1.00 22.78 1621 OE1 GLU 188 138 030 23.657 56 279 1.00 43 53 1692 CA GLN 196 123 376 24 529 51 527 1.00 20.33 30 1693 C 23.520 50.515 1622 OE2 GLU 188 136.936 23,403 58.165 1.00 47.38 GLN 196 123.891 1.00 19.79 135.965 21.747 25.00 1694 O 125.094 1623 H GLU 188 55.798 1.00 GLN 196 23.463 50.258 1.00 24.78 133,702 1695 CB 123.980 25.903 51.219 1624 N GLN 189 21.853 53,601 1.00 19.36 GLN 196 1.00 20.38 1625 CA GLN 189 132.872 21.496 52.460 1.00 20.62 1696 CG GLN 196 123.727 26.397 49.807 1.00 24.47 1626 C GLN 189 131.636 20.728 52.927 1.00 22.47 1697 CD GLN 196 122.253 26.591 49.524 1.00 28.74 1627 O 189 130.522 52,483 25.58 1698 OE1 GLN 121.622 27.490 50.074 32.30 GLN 21.010 1.00 196 1.00 1628 CB GLN 189 133.672 20.662 51.461 1.00 17.31 1699 NE2 GLN 196 121.694 25.744 48.667 1.00 21.06 1629 CG GLN 189 132.915 20.359 50.187 1.00 1700 H GLN 124.554 23.592 52.995 1.00 25.00 133.796 19.780 25.67 1701 1HE2 120.741 25.876 48.480 25.00 1630 CD GLN 189 49.104 1.00 GLN 196 1.00 1631 OE1 133.691 20.162 47.939 28.92 1702 2HE2 GLN 122.247 25.045 48.258 25.00 GLN 189 1.00 196 1.00 1632 NE2 GLN 189 134,666 18.850 49,477 28.68 1703 N CYS 197 122,992 22,727 49.942 1.00 19.52 1.00 1633 H GLN 189 134 590 21 445 53 695 1.00 25.00 1704 CA CYS 197 123 399 21 749 48 944 1.00 17 94 1634 1HE2 GLN 189 135,235 18.480 48 773 1.00 25.00 1705 C CYS 197 123 782 22 497 47.669 1.00 18.82 1635 2HE2 GLN 189 134 704 18.576 50 413 1.00 25.00 1706 O CYS 197 123,316 23.614 47 428 1.00 19.62 22.03 1707 CB 197 122.278 1636 N VAI. 190 131 833 19 783 53.846 1.00 CYS 20.743 48 669 1.00 21.42 1637 CA 22.50 190 130.734 18.983 54.388 1708 SG 197 120.832 21.394 47.800 1.00 VAL. 1.00 CYS 42.82 22.00 122.056 25.00 1638 C 190 129,778 55.198 1709 H 197 22.808 50.202 VAL 19.864 1.00 CYS 1.00 1639 O 1710 N 190 128.565 19.846 54.977 1.00 26.49 LEU 124.626 21.878 46.856 1.00 19.01 VAL 198 22.489 1640 CB VAL 131.255 55.274 18.21 125.094 45.620 190 17.808 1.00 1711 CA LEU 198 1.00 20.23 45 VAL 1.00 1641 CG1 190 130.093 17.093 55.947 19.13 1712 C LEU 198 123.986 22,760 44.610 1.00 23.18 1642 CG2 VAL 190 132.037 16.815 54.422 1.00 13.74 1713 O LEU 198 123.868 23.867 44.096 1.00 26.68 1643 H VAL 190 132.742 19.618 54.168 1.00 25.00 1714 CB LEU 198 126.174 21.608 44.981 1.00 13.53 1644 N THR 191 130.335 20.638 56.124 1.00 20.35 1715 CG LEU 198 126.762 22.058 43.640 1.00 20.37 1645 CA THR 191 129.555 21.541 56.967 23.43 1716 CD1 LEU 198 127.386 23.440 43.773 19.35 1.00 1.00 1646 C 191 128.733 22.504 56.116 23.79 1717 CD2 LEU 198 127.789 21.044 43.158 18.28 THR 1.00 1.00 1647 O THR 191 127.564 22,772 56,410 1.00 27.12 1718 H LEU 198 124.968 21.004 47.109 1.00 25.00 1648 CB THR 191 130.478 22,350 57.903 1.00 29.00 1719 N HiS 199 123,160 21.752 44.354 1.00 24.27 1649 CG1 THR 191 131 124 21 454 58 814 1.00 35 12 1720 CA HIS 199 122 079 21.859 43 379 1.00 22.48 1650 CG2 199 THR 191 129 688 23 385 58 691 1.00 32.22 1721 C HiS 121 089 23 001 43 608 1.00 19 15 1651 H 191 131.304 20.599 25.00 1722 O 199 120.586 23.582 19.66 THR 56.257 1.00 HIS 42.653 1.00 25.00 1723 CB 20.523 1652 HG1 20.824 58.321 121,327 43,277 191 131.661 1.00 199 1.00 22.51 THR HIS 1653 N 129.345 22.27 120.225 20.519 42.261 16.72 192 23.015 55.054 1.00 1724 CG 199 1.00 HIS HIS 192 1654 CA 128.658 23.935 24.21 1725 ND1 120.452 40.911 HIS 54.168 1.00 HIS 199 20.697 1.00 19.56 1655 C 192 127.530 23.226 53,417 24.78 1726 CD2 199 118.885 20.360 42,396 15.14 HIS 1.00 HIS 1.00 1656 O HIS 192 126.421 23.756 53.326 1.00 20.41 1727 CE1 HIS 199 119.303 20.648 40.261 1.00 15.68 1657 CB 192 129.632 24.564 53.173 1.00 17.98 1728 NE2 HIS 199 118.338 20.444 41.138 1.00 19.96 128.965 25.446 21.55 1729 H 123.297 20.912 25.00 1658 CG HIS 192 52.169 1.00 HIS 199 44.822 1.00 1659 ND1 HIS 192 128.506 26.707 52.480 1.00 21.86 1730 HD1 HIS 199 121.340 20.834 40.498 1.00 25.00 1660 CD2 HIS 192 128.637 25.234 50.872 1.00 20.40 1731 HE2 HIS 199 117.376 20.343 40.929 1.00 25.00 1661 CE1 HIS 192 127.919 27.234 51.420 1.00 20.03 1732 N LYS 200 120.811 23 323 44.864 1.00 18.06 1662 NE2 HIS 192 127.985 26.360 50.432 1.00 20.23 1733 CA LYS 200 119.853 24.377 45.170 1.00 19.34 1663 H HIS 192 130.278 22.766 54.870 1.00 25.00 1734 C LYS 200 120.463 25.726 45.548 1.00 21.28 25.00 1735 O 46.012 1664 HD1 HIS 192 128.594 27.143 53.355 1.00 LYS 200 119.755 26.617 1.00 20.62 65 LYS 1665 HE2 192 127.614 26.486 49.551 1.00 25.00 1736 CB 200 118.898 23.893 46.264 1.00 17.06 HIS 193 127.826 22.038 22.45 1737 CG 200 118.144 22.630 45.875 1666 N ALA 52.8888 1.00 LYS 1.00 17.06

TABLE 11-continued TABLE 11-continued

s	tructur			of Tobacco		ristoloche ubstrate	ne Synt	thase	5	s	tructur			of Tobacco			ne Synt	hase
			Resi-						5				Resi	-				
Atom		Resi-	due							Atom		Resi-	due					
Type	Atom	due	#	X	Y	Z	OCC	B-factor		Туре	Atom	due	#	X	Y	Z	OCC	B-factor
1738 1739		LYS LYS	200 200	117.287 116.597		47.005 46.559	1.00 1.00	18.82 16.83	10	1809 1810		ARG ARG	208 208	131.973 132.825	31.238 32.070	44.374 45.221	1.00 1.00	24.65 25.56
1740		LYS	200	115.820		47.645	1.00	19.41		1811		ARG	208	133.292	31.273	46.432	1.00	25.87
1741		LYS	200	121.264		45.599	1.00	25.00		1812		ARG	208	134.472 132.059	31.289	46.780	1.00	27.73
1742 1743		LYS LYS	200 200	1166.454 115.081		48.438 47.978	1.00 1.00	25.00 25.00		1813 1814		ARG ARG	208 208	132.836	33.314 34.258	45.682 46.588	1.00 1.00	25.72 31.65
1744		LYS	200	115.377		47.288	1.00	25.00	15	1815		ARG	208	134.062	34.826	45.892	1.00	39.53
1745 1746		GLY GLY	201 201	121.768 122.424		45.343 45.675	1.00 1.00	23.54 19.60	13	1816 1817		ARG ARG	208 208	134.374 135.283	36.184 36.488	46.344 47.266	1.00 1.00	46.43 47.18
1747		GLY	201	122.583		44.482	1.00	19.35			NH11		208	135.263	35.534	47.858	1.00	54.31
1748		GLY	201	122.569		43.338	1.00	21.61		1819		ARG	208	135.492	37.754	47.592	1.00	54.01
1749 1750		GLY VAL	201 202	122.299 122.685		44.933 44.734	1.00 1.00	25.00 17.34		1820 1821		ARG ARG	208 208	131.077 133.881	31.566 36.924	44.139 45.937	1.00 1.00	25.00 25.00
1751		VAL	202	122.871		43.653	1.00	17.16	20		1HH1		208	135.847	34.577	47.610	1.00	25.00
1752		VAL	202	124.281		43.108	1.00	20.63			2HH1		208	136.673	35.775	48.548	1.00	25.00
1753 1754		VAL VAL	202 202	125.248 122.722		43.874 44.168	1.00 1.00	22.87 17.85			1HH2 2HH2		208 208	134.962 136.172	38.478 37.986	47.150 48.287	1.00 1.00	25.00 25.00
1755	CG1	VAL	202	123.062	32.782	43.071	1.00	19.32		1826		PHE	209	132.364	30.556	47.056	1.00	25.17
1756 1757		VAL VAL	202 202	121.301 122.625		44.645 45.655	1.00 1.00	15.75 25.00	25	1827 1828		PHE PHE	209 209	132.688 133.677	29.750 28.632	48.224 47.908	1.00 1.00	23.72 24.69
1758		PRO	203	124.414		41.780	1.00	18.06	23	1829		PHE	209	134.656	28.442	48.626	1.00	24.23
1759		PRO	203	125.705		41.128	1.00	19.86		1830		PHE	209	131.430	29.135	48.838	1.00	22.94
1760 1761		PRO PRO	203 203	126.889 127.827		41.588 42.172	1.00 1.00	23.15 27.00		1831 1832		PHE PHE	209 209	131.721 132.019	28.195 28.691	49.976 51.242	1.00 1.00	22.62 22.83
1762		PRO	203	125.378		39.650	1.00	21.47		1833		PHE	209	131.745	26.817	49.773	1.00	20.76
1763		PRO	203	123.982		39.574	1.00	19.55	30	1834		PHE	209	132.336	27.824	52.293	1.00	22.43
1764 1765		PRO ARG	203 204	123.332 126.844		40.780 41.365	1.00 1.00	17.62 21.91		1835 1836		PHE PHE	209 209	132.060 132.358	25.946 26.450	50.813 52.075	1.00 1.00	24.13 22.16
1766		ARG	204	127.949		41.781	1.00	20.91		1837		PHE	209	131.439	30.580	46.728	1.00	25.00
1767		ARG	204 204	128.283		43.265	1.00	20.45		1838		PHE	210 210	133.399	27.872	46.856	1.00	24.89
1758 1769		ARG ARG	204	129.455 127.681		43.638 41.426	1.00 1.00	25.04 22.61		1839 1840		PHE PHE	210	134.263 135.671	26.765 27.241	46.486 48.172	1.00 1.00	21.48 23.23
1770	CG	ARG	204	127.940	34.519	39.972	1.00	18.14	35	1841	O	PHE	210	138.645	26.676	46.671	1.00	24.15
1771 1772		ARG ARG	204 204	129.420 129.852		39.618 39.074	1.00 1.00	21.69 23.42		1842 1843		PHE PHE	210 210	133.688 134.4776	25.989 24.754	45.296 44.944	$\frac{1.00}{1.00}$	18.25 20.04
1773		ARG	204	130.953		38.345	1.00	28.33		1844		PHE	210	134.506	23.661	45.811	1.00	17.95
1774		ARG	204	131.747		38.069	1.00	25.07		1845		PHE	210	135.212	24.694	43.763	1.00	19.06
1775 1776		ARG ARG	204 204	131.248 126.071		37.862 40.913	1.00 1.00	26.89 25.00	40	1846 1847		PHE PHE	210 210	135.260 135.972	22.525 23.563	45.510 43.450	1.00 1.00	17.28 21.18
1777	HE	ARG	204	129.297	32.416	39.258	1.00	25.00		1848	CZ	PHE	210	135.995	22.476	44.329	1.00	18.42
	1HH1 2HHI		204 204	131.521 132.570		38.404 37.522	1.00 1.00	25.00 25.00		1849 1850		PHE ILE	210 211	132.602 135.781	28.062 28.290	46.315 45.368	1.00 1.00	25.00 26.53
	1HH2		2004	130.647		38.047	1.00	25.00		1851		ILE	211	137.086	28.818	44.997	1.00	27.06
	2HH2		204	132.077		37.316	1.00	25.00		1852		ILE	211	137.917	29.248	46.205	1.00	27.01
1782 1783		VAL VAL	205 205	127.264 127.496		44.108 45.545	1.00 1.00	17.32 18.99	45	1853 1854		ILE ILE	211 211	138.953 136.967	28.652 30.015	46.490 44.023	1.00 1.00	25.02 23.08
1784		VAL	205	128.267		45.866	1.00	20.53		1855		ILE	211	136.317	29.574	42.713	1.00	22.07
1785		VAL	205	129.220		46.647	1.00	24.18		1856		ILE	211	138.344	30.603	43.737	1.00	18.73
1786 1787		VAL VAL	205 205	126.175 126.442		46.339 47.811	1.00 1.00	19.83 14.97		1857 1858		ILE ILE	211 211	136.163 134.968	30.700 28.712	41.701 45.022	$\frac{1.00}{1.00}$	22.59 25.00
1788	CG2	VAL	205	125.473		46.190	1.00	21.52	50	1859	N	SER	212	137.430	30.233	46.949	1.00	26.45
1789 1790		VAL GLU	205 206	126.353 127.862		43.764 45.249	1.00 1.00	25.00 22.23		1860 1861		SER SER	212 212	138.174 138.263	30.758 29.914	48.087 49.355	1.00 1.00	29.47 29.82
1791		GLU	206	128.519		45.478	1.00	22.70		1862		SER	212	139.317	29.873	49.993	1.00	31.08
1792		GLU	206	129.919		44.876	1.00	18.65		1863		SER	212	137.691	32.173	48.425	1.00	28.90
1793 1794		GLU GLU	206 206	130.838 127.648		45.469 44.957	$\frac{1.00}{1.00}$	20.84 17.73		1864 1865		SER SER	212 212	136.311 136.550	32.186 30.622	48.742 46.740	$\frac{1.00}{1.00}$	48.04 25.00
1795	CG	GLU	206	126.317	27.413	45.683	1.00	20.17	55	1866	HG	SER	212	136.156	31.647	49.517	1.00	25.00
1796		GLU	206	126.478		47.201	1.00	26.03		1867		SER	213	137.175	29.249	49.728	1.00	25.54
1797 1798		GLU GLU	206 206	127.190 125.895		47.721 47.876	$\frac{1.00}{1.00}$	21.64 20.28		1868 1869		SER SER	213 213	137.173 137.555	28.447 26.969	50.949 50.823	$\frac{1.00}{1.00}$	25.42 23.90
1799	Н	GLU	206	127.111	29.981	44.620	1.00	25.00		1870	O	SER	213	138.019	26.371	51.794	1.00	29.58
1800 1801		THR THR	207 207	130.081 131.369		43.714 43.038	1.00 1.00	18.09 21.23	60	1871 1872		SER SER	213 213	135.820 135.503	28.566 29.920	51.662 51.942	$\frac{1.00}{1.00}$	19.77 36.00
1802		THR	207	132.373		43.909	1.00	25.71		1873		SER	213	136.366	29.279	49.173	1.00	25.00
1803		THR	207	133.474	29.568	44.179	1.00	28.93		1874		SER	213	135.449	30.406	51.120	1.00	25.00
1804 1805		THR THR	207 207	131.219	29.984 29.1077	41.672 40.770	1.00 1.00	24.22 28.95		1875 1876		ILE ILE	214 214	137.390 137.701	26.376 24.958	49.645 49.502	1.00 1.00	20.94 20.03
1806		THR	207	132.573		41.088	1.00	23.10		1877		ILE	214	138.869	24.617	48.591	1.00	20.03
1807		THR	207	129.311		43.289	1.00	25.00	65	1878		ILE	214	139.914	24.174	49.065	1.00	23.05
1808	HG1	THR	207	131.030	28.287	40.685	1.00	25.00		1879	CB	ILE	214	136.463	24.144	49.041	1.00	20.03

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-Type Atom due X Y Z OCC B-factor Type Atom due Х Y Z OCC B-factor 214 135.255 24,455 49.932 1951 CA 221 144.270 21.233 43.682 32.98 1880 CG1 ILE 1.00 15.38 LYS 1.00 10 1881 CG2 214 136.778 22.640 49.046 1.00 14.86 1952 C 221 145.037 21.284 42.363 1.00 30.63 ILE LYS 1882 CD1 ILE 214 135.488 24.207 51.418 1.00 14.56 1953 O 221 146.249 21.077 42.328 1.00 33.91 LYS 1883 H 214 137.066 48.873 25.00 1954 CB 221 144.206 22.649 44.255 33.08 ILE 26.887 1.00 LYS 1.00 1884 N TYR 215 138.696 24.823 47.289 1.00 18.70 1955 CG LYS 221 145.584 23.257 44.500 1.00 40.24 24.563 1885 CA TYR 215 139.733 24,490 46.323 1.00 22.93 1956 CD LYS 221 145.512 45.257 1.00 53.13 141.076 25.168 46.582 25.73 19557 CE 221 25.093 1886 C TYR 215 1.00 LYS 146.902 45.561 1.00 55.90 15 25.96 1887 O TYR 215 142.128 24.545 46.450 1.00 1958 NZ LYS 221 146.843 26.358 46.344 1.00 67.32 1888 CB TYR 215 139.258 24.777 44.899 19.89 1959 H LYS 221 145.198 20.720 45.508 25.00 1.00 1.00 1889 CG TYR 215 139.859 23.834 43.884 1.00 17.39 1960 1HZ LYS 221 146.350 26.191 47.244 1.00 25.00 221 1890 CD TYR 215 139 726 22,455 44.030 1.00 18.08 1961 2HZ LYS 147.807 26.698 46.533 1.00 25.00 221 215 24 315 1891 CD2 TYR 140 557 42, 782 1.00 19 17 1962.3HZ LYS 146.326 27.080 45 800 1.00 25.00 222 1892, CE1 TYR 215 140.275 21.575 43 102 1.00 17.39 1963 N ASN 144 322 21.536 41 273 1.00 28.13 16.77 1964 CA 222 1893 CE2 TYR 215 141.113 23,445 41.843 1.00 ASN 144.958 21.675 39.970 1.00 25.27 222 1894 CZ 215 140.967 22.076 42.010 21.36 1965 C ASN 145.154 23.174 39.816 30.00 TYR 1.00 1.00 1895 OH 215 141.517 21.212 41.088 1.00 25.91 1966 O ASN 222 144.187 23.933 39.707 1.00 29.84 TYR 215 137.858 46.973 25.00 1967 CB 222 144.077 22.73 1896 H TYR 25.217 1.00 ASN 21.149 38.843 1.00 1.00 1897 HH TYR 215 141.317 20.302 41.340 25.00 1968 CG ASN 222 144.688 21.390 37.473 1.00 24.93 1898 N ASP 216 141.037 26.434 46.969 1.00 26.71 1969 OD1 ASN 222 144.914 22.534 37.072 1.00 31.82 47.250 1970 ND2 222 1899 CA ASP 216 142.254 27.184 1.00 32.33 ASN 144.973 20.317 36.755 23.78 216 143.057 48.377 1971 H ASN 222 143.353 25.00 1900 C ASP 26.532 1.00 32,46 21.640 41.343 1901 O 144.288 26.589 48.387 1972 1HD2 ASN 222 145.364 20.460 35.868 25.00 ASP 216 1.00 33.87 1.00 1902 CB ASP 216 141.895 28.621 47.636 1.00 35.77 1973 2HD2 ASN 222 144.734 19.432 37.125 1.00 25.00 1903 CG ASP 216 143.111 29.514 47.769 1.00 36.73 1974 N ASN 223 146.412 23 596 39.819 1.00 31.07 223 1904 OD1 ASP 216 143.842 29,670 46.769 1.00 37.16 1975 CA ASN 146.759 25.009 39.726 1.00 26.94 223 216 25 730 25.82 1905 OD2 ASP 143 327 30.062 48 871 1.00 41.08 1976 C ASN 146 273 38 477 1.00 30 223 1906 H 216 1977 O ASN 145.933 27.88 ASP 140.170 26.885 447.054 1.00 25.00 28.910 38.538 1.00 223 1907 N 217 142,350 49.316 31.70 1978 CB 25.185 23.98 LYS 25.910 1.00 ASN 148.261 39.915 1.00 223 1908 CA 142.978 25,255 1979 CG 41.242 LYS 217 50.459 1.00 29.37 ASN 148.739 24.633 1.00 28.15 23.745 223 143.586 25.271 42.281 1909 C LYS 217 143.134 50.269 1.00 30.32 1980 OD1 ASN 1.00 30.20 25.49 1910 O 217 143.506 23.029 51.200 1.00 31.00 1981 ND2 ASN 223 149.291 23.423 41.219 1.00 LYS 1911 CB 217 142.170 25.553 51.724 1982 H ASN 147.118 22.925 39.901 25.00 LYS 1.00 26.09 1.00 1912 CG LYS 217 142.062 27.033 52.017 1.00 27.73 1983 1HD2 ASN 223 149.595 23.063 42.082 1.00 25.00 1913 CD LYS 217 141.185 27.312 53.213 1.00 35.35 1984 2HD2 ASN 223 149.377 22.938 40.382 1.00 25.00 141.091 28.807 53.463 40.60 1985 N 224 25.036 37.346 24.73 1914 CE LYS 217 1.00 VAL 146.224 1.00 1915 NZ 217 140.124 29.115 54.551 49.88 1986 CA 224 145.743 25.667 27.15 LYS 1.00 VAL 36.124 1.00 1916 H LYS 217 141.376 25.876 49.235 25.00 1987 C VAL 224 144.263 26.026 36.304 1.00 28.87 1.00 1917 1HZ LYS 217 140 429 28.650 55 430 1.00 25.00 1988 O VAL 224 143.852 27.150 36 019 1.00 29 97 1918 2HZ LYS 217 140 083 30.143 54.698 1.00 25.00 1989 CB VAL. 224 145.914 24.742 34 900 1.00 31.17 224 25 404 1919 3HZ LYS 217 139.181 28.767 54 284 1.00 25.00 1990 CG1 VAL 145.359 33.651 1.00 30.27 218 224 1991 CG2 24 400 1920 N GLU 142.864 23 271 49.057 1.00 31.03 VAI. 147 382. 34 707 1.00 30.28 48.750 224 1921 CA 218 142,961 1.00 1992 H VAL. 146.488 24.096 37.329 1.00 25.00 GLU 21.855 33.23 1922 C 42.71 225 25.78 218 144.391 48.357 1993 N 143.486 25.089 36.843 21.489 1.00 LEU 1.00 GLU 1923 O 47.381 1994 CA 225 218 144.932 22.012 1.00 41.53 LEU 142.057 25.303 37.069 1.00 25.90 GLU 1924 CB GLU 218 141.983 47.626 32.79 1995 C 141.792 26.380 21.492 1.00 LEU 38.125 1.00 26.51 45 GLU 1925 CG 218 141.873 20.007 47.345 1.00 49.16 1996 O LEU 225 140.900 27.214 37.956 1.00 26.55 1926 CD GLU 218 141.324 19.228 48.526 1.00 61.57 1997 CB LEU 141.366 23.991 37.463 1.00 20.07 1927 OE1 GLU 140.147 19.456 48.886 1.00 66.99 1998 CG LEU 225 141.398 22.848 36.441 1.00 21.81 1928 OE2 GLU 218 142.066 18.391 49.092 1.00 62.96 1999 CD1 LEU 225 140.664 21.638 36.991 1.00 10.56 1929 H GLU 218 142.616 23.896 48.343 25.00 2000 CD2 LEU 225 140.780 23.295 35.126 19.02 1.00 1.00 1930 N GLN 219 144.974 20.551 49.098 48.16 2001 H LEU 225 143.883 24.229 37.092 25.00 1.00 1.00 1931 CA GLN 219 146.339 20.089 48.858 1.00 52.73 2002 N LEU 226 142.566 26.369 39.207 1.00 22.12 1932. C GLN 219 146.533 19.487 47.467 1.00 49.21 2003 CA LEU 226 142.400 27.367 40.261 1.00 27.39 219 228 1933 O GLN 147 594 19 622 46.870 1.00 51 36 2004 C LEU 142 724 28 775 39 743 1.00 28.78 219 146 733 2005 O 226 29.720 1934 CB GLN 19.063 49 929 1.00 62.56 LEU 141 967 39 969 1.00 34 36 219 50.531 226 27.033 25.60 1935 CG 19.262 2006 CB 143,282 GLN 148.127 1.00 81.40 LEU 41.468 1.00 2007 CG 1936 CD 219 51.534 90.93 226 27.984 GLN 148,498 18.186 1.00 LEU 143.170 42.6665 1.00 26.39 1937 OE1 219 97.11 2008 CD1 226 GLN 148.863 17.072 51.156 1.00 141.731 28.037 43.183 1.00 20.17 LEU 1938 NE2 148.408 52.825 2009 CD2 LEU 226 27.532 43.763 GLN 219 18.512 1.00 96.41 144.110 1.00 26.04 GLN 1939 H 219 144.450 20.162 49.821 25.00 2010 H 226 143,249 25.673 39.298 25.00 1.00 LEU 1.00 1940 1HE2 GLN 219 148.113 19.389 53.115 1.00 25.00 2011 N ARG 227 143.842 28.904 39.036 1.00 28.64 1941 2HE2 GLN 219 148.656 17.793 53.455 1.00 25.00 2012 CA ARG 227 144.270 30.183 38.473 1.00 30.51 1942 N 145.496 46.950 47.51 227 37.508 SER 220 18.842 1.00 2013 C ARG 143.186 30.688 1.00 29.19 1943 CA SER 220 145.552 18.199 45.636 1.00 47.04 2014 O ARG 227 142.770 31.849 37.567 1.00 25.86 1944 C SER 220 144.945 19.020 44.487 1.00 45.29 2015 CB ARG 227 145.607 29.989 37.742 1.00 30.51 1945 O SER 220 144.577 18.407 43,446 1.00 47.02 2016 CG ARG 227 146.171 31 215 37.037 1.00 32.00 1946 CB SER 220 144.862 16.833 45.713 1.00 51.73 2017 CD ARG 227 146.883 32.162 37.981 1.00 35.49 1947 OG SER 220 143.585 16.948 46.327 1.00 55.26 2018 NE ARG 22.7 147.414 33.314 37.256 1.00 34.46 2019 CZ 1948 H SER 220 144.658 18.796 47.447 1.00 25.00 ARG 227 147,799 34.454 37.822 1.00 32.62 65 1949 HG 220 143.671 17.280 47.217 1.00 25.00 2020 NH1 ARG 227 147.727 34.611 39.136 1.00 33.39 SER 1950 N 221 20.332 2021 NH2 35.460 37.066 35.87 LYS 144.849 44.679 1.00 38.03 ARG 148.214 1.00

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-Y Z Type Atom due X Y Z OCC B-factor Type Atom due Х OCC B-factor 2022 H 227 144.402 28.114 38.884 25.00 2093 CB 234 138.867 38.762 39.342 27.32 ARG 1.00 ASN 1.00 10 227 25.00 2023 HE 147.480 33.245 36.292 1.00 2094 CG ASN 234 139.152 38.353 40.776 1.00 30.63 ARG 29.34 2024 1HH1 ARG 227 147.381 33.871 39.712 1.00 25.00 2095 OD1 ASN 234 138.242 38.219 41.595 1.00 2025 2HH1 227 148.020 35.470 39.554 25.00 2096 ND2 ASN 234 140.426 38.166 41.092 37.28 ARG 1.00 1.00 2026 1HH2 ARG 227 148.236 35.359 36.073 1.00 25.00 2097 H ASN 234 137.753 38.513 38.851 1.00 25.00 227 25.00 25.00 2027 2HH2 ARG 148.505 36.315 37,491 1.00 2098 1HD2 ASN 234 140.628 37.901 42.015 1.00 2028 N 142.723 29.788 23.49 2099 2HD2 ASN 234 141.114 38.292 25.00 PHE 228 36.645 1.00 40.408 1.00 2029 CA PHE 228 141.678 30.063 35.656 1.00 30.24 2100 N LEU 235 137.339 38.902 36.561 1.00 28.66 2030 C PHE 228 140.411 30.575 36.369 29.56 2101 CA LEU 235 137.059 39.616 35.321 29.93 1.00 1.00 2031 O PHF 228 139.909 31.662 36.068 1.00 31.17 2102 C LEU 235 135.551 39.830 35.167 1.00 30.84 228 2032 CB PHE 141 394 28.752 34.892 1.00 32.31 2103 O LEU 235 135.106 40.949 34.908 1.00 31.89 228 2033 CG PHE 140 441 28 879 33 721 1.00 30.15 2104 CB LEU 235 137.625 38.852 34 119 1.00 29.05 228 2034 CD1 PHF 139.889 30.103 33 348 1.00 29.90 2105 CG LEU 235 137 476 39.509 32.742 1.00 30.21 228 2035 CD2 PHE 140.084 27,740 32,999 1.00 24.53 2106 CD1 LEU 235 138.045 40.922 32,769 1.00 29.02 228 2036 CE1 138,994 30.188 32.277 28.21 2107 CD2 235 138.173 38.667 31.684 1.00 31.45 PHE 1.00 LEU 2037 CE2 PHE 228 139.193 27.811 31.930 1.00 23.61 2108 H LEU 235 137.721 38.001 36.525 1.00 25.00 2038 CZ 228 138.646 29.036 31.568 29.31 2109 N 134.766 38.769 35.352 29.90 PHE 1.00 LEU 236 1.00 36.672 1.00 2039 H PHE 228 143.108 28.886 25.00 2110 CA LEU 236 133.311 38.875 35.245 1.00 28.94 2040 N ALA 229 139.935 29.809 37.344 1.00 25.42 2111 C LEU 236 132.774 39.874 36.263 1.00 28.31 2041 CA 229 138.737 25.11 35.979 ALA 30.156 38.099 2112 O LEU 236 131.833 40.623 1.00 29.04 2042 C 229 138.808 38.764 29.20 2113 CB 37.518 35.463 ALA 31.533 1.00 LEU 236 132.632 1.00 26.96 2043 O 229 137.847 32.310 38.703 26.99 LEU 236 132.722 36.463 34.359 32.49 ALA 1.00 2114 CG 1.00 2044 CB ALA 229 138.456 29.085 39.135 1.00 20.89 2115 CD1 LEU 236 131.797 35.299 34.694 1.00 28.63 2045 H ALA 229 140.406 28.982 37 565 1.00 25.00 2116 CD2 LEU 236 132.326 37.068 33 026 1.00 30.07 2046 N LYS 230 139.944 31.838 39.389 1.00 29.21 2117 H LEU 236 135.173 37.900 35.561 1.00 25.00 230 29.75 237 37 454 25.46 2047 CA LYS 140.127 33 121 40.068 1.00 2118 N GLN 133 362 39.870 1.00 30 25.58 230 2119 CA GLN 237 2048 C LYS 140.100 34.306 39.109 1.00 30.11 132.953 40.777 38.521 1.00 2049 O 230 139.405 35,298 39.350 237 42.231 27.92 LYS 1.00 30.69 2120 C GLN 133.059 38.062 1.00 2050 CB 230 141.434 LYS 33.138 40.866 1.00 30.27 2121 O GLN 2337 132.201 43.054 38.387 1.00 29.65 230 237 40.549 39.769 2051 CG LYS 141.422 32.247 42.100 1.00 29.79 2122 CB GLN 133.807 1.00 20.55 2052 CD 230 142.686 32.430 42.923 1.00 24.40 2123 CG GLN 237 133.342 41.314 40.993 1.00 23.60 LYS 2053 CE 230 142.595 31.664 44.227 29.55 2124 CD GLN 237 134.216 41.046 42.197 31.25 LYS 1.00 1.00 2054 NZ LYS 230 143,790 31.883 45.079 1.00 36.37 2125 OE1 GLN 237 135.435 41.196 42.134 1.00 31.93 2055 H LYS 230 140.676 31.183 39.394 1.00 25.00 2126 NE2 GLN 237 133.602 40.634 43.298 1.00 28.03 2056 1HZ 230 143.881 45.296 25.00 2127 H 237 134.094 39.237 37.625 25.00 LYS 32.896 1.00 GLN 1.00 2057 2HZ 230 143.689 31.356 45.965 25.00 2128 1HE2 237 134.156 40.446 44.081 25.00 LYS 1.00 GLN 1.00 2058 33HZ LYS 230 144.640 31.560 44.573 25.00 2129 2HE2 GLN 237 132,635 40.519 43.287 1.00 25.00 1.00 2059 N LEU 231 140.852 34 201 38 016 1.00 31.56 2130 N MET 238 134.096 42.537 37 286 1.00 28 91 2060 CA LEU 231 140 911 35 275 37.032 1.00 30.17 2131 CA MET 238 134 288 43.888 36.776 1.00 33.08 231 139 549 2061 C LEU 35 506 36.394 1.00 30.20 2132 C MET 238 133 084 44.282 35 924 1.00 33.53 231 139 085 36 299 2133 O 238 45 391 37 31 2062. O LEU 36 645 1.00 26.72 MET 132, 562, 36 049 1.00 43.976 2063 CB 231 141.941 34.959 35.941 1.00 29.21 2134 CB 238 135.573 35.954 1.00 32.86 LEU MET 231 143.408 34.790 36,340 26.11 2135 CG 238 43.837 36.782 39.06 2064 CG 1.00 MET 136.836 1.00 LEU 144.232 2065 CD1 LEU 231 34.631 35.077 1.00 22.49 2136 SD MET 238 138.318 43.815 35.763 1.00 43.74 231 143.890 35.990 37.139 22.48 2137 CE 139.508 36.929 2066 CD2 LEU 1.00 MET 238 43.186 1.00 46.28 45 2067 H LEU 231 141.374 33.380 37.869 1.00 25.00 2138 H MET 238 134.751 41.842 37.055 1.00 25.00 2068 N ASF 232 138.898 34.417 35.995 1.00 29.28 2139 N LEU 239 132.624 43.356 35.087 1.00 31.84 137.593 239 2069 CA ASF 232 34.490 35.351 1.00 28.41 2140 CA LEU 131.465 43.599 34.233 1.00 2070 C ASP 232 136.549 35.149 36.247 1.00 25.56 2141 C LEU 239 130.219 43.801 35.097 1.00 28.36 2071 O ASP 232 135.820 36.044 35.813 25.21 2142 O LEU 2.39 129.450 44.742 34.885 32.90 1.00 1.00 2072 CB ASP 232 137.131 33.097 34.932 26.05 2143 CB LEU 239 131.255 42.427 33.271 29.61 1.00 1.00 2073 CG ASP 232 136.143 33.143 33,793 1.00 33.93 2144 CG LEU 239 129.969 42,432 32.436 1.00 29.85 2074 OD1 ASP 232 136.587 33.188 32,627 1.00 32.45 2145 CD1 LEU 2.39 129,929 43.636 31.499 1.00 25.22 232 2075 OD2 ASP 134 927 33 157 34 060 1.00 29.97 2146 CD2 LEU 239 129.870 41 138 31 649 1.00 26.65 232 25.00 2147 H 239 133 084 35 043 2076 H ASP 139 310 33 539 36 141 1.00 LEU 42,491 1.00 25.00 233 34.730 25.85 2077 N PHE 136.510 37.507 24.45 2148 N 240 130.042 42.942 36.095 1.00 HIS 1.00 233 135.569 22.77 43.042 2078 CA 35.286 38,466 2149 CA 240 128.891 36.990 28.32 1.00 HIS 1.00 PHE 2079 C PHE 233 135.788 36.788 28.10 2150 C 128.885 37.671 30.20 38.603 1.00 240 44.406 1.00 HIS 31.99 2080 O 233 134.835 37.568 38.516 2151 O 240 127.824 44.974 37.940 PHE 1.00 HIS 1.00 30.10 2081 CB 233 135.732 34.605 39.831 19.36 2152 CB 240 128.925 41.926 38.036 25.55 PHE 1.00 HIS 1.00 2082 CG PHE 233 134.714 35.035 40.854 1.00 22.51 2153 CG HIS 240 128.881 40.545 37,448 1.00 24.20 2083 CD1 PHE 233 1344.857 36.241 41.540 1.00 22.18 2154 ND1 HIS 240 129.449 39.456 38.058 1.00 25.29 233 133.604 2155 CD2 240 128.358 38.283 2084 CD2 PHE 34.237 41.127 1.00 23.90 HIS 40.103 1.00 21.44 2085 CE1 PHE 233 133.906 36.646 42.481 1.00 26.05 2156 CE1 HIS 240 129.289 38.394 37.302 1.00 27.58 2088 CE2 PHE 233 132.650 34.631 42.065 1.00 23.08 2157 NE2 HIS 240 128.627 38.750 36.209 1.00 21.74 2087 CZ PHE 233 132.801 35.839 42,743 1.00 24 51 2158 H HIS 240 130.713 42.244 36 233 1.00 25.00 2088 H PHE 233 137.126 34.022 37.802 1.00 25.00 2159 HD11 HIS 240 129.918 39.455 38.924 1.00 25.00 2089 N ASN 234 137.044 37.189 38.801 1.00 28.39 2160 HE2 HIS 240 128.362 38.151 35.470 1.00 25.00 ASN 234 137.393 38.965 241 37.935 2090 CA 38.602 1.00 28.37 2181 N LYS 130.079 44.926 1.00 34.60 65 2091 C ASN 234 137.079 39.446 37.743 1.00 27.25 2162 CA LYS 241 130.239 46.230 38.563 1.00 32.03 2092 O ASN 234 136.606 40.575 37.868 32.70 2163 C 241 129.855 47.374 37.613 1.00 LYS 1.00 31.99

TABLE 11-continued

Structur			of Tobacco bsence of I			ne Synt	hase	5	Structur			of Tobacco		ristoloche ibstrate	ne Synt	hase
		Resi	-								Resi-					
Atom	Resi-	due							Atom	Resi-	due					
Type Atom	due	#	X	Y	Z	OCC	B-factor		Type Atom	due	#	X	Y	Z	OCC	B-factor
2164 O	LYS	241	129.280	48.374	38.045	1.00	29.66	10	2235 CB	SER	248	123.759	52.727	40.726	1.00	44.77
2165 CB 2166 CG	LYS LYS	241 241	131.675 131.984	46.391 45.614	39.072 40.356	$\frac{1.00}{1.00}$	32.10 34.40		2236 OG 2237 H	SER SER	243 248	123.859 123.423	51.479 51.465	41.381 38.531	1.00 1.00	45.74 25.00
2167 CD	LYS	241	133.447	45.807	40.758	1.00	41.19		2238 HG	SER	248	123.876	50.777	40.722	1.00	25.00
2168 CE	LYS	241	133.701	45.417	42.208	1.00	49.51		2239 N	ARG	249	122.938	54.015	38.334	1.00	44.35
2169 NZ 2170 H	LYS LYS	241 241	135.044 130.875	45.881 44.403	42.698 37.703	$\frac{1.00}{1.00}$	56.06 25.00		2240 CA 2241 C	ARG ARG	249 249	122.789 121.354	55.943 56.097	37.750 37.256	1.00 1.00	48.22 47.00
2170 H 2171 1HZ	LYS		135.111	46.916	42.625	1.00	25.00	15	2242 O	ARG	249	120.710	57.119	37.504	1.00	47.12
2172 2HZ	LYS		135.179	45.610	43.698	1.00	25.00		2243 CB	ARG	249	123.785	56.147	36.604	1.00	52.69
2173 3HZ 2174 N	LYS GLN	241 242	135.803 130.121	45.446 47.201	42.135 36.316	1.00 1.00	25.00 34.13		2244 CG 2245 CD	ARG ARG	249 249	125.165 126.154	56.590 56.712	37.075 35.924	1.00 1.00	66.38 73.20
2174 IN 2175 CA	GLN		129.799	48.211	35.303	1.00	38.39		2245 CD 2246 NE	ARG	249	126.919	55.484	35.712	1.00	75.40
2176 C	GLN	242	128.288	48.278	35.161	1.00	39.98		2247 CZ	ARG	249	126.922	54.778	334.584	1.00	77.33
2177 O	GLN		127.702	49.353	34.990	1.00	45.19	20	2248 NH1	ARG	249	126.194	55.165	33.542	1.00	74.66
2178 CB 2179 CG	GLN GLN		130.376 131.883	47.827 47.683	33.942 33.920	1.00 1.00	42.52 60.88		2249 NH2 2250 H	ARG ARG	249 249	127.669 123.579	53.686 53.986	34.493 37.936	1.00 1.00	83.65 25.00
2180 CD	GLN		132.417	47.252	32.574	1.00	69.61		2251 HE	ARG	249	127.471	55.153	36.453	1.00	25.00
2181 OE1	GLN		131.663	47.052	31.620	1.00	75.13		2252 1HH1		249	125.633	55.990	33.598	1.00	25.00
2182 NE2 2183 H	GLN GLN		133.730 130.490	47.102 46.358	32.488 35.996	1.00 1.00	78.40 25.00	25	2253 2HH1 2254 1HH2		249 249	126.203 128.229	54.625 53.396	32.700 35.269	1.00 1.00	25.00 25.00
2184 1HE2	GLN	242	134.0772	46.820	31.621	1.00	25.00	23	2255 2HH2		249	127.675	53.153	33.646	1.00	25.00
2185 2HE2			134.282	47.272	33.272	1.00	25.00		2256 N	TRP	250	120.848	55.053	36.603	1.00	46.33
2186 N 2187 CA	GLU GLU	243 243	127.674 126.233	47.105 46.975	35.219 35.107	1.00 1.00	33.89 28.66		2257 CA 2258 C	TRP TRP	250 250	119.480 118.488	55.024 55.311	36.092 37.230	1.00 1.00	43.84 46.38
2187 CA 2188 C	GLU		125.568	47.591	36.325	1.00	28.27		2259 O	TRP	250	117.566	56.118	37.230	1.00	44.72
2189 O	GLU	243	124.635	48.381	36.193	1.00	32.26	30	2260 CB	TRRP	250	119.201	53.652	35.456	1.00	38.48
2190 CB	GLU		125.857	45.505	34.982	1.00	25.09		2261 CG	TRP	250	117.747 116.986	53.324	35.232	1.00	37.37
2191 CG 2192 CD	GLU GLU	243 243	126.416 126.182	44.820 43.329	33.741 33.738	1.00 1.00	24.03 26.58		2262 CD1 2263 CD2	TRP TRP	250 250	116.986	53.661 52.569	34.150 36.105	1.00 1.00	33.31 36.85
2193 OE1	GLU		125.633	42.810	34.726	1.00	24.63		2264 NE1	TRP	250	115.713	53.164	34.293	1.00	34.01
2194 OE2	GLU		126.556	42.665	32.750	1.00	29.69		2265 CE2	TRP	250	115.626	52.490	35.483	1.00	36.82
2195 H 2196 N	GLU LEU	243 244	128.248 126.078	46.333 47.267	35.341 37.508	1.00 1.00	25.00 24.94	35	2266 CE3 2267 CZ2	TRP TRP	250 250	117.070 114.543	51.952 51.816	37.352 36.065	1.00 1.00	34.91 39.04
2197 CA	LEU		125.522	47.798	38.745	1.00	30.48		2268 CZ3	TRP	250	115.992	51.281	37.932	1.00	39.64
2198 C	LEU		125.635	49.324	38.766	1.00	36.45		2269 CH2	TRP	250	114.746	51.220	37.286	1.00	39.49
2199 O 2200 CB	LEU LEU		124.700 126.233	50.021 47.185	39.163 39.957	$\frac{1.00}{1.00}$	35.07 28.96		2270 H 2271 HE1	TRP TRP	250 250	121.423 114.984	54.272 53.281	36.448 33.650	1.00 1.00	25.00 25.00
2201 CG	LEU	244	125.765	47.658	41.339	1.00	29.10		2272 N	TRP	251	118.718	54.683	38.382	1.00	46.65
2202 CD1	LEU	244	124.249	47.527	41.484	1.00	25.23	40	2272 CA	TRP	251	117.859	54.851	39.551	1.00	54.20
2203 CD2 2204 H	LEU LEU		126.484 126.855	48.859 48.662	42.423 37.535	1.00 1.00	27.57 25.00		2274 C 2275 O	TRP TRP	251 251	117.864 116.814	56.279 56.823	40.089 40.445	1.00 1.00	59.43 62.13
2205 N	ALA		126.778	49.832	38.318	1.00	37.15		2276 CB	TRP	251	118.284	53.889	40.657	1.00	51.89
2206 CA	ALA	245	127.023	51.268	38.270	1.00	38.62		2277 CG	TRP	251	117.358	53.872	41.836	1.00	58.17
2207 C	ALA	245	126.030 125.352	51.937	37.325 37.692	1.00	39.57		2278 CD1	TRP	251 251	117.596	54.402	43.071 41.908	1.00	60.91
2208 O 2209 CB	ALA ALA	245 245	128.452	52.902 51.539	37.802	1.00 1.00	43.21 35.23	45	2279 CD2 2280 NE1	TRP TRP	251	116.069 116.541	53.246 54.136	43.912	1.00 1.00	60.72 64.22
2210 H	ALA	245	127.477	49.215	38.032	1.00	25.00		2281 CE2	TRP	251	115.589	53.429	43.225	1.00	60.87
2211 N	GLN		125.920	51.380	36.123	1.00	35.82		2282 CE3	TRP	251	115.274		40.989	1.00	56.90
2212 CA 2213 C	GLN GLN		125.025 123.577	51.888 51.989	35.088 35.566	1.00 1.00	40.78 43.61		2283 CZ2 2284 CZ3	TRP TRP	251 251	114.351 114.042	52.054	43.648 41.410	1.00 1.00	58.08 53.15
2214 O	GLN		122.907	53.016	35.404	1.00	43.37	50	2285 CH2	TRP	251	113.594	52.252	42.729	1.00	53.35
2215 CB	GLN		125.088	50.963	33.872	1.00	42.45		2286 H	TRP	251	119.485	54.076	38.442	1.00	25.00
2216 CG 2217 CD	GLN GLN		124.151 124.146	51.350 50.338	32.733 31.610	$\frac{1.00}{1.00}$	59.73 65.77		2287 HE1 2288 N	TRP LYS	251 252	116.481 119.049	54.409 56.875	44.851 40.167	1.00 1.00	25.00 64.71
2218 OE1	GLN		125.149	49.663	31.357	1.00	67.95		2289 CA	LYS	252	119.191	58.241	40.661	1.00	68.07
2219 NE2	GLN		123.009	50.223	30.920	1.00	66.48		2290 C	LYS	252	118.440	59.227	39.779	1.00	65.20
2220 H 2221 1HE2	GLN		126.450 123.038	50.576 49.559	35.964 30.198	$\frac{1.00}{1.00}$	25.00 25.00	55	2291 O 2292 CB	LYS LYS	252 252	117.831 120.668	60.169 58.621	40.283 40.755	1.00 1.00	65.28 75.64
2222 2HE2			122.232	50.763	31.132	1.00	25.00		2293 CG	LYS	252	121.400	57.815	41.803	1.00	85.57
2223 N	VAL		123.115	50.916	38.185	1.00	39.07		2294 CD	LYS	252	122.890	57.818	41.588	1.00	92.92
2224 CA 2225 C	VAL VAL		121.762 121.538	50.830 51.732	36.692 37.908	$\frac{1.00}{1.00}$	37.02 40.33		2295 CE 2296 NZ	LYS LYS	252 252	123.526 124.902	56.776 56.526	42.486 42.101	1.00 1.00	95.43 94.64
2225 C 2226 O	VAL		120.435	52.248	38.106	1.00	39.92		2296 NZ 2297 H	LYS	252	119.849	56.379	39.887	1.00	25.00
2227 CB	VAL	247	121.387	49.341	36.948	1.00	35.95	60	22998 1HZ	LYS	252	125.056	56.256	41.101	1.00	25.00
2228 CG1	VAL VAI		120.417	49.201 48.754	38.091 35.686	1.00	37.82 32.90		2299 2HZ 2300 3HZ	LYS	252 252	125.376		42.219	1.00 1.00	25.00 25.00
2229 CG2 2230 H	VAL VAL		120.794 123.730	48.754 50.170	35.686 36.340	1.00 1.00	32.90 25.00		2300 3HZ 2301 N	LYS ASP	252 253	125.417 118.453	55.867 58.983	42.716 38.469	1.00	63.40
2231 N	SER		122.579	51.926	38.715	1.00	44.51		2302 CA	ASP	253	117.762	59.846	37.515	1.00	63.30
2232 CA	SER		122.483	52.798	39.887	1.00	46.80	C=	2303 C	ASP	253	116.265	59.872	37.796	1.00	63.95
2233 C 2234 O	SER SER		122.250 121.454	54.234 54.976	39.410 39.997	1.00 1.00	47.29 46.67	65	2304 O 2305 CB	ASP ASP	253 253	115.635 118.003	60.925 59.376	37.729 36.077	1.00	68.15 68.18
2234 U	SEK	<i>2</i> 40	121.434	J4.7/U	37.77 /	1.00	+0.07		2303 CB	тэг	233	110.003	37.370	30.077	1.00	00.10

TABLE 11-continued

Structur			of Tobacco		ristoloche ibstrate	ne Synt	hase	5		Structur			of Tobacco osence of l			ne Syn	thase
A 6 - 11 -		Resi-						Ü	A 4			Resi-					
Atom	Resi-	due	**	***	~	000	D.C		Atom		Resi-	due	**	• ,	-	000	70.6
Type Atom		#	X	Y	Z		B-factor			Atom	due	#	X	Y	Z		B-factor
2306 CG 2307 OD1	ASP ASP	253 253	119.467 120.293	59.453 60.015	35.664 36.419	1.00 1.00	76.46 78.84	10	2372 2378		PRO PRO	261 261	108.951 108.783	57.726 57.813	50.855 52.073	1.00 1.00	114.04 117.31
2308 OD2	ASP	253	119.793	58.943	34.570	1.00	79.35		2379		PRO	261	109.441	60.207	50.836	1.00	113.40
2309 H	ASP	253	118.948	58.203	38.137	1.00	25.00		2380		PRO	261	108.124	60.715	50.347	1.00	112.70
2310 N 2311 CA	LEU LEU	254 254	115.697 114.271	58.710 58.611	38.105 38.409	$\frac{1.00}{1.00}$	66.44 65.57		2381 2382		PRO TYR	261 262	108.223 108.599	60.477 56.646	48.856 50.163	1.00 1.00	111.17 113.40
2312 C	LEU	254	113.947	59.482	39.616	1.00	67.65	15	2383		TYR	262	108.012	55.479	50.822	1.00	112.08
2313 O	LEU	254	112.815	59.931	39.784	1.00	68.72	15	2384		TYR	262		54.178	50.284	1.00	112.01
2314 CB 2315 CG	LEU LEU	254 254	113.885 114.124	57.162 56.166	38.698 37.564	$\frac{1.00}{1.00}$	61.14 57.75		2385 2386		TYR TYR	262 262	108.125 106.477	53.086 55.478	50.582 50.702	1.00 1.00	110.30 109.31
2316 CD1	LEU	254	113.718	54.785	38.021	1.00	58.43		2387		TYR	262	105.931		49.303	1.00	104.93
2317 CD2	LEU	254	113.343	56.571	36.328	1.00	55.32		2388		TYR	252	105.777		48.440	1.00	103.18
2318 H 2319 N	LEU ASP	254 255	116.252 114.947	57.902 59.661	38.125 40.475	$\frac{1.00}{1.00}$	25.00 73.64	20	2389 2390	CD2	TYR TYR	262 262		54.021 56.201	48.846 47.159	1.00 1.00	102.84 101.09
2320 CA	ASP	255	114.842	60.490	41.670	1.00	78.31		2391		TYR	262		53.842	47.565	1.00	100.35
2321 C	ASP	255	113.664	60.123	42.574	1.00	79.28		2392	CZ	TYR	262	104.897	54.938	46.727	1.00	100.07
2322 O	ASP	255	113.079	60.985	43.230	1.00	81.76		2393		TYR	262	104.386		45.459	1.00	97.25
2323 CB 2324 CG	ASP ASP	255 255	114.777 115.238	61.971 62.915	41.261 42.364	1.00 1.00	83.27 87.17		2394 2395		TYR TYR	262 262	103.755 104.276	56.615 53.862	49.199 45.236	1.00 1.00	25.00 25.00
2325 OD1	ASP	255	115.719	62.443	43.420	1.00	86.98	25	2396		ALA	263		54.310	49.497	1.00	113.11
2326 OD2	ASP	255	115.121	64.144	42.165	1.00	87.49		2397		ALA	263		53.166	48.913	1.00	114.09
2327 H 2328 N	ASP PHE	255 256	115.805 113.357	59.226 58.834	40.294 42.659	1.00 1.00	25.00 80.00		2398 2399		ALA ALA	263 263	111.856 112.375	53.343 54.457	49.146 49.055	1.00 1.00	114.75 115.90
2329 CA	PHE	256	112.254	58.378	43.500	1.00	84.32		2400		ALA	263	110.064	53.077	47.428	1.00	112.96
2330 C	PHE	256	112.504	58.649	44.976	1.00	89.15		2401		ALA	263	110.034	55.202	49.305	1.00	25.00
2331 O	PHE	256	111.562	58.742	45.759	1.00	87.59	30	2402		ARG	264		52.252	49.467	1.00	113.69
2332 CB 2333 CG	PHE PHE	256 256	111.987 111.352	56.887 56.566	43.290 41.972	1.00 1.00	81.00 76.86		2403 2404		ARG ARG	264 264	113.979 114.847		49.726 48.526	1.00 1.00	114.09 109.03
2334 CD1	PHE	256	110.671	57.544	41.251	1.00	76.59		2405		ARG	264	114.394		47.594	1.00	109.80
2335 CD2	PHE	256	111.431	55.283	41.449	1.00	73.54		2406		ARG	264	114.355		50.945	1.00	116.51
2336 CE1 2337 CE2	PHE PHE	256 256	110.080 110.844	57.247 54.976	40.030 40.229	1.00 1.00	76.03 71.61		2407 2408		ARG ARG	264 264	113.434 113.486		51.235 50.151	1.00 1.00	118.71 120.73
2338 CZ	PHE	256	110.167	55.958	39.518	1.00	74.95	35	2409		ARG	264		48.105	50.418	1.00	118.02
2339 H	PHE	256	113.874	58.189	42.139	1.00	25.00		2410		ARG	264	111.607		49.565	1.00	115.79
2340 N 2341 CA	VAL VAL	257 257	113.774 114.160	53.796 59.053	45.344 46.730	1.00 1.00	97.79 104.36			NH1 NH2	ARG ARG	264 264	111.479 110.788	48.277 46.709	48.380 49.904	1.00 1.00	11407 113.33
2341 CA 2342 C	VAL	257	113.428	60.269	47.303	1.00	104.50		2413		ARG	264	112.079	51.393	49.495	1.00	25.00
2343 O	VAL	257	112.952	60.239	48.439	1.00	106.91		2414	HE	ARG	264	112.602	47.651	51.284	1.00	25.00
2344 CB	VAL	257	115.692	59.270	46.854	1.00	107.20	40		1HH1		264		49.029	48.120	1.00	25.00
2345 CG1 2346 CG2	VAL VAL	257 257	116.092 116.445	59.432 58.101	48.316 46.220	$\frac{1.00}{1.00}$	107.16 106.33			2HH1 1HH2		264 264	110.766 110.868	47.967 46.283	47.751 50.807	1.00 1.00	25.00 25.00
2347 H	VAL	257	114.464	58.732	44.658	1.00	25.00			2HH2		264		46.408	49.273	1.00	25.00
2348 N	THR	258	113.332	61.329	46.5506	1.00	105.84		2419		ASP	265	116.089	52.421	48.550	1.00	103.18
2349 CA 2350 C	THR THR	258 258	112.660 111.183	62.550 62.608	46.935 46.531	1.00 1.00	104.41 104.31	45	2420 2421		ASP ASP	265 265	117.045 117.480	52.152 50.688	47.485 47.579	1.00 1.00	97.60 92.70
2351 O	THR	258	110.339	63.047	47.314	1.00	104.07	73	2422		ASP	265	118.533		48.138	1.00	96.57
2352 CB	THR	258	113.392	63.805	46.408	1.00	104.30		2423		ASP	265	118.255		47.619	1.00	100.16
2353 OG1 2354 CG2	THR THR	258 258	113.620 114.729	63.674 63.982	45.000 47.117	1.00 1.00	104.41 105.42		2424		ASP ASP	265 265	1199.317 118.992		46.565 45.363	1.00 1.00	106.00 107.25
2355 H	THR	258	113.711	61.308	45.603	1.00	25.00			OD2	ASP	265	120.479		46.940	1.00	109.23
2356 HG1	THR	258	114.068	64.458	44.669	1.00	25.00	50	2427		ASP	265	116.373		49.310	1.00	25.00
2357 N 2358 CA	THR THR	259 259	110.872 109.497	62.161 62.182	45.317 44.825	1.00 1.00	103.41 100.89		2428 2429		ARG ARG	266 266	116.654 116.942		47.041 47.073	1.00 1.00	82.19 73.27
2359 CA	THR	259	108.599	61.133	45.482	1.00	100.89		2430		ARG	266	117.613		45.775	1.00	63.23
2360 O	THR	259	107.414	61.375	45.707	1.00	103.53		2431	O	ARG	266	117.711	46.712	45.511	1.00	66.31
2361 CB	THR	259	109.445	62.022	43.289	1.00	97.37 95.69		2432		ARG	266	115.646		47.320	1.00	77.54
2362 OG1 2363 CG2	THR THR	259 259	110.219 109.988	60.883 63.267	42.894 42.602	$\frac{1.00}{1.00}$	95.50	55	2433 2434		ARG ARG	266 266	115.801 114.480		48.274 48.520	$\frac{1.00}{1.00}$	83.80 86.40
2364 H	THR	259	111.579	61.811	44.728	1.00	25.00		2435		ARG	266	114.015	44.911	47.358	1.00	87.97
2365 HG1	THR	259	109.870	60.086	43.290	1.00	25.00		2436		ARG	266	114.383		47.077	1.00	87.83
2366 N 2367 CA	LEU LEU	260 260	109.164 108.415	59.969 58.884	45.783 46.412	$\frac{1.00}{1.00}$	102.18 103.22			NH1 NH2	ARG ARG	266 266	115.229 113.895		47.869 46.005	1.00 1.00	86.43 80.67
2368 C	LEU	260	109.112	58.431	47.696	1.00	106.86		2439		ARG	266	115.816		46.631	1.00	25.00
2369 O	LEU	260	109.742	57.372	47.732	1.00	107.73	60	2440		ARG	266	113.386		46.747	1.00	25.00
2370 CB 2371 CG	LEU LEU	260 260	108.282 107.552	57.700 57.928	45.445 44.119	$\frac{1.00}{1.00}$	98.81 94.81			1HH1 2HH1		266 266	115.600 115.502		48.681 47.647	1.00 1.00	25.00 25.00
2371 CO 2372 CD1	LEU	260	107.532	56.670	43.269	1.00	89.99			1HH2		266	113.302		45.410	1.00	25.00
2373 CD2	LEU	260	106.108	58.320	44.380	1.00	92.83			2HH2		266	114.170	42.111	45.794	1.00	25.00
2374 H	LEU	260	110.112	59.844	45.595	1.00	25.00		2445		VAL	267	118.130		45.000	1.00	54.00
2375 N 2376 CA	PRO PRO	261 261	108.963	59.204 58.889	48.784 50.077	1.00 1.00	110.17	65	2446 2447		VAL VAL	267 267	118.778		43.722 43.784	1.00 1.00	46.85 44.14
2370 CA	UMI	∠01	109.580	20.009	30.077	1.00	112.52		Z44/		VAL	207	119.865	+7.490	43.784	1.00	44.14

TABLE 11-continued

Structur			of Tobacco			ne Synt	hase	5	St	ructur			of Tobacco			ne Synt	hase
Atom		Resi-							Atom			Resi	-				
Atom Type Atom	Resi- due	#	X	Y	z	OCC	B-factor		Type A	Atom	Resi- due	#	X	Y	z	OCC	B-factor
2448 O	VAL	267	119.911	46.609	42.935	1.00	45.14	10	2519 I	HE1	TRP	273	116.622	39.201	46.903	1.00	25.00
2449 CB	VAL	267	119.361	49.827	43.076	1.00	45.45		2520 N		ALA	274	119.117	39.617	39.915	1.00	26.20
2450 CG1 2451 CG2	VAL VAL	267 267	119.991 118.273	49.499 50.848	41.733 42.892	$\frac{1.00}{1.00}$	42.99 51.05		2521 C 2522 C		ALA ALA	274 274	119.371 120.638	39.472 38.657	38.489 38.263	1.00 1.00	25.12 27.03
2452 H	VAL	267	118.072	49.785	45.299	1.00	25.00		2523 (ALA	274	120.686	37.816	37.366	1.00	29.08
2453 N	VAL	268	120.738	47.576	44.781	1.00	40.56		2524 (ALA	274	119.491	40.832	37.831	1.00	22.68
2454 CA 2455 C	VAL VAL	268 268	121.813 121.242	46.597 45.185	44.910 45.125	$\frac{1.00}{1.00}$	38.21 35.40	15	2525 I 2526 N		ALA LEU	274 275	119.0884 121.646	40.514 38.886	40.313 39.104	1.00 1.00	25.00 26.74
2456 O	VAL	268	121.708	44.220	44.513	1.00	29.56		2527		LEU	275	122.922	38.175	39.011	1.00	23.65
2457 CB	VAL	268	122.785	46.976	46.046	1.00	40.34		2528		LEU	275	122.727	36.689	39.329	1.00	20.19
2458 CG1 2459 CG2	VAL VAL	268 268	123.983 123.239	46.055 48.414	46.040 45.880	1.00 1.00	41.41 43.02		2529 C 2530 C		LEU LEU	275 275	123.432 123.945	35.825 38.802	38.798 39.963	1.00 1.00	18.69 22.77
2460 H	VAL	268	120.663	48.303	45.428	1.00	25.00		2531 (LEU	275	125.377	38.280	39.867	1.00	22.77
2461 N	GLU	269	120.202	45.081	45.952	1.00	33.49	20	2532 (LEU	275	125.859	38.352	38.427	1.00	20.45
2462 CA	GLU	2669	119.553	43.796	46.220	1.00	31.75		2533 (LEU	275	126.274	39.097	40.779	1.00	24.10
2463 C 2464 O	GLU GLU	269 269	118.910 119.023	43.278 42.095	44.938 44.607	1.00 1.00	31.29 34.74		2534 I 2535 N		LEU GLY	275 276	121.532 121.765	39.552 36.406	39.808 40.204	1.00 1.00	25.00 19.17
2465 CB	GLU	269	118.477	43.940	47.300	1.00	30.42		2536		GLY	276	121.453	35.035	40.561	1.00	19.61
2466 CG	GLU	269	118.998	44.124	48.719	1.00	41.96		2537 (GLY	276	120.811	34.299	39.392	1.00	25.48
2467 CD 2468 OE1	GLU GLU	269 26P	119.777 119.387	45.418 46.465	48.921 48.356	1.00 1.00	53.70 52.14	25	2538 C 2539 I		GLY GLY	276 276	121.060 121.266	33.108 37.137	39.199 40.623	1.00 1.00	28.59 25.00
2469 OE2	GLU	269	120.785	45.385	49.658	1.00	60.44		2540 N		VAL	277	120.000	35.006	38.603	1.00	20.84
2470 H	GLU	269	119.849	45.888	46.369	1.00	25.00		2541	CA	VAL	277	119.323	34.415	37.440	1.00	19.19
2471 N	CYS	270	118.258	44.179	44.204	1.00	25.87		2542 (VAL	277	120.304	34.028	36.319	1.00	19.17
2472 CA 2473 C	CYS CYS	270 270	117.603 118.628	43.829 43.330	42.948 41.944	1.00 1.00	31.04 31.66	20	2543 (2544 (VAL VAL	277 277	120.086 118.201	33.048 35.355	35.606 36.904	1.00 1.00	21.35 21.19
2474 O	CYS	270	118.352	42.406	41.170	1.00	34.14	30	2545		VAL	277	117.560	34.777	35.650	1.00	15.33
2475 CB	CYS	270	116.841	45.029	42.380	1.00	31.00		2546		VAL	277	117.138	35.550	37.976	1.00	11.13
2476 SG 2477 H	CYS CYS	270 270	115.468 118.204	45.566 45.102	43.429 44.523	1.00 1.00	41.23 25.00		2547 I 2548 N		VAL TYR	277 278	119.858 121.345	35.954 34.834	38.810 36.137	1.00 1.00	25.00 21.16
2477 N	TYR	271	119.817	43.927	41.968	1.00	30.55		2549		TYR	278	122.401	34.587	35.150	1.00	24.77
2479 CA	TYR	271	120.875	43.506	41.065	1.00	29.41	35	2550	С	TYR	278	123.583	35.532	35.351	1.00	29.35
2480 C	TYR	271	121.365	42.109	41.459	1.00	29.51	55	2551 (TYR	278	123.405	36.738	35.531	1.00	27.69
2481 O 2482 CB	TYR TYR	271 271	121.662 122.048	41.284 44.496	40.592 41.048	$\frac{1.00}{1.00}$	30.16 27.85		2552 C 2553 C		TYR TYR	278 278	121.910 120.741	34.611 35.517	33.687 33.341	1.00 1.00	25.96 26.89
2483 CG	TYR	271	123.125	44.061	40.077	1.00	27.35		2554		TYR	278	120.580	36.768	33.937	1.00	25.88
2484 CD1	TYR	271	123.006	44.327	38.714	1.00	25.72		2555 (TYR	278	119.800	35.116	32.388	1.00	27.14
2485 CD2 2486 CE1	TYR TYR	271 271	124.198 123.923	43.279 43.813	40.502 37.798	1.00 1.00	20.62 22.98	40	2556 C 2557 C		TYR TYR	278 278	119.508 118.729	37.595 35.934	33.594 32.037	1.00 1.00	29.19 31.49
2487 CE2	TYR	271	125.116	42.762	39.593	1.00	27.42		2558		TYR	278	118.587	37.171	32.643	1.00	31.78
2488 CZ	TYR	271	124.970	43.030	38.245	1.00	21.79		2559 (TYR	278	117.522	37.976	32.301	1.00	31.66
2489 OH 2490 H	TYR TYR	271 271	125.859 119.985	42.497 44.662	37.343 42.594	1.00 1.00	23.43 25.00		2560 H 2561 H		TYR TYR	278 278	121.419 117.022	35.652 37.548	36.684 31.600	1.00 1.00	25.00 25.00
2491 HH	TYR	271	126.485	41.987	37.843	1.00	25.00		2562 N		PHE	279	124.789	34.968	35.332	1.00	31.85
2492 N	PHE	272	121.453	41.845	42.760	1.00	26.47	45	2563 (PHE	279	126.017	35.732	35.549	1.00	28.28
2493 CA 2494 C	PHE PHE	272 272	121.892 120.957	40.535 39.486	43.220 42.633	1.00 1.00	28.71		2564 (2565 (PHE PHE	279 279	126.910 127.855	35.844 36.636	34.318	1.00 1.00	28.86
2494 C 2495 O	PHE		120.937	38.470	42.102	1.00	31.32 31.50		2566 (PHE	279	126.829	35.087	34.310 36.678	1.00	28.24 24.38
2496 CB	PHE	272	121.881	40.442	44.747	1.00	32.54		2567	CG	PHE	279	127.334	33.707	36.344	1.00	23.04
2497 CG	PHE	272	122.165	39.058	45.264	1.00	34.15		2568 (PHE	279	128.563	33.535	35.706	1.00	16.44
2498 CD1 2499 CD2	PHE PHE	272 272	123.471 121.120	38.577 38.211	45.323 45.638	1.00 1.00	32.37 34.09	50	2569 C 2570 C		PHE PHE	279 279	126.557 129.005	32.582 32.265	36.616 35.339	1.00 1.00	22.61 22.82
2500 CE11	PHE	272	123.732	37.271	45.739	1.00	35.66		2571		PHE	279	126.989	31.309	36.254	1.00	22.81
2501 CE2	PHE	272	121.369	36.902	46.055	1.00	34.18		2572 (PHE	279	128.214	31.149	35.613	1.00	20.63
2502 CZ 2503 H	PHE PHE	272 272	122.679 121.228	36.431 42.541	46.105 43.413	1.00 1.00	36.58 25.00		2573 I 2574 N		PHE GLU	279 280	124.845 126.653	34.006 35.010	35.181 33.315	1.00 1.00	25.00 25.83
2504 N	TRP	273	119.656	39.744	42.712	1.00	29.73		2575		GLU	280	127.450	34.995	32.093	1.00	25.96
2505 CA	TRP	273	118.670	38.817	42.167	1.00	30.60	55	2576		GLU	280	127.464	36.347	31.384	1.00	32.09
2506 C 2507 O	TRP TRP	273 273	118.924 118.971	38.551 37.396	40.685 40.250	$\frac{1.00}{1.00}$	30.33 32.10		2577 C 2578 C		GLU GLU	280 280	126.461 126.947	37.067 33.909	31.378 31.140	1.00 1.00	33.29 29.64
2507 CB	TRP	273	117.255	39.357	42.365	1.00	28.17		2579		GLU	280	120.947	32.479	31.652	1.00	31.98
2509 CG	TRP	273	116.707	39.092	43.721	1.00	33.41		2580 0	CD	GLU	280	125.873	31.921	32.338	1.00	41.40
2510 CD1	TRP	273	117.241	39.478	44.915	1.00	37.71	60	2581 (GLU	280	125.089	32.696	32.938	1.00	33.42
2511 CD2 2512 NE1	TRP TRP	273 273	115.506 116.445	38.381 39.053	44.029 45.950	$\frac{1.00}{1.00}$	41.82 39.11	00	2582 C 2583 I		GLU GLU	280 280	125.681 125.894	30.688 34.421	32.273 33.402	1.00 1.00	43.76 25.00
2513 CE2	TRP	273	115.372	38.378	45.435	1.00	43.90		2584 N		PRO	281	128.593	36.687	30.735	1.00	34.75
2514 CE3	TRP	273	114.528	37.747	43.253	1.00	47.13		2585 (PRO	281	128.736	37.961	30.018	1.00	32.48
2515 CZ2 2516 CZ3	TRP TRP	273 273	114.296 113.458	37.764 37.136	46.083 43.898	$\frac{1.00}{1.00}$	49.35 53.38		2586 C 2587 C		PRO PRO	281 281	127.718 127.273	38.182 39.309	28.899 28.675	1.00 1.00	30.11 33.55
2510 CZ3 2517 CH2	TRP	273	113.436	37.150	45.300	1.00	53.36	65	2588 (PRO	281	130.177	37.901	229.492	1.00	33.45
2518 H	TRP		119.359	40.569	43.153	1.00	25.00		2589		PRO		130.447	36.426	29.366	1.00	34.83

TABLE 11-continued TABLE 11-continued

Structur			of Tobacco bsence of			ne Synt	hase	5	s	Structur			of Tobacco osence of			ne Synt	hase
		Resi-						Ü				Resi-					
Atom	Resi-	due							Atom		Resi-	due					
Type Atom	due	#	X	Y	Z	OCC	B-factor		Туре	Atom	due	#	X	Y	Z	OCC	B-factor
2590 CD	PRO	281	129.824	35.882	30.625	1.00	32.94	10	2661		VAL	288	120.144	45.208	33.148	1.00	29.94
2591 N 2592 CA	GLN GLN	282 282	127.319 126.360	37.106 37.195	28.226 27.134	$\frac{1.00}{1.00}$	30.38 31.74		2662 2663		VAL VAL	288 288	118.628 118.018	45.388 46.044	33.043 33.890	1.00 1.00	28.55 35.55
2593 C	GLN	282	124.980	37.704	27.600	1.00	33.53		2664		VAL	288	120.874	46.106	32.120	1.00	35.29
2594 O 2595 CB	GLN GLN	282 282	124.194 126.183	38.202 35.829	26.792 26.462	1.00 1.00	34.52 35.52		2665 2666	CG1 CG2	VAL VAL	288 288	120.536 122.378	47.572 45.896	32.363 32.221	1.00 1.00	30.30 31.86
2596 CG	GLN	282	125.442	34.819	27.323	1.00	47.53	15	2667	H	VAL	288	121.107	43.535	32.256	1.00	25.00
2597 CD 2598 OE1	GLN GLN	282 282	125.543 126.378	33.400 32.624	26.807 27.273	1.00 1.00	54.68 58.66	10	2668 2669		MET MET	289 289	118.018 116.567	44.775 44.856	32.031 31.854	1.00 1.00	27.91 27.36
2599 NE2	GLN	282	124.675	33.040	25.866	1.00	55.48		2670	C	MET	289	115.857	44.248	33.066	1.00	27.49
2600 H 2601 1HE2	GLN GLLN	282 282	127.685 124.740	36.233 32.122	28.468 25.538	1.00 1.00	25.00 25.00		2671 2672		MET MET	289 289	114.938 116.136	44.845 44.129	33.627 30.572	1.00 1.00	29.43 28.18
2602 2HE2	GLN	282	124.018	33.690	25.551	1.00	25.00	20	2673	CG	MET	289	116.578	44.819	29.282	1.00	28.82
2603 N 2604 CA	TYR TYR	283 283	124.698 123.417	37.577 38.015	28.896 29.447	1.00 1.00	27.81 26.64	20	2674 2675		MET MET	289 289	116.207 114.526	43.882 44.384	27.770 27.438	1.00 1.00	38.33 39.91
2605 C	TYR	283	123.470	39.392	30.099	1.00	29.80		2676	H	MET	289	118.554	44.257	31.391	1.00	25.00
2606 O 2607 CB	TYR TYR	283 283	122.615 122.885	39.732 36.982	30.922 30.444	1.00 1.00	29.85 24.82		2677 2678		LEU LEU	290 290	116.335 115.743	43.089 42.408	33.511 34.654	1.00 1.00	25.99 25.33
2608 CG	TYR	283	122.670	35.614	29.840	1.00	26.77		2679		LEU	290	115.745	43.222	35.949	1.00	26.44
2609 CD1	TYR	283	121.786	35.432	28.775	1.00	28.94	25	2680		LEU	290	114.815	43.289 41.035	36.687	1.00	30.04
2610 CD2 2611 CE1	TYR TYR	283 283	123.373 121.610	34.506 34.174	30.313 28.192	1.00 1.00	26.51 32.76		2681 2682		LEU LEU	290 290	116.393 115.880	40.125	34.843 35.964	1.00 1.00	25.26 25.88
2612 CE2	TYR	283	123.205	33.247	29.740	1.00	28.52		2683		LEU	290	114.357	40.043	35.951	1.00	19.53
2613 CZ 2614 OH	TYR TYR	283 283	122.324 122.164	33.086 31.845	28.680 28.104	1.00 1.00	30.97 25.13		2684 2685	CD2 H	LEU LEU	290 290	116.499 117.098	38.741 42.681	35.796 33.057	1.00 1.00	18.49 25.00
2615 H	TYR	283	125.361	37.198	29.509	1.00	25.00	30	2686	N	VAL	291	116.947	43.857	36.210	1.00	27.54
2616 HH 2617 N	TYR SER	283 284	122.723 124.449	31.208 40.196	28.556 29.697	1.00 1.00	25.00 30.66		2687 2688		VAL VAL	291 291	117.124 116.101	44.667 45.799	37.421 37.502	1.00 1.00	28.37 27.52
2618 CA	SER	284	124.620	41.539	30.239	1.00	33.15		2689		VAL	291	115.487	46.023	38.5550	1.00	27.61
2619 C	SER	284	123.375	42.412	30.040	1.00	32.37		2690		VAL	291	118.544	45.289	37.507	1.00	28.94
2620 O 2621 CB	SER SER	284 284	122.858 125.848	42.999 42.201	30.999 29.609	1.00 1.00	32.25 32.60		2691 2692	CG2	VAL VAL	291 291	118.706 119.592	46.054 44.214	38.803 37.431	1.00 1.00	25.65 36.38
2622 OG	SER	284	126.037	43.511	30.110	1.00	38.65	35	2693		VAL	291	117.687	43.782	35.573	1.00	25.00
2623 H 2624 HG	SER SER	284 284	125.090 126.140	39.876 43.520	29.027 31.058	$\frac{1.00}{1.00}$	25.00 25.00		2694 2695		LYS LYS	292 292	115.911 114.968	46.502 47.611	36.392 36.345	$\frac{1.00}{1.00}$	27.46 28.57
2625 N	GLN	285	122.862	42.477	28.805	1.00	35.28		2696	C	LYS	292	113.546	47.158	36.677	1.00	30.77
2626 CA 2627 C	GLN GLN	285 285	121.693 120.489	43.273 42.735	28.505 29.284	1.00 1.00	36.59 33.06		2697 2698		LYS LYS	292 292	112.834 115.029	47.824 48.285	37.433 34.976	$\frac{1.00}{1.00}$	31.18 29.35
2628 O	GLN	285	119.713	43.504	29.856	1.00	33.43	40	2699		LYS	292	116.391	48.890	34.676	1.00	29.57
2629 CB 2630 CG	GLN GLN	285 285	121.399 120.138	43.255 44.020	27.002 26.611	1.00 1.00	36.57 48.54		2700 2701		LYS LYS	292 292	116.463 117.810	49.431 53.079	33.261 32.999	1.00 1.00	34.35 37.92
2631 CD	GLN	285	119.829	43.943	25.123	1.00	54.77		2701		LYS	292	117.909	50.619	31.619	1.00	40.64
2632 OE1	GLN	285	120.079	42.927	24.470	1.00	55.77		2703		LYS	292	116.413	46.260	35.581	1.00	25.00
2833 NE2 2634 H	GLN GLN	285 285	119.280 123.323	45.024 41.984	24.581 28.086	1.00 1.00	56.33 25.00	45	2704 2705		LYS LYS	292 292	117.780 117.169	49.846 51.334	30.936 31.476	1.00 1.00	25.00 25.00
2635 1HE2		285	119.084	44.982	23.621	1.00	25.00		2706	3HZ	LYS	292	118.844	51.052	31.483	1.00	25.00
2636 2HE2 2637 N	GLN ALA	285 286	119.099 120.364	45.802 41.410	25.141 29.324	1.00 1.00	25.00 32.38		2707 2708		THR THR	293 293	113.146 111.817	46.010 45.463	36.137 36.395	1.00 1.00	34.24 27.43
2638 CA	ALA	286	119.272	40.750	30.032	1.00	28.79		2709	C	THR	293	111.657	45.123	37.872	1.00	31.58
2639 C 2640 O	ALA ALA	286 286	119.254 118.200	41.117 41.438	31.512 32.060	1.00 1.00	26.70 31.71		2710 2711		THR THR	293 293	110.655 111.561	45.493 44.214	38.491 35.534	1.00 1.00	28.71 25.43
2641 CB	ALA	286	119.370	39.244	29.859	1.00	30.35	50	2712		THR	293	111.354		34.175	1.00	30.49
2642 H 2643 N	ALA ARG	286 287	121.023 120.422	40.859 41.097	28.861 32.152	1.00 1.00	25.00 26.48		2713 2714		THR THR	293 293	110.348 113.756	43.433 45.525	36.029 35.533	1.00 1.00	22.44 25.00
2644 CA	ARG	287	120.422	41.442	33.568	1.00	27.31		2715		THR	293	110.577		34.129	1.00	25.00
2645 C	ARG	287	120.056	42.870	33.826	1.00	27.08		2716	N	ILE	294	112.647	44.439	38.440	1.00	30.35
2646 O 2647 CB	ARG ARG	287 287	119.290 121.946	43.118 41.266	34.760 34.096	$\frac{1.00}{1.00}$	28.78 28.17	55	2717 2718		ILE ILE	294 294	112.596 112.481		39.853 40.725	1.00 1.00	30.45 28.69
2648 OG	ARG	287	122.240	39.891	34.652	1.00	25.50		2719	O	ILE	294	111.709	45.348	41.685	1.00	30.57
2649 CD 2650 NE	ARG ARG	287 287	123.566 124.703	39.859 40.191	35.396 34.535	1.00 1.00	24.46 20.40		2720 2721		ILE ILE	294 294	113.837 113.948		40.272 39.399	1.00 1.00	29.95 24.34
2651 CZ	ARG	287	125.252	39.373	33.641	1.00	23.12		2722	CG2	ILE	294	113.733	42.818	41.734	1.00	18.35
2652 NH1 2653 NH2	ARG ARG	287 287	124.781 126.268	38.146 39.793	33.473 32.897	1.00 1.00	23.32 22.53	60	2723 2724		ILE ILE	294 294	115.165 113.432		39.687 37.906	1.00 1.00	30.84 25.00
2654 H	ARG	287	120.208	39.793 40.840	31.670	1.00	25.00	00	2725		SER	294	113.432	44.182	40.359	1.00	32.61
2655 HE	ARG	257	125.093	41.059	34.627	1.00	25.00		2726		SER	295	113.196		41.097	1.00	37.07
2656 1HH1 2657 2HH1		287 287	124.002 125.192	37.833 37.542	34.014 32.796	1.00 1.00	25.00 25.00		2727 2728		SER SER	295 295	111.820 111.227	48276 48.673	41.002 42.011	1.00 1.00	35.65 33.09
2658 1HH2	ARG	287	126.623	40.719	33.014	1.00	25.00		2729	CB	SER	295	114.248	48.584	40.533	1.00	35.83
2659 2HH2		287	126.677	39.179	32.225	1.00	25.00	65	2730		SER	295		48.024	40.608	1.00	42.38
2660 N	VAL	288	120.512	43.802	32.992	1.00	30.28		2731	н	SER	295	113.804	40.290	39.575	1.00	25.00

TABLE 11-continued TABLE 11-continued

Structur			of Tobacco			ne Synt	hase	5		Structur			of Tobacco			ne Synt	thase
Atom		Resi-	-						Atom			Resi-					
Atom	Resi-		v	37	7	000	D 6		Atom		Resi-		v	37	7	000	D 6
Type Atom		#	X	Y	Z		B-factor			Atom		#	X	Y	Z		B-factor
2732 HG 2733 N	SER MET	295 296	115.756 111.306		41.523 39.779	$\frac{1.00}{1.00}$	25.00 34.54	10	2803 2804		PHE PHE	304 304	101.025 99.893	49.246 48.450	47.352 47.817	1.00 1.00	50.29 53.29
2734 CA	MET	296	110.017	48.951	39.506	1.00	35.02		2805	C	PHE	304	99.997	48.024	49.275	1.00	59.68
2735 C 2736 O	MET MET	296 296	108.864 108.080	48.263 48.919	40.230 40.923	1.00 1.00	36.33 35.61		2806 2807		PHE PHE	304 304	98.981 99.744	47.832 47.182	49.940 46.971	1.00 1.00	62.17 43.62
2737 CB	MET	296	109.768		37.999	1.00	39.18		2808		PHE	304	99.065	47.398	45.654	1.00	37.53
2738 CG	MET	296	109.109	50.234	37.507	1.00	49.37	15		CD1	PHE	304	99.780	47.857	44.555	1.00	32.17
2739 SD 2740 CE	MET MET	296 296	109.993 108.888		38.067 39.359	1.00 1.00	51.57 53.40	10	2810 2811	CD2 CF1	PHE PHE	304 304	97.711 99.156	47.113 48.029	45.506 43.326	1.00 1.00	35.92 36.26
2741 H	MET	296	111.819	47.966	39.036	1.00	25.00		2812		PHE	304	97.079	47.280	44.283	1.00	29.26
2742 N	ILE	297			40.103	1.00	37.42		2813		PHE	304	97.802	47.739	43.189	1.00	34.73
2743 CA 2744 C	ILE ILE	297 297	107.709 107.813		40.745 42.267	1.00 1.00	34.54 36.45		2814 2815		PHE ASP	304 305	101.636 101.223	48.860 47.873	46.683 49.765	1.00 1.00	25.00 69.36
2745 O	ILE	297	106.817		42.976	1.00	35.56	20	2816		ASP	305	101.450	47.405	51.129	1.00	78.46
2746 CB	ILE	297			40.265	1.00	36.67		2817		ASP	305	101.326	48.406	52.279	1.00	80.92
2747 CG1 2748 CG2	ILE ILE	297 297	106.342 108.858		40.648 40.821	1.00 1.00	30.90 34.15		2818 2819		ASP ASP	305 305	100.774 102.798	48.064 46.675	53.329 51.210	1.00 1.00	79.13 84.84
2749 CD1	ILE	297	105.135	44.654	39.935	1.00	28.47		2820	CG	ASP	305	102.851	45.663	52.345	1.00	90.63
2750 H 2751 N	ILE SER	297 298	109.454 109.015		39.576 42.761	1.00 1.00	25.00 37.95	25		OD1	ASP ASP	305 305	102.142 103.610	44.635 45.891	52.265 53.312	1.00 1.00	90.70 92.23
2751 N 2752 CA	SER	298	109.013		44.195	1.00	40.22	25	2823	OD2 H	ASP	305	103.010	48.072	49.197	1.00	25.00
2753 C	SER	298	108.531	47.961	44.673	1.00	38.96		2824		ALA	306	101.818	49.631	52.104	1.00	84.70
2754 O 2755 CB	SER SER	298 298	107.934 110.751		45.753 44.481	1.00 1.00	36.43 43.72		2825 2826		ALA ALA	306 306	101.752 101.457	50.595 52.057	53.201 52.874	1.00 1.00	89.65 91.11
2756 OG	SER	298	111.009	46.764	46.873	1.00	62.08		2827		ALA	306	101.437	52.916	53.745	1.00	93.41
2757 H	SER	298	109.775	46.674	42.153	1.00	25.00	30	2828		ALA	306	103.027	50.500	54.040	1.00	89.50
2758 HG 2759 N	SER ILE	298 299	110.573 108.582		46.304 43.857	1.00 1.00	25.00 39.57		2829 2830		ALA TYR	306 307	102.229 101.022	49.879 52.359	51.249 51.655	1.00 1.00	25.00 90.94
2760 CA	ILE	299			44.175	1.00	40.91		2831		TYR	307	100.743	53.752	51.329	1.00	92.48
2761 C	ILE	299			44.293	1.00	40.75		2832		TYR	307	99.374	54.011	50.701	1.00	90.37
2762 O 2763 CB	ILE ILE	299 299	105.771 108.128		45.276 43.060	$\frac{1.00}{1.00}$	40.26 37.27		2833 2834		TYR TYR	307 307	98.599 101.858	54.824 54.338	51.207 50.453	1.00 1.00	91.55 98.27
2764 CG1	ILE	299	109.614		42.908	1.00	37.90	35	2835		TYR	307	102.031	55.837	50.609	1.00	106.75
2765 CG2	ILE	299			43.370	1.00	42.54		2836		TYR	307	101.301	56.732	49.825	1.00	109.71
2766 CD1 2767 H	ILE ILE	299 299	110.260 109.091		44.173 43.021	1.00 1.00	39.79 25.00		2838	CD2 CE1	TYR TYR	307 307	102.918 101.447	56.364 58.113	51.552 49.973	1.00 1.00	07.24 107.24
2768 N	VAL	300	105.876	49.290	43.301	1.00	34.47		2839	CE2	TYR	307	103.072	57.744	51.708	1.00	106.57
2769 CA 2770 C	VAL VAL	300 300	104.462 104.050		43.267 44.497	1.00 1.00	33.70 38.81	40	2840 2841		TYR TYR	307 307	102.332 102.477	58.611 59.971	50.915 51.060	1.00 1.00	106.75 103.97
2770 C 2771 O	VAL	300	104.030		45.116	1.00	39.02	10	2842		TYR	307	102.477	51.657	50.988	1.00	25.00
2772 CB	VAL	300	104.116	48.166	41.990	1.00	35.45		2843	HH	TYR	307	101.900	60.427	50.443	1.00	25.00
2773 CG1 2774 CG2	VAL VAL	300 300	102.629 104.522		41.951 40.762	1.00 1.00	37.16 29.01		2844 2845		GLY GLY	308 308	99.079 97.808	53.325 53.522	49.603 48.930	1.00 1.00	85.79 82.54
2774 CG2 2775 H	VAL	300	104.322		42.572	1.00	25.00		2846		GLY	308	96.583	53.120	49.730	1.00	81.67
2776 N	ASP	301	104.868		44.865	1.00	39.28	45	2847		GLY	308	96.589	52.105	50.428	1.00	80.43
2777 CA 2778 C	ASP ASP	301 301	104.585 104.477		46.030 47.281	1.00 1.00	39.76 43.93		2848 2849		GLY THR	308 309	99.710 95.531	52.666 53.928	49.258 49.637	1.00 1.00	25.00 82.42
2779 O	ASP	301	103.588		48.113	1.00	43.98		2850		THR	309	94.282	53.649	50.338	1.00	82.64
2780 CB	ASP	301	105.684		46.205	1.00	41.93		2851		THR	309	93.397		49.433	1.00	83.27
2781 CG 2782 OD1	ASP ASP	301 301	105.401 104.219		47.348 47.633	1.00 1.00	47.18 52.50		2852 2853		THR THR	309 309	93.592 93.519	52.771 54.946	48.215 50.696	1.00 1.00	87.28 80.48
2783 OD2	ASP	301	106.375		47.959	1.00	53.58	50		OG1	THR	309	93.166	55.648	49.495	1.00	74.90
2784 H	ASP	301	105.672		44.338	1.00	25.00			CG2	THR	309	94.371	55.844	51.583	1.00	75.37
2785 N 2786 CA	ASP ASP	302 302	105.373 105.371		47.401 48.541	1.00 1.00	48.10 51.62		2856 2857	н HG1	THR THR	309 309	95.600 92.598	54.729 55.106	49.085 48.954	1.00 1.00	25.00 25.00
2787 C	ASP	302	104.090	49.918	48.560	1.00	50.46		2858	N	VAL	310	92.383	52.172	50.025	1.00	80.18
2788 O	ASP	302	103.480		49.615	1.00	51.17	55	2859		VAL	310	91.447	51.304	49.309	1.00	73.06
2789 CB 2790 CG	ASP ASP	302 302	106.587 107.904		48.487 48.619	1.00 1.00	55.75 62.15		2860 2861		VAL VAL	310 310	91.067 91.209	51.822 51.115	47.919 46.921	1.00 1.00	74.05 73.13
2791 OD1	ASP	302	107.922	48.165	49.207	1.00	63.08		2862	CB	VAL	310	90.149	51.103	50.127	1.00	79.21
2792 OD2 2793 H	ASP ASP	302 302	108.928 106.056		48.133 46.704	1.00 1.00	68.25 25.00		2863	CG1 CG2	VAL VAL	310 310	89.284 90.478	50.020 50.760	49.494 51.575	1.00 1.00	80.28 78.07
2793 H 2794 N	THR	302	100.050		47.383	1.00	50.52		2865		VAL	310	90.478	52.293	50.987	1.00	78.07 25.00
2795 CA	THR	303	102.479	51.192	47.230	1.00	50.05	60	2866	N	LYS	311	90.622	53.072	47.859	1.00	73.34
2796 C 2797 O	THR THR	303 303	101.260 100.563		47.808 48.668	1.00 1.00	51.84 56.07		2867 2868		LYS LYS	311 311	90.210 91.366	53.682 53.946	46.600 45.639	1.00 1.00	71.58 67.72
2797 O 2798 CB	THR	303	100.363		45.745	1.00	50.07		2869		LYS	311	91.366	53.642	43.039	1.00	65.13
2799 OG1	THR	303	103.377	52.153	45.190	1.00	45.79		2870	CB	LYS	311	89.433	54.977	46.866	1.00	79.85
2800 CG2	THR	303	101.015		45.593	1.00	50.31	65	2871		LYS	311	87.977	54.774	47.306	1.00	89.57
2801 H 2802 HG1	THR THR	303 303	104.219 103.480		46.581 45.719	1.00 1.00	25.00 25.00	us.	2872 2873		LYS LYS	311 311	87.842 88.473	53.976 54.694	48.607 49.795	1.00 1.00	98.38 102.39

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-Type Atom due X Y Z OCC B-factor Type Atom due Х Y Z OCC B-factor 2874 NZ 311 87.808 55.997 107.12 2945 H 93.171 38,755 25.00 LYS 50.082 1.00 ASP 318 50.138 1.00 10 2875 H 311 90.572 53.594 48.679 1.00 25.00 2946 N 94.340 51.628 36.135 1.00 37.74 LYS ALA 319 2876 1HZ 311 87.884 56.617 49.250 1.00 25.00 2947 CA ALA 319 95.258 52.347 35.260 1.00 40.21 LYS 2877 2HZ 311 86.804 55.833 50.299 25.00 2948 C ALA 319 96.245 51.360 34.644 42.98 1.00 1.00 LYS 2878 3HZ 311 88.268 56.452 50.896 1.00 25.00 2947 O ALA 319 96.528 51.422 33.446 1.00 41.24 LYS 54.495 2950 CB 36.039 2879 N GLU 312 92,461 46.162 1.00 64.41 ALA 319 95,995 53,426 1.00 2880 CA 2951 H 94.240 51.923 37.067 GLU 312 93.634 54.805 45.346 1.00 61.39 ALA 319 1.00 25.00 15 2881 C GLU 312 94.189 53.556 44.667 1.00 61.26 2952 N ILE 320 96.727 50.423 35.462 1.00 41.94 2882 O 312 94.533 53.585 43,483 59.48 2953 CA ILE 320 97.670 49,403 35.005 40.80 GLU 1.00 1.00 2883 CB GLU 312 94.724 55.465 46.194 1.00 63.39 2954 C ILE 320 97.064 48.488 33.934 1.00 37.20 2884 CG GLU 312 94 348 56.830 46.748 1.00 70.79 2955 O ILE. 320 97.711 48 200 32,923 1.00 31.26 47 578 2885 CD GLU312 95 456 57 456 1.00 75.21 2956 CB H.E. 320 98 198 48 549 36 191 1.00 40.22 77.19 2886 OE1 GLU 312 95 879 56.840 48 579 1.00 2957 CG1 ILE. 320 99.093 49 404 37.091 1.00 38.13 2887 OE2 GLU 312 95.903 58.570 47.233 1.00 79.86 2958 CG2 ILE. 320 98.973 47.332 35.680 1.00 36.19 2888 H 312 92,482 47.112 25.00 2959 CD1 320 100.340 49.924 36.392 35.64 GLU 54.687 1.00 ILE 1.00 2889 N LEU 313 94.257 52.459 45.418 57.55 2960 H ILE 320 96.447 50.429 36.402 1.00 25.00 1.00 2890 CA 94.765 52.69 GLN 48.037 34.149 37.70 LEU 313 51.198 44.891 1.00 2961 N 321 95.830 1.00 2891 C LEU 313 93.885 50.678 43.762 1.00 52.82 2962 CA GLN 321 95.167 47.161 33.180 1.00 43.79 2892 O 313 94.391 50.281 42.713 1.00 51.15 2963 C GLN 321 94.959 47.867 31.839 1.00 44.60 2964 O 47.254 2893 CB LEU 313 94.883 50.158 46.005 48.63 GLN 321 95.104 30.777 1.00 43.29 95.886 47.102 2965 CB 93.818 33.713 2894 CG 313 50.519 1.00 46.47 GLN 321 46,662 1.00 45.39 2895 CD1 95.941 49.416 48.140 48.38 2966 CG 93.869 45.997 35.079 50.49 LEU 313 1.00 GLN 321 1.00 2896 CD2 LEU 313 97.259 50.748 46.495 1.00 48.00 2967 CD GLN 321 94.981 44.963 35.182 1.00 52.12 2897 H LEU 313 93 952 52,495 46,346 1.00 25.00 2968 OE1 GLN 321 95 097 44 073 34.341 1.00 53.96 2898 N GLU 314 92,569 50.724 43.957 1.00 52.92 2969 NE2 GLN 321 95.801 45.078 36.220 1.00 49 92 2899 CA GLU 314 91 634 50 269 42 933 1.00 54 92 2970 H GLN 321 95 360 48 301 34 967 1.00 25.00 30 2900 C 52.05 2971 1HE2 36.295 25.00 GLU 314 91.840 51.087 41.651 1.00 GLN 32.1 96.511 44.405 1.00 2901 O 91.801 50.548 49.73 2972.2HE2. 45.810 25.00 GLU 314 40.541 1.00 GLN 32.1 95.664 36.855 1.00 2902 CB 58.82 2973 N GLU 314 90.189 50.400 43,431 1.00 ARG 322 94.595 49.148 31.894 1.00 48.28 2974 CA 322 2903 CG 314 89.137 49.809 42.488 1.00 68.28 ARG 94.376 49.935 30.683 1.00 48.66 GLU 2904 CD GLU 314 89.281 48.303 42.292 1.00 74.40 2975 C ARG 322 95.697 50.181 29.976 1.00 48.74 2905 OE1 314 89.097 47.550 43.275 76.74 2976 O 322 95.756 50.167 28.745 52.54 GLU 1.00 ARG 1.00 35 2906 OE2 GLU 314 89.568 47.871 41.152 1.00 74.09 2977 CB ARG 322 93.701 51.272 31.003 1.00 53.96 2907 H GLU 314 92.221 51.057 44.810 1.00 25.00 2978 CG ARG 322 92.175 51.230 31.029 1.00 62.97 2908 N 92.088 41.813 2979 CD 91.642 32.164 ALA 315 52.383 1.00 51.92 ARG 322 50.367 1.00 68.65 2909 CA 92.323 53.270 40.678 54.57 29880 NE 90.183 50.288 32.167 ALA 315 1.00 ARG 322 1.00 71.23 2910 C 315 93,649 52.920 39,993 51.51 2981 CZ ARG 322 89.377 51.274 32.546 1.00 ALA 1.00 73.12 2911 O ALA 315 93.762 52,977 38 763 1.00 49 98 2982 NH1 ARG 322 89 878 52, 432, 32.959 1.00 75 57 2912 CB ALA 315 92 335 54,722 41.142 1.00 52.19 2983 NH2 ARG 322 88 064 51.101 32.512 1.00 75.20 32,771 2913 H ALA 315 92.103 52,753 42.723 1.00 25.00 2984 H ARG 322 94 477 49.570 1.00 25.00 2985 HE 322 89 771 25.00 2914 N TYR 316 94 540 52, 542 40.796 1.00 49 90 ARG 49 449 31.873 1.00 95.960 2915 CA 52,177 40.289 46.00 2986 1HH1 ARG 322 90.868 52.574 32.983 25.00 TYR 316 1.00 1.00 322 33.235 25.00 2916 C 95.911 39.506 42.05 2987 2HH1 89.263 316 50.864 1.00 ARG 53.172 1.00 TYR 2917 O 96.503 50.756 38,424 1.00 36.96 2988 1HH2 ARG 322 87.684 50.229 32.203 1.00 25.00 TYR 316 2918 CB 96.954 52.070 41.445 48.32 2989 2HH2 322 87.455 51.842 32.793 25.00 TYR 316 1.00 ARG 1.00 45 2919 CG TYR 316 98.405 52.154 41.029 1.00 52.17 2990 N TRP 323 96,740 50.434 30.765 1.00 48.78 2920 CD1 TYR 316 98.975 53.371 40.657 1.00 53.66 2991 CA TRP 323 98.086 50.674 30.248 1.00 50.53 2921 CD2 TYR 316 99.218 51.023 41.033 1.00 58.41 2992 C TRP 323 98.036 51.721 29.139 1.00 51.62 2922 CE1 51.442 TYR 316 100.320 53.461 40.303 1.00 56.28 2993 O TRP 323 98.368 27.984 1.00 46.60 2923 CE2 TYR 100.566 51.101 40.681 63.22 2994 CB TRP 323 98.676 49.361 29.719 45.66 316 1.00 1.00 2924 CZ TYR 316 101.110 52.323 40.319 58.59 2995 CG TRP 323 100.171 49.334 29.673 43.84 1.00 1.00 2925 OH TYR 316 102,442 52,405 39,986 1.00 51.77 2996 CD1 TRP 323 100.972 49.778 28.660 1.00 41.07 2926 H TYR 316 94.483 52.514 41.763 1.00 25.00 2997 CD2 TRP 323 101.045 48.811 30.677 1.00 42.00 2927 HH TYR 316 102 631 53 311 39.758 1.00 25.00 2998 NF1 TRP 323 102 292 49 559 28 969 1.00 41 37 2928 N 2999 CF2 323 30.202 THR 317 95 186 49 881 40.040 1.00 38.98 TRP 102.367 48 967 1.00 42.95 3000 CE3 2929 CA 95.044 48.574 39.396 40.08 32.3 100.841 48.222 31.932 43.56 THR 317 1.00 TRP 1.00 48.732 38.025 48.555 2930 C 94.391 3001 CZ2 323 103.483 30.939 317 1.00 41.19 TRP 1.00 41.64 THR 2931 O 94.755 37.065 3002 CZ3 323 101.952 47.812 32.666 317 48.040 1.00 40.64 TRP 1.00 46.00 THR 2932 CB 47.619 40.245 39.21 3003 CH2 323 103.256 47.982 32.164 42.99 THR 317 94.189 1.00 TRP 1.00 2933 OG1 317 94.658 47.632 41.598 40.99 3004 H 323 96.604 50.455 31.735 25.90 THR 1.00 TRP 1.00 2934 CG2 THR 317 94.277 40.198 39.698 1.00 41.75 3005 HE1 TRP 323 103.052 49.790 28.396 1.00 25.00 2935 H THR 317 94.740 50.022 40.900 1.00 25.00 3006 N ASP 324 97.624 52.931 29.503 1.00 59.55 2936 HG1 47.056 25.00 3007 CA 97.500 28.539 THR 317 94.120 42.134 1.00 ASP 324 54.015 1.00 65.59 46.22 2937 N ASP 318 93.423 49.641 37.945 1.00 3008 C ASP 324 98.480 55.143 28.844 1.00 64.51 ASP 2938 CA 318 92.719 49.920 36.700 44.99 3009 O ASP 324 99.591 55.176 28.316 1.00 68.35 1.00 2939 C ASP 318 93.631 50.595 35.693 1.00 38.74 3010 CB ASP 324 96.056 54 541 28 552 1.00 70.35 2940 O ASP 318 93,695 50.183 34.538 39.12 3011 CG ASP 324 95.713 55.365 27.320 1.00 74.75 1.00 2941 CB ASP 318 91.497 50.799 36.959 1.00 55.80 3012 OD1 ASP 324 96.439 56.333 27.008 1.00 77.92 36.977 2942 CG ASP 318 90.215 50.006 1.00 64.67 3013 OD2 ASP 324 94.698 55.043 26.668 1.00 77.68 318 65 2943 OD1 ASP 89.924 49.364 38.010 1.00 73.33 3014 H ASP 324 97.422 53.067 30.447 1.00 25.00 2944 OD2 89.507 50.014 35.948 3015 N ILE 98.025 29.685 59.63 ASP 318 1.00 72.06 56.067 1.00

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-B-factor Type Atom due X Y Z OCC Type Atom due Х Y Z OCC B-factor 3016 CA 325 98.765 57.248 30.131 62.22 3087 CD2 331 95.988 39.304 ILE 1.00 LEU 55.654 1.00 48.82 10 59.574 3017 C 325 97.699 58.281 30.472 1.00 62.36 3088 H 331 95.195 38.061 1.00 25.00 ILE LEU 3018 O ILE 325 97.807 58.988 31.467 1.00 57.92 3089 N PRO 332 96.426 59.743 42.058 1.00 57.70 3019 CB 325 99.752 57.824 29.066 58.28 3090 CA PRO 332 96.981 60.814 42.886 58.87 ILE 1.00 1.00 1.00 3020 CG1 ILE 325 100.656 58.874 29.713 56.91 3091 C PRO 332 98.455 60.977 42.521 1.00 61.32 42.207 3021 CG2 ILE 325 99.004 58,424 27.882 1.00 53.60 3092 O PRO 332 99.132 59.997 1.00 63.75 3022 CD1 325 101.760 3093 CB ILE 59.364 28.812 1.00 65.51 PRO 332 96.800 60.278 44.307 1.00 58.32 3023 H ILE 325 97.138 55.950 30.059 1.00 25.00 3094 CG PRO 332 96.819 58.793 44.122 1.00 60.80 3024 N ASN 326 96.622 58.287 29.687 64.69 3095 CD PRO 332 95.978 58.616 42.892 59.09 1.00 1.00 3025 CA ASN 326 95.504 59.203 29,902 1.00 68.20 3096 N ASP 333 98.944 62.210 42.585 1.00 68.56 3026 C ASN 326 94.857 58.860 31.238 1.00 71.30 3097 CA ASP 333 100.324 62.554 42,237 1.00 71 37 3027 O ASN 326 94 171 59 684 31.846 1.00 76.27 3098 C ASP 333 101 432 61.520 42.437 1.00 68 42 3028 CB ASN 326 94 462 59.058 28.787 1.00 67.58 3099 O ASP 333 102.188 61.247 41.504 1.00 65.66 3029 CG ASN 326 95.041 59.297 27,406 1.00 69.04 3100 CB ASP 333 100.715 63.879 42.891 1.00 79.84 42.298 3030 OD1 ASN 326 96.055 59.975 27.225 68.18 3101 CG 333 99.967 65.057 86.67 1.00 ASP 1.00 3031 ND2 ASN 326 94.410 58.716 26.395 1.00 67.11 3102 OD1 ASP 333 100.442 65.608 41.283 1.00 91.38 326 96.599 57.685 28.918 25.00 3103 OD2 98.897 90.77 3032 H ASN 1.00 ASP 333 65.418 42.834 1.00 3033 1HD2 ASN 326 94.783 58.869 25.501 1.00 25.00 3104 H ASP 333 98.343 62,928 42.866 1.00 25.00 3034 2HD2 ASN 326 93.618 58.173 26.568 1.00 25.00 3105 N TYR 334 101.538 60.938 43.627 1.00 65.59 3035 N 334 1022.588 GLU 327 95.095 57.631 31.691 70.98 3106 CA TYR 59.953 43.861 63.25 94.553 57.144 32.952 3107 C 334 102.455 58.740 42.938 3036 CA GLU 327 1.00 69.92 TYR 1.00 60.61 3037 C 327 95.259 57.798 34.138 67.58 3108 O TYR 334 103.452 58.243 42.411 GLU 1.00 1.00 63.00 3038 O GLU 327 94.751 57.777 35.260 1.00 68.23 3109 CB TYR 334 102,664 59 545 45.341 1.00 65 74 3039 CB GLU 327 94,709 55.622 33 034 1.00 69.72 3110 CG TYR 334 101 539 58.674 45.852 1.00 68.46 3040 CG GLU 32.7 94.147 54.858 31.838 1.00 66.84 3111 CD1 TYR 334 100.343 59.232 46.303 1.00 69.57 3041 CD GLU 327 92,650 55 040 31.659 1.00 69 61 3112 CD2 TYR 334 101 690 57 289 45 929 1.00 68 64 30 91.899 32,639 3113 CE1 334 46.824 3042, OE1 GLU 32.7 54.845 1.00 69.86 TYR 99.326 58.432 1.00 69.54 3043 OE2 32.7 30.530 3114 CE2 334 46.446 69.64 GLU 92.225 55.369 1.00 66.87 TYR 100.682 56.482 1.00 3044 H 327 334 46.892 GLU 95.646 57.037 31.159 1.00 25.00 3115 CZ TYR 99.504 57.058 1.00 70.47 3116 OH 98.515 3045 N ILE 328 96.411 58.407 33.872 1.00 64.07 TYR 334 56.257 47.413 1.00 68.60 3046 CA ILE 328 97.212 59.065 34.901 1.00 63.90 3117 H TYR 334 100.910 61.170 44.337 1.00 25.00 3047 C 328 96.425 60.142 35.657 70.44 3118 HH 334 97.786 47.691 25.00 ILE 1.00 TYR 56.812 1.00 3048 O ILE 328 96.624 60.338 36.857 1.00 69.65 3119 N MET 335 101.220 58.311 42.691 1.00 51.84 3049 CB 328 98.508 59.669 34.286 1.00 56.23 3120 CA MET 335 100.977 57.174 41.809 1.00 46.91 3050 CG1 328 99.578 59.844 35.359 3121 C 335 101.236 40.356 ILE 1.00 56.00 MET 57.558 1.00 46.00 3051 CG2 328 98.223 61.007 33.618 53.09 3122 O 335 101.540 56.701 39.525 ILE 1.00 MET 1.00 49.65 3052 CD1 ILE 328 100.948 60.162 34.799 58.67 3123 CB MET 335 99.552 56.646 41.969 1.00 41.83 1.00 3053 H H.E. 328 96.744 58 430 32.958 1.00 25.00 3124 CG MET 335 99 268 56.054 43 333 1.00 37 39 3054 N ASF 329 95 487 60.780 34.961 1.00 75.68 3125 SD MET 335 97.625 55 322 43.450 1.00 44.89 ASP 35 531 45 77 3055 CA 329 94 659 61.844 1.00 79.88 3126 CF MET 335 97 914 54 042 44 666 1.00 329 335 100 460 3056 C ASP 93 764 61 377 36 677 1.00 79 44 3127 H MET 58 772 43 094 1.00 25.00 79.71 3057 O 329 93,303 37.483 3128 N 336 101.122 58.848 40.052 1.00 47.61 ASP 62.188 1.00 LYS 93.796 3129 CA 3058 CB 329 62.476 34.435 85.36 336 101.366 59.340 38.699 1.00 LYS 1.00 48.27 ASP 3059 CG 38.325 329 94.608 62.912 33.226 90.96 3130 C 336 102.836 59.143 1.00 ASP 1.00 LYS 46.89 3060 OD1 329 95.719 33.409 103.161 58.829 37.177 ASF 63.461 1.00 93.02 3131 O LYS 336 1.00 49.33 45 3061 OD2 ASP 329 94.133 62.699 32.090 1.00 93.14 3132 CB LYS 336 101.000 60.824 38.588 1.00 51.58 3062 H ASF 329 95.344 60.527 34.026 1.00 25.00 3133 CG LYS 336 99.517 61.132 38.743 1.00 54.94 99.233 3063 N ARG 330 93.501 60.074 36.730 1.00 76.85 3134 CD LYS 336 62.600 38.446 1.00 60.67 3064 CA ARG 330 92.658 59.501 37.775 1.00 75.38 3135 CE LYS 336 97.739 62.882 38.431 1.00 63.81 3065 C ARG 330 93.488 59.059 38.981 71.57 3136 NZ LYS 336 97.404 64.287 38.083 1.00 1.00 68.16 3066 O 330 92.935 58.631 39.998 69.70 3137 H LYS 336 100.869 59.485 40.750 25.00 ARG 1.00 1.00 3067 CB ARG 330 91.881 58.300 37.227 1.00 75 33 3138 1HZ LYS 336 97.836 64.931 38.776 1.00 25.00 3068 CG ARG 330 91.177 58.562 35.905 1.00 78.99 3139 2HZ LYS 338 97.770 64.503 37.134 1.00 25.00 3140 3HZ 3069 CD ARG 330 90.383 57 350 35 454 1.00 80.32 LYS 336 96 371 64 409 38 092 1.00 25.00 330 337 103 719 39 303 3070 NF ARG 39.861 57 517 34 100 1.00 86 31 3141 N H.E. 59 321 1.00 44 56 3071 CZ 3142. CA 330 88.851 33,592 337 105.154 59.162 39.089 47.99 ARG 56.816 1.00 88.51 ILE. 1.00 330 88.239 55.894 34.325 3143 C 337 105.469 38.782 3072 NH1 ARG 1.00 91.01 ILE 57,701 1.00 50.21 57.400 3073 NH2 330 57.030 32.344 89.50 3144 O 3337 37.800 52.97 88.458 1.00 ILE. 106.153 1.00 ARG 3074 H 330 93.891 59.477 36.060 25.00 3145 CB ILE 337 105.957 59.595 40.336 51.57 ARG 1.00 1.00 3075 HE 330 90.281 58.188 33.523 25.00 3146 CG1 337 105.533 61.001 40.770 54.20 ARG 1.00 ILE 1.00 3076 1HH1 ARG 330 88.533 55.723 35.265 1.00 25.00 3147 CG2 ILE 337 107.455 59.569 40.034 1.00 49.66 3077 2HH1 ARG 330 87.475 55.375 33.942 1.00 25.00 3148 CD1 ILE 337 106.048 61.406 42.131 1.00 53.35 57.720 31.786 25.00 3149 H 337 103.390 25.00 3078 1HH2 ARG 330 88.917 1.00 ILE 59.566 40.195 1.00 SER 3079 2HH2 ARG 330 87.692 56.508 31.966 1.00 25.00 3150 N 338 104.951 56.802 39.618 1.00 46.40 3080 N LEU 331 94.809 59.174 38.867 67.63 3151 CA SER 338 105.161 55.364 39.458 1.00 41.92 1.00 3081 CA LEU 331 95.723 58.761 39,930 1.00 62.95 3152 C SER 338 104.640 54 905 38 098 1.00 39.82 1.00 3082 C LEU 331 96.290 59.919 40.735 60.42 3153 O SER 338 105.385 54.347 37.286 1.00 36.78 3083 O LEU 331 96.590 60.974 40.186 1.00 58.28 3154 CB SER 338 104.423 54.598 40.560 1.00 37.35 104.502 41.805 3084 CB LEU 331 96,906 57.985 39.338 1.00 58.68 3155 OG SER 338 55.268 1.00 52.45 65 3085 CG 331 96.664 56.739 38.486 1.00 54.70 3156 H 338 104.411 57.109 40.381 1.00 25.00 LEU SER 3086 CD1 97.992 56.255 37.941 3157 HG 338 105.419 55.324 42.084 25.00 LEU 331 1.00 46.64 SER 1.00

TABLE 11-continued TABLE 11-continued

Struc	tural (of Tobacco		ristoloche ıbstrate	ne Synt	hase	5		Structur			of Tobacco			ne Synt	thase
			Resi-						Ü				Resi-					
Atom		esi-	due							Atom		Resi-	due					
Type Ato	m du	.e	#	X	Y	Z	occ	B-factor		Туре	Atom	due	#	X	Y	Z	occ	B-factor
3158 N 3159 CA		YR YR	339 339	103.363 102.697		37.848 36.606	1.00 1.00	39.53 40.68	10	3229 3230		TYR TYR	346 346	108.906 109.183	49.969 49.228	27.388 26.448	1.00 1.00	34.86 36.74
3160 C		ΥR	339	103.468		35.362	1.00	39.79		3231		TYR	346	107.227	48.870	28.927	1.00	33.82
3161 O		YR	339	103.719	54.444	34.458	1.00	39.78		3232		TYR	346	107.173	47.798	29.980	1.00	31.79
3162 CB 3163 CG		YR YR	339 339	101.272 100.388		36.586 35.480	$\frac{1.00}{1.00}$	39.96 44.71			CD1 CD2	TYR TYR	346 346	107.531 106.856	46.487 48.107	29.675 31.302	$\frac{1.00}{1.00}$	34.43 34.30
3164 CD		YR	339	99.948	53.507	35.494	1.00	40.18	15		CE1	TYR	346	107.585	45.507	30.659	1.00	32.57
3165 CD 3166 CE		YR YR	339 339		55.646 53.004	34.416 34.475	$\frac{1.00}{1.00}$	42.64 40.02		3236 3237	CE2 CZ	TYR TYR	346 346	106.906 107.275	47.137 45.839	32.296 31.965	1.00 1.00	34.14 34.31
3167 CE	2 T	ΥR	339	99.180	55.151	33.393	1.00	46.52		3238	OH	TYR	346	107.351	44.878	32.938	1.00	32.03
3168 CZ 3169 OH		YR YR	339 339	98.758 97.968	53.830 53.3422	33.431 32.417	$\frac{1.00}{1.00}$	40.74 44.28		3239 3240		TYR TYR	346 346	108.288 107.610	50.665 44.038	30.428 32.582	1.00 1.00	25.00 25.00
3170 H		ΥR	339	102.843	55.668	38.522	1.00	25.00		3241		LYS	347	108.861	51.295	27.276	1.00	44.24
3171 HH		YR	339			31.792	1.00	25.00	20	3242		LYS	347	109.143	51.955	26.004	1.00	44.41
3172 N 3173 CA		rs rs	340 340	103.864 104.599	58.515 57.032	35.324 34.179	1.00 1.00	42.19 42.37		3243 3244		LYS LYS	347 347	110.630 111.030	51.792 51.558	25.718 24.572	1.00 1.00	43.81 42.39
3174 C	L	/S	340	105.930	56.306	33.992	1.00	40.71		3245	CB	LYS	347	108.762	53.437	26.060	1.00	51.50
3175 O 3176 CB			340 340	106.264 104.826	55.885 58.541	32.882 34.306	1.00 1.00	41.93 48.48		3246 3247		LYS LYS	347 347	107.268 106.759	53.672 53.062	25.945 24.650	1.00 1.00	55.25 59.99
3177 CG	L		340	105.461	59.136	33.063	1.00	61.36	25	3248		LYS	347	105.251	52.978	24.608	1.00	60.17
3178 CD 3179 CE			340 340	105.412 105.947	60.647 61.164	33.041 31.713	1.00 1.00	76.14 85.02		3249 3250		LYS LYS	347 347	104.841 108.627	52.152 51.840	23.446 28.057	1.00 1.00	53.42 25.00
3179 CE 3180 NZ	L		340	105.783		31.713	1.00	94.84			1HZ	LYS	347	105.027	51.196	23.537	1.00	25.00
3181 H	L		340	103.661		36.074	1.00	25.00			2HZ	LYS	347	103.803	52.090	23.409	1.00	25.00
3182 1H 3183 2H			340 340	104.774 106.302	62.881 63.119	31.624 32.327	1.00 1.00	25.00 25.00	20	3253 3254	3HZ N	LYS ASP	347 348	105.190 111.439	52.590 51.874	22.569 28.771	1.00 1.00	25.00 45.04
3184 3H	Z L	/S	340	106.160	62.937	30.645	1.00	25.00	30	3255	CA	ASP	348	112.884	51.712	26.654	1.00	47.19
3185 N 3186 CA		LA LA	341 341	106.668 107.963	56.134 55.455	35.084 35.052	1.00 1.00	40.84 36.82		3256 3257		ASP ASP	348 348	113.178 113.992	50.289 50.074	26.211 25.316	1.00 1.00	44.53 46.94
3187 C		LA	341	107.837		34.469	1.00	35.10		3258		ASP	348	113.592	51.981	27.991	1.00	55.77
3188 O		LA	341	108.657		33.650	1.00	34.92		3259		ASP	348	113.469	53.430	28.441	1.00	63.79
3189 CB 3190 H		LA LA	341 341	108.548 106.338		36.451 35.942	$\frac{1.00}{1.00}$	37.09 25.00	35		OD1 OD2	ASP ASP	348 348	113.017 113.840	54.288 53.710	27.648 29.600	1.00 1.00	66.77 65.20
3191 N	IL	E	342	106.796	53.338	34.884	1.00	32.81		3262	H	ASP	348	111.048	52.057	27.652	1.00	25.00
3192 CA 3193 C	IL		342 342	106.547 106.357		34.409 32.891	$\frac{1.00}{1.00}$	31.78 38.13		3263 3264		TYR TYR	349 349	112.507 112.692	49.321 47.913	26.835 26.491	1.00 1.00	39.87 40.93
3194 O	IL	E	342	107.061	51.269	32.163	1.00	37.84		3265	C	TYR	349	112.412	47.704	25.008	1.00	41.26
3195 CB 3196 CG	IL 1 IL		342 342	105.306 105.585		35.109 36.606	$\frac{1.00}{1.00}$	27.44 30.45	40	3266 3267		TYR TYR	349 349	113.189 111.752	47.051 47.015	24.302 27.310	1.00 1.00	40.44 35.88
3197 CG			342	103.363	50.031	34.499	1.00	29.34		3268		TYR	349	112.115	46.841	28.773	1.00	33.98
3198 CD			342	104.399	50.759	37.420	1.00	30.40			CD1	TYR	349	113.396	47.144	29.250	1.00	29.99
3199 H 3200 N	IL Li	E EU	342 343	106.179 105.447		35.532 32.414	1.00 1.00	25.00 44.76			CD2 CE1	TYR TYR	349 349	111.172 113.723	46.360 45.971	29.680 30.596	1.00 1.00	27.01 27.43
3201 CA	L	V	343	105.168	52.920	30.984	1.00	42.79		3272	CE2	TYR	349	111.485	43.182	31.021	1.00	32.24
3202 C 3203 O		EU EU	343 343	106.428 106.706		30.214 29.153	1.00 1.00	40.23 39.11	45	3273 3274		TYR TYR	349 349	112.759 113.045	46.491 46.346	31.476 32.813	1.00 1.00	34.71 31.76
3204 CB		EU	343	104.061		30.715	1.00	42.96		3275		TYR	349	111.880	49.567	27.549	1.00	25.00
3205 CG		EU	343	102.731		31.436	1.00	48.89		3276		TYR	349	112.295	45.961	33.270	1.00	25.00
3206 CD 3207 CD		EU EU	343 343	101.704 102.233		30.978 31.166	1.00 1.00	51.34 44.17		3277 3278		GLU GLU	350 350	111.302 110.911	48.269 48.156	24.541 23.140	1.00 1.00	44.18 47.18
3208 H	LX		343	104.954		33.039	1.00	25.00	50	3279		GLU	350	111.972	48.767	22.235	1.00	45.46
3209 N 3210 CA		SP SP	344 344	107.202 108.442		30.770 30.144	1.00 1.00	40.93 43.89		3280 3281		GLU GLU	350 350	112.337 109.557	48.175 48.828	21.221 22.903	1.00 1.00	45.14 46.54
3211 C	A	SP	344	109.443	53.515	30.053	1.00	43.08		3282	CG	GLU	350	108.396	48.141	23.609	1.00	52.79
3212 O 3213 CB		SP SP	344 344	110.049 109.056		29.001 30.921	1.00 1.00	38.31 50.27		3283	CD OE1	GLLU GLU	350 350	107.078 107.070	48.883 50.040	23.473 23.000	1.00 1.00	59.87 66.09
3214 CG		SP	344	108.259		30.775	1.00	58.66	<i></i>		OE2	GLU	350	106.037	48.304	23.852	1.00	65.68
3215 OD			344	107.376		29.891	1.00	59.02	55	3286		GLU	350	110.728	48.772	25.158	1.00	25.00
3216 OD 3217 H		SP SP	344 344	108.525 106.928		31.549 31.623	$\frac{1.00}{1.00}$	62.70 25.00		3287 3288		LYS LYS	351 351	112.497 113.530	49.923 50.618	22.636 21.871	1.00 1.00	48.01 51.81
3218 N	LI	EU	345	109.585	52.764	31.144	1.00	40.54		3289	C	LYS	351	114.794	49.758	21.788	1.00	52.11
3219 CA 3220 C		EU EU	345 345	110.511 110.256		31.196 30.048	$\frac{1.00}{1.00}$	36.66 36.17		3290 3291		LYS LYS	351 351	115.311 113.861	49.505 51.973	20.696 22.518	1.00 1.00	48.04 53.86
3221 O	LI	EU	345	111.188		29.343	1.00	35.58	60	3292	CG	LYS	351	114.151	53.095	21.520	1.00	60.98
3222 CB		EU	345	110.393		32.540	1.00	38.27		3293		LYS	351	115.235	52.708 53.551	20.517	1.00	68.26
3223 CG 3224 CD		EU EU	345 345	111.284 112.750		32.755 32.587	1.00 1.00	35.02 28.76		3294 3295		LYS LYS	351 351	115.153 115.951	53.551 52.975	19.253 18.132	1.00 1.00	75.67 74.32
3225 CD	2 LI	EU	345	111.030	49.087	34.132	1.00	30.95		3296	H	LYS	351	112.180	50.322	23.471	1.00	25.00
3225 H		EU	345	109.050		31.934	1.00	25.00	65		1HZ 2HZ	LYS	351	116.950	52.914	18.410	1.00	25.00
3227 N 3228 CA		YR YR	346 346	108.992 108.650		29.844 23.768	1.00 1.00	35.43 32.38	00		3HZ	LYS LYS	351 351	115.590 115.855	52.025 53.584	17.907 17.293	1.00 1.00	25.00 25.00

TABLE 11-continued

No. Part P	Structur			of Tobacco			ne Synt	hase	5	Stro	uctur			of Tobacco			ne Synt	hase
No. Part	A 4								Ü	A 4 =								
100				v	3/	7	000	D 6						v	37	7	000	D 6
330 C G III																		
3304 CB GLI									10									
330 C	3302 C	GLU			47.241	22.120	1.00			3373 C	2	HIS					1.00	48.80
3306 CO GIU 352 1173.8 490.2 24.96 1.00 7.31																		
339 10 10 10 10 10 10 10 1																		
3390 General Color									15									
3319 N EU 353 115.25									15									
3311 CA LEU 353 115.255 46.245 21.255 1.00 25.00 33.11 CA LEU 353 114.791 45.755 1.00 25.00 33.11 CA LEU 353 114.991 41.17 23.57 1.00 42.77 33.11 CA LEU 353 114.990 41.17 23.75 1.00 42.77 33.11 CA LEU 353 114.990 41.17 23.75 1.00 42.77 33.15 CA LEU 353 114.990 41.17 23.75 1.00 42.75 33.15 CA LEU 353 114.990 41.17 23.15 1.00 42.75 33.15 CA LEU 353 114.590 41.01 23.15 41.																		
3313 C L EU																		
3313 C																		
3316 CO LEU 353 114.09 44.17 21.876 1.00 44.77 3318 CA LE 361 107.922 40.152 22.847 1.00 40.359 3316 CO LE 351 115.052 40.175 1.00 41.85 3316 CO 11.85 351 34.242 23.855 1.00 35.02 33.87 CO LE 361 107.057 40.852 24.757 1.00 41.45 40.3318 LEU 353 115.858 47.012 34.77 1.00 25.00 35.02 33.97 CO LE 361 107.057 40.352 22.847 1.00 41.45 40.3318 LEU 353 114.478 46.075 22.571 1.00 25.00 33.90 CO LE 361 107.057 40.152 23.347 23.00 41.45 40.3318 41.40 46.358 46.757 17.058 1.00 40.158 40.258 40.458 40.358									20									
3316 CG LEU 353 114,320 44,017 23,297 1,00 40,31 3386 C LE 361 107,657 40,859 25,107 1,00 41,86 3317 CD 3318 LEU 353 115,856 43,172 23,302 1,00 3,517 3388 CB LE 361 107,187 92,777 23,346 1,00 39,20 33,181 LEU 353 144,878 46,975 25,771 1,00 36,218 33,181 LEU 353 144,878 46,975 25,771 1,00 36,218 33,181 LEU 353 144,878 46,975 25,771 1,00 36,218 33,212 CS 887 354 115,245 46,970 17,088 1,00 46,64 3392 H LE 361 108,913 41,517 21,317 42,556 1,00 40,02 33,212 CS 888 354 115,245 46,970 17,088 1,00 64,64 3392 H LE 361 108,913 41,517 21,317 42,556 1,00 48,05 33,212 CS 888 354 115,245 46,970 17,088 1,00 64,64 3392 H LE 361 108,913 41,517 21,317 42,556 1,00 28,83 33,214 CS 888 354 115,245 46,970 17,888 1,00 64,64 3392 H LE 361 108,913 41,517 21,317 42,556 1,00 28,83 33,214 CS 888 354 115,245 46,970 17,888 10,0 69,09 33,44 CS 48,440 48,378 48,440 48,378 48,440 48,378 48,440 48,4									20									
3318 H LEU 353 11.558 43.772 23.302 1.00 33.71 33.88 CB ILE 361 10.9187 99.277 29.787 1.00 44.49 3318 H LEU 353 11.4528 49.072 1.00 30.20 30.20 33.91 M SER 354 11.4528 47.012 19.437 1.00 62.13 25 39.00 CO2 ILE 361 11.058 34.71 70 1.00 30.20 33.21 C SER 354 11.403 48.975 17.788 1.00 64.64 339.2 H ILE 361 11.859 34.55 1.00 25.00 33.22 C SER 354 11.403 48.945 17.788 1.00 69.09 33.24 C VL 362 108.00 42.131 24.256 1.00 29.85 33.24 C SER 354 11.403 48.945 17.788 1.00 69.09 33.24 C VL 362 108.00 42.788 27.20 1.00 25.00 33.25 C SER 354 11.403 48.945 17.788 1.00 69.09 33.24 C SER 354 11.403 48.945 17.788 1.00 69.09 33.24 C VL 362 108.00 42.788 27.20 1.00 32.52 33.24 C SER 354 11.403 48.945 17.789 1.00 65.77 3.30 C VL 362 108.00 42.788 27.20 1.00 32.52 33.24 C SER 355 11.6516 47.223 17.559 1.00 65.77 3.30 C VL 362 108.00 42.788 27.20 1.00 30.93 33.24 C SER 355 11.6516 47.223 17.559 1.00 65.77 3.30 C VL 362 108.00 42.788 27.20 1.00 30.93 33.24 C SER 355 11.6516 47.223 17.509 1.00 66.08 33.33 C SER 355 18.859 49.90 1.00 66.08 33.33 C SER 355 18.95 40.00 40.00 3.00 3.30 SER 355 18.859 49.90 1.00 66.08 33.33 C SER 355 18.95 40.00 40.00 3.00 3.30 SER 355 18.859 40.90 1.00 66.08 33.33 C SER 355 18.95 40.00 40.00 3.00 3.30 SER 355 18.859 40.90 1.00 66.08 33.33 C SER 355 18.95 40.00 40.00 3.00 3.30 SER 355 18.95 40.00 40.00 3.00 3.00 3.30 SER 355 18.95 40.00 40.00 3.00 3.00 3.30 SER 355 18.95 40.00 40.00 3.00 3.00 3.00 3.30 SER 355 18.95 40.00 40.00 3.00 3.00 3.00 3.00 3.00 3.						23.297				3386 C	2	ILE				24.175		
3319 N SER 354 114.78 49.075 22.571 1.00 25.00 38.28 339.00																		
3391 N SER 554 114.528 47.012 19.437 1.00 62.13 25 3300 CO ILE 361 110.621 38.477 12.707 1.00 38.28 3330 CN SER 554 114.022 474.52 10.03 10.05 1.00 64.04 3302 H ILE 361 111.629 141.601 11.00 25.00 3322 CN SER 354 114.043 48.945 17.978 1.00 69.09 1324 CN SER 354 114.043 48.945 17.978 1.00 69.09 1324 CN SER 354 114.043 48.945 17.978 1.00 69.09 1324 CN SER 354 114.043 47.710 20.121 1.00 25.00 3326 H SER 354 114.043 47.710 20.121 1.00 25.00 3326 H SER 354 114.043 47.710 20.121 1.00 25.00 3326 H SER 354 114.043 47.710 20.121 1.00 25.00 3326 H SER 355 116.516 47.223 17.359 1.00 65.77 3328 CN SER 355 117.051 48.530 10.472 1.00 65.75 3332 CN SER 355 118.082 44.99 1.00 10.07 10.00 88.81 3330 N SER 355 118.082 44.99 1.00 10.00 86.81 3333 H SER 355 118.056 47.245 17.099 1.00 66.08 3333 H SER 355 118.056 47.245 17.099 1.00 66.08 3333 H SER 355 118.056 47.245 17.099 1.00 66.08 3333 H SER 355 118.056 47.245 17.099 1.00 66.08 3333 H SER 355 118.056 47.245 17.099 1.00 66.08 3333 H SER 355 118.056 47.245 17.099 1.00 66.08 3333 H SER 355 118.056 47.245 17.094 1.00 25.00 3335 CN ALA 356 117.150 44.525 17.034 10.00 25.00 3335 CN ALA 356 117.150 44.525 17.034 10.00 25.00 3335 CN ALA 356 117.150 44.525 17.034 10.00 25.00 3334 H SER 355 118.056 47.245 17.004 10.00 69.25 3333 H SER 355 118.056 47.245 17.004 10.00 69.25 3333 H SER 355 118.056 47.245 17.004 10.00 69.25 340 10.00 20.00 10.00 50.00 10.0																		
3321 C S ER									25									
3322 CO SER 354 114,094 46,378 16,055 1.00 69,09 3334 CN AL 362 108,007 42,131 24,255 1,00 29,83 3323 CH SER 354 112,999 40,406 18,763 1,00 80,83 339 C AL 362 106,399 42,812 25,20 1,00 32,43 3325 H SER 354 112,888 90,360 18,844 1,00 25,00 339 C AL 362 106,399 42,812 26,20 1,00 33,43 A AL 362 106,209 42,788 27,22 1,00 33,43 A AL 362 108,209 42,788 27,22 1,00 30,34 A AL 362 108,209 44,949 100 68,81 351 118,956 47,24 1,90 68,81 1,90 66,84 1,90 66,84 1,90 66,08 34,00 MAI 362 1,00 1,90 2,9																		
3324 CB SER 354 114.043 48.945 17.978 1.00 69.09 13394 CA VAL 362 107.818 42.911 25.478 1.00 28.00 3324 CB SER 354 114.623 47.710 20.121 1.00 25.00 30 3395 C VAL 362 106.209 42.781 25.478 1.00 28.00 3326 HG SER 354 114.623 47.710 20.121 1.00 25.00 30 3395 C VAL 362 106.209 42.788 27.262 1.00 34.43 3326 HG SER 355 116.516 47.223 17.359 1.00 67.77 3331 CB SER 355 116.516 47.224 17.59 1.00 69.36 34.300 HC VAL 362 108.203 44.401 25.259 1.00 30.93 3390 CB SER 355 118.056 47.245 17.099 1.00 68.34 34.00 HC VAL 362 108.395 42.588 23.472 1.00 25.00 3333 CB SER 355 118.956 47.245 17.099 1.00 68.44 3333 H SER 355 116.729 47.670 18.209 1.00 68.44 3333 H SER 355 116.729 47.670 18.209 1.00 25.00 3333 CB SER 355 116.729 47.670 18.209 1.00 25.00 3333 CB SER 355 116.739 45.259 1.00 32.03 3336 CB ALA 356 117.150 44.525 17.024 1.00 69.36 3333 CB ALA 356 117.150 44.525 17.024 1.00 69.36 3333 CB ALA 356 117.150 44.525 17.024 1.00 69.36 3333 CB ALA 356 117.150 44.528 16.084 1.00 69.36 3333 CB ALA 356 117.59 42.347 18.067 1.00 68.66 3334 H SER 357 114.793 43.99 1.00 68.66 3334 H SER 357 114.793 43.99 1.00 68.66 3334 H SER 358 117.594 42.592 1.00 25.00 3337 C ALA 356 117.594 42.592 1.00 25.00 3337 C ALA 356 117.594 42.595 1.00 69.36 340 1.00 1.00 68.66 3334 H SER 355 117.594 42.595 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.00 69.36 340 1.00 1.																		
3329 H SER 354 112,959 49,406 18,763 1,00 80,83																		
3327 NS SER 355 117.616 46.850 16.472 1.00 65.77 3328 CA SER 355 117.616 46.850 16.472 1.00 65.77 3329 CS SER 355 117.631 45.323 17.359 1.00 65.87 3330 CS SER 355 118.082 44.90 15.028 1.00 66.86 3330 CS SER 355 118.082 44.90 15.028 1.00 66.86 3333 CS SER 355 118.082 44.90 15.028 1.00 66.86 3333 CS SER 355 119.067 46.741 18.419 1.00 66.81 3333 CS SER 355 119.067 46.741 18.419 1.00 66.81 3333 HG SER 355 119.034 45.780 18.416 1.00 25.00 3337 CS ALA 356 117.151 42.825 1.7024 1.00 65.03 3337 CS ALA 356 117.351 42.852 1.7024 1.00 65.03 3337 CS ALA 356 117.354 42.855 1.00 65.03 3337 CS ALA 356 117.341 42.855 16.347 1.00 65.85 3340 C ALA 356 117.341 42.855 16.347 1.00 65.85 3340 C ALA 356 117.344 42.855 1.6347 1.00 65.85 3340 C ALA 356 117.344 42.855 1.6347 1.00 65.25 3340 C ALA 356 117.344 42.855 1.6347 1.00 65.85 3340 C ALA 356 117.344 42.855 1.6347 1.00 65.85 3340 C ALA 356 117.344 42.855 1.00 65.0	3324 OG																	
3328 CR SER 355 116.516 47.223 17.359 1.00 65.77 13328 CG WL 362 107.851 45.233 26.494 1.00 22.90 3329 CC SER 355 117.631 45.364 16.110 1.00 66.81 3330 CR SER 355 118.082 44990 15.028 1.00 69.36 3331 CB SER 355 118.082 44990 15.028 1.00 69.36 3331 CB SER 355 118.082 44990 15.028 1.00 69.36 3331 CB SER 355 118.054 47.245 17.099 1.00 68.48 3401 N CVS 363 103.0375 41.40 25.00 25.00 3333 CB SER 355 116.729 47.670 18.209 1.00 25.00 3333 CB SER 355 116.729 47.670 18.209 1.00 25.00 3333 CB SER 355 116.029 47.670 18.209 1.00 25.00 3333 CB SER 355 116.515 119.043 45.780 18.416 1.00 25.00 3330 CA ALA 356 117.115 43.082 16.002 1.00 69.39 3406 SC CVS 363 103.0367 41.26 22.70 1.00 25.03 3330 CB ALA 356 117.115 43.082 16.082 1.00 69.39 3406 SC CVS 363 103.0367 41.26 22.70 1.00 25.00 3330 CB ALA 356 115.561 41.395 16.084 1.00 75.24 3408 CB SER 359 1.00 45									30									
3329 CS SER 355 117.616 46.890 16.472 1.00 67.77 3399 CG2 VAL 362 109.699 44.524 24.952 1.00 25.00 3330 O SER 355 118.082 44.990 15.028 1.00 68.84 3401 N CVS 363 105.405 42.781 125.60 1.00 25.00 3333 CG SER 355 118.087 47.245 17.099 1.00 68.44 31.333 CG SER 355 119.067 46.741 18.419 1.00 68.84 31.333 CG SER 355 119.045 47.580 18.416 1.00 25.00 3.405 CG SER 353 105.799 47.670 18.209 1.00 25.00 45.333 CG SER 355 119.045 47.580 18.416 1.00 25.00 45.333 CG SER 355 116.729 47.670 18.209 1.00 25.00 45.333 CG SER 355 119.045 47.580 18.416 1.00 25.00 45.333 CG SER 355 119.045 47.580 18.416 1.00 25.00 45.333 CG SER 355 119.045 47.840 18.419 18.4																		
333 C S ER 355 117.63 45.84 16.10 1.00 68.81 3330 C S ER 355 118.95 47.25 17.05 1.00 69.68 31331 C S ER 355 118.95 47.25 17.05 18.209 1.00 66.08 3333 C S ER 355 119.067 46.741 18.419 1.00 65.08 3400 C C CYS 363 104.011 42.610 25.90 1.00 25.93 3334 HG SER 355 116.729 47.670 18.209 1.00 25.00 3400 C CYS 363 104.011 42.610 27.499 1.00 25.93 3334 HG SER 355 119.043 45.780 18.416 1.00 25.00 3400 C CYS 363 102.044 41.610 27.499 1.00 25.93 3334 HG SER 355 119.043 45.780 18.416 1.00 25.00 3405 C CYS 363 103.066 42.504 24.387 1.00 25.93 3336 C A ALA 356 117.151 43.982 16.802 1.00 69.59 3405 C CYS 363 103.066 42.504 24.387 1.00 33.373 3335 N ALA 356 115.541 41.395 16.084 1.00 71.52 40 3400 C A HS 364 104.820 30.22 26.421 1.00 25.00 3339 C A ALA 356 115.541 41.395 16.084 1.00 71.52 40 3400 C A HS 364 104.820 30.22 26.421 1.00 25.03 3340 C GLY 357 113.452 43.118 15.854 1.00 25.00 3342 C A GLY 357 113.452 43.118 15.854 1.00 62.16 3413 C G HS 364 104.02 39.16 25.30 3342 C G GLY 357 113.452 43.118 15.854 1.00 52.50 3342 C A GLY 357 113.452 43.118 15.854 1.00 52.50 3342 C A GLY 357 113.452 43.118 15.854 1.00 52.50 3342 C A GLY 357 113.452 43.118 15.854 1.00 52.50 3342 C A GLY 357 113.452 43.118 15.854 1.00 52.00 52.00 3349 C A GLY 357 113.452 43.118 15.854 1.00 52.00 52.00 3344 C GLY 357 113.452 43.118 15.854 1.00 52.00 52.00 3344 C GLY 357 113.452 43.118 15.854 1.00 52.00 52.00 3344 C GLY 357 113.95 44.280 1.00 52.00 52.00 3349 C A GLY 357 113.95 44.280 1.00 52.00 3344 C GLY 357 113.95 41.419 1.00 52.00 52.00 3344 C GLY 357 113.452 43.118 15.854 1.00 52.00 52.00 3344 C GLY 357 113.95 41.00 52.00 52.00 3345 C A GLY 350 11.419 41.419 37.75 6 24.11 1.00 52.00 52.00 3345 C A GLY 350 11.419 41.30 32.00 52.00 52.00 3345 C A GLY 350 11.419 41.419 37.75 6 24.11 1.00 52.00 52.00 3345 C A GLY 350 11.419 41.419 37.75 6 24.110 1.00 52.00 3350 C A GLY 350 11.419 41.419 37.75 6 24.110 1.00 52.00 3350 C A GLY 350 11.419 41.419 37.75 6 24.110 1.00 52.00 3350 C A GLY 350 11.419 41.419 37.75 6 24.110 1.00 52.00 3350 C A GLY 350 11.419 41.419 3																		
3331 CB SER 355 118.956 42.45 17.099 1.00 66.08 3332 CG SER 355 119.067 4.74 18.49 1.00 66.08 3333 CB SER 355 119.067 4.74 18.49 1.00 62.06 33403 C CYS 363 103.587 14.70 (25.09 1.00 25.00 33.34 HG SER 355 116.729 47.670 18.209 1.00 25.00 3.00 5.00 3.00 CYS 363 102.942 41.610 27.499 1.00 25.93 3334 HG SER 355 119.043 45.780 117.150 45.25 17.024 1.00 69.39 3405 CB CYS 363 103.387 41.126 23.270 1.00 40.61 3336 CA ALA 356 117.151 43.082 16.802 1.00 68.66 3407 H CYS 363 103.387 41.126 23.270 1.00 40.61 3336 CA ALA 356 115.741 42.585 16.304 1.00 69.25 3408 N HIS 364 104.480 40.362 26.421 1.00 25.00 3337 C ALA 356 115.541 42.347 18.067 1.00 69.25 3408 N HIS 364 104.480 40.362 26.21 1.00 25.00 3339 CB ALA 356 117.549 42.347 18.067 1.00 69.25 3408 N HIS 364 104.480 40.362 26.273 15 1.00 24.36 3340 H ALA 356 117.549 42.347 18.067 1.00 67.77 341.0	3329 C	SER			45.364					3400 H	I	VAL						
3332 OG SER 355 119,067 46.74 18.419 1.00 68.44 55 3403 C CYS 363 103.757 41.470 26.581 1.00 29.63 3334 HG SER 355 119,043 45.780 18.416 1.00 25.00 3406 CYS 363 103.066 42.504 24.387 1.00 33.73 3335 N ALA 356 117.115 04.525 17.024 1.00 69.39 3406 SG CYS 363 103.066 42.504 24.387 1.00 33.73 3335 N ALA 356 117.115 04.525 1.00 60.53 3407 H CYS 363 105.612 42.677 24.204 1.00 25.00 3337 C ALA 356 115.516 11.395 16.034 1.00 71.52 40 3408 N HIS 364 104.80 40.362 26.421 1.00 26.78 3338 OR ALA 356 115.561 41.395 16.034 1.00 71.52 40 3409 CA HIS 364 104.329 39.216 27.315 1.00 24.63 3339 CB ALA 356 115.561 41.395 16.034 1.00 71.52 40 3409 CA HIS 364 104.329 39.216 27.315 1.00 24.63 3339 CB ALA 356 115.561 41.895 16.034 1.00 71.52 40 3409 CA HIS 364 104.329 39.163 29.703 1.00 32.63 3343 C B ALA 356 117.134 42.347 18.067 1.00 64.46 3410 C HIS 364 104.032 92.8754 1.00 31.26 3343 C B ALA 356 117.549 42.347 18.067 1.00 67.77 3412 CB HIS 364 104.825 39.599 28.754 1.00 31.26 3343 C B ALA 356 117.599 42.347 18.057 1.00 25.00 3410 C HIS 364 104.329 39.163 29.703 1.00 32.63 3343 C B ALA 356 117.599 42.202 16.856 1.00 88.02 3414 N D HIS 364 104.826 37.486 25.531 1.00 29.85 3343 C B ALA 356 117.599 42.202 16.856 1.00 88.02 3414 N D HIS 364 104.826 37.486 25.531 1.00 29.85 3343 C B ALA 356 117.599 42.202 16.856 1.00 88.02 3414 N D HIS 364 103.649 30.323 25.690 3.349 C B ALA 356 118.388 112.461 41.461 19.204 1.00 58.07 3418 C B HIS 364 103.649 30.323 25.050 3346 C ARG 358 113.456 39.879 19.314 1.00 38.07 3418 H HIS 364 103.649 30.323 25.050 3348 C ARG 358 113.456 39.879 19.314 1.00 43.66 50.004 11.00 32.87 3350 C B ARG 358 113.658 39.759 20.106 1.00 50.55 3419 HD HIS 364 103.149 30.332 26.005 1.00 32.87 3350 C B ARG 358 113.458 39.390 26 20.217 1.00 44.61 34.00 32.00 3350 C B ARG 358 113.858 39.390 26 20.217 1.00 43.61 342 C B HIS 364 103.419 30.332 24.00 30.323 1.00 32.00 3350 C B ARG 358 113.586 39.754 22.951 1.00 44.69 50.3350 C B ARG 358 114.460 39.958 23.915 1.00 25.00 3356 C B ARG 358 114.460 39.958 23.915 1.00 25.00 3356 C B ARG																		
3334 H SER 355 116.794 47.670 18.209 1.00 25.00 3406 C CYS 363 102.942 41.610 27.499 1.00 25.93 334 HG SER 355 119.043 47.870 18.416 1.00 25.00 3406 SG CYS 363 103.036 42.504 24.877 1.00 35.93 3335 N ALA 356 117.150 44.525 17.024 1.00 69.39 3406 SG CYS 363 103.387 41.126 23.270 1.00 40.61 3336 CA ALA 356 117.151 43.082 16.802 1.00 68.56 3407 H CYS 363 105.612 42.677 24.204 1.00 25.00 3337 C ALA 356 115.541 41.395 16.084 1.00 71.52 4 3408 N HIS 364 104.480 40.362 26.421 1.00 26.78 3338 O ALA 356 117.549 42.347 18.067 1.00 64.64 40 3409 CA HIS 364 104.480 39.599 28.755 1.00 24.36 3339 C ALA 356 117.549 42.347 18.067 1.00 64.64 40 3409 CA HIS 364 104.680 39.599 28.755 1.00 24.36 3340 H ALA 356 117.549 43.493 16.220 1.00 67.77 3412 CB HIS 364 104.629 39.163 29.703 1.00 32.48 3431 N GIY 357 114.773 43.493 16.220 10.06 67.77 3412 CB HIS 364 105.203 88.064 26.855 1.00 25.03 3442 CA GIY 357 112.754 42.202 18.685 1.00 58.07 45 3418 CB HIS 364 104.820 37.486 25.531 1.00 29.86 3343 C GIY 357 111.969 41.327 16.481 1.00 58.07 45 3415 CD2 HIS 364 105.203 87.588 24.308 1.00 32.37 3454 F GIY 357 114.956 44.428 16.477 1.00 25.00 3416 CEI HIS 364 105.308 37.588 24.308 1.00 32.87 3346 N ARG 358 111.486 42.359 20.106 1.00 50.55 3419 HD1 HIS 364 104.649 40.332 25.695 1.00 25.00 3348 C ARG 358 111.486 42.359 20.106 1.00 50.55 3419 HD1 HIS 364 104.649 40.322 2.648 1.00 32.87 3350 CB ARG 358 111.486 42.359 20.106 1.00 50.55 3419 HD1 HIS 364 103.131 36.392 26.086 1.00 25.00 3349 C ARG 358 114.583 38.089 23.571 1.00 44.69 50 3422 CA ALA 365 105.134 40.890 30.232 1.00 30.11 3352 CD ARG 358 114.583 38.089 23.571 1.00 44.69 50 3422 CA ALA 365 105.134 40.890 30.232 1.00 30.51 3355 NHI ARG 358 114.583 38.099 23.571 1.00 45.00 50.55 3419 HD1 HIS 364 103.133 30.826 1.00 30.31 3350 CB ARG 358 114.583 38.089 23.571 1.00 44.69 50 3422 CA ALA 365 105.075 41.788 30.925 1.00 33.54 3355 NHI ARG 358 114.583 38.095 23.571 1.00 45.00 50.55 3419 HD1 HIS 366 104.548 42.798 30.925 1.00 33.54 3355 NHI ARG 358 114.583 38.099 23.571 1.00 45.00 50.59 3420 CH L									35									
3335 N ALA 356 117.150 44.525 17.024 1.00 69.39 3406 SG CVS 363 103.387 41.126 23.270 1.00 40.61 3337 C ALA 356 115.741 42.585 16.894 1.00 69.25 3408 N HIS 364 104.890 34.026 26.421 1.00 25.00 3338 C ALA 356 115.561 41.595 16.084 1.00 71.52 40 3409 CA HIS 364 104.325 39.590 27.315 1.00 24.36 3339 C ALA 356 115.691 41.595 16.084 1.00 71.52 40 3409 CA HIS 364 104.325 39.590 27.515 1.00 24.36 3339 C ALA 356 116.806 44.884 17.867 1.00 25.00 3410 C HIS 364 104.025 39.590 27.515 1.00 24.36 34.04		SER						25.00				CYS						
3336 CA ALA 356 117.115 43.082 16.802 1.00 68.26 3407 H CYS 363 105.612 24.2677 24.204 1.00 25.00 3337 C ALA 356 115.7541 42.585 16.084 1.00 67.75 3408 N HIS 364 104.322 39.216 27.315 1.00 24.76 3339 CB ALA 356 115.7549 42.347 18.067 1.00 64.46 3410 C HIS 364 104.685 39.599 28.734 1.00 24.36 3341 N GLY 357 113.432 43.118 15.854 1.00 67.77 3412 CB HIS 364 104.685 39.599 28.734 1.00 32.25 3342 CA GLY 357 111.969 41.327 16.481 1.00 58.07 45 3415 CB HIS 364 105.29 38.044 25.531 1.00 32.37 3345 C GLY 357																		
3337 C ALA 356 115.741 42.585 16.347 1.00 69.25 3408 N HIS 364 104.480 40.362 22.421 1.00 26.78 3339 CB ALA 356 115.561 41.395 16.084 1.00 64.46 3410 C HIS 364 104.480 39.210 27.315 1.00 24.36 3340 H ALA 356 115.560 44.884 17.867 1.00 25.00 3411 C HIS 364 104.629 39.163 29.703 1.00 32.48 3341 N GIY 357 113.432 43.118 15.854 1.00 62.16 3413 CG HIS 364 104.820 37.486 25.377 1.00 29.86 3343 C GIY 357 111.969 41.327 16.481 1.00 58.02 41.815 1.00 1.00 28.02 41.815 1.00 29.03 3414 NDI HIS 364 104.826 34.386 21.344																		
3339 CB ALA 356 117.549 42.347 18.067 1.00 64.46 3410 C HIS 364 104.685 39.599 28.754 1.00 31.26 3340 H ALA 356 116.806 44.884 17.867 1.00 25.00 3411 O HIS 364 104.029 39.163 29.703 1.00 32.48 341 N GLY 357 113.432 43.118 15.854 1.00 62.16 3413 CG HIS 364 104.029 39.163 29.703 1.00 32.48 343 C GLY 357 112.754 42.202 16.856 1.00 58.02 3414 ND1 HIS 364 105.220 38.064 26.855 1.00 26.25 342 CA GLY 357 111.969 41.327 16.481 1.00 58.02 3414 ND1 HIS 364 104.826 37.486 25.531 1.00 29.86 3434 H NO GLY 357 111.969 41.327 16.481 1.00 58.07 45 3415 CD2 HIS 364 103.731 36.663 25.372 1.00 39.99 3344 O GLY 357 111.969 41.327 16.481 1.00 53.28 3415 CD2 HIS 364 105.398 37.588 24.308 1.00 32.37 3434 H NO ARG 358 113.486 42.359 20.106 1.00 55.28 3417 NE2 HIS 364 105.398 37.588 24.308 1.00 32.87 3434 C ARG 358 111.486 42.359 20.106 1.00 50.55 3419 HD1 HIS 364 105.139 40.332 25.695 1.00 25.00 3349 C ARG 358 113.568 40.953 20.047 1.00 44.69 50 3428 HD1 HIS 364 105.139 40.332 25.695 1.00 25.00 3350 CB ARG 358 114.360 39.872 19.314 1.00 44.69 50 3421 HD1 HIS 364 103.113 36.392 26.086 1.00 25.00 3350 CB ARG 358 114.586 39.206 20.0217 1.00 43.66 3422 CA ALA 365 106.134 40.880 30.232 1.00 30.13 3350 CB ARG 358 114.583 89.206 20.217 1.00 43.69 5350 ARG 358 115.383 89.206 20.217 1.00 43.69 5350 ARG 358 115.386 39.206 20.217 1.00 43.69 5350 ARG 358 114.768 38.753 22.518 1.00 43.84 3425 CB ALA 365 106.134 40.880 30.232 1.00 31.03 3350 CB ARG 358 114.768 38.753 22.518 1.00 45.00 3355 NHI ARG 358 115.836 39.754 22.951 1.00 40.95 3426 CB ALA 365 106.134 40.880 30.232 1.00 31.03 3350 CB ARG 358 114.768 38.753 23.571 1.00 40.95 3426 CB ALA 365 104.277 41.708 32.005 1.00 31.02 3355 NHI ARG 358 115.385 39.206 20.217 1.00 40.499 5 3426 CB ALA 365 104.277 41.708 32.005 1.00 31.03 3350 CB ARG 358 114.464 31.35 18.368 1.00 25.00 3430 CB LE 366 101.743 43.199 31.987 1.00 33.51 3350 CB ARG 358 114.563 39.206 20.217 1.00 40.409 53.426 CB ALA 365 104.277 41.708 32.005 1.00 31.03 3350 CB ARG 358 115.385 39.206 20.217 1.00 25.00 3430 CB LE 366 101.946 49.880																		
3340 H ALA 356 116.806 44.884 17.867 1.00 25.00 34.11 O HIS 364 104.029 39.163 29.703 1.00 32.485 3342 CA GLY 357 113.432 43.118 15.884 1.00 62.16 3413 CB HIS 364 104.826 37.486 25.531 1.00 29.86 3434 C GLY 357 112.754 42.202 16.886 1.00 58.07 45.314 ND HIS 364 104.826 37.486 25.531 1.00 29.86 3434 C GLY 357 111.965 44.220 16.886 1.00 58.07 45.314 ND HIS 364 104.826 37.486 25.531 1.00 29.86 3344 C GLY 357 111.965 44.428 16.477 1.00 58.07 45.3415 CD2 HIS 364 103.646 36.282 24.110 1.00 32.487 3345 H GLY 357 114.965 44.428 16.477 1.00 52.500 3416 CE1 HIS 364 103.646 36.282 24.110 1.00 32.87 34.48 C ARG 358 113.039 42.416 18.138 1.00 50.96 3418 H HIS 364 103.646 36.829 23.444 1.00 32.87 34.48 C ARG 358 114.864 41.601 19.204 1.00 50.96 3418 H HIS 364 103.646 36.829 23.444 1.00 32.87 34.90 ARG 358 114.864 42.359 20.106 1.00 50.55 3419 HD1 HIS 364 103.413 36.392 26.086 1.00 25.00 3349 C ARG 358 114.366 39.872 19.314 1.00 44.69 50.335 ARG 358 114.360 39.872 19.314 1.00 44.69 50.335 ARG 358 114.369 39.872 19.314 1.00 42.40 34.24 ARG 358 114.548 38.503 21.338 1.00 42.40 34.24 ARG 358 114.89 38.893 39.206 20.217 1.00 42.40 34.24 ARG 358 114.89 38.893 39.206 20.217 1.00 42.40 34.24 ARG 358 114.484 34.146 39.878 34.25 ARG 358 114.484 37.776 21.138 1.00 25.00 3355 ARG 358 114.484 37.776 21.138 1.00 25.00 3355 ARG 358 114.484 31.366 39.754 22.951 1.00 42.40 34.24 ARG 358 114.484 34.365 39.754 22.251 1.00 25.00 3355 ARG 358 114.562 38.301 24.533 1.00 25.00 34.34 ARG 358 114.562 38.301 24.533 1.00 25.00 34.34 ARG 36.60									40									
3341 N GLY 357 114.773 43.493 16.270 1.00 67.77 34.493 16.270 1.00 62.16 3412 CB HIS 364 104.826 37.486 25.537 1.00 25.05 3414 CB GLY 357 112.754 42.202 16.886 1.00 58.02 3414 ND HIS 364 103.632 37.586 25.372 1.00 39.99 3444 O GLY 357 114.965 44.428 16.477 1.00 58.07 45 3415 CD2 HIS 364 103.639 37.588 24.308 1.00 32.37 3345 H GLY 357 114.965 44.428 16.477 1.00 55.08 3414 ND HIS 364 103.666 36.282 24.110 1.00 32.37 3345 H GLY 357 114.965 44.428 16.477 1.00 55.08 3416 CB1 HIS 364 103.666 36.282 24.110 1.00 32.37 3347 CA ARG 358 113.039 42.416 18.138 1.00 53.28 3417 NE2 HIS 364 104.646 36.829 23.444 1.00 32.87 3347 CA ARG 358 113.686 42.359 20.106 1.00 50.55 3419 HDI HIS 364 104.646 36.829 23.444 1.00 32.87 3419 O ARG 358 113.568 40.953 20.061 1.00 50.55 3419 HDI HIS 364 104.646 36.829 23.444 1.00 32.87 3419 O ARG 358 113.568 40.953 20.061 1.00 44.69 50 3421 N ALA 365 105.179 40.332 25.695 1.00 25.00 3350 CB ARG 358 114.568 39.872 19.314 1.00 43.66 3421 N ALA 365 105.171 40.431 28.911 1.00 28.85 3351 CG ARG 358 114.768 38.503 21.338 1.00 43.64 3421 N ALA 365 105.171 40.431 28.911 1.00 28.85 3351 CG ARG 358 114.768 38.503 21.338 1.00 43.64 3422 C ALA 365 105.075 41.813 30.826 1.00 31.03 3353 NE ARG 358 114.768 38.503 21.338 1.00 42.40 34.24 O ALA 365 105.075 41.813 30.826 1.00 31.03 3355 NH ARG 358 114.98 38.089 23.571 1.00 49.95 3355 NH ARG 358 114.98 38.089 23.571 1.00 49.95 3355 NH ARG 358 114.98 38.089 23.571 1.00 49.95 3355 NH ARG 358 114.98 38.808 23.571 1.00 25.00 3431 CB ILE 366 103.512 43.653 30.417 1.00 33.21 3362 LHI ARG 358 114.98 38.808 23.571 1.00 25.00 3431 CB ILE 366 103.512 43.858 30.417 1.00 33.21 3362 LHI ARG 358 114.942 37.776 21.138 1.00 25.00 3431 CB ILE 366 103.512 43.858 30.417 1.00 33.21 3362 LHI ARG 358 116.00 49.95 23.327 1.00 25.00 3431 CB ILE 366 103.512 43.858 30.417 1.00 33.21 3362 LHI ARG 358 116.00 49.95 23.327 1.00 25.00 3431 CB ILE 366 103.512 43.858 30.417 1.00 33.21 3362 CB ARG 358 114.62 37.776 21.138 1.00 25.00 3431 CB ILE 366 103.512 43.858 30.417 1.00 33.21 3362 CB ARG 358 1																		
3342 CA GLY 357 113.432 43.118 15.854 1.00 62.16 3413 CG HIS 364 104.826 37.486 25.531 1.00 29.86 3344 C GLY 357 111.754 42.202 16.856 1.00 58.07 45 3415 CD2 HIS 364 103.731 36.663 25.372 1.00 39.99 3345 H GLY 357 111.969 41.327 16.481 1.00 58.07 45 3415 CD2 HIS 364 103.731 36.663 25.372 1.00 32.373 3345 H GLY 357 114.965 44.428 16.477 1.00 25.00 3416 CD2 HIS 364 103.646 36.829 23.444 1.00 32.373 3347 CA ARG 358 111.486 42.359 20.106 1.00 50.96 3418 H HIS 364 103.646 36.829 23.444 1.00 32.373 3349 C ARG 358 111.486 42.359 20.106 1.00 50.95 3418 H HIS 364 103.133 36.392 26.086 1.00 25.00 3349 C ARG 358 111.3568 40.953 20.047 1.00 44.69 3535 12.358 113.568 40.953 20.047 1.00 44.69 3422 CA ALA 365 105.711 40.431 28.991 1.00 28.85 3351 CG ARG 358 114.360 39.872 19.314 1.00 43.66 3422 CA ALA 365 106.134 40.880 30.232 1.00 30.11 3352 CD ARG 358 114.768 38.503 21.338 1.00 42.40 3424 C ALA 365 106.134 40.880 30.232 1.00 31.03 3355 NH1 ARG 358 114.4839 38.089 22.5371 1.00 45.03 3355 NH1 ARG 358 114.4839 38.089 23.571 1.00 45.03 3422 CA ALA 365 106.191 40.762 28.123 1.00 25.00 3355 NH1 ARG 358 114.423 37.776 21.138 1.00 25.00 3430 CHH1 ARG 358 114.562 38.301 24.533 1.00 25.00 3430 CHH1 ARG 358 114.562 38.301 24.533 1.00 25.00 3430 CHH1 ARG 358 114.562 38.301 24.533 1.00 25.00 3430 CHH1 ARG 358 114.562 38.301 24.533 1.00 25.00 3430 CHH1 ARG 358 114.562 38.301 24.533 1.00 25.00 3430 CHH ARG 358 114.562 38.301 24.533 1.00 25.00 3430 CHH ARG 358 114.563 34.309 34.565 34.000 34.660 34.400 34.660 34.4000 34.660 34.4000 34.660 34.4000 34.4																		
3344 O GLV 357 111,969 41,327 16,481 1.00 58.07 45 3415 CD2 HIS 364 105,398 37,588 24,308 1.00 32,37 3345 H GLV 357 114,965 44,428 16,477 1.00 25.00 3416 CE1 HIS 364 103,646 36,282 24,110 1.00 32,287 3347 CA ARG 358 112,461 41,601 19,204 1.00 50,96 3418 H HIS 364 105,139 40,332 25,695 1.00 25,00 3348 C ARG 358 111,486 42,359 20,106 1.00 50,55 3419 HD1 HIS 364 105,139 40,332 25,695 1.00 25,00 3349 C ARG 358 113,568 40,953 20,047 1.00 44,69 3351 CG ARG 358 114,360 39,872 19,314 1.00 43,66 3422 CA ALA 365 105,711 40,431 28,911 1.00 28,85 3351 CG ARG 358 114,768 38,503 21,338 1.00 42,40 3424 CG ALA 365 105,751 40,431 30,826 1.00 31,125 3354 CZ ARG 358 114,389 38,089 23,571 1.00 45,03 3355 HI ARG 358 114,389 38,089 23,571 1.00 45,03 3355 HB ARG 358 114,412 37,776 21,138 1.00 25,00 3430 CH E 366 101,434 43,653 30,417 1.00 33,51 3353 NE ARG 358 114,412 37,776 21,138 1.00 25,00 3430 CH E 366 101,434 43,659 30,922 1.00 33,54 3355 HH ARG 358 114,424 37,776 21,138 1.00 25,00 3430 CH E 366 101,434 43,659 30,922 1.00 33,54 3355 HH ARG 358 114,562 38,301 24,533 1.00 25,00 3430 CH E 366 101,434 43,459 31,987 1.00 31,04 3360 2HH1 ARG 358 114,562 38,301 24,533 1.00 25,00 3431 CB HE 366 101,434 41,457 29,677 1.00 42,40 34,64	3342 CA									3413 C	G							29.86
3345 H GLY 357 114,965 44,428 16,477 1,00 25,00 34,16 CE1 HIS 364 103,646 36,282 24,110 1,00 36,283 346 N ARG 358 113,053 42,416 18,138 1,00 53,28 3417 NE2 HIS 364 104,646 36,829 23,444 1,00 32,87 3348 C ARG 358 111,486 42,359 20,106 1,00 50,55 3419 HIS 364 103,113 36,392 26,086 1,00 25,00 3349 O ARG 358 113,568 40,953 20,047 1,00 44,69 50,3351 CG ARG 358 113,568 40,953 20,047 1,00 44,69 50,3351 CG ARG 358 114,360 39,872 19,314 1,00 43,66 342 C ALA 365 106,134 40,880 30,232 1,00 30,11 3352 CD ARG 358 114,563 39,206 20,217 1,00 43,11 3423 C ALA 365 106,134 40,880 30,232 1,00 30,11 3353 NE ARG 358 114,597 38,783 22,618 1,00 43,86 3355 NH1 ARG 358 113,568 39,754 22,951 1,00 49,95 3355 NH2 ARG 358 114,424 37,776 21,138 1,00 25,00 3359 HH1 ARG 358 116,001 40,282 22,241 1,00 25,00 3359 HH1 ARG 358 116,001 40,282 22,241 1,00 25,00 3430 C ILE 366 104,548 42,708 29,992 1,00 33,54 3360 ARG 358 114,562 38,301 24,533 1,00 25,00 3431 CB ILE 366 101,743 43,199 31,987 1,00 31,00 3360 ARG 358 114,562 38,301 24,533 1,00 25,00 3431 CB ILE 366 101,743 41,875 29,255 1,00 30,87 3362 ARG 358 114,562 38,301 24,533 1,00 25,00 3431 CB ILE 366 101,743 41,875 30,167 1,00 28,96 3363 N SER 359 110,450 45,879 20,050 10,00 51,38 3369 ARG SER 359 110,450 45,879 20,050 10,00 51,38 3369 ARG SER 359 110,450 45,879 20,050 10,00 51,38 3369 ARG SER 359 110,450 45,879 20,050 10,00 51,38 3369 ARG SER 359 110,450 45,879 20,050 10,00 51,38 3369 ARG SER 359 110,450 45,879 20,050 10,00 51,38 3369 ARG SER 359 110,450 45,879 20,050 10,00 51,3																		
3346 N ARG 358 113.039 42.416 18.138 1.00 53.28 3417 NE2 HIS 364 104.646 36.829 23.444 1.00 32.87									45									
3348 C ARG 358 111.486 42.359 20.106 1.00 50.55 3419 HD1 HIS 364 103.113 36.392 26.086 1.00 25.00 3439 O ARG 358 110.885 41.774 20.999 1.00 51.85 3420 HE2 HIS 364 104.819 36.718 22.488 1.00 25.00 358 355 CB ARG 358 114.360 39.872 19.314 1.00 43.66 3422 CA ALA 365 105.711 40.431 28.911 1.00 28.85 3355 CB ARG 358 114.360 39.872 19.314 1.00 43.66 3422 CA ALA 365 105.075 41.813 30.826 1.00 31.01 3353 NE ARG 358 114.368 39.754 22.951 1.00 49.95 3355 NH1 ARG 358 114.389 38.089 23.571 1.00 45.03 3355 HB ARG 358 114.42 37.776 21.138 1.00 25.00 3359 1HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3430 CB LE 366 101.743 34.199 31.987 1.00 33.17 3361 1HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 3433 CB LE 366 101.464 45.455 29.255 1.00 33.67 3355 CB ARG 359 110.363 44.464 20.625 1.00 49.95 3433 CB LE 366 101.464 45.455 29.255 1.00 30.87 3355 CB ARG 358 116.303 44.644 20.625 1.00 25.00 3433 CB LE 366 101.743 34.199 31.987 1.00 33.01 3355 CB ARG 358 116.363 44.464 20.625 1.00 25.00 3433 CB LE 366 101.743 34.199 31.987 1.00 33.67 3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 CB LE 366 101.98 45.453 29.255 1.00 35.02 3355 CB 359 103.353 44.464 20.625 1.00 46.16 3437 CA GLU 367 100.450 40.493 31.99 1.00 35.02 3366 OB SER 359 110.315 45.879 20.050 1.00 51.38 3438 CB GLU 367 100.461 39.966 29.507 1.00 35.88 3368 OB SER 359 110.35 45.879 20.050 1.00 51.38 3438 CB GLU 367 100.461 39.966 29.507 1.00 35.88 3368 OB SER 359 110.35 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 3368 OB SER 359 110																		
3349 O																		
3350 CB ARG 358 113.568 40.953 20.047 1.00 44.69 3351 CG ARG 358 114.360 39.872 19.314 1.00 43.66 3351 CG ARG 358 114.360 39.872 19.314 1.00 43.66 3352 CD ARG 358 114.360 39.872 19.314 1.00 43.66 3353 NE ARG 358 114.768 38.503 21.338 1.00 42.40 34.84 3424 O ALA 365 106.134 40.880 30.232 1.00 30.11 30.25 30.25 ARG 358 114.768 38.503 21.338 1.00 42.40 40.40 40.40 365 105.075 41.813 30.826 1.00 31.00 31.00 3355 NH1 ARG 358 115.836 39.754 22.951 1.00 49.95 3355 NH1 ARG 358 114.389 38.089 23.571 1.00 45.03 3357 H ARG 358 114.342 37.776 21.138 1.00 25.00 3359 1HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3336 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3336 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 33355 C SER 359 110.363 44.464 20.625 1.00 47.98 3366 O SER 359 110.363 44.464 20.625 1.00 47.98 3368 OG SER 359 110.315 45.879 20.050 1.00 51.38 349 O GLU 367 100.461 39.966 29.507 1.00 31.55 3369 H SER 359 110.450 45.839 18.639 1.00 63.31 36.84 CB II.2 367 100.461 39.966 29.507 1.00 31.55 3369 H SER 359 110.450 45.839 18.639 1.00 63.31 34.88 C GLU 367 100.461 39.966 29.507 1.00 31.55 3369 H SER 359 110.450 45.839 18.639 1.00 63.31 34.89 O GLU 367 100.461 39.966 29.507 1.00 31.55 3369 H SER 359 110.450 45.839 18.639 1.00 63.31																		
3351 CG									50									
3353 NE	3351 CG	ARG			39.872			43.66	30			ALA		106.134				30.11
3354 CZ ARG 358 114.997 38.783 22.618 1.00 43.84 34.52 CB ALA 365 107.482 41.585 30.140 1.00 31.82 3355 NH1 ARG 358 115.836 39.754 22.951 1.00 49.95 3426 H ALA 365 106.191 40.762 28.123 1.00 25.00 3357 H ARG 358 113.664 43.136 18.368 1.00 25.00 55 3428 C ILE 366 104.548 42.708 29.992 1.00 33.54 1.00 33.54 N SER 359 110.506 39.958 23.915 1.00 25.00 34.30 O ILE 366 103.512 43.653 30.417 1.00 32.06 33.51 HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3430 O ILE 366 103.512 43.653 30.417 1.00 31.04 3360 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 34.31 CB ILE 366 103.035 44.582 29.255 1.00 33.17 3361 HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 34.31 CB ILE 366 103.035 44.582 29.255 1.00 33.17 3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 34.31 CB ILE 366 103.035 44.582 29.255 1.00 33.87 3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3366 O SER 359 10.848 43.888 20.767 1.00 48.46 34.36 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 110.315 45.879 20.050 1.00 51.38 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 110.450 45.839 18.639 1.00 63.31																		
3355 NH1 ARG 358 115.836 39.754 22.951 1.00 49.95 3426 H ALA 365 106.191 40.762 28.123 1.00 25.00 33.56 NH2 ARG 358 114.389 38.089 23.571 1.00 45.03 355 NH2 ARG 358 114.389 38.089 23.571 1.00 25.00 55 3427 N ILE 366 104.548 42.708 29.992 1.00 33.54 3358 HE ARG 358 114.142 37.776 21.138 1.00 25.00 3428 CA ILE 366 103.512 43.653 30.417 1.00 33.21 3358 HE ARG 358 116.301 40.282 22.241 1.00 25.00 3430 O ILE 366 102.287 42.889 30.922 1.00 31.04 3360 21.114 37.756 32.315																		
3357 H ARG 358 113.664 43.136 18.368 1.00 25.00 55 3428 CA ILE 366 103.512 43.653 30.417 1.00 33.21 3358 HE ARG 358 114.142 37.776 21.138 1.00 25.00 3429 C ILE 366 102.287 42.889 30.922 1.00 29.56 3359 1HH1 ARG 358 116.301 40.282 22.241 1.00 25.00 3430 O ILE 366 101.743 43.199 31.987 1.00 31.04 3360 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3431 CB ILE 366 101.743 43.199 31.987 1.00 33.17 3361 1HH2 ARG 358 113.755 37.355 23.327 1.00 25.00 3432 CG1 ILE 366 104.264 45.455 28.823 1.00 30.87 3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 3433 CG2 ILE 366 104.264 45.455 29.674 1.00 28.96 3363 N SER 359 111.270 43.639 19.826 1.00 50.59 60 3434 CD1 ILE 366 104.869 42.731 29.067 1.00 25.00 33364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 3366 O SER 359 108.948 43.888 20.767 1.00 48.46 3436 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 10.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.945 40.439 31.929 1.00 30.58 3368 O SER 359 110.450 45.839 18.639 1.00 65.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 3369 H																28.123		
3358 HE ARG 358 114.142 37.776 21.138 1.00 25.00 3429 C ILE 366 102.287 42.889 30.922 1.00 29.56 3359 1HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3430 O ILE 366 102.287 42.889 30.922 1.00 31.04 3360 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3431 CB ILE 366 102.287 42.889 31.987 1.00 31.04 3360 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3431 CB ILE 366 103.035 44.582 29.255 1.00 33.17 3361 1HH2 ARG 358 113.755 37.355 23.327 1.00 25.00 3431 CB ILE 366 104.264 45.455 28.823 1.00 30.87 3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 3433 CG2 ILE 366 101.908 45.453 29.674 1.00 28.96 3363 N SER 359 111.270 43.639 19.826 1.00 50.59 60 3434 CD1 ILE 366 103.987 46.289 27.599 1.00 35.02 3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 3355 C SER 359 108.948 43.888 20.767 1.00 48.46 3436 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 108.247 44.177 21.737 1.00 46.16 3437 CA GLU 367 100.726 41.061 30.548 1.00 30.13 3367 CB SER 359 110.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78									55									
3359 1HH1 ARG 358 116.301 40.282 22.241 1.00 25.00 3430 O ILE 366 101.743 43.199 31.987 1.00 31.04 3360 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3431 CB ILE 366 103.035 44.582 29.255 1.00 33.17 3361 1HH2 ARG 358 113.755 37.355 23.327 1.00 25.00 3431 CB ILE 366 104.264 45.455 28.823 1.00 30.87 3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 3433 CG ILE 366 101.908 45.453 29.674 1.00 28.96 3363 N SER 359 111.270 43.639 19.826 1.00 50.59 60 3434 CD ILE 366 103.987 46.289 27.599 1.00 35.02 3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 33355 C SER 359 108.247 44.177 21.737 1.00 48.46 3436 N GLU 367 101.874 41.875 30.167 1.00 28.47 3367 CB SER 359 103.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.461 30.548 1.00 30.58 3368 OG SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 38.878 33.																		
3360 2HH1 ARG 358 116.006 39.958 23.915 1.00 25.00 3431 CB ILE 366 103.035 44.582 29.255 1.00 33.17 3361 1HH2 ARG 358 113.755 37.355 23.327 1.00 25.00 3432 CG1 ILE 366 104.264 45.455 28.823 1.00 30.87 3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 34.33 CG2 ILE 366 104.264 45.455 28.823 1.00 30.87 3363 N SER 359 111.270 43.639 19.826 1.00 50.59 60 34.34 CD1 ILE 366 103.987 46.289 27.599 1.00 35.02 3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 3355 C SER 359 108.948 43.888 20.767 1.00 48.46 34.36 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 108.247 44.177 21.737 1.00 46.16 34.37 CA GLU 367 100.726 41.061 30.548 1.00 30.13 3367 CB SER 359 110.315 45.879 20.050 1.00 51.38 34.38 C GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 33.87 CA GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78 33.87 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3369 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 CA GLU 367 100.461 39.966 29.507 1.00 38.78 3368 C																		
3362 2HH2 ARG 358 114.562 38.301 24.533 1.00 25.00 60 3433 CG2 ILE 366 101.908 45.453 29.674 1.00 28.96 3363 N SER 359 111.270 43.639 19.826 1.00 50.59 60 3434 CD1 ILE 366 103.987 46.289 27.599 1.00 35.02 3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 355 C SER 359 108.948 43.888 20.767 1.00 48.46 3436 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 108.247 44.177 21.737 1.00 46.16 3437 CA GLU 367 100.726 41.061 30.548 1.00 30.13 3367 CB SER 359 110.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.945 40.439 31.929 1.00 30.58 3368 OG SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78	3360 2HH1	ARG	358	116.006	39.958	23.915	1.00	25.00		3431 C	СВ	ILE	366	103.035	44.582	29.255	1.00	33.17
3363 N SER 359 111.270 43.639 19.826 1.00 50.59 60 3434 CD1 ILE 366 103.987 46.289 27.599 1.00 35.02 3356 C SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 3355 C SER 359 108.948 43.888 20.767 1.00 48.46 3436 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 108.247 44.177 21.737 1.00 46.16 3437 CA GLU 367 100.726 41.061 30.548 1.00 30.13 3367 CB SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
3364 CA SER 359 110.363 44.464 20.625 1.00 47.98 3435 H ILE 366 104.869 42.731 29.067 1.00 25.00 3355 C SER 359 108.948 43.888 20.767 1.00 48.46 3436 N GLU 367 101.874 41.875 30.167 1.00 28.47 3366 O SER 359 108.247 44.177 21.737 1.00 46.16 3437 CA GLU 367 100.726 41.061 30.548 1.00 30.13 3367 CB SER 359 110.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.945 40.439 31.929 1.00 30.58 3368 OG SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78									60									
3366 O SER 359 108.247 44.177 21.737 1.00 46.16 3437 CA GLU 367 100.726 41.061 30.548 1.00 30.13 3367 CB SER 359 110.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.945 40.439 31.929 1.00 30.58 3368 OG SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78																		
3367 CB SER 359 110.315 45.879 20.050 1.00 51.38 3438 C GLU 367 100.945 40.439 31.929 1.00 30.58 3368 OG SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78																		
3368 OG SER 359 110.450 45.839 18.639 1.00 63.31 3439 O GLU 367 100.029 40.407 32.754 1.00 31.55 3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78																		
3369 H SER 359 111.730 44.045 19.067 1.00 25.00 65 3440 CB GLU 367 100.461 39.966 29.507 1.00 38.78																		
3370 HG SER 359 111.323 45.514 18.419 1.00 25.00 3441 CG GLU 367 100.228 40.472 28.074 1.00 52.31									65									
	3370 HG	SER	359	111.323	45.514	18.419	1.00	25.00		3441 C	CG	GLU	367	100.228	40.472	28.074	1.00	52.31

TABLE 11-continued TABLE 11-continued

s	Structura			of Tobacco bsence of			ne Synt	hase	5		Structur			of Tobacco			ne Syn	thase
Atom			Resi-							Atom			Resi-	-				
Atom		Resi-				_		-		Atom		Resi-				_		-
Туре	Atom	due	#	X	Y	Z	OCC	B-factor		Туре	Atom	due	#	X	Y	Z	OCC	B-factor
3442 3443		GLU	367 367	99.180 98.144		27.970	1.00	62.83 55.58	10	3513 3514		ARG	374 374	95.422 94.613	41.667	41.093 41.989	1.00 1.00	31.35
	OE2	GLU GLU	367	99.395	41.525 42.523	28.675 27.168	1.00 1.00	63.90		3515		ARG ARG	374	94.013	41.933 41.519	38.689	1.00	36.45 29.25
3445		GLU	367	102.351	41.673	29.337	1.00	25.00		3516	CG	ARG	374	94.668	42.166	37.349	1.00	32.69
3446 3447		ARG ARG	368 368	102.167 102.479	39.985 39.385	32.196 33.487	1.00 1.00	28.25 21.98		3517 3518		ARG ARG	374 374	94.034 94.840	41.169 40.973	36.396 35.194	1.00 1.00	33.05 37.26
3448		ARG	368	102.479	40.420	34.607	1.00	22.36		3519		ARG	374	95.399	39.817	34.846	1.00	38.15
3449		ARG	368	102.080		35.738	1.00	22.36	15		NH1	ARG	374	95.247	38.741	35.608	1.00	41.80
3450 3451		ARG ARG	368 368	103.821 103.796		33.440 32.642	1.00 1.00	23.96 17.80		3521 3522	NH2	ARG ARG	374 374	96.114 97.230	39.738 42.625	33.733 38.677	1.00 1.00	40.61 25.00
3452		ARG	368	102.812		33.224	1.00	19.62		3523		ARG	374	94.974	41.744	34.603	1.00	25.00
3453		ARG	368	103.008		32.626	1.00	19.60			$1\mathrm{HH}1$		374	94.711	38.795	36.448	1.00	25.00
3454		ARG ARG	368 368	102.516		33.113 34.211	1.00	20.41 26.21	20		2HH1 1HH2		374 374	95.672 96.232	37.878 40.550	35.336 33.158	1.00 1.00	25.00 25.00
3455 3456	NH2	ARG	368	101.773 102.843	33.898 32.743	32.548	1.00 1.00	22.02	20		2HH2		374	96.232	38.873	33.467	1.00	25.00
3457	H	ARG	368	102.868	40.046	31.510	1.00	25.00		3528		ASN	375	96.351	40.721	41.202	1.00	31.47
3458		ARG	368	103.526		31.804	1.00	25.00		3529		ASN	375	96.458	39.883	42.388	1.00	28.79
	1HH1 2HH1		368 368	101.580 101.410	34.754 33.036	34.685 34.566	1.00 1.00	25.00 25.00		3530 3531		ASN ASN	375 375	96.897 96.561	40.652 40.266	43.625 44.746	1.00 1.00	26.40 27.83
	1HH2		368	103.454		31.755	1.00	25.00	25	3532		ASN	375	97.359	38.683	42.112	1.00	35.49
	2HH2		368	102.476	31.888	32.904	1.00	25.00		3533		ASN	375	96.744	37.720	41.111	1.00	32.04
3463 3464		MET MET	369 369	102.849 102.845	41.654 42.716	34.293 35.295	1.00 1.00	23.19 20.55			OD1 ND2	ASN ASN	375 375	95.982 97.075	38.125 36.442	40.237 41.231	1.00	33.82 34.73
3465		MET	369	101.410	43.060	35.657	1.00	20.66		3536		ASN	375	96.970	40.566	40.454	1.00	25.00
3466		MET	369	101.085	43.248	36.833	1.00	24.28			1 HD2		375	96.671	35.522	40.590	1.00	25.00
3467 3468		MET MET	369 369	103.565 103.575	43.966 45.097	34.789 35.806	$\frac{1.00}{1.00}$	24.43 27.10	30	3538 3539	2HD2	ASN TYR	375 376	97.686 97.643	36.184 41.736	41.941 43.422	1.00 1.00	25.00 32.41
3469		MET	369	103.573	46.538	35.283	1.00	33.91		3540		TYR	376	98.075	42.599	44.526	1.00	36.00
3470		MET	369	105.378		36.804	1.00	36.11		3541		TYR	376	96.803	43.220	45.101	1.00	36.51
3471		MET	369	103.151	41.852	33.380	1.00	25.00		3542		TYR	376	96.585	43.247	46.316	1.00	32.23
3472 3473		LYS LYS	370 370	100.550 99.135	43.142 43.441	34.645 34.865	$\frac{1.00}{1.00}$	27.52 27.03		3543 3544		TYR TYR	376 376	98.960 100.447	43.739 43.464	44.010 43.979	1.00 1.00	34.19 41.46
3474		LYS	370	98.572	42.392	35.817	1.00	26.80	35		CD1	TYR	376	100.993	42.339	44.601	1.00	40.12
3475		LYS	370	97.854	42.720	36.766	1.00	31.01			CD2	TYR	376	101.315	44.350	43.336	1.00	41.43
3476 3477		LYS LYS	370 370	98.361 98.699	43.415 44.546	33.545 32.591	1.00 1.00	28.62 26.77		3547 3548		TYR TYR	376 376	102.365 102.688	42.104 44.127	44.580 43.310	1.00 1.00	38.75 37.68
3478		LYS	370	97.881	44.437	31.318	1.00	32.86		3549		TYR	376	103.203	43.005	43.932	1.00	41.58
3479		LYS	370	98.174		30.371	1.00	40.98	40	3550		TYR	376	104.560	42.785	43.895	1.00	43.07
3480 3481		LYS LYS	370 370	100.870	45.502 43.001	29.099 33.729	1.00 1.00	45.53 25.00	40	3551 3552		TYR TYR	376 376	97.915 104.761	41.956 41.958	42.506 44.341	1.00 1.00	25.00 25.00
	1HZ	LYS	370	96.379	45.511	29.313	1.00	25.00		3553		ASN	377	95.965	43.713	44.194	1.00	37.58
	2HZ	LYS	370	97.630	46.314	28.492	1.00	25.00		3554		ASN	377	94.704	44.343	44.550	1.00	36.82
3484 3485	3HZ N	LYS GLU	370 3771	97.640 98.959	44.619 41.139	28.607 35.581	1.00 1.00	25.00 26.63		3555 3556		ASN ASN	377 377	93.807 93.276	43.352 43.658	45.285 46.353	1.00 1.00	35.16 35.66
3486		GLU	371	98.541	40.006	36.398	1.00	23.16	45	3557		ASN	377	94.011	44.846	43.287	1.00	38.60
3487		GLU	371	98.981	40.191	37.854	1.00	31.56		3558		ASN	377	92.858	45.770	43.587	1.00	43.38
3488 3489		GLU GLU	371 371	98.180	40.023 38.719	38.782 35.815	1.00 1.00	33.30 24.88			OD1 ND2	ASN ASN	377 377	92.949 91.774	46.628 45.622	44.462 42.838	1.00 1.00	38.97 46.57
3490		GLU	371		37.449	36.569	1.00	25.01		3561		ASN	377	96.210	43.651	43.245	1.00	25.00
3491		GLU	371		36.212	35.892	1.00	38.13			1HD2		377	91.023	46.218	43.029	1.00	25.00
3492 3493		GLU GLU	371 371	100.588	36.080 35.373	35.815 35.425	1.00 1.00	34.30 44.97	50	3563 3564	2HD2	ASN VAL	377 378	91.765 93.683	44.936 42.147	42.143 44.735	1.00 1.00	25.00 32.14
3494		GLU	371		40.972	34.811	1.00	25.00		3565		VAL	378	92.857	41.106	45.344	1.00	28.96
3495		VAL	372	100.243		38.056	1.00	29.02		3566		VAL	378	93.339	40.801	46.766	1.00	33.76
3496 3497		VAL VAL	372 372	100.765	40.789 41.869	39.406 40.126	1.00 1.00	26.07 28.22		3567 3568		VAL VAL	378 378	92.532 92.858	40.647 39.818	47.690 44.490	1.00	32.35 30.20
3498		VAL	372		41.705	41.293	1.00	27.36		3569		VAL	378	92.051	38.732	45.169	1.00	28.32
3499		VAL		102.261	41.216	39.388	1.00	27.23	55	3570	CG2	VAL	378	92.285	40.104	43.105	1.00	26.65
3500		VAL		102.738		40.801	1.00	19.82		3571		VAL	378	94.153	41.951	43.897	1.00	25.00
3501	CG2 H	VAL VAL	372 372	103.124 100.836		38.770 37.283	$\frac{1.00}{1.00}$	23.40 25.00		3572 3573		GLU GLU	379 379	94.657 95.258	40.741 40.478	46.940 48.246	1.00 1.00	36.35 38.43
3503	N	VAL	373	99.657	42.964	39.426	1.00	31.06		3574	C	GLU	379	94.875	41.598	49.209	1.00	36.80
3504		VAL	373		44.063	40.018	1.00	32.80	60	3575		GLU	379	94.579	41.352	50.383	1.00	37.49
3505 3506		VAL VAL	373 373		43.670 44.054	40.378 41.441	1.00 1.00	33.82 30.74	00	3576 3577		GLU GLU	379 379	96.780 97.544	40.395 40.416	48.114 49.436	1.00 1.00	43.01 52.96
3507		VAL	373		45.314	39.118	1.00	34.89		3578		GLU	379	99.055	40.403	49.250	1.00	61.44
3508		VAL	373		46.454	39.775	1.00	32.71		3579		GLU	379	99.526	40.225	48.107	1.00	70.64
3509 3510	CG2	VAL	373	100.345	45.741 43.0288	38.855	1.00 1.00	34.17		3580 3581	OE2	GLU	379 379	99.776 95.247	40.568 40.882	50.255	1.00	66.21 25.00
3510		VAL ARG	373 374		43.0288	38.495 39.512	1.00	25.00 31.81	65	3582		GLU SER	380	95.247	40.882	46.167 48.700	1.00 1.00	25.00 37.49
3512		ARG	374		42.447	39.789	1.00	29.59		3583		SER	380	94.531	44.003	49.480	1.00	38.42

TABLE 11-continued TABLE 11-continued

Struct	ural Co				5-Epi-A Bound Su		ne Synt	hase	5		Structur			of Tobacco		ristoloche ibstrate	ne Syn	thase
Atom			e s i - due							Atom			Resi-					
Type Ato	Res n due		#	x	Y	z	OCC	B-factor			Atom	Resi- due	#	X	Y	z	OCC	B-factor
3584 C	SEI		380	93.070	43.865	49.906	1.00	37.35	10	3655		TYR	387	88.545	37.254	52.908	1.00	38.26
3585 O 3586 CB	SEI SEI		380 380	92.740 94.721	44.018 45.264	51.085 48.634	1.00 1.00	38.35 37.87		3656 3657	CG CD1	TYR TYR	387 387	88.082 87.152	36.017 35.142	52.162 52.727	1.00	36.21 36.57
3587 OG	SEI		380	94.721	46.428	49.349	1.00	51.23			CD2	TYR	387	88.555	35.736	50.880	1.00	31.64
3588 H	SEF	ξ.	330	95.167	42.951	47.767	1.00	25.00		3659	CE1	TYR	387	86.704	34.015	52.035	1.00	32.07
3589 HG 3590 N	SEI		380	94.903	46.518	50.127	1.00	25.00		3660		TYR	387	88.112	34.616	50.178	1.00	32.41
3590 N 3591 CA	TH:		381 381	92.209 90.785	43.535 43.349	48.945 49.198	$\frac{1.00}{1.00}$	36.73 31.31	15	3661 3662		TYR TYR	387 387	87.187 86.749	33.759 32.648	50.763 50.082	1.00 1.00	34.67 38.16
3592 C	TH		381	90.574	42.286	50.278	1.00	33.52		3663		TYR	387	89.541	39.025	54.474	1.00	25.00
3593 O	TH		381	89.846	42.514	51.245	1.00	35.95		3664		TYR	387	87.147	32.629	49.211	1.00	25.00
3594 CB 3595 OG:	TH		381	90.043	42.922	47.912	1.00	27.90		3665		THR	388	89.706	34.787	54.872	1.00	45.36
3595 OG			381 381	90.230 88.564	43.914 42.762	46.894 48.174	1.00 1.00	30.65 30.75		3666 3667		THR THR	388 388	90.671 90.199	33.692 32.571	54.986 54.048	1.00 1.00	43.34 41.02
3597 H	TH		381	92.531	43.424	48.030	1.00	25.00	20	3668		THR	388	89.474	31.660	54.459	1.00	45.75
3598 HG			381	89.901	44.765	47.202	1.00	25.00		3669		THR	388	90.748	33.161	56.444	1.00	42.74
3599 N 3600 CA	TRI		382	91.246 91.124	41.146	50.137	1.00 1.00	31.98			OG1	THR THR	388 388	91.169	34.220 32.008	57.314	1.00 1.00	43.28
3600 CA 3601 C	TRI TRI		382 382	91.124	40.059 40.511	51.106 52.513	1.00	34.10 37.61		3672	CG2 H	THR	388	91.741 88.782	34.613	56.561 55.129	1.00	39.83 25.00
3602 O	TRI		382	90.840	40.145	53.490	1.00	37.71			HG1	THR	388	91.243	33.885	58.206	1.00	25.00
3603 CB	TRI		382	92.001	38.870	50.701	1.00	29.03	25	3674		PRO	389	90.575	32.649	52.761	1.00	34.93
3604 CG 3605 CD:	TRI TRI		382 382	91.465 90.298	38.064 38.272	49.553 48.872	1.00 1.00	34.52 32.13		3675 3676		PRO PRO	389 389	90.184 90.846	31.645 30.293	51.769 51.974	1.00	34.82 39.00
3606 CD			382 382	90.298	36.907	48.962	1.00	41.36		3677		PRO	389	91.864	30.293	52.658	1.00	44.20
3607 NE			382	90.141	37.315	47.897	1.00	33.27		3678		PRO	389	90.654	32.273	50.460	1.00	29.22
3608 CE2			382	91.215	36.485	47.929	1.00	39.81		3679		PRO	389	91.878	33.003	50.869	1.00	31.21
3609 CE3 3610 CZ2			382 382	93.262 91.507	36.198 35.344	49.205 47.138	1.00	42.10	30	3680		PRO PRO	389 390	91.444 90.243	33.671 29.231	52.151 51.425	1.00	33.29 39.35
3610 CZ2			382	93.552	35.082	48.417	1.00 1.00	41.24 37.35		3681 3682		PRO	390	90.243	27.896	51.566	1.00	38.80
3612 CH			382	92.676	34.669	47.396	1.00	37.45		3683		PRO	390	92.130	27.894	50.744	1.00	42.47
3613 H	TRI		382	91.841	41.035	49.370	1.00	25.00		3684		PRO	390	92.264	28.683	49.801	1.00	41.59
3614 HE: 3615 N	TRI PHI		382 383	89.384 92.551	37.250 41.317	47.275 52.601	$\frac{1.00}{1.00}$	25.00 42.79		3685 3686		PRO PRO	390 390	89.756 89.094	26.991 27.876	50.960 49.944	1.00 1.00	35.31 39.05
3616 CA	PHI		383	93.040	41.836	53.875	1.00	44.89	35	3687		PRO	390	88.968	29.177	50.690	1.00	35.38
3617 C	PHI		383	92.005	42.728	54.561	1.00	45.32		3688		VAL	391	93.070	27.015	51.085	1.00	42.92
3618 O	PHI		383	91.714	42.557	55.748	1.00	44.05		3689		VAL	391	94.367	26.947	50.396	1.00	40.91
3619 CB 3620 CG	PHI PHI		383 383	94.346 94.818	42.611 43.358	53.657 54.869	1.00 1.00	45.88 46.79		3690 3691		VAL VAL	391 391	94.310 95.026	27.035 27.832	48.869 48.266	1.00 1.00	40.48 37.26
3621 CD:			383	95.254	42.674	55.997	1.00	47.27		3692		VAL	391	95.163	25.685	50.800	1.00	42.01
3622 CD			383	94.800	44.751	54.893	1.00	50.35	40		CG1	VAL	391	96.542	25.698	50.149	1.00	37.12
3623 CE1			383	95.665	43.368	57.137	1.00	53.01			CG2	VAL	391	95.298	25.616	52.307	1.00	37.77
3624 CE2 3625 CZ	PHI PHI		383 383	95.208 95.641	45.453 44.759	56.026 57.151	1.00 1.00	50.27 48.55		3695 3696		VAL SER	391 392	92.886 93.455	26.404 26.228	51.823 48.251	1.00 1.00	25.00 37.92
3626 H	PHI		383	93.023	41.569	51.778	1.00	25.00		3697		SER	392	93.316	26.223	46.799	1.00	36.67
3627 N	ILE		384	91.482	43.677	53.803	1.00	46.83		3698		SER	392	93.065	27.627	46.253	1.00	37.70
3628 CA 3629 C	ILE ILE		384 384	90.458 89.185	44.610 43.894	54.306 54.774	1.00 1.00	46.17 47.27	45	3699 3700		SER SER	392 392	93.699 92.167	28.056 25.301	45.289 46.399	1.00 1.00	39.57 41.29
3630 O	ILE		384	88.608	44.253	55.799	1.00	47.11		3700		SER	392	91.008	25.599	47.163	1.00	53.55
3631 CB	ILE		384	90.091	45.646	53.227	1.00	41.64		3702		SER	392	92.894	25.625	48.776	1.00	25.00
3632 CG:			384	91.337	46.434	52.817	1.00	42.54		3703		SER	392	90.720	26.495	46.965	1.00	25.00
3633 CG: 3634 CD:			384 384	89.031 91.148	46.597 47.270	53.750 51.568	1.00 1.00	46.00 40.69		3704 3705		GLU GLU	393 393	92.140 91.806	28.342 29.692	46.883 46.455	1.00 1.00	35.95 34.88
3635 H	ILE		384	91.753	43.749	52.867	1.00	25.00	50	3706		GLU	393	92.951	30.643	46.783	1.00	31.14
3636 N	GL		385	88.756	42.884	54.022	1.00	45.25		3707	O	GLU	393	93.293	31.516	45.984	1.00	29.96
3637 CA	GL		385	87.554	42.123	54.360	1.00	43.73		3708		GLU	393	90.518	30.159	47.130	1.00	35.59
3638 C 3639 O	GLI GLI		385 385	87.791 36.842	41.137 40.636	55.495 56.097	1.00 1.00	46.22 51.43		3709 3710		GLU GLU	393 393	89.956 88.745	31.447 31.951	46.559 47.318	1.00	35.57 39.64
3640 CB	GL		385	87.051	41.346	53.142	1.00	42.68			OE1	GLU	393	88.064	31.141	47.985	1.00	40.88
3641 CG	GL		385	86.657	42.211	51.956	1.00	46.85	55		OE2	GLU	393	88.475	33.167	47.2242	1.00	40.96
3642 CD	GL		385	86.265	41.397	50.730	1.00	50.00		3713		GLU	393	91.694	27.967	47.669	1.00	25.00
3643 OE: 3644 OE:			385 385	86.535 85.689	40.175 41.988	50.696 49.791	$\frac{1.00}{1.00}$	44.05 52.88		3714 3715		TYR TYR	394 394	93.539 94.655	30.476 31.318	47.962 48.371	1.00 1.00	32.04 29.74
3645 H	GL		385	89.262	42.652	53.215	1.00	25.00		3716		TYR	394	95.743	31.287	47.302	1.00	31.70
3646 N	GL	ζ.	386	89.055	40.846	55.777	1.00	45.48		3717		TYR	394	96.180	32.335	46.822	1.00	33.06
3647 CA	GL		386	89.371	39.893	56.824	1.00	41.52	60	3718		TYR	394	95.238	30.844	49.706	1.00	33.01
3648 C 3649 O	GL' GL'		386 386	89.038 88.656	38.499 37.625	56.328 57.104	$\frac{1.00}{1.00}$	42.60 44.94		3719 3720	CG CD1	TYR TYR	394 394	96.546 96.585	31.520 32.876	50.059 50.392	1.00 1.00	42.08 45.51
3650 H	GL		386	89.784	41.273	55.279	1.00	25.00			CD2	TYR	394	97.752	30.815	50.021	1.00	35.80
3651 N	TY.		387	89.190	38.297	55.023	1.00	42.34		3722	CE1	TYR	394	97.791	33.517	50.675	1.00	45.10
3652 CA	TY		387	88.897	37.020	54.382	1.00	43.55	<i>(=</i>	3723		TYR	394	98.963	31.448	50.299	1.00	36.76
3653 C	TY:		387	90.042	36.010	54.474	1.00	45.46	65	3724		TYR	394	98.975	32.798	50.627	1.00	42.58
3654 O	TY.		387	91.191	36.329	54.162	1.00	49.16		3725	OH	TYR	394	100.164	33.430	50.915	1.00	41.43

TABLE 11-continued TABLE 11-continued

	Structur			of Tobacco			ne Synt	hase	5	Stı	ructur			of Tobacco			ne Synt	hase
Aton	2		Resi-							Atom			Resi-					
	Atom	Resi- due	#	X	Y	z	OCC	B-factor		Type A	Atom	Resi- due	#	X	Y	z	OCC	B-factor
3726	б Н	TYR	394	93.225	29.778	48.567	1.00	25.00	10	3797		THR	403	107.032	37.101	40.077	1.00	27.25
3727 3728	7 HH	TYR LEU	394 395	99.991 96.145	34.360 30.082	51.082 46.909	1.00 1.00	25.00 28.83		3798 (3799 (THR THR	403 403	107.499 107.060	37.495 39.323	39.009 41.246	$\frac{1.00}{1.00}$	29.50 29.54
	CA	LEU	395	97.189	29.897	45.910	1.00	26.16		3800 (THR	403	107.000	38.954	41.781	1.00	24.64
3730) C	LEU	395	96.865	30.472	44.541	1.00	29.12		3801	CG2	THR	403	106.339	40.267	42.203	1.00	26.87
3731		LEU	395	97.737	31.063	43.901	1.00	28.83		3802 H		THR	403	104.707	37.143	42.086	1.00	25.00
	2 CB 3 CG	LEU LEU	395 395	97.550 98.263	28.415 27.754	45.770 46.951	1.00 1.00	28.06 27.93	15	3803 H 3804 N		THR TYR	403 404	108.248 107.120	38.543 35.833	42.630 40.474	1.00 1.00	25.00 25.89
	CD1	LEU	395	98.511	26.290	46.636	1.00	28.97		3805 (TYR	404	107.914	34.860	39.728	1.00	22.27
	CD2	LEU	395	99.575	28.475	47.245	1.00	24.02		3806 (TYR	404	107.544	34.611	38.272	1.00	24.30
3736 3737		LEU SER	395 396	95.720 95.620	29.293 30.324	47.301 44.093	1.00 1.00	25.00 29.97		3807 (3808 (TYR TYR	404 404	108.439 108.062	34.511 33.551	37.434 40.509	1.00 1.00	26.21 30.29
	CA	SER	396	95.020	30.836	42.780	1.00	32.88		3809 (TYR	404	109.278	33.544	41.419	1.00	30.29
3739		SER	396	95.535	32.329	42.624	1.00	28.77	20	3810		TYR	404	109.800	34.736	41.922	1.00	31.88
3740		SER	396	95.715	32.818	41.508	1.00	27.80		3811 (TYR	404	109.925	32.352	41.755	1.00	28.35
	LCB LOG	SER SER	396 396	93.770 92.896	30.518 30.992	42.465 43.472	1.00 1.00	39.24 46.99		3812 C		TYR TYR	404 404	110.937 111.065	34.747 32.353	42.732 42.569	1.00 1.00	30.99 29.01
3743		SER	396	94.943	29.866	44.642	1.00	25.00		3814		TYR	404	111.563	33.558	43.051	1.00	29.70
	HG	SER	396	92.971	31.948	43.546	1.00	25.00		3815 (TYR	404	112.683	33.593	43.847	1.00	27.42
3745	N 5 CA	ASN	397 397	95.597 95.907	33.046 34.472	43.745 43.723	1.00 1.00	25.18 29.15	25	3816 I 3817 I		TYR TYR	404 404	106.644 113.022	35.551 32.697	41.285 43.955	1.00 1.00	25.00 25.00
3747		ASN ASN	397 397	93.907	34.472	44.226	1.00	29.13		3818 N		TYR	404	106.253	34.508	37.952	1.00	24.23
3748		ASN	397	98.106	35.459	43.588	1.00	28.50		3819	CA	TYR	405	105.844	34.306	36.553	1.00	24.60
	CB	ASN	397	94.909	35.264	44.577	1.00	29.41		3820 0		TYR	405	106.361	35.507	35.766	1.00	23.35
	CG OD1	ASN ASN	397 397	95.146 94.831	36.770 37.404	44.505 43.502	1.00 1.00	35.89 37.46	**	3821 C		TYR TYR	405 405	106.912 104.317	35.378 34.292	34.672 36.406	1.00 1.00	23.93 25.23
	ND2	ASN	397	95.715	37.343	45.564	1.00	30.17	30	3823		TYR	405	103.593	33.163	37.099	1.00	24.35
3753		ASN	397	95.421	32.602	44.603	1.00	25.00		3824 0		TYR	405	103.561	31.879	36.548	1.00	23.45
	HD2		397	95.872	38.310	45.510	1.00	25.00		3825		TYR	405	102.894	33.390	38.282	1.00	23.55
3756	5 2HD2 5 N	ASN	397 398	95.953 97.682	36.794 34.123	46.336 45.351	$\frac{1.00}{1.00}$	25.00 26.89		3826 C		TYR TYR	4005 405	102.846 102.179	30.852 32.374	37.161 38.901	$\frac{1.00}{1.00}$	23.28 27.86
	7 CA	ALA	398	98.986	34.300	45.980	1.00	24.87	25	3828		TYR	405	102.155	31.111	38.337	1.00	26.80
3758		ALA	398	100.205	33.854	45.178	1.00	28.89	35	3829 (TYR	405	101.428	30.121	38.956	1.00	26.06
3759 3760) CB	ALA ALA	398 398	101.303 98.992	34.358 33.648	45.395 47.337	$\frac{1.00}{1.00}$	31.67 24.15		3830 H 3831 H		TYR TYR	405 405	105.577 101.510	34.557 29.308	38.658 38.452	1.00 1.00	25.00 25.00
3761		ALA	398	97.035	33.533	45.770	1.00	25.00		3832 N		TYR	406	106.160	36.676	36.363	1.00	23.37
3762		LEU	399	100.039	32.910	44.262	1.00	27.33		3833 (CA	TYR	406	106.553	37.964	35.813	1.00	21.93
	CA	LEU LEU	399 399	101.181	32.484 33.589	43.474 42.617	1.00	29.45 32.27	40	3834 (3835 (TYR TYR	406	108.072	38.084	35.621 34.538	1.00	25.55
3764 3765		LEU	399	101.755 102.967	33.807	42.603	1.00 1.00	34.30	70	3836 (TYR	406 406	108.535 106.021	38.439 39.047	36.751	1.00 1.00	24.19 22.96
	3 СВ	LEU	399	100.823	31.254	42.611	1.00	25.44		3837		TYR	406	106.379	40.468	36.408	1.00	21.90
	7 CG	LEU	399	100.621	29.949	43.390	1.00	24.86		3838 0		TYR	406	106.352	40.926	35.093	1.00	20.58
	3 CD1 9 CD2	LEU LEU	399 399	100.172 101.900	28.853 29.549	42.451 44.104	1.00 1.00	20.68 22.68		3839 C		TYR TYR	406 406	106.703 106.634	41.375 42.252	37.416 34.796	1.00 1.00	27.70 21.17
3770		LEU	399	99.159	32.500	44.121	1.00	25.00	45	3841		TYR	406	106.985	42.700	37.128	1.00	24.51
3771		ALA	400	100.887	34.336	41.943	1.00	29.07		3842 C		TYR	406	106.947	43.131	35.820	1.00	23.02
	2 CA	ALA	400 400	101.343	36.434	41.094	1.00	31.03		3843 (TYR	406 406	107.207	44.449	35.541	1.00	28.99
3773 3774		ALA ALA	400	101.939 102.813	36.601 37.303	41.882 41.373	$\frac{1.00}{1.00}$	29.34 26.86		3844 I 3845 I		TYR TYR		105.729 107.398	36.670 44.923	37.238 36.351	1.00 1.00	25.00 25.00
3775	CB	ALA	400	100.215	35.925	40.192	1.00	32.40		3846 N	N	LEU		108.844	37.750	36.652	1.00	25.38
3776		ALA	400	99.932	34.143	42.022	1.00	25.00	50	3847 (LEU	407	110.303	37.826	36.574	1.00	23.31
3777 3778	N BCA	THR THR	401 401	101.500 102.024	36.796 37.896	43.125 43.929	1.00 1.00	27.66 30.92		3848 (3849 (LEU LEU	407 407	110.373 111.803	36.825 37.147	35.575 34.836	1.00 1.00	20.18 22.15
3779		THR	401	103.505	37.728	44.303	1.00	35.35		3850 C		LEU	407	110.940	37.620	37.952	1.00	20.82
3780		THR	401	104.118	38.649	44.847	1.00	36.05		3851		LEU		110.514	38.602	39.048	1.00	25.79
	CB COG1	THR THR	401 401	101.170 101.106	38.174 37.007	45.194 46.021	$\frac{1.00}{1.00}$	27.88 27.11		3852 C		LEU LEU	407 407	111.362 110.636	38.376 40.045	40.287 38.562	$\frac{1.00}{1.00}$	24.12 15.72
	3 CG2	THR	401	99.768	38.593	44.803	1.00	25.60	55	3854 I		LEU		108.434	37.445	37.475	1.00	25.00
3784	‡ Н	THR	401	100.837	36.193	43.521	1.00	25.00		3855 N		ALA	408	110.299	35.625	35.539	1.00	14.35
	HG1	THR	401	101.990	36.769 36.558	48.324	1.00	25.00		3856 (ALA	408	110.747	34.591 35.083	34.609 33.183	1.00	17.38
3786 3787	7 CA	THR THR	402 402	104.076 105.492	36.558 36.310	44.016 44.295	$\frac{1.00}{1.00}$	30.98 28.76		3857 (3858 (ALA ALA	408 408	110.520 111.382	34.931	32.318	$\frac{1.00}{1.00}$	22.75 25.21
3788	3 C	THR	402	106.317	37.040	43.240	1.00	28.41		3859	СВ	ALA	408	109.991	33.293	34.852	1.00	17.26
3789) O	THR	402	107.509	37.248	43.422	1.00	30.86	60	3860 I		ALA	408	109.560	35.429	36.149	1.00	25.00
	CB OG1	THR THR	402 402	105.861 105.656	34.807 34.372	44.173 42.820	$\frac{1.00}{1.00}$	24.70 22.39		3861 N 3862 C		THR THR	409 409	109.362 109.037	35.695 36.228	32.949 31.632	1.00 1.00	23.86 22.93
	2 CG2	THR	402	105.030	33.954	45.117	1.00	21.26		3863 (THR	409	110.012	37.353	31.294	1.00	25.61
3793	3 H	THR	402	103.554	35.829	43.612	1.00	25.00		3864 (С	THR	409	110.507	37.443	30.165	1.00	26.75
	HG1	THR	402	105.851	33.431	42.770	1.00	25.00	65	3865 (THR	409	107.598	36.776	31.589	1.00	26.26
3795 3796	N 6 CA	THR THR	403 403	105.656 106.207	37.373 38.045	42.130 40.946	1.00 1.00	28.49 25.51	65	3866 C		THR THR	409 409	106.689 107.222	35.765 37.170	32.042 30.173	1.00 1.00	26.48 18.58
3/90	CA	ипк	403	100.207	30.043	40.940	1.00	23.31		300/ C	JU2	IHK	409	107.222	37.170	30.173	1.00	10.38

TABLE 11-continued

Structur			of Tobacco bsence of			ne Synt	hase	5	Structur			of Tobacco			ne Syn	thase
		Resi	-								Resi-					
Atom	Resi-	due			_				Atom	Resi-	due			_		
Type Atom	due	#	X	Y	Z	occ	B-factor		Type Atom	due	#	X	Y	Z	occ	B-factor
3868 H 3869 HG1	THR THR	409 409	108.709 106.917	35.780 35.516	33.672 32.932	1.00 1.00	25.00 25.00	10	3939 C 3940 O	SER SER	417 417	116.247 115.637	33.395 32.518	21.833 21.226	1.00 1.00	34.08 35.80
3870 N	THR	410	110.316	38.185	32.287	1.00	26.70		3940 CB	SER	417	118.580	32.488	21.823	1.00	39.51
3871 CA	THR	410	111.233	39.299	32.095	1.00	26.67		3942 OG	SER	417	119.907	32.675	21.358	1.00	45.86
3872 C 3873 O	THR THR	410 410	112.650 113.298	38.835 39.411	31.757	$\frac{1.00}{1.00}$	29.09		3943 H	SER	417 417	118.485 120.288	34.856 33.461	23.077 21.743	1.00	25.00 25.00
3874 CB	THR	410	113.298	40.208	30.877 33.333	1.00	29.16 28.30		3944 HG 3945 N	SER ALA	418	115.688	34.106	22.806	1.00	30.28
3875 OG1	THR	410	109.962	40.684	33.626	1.00	30.05	15	3946 CA	ALA	418	114.303	33.879	23.208	1.00	38.39
3876 CG2	THR	410	112.189	41.404	33.082	1.00	28.81		3947 C	ALA	418	113.331	34.250	22.087	1.00	40.58
3877 H 3878 HG1	THR THR	410 410	109.905 109.991	38.064 41.259	33.169 34.393	$\frac{1.00}{1.00}$	25.00 25.00		3948 O 3949 CB	ALA ALA	418 418	113.145 113.981	35.427 34.659	21.779 24.484	1.00 1.00	42.57 32.32
3879 N	SER	411	113.105	37.760	32.399	1.00	24.71		3950 H	ALA	418	116.190	34.823	23.238	1.00	25.00
3880 CA	SER	411	114.452	37.254	32.155	1.00	24.18	20	3951 N	THR	419	112.750	33.232	21.457	1.00	41.43
3881 C 3882 O	SER SER	411 411	114.688 115.822	36.909 36.964	30.687 30.204	1.00 1.00	25.08 27.75	20	3952 CA 3953 C	THR THR	419 419	111.799 110.357	33.420 33.504	220.362 20.865	1.00 1.00	41.21 40.11
3883 CB	SER	411	114.753	36.048	33.043	1.00	20.40		3954 O	THR	419	110.077	33.235	22.036	1.00	39.88
3884 OG	SER	411	114.010	34.914	32.644	1.00	21.48		3955 CB	THR	419	111.892	32.264	19.338	1.00	39.89
3885 H	SER	411	112.534	37.287	33.041	1.00	25.00		3956 OG1	THR	419 419	111.666	31.016	20.005	1.00	50.18
3888 HG 3887 N	SER TYR	411 412	114.205 113.613	34.667 36.573	31.738 29.979	1.00 1.00	25.00 23.79	25	3957 CG2 3958 H	THR THR	419	113.261 112.987	32.238 32.335	18.672 21.728	1.00	37.82 25.00
3888 CA	TYR	412	113.692	36.227	28.562	1.00	24.39	23	3959 HG1	THR	419	112.370	30.881	20.644	1.00	25.00
3889 C	TYR	412	113.8774		27.655	1.00	25.24		3960 N	GLU	420	109.443	33.848	19.963	1.00	39.64
3890 O 3891 CB	TYR TYR	412 412	114.437 112.419	37.326 35.511	26.570 28.116	1.00 1.00	27.76 25.37		3961 CA 3962 C	GLU GLU	420 420	108.027 107.496	33.958 32.650	20.292 20.871	1.00	39.75 35.49
3892 CG	TYR	412	112.273	34.072	28.539	1.00	29.38		3963 O	GLU	420	106.718	32.652	21.828	1.00	35.76
3893 CD1	TYR	412	113.043	33.531	29.569	1.00	29.32	30	3964 CB	GLU	420	107.222	34.321	19.041	1.00	46.65
3894 CD2	TYR	412	111.338	33.248	27.910	1.00	24.28		3965 CG	GLU	420	106.741	35.765 36.081	18.980	1.00	56.30
3895 CE1 3896 CE2	TYR TYR	412 412	112.878 111.169	32.199 31.927	29.964 28.291	1.00 1.00	26.36 25.08		3966 CD 3967 OE1	GLU GLU	420 420	105.668 104.685	35.311	20.015 20.130	1.00	65.12 62.03
3897 CZ	TYR	412	111.937	31.408	29.318	1.00	29.45		3968 OE2	GLU	420	105.804	37.112	20.707	1.00	72.02
3898 OH	TYR	412	111.750	30.099	29.693	1.00	27.61		3969 H	GLU	420	109.732	34.021	19.047	1.00	25.00
3899 H 3900 HH	TYR TYR	412 412	112.738 112.347	36.552 29.879	30.423 30.418	1.00 1.00	25.00 25.00	35	3970 N 3971 CA	GLN GLN	421 421	107.938 107.520	31.537 30.206	20.291 20.722	1.00	32.71 36.14
3901 N	LEU	413	113.396	38.604	28.100	1.00	25.11		3972 C	GLN	421	107.883	29.959	22.184	1.00	36.63
3902 CA	LEU	413	113.467	39.832	27.304	1.00	27.32		3973 O	GLN	421	107.105	29.365	22.936	1.00	37.57
3903 C 3904 O	LEU LEU	413 413	114.835 114.957	40.149 40.434	26.726 25.533	$\frac{1.00}{1.00}$	30.49 30.50		3974 CB 3975 CG	GLN GLN	421 421	108.155 107.622	29.133 29.086	19.830 18.398	1.00	40.03 53.07
3905 CB	LEU	413	112.959	41.039	28.103	1.00	23.58		3976 CD	GLN	421	107.819	30.390	17.636	1.00	62.17
3906 CG	LEU	413	111.476	41.081	28.478	1.00	31.45	40	3977 OE1	GLN	421	108.877	31.017	17.711	1.00	65.66
3907 CD1 3908 CD2	LEU LEU	413 413	111.179 110.613	42.362 40.996	29.242 27.231	$\frac{1.00}{1.00}$	31.49 30.34		3978 NE2 3979 H	GLN GLN	421 421	106.788 108.580	30.815 31.620	16.917 19.555	1.00 1.00	68.97 25.00
3908 CD2	LEU	413	112.980	38.636	28.989	1.00	25.00		3980 1HE2		421	106.906	31.650	16.419	1.00	25.00
3910 N	GLY	414	115.859	40.098	27.573	1.00	28.96		3981 2HE2	GLN	421	105.963	30.289	16.903	1.00	25.00
3911 CA	GLY	414	117.203	40.404	27.129	1.00	27.47		3982 N	ASP	422	109.052	30.448	22.589	1.00	34.98
3912 C 3913 O	GLY GLY	414 414	117.990 119.186	39.233 39.362	26.586 26.340	1.00 1.00	28.88 34.59	45	3983 CA 3984 C	ASP ASP	422 422	109.521 108.607	30.292 31.039	23.960 24.924	1.00	32.53 30.54
3914 H	GLY	414	115.698	39.833	28.496	1.00	25.00		3985 O	ASP	422	108.272	30.525	25.992	1.00	33.81
3915 N	MET		117.353	38.079	26.436	1.00	29.79		3986 CB	ASP	422	110.972	30.767	24.085		28.20
3916 CA 3917 C	MET MET		118.043 117.861	36.909 36.868	25.906 24.393	$\frac{1.00}{1.00}$	29.75 35.70		3987 CG 3988 OD1	ASP ASP	422 422	111.929 111.755	29.945 28.710	23.233 23.148	1.00	28.18 33.24
3918 O	MET		116.795	36.522	23.893	1.00	39.21	50	3989 OD2	ASP	422	112.855	30.529	22.638	1.00	33.81
3919 CB	MET		117.515	35.630	26.554	1.00	22.67	50	3990 H	ASP	422	109.610	30.933	21.946	1.00	25.00
3920 CG 3921 SD	MET MET		117.728 117.062	35.581 34.095	28.050 28.794	1.00 1.00	23.60 32.91		3991 N 3992 CA	PHE PHE	423 423	108.166 107.261	32.229 33.022	24.523 25.348	1.00	29.33 28.15
3922 CE	MET		118.255	32.896	28.242	1.00	24.83		3993 C	PHE	423	105.877	32.373	25.407	1.00	29.51
3923 H	MET	415	116.398	38.012	26.652	1.00	25.00		3994 O	PHE	423	105.205	32.424	26.441	1.00	30.32
3924 N	LYS		118.933	37.181	23.677 22.218	1.00	40.25 43.20	55	3995 CB 3996 CG	PHE	423	107.143	34.448	24.808	1.00	31.32
3925 CA 3926 C	LYS LYS		118.942 118.370	37.233 36.031	21.466	1.00 1.00	42.08		3990 CG 3997 CD1	PHE PHE	423 423	108.275 108.227	35.353 36.045	25.214 26.421	1.00	27.99 26.74
3927 O	LYS		118.037	36.143	20.289	1.00	44.24		3998 CD2	PHE	423	109.375	35.529	24.387	1.00	26.53
3928 CB	LYS		120.362	37.539	21.735	1.00	48.69		3999 CE1	PHE	423	109.255	36.900	26.794	1.00	21.72
3929 CG 3930 CD	LYS LYS		120.916 122.427	38.828 38.949	22.333 22.191	1.00 1.00	60.37 70.42		4000 CE2 4001 CZ	PHE PHE	423 423	110.412 110.350	36.385 37.070	24.753 25.958	1.00 1.00	23.04 23.46
3931 CE	LYS		122.936	40.173	22.949	1.00	72.06	60	4002 H	PHE	423	108.456	32.575	23.652	1.00	25.00
3932 NZ	LYS	416	124.412	40.319	22.863	1.00	78.00		40003 N	GLU	424	105.450	31.771	24.297	1.00	30.80
3933 H 3934 1HZ	LYS LYS		119.749 124.870	37.416 39.475	24.164 23.262	1.00 1.00	25.00		4004 CA 4005 C	GLU GLU	424 424	104.146 104.128	31.107 29.911	24.233 25.172	1.00 1.00	36.62 34.48
3934 THZ 3935 2HZ	LYS		124.870	39.473 40.423	23.262	1.00	25.00 25.00		4005 C 4006 O	GLU	424 424	104.128	29.651	25.172	1.00	34.48 34.44
3938 3HZ	LYS		124.709	41.163	23.393	1.00	25.00		4007 CB	GLU	424	103.823	30.661	22.805	1.00	42.57
3937 N	SER		118.239	34.893	22.138	1.00	39.46	65	4008 CG	GLU	424	103.590	31.813	21.839	1.00	63.38
3938 CA	SER	417	117.706	33.698	21.491	1.00	36.96		4009 CD	GLU	424	103.322	31.357	20.414	1.00	70.12

TABLE 11-continued

Sta	ructura			of Tobacco			ne Synt	thase	5	Struc	ctur			of Tobacco			ne Synt	hase
			Resi-						5				Resi-					
Atom		Resi-	due							Atom		Resi-	due					
Type A	A tom	due	#	X	Y	Z	OCC	B-factor		Type Ate	om	due	#	X	Y	Z	OCC	B-factor
4010 (GLU	424	103.895	30.329	19.988	1.00	72.19	10	4081 CE		LYS	431	105.000	21.252	35.325	1.00	26.70
4011 C 4012 H		GLU GLU	424 424	102.543 106.023	32.039 31.773	19.715 23.503	$\frac{1.00}{1.00}$	79.30 25.00		4082 CC 4083 CE		LYS LYS	431 431	104.584 104.361	20.547 19.068	36.604 36.330	1.00 1.00	40.34 52.65
4013 N		TRP	425	105.242	29.187	25.221	1.00	32.02		4084 CE	3	LYS	431	103.775	18.345	37.531	1.00	60.92
4014 (TRP	425	105.367	28.038	26.107	1.00	28.78		4085 NZ	Z	LYS	431	103.587	16.892	37.247	1.00	58.59
4015 (4016 (TRP TRP	425 425	105.262 104.518	28.531 27.974	27.553 28.365	1.00 1.00	33.19 30.47		4086 H 4087 1H	17.	LYS LYS	431 431	104.6f0 102.939	22.777 16.775	33.352 36.442	$\frac{1.00}{1.00}$	25.00 25.00
4017		TRP	425	106.719	27.352	25.881	1.00	29.01	15	4088 2H		LYS	431	104.506	16.482	37.018	1.00	25.00
4018		TRP	425	107.077	26.340	26.927	1.00	29.69		4089 3H	ΙZ	LYS	431	103.189	16.424	38.086	1.00	25.00
4019 C 4020 C		TRP TRP	425 425	106.621 107.970	25.058 26.530	27.019 28.034	1.00 1.00	28.88 29.87		4090 N 4091 CA	١.	ILE ILE	432 432	107.401 108.667	23.338 23.774	35.353 35.934	1.00 1.00	25.03 21.64
4021 N		TRP	425	107.171	24.437	28.116	1.00	29.58		4092 C	•	ILE	432	108.561	25.188	36.505	1.00	24.42
4022 (TRP	425	108.003	25.316	28.757	1.00	32.75	20	4093 O		ILE	432	109.058	25.459	37.602	1.00	25.07
4023 C 4024 C		TRP TRP	425 425	108.742 108.781	27.609 25.149	28.488 29.912	1.00 1.00	30.70 27.26	20	4094 CE 4095 CC		ILS ILE	432 432	109.847 111.179	23.648 23.898	34.928 35.647	1.00 1.00	22.09 20.75
4025		TRP	425	109.514	27.444	29.638	1.00	26.04		4096 CC		ILE	432	109.662	24.587	33.739	1.00	20.73
4026		TRP	425	109.525	26.222	30.335	1.00	27.12		4097 CE) 1	ILE	432	112.403	23.511	34.838	1.00	17.10
4027 I		TRP	425	105.993	29.429	24.639 28.395	1.00	25.00		4098 H		ILE	432	107.354	23.103	34.410	1.00	25.00
4028 H 4029 N		TRP LEU	425 426	106.983 105.974	23.517 29.615	28.393	1.00 1.00	25.00 31.46	25	4099 N 4100 CA	ι.	LEU LEU	433 433	107.868 107.674	26.070 27.448	35.788 36.240	1.00 1.00	25.32 23.97
4030 0		LEU	426	105.994	30.186	29.188	1.00	28.35	23	4101 C	-	LEU	433	106.758	27.446	37.464	1.00	27.11
4031 (LEU	426	104.627	30.692	29.650	1.00	31.98		4102 O		LEU	433	107.051	28.078	38.483	1.00	28.11
4032 (4033 (LEU LEU	426 426	104.293 107.039	30.585 31.302	30.832 29.268	1.00 1.00	29.19 21.80		4103 CE 4104 CC		LEU LEU	433 433	107.057 106.721	28.298 29.754	35.126 35.473	1.00 1.00	24.53 28.30
4034		LEU	426	107.525	31.703	30.664	1.00	25.44		4105 CE		LEU	433	107.968	30.488	35.945	1.00	23.75
4035		LEU	426	108.240	30.535	31.331	1.00	20.60	30	4106 CI)2	LEU	433	106.108	30.456	34.265	1.00	27.09
4036 C 4037 I		LEU LEU	426 426	108.454 106.512	32.900 30.035	30.560 27.141	1.00 1.00	23.92 25.00		4107 H 4108 N		LEU GLU	433 434	107.456 105.667	25.788 26.698	34.948 37.360	1.00 1.00	25.00
4037 F		SER	427	103.824	31.208	28.720	1.00	33.95		4109 CA	١.	GLU	434	103.667	26.566	38.429	1.00	26.39 28.21
4039	CA	SER	427	102.497	31.722	29.066	1.00	33.39		4110 C		GLU	434	105.393	26.139	39.723	1.00	25.73
4049 (SER	427	101.502	30.647	29.502	1.00	30.91		4111 O	,	GLU	434	105.159	26.711	40.790	1.00	25.92
4041 (4042 (SER SER	427 427	100.515 101.917	30.951 32.568	30.170 27.925	1.00 1.00	31.38 37.83	35	4112 CE 4113 CC		GLU GLU	434 434	103.656 102.371	25.510 25.510	38.027 38.835	1.00 1.00	40.62 59.16
4043 (SER	427	101.970	31.892	26.683	1.00	46.06		4114 CE		GLU	434	101.447	26.650	38.457	1.00	69.11
4044 I		SER	427	104.124	31.247	27.790	1.00	25.00		4115 OE		GLU	434	101.135	26.803	37.255	1.00	76.28
4045 H 4046 N		SER LYS	427 428	102.886 101.780	31.692 29.392	26.470 29.151	1.00 1.00	25.00 30.99		4116 OE 4117 H	52	GLU GLU	434 434	101.026 105.516	27.391 26.206	39.366 36.531	$\frac{1.00}{1.00}$	78.90 25.00
4047 (LYS	428	100.914	28.271	29.518	1.00	30.38		4118 N		ALA	435	106.272	25.147	39.614	1.00	23.71
4048 (LYS	428	101.124	27.817	30.964	1.00	33.22	40	4119 CA	Α.	ALA	435	107.015	24.632	40.764	1.00	21.25
4049 (4050 (LYS LYS	428 428	100.505 101.166	26.845 27.070	31.410 28.601	1.00 1.00	34.36 33.08		4120 C 4121 O		ALA ALA	435 435	107.915 107.973	25.704 25.864	41.377 42.599	1.00 1.00	21.57 21.94
4051		LYS	428	100.690	27.213	27.166	1.00	40.80		4122 CE	3	ALA	435	107.838	23.424	40.353	1.00	17.11
4052 (LYS	428	100.885	25.888	26.433	1.00	48.04		4123 H		ALA	435	106.427	24.748	38.737	1.00	25.00
4053 C 4054 N		LYS	428 428	100.314 100.438	25.910	25.002	1.00	54.20	45	4124 N 4125 CA		SER	436	108.603	26.448	40.519 40.969	1.00 1.00	20.07
4055 I		LYS LYS	428	100.438	24.571 29.209	24.377 28.628	1.00 1.00	59.29 25.00	45	4125 CA 4126 C	1	SER SER	436 436	109.486 108.676	27.510 28.531	41.759	1.00	21.72 23.51
4056 1	ΙHΖ	LYS	428	99.919	23.866	24.937	1.00	25.00		4127 O		SER	436	109.095	28.979	42.832	1.00	25.11
4057 2		LYS	428	100.037	24.613	23.418	1.00	25.00		4128 CE		SER	436	110.147	28.179	39.765	1.00	21.38
4058 3 4059 N		LYS ASN	428 429	101.440 101.992	24.300 28.618	24.323 31.693	1.00 1.00	25.00 36.19		4129 OC 4130 H	ı	SER SER	436 436	111.040 108.521	29.196 26.272	40.173 39.556	$\frac{1.00}{1.00}$	36.67 25.00
4060		ASN	429	102.313	28.172	33.081	1.00	31.97	50	4131 HC	ì	SER	436	110.568	29.867	40.669	1.00	25.00
4061 (ASN	429	102.855	26.740	33.172	1.00	29.89		4132 N		VAL	437	107.501	28.876	41.235	1.00	23.94
4062 C 4063 C		ASN ASN	429 429	102.272 101.092	25.882 28.334	33.839 33.995	$\frac{1.00}{1.00}$	25.78 32.22		4133 CA 4134 C	4	VAL VAL	437 437	106.622 106.134	29.846 29.330	41.880 43.226	1.00 1.00	18.07 19.00
4064		ASN	429	100.814	29.782	34.358	1.00	36.78		4135 O		VAL	437	106.179	30.048	44.227	1.00	24.40
4065 C		ASN	429	101.488	30.699	33.894	1.00	40.44		4136 CE		VAL	437	105.410	30.192	40.990	1.00	22.63
4066 N 4067 H		ASN ASN	429 429	99.826 102.436	29.991 29.294	35.215 31.299	$\frac{1.00}{1.00}$	41.36 25.00	55	4137 CC 4138 CC		VAL VAL	437 437	104.498 105.879	31.163 30.794	41.709 39.677	$\frac{1.00}{1.00}$	24.13 13.85
4068 1			429	99.643	30.918	35.449	1.00	25.00		4139 H	12	VAL	437	107.218	28.463	40.391	1.00	25.00
4069 2	2HD2	ASN	429	99.331	29.226	35.566	1.00	25.00		4140 N		ILE	438	105.693	28.076	43.249	1.00	22.97
4070 N		PRO	430	103.997 104.649	26.472 25.157	32.508	1.00	29.30		4141 CA	A	ILE	438	105.204	27.443	44.472	1.00	25.17
4071 (4072 (PRO PRO	430 430	104.849	24.669	32.492 33.913	1.00 1.00	25.30 27.01		4142 C 4143 O		ILE ILE	438 438	106.279 105.996	27.478 27.831	45.566 46.718	1.00 1.00	27.56 25.37
4073 (С	PRO	430	105.218	25.483	34.801	1.00	27.38	60	4144 CE		ILE	438	104.776	25.975	44.200	1.00	28.36
4074 (PRO	430	105.975	25.447	31.799	1.00	24.23		4145 CC		ILE	438	103.565	25.952	43.262	1.00	33.63
4075 (4076 (PRO PRO	430 430	105.664 104.835	26.610 27.468	30.932 31.820	1.00 1.00	30.06 30.25		4146 CC 4147 CE		ILE ILE	438 438	104.457 103.130	25.255 24.569	45.505 42.836	1.00 1.00	31.72 33.54
4077 N		LYS	431	104.833	23.358	34.108	1.00	25.65		4148 H	-1	ILE	438	105.697		42.417	1.00	25.00
4078	CA	LYS	431	105.020	22.774	35.426	1.00	25.93		4149 N		ILE	439	107.512	27.134	45.196	1.00	27.24
4079		LYS	431	106.308	23.240	36.107	1.00	24.81	65	4150 CA	A	ILE	439	108.635		46.135	1.00	24.88
4080 (J	LYS	431	106.297	23.570	37.292	1.00	24.36		4151 C		ILE	439	108.769	28.502	46.787	1.00	20.20

TABLE 11-continued

	Structur			of Tobacco osence of		ristoloche ıbstrate	ne Syn	thase	5	Str	ructur			of Tobacco			ne Syn	thase
A +-			Resi-							A + =			Resi	-				
Aton	1	Resi-	due							Atom		Resi-	due					
Туре	Atom	due	#	X	Y	Z	OCC	B-factor		Type A	Atom	due	#	X	Y	Z	OCC	B-factor
4152		ILE	439	108.842		48.007	1.00	20.39	10	4223 C		THR	446	107.970	28.029	57.136	1.00	31.33
	CB OG1	ILE ILE	439 439	109.961 109.915	26.739 25.264	45.429 45.023	1.00 1.00	23.09 21.73		4224 H 4225 H		THR THR	446 446	106.322 107.041	30.221 26.946	54.170 54.992	1.00 1.00	25.00 25.00
	CG2	ILE	439	111.154	26.939	46.345	1.00	17.14		4226 N		ALA	447	108.266	31.687	56.318	1.00	39.84
	CD1	ILE	439	110.984		44.043	1.00	22.40		4227 (ALA	447	109.172	32.644	56.941	1.00	42.07
4157 4158		ILE CYS	439 440	107.670 108.763	26.870 29.552	44.265 45.974	1.00 1.00	25.00 21.23		4228 C 4229 C		ALA ALA	447 447	108.495 108.675	33.902 34.259	57.483 58.647	1.00 1.00	45.04 48.71
	CA	CYS	440	103.873		46.508	1.00	23.58	15	4230 C		ALA	447	110.2776	33.025	55.959	1.00	36.91
4160		CYS	440	107.718	31.209	47.458	1.00	27.42		4231 H		ALA	447	108.237	31.624	55.337	1.00	25.00
4161	O CB	CYS CYS	440 440	107.933 108.897		48.563 45.376	1.00 1.00	29.41 26.26		4232 N 4233 C		THR THR	448 448	107.708 107.036	34.565 35.799	56.644 57.039	1.00 1.00	50.59 49.97
	SG	CYS	440			45.934	1.00	17.39		4234 (THR	448	107.030	35.644	57.818	1.00	51.43
4164	Н	CYS	440	108.685	29.406	45.006	1.00	25.00		4235 C)	THR	448	105.100	36.640	58.159	1.00	56.61
4165		ARG	441	106.502		47.038	1.00	30.12	20	4236 (THR	448	106.790	36.715	55.811	1.00	47.11
4167	CA C	ARG ARG	441 4441	105.295 105.280	31.118 30.448	47.825 49.197	1.00 1.00	28.33 28.78		4237 C 4238 C		THR THR	448 448	106.095 108.106	35.986 37.214	54.793 55.245	1.00 1.00	50.09 47.36
4168		ARG	441	105.225		50.223	1.00	28.38		4239 I		THR	448	107.555	34.230	55.741	1.00	25.00
	CB	ARG	441	104.056		47.031	1.00	26.28		4240 F		THR	448	105.951	36.556	54.034	1.00	25.00
	CG CD	ARG ARG	441 441	102.722 102.312	30.927	47.734 47.725	1.00 1.00	26.09 32.68	25	4241 N 4242 C		TYR TYR	449 449	105.352 104.103	34.415 34.182	58.157 58.881	1.00 1.00	51.91 53.63
	NE	ARG	441	103.001		48.731	1.00	35.67	23	4243 (TYR	449	103.927	35.020	60.148	1.00	58.13
	CZ	ARG	441	103.243		48.611	1.00	31.42		4244 C		TYR	449	102.939	35.745	60.282	1.00	57.88
	NH1	ARG	441	102.861		47.526	1.00	25.83		4245 (TYR	449	103.926	32.696	59.218	1.00	50.75
4176	NH2 H	ARG ARG	441 441	103.851 106.413		49.591 46.165	1.00 1.00	32.87 25.00		4246 C 4247 C		TYR TYR	449 449	102.674 101.419	32.406 32.856	60.025 59.596	1.00 1.00	55.96 60.14
	HE	ARG	441	103.307		49.547	1.00	25.00	30	4248 (TYR	449	102.746	31.716	61.235	1.00	56.00
	1HH1		441	102.391	34.678	46.792	1.00	25.00	20	4249 (TYR	449	100.273	32.629	60.353	1.00	55.79
	2HH1 1HH2		441 441	103.043 104.133	36.138	47.443 50.417	1.00 1.00	25.00 25.00		4250 C 4251 C		TYR TYR	449 449	101.605 100.375	31.483 31.943	62.000 61.554	1.00 1.00	57.85 60.06
	2HH2		441	104.133	36.133	49.498	1.00	25.00		4252		TYR	449	99.250	31.724	62.316	1.00	61.67
4182	N	VAL	442	105.329	29.120	49.220	1.00	28.03		4253 H	I	TYR	449	105.912	33.653	57.905	1.00	25.00
	CA	VAL	442	105.289	28.392	50.484	1.00	29.35 29.48	35	4254 F		TYR	449 450	98.487	32.104	61.878	1.00	25.00
4184 4185		VAL VAL	442 442	106.443 106.248	28.708 28.754	51.430 52.644	1.00 1.00	29.48 30.67		4255 N 4256 C		GLU GLU	450 450	104.883 104.810	34.927 35.662	61.067 62.329	1.00 1.00	64.21 67.19
	CB	VAL	442	105.171		50.272	1.00	28.34		4257 C		GLU	450	104.604	37.167	62.173	1.00	68.02
	CG1	VAL	442	103.906	26.546	49.489	1.00	20.42		4258 C		GLU	450	103.698	37.742	62.781	1.00	68.60
4188	CG2	VAL VAL	442 442	106.394 105.405	26.322 28.625	49.562 46.376	1.00 1.00	28.17 25.00		4259 C 4260 C		GLU GLU	450 450	106.053 106.228	35.386 33.917	63.178 63.557	1.00 1.00	73.69 87.48
4190		ILE	443	107.635	28.941	50.885	1.00	32.67	40	4261		GLU	450	104.988	33.311	64.211	1.00	95.20
	CA	ILE	443	108.788	29.266	51.722	1.00	32.60		4262 C		GLU	450	104.311	34.009	65.000	1.00	100.27
4192 4193		ILE ILE	443 443	108.619 108.866	30.6722 30.908	52.283 53.469	1.00 1.00	34.90 33.18		4263 C 4264 F		GLU GLU	450 450	104.690 105.651	32.129 34.348	63.934 60.883	1.00 1.00	96.38 25.00
	CB	ILE	443	110.134	29.150	50.955	1.00	34.36		4265 N		VAL	451	105.427	37.790	61.336	1.00	69.29
	CG1	ILE	443	110.394	27.689	50.574	1.00	27.67		4266 C		VAL	451	105.351	39.228	61.091	1.00	69.79
	CG2	ILE	443	111.290	29.649	51.822	1.00	28.68	45	4267 (VAL	451	104.011	39.634	60.479	1.00	71.88
4198	CD1 H	ILE ILE	443 443	110.456 107.746		51.765 49.910	1.00 1.00	31.24 25.00		4268 C 4269 C		VAL VAL	451 451	103.383 106.482	40.594 39.692	60.925 60.149	1.00 1.00	73.87 68.77
4199		ASP	444			51.441	1.00	33.84		4270 C		VAL	451	106.490	41.211	60.036		67.70
	CA	ASP	444	107.954		51.889	1.00	35.72		4271 (VAL		107.825	39.180	60.647		74.55
4201 4202		ASP ASP	444 444	106.935 107.184		53.023 54.091	1.00 1.00	38.14 37.60	~ 0	4272 F 4273 N		VAL GLU	451 452	106.100 103.572	37.263 38.893	60.866 59.467	1.00 1.00	25.00 73.34
	CB	ASP	444	107.450		50.744	1.00	39.61	50	4274		GLU	452	102.311	39.191	58.798	1.00	74.52
	CG	ASP	444	107.110		51.199	1.00	48.15		4275 C		GLU	452	101.096	38.987	59.700	1.00	75.62
	OD11 OD2	ASP	444	105.972 107.980		51.667 51.091	1.00	51.59		4276 C 4277 C		GLU	452 452	100.107	39.715	59.575	1.00 1.00	75.03
4200		ASP ASP	444 444	107.980		50.507	1.00 1.00	51.59 25.00		4277 (GLU GLU	452	102.176 103.194	38.385 38.774	57.502 56.427	1.00	73.01 77.67
4208		ASP	445	105.812	32.279	52.803	1.00	40.33	55	4279 (CD	GLU	452	103.032	38.007	55.118	1.00	81.85
	CA	ASP	445	104.749		53.803	1.00	39.63	55	4280 C		GLU	452	102.537	36.858	55.137	1.00	80.20
4210 4211		ASP ASP	445 445	105.221 104.826		55.124 56.195	$\frac{1.00}{1.00}$	36.43 38.68		4281 C 4282 H		GLU GLU	452 452	103.417 104.100	38.558 38.124	54.061 59.165	1.00 1.00	82.09 25.00
	CB	ASP	445	103.549		53.259	1.00	34.74		4283 N		LYS	453	101.173	38.038	60.631	1.00	78.11
	CG	ASP	445	102.867		52.087	1.00	37.47		4284 (LYS	453	100.050	37.799	61.536	1.00	81.43
	OD1 OD2	ASP ASP	445 445	103.173 102.022		51.818 51.429	$\frac{1.00}{1.00}$	32.84 34.75	60	4285 C 4286 C		LYS LYS	453 453	99.887 98.768	38.943 39.393	62.532 62.783	$\frac{1.00}{1.00}$	84.49 88.82
4216		ASP	445	102.022		51.429	1.00	25.00	50	4280 C		LYS	453	98.768 100.176	36.468	62.783	1.00	88.82 79.17
4217	N	THR	446	106.061	30.574	55.047	1.00	36.21		4288 C	CG	LYS	453	98.907	36.134	63.054	1.00	78.09
	CA	THR	446	106.586		56.247	1.00	34.20		4289 (LYS	453	98.928	34.759	63.674	1.00	79.02
4219 4220		THR THR	446 446	107.469 107.396		57.034 58.259	1.00 1.00	34.56 36.69		4290 C 4291 N		LYS LYS	453 453	97.583 97.525	34.462 33.093	64.319 64.899	1.00 1.00	81.56 87.65
	CB	THR	446	107.398		55.890	1.00	29.80	65	4291 F		LYS	453	101.981	37.486	60.701	1.00	25.00
	OG1	THR	446	106.545		55.227	1.00	31.60		4293 1		LYS	453	98.261	32.991	665.627	1.00	25.00

TABLE 11-continued

Structur			of Tobacco			ne Synt	hase	5		Structur			of Tobacco			ne Syn	thase
		Resi-										Resi-					
Atom	Resi-	due							Atom		Resi-	due					
Type Atom	due	#	X	Y	Z	OCC	B-factor		Туре	Atom	due	#	X	Y	Z	OCC	B-factor
4294 2HZ	LYS	453	96.590	32.937	65.327	1.00	25.00	10	4365		GLY	461	98.265	29.318	54.599	1.00	37.71
4295 3HZ 4296 N	LYS SER	453 454	97.682 100.996	32.390 39.424	64.148 63.088	$\frac{1.00}{1.00}$	25.00 84.86		4366 4367		GLY ILE	461 462	99.947 99.965	33.183 30.320	53.532 55.684	1.00 1.00	25.00 41.07
4297 CA	SER	454	100.943	40.535	64.037	1.00	83.61		4368		ILE	462	99.915	29.405	56.821	1.00	43.03
4298 C	SER	454	100.521	41.835	63.338	1.00	83.52		4369		ILE	462	98.567	29.461	57.539	1.00	43.30
4299 O 4300 CB	SER SER	454 454	100.210 102.286	42.830 40.703	63.991 64.755	$\frac{1.00}{1.00}$	82.37 81.64		4370 4371		ILE ILE	462 462	98.063 101.079	28.430 29.658	57.991 57.814	1.00 1.00	44.23 35.94
4301 OG	SER	454	103.363	40.771	63.838	1.00	82.19	15		CG1	ILE	462	102.418	29.419	57.116	1.00	34.23
4302 H	SER	454	101.863	39.025	62.862	1.00	25.00			CG2	ILE	462	100.979	28.720	59.011	1.00	26.77
4303 HG 4304 N	SER ARG	454 455	103.411 100.515	39.963 41.813	63.320 62.003	$\frac{1.00}{1.00}$	25.00 83.63		4374	CD1 H	ILE ILE	462 462	102.625 100.618	27.987 31.046	56.675 55.680	1.00 1.00	31.75 25.00
4305 CA	ARG	455	100.102	42.961	61.197	1.00	86.97		4376		GLU	463	97.972	30.652	57.602	1.00	47.45
4306 C	ARRG	455	98.616	42.870	60.854	1.00	89.33	20	4377		GLU	463	96.673	30.842	58.253	1.00	48.26
4307 O 4308 CB	ARG ARG	455 455	98.073 100.892	43.748 43.025	60.183 59.891	1.00 1.00	89.55 86.51	20	4378 4379		GLU GLU	463 463	95.600 94.876	30.064 29.250	57.495 58.077	1.00 1.00	43.95 45.29
4309 CG	ARG	455	102.319	43.493	60.014	1.00	89.64		4380		GLU	463	96.307	32.329	58.291	1.00	55.50
4310 CD	ARG	455	102.926	43.581	58.632	1.00	98.07		4381		GLU	463	95.120	32.664	59.182	1.00	60.77
4311 NE	ARG	455	104.296	44.078	58.647	1.00	109.66		4382		GLU	463	95.448	32.555	60.656	1.00	66.36
4312 CZ 4313 NH1	ARG ARG	455 455	104.976 104.411	44.415 44.309	57.555 56.357	1.00 1.00	114.68 117.44	25	4383 4384		GLU GLU	463 463	96.195 94.957	33.419 31.605	61.166 61.303	1.00 1.00	70.77 66.97
4314 NH2	ARG	455	106.220	44.863	57.659	1.00	113.39	20	4385		GLU	463	98.403	31.430	57.193	1.00	25.00
4315 H	ARG	455	100.816	41.007	61.542	1.00	25.00		4386		CYS	464	95.534	30.295	56.186	1.00	38.49
4316 HE 4317 1HH1	ARG ARG	455 455	104.745 103.471	44.172 43.978	59.512 56.270	1.00 1.00	25.00 25.00		4387 4388		CYS CYS	464 464	94.575 94.751	29.616 28.113	55.322 55.451	1.00 1.00	40.30 40.72
4318 2HH1	ARG	455	104.920	44.568	55.536	1.00	25.00		4389		CYS	464	93.778	27.364	55.550	1.00	43.89
4319 1HH2		455	106.646	44.949	58.558	1.00	25.00	30	4390		CYS	464	94.798	30.010	53.860	1.00	33.19
4320 2HH2 4321 N	ARG GLY	455 456	106.724 97.980	45.120 41.773	56.834 61.259	1.00 1.00	25.00 90.67		4391 4392		CYS CYS	464 464	94.721 96.143	31.780 30.954	53.533 55.789	1.00 1.00	41.13 25.00
4322 CA	GLY	456	96.566	41.584	60.989	1.00	90.27		4393		CYS	465	96.007	27.682	55.464	1.00	42.83
4323 C	GLY	456	96.256	40.876	59.681	1.00	91.84		4394		CYS	465	96.337	26.271	55.557	1.00	45.44
4324 O 4325 H	GLY GLY	456 456	95.087 98.464	40.636 41.081	59.371 61.752	$\frac{1.00}{1.00}$	90.99 25.00		4395 4396		CYS CYS	465 465	95.791 95.165	25.654 24.591	56.852 56.818	1.00 1.00	48.27 47.36
4326 N	GLN	457	97.290	40.528	58.917	1.00	92.16	35	4397		CYS	465	97.850	26.074	55.487	1.00	39.55
4327 CA	GLN	457	97.107	39.842	57.638	1.00	90.85		4398		CYS	465	98.332	24.350	55.349	1.00	40.18
4328 C 4329 O	GLN GLN	457 457	96.662 97.442	38.395 37.462	57.846 57.659	1.00 1.00	89.74 92.66		4399 4400		CYS MET	465 466	96.735 96.000	28.334 26.340	55.396 57.972	1.00 1.00	25.00 51.35
4329 CB	GLN	457	98.402	39.868	56.817	1.00	89.90		4401		MET	466	95.531	25.854	59.267	1.00	55.36
4331 CG	GLN	457	98.905	41.257	56.457	1.00	95.19	40	4402	C	MET	466	94.019	25.699	59.312	1.00	56.30
4332 CD	GLN GLN	457 457	100.145 100.325	41.221 40.303	55.576 54.775	1.00 1.00	99.21 102.27	40	4403 4404		MET	466 466	93.512 95.977	24.647 26.786	59.698	1.00 1.00	55.90 52.93
4333 OE1 4334 NE2	GLN	457	100.323	42.225	55.718	1.00	97.71		4404		MET MET	466	93.977	26.797	60.391 60.618	1.00	32.93 49.91
4335 H	GLN	457	98.199	40.716	59.228	1.00	25.00		4406	SD	MET	466	97.890	27.866	61.980	1.00	56.57
4336 1HE2		457	101.798	42.200	55.151	1.00	25.00		4407		MET	466	97.679	29.434	61.228	1.00	45.63
4337 2HE2 4338 N	GLN ILE	457 458	100.809 95.397	42.931 38.207	56.364 58.209	1.00 1.00	25.00 88.19	45	4408 4409		MET ARG	466 467	96.483 93.303	27.193 26.744	57.936 58.916	1.00 1.00	25.00 57.72
4339 CA	ILE	458	94.859	36.867	58.439	1.00	82.29	15	4410		ARG	467	91.849	26.704	58.921	1.00	60.99
4340 C	ILE	458	94.715	36.043	57.159	1.00	75.34		4411		ARG	467	91.271	25.700	57.935	1.00	57.48
4341 O 4342 CB	ILE ILE	458 458	94.305 93.510	34.887 36.907	57.205 59.199	1.00 1.00	73.69 85.78		4412 4413		ARG ARG	467 467	90.406 91.270	24.901 28.089	58.295 58.642	1.00 1.00	61.64 69.59
4343 CG1	ILE	458	92.566	37.933	58.562	1.00	86.17		4414		ARG	467	91.304	29.011	59.839	1.00	84.26
43444 CG2	ILE	458	93.751	37.191	60.681	1.00	85.33	50	4415		ARG	467	90.397	30.202	59.616	1.00	96.57
4345 CD1 4346 H	ILE ILE	458 458	91.240 94.823	38.069 38.995	59.277 58.338	1.00 1.00	89.41 25.00		4416 4417		ARG ARG	467 467	90.163 89.074	30.938 31.660	60.853 61.099	1.00 1.00	103.82 107.61
4347 N	ALA	459	95.077	36.632	56.025	1.00	68.80			NH1	ARG	467	88.109	31.749	60.192	1.00	108.04
4348 CA	ALA	459	95.007	35.936	54.747	1.00	62.63			NH2	ARG	467	88.946	32.284	62.261	1.00	109.38
4349 C 4350 O	ALA ALA	459 459	96.368 96.664	35.324 35.093	54.389 53.216	1.00 1.00	62.33 62.33		4420 4421		ARG ARG	467 467	93.769 90.848	27.556 30.890	58.623 61.554	1.00 1.00	25.00 25.00
4351 CB	ALA	459	94.549	36.893	53.653	1.00	62.28	55		1HH1		467	88.194	31.273	59.318	1.00	25.00
4352 H	ALA	459	95.387	37.554	56.036	1.00	25.00			2HH1		467	87.293	32.293	60.390	1.00	25.00
4353 N 4354 CA	THR THR	460 460	97.210 98.531	35.097 34.513	55.396 55.170	$\frac{1.00}{1.00}$	59.27 57.11			1HH2 2HH2		467 467	89.669 88.130	32.209 32.827	62.950 62.457	$\frac{1.00}{1.00}$	25.00 25.00
4355 C	THR	460	98.424	33.034	54.826	1.00	53.62		4426		ASP	468	91.769	25.726	56.704	1.00	52.60
4356 O	THR	460	97.587	32.319	55.383	1.00	53.81	60	4427		ASP	468	91.287	24.832	55.660	1.00	51.80
4357 CB 4358 OG1	THR THR	460 460	99.453 98.763	34.671 34.257	56.400 57.588	$\frac{1.00}{1.00}$	58.87 56.81	60	4428 4429		ASP ASP	468 468	91.404 90.488	23.354 22.574	56.032 55.767	1.00 1.00	52.54 57.49
4359 CG2	THR	460	99.901	36.100	56.541	1.00	60.73		4429		ASP	468	90.466	25.111	54.346	1.00	49.09
4360 H	THR	460	96.933	35.314	56.305	1.00	25.00		4431	CG	ASP	468	91.328	24.513	53.133	1.00	52.94
4361 HG1	THR	460	98.004	34.838	57.727	1.00	25.00			OD1	ASP	468	90.127	24.170	53.218	1.00	55.18
4362 N 4363 CA	GLY GLY	461 461	99.298 99.289	32.574 31.184	53.937 53.526	1.00 1.00	44.28 37.76	65	4433 4434	OD2 H	ASP ASP	468 468	91.983 92.480	24.402 26.362	52.076 56.496	1.00 1.00	54.77 25.00
4364 C	GLY	461	99.289	30.186	54.652	1.00	39.21		4435		TYR	469	92.524	22.973	56.646	1.00	52.44
									-								

TABLE 11-continued TABLE 11-continued

Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase Structural Coordinates of Tobacco 5-Epi-Aristolochene Synthase In the Absence of Bound Substrate In the Absence of Bound Substrate Resi-Resi-Atom due Atom due Resi-Resi-Y Type Atom due X Y Z OCC B-factor Type Atom due Х Z OCC B-factor 4436 CA 469 92,755 21.581 57.040 49.37 4507 CB 476 99.984 25.018 58,749 34.16 TYR 1.00 ALA 1.00 10 4437 C 469 92.458 21.283 1.00 48.25 4508 H 4776 100.761 23.358 60.501 1.00 25.00 TYR 58.511 ALA 4438 O 469 92.316 20.121 58.894 1.00 46.98 4509 N MET 477 103.000 24.402 58.480 1.00 45.42 TYR 4439 CB 469 94.200 21.165 56.730 46.99 4510 CA 477 104.321 24.689 57.932 46.57 TYR 1.00 MET 1.00 4440 CG TYR 469 94.546 21.129 55.260 47.76 4511 C MET 477 104.954 23.414 57.395 1.00 46.73 1.00 94.994 4441 CD1 TYR 469 22,273 54,602 1.00 51.80 4512 O MET 477 105,640 23,434 56,369 1.00 48.81 54.524 477 105.217 58.990 4442 CD2 TYR 469 94.431 19.947 1.00 50.13 4513 CB MET 25.331 1.00 41.20 15 4443 GE1 TYR 469 95.317 22.246 53.248 1.00 56.40 4514 CG MET 477 104.699 26.674 59.459 1.00 45.53 4444 CE2 TYR 469 94.753 19.908 53.167 54.09 4515 SD 477 105.842 27.539 60.529 50.24 1.00 MET 1.00 4445 CZ TYR 469 95.195 21.063 52.537 1.00 57.04 4516 CE MET 477 105.403 29.229 60.204 1.00 44.87 4446 OH TYR 469 95 514 21.044 51.198 1.00 62.08 4517 H MET 477 102.838 24.531 59 436 1.00 25.00 4447 H TYR 469 93 216 23.642 56.837 1.00 25.00 4518 N ALA 478 104 689 22, 301 58 071 1.00 43.88 4519 CA 4448 HH TYR 469 95.802 21.916 50.922 1.00 25.00 ALA 478 105.214 21.01257 646 1.00 40.24 4449 N GLY 470 92.371 22,328 59.328 1.00 49.37 4520 C ALA 473 104.608 20.664 56.288 1.00 39.48 4450 CA 470 92.113 22.147 60.746 51.47 4521 O 478 105.301 20.158 55.404 42.61 GLY 1.00 ALA 1.00 4451 C 470 93.332 21.551 61.425 1.00 52.90 4522 CB ALA 478 104.887 19.941 58.673 1.00 38.44 GLY 4452 O 470 93.247 54.39 4523 H 473 22,350 25.00 GLY 20.499 62.064 1.00 ALA 104.140 58.883 1.00 1.00 4453 H GLY 470 92,471 23.228 58.968 25.00 4524 N LYS 479 103.324 20.969 56.113 1.00 37.41 4454 N 471 94.467 22.238 61.300 1.00 53.10 4525 CA LYS 479 102.642 20.700 54.850 1.00 36.91 4455 CA 4526 C 479 103.214 53.754 ILE 471 95.728 21.771 61.874 1.00 48.51 LYS 21.598 1.00 33.62 471 62.571 4527 O 479 103.408 52.616 4456 C 96.521 22.877 1.00 49.16 LYS 21.164 1.00 32.37 4457 O 471 96.230 24.063 62.408 48.02 4528 CB 479 101.136 20.931 54.986 39.38 ILE 1.00 LYS 1.00 4458 CB ILE 471 96.617 21.131 60.781 1.00 44 19 4529 CG LYS 479 100.338 20.573 53.736 1.00 46.00 4459 CG1 ILE 471 96.816 22.116 59.621 1.00 43 37 4530 CD LYS 479 98.850 20.797 53 947 1.00 51.63 4460 CG2 ILE 471 95.991 19.829 60.288 1.00 41.20 4531 CE LYS 479 98.273 19.858 55.003 1.00 53.61 97.608 4461 CD1 ΠF 471 21.558 58 449 1.00 38 24 4532 NZ LYS 479 98 180 18 451 54 525 1.00 57.01 30 4462. H 23.094 4533 H 479 102,820 ILE. 471 94.452 60.822 1.00 25.00 LYS 21.3777 56.852 1.00 25.00 97.517 53.02 25.00 4463 N SER 472 22.47563.357 1.00 4534 1HZ LYS 479 99.126 18.106 54.269 1.00 4464 CA 97.776 25.00 SER 472 98.371 23,414 64.085 1.00 57.32 4535 2HZ LYS 479 17.853 55.274 1.00 4536 3HZ 97.561 25.00 4465 C SER 472 99.352 24.117 63.146 1.00 60.76 LYS 479 18.416 53.688 1.00 4466 O SER 472 99.689 23.587 62.084 1.00 61.94 4537 N PHE 480 103.502 22.845 54.107 1.00 30.92 4467 CB 472 99.148 22.672 65.180 59.87 4538 CA 480 104.067 23.790 53.157 SER 1.00 PHE 1.00 31.88 4468 OG SER 472 99.873 21.568 64.653 1.00 59.66 4539 C PHE 480 105.457 23.356 52.714 1.00 34.12 4469 H 472 97.697 21.518 63.453 1.00 25.00 4540 O PHE 480 105.812 23.493 51.540 1.00 37.15 4470 HG SER 472 100.314 65.376 25.00 4541 CB 480 104.107 53.749 29.35 21.103 1.00 PHE 25.198 1.00 4471 N 473 99.838 25.287 63.557 4542 CG 480 102,902 26.028 53.408 37.28 THR 1.00 61.86 PHE 1.00 1.00 4472 CA THR 473 100.794 26.053 62.755 63.28 4543 CD1 PHE 480 101.662 25,427 53.190 37.60 1.00 4473 C THR 473 101 959 25 160 62.340 1.00 66 44 4544 CD2 PHE 480 103 008 27 411 53 283 1.00 36.73 4474 O THR 473 102 374 25.158 61.179 1.00 66.96 4545 CE1 PHE 480 100.548 26.192 52.850 1.00 36.20 4475 CB THR 473 101.366 27 248 63.547 1.00 62.70 4546 CE22 PHF 480 101.898 28.185 52.942 1.00 38 45 23 083 63 997 4547 CZ 27 574 52.726 4476 OG1 THR 473 100 295 1.00 63.68 PHE 480 100 665 1.00 36.96 4548 H 4477 CG2 473 102,306 62,677 63.27 480 103.315 23.138 55.024 1.00 25.00 THR 28.068 1.00 PHE 25.00 4549 N 106.238 22.810 4478 H 473 99.529 25.654 53.641 33.79 64,404 1.00 GLN 481 1.00 THR 4550 CA 4479 HG1 473 99.682 27.608 64.552 1.00 25.00 GLN 481 107.573 22.352 53.292 1.00 THR 35.43 4480 N 474 102.454 63.296 65.27 4551 C GLN 107.453 52.323 35.55 24.380 1.00 481 21.180 1.00 LYS 45 4481 CA 474 103.568 23,470 63.065 1.00 67.87 4552 O GLN 481 108.200 21.103 51.347 1.00 35.63 LYS 4482 C 474 103.248 22.508 61.922 1.00 65.57 4553 CB GLN 481 108.368 21.930 54.524 1.00 46.60 LYS 4483 O LYS 474 104.051 22.325 61.001 1.00 66.11 4554 CG GLN 481 109.844 21.688 54.210 1.00 70.92 4484 CB 4555 CD 474 103.863 22.688 64.349 1.00 71.33 GLN 481 110.583 20.933 55.302 1.00 83.38 4485 CG 474 105.150 21.875 64.320 77.07 4556 OE1 GLN 481 110.036 20.658 56.371 93.92 LYS 1.00 1.00 4486 CD 474 105.422 21.234 65.673 77.42 4557 NE2 GLN 481 111.838 20.588 55.032 88.62 LYS 1.00 1.00 4487 CE LYS 474 106,776 20.544 65,698 1.00 78.55 4558 H GLN 481 105.919 22,723 54.562 1.00 25.00 4488 NZ LYS 474 107.067 19.962 67.037 1.00 75.57 4559 1HE2 GLN 481 112,316 20.105 55.735 1.00 25.00 4489 H LYS 474 102 058 24 422 64.186 1.00 25.00 4560 2HE2 GLN 481 112 220 20.824 54 166 1.00 25.00 4490 1HZ 25.00 33.51 LYS 474 106 336 19 263 67 278 1.00 4561 N ASN 482 106 486 20 297 52.561 1.00 25.00 4491 2HZ 474 107.998 19.500 4562. CA ASN LYS 67.020 1.00 482 106.272 19.146 51.682 1.00 36.28 4492 3HZ 474 107.070 20.720 25.00 4563 C ASN 482 105.950 67.750 1.00 19.606 50.267 1.00 36.07 LYS 4493 N 475 102.047 21.944 61.960 106.380 49.288 35.83 GLU 1.00 61.44 4564 O ASN 482 18.989 1.00 4494 CA 475 20.998 60.945 57.77 4565 CB ASN 105.140 18.252 52.200 40.65 GLU 101.612 1.00 482 1.00 4495 C 475 101.378 21.683 59.599 53.01 4566 CG ASN 482 105.535 17.465 53,436 54.20 GLU 1.00 1.00 4496 O GLU 475 101.623 21.091 58.545 1.00 55.03 4567 OD1 ASN 482 106.698 17.095 53.607 1.00 57.37 4497 CB GLU 475 100.352 20.282 61.418 1.00 59.71 4568 ND2 ASN 482 104.565 17.204 54.307 1.00 59.54 4498 CG 4569 H ASN 105.916 53.350 25.00 GLU 475 100.104 18.950 60.737 1.00 73.81 482 20.415 1.00 4499 CD GLU 475 98.994 18.148 61.399 1.00 84.47 4570 1HD2 ASN 482 104.821 16.698 55.105 1.00 25.00 4500 OE1 GLU 475 98.562 18.513 62.518 88.32 4571 2HD2 ASN 482 103.6661 17.519 54.121 1.00 25.00 1.00 4501 OE2 GLU 475 98.555 17.144 60.797 1.00 88 90 4572 N MET 483 105.199 20.698 50.163 1.00 33.64 4502 H GLU 475 101.423 22,181 62.675 1.00 25.00 4573 CA MET 483 104.831 21.250 48.366 1.00 29.91 4503 N ALA 476 100.931 22.936 59.637 1.00 46.25 4574 C MET 483 106.080 21.757 48.152 1.00 27.30 4575 O 106.240 46.947 4504 CA ALA 476 100.681 23.703 58,420 1.00 43.91 MET 433 21.556 1.00 32.31 65 4505 C 476 102.003 23.972 57.712 1.00 44.05 4576 CB MET 483 103.814 22,373 49.036 1.00 29.58 ALA 476 4506 O 102.124 23.774 42.50 4577 CG 483 102.488 21.916 49.626 32.65 ALA 56.501 1.00 MET 1.00

TABLE 11-continued

Structur			of Tobacco			ne Synt	hase	5	Structura			f Tobacco sence of		ristoloche Ibstrate	ne Synt	hase
		Resi-						3			Resi-					
Atom	Resi-	due 4	v	v	7	000	D 6		Atom	Resi-	due	V	3/	7	000	D 6
Type Atom	due	#	X	Y	Z	OCC	B-factor		Type Atom	due	#	X	Y	Z	OCC	B-factor
4578 SD 4579 CE	MET MET	483 483	101.388 100.988	23.311 23.770	49.943 48.275	$\frac{1.00}{1.00}$	37.42 33.87	10	4649 H 4650 N	ASP ILE	490 491	109.245 110.776	18.731 20.362	41.736 39.419	1.00 1.00	25.00 20.68
4580 H	MET	483	104.879	21.134	50.982	1.00	25.00		4651 CA	ILE	491	111.789	21.120	38.692	1.00	20.37
4581 N	ALA	484 484	106.979 108.226	22.385	48.903 48.339	1.00	24.24		4652 C	ILE	491	112.810	20.146 20.221	38.115	1.00	19.25 20.39
4582 CA 4583 C	ALA ALA	484 484	108.226	22.895 21.724	48.339	1.00 1.00	25.37 27.23		4653 O 4654 CB	ILE ILE	491 491	113.158 112.508	22.153	36.934 39.595	1.00 1.00	20.39
4584 O	ALA	484	109.696	21.792	46.772	1.00	26.13	15	4655 CG1	ILE	491	111.540	23.278	39.975	1.00	21.39
4585 CB	ALA	484	108.979	23.703	49.385	1.00	20.73	15	4656 CG2	ILE	491	113.737	22.716	38.877	1.00	21.00
4586 H 4587 N	ALA GLU	484 485	106.799 109.103	22.516 20.642	49.859 48.622	1.00 1.00	25.00 27.25		4657 CD1 4658 H	ILE ILE	491 491	112.159 110.657	24.376 20.508	40.803 40.379	1.00 1.00	22.99 25.00
4588 CA	GLU	485	109.864	19.437	48.289	1.00	29.59		4659 N	ASN	492	113.239	19.198	38.943	1.00	19.07
4589 C	GLU	485	109.317	18.807	47.015	1.00	26.53		4660 CA	ASN	492	114.216	18.196	38.529	1.00	18.67
4590 O 4591 CB	GLU GLU	485 485	110.070 109.792	18.386 18.425	46.139 49.437	1.00 1.00	32.01 39.77	20	4661 C 4662 O	ASN ASN	492 492	113.700 114.446	17.404 17.133	37.332 36.393	1.00 1.00	20.34 20.40
4592 CG	GLU	485	110.327	18.942	50.779	1.00	61.11		4663 CB	ASN	492	114.567	17.133	39.699	1.00	16.62
4593 CD	GLU	485	110.170	17.953	51.934	1.00	69.27		4664 CG	ASN	492	115.269	18.007	40.839	1.00	18.56
4594 OE1	GLU	485	109.663	16.830	51.716	1.00	73.83		4665 OD1	ASN	492	115.924	19.035	40.625	1.00	15.51
4595 OE2 4596 H	GLU GLU	485 485	110.561 108.574	18.302 20.683	53.073 49.449	1.00 1.00	69.26 25.00		4666 ND2 4667 H	ASN ASN	492 492	115.140 112.899	17.484 19.181	42.050 39.862	1.00 1.00	15.73 25.00
4597 N	THR	488	107.997	18.755	46.917	1.00	26.56	25	4668 1HD2		492	115.583	17.939	42.793	1.00	25.00
4598 CA	THR	488	107.323	18.207	45.749	1.00	26.51		4669 2HD2		492	114.613	16.661	42.164	1.00	25.00
4599 C 4600 O	THR THR	488 486	107.673 107.961	19.050 18.514	44.520 43.437	1.00 1.00	24.78 24.00		4670 N 4671 CA	GLU	493 493	112.412 111.816	17.073 16.341	37.341 36.225	1.00 1.00	21.12 22.19
4601 CB	THR	486	105.790	18.211	45.973	1.00	30.57		4672 C	GLU	493	111.736	17.225	34.985	1.00	24.12
4602 OG1	THR	486	105.463	17.277	47.010	1.00	30.11		4673 O	GLU	493	111.958	16.755	33.869	1.00	26.10
4603 CG2 4604 H	THR THR	486 488	105.034 107.446	17.855 19.085	44.694 47.660	$\frac{1.00}{1.00}$	27.79 25.00	30	4674 CB 4675 CG	GLU	493 493	110.416 110.394	15.850 14.831	36.578 37.690	1.00 1.00	19.71 30.24
4605 HG1	THR	486	107.446	16.396	46.782	1.00	25.00		4676 CD	GLU	493	109.056	14.143	37.849	1.00	25.61
4606 N	ALA	487	107.672	20.367	44.712	1.00	20.69		4677 OE1	GLU	493	108.111	14.460	37.100	1.00	36.10
4607 CA	ALA	487	107.980	21.319	43.651	1.00	19.32		4678 OE2	GLU	493	108.953	13.268	38.728	1.00	35.77
4608 C 4609 O	ALA ALA	487 487	109.409 109.654	21.127 21.149	43.141 41.929	$\frac{1.00}{1.00}$	18.49 15.86		4679 H 4680 N	GLU GLY	493 494	111.859 111.423	17.328 18.504	38.111 35.194	1.00 1.00	25.00 24.81
4610 CB	ALA	487	107.768	22.750	44.152	1.00	15.08	35	4681 CA	GLY	494	111.311	19.451	34.096	1.00	18.06
4611 H	ALA	487	107.454	20.716	45.604	1.00	25.00		4682 C	GLY	494	112.614	19.686	33.352	1.00	25.75
4612 N 4613 CA	TRP TRP	488 488	110.349 111.736	20.909 20.695	44.058 43.661	1.00 1.00	20.11 19.04		4683 O 4684 H	GLY GLY	494 494	112.605 111.263	20.176 18.819	32.217 36.107	1.00 1.00	25.47 25.00
4614 C	TRP	488	111.756	19.461	42.781	1.00	20.42		46885 N	LEU	495	113.735	19.350	33.986	1.00	24.09
4615 O	TRP	488	112.555	19.486	41.768	1.00	23.27	40	4686 CA	LEU	495	115.047	19.523	33.367	1.00	23.57
4616 CB 4617 CG	TRP TRP	488 488	112.656 113.256	20.590 21.905	44.879 45.262	1.00 1.00	19.13 20.79	40	4687 C 4688 O	LEU LEU	495 495	115.465 116.385	18.331 18.445	32.503 31.700	1.00 1.00	23.66 25.21
4618 CD1	TRP	488	113.230	22.619	46.402	1.00	19.35		4689 CB	LEU	495	116.111	19.781	34.439	1.00	21.29
4619 CD2	TRP	488	114.173	22.689	44.481	1.00	18.53		4690 CG	LEU	495	115.968	21.063	35.270	1.00	24.69
4620 NE1 4621 CE2	TRP TRP	488 488	113.723 114.441	23.801 23.869	46.376 45.210	1.00 1.00	21.34 17.70		4691 CD1 4692 CD2	LEU LEU	495 495	116.913 116.230	21.024 22.287	36.459 34.409	1.00 1.00	15.49 21.41
4622 CE3	TRP	488	114.441	22.507	43.237	1.00	18.03	45	4692 CD2 4693 H	LEU	493 495	113.681	18.985	34.409	1.00	25.00
4623 CZ2	TRP	488	115.305	24.863	44.736	1.00	16.71		4694 N	LEU	496	114.781	17.200	32.651	1.00	22.59
4624 CZ3	TRP	488	115.654	23.499	42.765	1.00	15.24		4695 CA	LEU	496	115.118	15.996	31.889	1.00	20.47
4625 CH2 4626 H	TRP TRP	488 488	115.899 110.109	24.659 20.905	43.515 45.009	1.00 1.00	14.14 25.00		4696 C 4697 O	LEU LEU	496 496	114.749 113.692	16.049 16.556	30.409 30.033	1.00 1.00	24.46 22.73
4627 HE1	TRP	488	113.699	24.482	47.075	1.00	25.00		4698 CB	LEU	496	114.504	14.758	32.548	1.00	20.18
4628 N	LYS	489	111.136	18.399	43.138	1.00	21.51	50	4699 CG	LEU	496	115.016	14.454	33.959	1.00	23.38
4629 CA 4630 C	LYS LYS	489 489	111.162 110.604	17.175 17.476	42.345 40.961	1.00 1.00	17.89 19.66		4700 CD1 4701 CD2	LEU LEU	496 496	114.276 116.523	13.265 14.187	34.524 33.938	$\frac{1.00}{1.00}$	21.31 20.33
4631 O	LYS	489	111.091	16.947	39.960	1.00	22.89		4702 H	LEU	496	114.020	17.172	33.267	1.00	25.00
4632 CB	LYS	489	110.351	16.069	43.019	1.00	17.77		4703 N	ARG	497	115.642	15.530	29.573	1.00	26.43
4633 CG 4634 CD	LYS LYS	489 489	110.922 110.074	15.624 14.540	44.344 44.972	$\frac{1.00}{1.00}$	15.98 22.31		4704 CA 4705 C	ARG ARG	497 497	115.443 114.347	15.501 14.498	28.128 27.766	1.00 1.00	31.12 32.68
4635 CE	LYS	489	110.574	14.254	46.392	1.00	24.45	55	4706 O	ARG	497	114.217	13.457	28.411	1.00	27.55
4636 NZ	LYS	489	109.694	13.199	47.029	1.00	26.46		4707 CB	ARG	497	116.757	15.124	27.431	1.00	30.06
4637 H 4638 1HZ	LYS LYS	489 480	110.589 108.703	18.443 13.510	43.952 47.052	$\frac{1.00}{1.00}$	25.00 25.00		4708 CG 4709 CD	ARG ARG	497 497	117.863	16.155 15.505	27.626 27.851	$\frac{1.00}{1.00}$	38.94 37.77
4639 2HZ	LYS	489 489	108.703	12.320	46.482	1.00	25.00		4709 CD 4710 NE	ARG	497 497	119.217 120.087	15.584	26.683	1.00	50.61
4640 3HZ	LYS	489	110.028	13.037	47.997	1.00	25.00	,.	4711 CZ	ARG	497	121.282	16.173	26.676	1.00	51.72
4641 N	ASP	490	109.590	18.338	40.906	1.00	20.77	60	4712 NH1	ARG	497 497	121.754	16.744	27.777	1.00	46.52
4642 CA 4643 C	ASP ASP	490 490	108.991 110.008	18.721 19.479	39.630 38.786	$\frac{1.00}{1.00}$	21.97 24.19		4713 NH2 4714 H	ARG ARG	497 497	122.023 116.457	16.166 15.140	25.575 29.946	1.00 1.00	51.65 25.00
4644 O	ASP	490	110.098	19.264	37.575	1.00	21.17		4715 HE	ARG	497	119.773	15.180	25.847	1.00	25.00
4645 CB	ASP	490	101.739	19.585	39.837	1.00	26.18		4716 1 HH 1		497	121.213	16.733	28.615	1.00	25.00
4646 CG	ASP	490	106.561	18.799	40.395	1.00	29.44	65	4717 2HH1		497	122.653	17.183	27.766	1.00	25.00
4647 OD1 4648 OD2	ASSP ASP	490 490	106.524 105.657	17.562 19.425	40.236 40.982	1.00 1.00	35.64 29.87	65	4718 1HH2 4719 2HH2		497 497	121.685 122.920	15.718 16.608	24.748 25.576	1.00 1.00	25.00 25.00
1010 OD2	1 131	サンひ	103.037	12.742	10.702	1.00	27.01		7117 211112	,1110	サン /	222.720	10.000	20.070	1.00	22.00

TABLE 11-continued

No. Part P	Structur			of Tobacco			ne Synt	hase	5	Str	ructura			of Tobacco			ne Synt	hase
Page	Atom								· ·	Atom								
A-771 CA PRO				X	Y	z	OCC	B-factor			Atom			X	Y	z	OCC	B-factor
472 C PRO 48 113-89 1 10-10 10			498	113.542	14.798	26.731	1.00	34.46	10	4791 C	CA	LEU	506	114.915	26.516	31.862	1.00	20.00
472 C									10									
1472 CG																		
1476 1476																		
1478 CA PAT																		
1479 C									15									
1473 CO																		
473 COI 1118																		
4734 H H H 49																		
4736 N FRC S90 119.053 21.545 21.575 27.117 1.00 25.00 25.00 25.00 27.376 27.277 27.273 27		THR		114.703				22.98	20	4804 O	G1	THR		119.728	26.728	32.465		23.76
473 CA PRO Spot 110,963 21,844 6.090 1.00 31.06 4807 HG1 THR Spot 119,106 26,024 31,378 1.00 25,00 4737 CA PRO Spot 110,035 21,584 21,00 31,44 4809 CA PRO Spot 116,03 31,114 34,689 1.00 17,26 4742 CC PRO Spot 110,055 25,086 21,045 21,04																		
473 C C N RO 500 110.033 21.58 S 5.902																		
4749 CB PRO 500 10.328 23.075 23.843 1.00 30.31 25 4810 C PRO 500 10.976 22.086 27.984 1.00 22.064 4812 CB PRO 508 115.43 31.999 33.583 1.00 18.28 4742 CD PRO 500 10.040 23.76 23.76 4812 CB PRO 508 115.43 31.999 33.583 1.00 18.28 4744 CA CA CA CA CA CA CA																		
4741 CG PRO 500 108,916 21,994 26,620 1,000 29,71 4811 CG PRO 508 115,841 31,309 36,847 1,000 22,29 4742 CD PRO 500 101,460 20,876 27,988 1,000 23,70 4813 CG PRO 508 116,941 31,999 32,844 1,00 16,25 4743 N 4745 C AL 501 112,390 24,523 25,078 1,000 32,24 4813 CG PRO 508 116,984 31,990 32,844 1,000 16,25 4745 C AL 501 114,154 23,347 26,204 1,000 33,000 44,747 CB AL 501 114,154 23,347 26,204 1,000 33,000 44,747 CB AL 501 114,154 23,347 26,204 1,000 24,000 4749 CG AL 501 114,154 23,347 26,304 1,000 24,000 4749 CG AL 501 114,154 23,112 26,546 1,000 25,000 4749 CG AL 501 114,775 25,026 24,841 1,000 32,000 4755 CB ER 502 116,194 24,832 25,128 1,000 32,05 4752 CA SER 502 116,194 24,832 25,128 1,000 32,05 4755 CB 502 116,194 24,832 24,814 1,000 12,634 4755 CB 502 116,194 24,832 25,194 1,000 32,05 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,0																		
4742 CD PRO 500 109.576 22.086 27.984 1.00 23.70 4748 CR VAL 501 111.642 23.387 25.794 1.00 32.94 4744 CA VAL 501 111.642 23.387 25.798 1.00 33.52 4745 CC VAL 501 113.858 24.257 25.421 1.00 33.52 4746 CC VAL 501 111.959 25.887 25.894 1.00 30.504 4748 CG VAL 501 111.959 25.887 25.896 1.00 24.04 4748 CG VAL 501 111.959 25.887 25.896 1.00 24.04 4748 CG VAL 501 111.959 25.887 25.896 1.00 24.04 4748 CG VAL 501 111.959 25.887 25.896 1.00 24.04 4749 CG VAL 501 111.959 25.887 25.986 1.00 24.04 4750 H VAL 501 111.959 25.887 25.986 1.00 24.04 4750 H VAL 501 111.959 25.887 25.986 1.00 25.00 4751 C SER 502 116.485 25.025 24.844 1.00 30.56 4752 CA SER 502 116.485 25.025 26.611 1.00 30.56 4753 C SER 502 116.485 25.025 26.611 1.00 30.56 4754 CB SER 502 116.485 25.025 24.844 1.00 36.54 4755 CB SER 502 117.039 25.795 24.244 1.00 25.00 4758 HG SER 502 117.039 25.795 24.244 1.00 32.05 4760 CA THR 503 117.443 24.260 27.194 1.00 25.00 4760 CG THR 503 119.585 23.443 25.797 1.00 38.70 4760 CG THR 503 119.585 23.443 25.797 1.00 38.70 4760 CG THR 503 119.585 23.443 25.797 1.00 31.00 44.75 4760 CG THR 503 119.585 23.443 25.797 1.00 31.00 44.75 4760 CG THR 503 119.585 23.443 25.797 1.00 31.00 44.75 4760 CG THR 503 119.585 23.443 25.797 1.00 31.00 44.75 4760 CG THR 503 119.585 23.443 25.797 1.00 31.00 44.75 4760 CG THR 503 119.585 23.443 25.797 1.00 31.00 44.75 4760 CG THR 503 119.585 23.443 25.797 24.244 0.00 25.00 4773 CG CHR 503 119.585 23.443 25.797 24.244 0.00 25.00 4776 CG CHR 503 119.585 23.443									25									
4742 CD PRO 500 110.402 23.898 25.641 1.00 23.794 4813 CG PRO 508 116.841 31.890 23.444 1.00 16.25 4744 CA VAL 501 112.390 24.523 25.078 1.00 32.94 4813 CD PRO 508 116.841 31.690 23.11 0.0 1.23 4745 C VAL 501 114.154 23.347 26.241 1.00 33.52 4815 C ILE 509 114.523 23.231 0.0 23.43 4815 C ILE 509 114.524 23.834 23.621 1.00 29.24 4816 C ILE 509 114.524 23.834 36.61 1.00 29.24 4818 C ILE 509 114.524 23.834 36.61 1.00 29.24 4819 C ILE 509 114.524 23.834 36.61 1.00 29.24 4810 ELE 509 114.524 23.838 36.1 1.00 12.52 482.1																		
4744 C. O. VAL. SOI 112,309 24,523 25,078 1,00 33,52 1,474 6 O VAL. SOI 114,154 23,347 26,004 1,00 33,00 33,52 1,474 C. D. VAL. SOI 114,154 23,347 26,004 1,00 33,00 29,14 4818 O II. E 509 114,024 28,653 37,412 1,00 19,240 1,474 C. D. VAL. SOI 110,515 26,198 25,866 1,00 29,14 4818 O II. E 509 114,024 28,653 37,412 1,00 19,240 1,479 C. D. VAL. SOI 111,875 23,112 26,546 1,00 24,00 4,475 H. VAL. SOI 111,875 23,112 26,546 1,00 24,00 4,475 H. VAL. SOI 111,875 23,112 26,546 1,00 32,05 4,475 L. VAL. SOI 111,875 23,112 26,546 1,00 32,05 4,475 L. VAL. SOI 111,875 23,112 26,546 1,00 32,05 4,475 L. VAL. SOI 111,875 23,112 26,546 1,00 32,05 4,475 L. VAL. SOI 111,875 23,112 26,484 1,00 32,05 4,475 L. VAL. SOI 111,875 22,05 26,611 1,00 32,05 4,475 L. VAL. SOI 116,94 28,330 25,184 1,00 32,05 4,475 L. VAL. SOI 116,94 28,330 25,184 1,00 32,05 4,475 L. VAL. SOI 116,94 28,330 2,10 32,05 4,475 L. VAL. SOI 116,94 28,330 2,10 32,05 4,475 L. VAL. SOI 116,94 28,330 2,10 32,05 4,475 L. VAL. SOI 116,94 28,330 1,00 32,05 4,475 L. VAL. SOI 116,94 28,330 2,10 32,34 4,475 L. VAL. SOI 116,94 28,330 2,10 32,34 4,475 L. VAL. SOI 116,94 28,330 1,00 32,05 4,475 L. VAL. SOI 116,94 28,330 3,10 32,34 4,475 L. VAL. SOI 116,94 28,330 3,10 3,10 3,10 3,10 3,10 3,10 3,10						27.984		23.70								32.444		
474 C O VAL 501 113.858 24.257 25.241 100 33.00 33.00 4816 C A ILE 509 113.455 29.40 26.230 100 22.76 474 C OB VAL 501 111.199 25.887 25.866 100 29.14 4818 C B 11E 509 113.627 28.543 31.00 22.40 4748 C G1 VAL 501 112.153 25.887 27.956 1.00 24.00 4818 C B ILE 509 113.657 28.534 1.00 22.60 4750 H N VAL 501 111.1875 23.12 26.561 1.00 32.05 4821 C G2 ILE 509 111.687 29.31 13.00 22.89 4753 C A SER 502 116.194 24.832 25.128 100 33.50 4822 C DI ILE 509 111.687 29.314 100 22.89 4753 C A SER 502 116.934 25.00 24.234 1.00																		
4747 CB O									20									
4748 CG1 VAL 501 110,515 25,889 25,330 1.00 24,033 489 CB ILE 509 112,650 28,853 3,441 1.00 24,00 4750 H VAL 501 111,875 23,182 26,546 1.00 24,00 4820 CG2 ILE 509 111,867 27,798 36,351 1.00 22,89 4752 CA SER 502 116,149 24,822 51,28 1.00 33,20 4820 CG1 ILE 509 111,360 27,998 36,351 1.00 12,02 4753 C SER 502 116,148 24,822 51,28 1.00 35,25 4822 CD1 ILE 509 111,459 22,89 4755 CB SER 502 116,109 25,779 24,224 1.00 55,54 4825 CA ILE 510 114,502 27,956 30,757 1.00 24,03 4820 1.00 1,117,402 32,34 1.00 1,23 4827 1.00 1,117									30									
4759 Col VAL																		
4751 N VAL S01 111.875 23.112 26.546 1.00 25.00 4.00 3.560 4.00 3.500 4.00 3.500 4.00 4.00 3.500 4.																		
4751 N SER 502 114.775 25.026 24.844 1.00 30.56 4822 CDI II.E 509 114.982 28.486 33.280 1.00 22.89 4752 CA SER 502 116.485 25.025 26.611 1.00 32.05 4824 N I.EU 500 114.989 27.786 37.114 1.00 21.34 4754 O SER 502 115.889 22.897 22.316 1.00 35.54 4825 CA I.EU 510 114.989 27.786 30.705 1.00 30.56 4755 CB SER 502 116.387 25.601 22.934 1.00 56.52 4827 CD I.EU 510 116.372 27.799 40.301 10.00 23.54 4758 N SER 502 117.998 24.709 22.686 1.00 25.00 4828 CB IEU 510 116.742 2.344 1.00 20.84 4759 N THR 503 117.935 24.333 <td></td>																		
4753 C SER 502 116.485 25.025 26.611 1.00 32.05	4751 N	SER		114.775	25.026	24.844	1.00	30.56	35	4822 C	CD1	ILE		111.082	28.486	33.280		22.89
4755 CB SER 502 115.869 25.869 27.265 1.00 34.57 4755 CB SER 502 117.039 25.807 24.316 1.00 35.54 4825 CA LEU 510 115.684 27.003 38.130 1.00 19.45 4755 CB SER 502 116.837 25.601 22.934 1.00 56.52 4827 C LEU 510 116.670 27.569 30.975 1.00 18.03 4757 H SER 502 116.837 25.601 22.934 1.00 25.00 44 4827 C LEU 510 116.670 27.569 30.975 1.00 18.03 4758 HG SER 502 117.098 24.709 24.224 1.00 25.00 44 4827 C LEU 510 116.670 27.579 40.300 1.00 23.54 4758 HG SER 502 117.098 24.709 24.224 1.00 25.00 44 4828 CB LEU 510 116.670 25.064 37.454 1.00 18.99 4758 HG SER 502 117.098 24.709 24.224 1.00 25.00 44 4828 CB LEU 510 117.092 24.447 39.347 1.00 13.70 17.88 4759 N THR 503 117.836 24.333 28.530 1.00 33.23 4831 CD2 LEU 510 117.092 24.447 39.347 1.00 13.70 4760 CA THR 503 117.670 23.433 28.580 1.00 33.23 4831 CD2 LEU 510 118.600 24.548 37.401 1.00 12.82 4763 CB THR 503 117.979 23.420 30.078 1.00 31.90 4831 CD2 LEU 510 118.600 24.548 37.401 1.00 25.00 4765 CG2 THR 503 119.395 23.440 30.278 1.00 40.66 4836 C ASN 511 117.2070 28.966 38.502 1.00 18.52 4766 CG2 THR 503 118.500 22.075 27.436 1.00 25.00 4837 CB ASN 511 117.616 29.940 39.293 1.00 18.52 4766 CG2 THR 503 118.500 22.075 27.436 1.00 25.00 4837 CB ASN 511 117.090 29.090 38.400 1.00 14.99 4767 HG1 THR 503 118.500 22.075 27.436 1.00 25.00 4837 CB ASN 511 112.026 29.040 38.456 1.00 22.94 4770 C GLU 504 117.801 28.706 28.878 26.863 1.00 32.18 4843 CD2 LEU 512 113.500 31.364 30.31 30.04 26.997 1.00 44.47 470 C GLU 504 117.801 28.706 28.578 26.863 1.00 32.18 4843 CD2 LEU 512 113.500 31.346 30.438 1.00 25.00 4773 CG GLU 504 119.396 28.578 26.803 1.00 25.00 4848 CB LEU 510 113.604 39.791 1.00 15.00 4779 CG GLU 504 119.396 28.878 26.803 1.00 25.00 4848 CB LEU 510 113.500 31.346 30.348 1.00 25.00 4484 CB LEU 510 113.500 31.346 30.343 1.00 12.00 41.775 4778 CG GLU 504 119.396 28.878 26.803 1.00 25.00 4848 CB LEU 510 113.500 31.346 30.343 1.00 12.00 25.00 4484 CB LEU 510 113.500 31.346 30.343 1.00 12.500 44775 CB GLU 504 119.300 28.578 26.803 1.00 28.50 4484 CB LEU 512 113.500 31.346 30									33									
4755 CB SER 502 117.039 25.807 24.316 1.00 35.54 4826 C LEU 510 116.472 27.956 39.075 1.00 18.03 4757 H SER 502 114.502 25.292 24.224 1.00 25.00 4827 O LEU 510 116.372 27.799 40.300 1.00 23.54 4757 H SER 502 114.502 25.729 24.240 27.162 1.00 25.00 40 4828 CB LEU 510 116.632 20.043 37.454 1.00 18.03 4758 N THR 503 117.832 24.320 22.162 1.00 33.23 4831 CD2 LEU 510 117.692 24.447 39.347 1.00 13.70 4761 C THR 503 117.982 23.443 28.797 1.00 38.70 4831 CD 111.17.07 28.966 36.714 1.00 25.00 4762 CB THR 503 119.935																		
4757 H G SER SSC 114,502 25,729 24,224 1.00 25,00 47,88 47,88 47,88 47,89 K 4828 CB LEU 510 116,693 20,064 37,454 1,00 13,70 17,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 47,88 48,89 48,89																		
4758 HG SER 502 117,098 24,769 22,686 1.00 25,00 40 4829 CG LEU 510 117,747 25,551 388,309 1.00 17,88 4760 CA THR 503 117,436 24,260 27,126 1.00 33,23 4830 CD1 LEU 510 117,092 24,447 39,347 1.00 13,70 4760 CA THR 503 118,166 25,771 28,927 1.00 31,90 4832 CD LEU 510 116,660 24,548 37,401 1.00 12,82 4762 O THR 503 119,958 23,443 28,797 1.00 38,70 4833 CD 510 117,761 29,940 39,293 1.00 16,684 4765 CG2 THR 503 119,395 23,420 30,278 1.00 25,00 4836 C ASN 511 117,299 31,111 41,30 1.00 21,10 4767 HG1 THR 503 118,560 <td></td>																		
4759 N THR 503 117.443 24.260 27.126 1.00 29.15 4830 CD1 LEU 510 117.092 24.447 39.347 1.00 13.70 4760 CA THR 503 118.766 25.771 28.927 1.00 31.90 4832 H LEU 510 118.660 24.548 37.401 1.00 12.82 4830 CD2 LEU 510 118.660 24.548 37.401 1.00 12.82 27.600 4832 H LEU 510 118.660 24.548 37.401 1.00 12.82 27.600 4762 CD THR 503 117.977 26.177 30.078 1.00 31.90 4832 H LEU 510 118.660 24.548 37.401 1.00 25.00 4836 CD THR 503 119.797 26.177 30.078 1.00 31.90 4832 H LEU 510 118.660 24.548 37.401 1.00 25.00 4836 CD THR 503 119.797 27.110 28.366 1.00 51.69 45 4835 CD ASN 511 117.816 29.940 39.293 1.00 18.52 47.600 47.61 THR 503 119.395 23.420 30.278 1.00 40.66 4836 O ASN 511 117.891 30.774 40.185 1.00 19.49 47.61 THR 503 118.660 22.075 27.436 1.00 25.00 4837 CB ASN 511 117.993 31.111 41.307 1.00 21.10 47.64 N GLU 504 118.637 26.547 1.00 25.00 4838 CG ASN 511 119.926 30.046 37.903 1.00 14.99 47.67 CG GLU 504 118.862 27.935 28.184 1.00 31.30 4840 ND2 ASN 511 120.562 30.543 36.849 1.00 12.50 4840 ND2 ASN 511 120.562 30.543 36.849 1.00 25.00 47.73 CG GLU 504 119.754 30.714 25.672 1.00 47.35 4845 CA LEU 512 115.705 31.661 39.719 1.00 15.05 4840 ND2 ASN 511 120.330 31.364 36.438 1.00 25.00 47.75 CB GLU 504 119.754 30.84 26.6997 1.00 44.47 4844 N LEU 512 113.451 31.052 31.364 36.438 1.00 25.00 47.75 CB GLU 504 119.754 30.714 25.672 1.00 47.35 4845 CD EU 512 113.451 31.007 47.78 1.00 16.15 47.60 CB CB CB CB CB CB CB C									40									
4761 C																		
4762 O	4760 CA	THR		117.836	24.333	28.530	1.00	33.23		4831 C	CD2	LEU				37.401		12.82
4763 CB																		
4764 CGI THR 503 118.767 22.110 28.366 1.00 51.69 45 4835 C ASN 511 116.918 30.774 40.185 1.00 19.49 4765 CG2 THR 503 119.395 23.420 30.278 1.00 40.66 4836 O ASN 511 117.299 31.111 41.307 1.00 21.10 4766 H THR 503 118.560 22.075 27.436 1.00 25.00 4837 CB ASN 511 117.299 31.111 41.307 1.00 21.10 4767 HG1 THR 503 118.560 22.075 27.436 1.00 25.00 4838 CG ASN 511 119.926 30.046 37.903 1.00 19.61 4768 N GLU 504 118.637 26.542 27.956 1.00 27.88 4839 ODI ASN 511 119.926 30.046 37.903 1.00 19.61 4768 N GLU 504 117.891 28.706 28.789 1.00 31.46 48.40 ND2 ASN 511 10.276 29.004 38.456 1.00 22.94 4771 O GLU 504 117.897 29.643 29.568 1.00 29.72 4842 HID ASN 511 117.040 29.059 37.540 1.00 25.00 4772 CB GLU 504 119.754 30.042 26.997 1.00 44.47 4844 N LEU 512 115.705 31.061 39.719 1.00 25.00 4773 CG GLU 504 119.634 30.183 24.618 1.00 44.47 4844 N LEU 512 115.705 31.061 39.719 1.00 18.46 4775 OE1 GLU 504 119.634 30.183 24.618 1.00 44.37 4484 N LEU 512 114.751 31.814 40.527 1.00 15.00 4777 H GLU 504 118.771 26.169 27.067 1.00 25.00 4849 CB LEU 512 114.304 31.561 42.872 1.00 24.00 4778 N PHE 505 115.390 28.936 28.957 1.00 23.02 4880 CD1 LEU 512 113.303 33.41 38.818 1.00 22.39 4780 C PHE 505 114.888 29.711 26.602 1.00 28.28 4855 CA ARG 514 116.361 29.302 44.933 1.00 25.00 4786 CE1 PHE 505 115.304 30.903 24.436 20.00 28.28 4850 CA ARG 514 116.361 29.302 44.933 1.00 25.00 4788 CZ PHE 505 116.633 29.597 24.300 1.00 28.43 4856 CA ARG 514 116.361 29.302 40.706 40.00 18.00 4788 CZ PHE 505 116.633 29.507																		
4766 H THR 503 117.884 23.611 26.547 1.00 25.00 4837 CB ASN 511 118.704 30.806 38.400 1.00 14.99 4767 HG1 THR 503 118.560 22.075 27.436 1.00 25.00 4838 CG ASN 511 119.926 30.046 37.903 1.00 19.91 4768 N GLU 504 118.637 26.542 27.935 28.184 1.00 31.30 4840 ND2 ASN 511 120.562 30.343 36.849 1.00 25.00 4771 O GLU 504 117.801 28.706 28.789 1.00 31.46 50 4841 H ASN 511 120.562 30.543 36.849 1.00 25.00 4771 O GLU 504 119.396 28.578 26.863 1.00 29.72 4841 H ASN 511 120.502 37.540 1.00 25.00 4773 CG GLU									45									
4767 HG1 THR 503 118.560 22.075 27.436 1.00 25.00 4838 CG ASN 511 119.926 30.046 37.903 1.00 19.61 4768 N GLU 504 118.637 26.542 27.956 1.00 27.88 4839 OD1 ASN 511 119.926 20.046 37.903 1.00 22.94 4770 C GLU 504 117.801 28.706 28.789 1.00 31.46 50 4840 ND2 ASN 511 119.926 20.043 36.849 1.00 22.50 4771 O GLU 504 117.987 29.643 29.568 1.00 29.72 4841 H ASN 511 120.562 30.343 36.433 1.00 25.00 4773 CG GLU 504 119.936 28.578 1.00 24.35 4841 H ASN 511 120.562 30.346 36.433 1.00 25.00 4773 CG GLU 504 119.634																		
4768 N GLU 504 118.637 26.542 27.956 1.00 27.88 4839 OD1 ASN 511 120.276 29.004 38.456 1.00 22.94 4769 CA GLU 504 118.982 27.935 28.184 1.00 31.30 4840 ND2 ASN 511 120.562 30.543 36.849 1.00 17.54 4771 O GLU 504 117.987 29.643 29.568 1.00 29.72 4841 HD2 ASN 511 120.250 30.543 36.849 1.00 25.00 4772 CB GLU 504 119.396 28.578 26.863 1.00 32.18 4841 HD2 ASN 511 120.230 31.364 36.438 1.00 25.00 4773 CG GLU 504 119.634 30.188 26.691 1.00 47.35 4844 ND LEU 512 114.304 31.94 26.72 1.00 45.05 4777 H GLU 504 118.633																		
4770 C GLU 504 117.801 28.706 28.789 1.00 31.46 50 4841 H ASN 511 117.040 29.059 37.540 1.00 25.00 4771 O GLU 504 117.987 29.643 29.568 1.00 29.72 4842 1HD2 ASN 511 121.341 30.052 36.532 1.00 25.00 4772 CB GLU 504 119.396 28.578 26.863 1.00 32.18 4842 1HD2 ASN 511 121.341 30.052 36.532 1.00 25.00 4774 CD GLU 504 119.634 30.183 24.618 1.00 47.35 4844 N LEU 512 114.751 31.814 40.527 1.00 18.46 4776 OE2 GLU 504 119.634 30.183 24.618 1.00 48.31 4845 CA LEU 512 114.304 31.61 42.872 1.00 16.15 4776 OE2 GLU 504																		
4771 O GLU 504 117,987 29.643 29.568 1.00 29.72 4842 1HD2 ASN 511 121,341 30.052 36.532 1.00 25.00 4772 CB GLU 504 119,356 28.578 26.863 1.00 32.18 4843 2HD2 ASN 511 121,341 30.052 36.532 1.00 25.00 4773 CG GLU 504 119,754 30.042 26.997 1.00 44.47 4844 N LEU 512 115.705 31.061 39.719 1.00 18.46 4775 OE1 GLU 504 119.634 30.183 24.618 1.00 49.18 4845 CA LEU 512 114.751 31.814 40.527 1.00 18.46 4776 OE2 GLU 504 119.634 30.188 25.691 1.00 48.31 4845 CA LEU 512 114.315 31.00 41.778 1.00 25.00 48.49 C LEU <																		
4772 CB GLU 504 119.396 28.578 26.863 1.00 32.18 4843 2HD2 ASN 511 120.230 31.364 36.438 1.00 25.00 4773 CG GLU 504 119.754 30.042 26.997 1.00 44.47 4844 N LEU 512 115.705 31.661 39.719 1.00 18.46 4775 CE1 GLU 504 120.045 30.714 25.672 1.00 47.35 4845 CA LEU 512 114.751 31.814 40.527 1.00 15.00 4776 OE1 GLU 504 119.634 30.183 25.691 1.00 48.31 4846 C LEU 512 114.4751 31.814 40.527 1.00 15.00 4777 H GLU 504 118.771 26.169 27.067 1.00 25.00 4847 O LEU 512 114.343 31.744 39.727 1.00 17.19 4778 O PHE 505 118.588									50									
4774 CD GLU 504 120.045 30.714 25.672 1.00 47.35 4845 CA LEU 512 114.751 31.814 40.527 1.00 15.00 4775 OE1 GLU 504 119.634 30.183 24.618 1.00 49.18 4846 C LEU 512 114.751 31.814 40.527 1.00 16.15 4776 OE2 GLU 504 120.683 31.788 25.691 1.00 48.31 4847 O LEU 512 114.415 31.007 41.778 1.00 24.00 4777 H GLU 504 118.871 26.169 27.067 1.00 25.00 4847 O LEU 512 114.433 31.561 42.872 1.00 24.00 4779 CA PHE 505 118.588 28.274 28.464 1.00 22.10 4849 CG LEU 512 113.434 32.14 32.21 47.00 1.00 14.79 4849 CG LEU 512 113.430 <td></td>																		
4775 OE1 GLU 504 119.634 30.183 24.618 1.00 49.18 4846 C LEU 512 114.415 31.007 41.778 1.00 16.15 4776 OE2 GLU 504 120.683 31.788 25.691 1.00 48.31 48.47 O LEU 512 114.304 31.561 42.872 1.00 24.00 4777 H GLU 504 118.771 26.169 27.067 1.00 25.00 48.48 C LEU 512 114.304 31.561 42.872 1.00 24.00 4778 N PHE 505 118.588 28.274 28.464 1.00 25.00 4849 CG LEU 512 113.484 32.114 39.727 1.00 17.19 4780 C PHE 505 114.889 28.314 30.218 1.00 22.77 4850 CD1 LEU 512 113.303 34.343 37.943 1.00 22.39 4780 CB PHE 505 114.888					30.042			44.47						115.705	31.061			18.46
4776 OE2 GLU 504 120.683 31.788 25.691 1.00 48.31 55 4847 O LEU 512 114.304 31.561 42.872 1.00 24.00 4777 H GLU 504 118.771 26.169 27.067 1.00 25.00 4848 CB LEU 512 113.484 32.114 39.727 1.00 17.19 4778 N PHE 505 118.588 28.274 28.464 1.00 27.10 4849 CG LEU 512 113.484 32.114 39.727 1.00 17.19 4778 N PHE 505 115.390 28.936 28.957 1.00 23.02 4850 CD1 LEU 512 113.569 33.341 38.818 1.00 22.39 4781 O PHE 505 114.898 28.869 30.818 1.00 22.77 4852 H LEU 512 115.450 30.733 38.817 1.00 22.50 4782 CB PHE 505																		
4777 H GLU 504 118.771 26.169 27.067 1.00 25.00 55 4848 CB LEU 512 113.484 32.114 39.727 1.00 17.19 4778 N PHE 505 118.588 28.274 28.464 1.00 27.10 4849 CG LEU 512 113.484 32.114 39.727 1.00 16.79 4780 C PHE 505 115.390 28.936 28.957 1.00 24.14 4850 CD1 LEU 512 113.369 33.341 38.818 1.00 22.39 4780 C PHE 505 114.809 28.314 30.218 1.00 22.47 4850 CD1 LEU 512 113.302 34.591 30.672 1.00 22.39 4781 O PHE 505 114.356 29.036 27.335 1.00 28.22 4853 N ALA 513 114.279 29.692 41.624 1.00 19.31 4785 CD2 PHE 505 115.304																		
4779 CA PHE 505 115.390 28.936 28.957 1.00 23.02 4850 CD1 LEU 512 112.331 33.430 37.943 1.00 22.39 4780 C PHE 505 114.809 28.314 30.218 1.00 24.14 4851 CD2 LEU 512 113.3702 34.591 39.672 1.00 14.37 4781 O PHE 505 114.888 28.69 30.818 1.00 22.77 4852 H LEU 512 113.702 34.591 39.672 1.00 14.37 4782 CB PHE 505 114.356 29.036 27.335 1.00 28.22 4853 N ALA 513 114.279 29.692 41.624 1.00 19.31 4783 CG PHE 505 115.307 31.039 26.651 1.00 28.23 4855 C ALA 513 115.178 28.789 43.710 1.00 18.19 4785 CD2 PHE 505 115.084						27.067			55							39.727		17.19
4780 C PHE 505 114.809 28.314 30.218 1.00 24.14 4851 CD2 LEU 512 113.702 34.591 39.672 1.00 14.37 4781 O PHE 505 113.888 28.869 30.818 1.00 22.77 4852 H LEU 512 113.702 34.591 39.672 1.00 25.00 4782 CB PHE 505 114.356 29.036 27.335 1.00 28.58 60 4853 N ALA 513 114.279 29.692 41.624 1.00 19.31 4783 CG PHE 505 114.888 29.711 26.602 1.00 28.58 60 4854 CA ALA 513 113.979 28.814 42.760 1.00 18.01 4784 CD1 PHE 505 115.048 29.001 25.417 1.00 28.23 4855 C ALA 513 115.017 28.789 43.710 1.00 18.19 4785 CD2 PHE																		
4781 O PHE 505 113.888 28.869 30.818 1.00 22.77 4852 H LEU 512 115.450 30.773 38.817 1.00 25.00 4782 CB PHE 505 114.356 29.036 27.335 1.00 28.22 4853 N ALA 513 114.279 29.692 41.624 1.00 19.31 4783 CG PHE 505 114.888 29.711 26.602 1.00 28.58 60 4854 CA ALA 513 113.979 28.814 42.760 1.00 18.01 4784 CD1 PHE 505 115.307 31.039 26.651 1.00 28.23 4855 C ALA 513 115.078 28.789 43.710 1.00 18.01 4785 CD2 PHE 505 115.048 29.001 25.417 1.00 28.81 4856 O ALA 513 115.071 28.802 44.933 1.00 16.94 4786 CE1 PHE 505																		
4782 CB PHE 505 114.356 29.036 27.335 1.00 28.22 4853 N ALA 513 114.279 29.692 41.624 1.00 19.31 4783 CG PHE 505 114.888 29.711 26.602 1.00 28.58 60 4854 CA ALA 513 113.979 28.814 42.760 1.00 18.01 4784 CD1 PHE 505 115.307 31.039 26.651 1.00 28.23 4855 C ALA 513 115.178 28.789 43.710 1.00 18.01 4785 CD2 PHE 505 115.048 29.001 25.417 1.00 28.81 4856 C ALA 513 115.017 28.802 44.933 1.00 16.94 4786 CE1 PHE 505 115.884 31.646 25.539 1.00 28.43 4857 CB ALA 513 114.364 27.403 42.274 1.00 12.64 4787 CE2 PHE 505														115.450	30.773			
4784 CD1 PHE 505 115.307 31.039 26.651 1.00 28.23 4855 C ALA 513 115.178 28.789 43.710 1.00 18.19 4785 CD2 PHE 505 115.048 29.001 25.417 1.00 28.81 4856 O ALA 513 115.017 28.802 44.933 1.00 16.94 4786 CE1 PHE 505 115.884 31.646 25.539 1.00 25.11 4857 CB ALA 513 113.654 27.403 42.274 1.00 12.64 4787 CE2 PHE 505 116.623 29.597 24.300 1.00 28.43 4858 H ALA 513 114.362 29.302 40.726 1.00 25.00 4788 CZ PHE 505 116.043 30.922 24.362 1.00 29.72 4859 N ARG 514 116.381 28.767 43.140 1.00 19.70 4789 H PHE 505 116.489 27.504 27.881 1.00 25.00 65 4860 CA ARG 51									60			ALA						
4785 CD2 PHE 505 115.048 29.001 25.417 1.00 28.81 4856 O ALA 513 115.017 28.802 44.933 1.00 16.94 4786 CE1 PHE 505 115.884 31.646 25.539 1.00 25.11 4857 CB ALA 513 113.654 27.403 42.274 1.00 12.64 4787 CE2 PHE 505 116.623 29.597 24.300 1.00 28.43 4858 H ALA 513 114.362 29.302 40.726 1.00 25.00 4788 CZ PHE 505 116.043 30.922 24.362 1.00 29.72 4859 N ARG 514 116.381 28.767 43.140 1.00 19.70 4789 H PHE 505 116.489 27.504 27.881 1.00 25.00 65 4860 CA ARG 514 117.609 28.763 43.934 1.00 18.80									OU									
4786 CE1 PHE 505 115.884 31.646 25.539 1.00 25.11 4857 CB ALA 513 113.654 27.403 42.274 1.00 12.64 4787 CE2 PHE 505 116.623 29.597 24.300 1.00 28.43 4858 H ALA 513 114.362 29.302 40.726 1.00 25.00 4788 CZ PHE 505 116.043 30.922 24.362 1.00 29.72 4859 N ARG 514 116.381 28.767 43.140 1.00 19.70 4789 H PHE 505 116.489 27.504 27.881 1.00 25.00 65 4860 CA ARG 514 117.609 28.763 43.934 1.00 18.80																		
4788 CZ PHE 505 116.043 30.922 24.362 1.00 29.72 4859 N ARG 514 116.381 28.767 43.140 1.00 19.70 4789 H PHE 505 116.489 27.504 27.881 1.00 25.00 65 4860 CA ARG 514 117.609 28.763 43.934 1.00 18.80	4786 CE1	PHE		115.884	31.646	25.539				4857 C	СВ			113.654	27.403	42.274		12.64
4789 H PHE 505 116.489 27.504 27.881 1.00 25.00 65 4860 CA ARG 514 117.609 28.763 43.934 1.00 18.80																		
									65									

TABLE 11-continued TABLE 11-continued

Stru	uctura				o 5-Epi-A Bound Su		ne Synt	hase	5		Structur			of Tobacco			ne Synt	hase
Atom			Resi-							Atom			Resi-					
Type A	tom	Resi-	#	X	Y	Z	000	B-factor				Resi-	#	X	Y	z	000	B-factor
											Atom							
4862 O 4863 C		ARG ARG	514 514	118.041 118.832		45.967 43.024	$\frac{1.00}{1.00}$	21.48 13.68	10	4933 4934		TYR ILE	520 521	110.726 117.056	35.626 31.340	49.057 54.350	$\frac{1.00}{1.00}$	25.00 67.35
4864 C		ARG	514	118.981		42.404	1.00	14.32		4935		ILE	521	117.729	30.269	55.091	1.00	74.89
4865 C 4866 N		ARG ARG	514 514	120.084 120.490		41.354 41.066	1.00 1.00	17.33 16.97		4936 4937		ILE ILE	521 521	117.425 117.194	30.428 29.397	56.583 57.255	1.00 1.00	75.44 76.20
4867 C	\mathbf{z}	ARG	514	121.107	25.453	39.958	1.00	19.03		4938	CB	ILE	521	119.276	30.258	54.856	1.00	75.70
4868 N		ARG	514 514	121.398	26.320	38.998	1.00 1.00	15.08	15		CG1 CG2	ILE ILE	521 521	119.586 119.953	29.919	53.394	1.00 1.00	76.18 77.50
4869 N 4870 H		ARG ARG	514	121.450 116.440		39.821 42.160	1.00	15.36 25.00			CD1	ILE	521	121.064	29.222 29.755	55.766 53.080	1.00	77.50
4871 H		ARG	514	120.282	25.180	41.738	1.00	25.00		4942	Н	ILE	521	117.546	32.156	54.145	1.00	25.00
4872 1I 4873 2I			514 514	121.159 121.862		39.100 38.170	1.00 1.00	25.00 25.00		4943 4944		VAL VAL	533 533	120.428 120.478	39.967 38.584	55.248 54.683	1.00 1.00	55.02 57.02
4874 1I			514	121.245		40.547	1.00	25.00		4945		VAL	533	121.277	38.505	53.373	1.00	55.80
4875 2I			514	121.913		38.988	1.00	25.00	20	4946		VAL	533	122.075	37.588	53.181	1.00	56.73
4876 N 4877 C		ILE ILE	515 515	117.330 117.352	31.164 32.438	44.196 44.911	1.00 1.00	20.52 22.89		4947 4948		VAL VAL	533 533	119.048 118.225	37.995 38.868	54.485 53.539	1.00 1.00	56.30 56.90
4878 C		ILE	515	116.489		46.169	1.00	25.55			CG2	VAL	533	119.125	36.552	53.986	1.00	50.74
4879 O		ILE	515	116.851		47.206	1.00	28.26		4950		VAL	533	119.970	40.608	54.578	1.00	25.00
4880 C 4881 C		ILE ILE	515 515	116.863 117.857	33.591	44.018 42.883	1.00 1.00	18.86 18.35	25	4951 4952		VAL VAL	533 533	119.880 121.396	39.938 40.274	56.132 55.462	1.00 1.00	25.00 25.00
4882 C		ILE	515	116.695		44.832	1.00	23.30	25	4953		LEU	534	121.095	39.483	52.491	1.00	49.61
4883 C		ILE	515	117.408	34.863	41.885	1.00	19.17		4954		LEU	534	121.812	39.490	51.218	1.00	48.50
4884 H 4885 N		ILE VAL	515 516	117.045 115.372		43.257 46.082	1.00 1.00	25.00 27.24		4955 4956		LEU LEU	534 534	123.194 124.075	40.138 39.830	51.300 50.496	1.00 1.00	47.52 44.98
4886 C		VAL	516	114.467	31.463	47.220	1.00	26.85		4957		LEU	534	120.983	40.190	50.137	1.00	48.86
4887 C		VAL	516	115.229	30.838	48.378	1.00	30.63	30	4958		LEU	534	119.659	39.533	49.744	1.00	50.00
4888 O 4889 C		VAL VAL	516 516	115.219 113.280	31.354 30.512	49.496 46.881	1.00 1.00	28.87 28.84			CD1 CD2	LEU LEU	534 534	119.054 119.888	40.290 38.066	48.567 49.384	1.00 1.00	46.00 42.36
4890 C		VAL	516	112.433		48.122	1.00	23.42		4961		LEU	534	120.456	40.200	52.652	1.00	25.00
4891 C		VAL	516	112.423		45.776	1.00	22.08		4962		LYS	535	123.382	40.993	52.303	1.00	45.93
4892 H 4893 N		VAL GLU	516 517	115.144 115.910		45.225 48.085	$\frac{1.00}{1.00}$	25.00 35.61		4963 4964		LYS LYS	535 535	124.633 125.921	41.722 40.923	52.510 52.284	1.00 1.00	45.11 43.08
4894 C		GLU	517	116.680		49.081	1.00	41.24	35	4965		LYS	535	126.729	41.288	51.428	1.00	42.36
4895 C		GLU	517	117.696		49.796	1.00	42.08		4966		LYS	535	124.651	42.385	53.895	1.00	46.19
4896 O 4897 C		GLU GLU	517 517	117.872 117.385		51.009 48.424	1.00 1.00	46.37 41.58		4967 4968		LYS LYS	535 535	125.855 125.868	43.288 43.868	54.130 55.536	1.00 1.00	54.44 57.76
4898 C		GLU	517	116.496		47.503	1.00	52.96		4969		LYS	535	127.075	44.774	55.747	1.00	61.61
4899 C		GLU	517	115.344		48.223	1.00	59.58	40	4970		LYS	535	127.099	45.378	57.111	1.00	62.66
4900 O 4901 O		GLU GLU	517 517	115.593 114.187	25.557	49.236 47.762	1.00 1.00	60.41 63.04	+0	4971 4972	н 1HZ	LYS LYS	535 535	122.651 127.134	41.156 44.621	52.915 57.824	1.00 1.00	25.00 25.00
4902 H		GLU	517	115.899	29.407	47.161	1.00	25.00		4973	2HZ	LYS	535	127.936	45.986	57.207	1.00	25.00
4903 N		VAL	518	118.314		49.050	1.00	40.18			3HZ	LYS	535	126.239 126.115	45.946	57.252	1.00	25.00
4904 C. 4905 C		VAL VAL	518 518	119.310 118.704		49.600 50.386	1.00 1.00	42.32 47.45		4975 4976		PRO PRO	536 536	120.115	39.809 39.020	53.019 52.829	1.00 1.00	39.15 37.51
4906 O		VAL	518	119.269	33.326	51.389	1.00	48.49	45	4977		PRO	536	127.564	38.579	51.386	1.00	33.92
4907 C		VAL	518	120.219		48.474	1.00	41.14		4978		PRO	536	128.684	38.644	50.877	1.00	33.28
4908 C 4909 C		VAL VAL	518 518	121.133 121.034		48.986 47.896	$\frac{1.00}{1.00}$	39.83 45.30		4979 4980		PRO PRO	536 536	127.128 125.638	37.827 37.724	53.770 53.893	1.00 1.00	38.16 42.17
4910 H	[VAL	518	118.097	30.844	48.095	1.00	25.00		4981	CD	PRO	536	125.233	39.164	54.008	1.00	38.53
4911 N 4912 C		THR	519	117.563		49.923	1.00	45.49		4982 4983		HIS	537	126.488	38.181	50.714	1.00	33.98
4913 C		THR THR	519 519	116.899 116.183		50.577 51.884	1.00 1.00	44.49 44.03	50	4984		HIS HIS	537 537	126.575 126.929	37.730 38.877	49.327 48.390	1.00 1.00	34.56 34.75
4914 O)	THR	519	115.983	34.964	52.754	1.00	41.48		4985		HIS	537	127.742	38.714	47.479	1.00	29.05
4915 C 4916 O		THR THR	519 519	115.868 116.518		49.622 48.394	1.00 1.00	45.40 47.45		4986 4987		HIS HIS	537 537	125.264 124.917	37.071 35.855	48.900 49.703	1.00 1.00	34.41 41.27
4910 O		THR	519	115.283		50.240	1.00	50.81			ND1	HIS	537	123.749	35.746	50.426	1.00	43.98
4918 H		THR	519	117.161	32.996	49.123	1.00	25.00	55		CD2	HIS	537	125.601	34.705	49.917	1.00	37.03
4919 H 4920 N		THR TYR	519 520	116.872 115.827		47.980 52.034	1.00 1.00	25.00 49.74	55	4990	CE1 NE2	HIS HIS	537 537	123.726 124.838	34.584 33.933	51.053 50.760	1.00 1.00	40.28 39.05
4921 C		TYR	520	115.130		53.240	1.00	54.71		4992		HIS	537	125.616	38.225	51.154	1.00	25.00
4922 C)	TYR	520	115.783	31.213	53.984	1.00	60.58		4993	HD1	HIS	537	123.030	36.418	50.483	1.00	25.00
4923 O 4924 C		TYR TYR	520 520	115.129 113.686		54.209 52.905	1.00 1.00	65.16 52.58		4994 4995	HE2 N	HIS ILE	537 538	125.072 126.333	33.038 40.040	51.088 48.634	1.00 1.00	25.00 34.95
4924 C		TYR	520	112.886		52.142	1.00	53.27	60	4996		ILE	538	126.596	41.225	47.829	1.00	35.08
4926 C	D1	TYR	520	112.885	33.027	50.748	1.00	54.77		4997	C	ILE	538	128.063	41.612	47.969	1.00	36.46
4927 C 4928 C		TYR TYR	520 520	112.105 112.127		52.809 50.032	1.00 1.00	50.10 57.50		4998 4999		ILE ILE	538 538	128.703	41.999 42.406	46.990 48.263	1.00 1.00	38.58 35.99
4928 C 4929 C		TYR	520 520	112.127		50.032 52.102	1.00	57.50 54.19			CG1	ILE	538	125.701 124.230	42.406	48.203	1.00	35.99 37.36
4930 C	Z	TYR	520	111.357	34.873	50.713	1.00	56.86		5001	CG2	ILE	538	126.124	43.681	47.542	1.00	34.76
4931 O		TYR	520	110.604		49.999	1.00	58.70	65		CD1	ILE	538	123.248	43.112	48.460	1.00	36.39
4932 H	L	TYR	520	116.029	32.189	51.330	1.00	25.00		5003	Н	ILE	538	125.708	40.113	49.385	1.00	25.00

TABLE 11-continued

Structur			of Tobacco			ne Synt	hase	5	Stru	uctur	al Cooı	dinates (of Tobacco	5-Epi-A Bound Su	ristoloche Ibstrate	ne Synt	hase
		Resi-										Resi-					
Atom	Resi-	due							Atom		Resi-	due					
Type Atom	due	#	X	Y	Z	OCC	B-factor		Type A	tom	due	#	X	Y	Z	OCC	B-factor
5004 N	ILE	539	128.588	41.491	49.185	1.00	34.70	10	5075 H		ILE	546	138.009	37.990	43.533	1.00	25.00
5005 CA 5006 C	ILE ILE	539 539	129.979 130.912	41.807 40.828	49.473 48.769	1.00 1.00	33.68 34.74		5076 N 5077 C		LYS LYS	547 547	141.282 142.706	37.201 37.502	46.009 46.134	$\frac{1.00}{1.00}$	52.49 58.52
5007 O	ILE	539	131.868	41.239	48.093	1.00	30.49		5078 C	;	LYS	547	143.483	36.450	45.353	1.00	60.95
5008 CB 5009 CG1	ILE ILE	539 539	130.253 129.559	41.761 42.939	51.004 51.686	1.00 1.00	35.37 33.35		5079 O 5080 C		LYS LYS	547 547	143.488 143.217	35.273 37.599	45.713 47.572	1.00 1.00	60.42 59.36
5010 CG2	ILE	539	131.749	41.790	51.285	1.00	32.80	15	5081 C	G	LYS	547	144.684	38.023	47.659	1.00	68.28
5011 CD1 5012 H	ILE ILE	539 539	129.684 127.999	42.933 41.207	53.189 49.913	1.00 1.00	34.58 25.00	15	5082 C 5083 C		LYS LYS	547 547	145.065 146.486	38.553 39.105	49.037 49.029	1.00 1.00	72.08 74.86
5012 H	ASN	540	130.603	39.538	48.864	1.00	33.09		5084 N		LYS	547	146.796	39.880	50.265	1.00	78.47
5014 CA	ASN	540	131.440	38.505	48.263	1.00	33.80		5085 H		LYS	547	140.806	36.948	46.910	1.00	25.00
5015 C 5016 O	ASN ASN	540 540	131.355 132.298	38.498 38.166	46.749 46.065	1.00 1.00	34.25 33.46		5086 1I 5087 2I		LYS LYS	547 547	146.680 147.770	39.273 40.240	51.099 50.222	1.00 1.00	25.00 25.00
5017 CB	ASN	540	131.047	37.127	48.775	1.00	33.03	20	5088 3I		LYS	547	146.139	40.685	50.334	1.00	25.00
5018 CG 5019 OD1	ASN ASN	540 540	131.463 130.776	36.902 36.219	50.198 50.965	1.00 1.00	39.77 45.10		5089 N 5090 C		ILE ILE	548 548	144.086 144.868	36.890 36.018	44.254 43.381	1.00 1.00	67.72 76.79
5020 ND2	ASN	540	132.581	37.502	50.579	1.00	36.91		5091 C		ILE	548	146.198	35.622	44.025	1.00	83.68
5021 H 5022 1HD2	ASN	540 540	129.781 132.850	39.280 37.386	49.311 51.503	1.00 1.00	25.00 25.00		5092 O 5093 C		ILE ILE	548 548	146.583 145.120	34.440 36.678	43.897 41.986	1.00 1.00	86.24 75.68
5022 1HD2 5023 2HD2		540	133.079	38.025	49.919	1.00	25.00	25	5094 C		ILE	548	145.604	38.125	42.152	1.00	78.47
5024 N	LEU	541	130.185	38.821	46.253	1.00	30.66		5095 C		ILE	548	143.855	36.623	41.137	1.00	68.49
5025 CA 5026 C	LEU LEU	541 541	129.997 130.262	38.848 40.166	44.821 44.110	1.00 1.00	31.93 33.86		5096 C 5097 O		ILE ILE	548 548	145.930 146.823	38.827 36.492	40.831 44.672	1.00 1.00	78.93 92.78
5027 O	LEU	541	130.805	40.129	42.977	1.00	30.07		5098 H	[ILE	548	144.032	37.836	44.045	1.00	25.00
5028 CB 5029 CG	LEU LEU	541 541	128.600 128.194	38.308 36.907	44.486 44.990	1.00 1.00	34.62 35.64	**	5099 II 5100 M		548 MG	851	104.185	36.235	53.030	1.00	61.83
5030 CD1	LEU	541	126.882	36.542	44.345	1.00	31.26	30	5100 M		MG	852	102.138	43.657	49.009	1.00	62.23
5031 CD2	LEU	541	129.256	35.866	44.669	1.00	29.53		5102 O		HOH	601	107.742	22.057	32.406	1.00	15.11
5032 H 5033 N	LEU LEU	541 542	129.518 129.910	38.998 41.305	46.982 44.706	1.00 1.00	25.00 35.33		5103 O 5104 O		HOH HOH	602 603	122.540 127.188	22.695 14.109	37.531 43.835	$\frac{1.00}{1.00}$	32.44 23.85
5034 CA	LEU	542	130.075	42.581	44.033	1.00	39.16		5105 O		НОН	604	123.257	32.177	37.651	1.00	25.21
5035 C 5036 O	LEU LEU	542 542	131.084 131.361	43.566 44.614	44.635 44.055	1.00 1.00	42.69 45.28	35	5106 O 5107 O		HOH HOH	605 606	131.975 130.320	36.814 38.579	38.945 40.729	1.00 1.00	20.08 28.69
5037 CB	LEU	542	128.721	43.258	43.921	1.00	37.88		5108 O)	HOH	607	124.735	33.181	39.810	1.00	19.46
5038 CG 5039 CD1	LEU LEU	542 542	127.685 126.275	42.494 42.902	43.105 43.505	1.00 1.00	37.82 37.78		5109 O 5110 O		HOH HOH	608 609	119.958 125.172	22.714 22.654	50.725 40.253	1.00 1.00	24.82 21.47
5040 CD2	LEU	542	127.947	42.728	41.619	1.00	33.54		5111 O		НОН	610	106.047	21.994	29.826	1.00	26.03
5041 H	LEU VAL	542 543	129.525 131.590	41.317 43.264	45.569 45.822	1.00 1.00	25.00 40.06	40	5112 O		HOH HOH	611 612	123.659 129.924	29.782 22.165	47.444 49.955	1.00 1.00	22.10 20.33
5042 N 5043 CA	VAL	543	132.536	44.167	46.483	1.00	39.32		5113 O 5114 O		НОН	613	117.254	16.672	36.732	1.00	18.88
5044 C	VAL	543	133.930	43.601	46.457	1.00	40.35		5115 O		НОН	614	131.911	22.935	48.204	1.00	23.59
5045 O 5046 CB	VAL VAL	543 543	134.834 132.112	44.117 44.458	45.766 47.351	1.00 1.00	36.40 38.67		5116 O 5117 O		HOH HOH	615 616	123.421 128.952	30.030 30.316	35.911 38.829	1.00 1.00	23.89 22.41
5047 CG1	VAL	543	133.154	45.323	48.643	1.00	41.60		5118 O)	HOH	617	98.347	33.326	40.948	1.00	28.07
5048 CG2 5049 H	VAL VAL	543 543	130.762 131.348	45.137 42.421	47.966 46.245	1.00 1.00	33.55 25.00	45	5119 O 5120 O		HOH HOH	618 619	126.062 133.788	19.250 33.099	36.922 36.415	1.00 1.00	29.11 20.10
5050 N	ASP	544	134.175	42.518	47.191	1.00	39.19		5121 O		НОН	620	127.252	22.013	48.848	1.00	24.10
5051 CA 5052 C	ASP	544 544	135.485	41.887	47.274 46.112	1.00	37.12 38.65		5122 O 5123 O		HOH	621	123.122 124.636	19.043 25.767	45.472 41.845	1.00	19.68 42.37
5052 C 5053 O	ASP ASP	544	135.802 134.991	40.970 40.124	45.739	1.00 1.00	42.40		5123 O 5124 O		HOH HOH	622 623	138.021	26.937	54.497	$\frac{1.00}{1.00}$	33.32
5054 CB	ASP	544	135.609	41.070	48.566	1.00	37.00	50	5125 O		НОН	624	130.604	16.213	44.273	1.00	25.46
5055 CG 5056 OD1	ASP ASP	544 544	135.384 135.659	41.894 43.114	49.812 49.803	1.00 1.00	42.35 49.35		5126 O 5127 O		HOH HOH	625 626	119.735 109.560	17.425 43.332	55.175 32.386	1.00 1.00	23.51 27.79
5057 OD2	ASP	544	134.933	41.304	50.813	1.00	50.35		5128 O)	HOH	627	104.016	36.817	39.018	1.00	24.34
5058 H 5059 N	ASP SER	544 545	133.427 136.984	42.119 41.153	47.665 45.543	1.00 1.00	25.00 36.71		5129 O 5130 O		HOH HOH	628 629	134.051 107.947	35.256 18.792	29.604 36.023	1.00 1.00	37.22 35.84
5060 CA	SER	545	137.444	40.303	44.464	1.00	39.73	<i>E E</i>	5131 O		НОН	630	129.821	19.576	48.096	1.00	29.63
5061 C	SER	545	138.200	39.158	45.142	1.00	38.96	55	5132 O		HOH	631	104.550	21.758	41.675	1.00	38.10
5062 O 5063 CB	SER SER	545 545	138.585 138.379	39.269 41.084	46.310 43.540	$\frac{1.00}{1.00}$	40.93 43.38		5133 O 5134 O		HOH HOH	632 633	111.970 125.976	10.709 29.448	47.161 50.341	$\frac{1.00}{1.00}$	23.86 26.42
5064 OG	SER	545	139.362	41.790	44.280	1.00	51.44		5135 O)	HOH	634	97.143	36.787	48.102	1.00	35.12
5065 H 5066 HG	SER SER	545 545	137.544 139.870	41.896 41.166	45.832 44.808	1.00 1.00	25.00 25.00		5136 O 5137 O		HOH HOH	635 636	121.582 113.756	36.805 26.801	25.111 22.571	$\frac{1.00}{1.00}$	35.51 30.58
5067 N	ILE	546	138.377	38.046	44.442	1.00	36.92	60	5138 O)	HOH	637	124.698	19.485	28.803	1.00	29.60
5068 CA 5069 C	ILE ILE	546 546	139.109 140.602	36.920 37.261	45.011 44.954	1.00 1.00	40.59 45.93		5139 O 5140 O		HOH HOH	638 639	130.563 121.706	25.567 39.646	43.476 27.124	1.00 1.00	2993 32.61
5070 O	ILE	546	141.117	37.620	43.889	1.00	46.41		5140 O		НОН	640	104.749	34.099	30.683	1.00	28.14
5071 CB	ILE	546	138.839	35.612	44.226	1.00	36.34		5142 O)	HOH	641	111.751	8.174	35.080	1.00	34.23
5072 CG1 5073 CG2	ILE ILE	546 546	137.346 139.629	35.288 34.456	44.264 44.829	1.00 1.00	34.10 31.04	65	5143 O 5144 O		HOH HOH	642 643	120.339 95.163	31.400 26.623	41.487 43.384	1.00 1.00	52.69 36.83
5074 CD1	ILE	546	136.979	34.011	43.525	1.00	36.46		5145 O		НОН	644	137.113	41.980	40.124	1.00	30.35

TABLE 11-continued TABLE 11-continued

Structu				o 5-Epi-Ai Bound Su		ne Synt	thase	5	Structi			of Tobacco			ne Syn	hase
		Resi-									Resi					
Atom	Resi-	due	37	37	7	000	D.C.		Atom	Resi-	due "	37	37	7	000	D.C.
Type Atom		#	X	Y	Z		B-factor		Type Ator		#	X	Y	Z		B-factor
5146 O 5147 O	HOH HOH	645 646	116.126 110.165	11.318 35.328	49.986 17.495	$\frac{1.00}{1.00}$	25.34 37.81	10	5217 O 5218 O	HOH HOH	716 717	100.372 120.163	35.917 23.899	30.033 33.930	1.00 1.00	43.22 33.67
5148 O	HOH	647	118.054	20.287	30.749	1.00	33.12		5219 O	HOH	718	146.383	28.556	40.921	1.00	38.01
5149 O 5150 O	HOH HOH	648 649	115.899 113.524	40.354 64.000	30.351 32.295	1.00 1.00	29.82 30.14		5220 O 5221 O	HOH HOH	719 720	109.966 105.493	20.788 40.925	31.041 45.887	$\frac{1.00}{1.00}$	38.62 35.53
5150 O	НОН	650	127.950	27.982	37.184	1.00	28.39		5221 O 5222 O	НОН	721	119.171	27.937	23.152	1.00	55.39
5152 O	HOH	651	108.770	18.109	30.127	1.00	36.94	15	5223 O	HOH	722	124.424	41.390	25.938	1.00	43.52
5153 O 5154 O	HOH HOH	652 653	112.843 132.804		50.160 50.167	1.00 1.00	41.87 34.56	10	5224 O 5225 O	HOH HOH	723 724	102.779 112.387	17.993 75.685	48.134 33.453	1.00 1.00	38.38 48.35
5155 O	HOH	654	99.278	32.670	36.214	1.00	31.88		5226 O	HOH	725	151.082	25.140	44.349	1.00	35.50
5156 O	НОН	655		36.093	41.777	1.00	39.13		5227 O	НОН	726	127.089	21.203	29.049	1.00	45.21
5157 O 5158 O	HOH HOH	656 657	114.575 134.890	17.087 18.651	50.058 45.599	1.00 1.00	29.96 29.79		5228 O 5229 O	HOH HOH	727 728	133.178 151.127	5.551 34.628	47.734 33.927	1.00 1.00	39.38 42.02
5159 O	НОН	658	134.764		47.235	1.00	41.87	20	5230 O	НОН	729	150.405	22.240	44.559	1.00	38.43
5160 O	HOH	659	138.146	19.452	46.210	1.00	40.62		5231 O	HOH	730	131.660	2.107	47.933	1.00	37.78
5161 O 5162 O	HOH HOH	660 661	113.498 118.735	7.243 25.324	37.601 49.539	1.00 1.00	44.14 32.46		5232 O 5233 O	HOH HOH	731 732	135.465 147.814	8.584 29.664	52.047 45.229	1.00 1.00	40.15 44.50
5163 O	НОН	662		19.323	57.037	1.00	28.13		5234 O	НОН	733	140.989	33.094	47.707	1.00	43.19
5164 O	HOH	663			31.726	1.00 1.00	31.21	2.5	5235 O	HOH	734	103.951	49.441 53.747	25.596	1.00	38.72
5165 O 5166 O	HOH HOH	664 665	125.201 103.040	27.803 17.910	35.886 41.249	1.00	35.41 34.74	25	5236 O 5237 O	HOH HOH	735 736	86.471 134.470	31.168	29.731 25.546	1.00 1.00	43.56 52.39
5167 O	HOH	666	92.281	23.719	49.317	1.00	36.36		5238 O	HOH	737	122.918	25.464	36.469	1.00	42.39
5168 O 5169 O	HOH HOH	667 668	120.731 111.010	30.312 16.805	30.736 31.260	1.00 1.00	40.91 37.18		5239 O 5240 O	HOH HOH	738 739	99.309 91.548	33.456 47.290	31.178 47.278	1.00 1.00	48.32 45.43
5170 O	НОН	669	98.374	30.892	39.496	1.00	39.09		5240 O	HOH	740	92.024	43.380	40.690	1.00	42.02
5171 O	HOH	670	142.913		59.043	1.00	40.89	30	5242 O	HOH	741	149.190	38.195	52.530	1.00	47.74
5172 O 5173 O	HOH HOH	671 672	120.070 116.885	4.238 14.360	32.203 38.230	1.00 1.00	32.10 19.20		5243 O 5244 O	HOH HOH	742 743	153.088 138.714	41.575 31.651	36.804 53.657	1.00 1.00	46.51 43.64
5173 O 5174 O	HOH	673	135.198		38.159	1.00	21.99		5245 O	HOH	744	143.900	19.054	51.722	1.00	40.32
5175 O	НОН	674	130.652	23.815	45.653	1.00	22.37		5246 O	НОН	745	138.795	15.536	49.608	1.00	43.79
5176 O 5177 O	HOH HOH	675 676	116.184 102.763	18.170 37.505	25.042 36.535	1.00 1.00	33.65 29.50		5247 O 5248 O	HOH HOH	746 747	124.711 145.969	-3.430 30.921	56.077 42.825	1.00 1.00	44.40 39.08
5178 O	HOH	677		17.709	47.318	1.00	24.10	35	5249 O	НОН	748	134.979	10.249	59.470	1.00	35.78
5179 O	HOH	678	128.292		47.295	1.00	27.62		5250 O	HOH	749	133.932	40.151	29.911	1.00	41.40
5180 O 5181 O	HOH HOH	679 680	128.934 129.840	20.011 32.556	39.747 48.799	1.00 1.00	26.34 34.07		5251 O 5252 O	HOH HOH	750 751	114.521 129.614	21.309 38.180	22.697 25.426	$\frac{1.00}{1.00}$	33.72 39.89
5182 O	HOH	681	115.123		45.342	1.00	23.02		5253 O	HOH	752	111.644	313.087	29.735	1.00	45.90
5183 O	HOH	682			61.810	1.00	24.68	40	5254 O	HOH	753	104.216	21.388	44.848	1.00	33.35
5184 O 5185 O	HOH HOH	683 684	140.837 135.724	8.315	38.782 55.152	1.00 1.00	33.65 37.93	70	5255 O 5256 O	HOH HOH	754 755	110.986 139.600	12.520 40.725	49.459 48.728	1.00 1.00	49.32 46.07
5186 O	HOH	685	131.660	25.765	56.520	1.00	36.71		5257 O	НОН	756	113.295	9.448	29.832	1.00	35.78
5187 O 5188 O	HOH	686		27.966 10.176	42.675 45.195	1.00 1.00	38.11 35.74		5258 O 5259 O	HOH	757 758	127.101 127.933	23.382 18.490	34.156 63.251	1.00 1.00	48.02 46.33
5189 O	HOH HOH	687 688	110.190 109.091		25.410	1.00	33.74 38.94		5260 O	HOH HOH	759	130.420	26.867	25.702	1.00	40.40
5190 O	HOH	6889	104.860	34.526	28.030	1.00	38.81	45	5261 O	HOH	760	122.231	3.237	35.918	1.00	44.61
5191 O 5192 O	HOH HOH	690 691	102.070 118.113		27.889 28.782	1.00 1.00	35.60 38.94		5262 O 5263 O	HOH HOH	761 762	128.310 88.443	26.484 24.530	40.968 48.586	1.00 1.00	32.14 57.07
5192 O	HOH		131.635		62.725	1.00	33.60		5264 O	HOH	763	103.542	23.739	25.080	1.00	45.05
5194 O	НОН		136.344		31.124	1.00	36.08		5265 O	НОН	764	116.278		34.559	1.00	42.40
5195 O 5196 O	HOH HOH	694 695	120.257 102.005		33.335 56.124	1.00 1.00	31.14 33.30	50	5266 O 5267 O	HOH HOH	765 766	120.787 142.631	5.886 40.352	61.156 42.775	1.00 1.00	43.73 65.94
5197 O	НОН	696	124.575		35.468	1.00	36.59	50	5268 O	НОН	767	124.244	13.057	63.666	1.00	43.68
5198 O	HOH	697	101.923		46.398	1.00	40.37		5269 O	HOH	768	101.830	22.900	29.735	1.00	36.47
5199 O 5200 O	HOH HOH	698 699	129.243 139.196		40.765 48.616	1.00 1.00	49.17 31.26		5270 O 5271 O	HOH HOH	769 770	137.190 135.078	5.022 34.403	37.071 50.639	1.00 1.00	50.65 51.53
5201 O	НОН		134.064		43.146	1.00	40.48		5272 O	НОН	771	103.266	58.719	26.225	1.00	46.58
5202 O	HOH	701	128.514		51.675	1.00	39.32	55	5273 O	HOH	772	144.319	16.861	24.565	1.00	53.32
5203 O 5204 O	HOH HOH	702 703	112.958 109.649		36.694 28.459	1.00 1.00	47.07 35.43		5274 O 5275 O	HOH HOH	773 774	127.856 95.530	47.718 18.110	31.019 49.546	1.00 1.00	45.45 52.47
5205 O	НОН	704	140.094		39.958	1.00	41.31		5276 O	НОН	775	148.435	20.165	43.831	1.00	49.25
5206 O	HOH	705		31.749	55.350	1.00	36.82		5277 O	HOH	776	118.026	13.535	59.021	1.00	48.41
5207 O 5208 O	HOH HOH	706 707	128.605 87.075	34.147	28.351 56.433	1.00 1.00	35.79 42.04		5278 O 5279 O	HOH HOH	777 778	110.119 110.457	43.903 61.356	16.201 39.879	1.00 1.00	37.10 44.66
5209 O	HOH	708	89.030	34.345	44.620	1.00	40.07	60	5280 O	HOH	779	105.313	56.879	27.692	1.00	51.08
5210 O	HOH		104.535		27.998	1.00	39.44		5281 O	HOH	780	106.267	19.656	28.049	1.00	45.55
5211 O 5212 O	HOH HOH		120.125 100.184		24.397 52.580	1.00 1.00	63.74 43.18		5282 O 5283 O	HOH HOH	781 782	122.226 107.680	20.789 19.165	29.638 33.248	1.00 1.00	45.73 35.37
5212 O 5213 O	НОН		109.218		46.111	1.00	37.68		5284 O	НОН	783	141.434	30.527	58.190	1.00	56.49
5214 O	HOH		139.550		60.539	1.00	40.82	65	5285 O	HOH	784	121.953	27.180	30.544	1.00	43.22
5215 O 5216 O	HOH HOH		140.612 120.330		52.684 32.392	1.00 1.00	42.33 31.20	65	5286 O 5287 O	HOH HOH	785 786	116.050 115.271	27.492 11.494	52.913 53.629	1.00 1.00	59.86 47.46
3210 U	пОН	/13	120.330	21.170	34.392	1.00	31.20		3201 U	пОН	/80	113.271	11.494	33.029	1.00	47.40

TABLE 11-continued

TABLE 11-continued

Structur			of Tobacco			ne Synt	thase	5	Structu			of Tobacco	-		ne Synt	hase
		Resi-									In the A	bsence of	Bound Su	bstrate		
Atom	ъ.	due									Resi					
Type Atom	Resi- due	#	X	Y	Z	OCC	B-factor		Atom		due					
5288 O	НОН	787	136.166	43.700	43.430	1.00	44.89	10	Type Ator	Resi- n due	#	X	Y	Z	OCC	B-factor
5289 O	HOH	788	123.135	5.923	32.296	1.00	61.24	10								
5290 O	НОН	789	148.342	38.089	38.232	1.00	41.22		5341 O	НОН	840	97.213	27.831	34.233	1.00	45.30
5291 O	HOH	790	112.195	39.980	44.065	1.00	44.26									
5292 O 5293 O	HOH HOH	791 792	108.340 126.140	50.773 29.670	20.100 29.775	1.00 1.00	62.55 38.87		5342 O	HOH	841	89.788	22.728	43.919	1.00	61.79
5294 O	HOH	793	122.347	26.176	27.904	1.00	47.43		5343 O	HOH	842	147.830	32.323	40.885	1.00	46.95
5295 O	НОН	794	105.375	13.283	37.860	1.00	40.63	15	5344 O	НОН	843	132.462	17.381	68.762	1.00	50.53
5296 O	НОН	795	146.608	19.061	33.529	1.00	50.53		5345 O	НОН	844	140.816	13.261	39.613	1.00	50.48
5297 O	HOH	796	112.240	28.192	56.028	1.00	54.08									
5298 O	HOH	797	106.519	16.717	37.160	1.00	39.17		5346 O	HOH		131.788	48.689	43.107	1.00	55.44
5299 O	HOH	798	122.257	-2.147	57.632	1.00	59.87		5347 O	HOH	846	106.451	38.430	52.704	1.00	44.59
5300 O	НОН	799	105.969	47.469	20.174	1.00	42.44	20	5348 O	НОН	847	112.522	3.225	51.067	1.00	62.24
5301 O	HOH	800	124.201	23.387	29.951	1.00	51.85	20	5349 O	НОН	848	116.588	33.059	17.286	1.00	51.54
5302 O	HOH	801	104.010	26.139	23.199	1.00	57.02									
5303 O 5304 O	HOH HOH	802 803	106.547 126.083	37.540 27.795	47.839 33.246	1.00 1.00	46.00 45.66		5350 O	HOH	849	121.984	13.530	21.831	1.00	59.69
5305 O	НОН	804	93.229	25.530	63.301	1.00	50.45		5351 O	HOH	850	121.351	34.646	19.580	1.00	63.69
5306 O	НОН	805	126.637	14.627	66.291	1.00	54.63		5352 O	НОН	853	119.444	26.300	52.657	1.00	48.12
5307 O	НОН	806	117.649	48.031	30.248	1.00	44.41	25	5353 O	НОН		119.223	18.972	28.280	1.00	43.53
5308 O	НОН	807	112.889	34.483	46.820	1.00	41.77	20								
5309 O	HOH	808	143.749	8.474	39.051	1.00	58.35		5354 O	НОН	855	109.476	29.077	61.498	1.00	46.95
5310 O	HOH	809	117.223	16.467	56.527	1.00	54.55		5355 O	HOH	856	96.378	36.846	50.773	1.00	37.88
5311 O	HOH	810	136.640	48.794	42.640	1.00	59.70		5356 O	НОН	857	96.918	48.467	51.605	1.00	69.73
5312 O	HOH	811	130.573	47.631	52.219	1.00	43.65		5357 O	НОН		97.861	35.983	32.096	1.00	48.71
5313 O	HOH	812	119.790	22.620	53.732	1.00	49.88	30								
5314 O 5315 O	HOH HOH	813 814	105.220 94.459	9.911 22.230	43.334 65.891	1.00 1.00	53.82 53.43		5358 O	HOH		105.582	44.217	22.626	1.00	52.96
5316 O	HOH	815	145.893	33.119	447.904	1.00	50.15		5359 O	HOH	860	111.207	54.577	33.852	1.00	44.86
5317 O	НОН	816	137.540	19.003	49.581	1.00	32.04		5360 O	НОН	861	106.475	45.773	50.620	1.00	52.70
5318 O	НОН	817	127.395	18.676	22.177	1.00	58.02		5361 O	НОН	862	136.750	45.222	40.123	1.00	53.92
5319 O	HOH	818	135.930	19.361	20.695	1.00	61.65	25								
5320 O	HOH	819	122.368	-4.865	43.028	1.00	43.72	35	5362 O	HOH	863	134.438	43.600	31.414	1.00	51.51
5321 O	HOH	820	117.352	52.131	24.538	1.00	49.67		5363 O	НОН	864	147.130	24.676	49.884	1.00	42.49
5322 O	HOH	821	129.874	51.577	33.814	1.00	58.12		5364 O	HOH	865	126.425	22.757	59.405	1.00	54.25
5323 O	HOH	822	129.360	28.179	34.594	1.00	43.67		5365 O	НОН	866	135.514	7.098	48.245	1.00	59.13
5324 O 5325 O	HOH HOH	823 824	97.243 119.361	40.051 23.189	31.308 24.691	1.00 1.00	40.94 55.59									
5325 O	НОН	825	105.947	8.433	39.961	1.00	47.78	40	5366 O	НОН		114.942	1.622	48.125	1.00	56.08
5327 O	НОН	826	124.177	-6.929	48.285	1.00	50.47		5367 O	НОН	868	119.740	-4.108	46.312	1.00	51.35
5328 O	НОН	827	143.743	41.219	49.977	1.00	54.42		5368 O	HOH	869	134.478	8.308	29.219	1.00	53.23
5329 O	HOH	828	117.815	15.765	23.926	1.00	47.10		5369 O	НОН	870	127.297	14.232	21.009	1.00	54.19
5330 O	HOH	829	106.852	11.509	45.366	1.00	59.91									
5331 O	HOH	830	114.340	49.442	45.031	1.00	54.21		5370 O	НОН		134.315	17.294	22.547	1.00	59.58
5332 O	HOH	831	107.212	10.319	38.018	1.00	47.91	45	5371 O	НОН	872	130.159	26.543	36.441	1.00	34.46
5333 O	HOH	832	89.843	54.539	37.711	1.00	55.79		5372 O	НОН	873	136.207	18.694	43.344	1.00	35.20
5334 O	HOH HOH	833	115.120	21.415	49.941	1.00	40.64 63.27		5373 O	НОН	874	134.779	10.368	41.428	1.00	45.81
5335 O 5336 O	НОН	834 835	119.324 149.479	14.942 14.241	62.472 50.723	1.00 1.00	65.18									
5337 O	НОН	836	99.208	46.311	26.331	1.00	59.48		5374 O	НОН		137.054	3.899	33.453	1.00	51.47
5338 O	НОН	837	146.479	34.108	25.046	1.00	49.79	50	5375 O	HOH	876	145.762	17.318	28.638	1.00	52.42
5339 O	НОН	838	117.731	49.616	19.065	1.00	60.65	50	5376 O	НОН	877	146.344	20.944	29.342	1.00	47.62
5340 O	НОН	839	115.539	6.301	34.276	1.00	51.97									
			_10.007	0.001	22.0	2.00										

TABLE 12

Score = 167 bits (419), Expect = 5e-41 Identities = 88/270 (32%), Poslitives = 152/270 (55%), Gaps = 5/270 (1%)

Query: 1 DRVVECYFWALGVYFEPQYSQARVMLVKTISMISIVDDTFDAYGTVKELEAYTDAIQRWD 60 DR+VECYFW G+ Q++ AR+M+ K ++I+++DD +D YGT++ELE +TD I+RWD

sbjct: 316 DRLVECYFWNTGIIEPRQHASARIMMGKVNALITVIDDIYDVYGTLEELEQFTDLIRRWD 375

Query: 61 INEIDRLPDYMKISYKAILDLYKDYEKELSSAGRSHIVCHAIERMKEVVRNYNVESTWFI 120
IN ID+LPDYM++ + A+ + D ++ +++ + + + Y VE+WF

 ${\tt Sbjct: 376\ INSIDQLPDYMQLCFLALNNFVDDTSYDVMKEKGVNVIPYLRQSWVDLADKYMVEARWFY\ 435}$

TABLE 12-continued

Quer y:	121	EGYMPPVSEYLSNALATTTYYYLATTSYLGM-KSATEQDFEWLSKNPKILEASVIICRVI G+ P + EYL N+ + + + T + + S T++ + L K ++ S + R+	179
Sbjct:	436	GGHKPSLEEYLENSWQSISGPCMLTHIFFRVTDSFTKETVDSLYKYHDLVRWSSFVLRLA	495
Query:	180	DDTATYEVEKSRGQIATGIECCMRDYGISTKEAMAKFQNMAETAWKDIN-EGLLRPTPVS DD T E SRG + ++C M DY S EA + + WK +N E + + +P	238
Sbjct:	496	DDLGTSVEEVSRGDVPKSLQCYMSDYNASEAEARKHVKWLIAEVWKKMNAERVSKDSPFG	555
Query:	239	TEFLTPILNLARIVEVTYIHNLDGYTHP +F+ ++L R+ ++ Y HN DG+ HP	266
Sbjct:	556	KDFIGCAVDLGRMAQLMY-HNGDGHGTQHP	584

TABLE 13

		16 bits (289), Expect = 1e-25 = 77/270 (28%), Positives = 126/270 (46%), Gaps = 6/270 (2%)	
Query:	3	VAEVYFSSATFEP-EYSATRIAFTKIGCLQVLFDDMADIFATLDELKSFTEGVKRWDTSL V +++ FEP ++ R I L + DD+ D++ TLDEL+ FT+ KRWDT	61
Sbjct:	318	VESFFWAVGMFEPHQHGYQRKMAATIIVLATVIDDIYDVYGTLDELELFTDTFKRWDTES	377
Query:	62	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	121
Sbjct:	378	ITRLPYYMQLCYWGVHNYISDAAYDILKEHGFFCLQYLRKSVVDLVEAYFHEAKWYHSGY	437
Query:	122	IPTFEEYLKTYAISVGLGPCTLQPILLMGELVKDDVVEKVHYPSNMFELVSLSWRLTN P+ +EYL	179
Sbjct:	438	TPSLDEYLNIAKISVA-SPAIISPTYFTFANASHDTAVIDSLYQYHDILCLAGIILRLPD	496
Query:	180	DTKTYQAEKARGQQASGIACYMKDNPGATEEDAIKHICRVVDRALKEASFEYFKPSNDIP D T E ARG I CYMK+ A+EE+A++H+ ++ A K+ + P	239
Sbjct:	497	DLGTSYFELARGDVPKTIQCYMKET-NASEEEAVEHVKFLIREAWKDMN-TAIAAGYPFP	554
Query:	240	MGCKSFIFNLRLCVQIFYKFIDGYGIANEE G + N+ O Y DG+G+ + +	269
Sbict:	555	DGMVAGAANIGRVAOFIYLHGDGFGVOHSK	584

TABLE 14

		0 bits (299), Expect = 6e-27 = 70/272 (25%), Positives = 137/272 (49%), Gaps = 3/272 (1%)	
Query:	2	RVVECYFWALGVYFEPQYSQARVMLVKTISMISIVDDTFDAYGTVKELEAYTDAIQRWDI	61
Sbjct:	296	R VE Y W + FEP++S++R+ KT + +++DD +D + T+ E++ T+ ++RWD+ RHVEYYSWVVMCIFEPEFSESRIAFAKTAILCTVLDDLYDTHATLHEIKIMTEGVRRWDL	355
Query:	62	NEIDRLPDYMKISYKAILDLYKDYEKELSSAGRSHIVCHAIERMKEVVRNYNVESTWFIE	121
Sbjct:	356	+ D LPDY+KI+++ + + E+ + + K + +Y E+ W SLTDDLPDYIKIAFQFFFNTVNELIVEIVKRQGRDMTTIVKDCWKRYIESYLQEAEWIAT	415
Query:	122	GYMPPVSEYLSNALATTTYYYLATTSYLGM-KSATEQDFEWLSKNPKILEASVIICRVID	180
Sbjct:	416	G++P +EY+ N +A++ L L + K + E + KIL+ + R+ D GHIPTFNEYIKNGMASSGMCILNLNPLLLLDKLLPDNILEQIHSPSKILDLLELTGRIAD	475
Query:	181	DTATYEVEKSRGQIATGIECCMRDYGISTKE-AMAKFQNMAETAWKDINEGLLRPTPVST	239
Sbjct:	476	D +E EK RG++A+ ++C M++ ST E A+ + + + + + N ++ V DLKDFEDEKERGEMASSLQCYMKENPESTVENALNHIKGILNRSLEEFNWEFMKQDSVPM	535
Query:	240	EFLTPILNLARIVEVTYIHNLDGYTHPEKVLK	271
Sbjct:	536	N+ R ++ Y + DG +K +K CCKKFTFNIGRGLQFIYKYR-DGLYISDKEVK	566

TABLE 15

		1 bits (557), Expect = 4e-57 = 120/263 (42%), Positives = 178/283 (62%), Gaps = 6/283 (2%)
Query:	5	EFYFWMAAAISEPEFSGSRVAFTKIAILMTMLDDLYDTHGTLDQLKIFTEGVRRWDVSLV

E YF A+ I EPEFS R +TK + +LDDLYD HG+LD LK+FTE V+RWD+SLV
Sbjct: 589 EIYFSPASFIFEPEFSKCREVYTKTSNFTVILDDLYDAHGSLDDLKLFTESVKRWDLSLV 648

TABLE 15-continued

Query:	65	EGLPDFMKIAFEFWLKTSNELIAEAVKAQGQDMAAYIRKNAWERYLEAYLQDAEWIATGH + +P MKI F + T N++ E + QG+D+ YI +N W+ LEAY ++AEW +	124
Sbjct:	649	DQMPQQMKICFVGFYNTFNDIAKEGRERQGRDVLGYI-QNVWKVQLEAYTKEAEWSEAKY	707
Query:	125	VPTFDEYLNNGTPNTGMCVLNLIPLLLMGEHLPIDILEQIFLPSRFHHLIELASRLVDDA VP+F+EY+ N + + + + LI L GE L ++L +I SRF L+ L RLV+D	184
Sbjct:	708	VPSFNEYIENASVSIALGTVVLISALFTGEVLTDEVLSKIDRESRFLQLMGLTGRLVNDT	767
Query:	185	RDFQAEKDHGDL-SCIECYLKDHPESTVEDALNHVNGLLGNCLLEMNWKFLKKQDSVPLS + +OAE+ G++ S I+CY+KDHP+ + E+AL HV ++ N L E+N +F+ + +P	243
Sbjct:	768	KTYQAERGQGEVASAIQCYMKDHPKISEEEALQHVYSVMENALEELNREFVNNKIPDI	825
Query:	244	CKKYSFHVLARSIQFMYNQGDGFSISNKV-IKDQVQKVLIVPV K+ F AR +0 Y OGDG ++S+ + IK+ V+ L PV	285
Sbjct:	826	YKRLVFET-ARIMQLFYMQGDGLTLSHDMEIKEHVKNCLFQPV	867

SEQUENCE LISTING

<160)> NU	JMBEF	OF	SEQ	ID 1	os:	58									
<211 <212 <213 <220 <221 <222	l> LE 2> TY 3> OF 0> FE 1> NA 2> LC	ATUF AME/F	DNA SM: E: EY:	71 Nico CDS (25)	otiar			ım								
atg	gtcca	atc a	atcat	cato	ca to				ca o Ser <i>l</i>							51
					cgc Arg 15											99
	_	_			tca Ser						_	_	_	-	_	147
					gaa Glu											195
					aaa Lys											243
	-	-			ata Ile					-		-		-	-	291
			_		tac Tyr 95						-				-	339
		-			ttt Phe	_	_									387
					agc Ser											435
					gat Asp											483
					cat His											531

												COII	C T I I	ueu			
					ctt Leu 175											579	
					aca Thr											627	
					acc Thr											675	
					aat Asn											723	
	_		_	_	ttg Leu				-		-		-			771	
			_	_	gat Asp 255		-						-	_	-	819	
					tac T y r											867	
					cgc Arg											915	
-				-	acc Thr			-				-		-		963	
					gcc Ala											1011	
			-		atg Met 335			_			-			-		1059	
	_	_		-	aag Lys	_	_		_	_		_				1107	
					gaa Glu											1155	
					ttt Phe											1203	
					cta Leu											1251	
	_		_		atg Met 415	-		-	_			-				1299	
					aaa Lys											1347	
					gcc Ala											1395	
					gag Glu	_	-	_	_	_						1443	
		_	_	-	aaa Lys				_	_			-			1491	

											COII	CTII	ueu			
gat att Asp Ile 490															1539	
tta act Leu Thr															1587	
cac aat His Asn															1635	
att att Ile Ile										tga					1671	
<210> SE <211> LE <212> TY <213> OF	NGTH PE:	I: 54 PRT	18	otian	na ta	abacu	ım									
<400> SE	QUE	ICE:	2													
Met Ala 1	Ser	Ala	Ala 5	Val	Ala	Asn	Tyr	Glu 10	Glu	Glu	Ile	Val	Arg 15	Pro		
Val Ala	Asp	Phe 20	Ser	Pro	Ser	Leu	Trp 25	Gly	Asp	Gln	Phe	Leu 30	Ser	Phe		
Ser Ile	Lys 35	Asn	Gln	Val	Ala	Glu 40	Lys	Tyr	Ala	Gln	Glu 45	Ile	Glu	Ala		
Leu Lys 50	Glu	Gln	Thr	Arg	Asn 55	Met	Leu	Leu	Ala	Thr 60	Gly	Met	Lys	Leu		
Ala Asp 65	Thr	Leu	Asn	Leu 70	Ile	Asp	Thr	Ile	Glu 75	Arg	Leu	Gly	Ile	Ser 80		
Tyr His	Phe	Glu	Lys 85	Glu	Ile	Asp	Asp	Ile 90	Leu	Asp	Gln	Ile	Tyr 95	Asn		
Gln Asn	Ser	Asn 100	Cys	Asn	Asp	Leu	Cys 105	Thr	Ser	Ala	Leu	Gln 110	Phe	Arg		
Leu Leu	Arg 115	Gln	His	Gly	Phe	Asn 120	Ile	Ser	Pro	Glu	Ile 125	Phe	Ser	Lys		
Phe Gln 130	Asp	Glu	Asn	Gly	Lys 135	Phe	Lys	Glu	Ser	Leu 140	Ala	Ser	Asp	Val		
Leu Gly 145	Leu	Leu	Asn	Leu 150	Tyr	Glu	Ala	Ser	His 155	Val	Arg	Thr	His	Ala 160		
Asp Asp	Ile	Leu	Glu 165	Asp	Ala	Leu	Ala	Phe 170	Ser	Thr	Ile	His	Leu 175	Glu		
Ser Ala	Ala	Pro 180	His	Leu	Lys	Ser	Pro 185	Leu	Arg	Glu	Gln	Val	Thr	His		
Ala Leu	Glu 195	Gln	Cys	Leu	His	Lys 200	Gly	Val	Pro	Arg	Val 205	Glu	Thr	Arg		
Phe Phe 210	Ile	Ser	Ser	Ile	Tyr 215	Asp	Lys	Glu	Gln	Ser 220	Lys	Asn	Asn	Val		
Leu Leu 225	Arg	Phe	Ala	Lys 230	Leu	Asp	Phe	Asn	Leu 235	Leu	Gln	Met	Leu	His 240		
L y s Gln	Glu	Leu	Ala 245	Gln	Val	Ser	Arg	Trp 250	Trp	Lys	Asp	Leu	Asp 255	Phe		
Val Thr	Thr	Leu 260		Tyr	Ala	Arg	Asp 265		Val	Val	Glu	C y s 270		Phe		
Trp Ala	Leu 275		Val	Tyr	Phe	Glu 280		Gln	Tyr	Ser	Gln 285		Arg	Val		
	2,3					200					200					

_																				
М	et	Leu 290	Val	Lys	Thr	Ile	Ser 295	Met	Ile	Ser	Ile	Val 300	Asp	Asp	Thr	Phe				
	sp)5	Ala	Tyr	Gly	Thr	Val 310	Lys	Glu	Leu	Glu	Ala 315		Thr	Asp	Ala	Ile 320				
G.	ln	Arg	Trp	Asp	Ile 325	Asn	Glu	Ile	Asp	Arg 330	Leu	Pro	Asp	Tyr	Met 335	Lys				
I	le	Ser	Tyr	Lys 340	Ala	Ile	Leu	Asp	Leu 345	Tyr	Lys	Asp	Tyr	Glu 350	Lys	Glu				
Le	∍u	Ser	Ser 355	Ala	Gly	Arg	Ser	His 360	Ile	Val	Cys	His	Ala 365	Ile	Glu	Arg				
М	et	Lys 370	Glu	Val	Val	Arg	Asn 375	Tyr	Asn	Val	Glu	Ser 380	Thr	Trp	Phe	Ile				
	lu 35	Gly	Tyr	Thr	Pro	Pro 390	Val	Ser	Glu	Tyr	Leu 395	Ser	Asn	Ala	Leu	Ala 400				
Tì	nr	Thr	Thr	Tyr	Tyr 405	Tyr	Leu	Ala	Thr	Thr 410	Ser	Tyr	Leu	Gly	Met 415	Lys				
Se	er	Ala	Thr	Glu 420	Gln	Asp	Phe	Glu	Trp 425	Leu	Ser	Lys	Asn	Pro 430	Lys	Ile				
Le	eu	Glu	Ala 435	Ser	Val	Ile	Ile	Cys 440	Arg	Val	Ile	Asp	Asp 445	Thr	Ala	Thr				
Ty	yr	Glu 450	Val	Glu	Lys	Ser	Arg 455	Gly	Gln	Ile	Ala	Thr 460	Gly	Ile	Glu	Cys				
	ys 55	Met	Arg	Asp	Tyr	Gly 470	Ile	Ser	Thr	Lys	Glu 475	Ala	Met	Ala	Lys	Phe 480				
G.	ln	Asn	Met	Ala	Glu 485	Thr	Ala	Trp	Lys	Asp 490	Ile	Asn	Glu	Gly	Leu 495	Leu				
Aı	rg	Pro	Thr	Pro 500	Val	Ser	Thr	Glu	Phe 505	Leu	Thr	Pro	Ile	Leu 510	Asn	Leu				
A.	la	Arg	Ile 515	Val	Glu	Val	Thr	Tyr 520	Ile	His	Asn	Leu	Asp 525	Gly	Tyr	Thr				
H	is	Pro 530	Glu	Lys	Val	Leu	Lys 535	Pro	His	Ile	Ile	Asn 540	Leu	Leu	Val	Asp				
S 6		Ile	Lys	Ile																
<2 <2 <2 <2 <2	211 212 213 220 221	> LE > TY > OF > FE > NA	ENGTH PE: RGANI EATUR AME/F	SM: RE: KEY:	Nico CDS		na ta		ım											
<4	100	> SE	QUE	ICE:	3															
М	_	-		-	_	-	gca Ala			-	-			-	-		48			
							agt Ser										96			
							gcg Ala										144			
	_	_	_		_		agt Ser 55	_	_		-					_	192			

goc gat aca ttg aat ttg att gac att att gaa egc ctt ggt ata tcc Ala Ala PTH Leu An Leu Ile Amp Ile III Glu Arg Leu Gly Ile Ser 17 His Phe Glu Lys Glu Ile Amp Glu Ile Leu Amp Glu Ile Leu Amp Glu Ile Amp Glu Ile Leu Amp Glu Ile Leu Amp Glu Ile Amp Glu Ile Amp Glu Ile Leu Amp Glu Ile Hen Amp Glu Ile Amp Glu Ile Leu Amp Glu Ile Amp Glu Ile Amp Glu Ile Amp Glu Ile Leu Amp Glu Ile Hen Amp Glu Ile Amp Glu Ile Amp Glu Ile Amp Glu Ile Hen Amp Glu Ile Hen Ser Lys Ile Leu Amp Glu His Gly Phe Amn Ile Ser Pro Glu Ile Phe Ser Lys Ile Leu Amp Glu His Gly Phe Amn Ile Ser Pro Glu Ile Phe Ser Lys Ile Glu Amp Glu Amp Glu Ile Hen Ser Lys Ile Glu Amp Glu Amp Glu Amp Gly Lys Phe Lys Glu Ser Leu Ala Ser Amp Val Ile Glu Amp Glu Amp Gly Lys Phe Lys Glu Ser Leu Ala Ser Amp Val Ile Glu Amp Glu Amp Gly Lys Phe Lys Glu Ser Leu Ala Ser Amp Val Ile Glu Amp Ala Leu Ala Phe Ser Thr Ile His Leu Gly Leu Leu Amp Leu Tyr Glu Ala Ser His Val Amp Thr His Ala Ile Gly Leu Leu Amp Leu Tyr Glu Ala Ser His Val Amp Thr His Ala Ile Gly Leu Leu Amp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Amp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Amp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Amp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Ile Glu Amp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Ile Glu Amp Ala Leu Lys Ser Pro Leu Amp Glu Glu Nul Thr His Ile Glu Glu Cys Leu His Lys Gly Val Pro Amp Val Glu Thr Amp Ile Glu Glu Glu Cys Leu His Lys Gly Val Pro Amp Val Glu Thr Amp Ile Glu Glu Cys Leu His Lys Gly Val Pro Amp Val Glu Thr Amp Ile Cys Leu Amp Phe Ala Lys Leu Amp Phe Amp Lys Glu Glu Ger Leu Glu Glu Thr Amp Ile Cys Leu Amp Phe Ala Lys Leu Amp Phe Amp Lys Glu Glu Ger Lys Amp Phe Amp Man Val Ile Cys Tyr Phe Phe Ala Lys Leu Amp Phe Amp Lys Glu Glu Ger Lys Amp Phe Amp Man Man Val Ile Cys Tyr Phe Phe Ala Lys Leu Amp Phe Amp Lys Glu Glu Ger Leu Amp Phe Ala Lys Leu Amp Phe Amp Lys Glu Glu Ger Lys Amp Phe Amp Man Man Val Ile Glu Amp Man Man Val Ile Glu Amp Man																	
Tyr His Phe Glu Lys Glu Tle Asp Glu Eleu Asp Glu Tle Tyr Asn 85 cas asc tcs asc tcs asc tcs cas tts cgs clu Ass Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Glu Phe Arg 100 110 110 110 110 110 110 110 110 11	Ala					Leu					Glu					Ser	240
cln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Cln Phe Arg 100 100 100 100 100 100 100 100 100 10					Lys					Ile					${\tt Tyr}$		288
Leu Leu Arg Gln His Gly Phe Asn Tle Ser Pro Glu Ile Phe Ser Lys 115 ttc caa gat gas aat ggc aaa ttc aag gag tct ctt gct agt gat gtc Phe Gln Asp Glu Asn Gly Lys Phe Lys Glu Ser Leu Ala Ser Asp Val 130 tta gga tta tta aac ttg tat gaa gct tca cat gta agg act cat gct Leu Gly Leu Leu Asn Leu Tyr Glu Ala Ser His Val Arg Thr His Ala 160 gac gat atc tta gaa gac gca ctt gct ttc tcc act atc cat ctt gaa Asp Asp Ile Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu His Lys Gly Val Pro Arg Glu Gln Val Thr His Ala 180 gcc ctt gag caa tgt ttg cac aag ggt gtt cct agg gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 195 gcc ctt gag caa tgt ttg cac aag ggt gtt cct agg gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 195 gcc ctt gag caa tgt ttg cac aag gag cac act cga ag att att gct aga gtt gtg 220 ttc ttc atc tca tca tca atc tga caa gag aac aa ttg aga gat gtg 195 gco gct gat gtt gcc aaa ttg gat ttc aact tgc aga gat att gcc 220 ttc ttc atc tca tca ca tct gac aag gaa caa ctg aga gat att gtg 720 ttc ttc atc tca tca tac atc gat ttg gat ttc act tgc aga gtt gtg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Gln Met Leu His 225 gaa caa gaa ctt gct caa gta tca agg tgt gtg ga ag gtt ttg gat ttt Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 245 gag gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Glu Ala Leu Gln Met Leu Ala Asp Asp Arg Val Val Glu Cys Tyr Phe 265 gag gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Glu Ala Leu Gly Try Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 225 gat gct tac gga acc ata caa agaa ctt gat gtg gt gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 290 gat gct tac ggt aca gat atc aac gga att gg gct aca cac aga gat cct ata Asp Ala Tyr Gly Thr Val Lye Glu Leu Glu Ala Tyr Thr Asp Ala Ile 310 aca				Asn					Cys					Gln			336
The Gln Asp Glu Asn Gly Lys Phe Lys Glu Ser Leu Ala Ser Asp Val 130 135 135 135 143 5 140 140 140 140 141 145 143 145 145 146 147 140 141 145	_		Arg					Asn				_	Ile		_		384
Leu Câly Leu Leu Asn Leu Tyr Glu Âla Ser His Val Arg Thr His Åla 160 gac gat atc tta gaa gac gac cgc ctt gct ttc tcc act atc cat ctt gaa Asp Asp Ile Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu Cys Fro Leu Arg Glu Gln Val Thr His 180 gcc ctt gag caa tgt ttg cac aag ggt gtt cct agg gag caa gad acc cat 180 leu Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 205 ttc ttc atc tca tca atc tat gac aag gad caa tcg aag aat aat gtg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Aen Val 210 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 220 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Lys Gln Gln Ser Lys Asn Aen Val 220 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Lys Asn Aen Val 220 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Lys Gln Gln Met Leu His 225 tta ctt cga ttt gct caa gta tca agg ttg tgg aaa gat ttg gat ttt 220 aaa caa gaa ctt gct caa gta tca agg ttg tgg aaa gat ttg gat ttt 220 aaa caa gaa ctt gct caa gta tca agg ttg tgg aaa gat ttg gat ttt 240 aaa caa cac act ctc ca tat gct aga gat cga gta gt gt gat gat gt gat gat gat gat		Gln	-	_			Lys		_			Leu	-	_	-	-	432
Asp Asp Ile Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu 165 tct gca gct cca cat ttg aaa tct cca ctt agg gag caa gtg aca cat 180 185 Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Glu Gln Val Thr His 180 185 gcc ctt gag caa tgt ttg cac aag ggt gtt cct aga gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 200 ttc ttc atc tca tca atc tat gac aag gga caa tcg aag aat aat gtg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Val 210 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 225 aaa caa gaa ctt gct caa gta gta gta gta gta gta gta gat gat g	Leu					Leu		-	-		His	_				Ala	480
Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Glu Cln Val Thr His 180 gcc ctt gag caa tgt ttg cac aag ggt ggt gt cct aga gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 200 ttc ttc atc tca tca atc tat gac aag gaa caa tcg aag aat aat gtg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Val 210 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 220 aaa caa gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt Lys Glu Gln Ser Lys Asp Leu Asp Phe 250 aaa caa gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt Lys Gln Gln Leu Ala Gln Val Ser Arg Trp Trp Trp Lys Asp Leu Asp Phe 255 gaa gca tta ggt gat at tt gct aag aga cca at cg aga tgg tgg aaa gat ttg gat ttt Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 265 gag gca tta gga gtt tat tt gag cct caa at act ct caa gct cgc gtc Glu Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt ggc gat acc aca gat gca dac aca gat gcc aca aga gat gct tac ggt gat acc aca gat gcc aca aga gat gct tac ggt acc gat acc ggt acc acc acc acc acc acc acc acc acc ac					Glu					Phe					Leu		528
Ala Leu Glu Glu Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 200 5 1 200 5				Pro					Pro					Val			576
Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Value 220 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac 720 Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 240 aaa caa gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt 768 Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 255 gta aca aca ctt cca tat gct aga gat cga gta gtt gaa tgc tac ttt 816 Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 gag gca tta gga gtt tat ttt gag cct caa tac ct caa gct cgc gtc Gln Ala Arg Val 270 atg ctc gtt aag acc ata caa dat aca atg att cga gtt tcg at gtt gat gat acc ttt 270 gat gct tac ggt aag acc ata tca atg att tcg att cga gtt gat gat gat gat gat gtt gat gat g			Glu					Lys					Val				624
Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Gln Met Leu His 240 aaa caa gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt Tys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Trp Lys Asp Leu Asp Phe 255 gta aca aca ctt cca tat gct aga gat cga gta gta gta gat tgg tag aaa gat ttg gat ttt Nal Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 265 gag gca tta gga gtt tat ttt gag cct caa tac tcc caa tac tcc caa tac cflu Ala Leu Gly Val Tyr Phe Glu Pro Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aga gt Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 320 caa aga tgg gat atc aac gaa att gat gat cgg ctt cct acc agg gt tac acc agg aaa aga lea aga ctc agt tat aaa gct ctc atac agt tat aaa gct att cta gat ctc tac agg gat tac aga aga lea tct tac agt tac agt gcc aga aga lots at cat att gtc gat gac acc atac agg gaa aga lots at cat gtc att gtc gat tac acc agg aaa aga lots at cat gtc at att gtc gat gat atac aga aga lots at agt gcc atac agg aac acc ttt acc agt tac agt gcc atac agt aga aga lots at att gtc gat gcc atac acc agg aaa aga lots at acc agt tac acc gcc aga aga lots att gtc gcc gcc atc acc agt aga aga lots acc att att gtc cat gcc acc gcc gcc gtc acc acc aga aga lots acc att acc acc gcc gcc acc acc acc gcc gcc gcc		Phe					Tyr					Ser					672
Lys Gln Glu Leu Ala Gln Val Ser Arg Trp 250 Trp Lys Asp Leu Asp Phe 255 Ser Ala Glu Cas tat gct aga gat ggat ggt ggat ggt gaa tgc tac ttt 816 Val Thr Thr Leu Pro Tyr Ala Arg Asp Asp Arg Val Val Glu Cys Tyr Phe 260 Pro Tyr Ala Arg Asp Asp Arg Val Val Glu Cys Tyr Phe 270 Pro Tyr Ala Arg Asp Asp Arg Val Val Glu Cys Tyr Phe 270 Pro Tyr Phe 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Ala Tyr Ser Gln Ala Arg Val 280 Pro Gln Tyr Ser Gln Ala Arg Val 280 Pro Gln Ala Tyr Thr Asp Asp Thr Phe 300 Pro Gln Tyr Ser Gln Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 300 Pro Gln Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 320 Pro Asp Tyr Met Lys 310 Pro Asp Tyr Met Lys 330 Pro Asp Tyr Met Lys 330 Pro Glu Lys Glu Pro Asp Tyr Glu Lys Glu Pro Asp Tyr Glu Lys Glu 280 Pro Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 Pro Glu Val Val Arg Asp Tyr Asp Val Glu Ser Thr Trp Phe Ile	Leu		_		-	Lys	_	-			Leu		_	_	_	His	720
Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260					Ala					Trp					Asp		768
Glu Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt 912 Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 320 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa 1008 Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 335 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa 1056 Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Jys Glu Ser Tyr Glu Lys Glu Ser Ala Gly Arg Ser His 360 atg aaa gaa gta gta gta aga aat tat aat gtc gag tca aca tgg ttt att Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile	-			Leu			_	_	Asp	_	_	-	_	Cys			816
Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 295 Met Ile Ser Ile Val Asp Asp Thr Phe 300 Met Glu Glu Glu Ala Tyr Thr Asp Ala Ile 320 Met Glu Arg Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 320 Met Glu Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 335 Met Glu Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Lys Glu Ser Ser Ala Gly Arg Ser His 340 Met Lys Glu Ser Thr Trp Phe Ile 1152			Leu					Glu					Gln				864
Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 320 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa 1008 Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa 1056 Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atg aaa gaa gta gta aga aat tat aat gtc gag tca aca tgg ttt att 1152 Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile		Leu					Ser					Val					912
Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 335 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa 1056 Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 atg gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atg gaa aga attat aat gtc gag tca aca tgg ttt att 1152 Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile	Asp					Val					Āla					Ile	960
The Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 345 345 350 350 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 360 365 atg aaa gaa gta gta aga aat tat aat gtc gag tca aca tgg ttt att 1152 Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile		_		_	Ile		-		-	Arg			-		Met		1008
Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 360 360 365 atg aaa gaa gta gta aga aat tat aat gtc gag tca aca tgg ttt att Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile				Lys					Leu					Glu			1056
Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile			Ser					His					Āla				1104
	_	Lys	_	_	-	_	Asn			-		Ser					1152

		-continued	
	o Val Ser Glu Tyr	cta agc aat gca cta gca Leu Ser Asn Ala Leu Ala 395 400	1200
		tcg tat ttg ggc atg aag Ser Tyr Leu Gly Met Lys 415	1248
		tca aag aat cca aaa att Ser Lys Asn Pro Lys Ile 430	1296
		atc gat gac aca gcc acg Ile Asp Asp Thr Ala Thr 445	1344
		gca act gga att gag tgc Ala Thr Gly Ile Glu Cys 460	1392
	y Ile Ser Thr Lys	gag gca atg gct aaa ttt Glu Ala Met Ala Lys Phe 475 480	1440
		att aat gaa gga ctt ctt Ile Asn Glu Gl y Leu Leu 495	1488
		act cct att ctc aat ctt Thr Pro Ile Leu Asn Leu 510	1536
		aat cta gat gga tac act Asn Leu Asp Gly Tyr Thr 525	1584
		att aac cta ctt gtg gac Ile Asn Leu Leu Val Asp 540	1632
tcc atc aaa att Ser Ile Lys Ile 545			1644
<pre><210> SEQ ID NO 4 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Nicoti</pre>	ana tabacum		
<400> SEQUENCE: 4			
Met Ala Ser Ala Ala Va	al Ala Asn Tyr Glu 10	Glu Glu Ile Val Arg Pro 15	
20	25	Asp Gln Phe Leu Ser Phe 30 Ala Gln Glu Ile Glu Ala	
35	40	45	
Leu Lys Glu Gln Thr A	rg Ser Met Leu Leu 55	Ala Thr Gl y A rg L y s Leu 60	
Ala Asp Thr Leu Asn Le	-	Glu Arg Leu Gly Ile Ser 75 80	
Tyr His Phe Glu Lys G	u Ile Asp Glu Ile 90	Leu Asp Gln Ile Tyr Asn 95	
Gln Asn Ser Asn Cys As 100	n Asp Leu Cys Thr 105	Ser Ala Leu Gln Phe Arg 110	
115	120	Pro Glu Ile Phe Ser Lys 125	
Phe Gln Asp Glu Asn G 130	y Lys Phe Lys Glu 135	Ser Leu Ala Ser Asp Val 140	

													<u> </u>	404	
Leu 145	Gly	Leu	Leu	Asn	Leu 150	Tyr	Glu	Ala	Ser	His 155	Val	Arg	Thr	His	Ala 160
Asp	Asp	Ile	Leu	Glu 165	Asp	Ala	Leu	Ala	Phe 170	Ser	Thr	Ile	His	Leu 175	Glu
Ser	Ala	Ala	Pro 180	His	Leu	Lys	Ser	Pro 185	Leu	Arg	Glu	Gln	Val 190	Thr	His
Ala	Leu	Glu 195	Gln	Cys	Leu	His	L y s 200	Gly	Val	Pro	Arg	Val 205	Glu	Thr	Arg
Phe	Phe 210	Ile	Ser	Ser	Ile	Ty r 215	Asp	Lys	Glu	Gln	Ser 220	Lys	Asn	Asn	Val
Leu 225	Leu	Arg	Phe	Ala	L y s 230	Leu	Asp	Phe	Asn	Leu 235	Leu	Gln	Met	Leu	His 240
Lys	Gln	Glu	Leu	Ala 245	Gln	Val	Ser	Arg	Trp 250	Trp	Lys	Asp	Leu	A sp 255	Phe
Val	Thr	Thr	Leu 260	Pro	Tyr	Ala	Arg	Asp 265	Arg	Val	Val	Glu	C y s 270	Tyr	Phe
Glu	Ala	Leu 275	Gly	Val	Tyr	Phe	Glu 280	Pro	Gln	Tyr	Ser	Gln 285	Ala	Arg	Val
Met	Leu 290	Val	Lys	Thr	Ile	Ser 295	Met	Ile	Ser	Ile	Val 300	Asp	Asp	Thr	Phe
Asp 305	Ala	Tyr	Gly	Thr	Val 310	Lys	Glu	Leu	Glu	Ala 315	Tyr	Thr	Asp	Ala	Ile 320
Gln	Arg	Trp	Asp	Ile 325	Asn	Glu	Ile	Asp	Arg 330	Leu	Pro	Asp	Tyr	Met 335	Lys
Ile	Ser	Tyr	Lys 340	Ala	Ile	Leu	Asp	Leu 345	Tyr	Lys	Asp	Tyr	Glu 350	Lys	Glu
Leu	Ser	Ser 355	Ala	Gly	Arg	Ser	His 360	Ile	Val	Сув	His	Ala 365	Ile	Glu	Arg
Met	L y s 370	Glu	Val	Val	Arg	Asn 375	Tyr	Asn	Val	Glu	Ser 380	Thr	Trp	Phe	Ile
Glu 385	Gly	Tyr	Met	Pro	Pro 390	Val	Ser	Glu	Tyr	Leu 395	Ser	Asn	Ala	Leu	Ala 400
Thr	Thr	Thr	Tyr	Tyr 405	Tyr	Leu	Ala	Thr	Thr 410	Ser	Tyr	Leu	Gly	Met 415	Lys
Ser	Ala	Thr	Glu 420	Gln	Asp	Phe	Glu	Trp 425	Leu	Ser	Lys	Asn	Pro 430	Lys	Ile
Leu	Glu	Ala 435	Ser	Val	Ile	Ile	Cys 440	Arg	Val	Ile	Asp	Asp 445	Thr	Ala	Thr
Tyr	Glu 450	Val	Glu	Lys	Ser	Arg 455	Gly	Gln	Ile	Ala	Thr 460	Gly	Ile	Glu	Cys
C y s 465	Met	Arg	Asp	Tyr	Gly 470	Ile	Ser	Thr	Lys	Glu 475	Ala	Met	Ala	Lys	Phe 480
Gln	Asn	Met	Ala	Glu 485	Thr	Ala	Trp	Lys	Asp 490	Ile	Asn	Glu	Gly	Leu 495	Leu
Arg	Pro	Thr	Pro 500	Val	Ser	Thr	Glu	Phe 505	Leu	Thr	Pro	Ile	Leu 510	Asn	Leu
Ala	Arg	Ile 515	Val	Glu	Val	Thr	Ty r 520	Ile	His	Asn	Leu	Asp 525	Gly	Tyr	Thr
His	Pro 530	Glu	Lys	Val	Leu	L y s 535	Pro	His	Ile	Ile	Asn 540	Leu	Leu	Val	Asp
Ser 545	Ile	Lys	Ile												

			Q II															
<	212	> TY	NGTH PE:	DNA														
			GANI ATUF		Nico	otian	na ta	abacı	ım									
			ME/K			(1644))										
<	400	> SE	QUEN	ICE:	5													
	_	-		_	_	_	gca			-	-			-	_		48	
	et 1	Ala	Ser	Ala	Ala 5	Val	Ala	Asn	Tyr	Glu 10	Glu	Glu	Ile	Val	Arg 15	Pro		
_		-	-				agt				-	_					96	
V	al	Ala	Asp	Phe 20	Ser	Pro	Ser	Leu	Trp 25	GLY	Asp	GIn	Phe	Leu 30	Ser	Phe		
							gcg										144	
٥	er	iie	35	ASII	GIII	vai	Ala	40	ьуѕ	туг	Ala	GIII	45	TTE	GIU	АІА		
							agt Ser										192	
ш	cu	50	GIU	GIII	1111	ALG	55	nec	пец	пец	AIG	60	GIY	ALG	цуз	пец		
_		_		_		_	att Ile	-			-	-					240	
	65	voh	TILL	шeu	noil	70	116	voh	-11C	116	75	nr y	пeп	σтλ	116	80		
						_	att	-			_	_	_				288	
1	¥τ	1172	rne	JIU	85	GIU	Ile	rop	GIU	90	neu	дор	GIII	116	95	ADII		
							gat										336	
G	T11	ASII	ser.	100	Cys	ASIl	Asp	ьeu	105	THE	ser	AId	ьeu	110	rne	Arg		
							ttc										384	
Т	eu	Leu	115	GIN	HIS	GIŻ	Phe	120	IIe	ser	Pro	GIU	11e 125	Pne	ser	ьуs		
			_	_			aaa		_				_	-	-	_	432	
Р	ne	130	Asp	Glu	Asn	Gly	Lys 135	Pne	Lys	Glu	Ser	140	Ala	Ser	Asp	Val		
							tat										480	
	eu 45	Gly	Leu	Leu	Asn	Leu 150	Tyr	Glu	Ala	Ser	His 155	Val	Arg	Thr	His	Ala 160		
g	ac	gat	atc	tta	gaa	gac	gca	ctt	gct	ttc	tcc	act	atc	cat	ctt	gaa	528	
_		-			-	-	Åla		-							-		
+	c+	aca	ac+	CCS		++~	aaa	tc+	cca		agg	gag	Caa	a+a		ca+	576	
				Pro			Lys		Pro					Val			570	
				180					185				,	190				
							cac His										624	
			195					200					205					
							tat Tyr										672	
_	-	210					215	- 12	<i>4</i> =			220	1 -					
			-		-		ttg Leu	-			_		_	_	_		720	
	25	пси	лгу	THE	лта	230	пеп	veh	1116	UDII	235	ьси	OTII.	1166	ъси	240		
			-		-		gta						_	_	-		768	
L	ys	Gln	Glu	Leu	Ala 245	Gln	Val	Ser	Arg	Trp 250	Trp	Lys	Asp	Leu	Asp 255	Phe		
g	ta	aca	aca	ctt	cca	tat	gct	aga	gat	cga	gta	gtt	gaa	tgc	tac	ttt	816	
V	al	Thr	Thr	Leu 260	Pro	Tyr	Ala	Arg	Asp 265	Arg	Val	Val	Glu	C y s 270	Tyr	Phe		

Trp				gtt	tat	ttt	qaq	cct	caa	tac	+ a+		aa+	~~~	~ 4 ~	864
a+a		Leu 275	Gly	Val	Tyr	Phe	Glu 280									004
							atg Met									912
							gaa Glu									960
							att Ile									1008
							gat Asp									1056
							cat His 360									1104
		_	_	_	_		tat Tyr		_							1152
-			-			-	tct Ser	-			-		_		-	1200
							gcg Ala									1248
							gag Glu									1296
							tgt Cys 440									1344
							gga Gly									1392
							tca Ser									1440
							tgg Trp	Lys		Ile			Gly			1488
				-			gaa Glu									1536
_	_		-		-		ttc Phe 520					_				1584
	_			_			cct Pro								-	1632
	atc Ile															1644

<210> SEQ ID NO 6 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Nicotiana tabacum

<400)> SE	QUEN	ICE:	6											
Met 1	Ala	Ser	Ala	Ala 5	Val	Ala	Asn	Tyr	Glu 10	Glu	Glu	Ile	Val	Arg 15	Pro
Val	Ala	Asp	Phe 20	Ser	Pro	Ser	Leu	Trp 25	Gly	Asp	Gln	Phe	Leu 30	Ser	Phe
Ser	Ile	Asp 35	Asn	Gln	Val	Ala	Glu 40	Lys	Tyr	Ala	Gln	Glu 45	Ile	Glu	Ala
Leu	Lys 50	Glu	Gln	Thr	Arg	Ser 55	Met	Leu	Leu	Ala	Thr 60	Gly	Arg	Lys	Leu
Ala 65	Asp	Thr	Leu	Asn	Leu 70	Ile	Asp	Ile	Ile	Glu 75	Arg	Leu	Gly	Ile	Ser 80
Tyr	His	Phe	Glu	L y s 85	Glu	Ile	Asp	Glu	Ile 90	Leu	Asp	Gln	Ile	Ty r 95	Asn
Gln	Asn	Ser	Asn 100	Сув	Asn	Asp	Leu	Cys 105	Thr	Ser	Ala	Leu	Gln 110	Phe	Arg
Leu	Leu	Arg 115	Gln	His	Gly	Phe	Asn 120	Ile	Ser	Pro	Glu	Ile 125	Phe	Ser	Lys
Phe	Gln 130	Asp	Glu	Asn	Gly	L y s 135	Phe	Lys	Glu	Ser	Leu 140	Ala	Ser	Asp	Val
Leu 145	Gly	Leu	Leu	Asn	Leu 150	Tyr	Glu	Ala	Ser	His 155	Val	Arg	Thr	His	Ala 160
Asp	Asp	Ile	Leu	Glu 165	Asp	Ala	Leu	Ala	Phe 170	Ser	Thr	Ile	His	Leu 175	Glu
Ser	Ala	Ala	Pro 180	His	Leu	Lys	Ser	Pro 185	Leu	Arg	Glu	Gln	Val 190	Thr	His
Ala	Leu	Glu 195	Gln	Cys	Leu	His	L y s 200	Gly	Val	Pro	Arg	Val 205	Glu	Thr	Arg
Phe	Phe 210	Ile	Ser	Ser	Ile	Tyr 215	Asp	Lys	Glu	Gln	Ser 220	Lys	Asn	Asn	Val
Leu 225	Leu	Arg	Phe	Ala	L y s 230	Leu	Asp	Phe	Asn	Leu 235	Leu	Gln	Met	Leu	His 240
Lys	Gln	Glu	Leu	Ala 245	Gln	Val	Ser	Arg	Trp 250	Trp	Lys	Asp	Leu	Asp 255	Phe
Val	Thr	Thr	Leu 260	Pro	Tyr	Ala	Arg	Asp 265	Arg	Val	Val	Glu	C y s 270	Tyr	Phe
Trp	Ala	Leu 275	Gly	Val	Tyr	Phe	Glu 280	Pro	Gln	Tyr	Ser	Gln 285	Ala	Arg	Val
Met	Leu 290	Val	Lys	Thr	Ile	Ser 295	Met	Ile	Ser	Ile	Val 300	Asp	Asp	Thr	Phe
Asp 305	Ala	Tyr	Gly	Thr	Val 310	Lys	Glu	Leu	Glu	Ala 315	Tyr	Thr	Asp	Ala	Ile 320
Gln	Arg	Trp	Asp	Ile 325	Asn	Glu	Ile	Asp	Arg 330	Leu	Pro	Asp	Tyr	Met 335	Lys
Ile	Ser	Tyr	Lys 340	Ala	Ile	Leu	Asp	Leu 345	Tyr	Lys	Asp	Tyr	Glu 350	Lys	Glu
Leu	Ser	Ser 355	Ala	Gly	Arg	Ser	His 360	Ile	Val	Cys	His	Ala 365	Ile	Glu	Arg
Met	Lys 370	Glu	Val	Val	Arg	Asn 375	Tyr	Asn	Val	Glu	Ser 380	Thr	Trp	Phe	Ile
Glu 385	Gly	Tyr	Met	Pro	Pro 390	Val	Ser	Glu	Tyr	Leu 395	Ser	Asn	Ala	Leu	Ala 400
Thr	Thr	Thr	Tyr	Tyr 405	Tyr	Leu	Ala	Thr	Thr 410	Ser	Tyr	Leu	Gly	Met 415	Lys

Ser	Ala	Thr	Glu 420	Gln	Asp	Phe	Glu	Trp 425	Leu	Ser	Lys	Asn	Pro 430	Lys	Ile		
Leu	Glu	Ala 435	Ser	Val	Ile	Ile	Cys 440	Arg	Val	Ile	Asp	Asp 445	Thr	Ala	Thr		
Tyr	Glu 450	Val	Glu	Lys	Ser	Arg 455	Gly	Gln	Ile	Ala	Thr 460	Gly	Ile	Glu	Cys		
C y s 465	Met	Arg	Asp	Tyr	Gly 470	Ile	Ser	Thr	Lys	Glu 475	Ala	Met	Ala	Lys	Phe 480		
Gln	Asn	Met	Ala	Glu 485	Thr	Ala	Trp	Lys	Asp	Ile	Asn	Glu	Gly	Leu 495	Leu		
Arg	Pro	Thr	Pro		Ser	Thr	Glu	Phe		Thr	Pro	Ile	Leu 510		Leu		
Ala	Arg	Ile 515		Glu	Val	Thr	Phe 520		His	Asn	Leu	Asp 525		Tyr	Thr		
His	Pro 530		Lys	Val	Leu	Lys 535		His	Ile	Ile	Asn 540		Leu	Val	Asp		
Ser 545		Lys	Ile			223					240						
<211	> LE	EQ II ENGTH	I: 16														
<213	> OF		SM:	Nico	otiar	na ta	abacı	ım									
<221	> NA	ATUF ME/K	EY:		/1	1644)	١										
		EQUEN			• • • (-	.044)	,										
-	-			-					-		gag		-	-		48	
Met 1	AIG	ser	AIA	A1a 5	vaı	Alā	ASN	туг	10	GIU	Glu	тте	val	Arg 15	Pro		
											cag Gln					96	
		-	20					25	_	•			30				
		Asp		_	-		Glu	_		-	caa Gln	Glu		-	-	144	
		35					40					45					
-	_	-		_		-	_	_		-	acc Thr 60				_	192	
qcc		aca	tta	aat	tta	-11	qac	att	att	gaa	cgc	ctt	gat	ata	tcc	240	
											Arg						
											gat Asp					288	
- 1 -				85					90					95			
			Asn					Cys			gca Ala		Gln			336	
			100					105					110			25.	
											gaa Glu					384	
											ctt					432	
rne	GIn 130	Asp	GLU	Asn	GТĀ	Lys 135	rne	гуѕ	ыLu	ser	Leu 140	Ala	ser	Asp	val		
					_		-	-			gta Val				-	480	
145	_				150					155		-			160		

Asp Asp IIs Lew Glu Asp Ala Lew Ala Phe Ser Thr IIs His Lew Glu 160 170 180 181 181 181 181 182 183 183 183													con	tin	uea			
ser Âla Âla Pro Bis Leú Lys Ser Pro Leu Arg Glù Clh Vái Thr Bis 180 185 185 185 185 185 185 185 185 185 185	-	-			Glu	-	-		-	Phe					Leu	-	528	
Ale Leu Siù Cin Cys Leù His Lys Giy Val Pro Arg Val Siù Thr Arg 195 tto tto ato toa toa ato tat gac aag gaa caa tog aag aat aat gtg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Giu Cin Ser Lys Asn Asn Val 210 2215 2216 tto ctt cga ttt goc aaa ttg gat tto aac tog cag at gat gac ac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gin Met Leu His 225 226 aaa caa gaa ctt got caa gta toa agg tag gaa gat ttg gat tt 227 gaa acaa gaa ctt got caa gta toa agg tag gaa gat ttg gat tt Val Thr Thr Leu Pro Tyr Ala Arg Asp Asp Asp Ney Val Val Giu Cys Tyr Phe 265 275 402 403 404 405 404 405 405 406 407 407 408 408 408 408 408 408		-	-	Pro		-			Pro					Val			576	
the Phe Tile Ser Ser Ille Tyr Ásp Lys Glu Cln Ser Lys Aen Asn Val 210 220 tta ctt cga ttt goc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 240 aaa caa gaa ctt gct caa gga toa ag ggg tgg aaa gat ttg gat ttt Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 243 243 245 246 248 248 248 249 249 gta aca aca ctt cca tat gct ag gat cge gt ggt gaa ag gat ttg gat tgt Trh Leu Pro Tyr Ala Arg Asp App Apr Val Val Glu Cys Tyr Phe 260 275 276 277 278 279 279 280 281 282 285 285 285 285 285 285			Glu					Lys					Val				624	
Leu Leu Arg Phe Âla Lys Leu Âsp Phe Asn Leu Leu Gln Met Leu His 225 225 225 226 225 240 226 225 26 225 26 225 26 26 26 26 26 26 26 26 26 26 26 26 26		Phe					Tyr					Ser					672	
Lys Gln Glu Leu Âla Gln Val Ser Arg Trp Trp Lys Āsp Leu Āsp Phe 245 gta aca aca ctt coa tat gct aga gat cga gta gtt gaa tgc tac ttt Val Thr The Leu Pro Tyr Ala Arg Āsp Arg Val Val Glu Cys Tyr Phe 265 gta aca aca ctt coa tat gct aga gat cga gta gtt gaa tgc tac ttt 265 tgg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Trp Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt 290 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 320 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Mat Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag aga 1008 Itg ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Arg 350 atg aaa gaa gta gta ag aat tat aat gtc gag cat aca atg aaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 375 atg aaa gaa gta gta ag aat tat aat gtc gag taa aca tgg ttt att Ala Lys Glu Val Val Arg Asan Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 gaa gga tat atg ca cct gtt tct gaa tac cta aga att gac ca ga aga 1248 Act acc aca tat act ac ctc gcg aca aca aca tcg tat tcg gca ata gaa ga 1248 Thr Thr Thr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 405 406 act acc aca tat act aca ctc gcg aca aca act gc aca gc aca aca ttc aca caca aca tat aca caca aca	Leu		_		-	Lys	_	-			Leu		_	_	_	His	720	
Thr Thr Leu Pro Tyr Åla Arg Asp Asp Asp Val Öul Cys Tyr Phe 260 265 265 270 280 286 270 864 tyg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc 285 285 285 864 Trp Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 285 285 864 atg ctc gtt aag acc ata tca atg att tog att gct gat gac acc ttt Met Leu Val Lys Thr 11e Ser Net Ile Ser Ile Val Asp Asp Thr Phe 290 912 gat gct tac ggt aca gtt aaa gaa ctt gat gc atac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 310 960 gat gct tac ggt aca gt aca gga att gat gg gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile Glu Arg 315 320 320 caa aga tgg gat atc aac gaa att gat gg gct cct cct gat tac atg aaa ga Glu Arg Ser His Ile Val Cys His Ala Ile Lys Glu Lys Glu Lys Glu Jys Glu Ala Glu Arg 355 1104 1104 ttg ct agt gcc gaa gat ct cat att gct gag tca aca tgg ttt att 1104 1104 1104 ttg ct agt gcc gaa aga tct cat att gct gag tca aca tgg ttt att 1104 1104 1104 ttg ct aga gat ga ga aca tat at at gct gag tag aca gag att at gac aca gg aca aca att gat gc gag Caa aca gg gag Caa aca aca aca tag gat gaa gaa gag gag Caa aca aca aca aca aca aca aca aca aca					Ala					Trp					Asp		768	
Trp Ala Leu Giy val Tyr Phe Giu Pro Gln Tyr Ser Gln Ala Arg val 275 atg ctc gtt aag acc ata toa atg att tog att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Net Ile Ser Ile Val Asp Asp Thr Phe 280 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 330 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa ag ga Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 345 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1006 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atg aaa gaa gta gta aga aat ta aat gtc gag tca aca tgg ttt att Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 gaa gga tat atg cca cct gtt tct gaa tac cta agc aat gca cta gca Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 385 act acc aca tat tac tac ctc gcg aca aca tcg tat ttg ggc atg aag Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 ctt gca acg gat act att at ta ttg cga gtg tta aca aca acc acc acc acc acc acc acc	-			Leu			-	-	Asp	_	_	-	-	Cys			816	
Net Leu val Lys Thr Ile Ser Met Ile Ser Ile val Asp Asp Thr Phe 290 gat got tac ggt aca gtt aaa gaa ctt gag goa tac aca gat goc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa got att cta gat ctc tac aag gat tat gaa aag gaa Ilos6 Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 ttg tct agt goc gga aga tct cat att gtc tgc cat goa ata gaa aga Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atc aga gaa gat gta aga aat tat aat gtc gag tca aca tgg ttt att gtc tagt goc gga aga tct cat att gtc tgc cat goa ata gaa aga Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atg aaa gaa gta gta aga aat tat aat gtc gag tca aca tgg ttt att Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 gaa gga tat atg coa cct gtt tct gaa tac cta agc act goa cta goa Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 385 yab Ano ya			Leu					Glu					Gln				864	
Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 315 Caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atg aaa gaa gta gta aga aat tat aat gtc gag tca aca tgg ttt att Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 gaa gga tat atg cca cct gtt tct gaa tac cta agc aat gca cta gca Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 385 act acc aca tat tac tac ctc gcg aca aca tcg tat ttg ggc atg aag Thr Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 ctt gac acg gag caa gat ttt gag tgg ttg tca aca aca act 420 ctt gaa gct agt gta att att tat tat tgg ttg tca aca aca act 430 ctt gaa gct agt gta att att tat tat gtc gag gta act 440 act acc acg gag caa gat ttt gag tgg ttg ca aca aca act 420 ctt gaa gct agt gta att att att tgc gag gta act 420 ctt gaa gct agt gta att att att gtc gag gta act 440 acc acg gag cta gt gta att att act gct gag tta act 420 ctt gaa gct agt gag aaa acc agg gag caa att gca act gga act 440 acc acg ggt tgag aaa acc agg gga caa att gca act gga act 440 acc acg ggt tgag aaa acc agg gga caa att gca act gga act 440 acc acg ggt tgag aaa acc agg gga caa att gca act gga act 440 acc acg ggt tgag aaa acc agg gga caa att gca act gga act gag tcg 450 460 470 480 480 480 480 480 480 48		Leu					Ser					Val					912	
Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 335 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ilo56 Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 2	Asp					Val					Āla					Ile	960	
The Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 1104 1115 112 tet agt gec gga aga tet cat att gte tge cat gea ata gaa aga 1104 112 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 1152		-		_	Ile		-		_	Arg			-		Met		1008	
Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg 355 atg aaa gaa gta gta aga aat tat aat gtc gag tca aca tgg ttt att Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 gaa gga tat atg cca cct gtt tct gaa tac cta agc aat gca cta gca Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 395 act acc aca tat tac tac ctc gcg aca aca tcg tat ttg ggc atg aag Thr Thr Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 tct gcc acg gag caa gat ttt gag tgg ttg tca aag aat cca aaa att tac tac ctc gcg ser Ala Thr Glu Gln Asp Phe Glu Trp Leu Ser Lys Asn Pro Lys Ile 420 ctt gaa gct agt gta att ata tgt cga gtt atc gat gac aca gc acg 1344 Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 tac gag gtt gag aaa agc agg gga caa att gca act gga att gag tgg Ile Glu Cys 455 tac gag gtt gag aaa agc agg gag caa att gca act gga att gag tgc 1392 tac gag gtt gag aaa agc agg gag caa att gca act gga att gag tgc 1392 tac gag gtt gag aaa agc agg gag caa att gca act gga att gag tgc 1392 tac gag gtt gag aaa agc agg gag caa att gca act gga att gag tgc 1392 tac gag gtt gag aaa agc agg ga caa att gca act gga att gag tgc 1392 tgc atg agg gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe		-		Lys	-			-	Leu		_	-		Glu	_	-	1056	
Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 gaa gga tat atg cca cct gtt tct gaa tac cta agc aat gca cta gca Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 385 act acc aca tat tac tac ctc gcg aca aca tcg tat ttg ggc atg aag Thr Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 410 tct gcc acg gag caa gat ttt gag tgg ttg tca aag aat cca aaa att 420 ctt gaa gct agt gta att ata tac tac ser Lys Asn Pro Lys Ile 420 ctt gaa gct agt gta att ata tac tac tgc ggt aca aca cac tcg tat ttg ggc aca aca tcg 430 ctt gaa gct agt gta att ata tgt cga gtt atc gat gac aca gcc acg Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 tac gag gtt gag aaa agc agg gga caa att gca act gga att gag tgc Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 450 tgc atg aga gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe	_		Ser	_		-		His		-	_		Āla		-	-	1104	
Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 385 390 1248 act acc aca tat tac tac ctc gcg aca aca tcg tat ttg ggc atg aag Thr Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 415 tct gcc acg gag caa gat ttt gag tgg ttg tca aag aat cca aaa att Ser Ala Thr Glu Gln Asp Phe Glu Trp Leu Ser Lys Asn Pro Lys Ile 420 425 425 ctt gaa gct agt gta att ata tgt cga gtt atc gat gac aca gcc acg Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 440 445 tac gag gtt gag aaa agc agg gga caa att gca act gga att gag tgc Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 450 455 460 tgc atg aga gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe		Lys			Val	Arg	Asn	Tyr	Asn	Val	Glu	Ser					1152	
Thr Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 tct gcc acg gag caa gat ttt gag tgg ttg tca aag aat cca aaa att 1296 Ser Ala Thr Glu Gln Asp Phe Glu Trp Leu Ser Lys Asn Pro Lys Ile 420 ctt gaa gct agt gta att ata tgt cga gtt atc gat gac aca gcc acg 1344 Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 tac gag gtt gag aaa agc agg gga caa att gca act gga att gag tgc 1392 Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 460 tgc atg aga gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt 1440 Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe	Glu			_		Pro	_		_		Leu	_		_		Ala	1200	
Ser Ala Thr Glu Gln Asp Phe Glu Trp Leu Ser Lys Asn Pro Lys Ile 420 ctt gaa gct agt gta att ata tgt cga gtt atc gat gac aca gcc acg Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 tac gag gtt gag aaa agc agg gga caa att gca act gga att gag tgc Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 450 tgc atg aga gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe					Tyr					Thr	_		_		Met	_	1248	
Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 tac gag gtt gag aaa agc agg gga caa att gca act gga att gag tgc Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 450 tgc atg aga gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe				Glu					Trp					Pro			1296	
Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 450 455 460 tgc atg aga gat tat ggt ata tca aca aaa gag gca atg gct aaa ttt 1440 Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe			Ala					Cys					Asp				1344	
Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe		Glu					Arg					Thr					1392	
	Cys					Gly					Glu					Phe	1440	

-continued	
caa aat atg gct gag aca gca tgg aaa gat att aat gaa gga ctt Gln Asn Met Ala Glu Thr Ala Trp Lys Asp Ile Asn Glu Gly Let 485 490 490	Leu
agg ccc act ccc gtc tct aca gaa ttt tta act cct att ctc aat Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Asr 500 505 510	
gct cgt att gtt gag gtt aca tat ata cac aat cta gat gga ttc Ala Arg Ile Val Glu Val Thr Tyr Ile His Asn Leu Asp Gly Phe 515 520 525	
cat ccg gag aaa gtc tta aaa cct cac att att aac cta ctt gtc His Pro Glu Lys Val Leu Lys Pro His Ile Ile Asn Leu Leu Val 530 535 540	
tcc atc aaa att Ser Ile Lys Ile 545	1644
<210> SEQ ID NO 8 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Nicotiana tabacum	
<400> SEQUENCE: 8	
Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arc	Pro
Val Ala Asp Phe Ser Pro Ser Leu Trp Gly Asp Gln Phe Leu Ser 20 25 30	Phe
Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu 35 40 45	Ala
Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys 50 55 60	Leu
Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile 65 70 75	Ser 80
Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr 85 90 95	Asn
Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe	e Arg
Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser 115 120 125	Lys
Phe Gln Asp Glu Asn Gly Lys Phe Lys Glu Ser Leu Ala Ser Asp 130 135 140	Val
Leu Gly Leu Leu Asn Leu Tyr Glu Ala Ser His Val Arg Thr His	Ala 160
Asp Asp Ile Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu 165 170 175	
Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Glu Gln Val Thr	
Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr	Arg
Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asr 210 215 220	Val
Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu 225 230 235	His 240
Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp 245 250 25	
Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr 260 265 270	

												COII	CIII	ueu			
Trp	Ala	Leu 275	Gly	Val	Tyr	Phe	Glu 280	Pro	Gln	Tyr	Ser	Gln 285	Ala	Arg	Val		
Met	Leu 290	Val	Lys	Thr	Ile	Ser 295	Met	Ile	Ser	Ile	Val 300	Asp	Asp	Thr	Phe		
Asp 305	Ala	Tyr	Gly	Thr	Val 310	Lys	Glu	Leu	Glu	Ala 315	Tyr	Thr	Asp	Ala	Ile 320		
Gln	Arg	Trp	Asp	Ile 325	Asn	Glu	Ile	Asp	Arg 330	Leu	Pro	Asp	Tyr	Met 335	Lys		
Ile	Ser	Tyr	Lys 340	Ala	Ile	Leu	Asp	Leu 345	Tyr	Lys	Asp	Tyr	Glu 350	Lys	Glu		
Leu	Ser	Ser 355	Ala	Gly	Arg	Ser	His 360	Ile	Val	Cys	His	Ala 365	Ile	Glu	Arg		
Met	Lys 370	Glu	Val	Val	Arg	Asn 375	Tyr	Asn	Val	Glu	Ser 380	Thr	Trp	Phe	Ile		
Glu 385	Gly	Tyr	Met	Pro	Pro 390	Val	Ser	Glu	Tyr	Leu 395	Ser	Asn	Ala	Leu	Ala 400		
Thr	Thr	Thr	Tyr	Ty r 405	Tyr	Leu	Ala	Thr	Thr 410	Ser	Tyr	Leu	Gly	Met 415	Lys		
Ser	Ala	Thr	Glu 420	Gln	Asp	Phe	Glu	Trp 425	Leu	Ser	Lys	Asn	Pro 430	Lys	Ile		
Leu	Glu	Ala 435	Ser	Val	Ile	Ile	Cys 440	Arg	Val	Ile	Asp	Asp 445	Thr	Ala	Thr		
Tyr	Glu 450	Val	Glu	Lys	Ser	Arg 455	Gly	Gln	Ile	Ala	Thr	Gly	Ile	Glu	Cys		
Cys 465	Met	Arg	Asp	Tyr	Gly 470	Ile	Ser	Thr	Lys	Glu 475	Ala	Met	Ala	Lys	Phe 480		
Gln	Asn	Met	Ala	Glu 485	Thr	Ala	Trp	Lys	Asp	Ile	Asn	Glu	Gly	Leu 495	Leu		
Arg	Pro	Thr	Pro		Ser	Thr	Glu	Phe		Thr	Pro	Ile	Leu 510		Leu		
Ala	Arg			Glu	Val	Thr	_		His	Asn	Leu			Phe	Thr		
His		515 Glu	Lys	Val	Leu	Lys	520 Pro	His	Ile	Ile		525 Leu	Leu	Val	Asp		
Ser	530 Ile	Lys	Ile			535					540						
545																	
<211	l> LE		NO H: 16														
				Nico	otiar	na ta	abacı	ım									
		ATUE	RE: KEY:	CDS													
					(1	1644))										
<400)> SE	EQUE	ICE:	9													
_	_		_	_	_	gca Ala			_	_			_	_		48	
-	_	-				agt Ser				-	_					96	
		-		_	-	gcg Ala	-	_		-				-	-	144	

ted gaag gaa caa acg agg agt atg ctg tta goa acc gga agg aaa ttg So gcc gat aca ttg att tg att gac att att gaa cgc ctt ggt ata tcc So 70														<u></u>	u-0 u		
Ala Asp Thr Leu Aen Leu I e Aep I e Ile Slu Arg Leu Sly I le Ser 65		Lys					Ser					Thr					192
Tyr His Phe Giu Lys Giu rie Asp Giu rie Leu Asp Gin rie Tyr Asn 95 caa aac tca aac tga aat gat ttg tgc acc tct goa ctt caa ttt cga Gin Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gin Phe Arg 100 ttg ctc agg caa cac ggt ttc aac atc tct cct gaa att ttc agc aaa Leu Leu Arg Gin His Gly Phe Asn Tie Ser Pro Giu Tie Phe Ser Lys 115 ttc caa gat gaa aat ggc aaa ttc aag gag tct ctt gct agt gat gtc Phe Gin Asp Giu Asn Gly Lys Phe Lys Glu Ser Leu Ala Ser Asp Val 130 tta gga tta tta aac ttg tat gaa gct tcat gta agg act cat gct Leu Gly Leu Leu Asn Leu Tyr Glu Ala Ser His Val Arg Thr His Ala 150 tca gag at tac tta gaa gac gca ctt gct tct cac act at cat cat cat cat gct Asp Asp Fir Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu 165 tct gca gct cca cat ttg aaa tct cca ct atg gag cac gag acc ct ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Glu Gln Val Thr His 180 gcc ctt gag cas tagt ttg cac aag ggt gtt cct agg gac acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 195 gcc ctt gag cas tgt ttg cac aag ggt gtt cct agg ga cac atg gg acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 195 gcc ctt gag cas ttgt gc aca at gat ttc acc ttg cas atg gaa acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 200 gcc ctt gag cas ttg cac aag ggt ttc acc tag gat gat ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 1225 gaa caa gaa ctt gct caa att gat tca acg ttg gag aca cg att ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 1225 gta aca aca ctt cca tat gct aga gat cga ttg gtg ga ac gat ttg gat ttg cac Leu Leu Arg Phe Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe Phe 1260 gca cta gga gtt tat ttt gag cct cac tat ct caa gct cgc gtc gtg gat acc cat ttg gag gat cac gat gtg gat gat gtg gat gat gtg gat gat	Āla	-		_		Leu		-			Glu	-				Ser	240
ttg ctc agg caa cac ggt ttc aac atc tct cct gaa att ttc agc aaa leu Leu Leu Arg Gln His Gly Phe Aan Ile Ser Pro Glu Ile Phe Ser Lys 115 125 125 125 125 125 125 125 125 125					Lys					Ile					Tyr		288
Leú Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys 115 ttc caa gat gaa aat ggc aaa ttc aag gag tct ctt gct agt gat gtc Phe Gln Asp Glu Asn Gly Lys Phe Lys Glu Ser Leu Ala Ser Asp Val 130 130 1105 tta gga tta tta aac ttg tat gaa gct tca cat gta agg act cat gct Leu Gly Leu Leu Asn Leu Tyr Glu Ala Ser His Val Arg Thr His Ala 145 150 150 160 155 160 160 160 160 160 160 160 160 160 160				Asn					Cys					Gln			336
Phe Gln Åsp Glu Asn Gly Lys Phe Lys Glu Ser Leu Åla Ser Åsp Val 130 140 130 140 148 130 140 148 143 150 148 145 150 148 155 158 160 248 264 264 264 264 264 264 264 264 264 264			Arg					Asn					Ile				384
Leu diy Leu Leu Asn Leu Tyr diu Ala Ser His Val Arg Thr His Ala 145 gac gat atc tta gaa gac gac ctt gct tcc cac atc cat ctt gaa Asp Asp Ile Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu 175 tct gca gct cca cat ttg aaa tct cca ctt agg gag caa gtg aca cat 180 cat 180 gcc ctt gag caa tgt ttg cac aag ggt gtt cct aga gtc gag acc cga Ala Ala Peu Glu Glu Val Thr His 180 gcc ctt gag caa tgt ttg cac aag ggt gtt cct aga gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 195 tct ttc atc tca tca atc tat gac aag gaa caa tcg aag aat aat gtg Phe Phe Fle Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Val 210 210 ttc ttc atc tcga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac 220 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac 235 cleu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 225 gta aca aca gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 250 gta aca aca ctc cca tat gct aga gat cga gta gtt gaa tgc tac ttt Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp App Thr Phe 290 gat gct tac ggt aca gtt aaa gac ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 atc agt tat aaa gct att cta gat ctc tac aag gat tac gaa aga aga 2100 aca agt tat aaa gct att cta gat ctc tac aag gat tac gaa aga aga 1104 ttg tct agt gcc gga aga tc cat att gcc gca tac acc gaa aga gla Cyr Lys Ala Ile Asp Arg Leu Pro Asp Tyr Met Lys Glu Lys Glu Sud Ala Tyr Tyr Asp Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Lys Glu Lys Glu Sud Sud Sud Sud Sud Sud Sud Sud Sud Su		Gln					Lys					Leu					432
Asp Asp Ile Leu Glu Asp Ala Leu Ala Phe Ser Thr Ile His Leu Glu 175 tct gca gct cca cat ttg aaa tct cca ctt agg gag caa gtg aca cat Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Glu Gln Val Thr His 180 gcc ctt gag caa tgt ttg cac aag ggt gtt cct aga gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 200 ttc ttc atc tca tca atc tat gac aag gaa caa tcg aag aat aat gtg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Val 210 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 225 gaa caa gaa ctt gct caa gta tca agg tgg ga aaa gat ttg gat ttt Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 265 gta aca aca ctc cca tat gct aga gat cga gta gtt gaa tgc tac ttt Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 tcg gca tta gga gtt tat ttt gac ct caa tac tct caa gct cgc gtc Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Arp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gat gg cta cac ag gat gct gat gac acc ttt Met Leu Val Lys Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aga cac dt Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag aa 310 ttg tct agt gcc gaa aac acc act att caa aag gat tat gaa aag aa 310 ttg tct agt gcc gaa aag act att cta att gtc gc cat aaa aag aa 310 ttg tct agt gcc gaa aag act att cta att gtc gc cat aaa aag aag 310 ttg tct agt gcc gaa aac act ctca att gtc gc ata aaa gaa gaa 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg	Leu					Leu		-	-		His	-				Ala	480
Ser Ala Ala Pro His Leu Lys Ser Pro Leu Arg Glu Gln Val Thr His 180 gcc ctt gag caa tgt ttg cac aag ggt gtt cct aga gtc gag acc cga Ala Leu Glu Gln Cys Leu His Lys Gly Val Pro Arg Val Glu Thr Arg 205 ttc ttc atc tca tca atc tat gac aag gaa caa tcg aag aat aat gtg Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Val 210 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 225 gta aca aca gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt 768 Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 255 gta aca aca ct cca tat gct aga gat cga gta gtt gaa tgc tac ttt Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 295 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 gat gct tac ggt aca gtt aca gaa ctt gat cgg gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 aca aga tgg gat atc aca gaa att cta tca agg gcd tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 aca aga tgg gat atc aca gaa att cta tca agg gcd tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Tyr Met Lys 325 aca agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ilo Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu S40 4tt ct agt cc gga aga tct cat att gct tgc cat gca ata gaa aga Ilo Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu S40 4tt ct agt cc gga aga tct cat att gct tgc cat gca ata gaa aga Ilo Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg					Glu					Phe					Leu		528
ttc ttc atc tca tca atc tat gac aag gaa caa ttg cac 235 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac 235 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac 240 aaa caa gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt 225 gta aca aca ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt 250 gta aca aca ctt cca tat gct aga gat cga gta gtt gaa tgc tac ttt 250 gta aca aca ctt cca tat gct aga gat cga gta gtt gaa tgc tac ttt 260 tag gca tta gga gtt tat ttt gag cct caa tac tct caa gct gca gta gtt gaa tgc tac ttt 260 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct gca gta gtt gaa tgc tac ttt 270 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc 270 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc 270 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc 285 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt 270 met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Asp Thr Phe 295 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata 320 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata 320 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata 320 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa 1008 lle Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 2340 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1056 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg				Pro					Pro					Val			576
Phe Phe Ile Ser Ser Ile Tyr Asp Lys Glu Gln Ser Lys Asn Asn Val 210 215 215 215 Glu Gln Ser Lys Asn Asn Val 220 tta ctt cga ttt gcc aaa ttg gat ttc aac ttg ctc cag atg ttg cac 720 Leu Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 225 230 240 230 235 240 240 255 240 255 240 255 240 255 240 255 240 255 240 255 240 255 240 255 240 255 240 255 240 255 255 240 240 255 255 240 240 245 255 255 240 255 255 240 240 245 255 255 240 245 255 255 240 245 255 255 240 245 255 255 255 240 245 255 255 240 245 255 255 255 255 240 245 255 255 255 255 255 255 255 255 255	-		Glu		-	_		Lys		_		-	Val			_	624
Leu Leu Arg Phe Ala Lys Leu Asp Phe Asn Leu Leu Gln Met Leu His 230 235 aaa caa gaa ctt gct caa gta tca agg tgg tgg aaa gat ttg gat ttt 768 Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 255 gta aca aca ctt cca tat gct aga gat cga gta gtt gaa tgc tac ttt Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 270 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 300 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 330 gat gct tac ggt aca gtt aac gaa att gat cgg ct cct gat tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 330 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Glu Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 335 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa loose Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Lys Glu Leu Green Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Lys Glu Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg		Phe					Tyr	-	_	-		Ser	_				672
Lys Gln Glu Leu Ala Gln Val Ser Arg Trp Trp Lys Asp Leu Asp Phe 245 gta aca aca ctt cca tat gct aga gat cga gta gtt gaa tgc tac ttt Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 315 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6 Itg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilos6	Leu		_		-	Lys	_	_			Leu		_	_	_	His	720
Val Thr Thr Leu Pro Tyr Ala Arg Asp Arg Val Val Glu Cys Tyr Phe 260 tcg gca tta gga gtt tat ttt gag cct caa tac tct caa gct cgc gtc Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Ple Ser Met Ile Ser Ile Val Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 310 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ilose Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Sato Asp Tyr Glu Lys Glu Lys Glu Sato Asp Tyr Glu Lys Glu Lys Glu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg			-		Āla		_			Trp			-	_	Asp		768
Ser Ala Leu Gly Val Tyr Phe Glu Pro Gln Tyr Ser Gln Ala Arg Val 275 atg ctc gtt aag acc ata tca atg att tcg att gtc gat gac acc ttt Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 315 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ilee Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu Sat tct agt ctc tac atg at gaa aag gaa Ilos6 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Ilo4 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg	-			Leu			-	-	Asp	_	_	-	-	Cys			816
Met Leu Val Lys Thr Ile Ser Met Ile Ser Ile Val Asp Asp Thr Phe 290 gat gct tac ggt aca gtt aaa gaa ctt gag gca tac aca gat gcc ata Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg			Leu					Glu					Gln				864
Asp Ala Tyr Gly Thr Val Lys Glu Leu Glu Ala Tyr Thr Asp Ala Ile 305 caa aga tgg gat atc aac gaa att gat cgg ctt cct gat tac atg aaa Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg		Leu	-	-			Ser	_		_		Val	-	-			912
Gln Arg Trp Asp Ile Asn Glu Ile Asp Arg Leu Pro Asp Tyr Met Lys 325 330 335 atc agt tat aaa gct att cta gat ctc tac aag gat tat gaa aag gaa 1056 Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 345 350 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga 1104 Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg	Asp	-				Val		-			Āla			-	-	Ile	960
Ile Ser Tyr Lys Ala Ile Leu Asp Leu Tyr Lys Asp Tyr Glu Lys Glu 340 345 350 ttg tct agt gcc gga aga tct cat att gtc tgc cat gca ata gaa aga Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg					Ile					Arg					Met		1008
Leu Ser Ser Ala Gly Arg Ser His Ile Val Cys His Ala Ile Glu Arg		_		Lys	-			-	Leu		_	_		Glu	_	-	1056
	_		Ser	_		_		His		-	_		Āla		-	_	1104

Aut as aga gra gra aga aga at tat act sto gag tea aca tgg tit att left Lys Gru Yu													COII	CTII	ueu			
Sin Siy Tyr Net Pro Pro Val Ser Siu Tyr Leu Ser Aen Ala Leu Ala 385 390 120 act aco ace tat tes tac ctc geg ace ace tog tat ttg ggc atg acg Thr Thr Thr Tyr Tyr Tyr Leu Ala Thr Thr Ser Tyr Leu Gly Nee 1ye 105 11 120 tct gec acg agg cas gat ttt gag tgg ttg co acg as acg act cas aca att 505 Ala Thr Glu Gln App Fhe Glu Tyr Leu Ser Lyr Aen Pro Lyr Ite 420 425 430 ctt gea get get gat att att tgg cne gtt atc gat gag ace acc acc acg Leu Glu Ala Ser Val Ite Ite Tyr Arg Val Ite Aep Aep Thr Ala Thr 440 440 440 440 55 460 tac gag gtt gag ace agg ggg cac act gcg act acg gt atc gag tgc Tyr Glu Val Glu Lyr Ser Arg Gly Gln Ite Ala Thr Gly Ite Glo Cys 450 460 tac gag get gag ace agg agg gas cac act gas act gcc acc 192 480 tac gag get gag act at ggt ata tca ace ace ace gag gus atg gct acc 193 480 tac gag ag aga tat ggt ata tca ace ace ace gag gus atg gct acc 194 480 tac act acg gag tat gag ace gar tgg acc 470 475 480 tac act acg gag act act ggt act act acc acc acc acc 1840 480 480 480 480 480 480 480		Lys					Asn					Ser					1152	
the Thr Thr Tyr Tyr Tyr Leu Ala 1 for Thr Ser Tyr Leu Gily Net Lye 405 tot goo acg gag caa gat tht gag tgg ttg toa aag aat oon aan att 500 A15 Ser Ala Thr Glu Gh App Phe Glu Trp Leu Ser Lys Aen Pro Lyp Ile 420 cett gan got ant gta att aat atg coa get att gat gan aca goc acg Leu Glu Ala Ser Val Ile Ile Trp Arg Val Ile App App Thr Ala Thr 435 cat gang tt gag am age age gag osa act goa act got and tyr 440 can gang tt gag am age age gag osa act goa act got aca ttt Cyr Net Arg App Tyr Glu Luys Ser Arg Gly Ohn Ile Ala Thr Gly Ile Glu Cyr 440 can act tig get gag age gac act gan ac gat att gag to act ttt Cyr Net Arg App Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lyr Phe 455 can act tig get gag aca goa teg and gat att at gas gag act tot glin Ann Met Ala Glu Thr Ala Trp Lyra App Ile Aen Glu Gly Leu Leu 485 agg coc act coc get cot aca gan ttt tta act cot att coc act cot gag go co act coc get cot aca gan ttt tta act cot att coc act cot gag go gag aca get gag gat aca cot 500 got cot att gtt gag gut aca ta tat aca cac act cat gat gag tac act 515 act cog gag ana got tta aca cat cat act act cat gag gat aca cot 515 cat cog gag ana got tta aca cot cac att att aca cat cat cat gtg gac acc acg gag aca got gat gat gat gat aca cot coc get cat gtg gag aca gat got gat gat gat gat gat gat gat gat gat ga	Glu					Pro					Leu					Ala	1200	
Ser Āla Thr Glu Glu Āsp Phe Glu Trp Leu Ser Lys Asn Pro Lys Ile 420 ctt gaa get agt gta att ata tag gea gtt atc gat gac aca gec acq Leu Glu Ala Ser Val Ile Ile Trp Arg Val Ile Asp Asp Thr Ala Thr 445 tac gag gtt gag ana agc agg gga caa att gea act gga att gag tgc Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 455 tgc atg gag att at ggt ata toa aca aca gag gga atg get act tgc atg gag at at ggt ata toa aca aca gag gea atg get aca ttl Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe 465 470 471 Caa act atg gt gag aca gca tgg asa agt att gas agt act ctt Gln Ann Met Ala Glu Thr Ala Trp Lys Asp Ile Aen Glu Gly Leu Leu 485 agg ccc act ccc gtc tct aca gaa ttt tta act cct att ctc act ctt Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Ann Leu 485 agg ccc act ccc gtc tct aca gaa ttt tta act cct att ctc act ctt Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Ann Leu 515 gct cgt att gtt gag gt aca ata ata caca act tca gt gga tac act Ala Arg Ile Val Glu Val Thr Tyr Ile His Asn Leu Leu Pap Gly Tyr Thr 515 cat cag gag aca gtc tta aca cot cac att att acc tat tgt gga Chi Pro Thr Pro Val Leu Lys Pro His Ile Ile Aen Leu Leu Val Asp 530 530 540 5410 SEQ ID No 10 4210- SEQ ID No 10 4210- SEQ ID No 10 4210- SEQ ID No 10 4211- LENNTH: 548 4212- Tyre: PRT 4213- OKRANHSK: Nicotiana tabacum 4400- SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Aen Tyr Glu Glu Glu Ile Val Arg Pro 1 5 Val Ala Aep Phe Ser Pro Ser Leu Trp Gly Aep Gln Phe Leu Ser Phe 20 Ser Ile Aep Aen Gln Val Ala Glu Lys Tyr Ala Gln Clu Ile Glu Ala 35 Gel Ile Lys Clu Gln Thr Arg Ser Net Leu Leu Ala Thr Gly Arg Lys Leu 50 65 60 Ala Aep Thr Leu Aen Leu Ile Aep Ile Ile Glu Arg Leu Gly Ile Ser 65 70 Tyr His Pho Glu Lys Clu Ile Aep Glu Ile Leu Aep Gln Ile Tyr Asn 65 Gln Asn Ser Aen Cys Aen Aep Leu Cys Thr Ser Ala Leu Gln Phe Arg 110 Leu Leu Arg Gln His Gly Phe Aen Ile Ser Pro Glu Ile Phe Ser Lys					Tyr					Thr					Met		1248	
tau Glu Ala Ser val Ile Ile Tip Arg Val Ile Asp Asp Thr Ala Thr 445 tac gag git gag aaa agc agg gga caa att gca act gga att gag tgc Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys 450 tgc att gag gat tat ggr ata toa aca aca gag gca att ggt aaa att Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Net Ala Lys Phe 460 caa aat att gct gag aca gca tgg aaa gat att aat gaa gga ctt ct Cln Aen Met Ala Glu Thr Ala Trp Lye Asp Ile Asn Glu Cly Leu Leu 485 agg ccc act ccc gtc tt aca gaa ttt tta act cct att ctc aat ctt Asp Tyr Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Aan Leu 500 gct cgt att gtt gag git aca tat tat aca act ct gst gga tec act Ala Arg Ile Val Glu Val Thr Tyr Ile His Asn Leu Asp Gly Tyr Thr 515 cat ccg gag aca agt ct ta aca cct cat att aca cta ctt gtg gac His Pro Cul Lys Val Leu Lys Pro His Ile Ile Asn Leu Val Asp 530 tcc atc aca act 521 cat cas aca att Ser Ile Lys Ile 525 cat cas aca att Ser Ile Lys Ile 525 Cat cas aca att Ser Ile Lys Ile 526 c210- SEQ ID NO 10 <211- LENGTH: 548 <212- TYPE; PRT <212- ORCANISM: Nicotiana tabacum <400- SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro 1 5 10 Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu Ala 35 Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Leu 50 Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser 55 Chu Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys				Glu					Trp					Pro			1296	
Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Âla Thr Gly Ile Glu Cys 450 tgc atg aga gat tat ggt ata toa aca aaa gag gca atg gct aaa ttt Cys Met Arg Aap Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe 465 470 caa aat atg gct gag aca gca tgg aaa gat att aat gaa gga ctt ctt Gln Aan Met Ala Glu Thr Ala Trp Lys Aap Ile Aan Glu Gly Leu Leu 485 agg ccc act ccc gtc tot aca gsa ttt tta act cct att ctc aat ctt Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Aan Leu 500 gct cgt att gtt gag gtt aca att ata cac aat cta gat gga tac act Ala Arg Ile Val Glu Val Thr Tyr Ile His Aan Leu Aap Gly Tyr Thr 515 520 cat cog gag aaa gtc tta aca ct cac att att aca ctt gtg gac His Pro Glu Lys Val Leu Lys Pro His Ile Ile Aan Leu Leu Val Aap 530 540 tcc atc cac aatt Ser Ile Lys Ile 545 2210		-	Āla	_	_			Trp	_	-		-	Asp		-	_	1344	
cys met Arg Asp Tyr Cily Ile Ser Thr Lys Glu Ala Net Ala Lys Phe 465 470 475 470 caa aat atg gct gag aca gca tgg aaa gat att aat gaa gag ctt ctt Cin Asn Met Ala Glu Thr Ala Trp Lys Asp Ile Asn Glu Gly Leu Leu 485 agg ccc act ccc gtc tct aca gaa ttt tta act cct att ctc aat ctt Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Asn Leu 500 gct cgt att gtt gag gtt aca tat ata cac aat cta gat gga tac act Ala Arg Ile Val Glu Val Thr Tyr Ile His Asn Leu Asp Gly Tyr Thr 515 cat ccg gag aaa gtc tta aaa cct cac att att acc ctat ttg gg gc His Pro Glu Lys Val Leu Lys Pro His Ile Ile Asn Leu Leu Val Asp 530 tcc atc aca aaa att 535 tcc atc aca aca att 88 F16 Lys Ile 540 c210> SEQ ID No 10 c211> LENGTH: 548 c212> TYPE JET 213 Cat Ala Asp Phe Ser Pro Ser Leu Trp Glu Glu Glu Ile Val Arg Pro 1		Glu	_			_	Arg				_	Thr				-	1392	
GIN Asn Met Àla Glu Thr Ala Trp Lys Asp Tle Aen Glu Gly Leu Leu 485 agg ccc act ccc gtc tct aca gas ttt tta act cct att ctc aat ctt Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Tle Leu Asn Leu 500 gct cgt att gtt gag gtt aca tat ata cac aat cta gat gga tac act Ala Arg Tle Val Glu Val Thr Tyr Ile His Asn Leu Asp Gly Tyr Thr 515 cat ccg gag aaa gtc tta aaa cct cac att att aac cta ctt gtg gac His Pro Glu Lys Val Leu Lys Pro His Ile Ile Asn Leu Val Asp 530 tcc atc aaa att Ser Ile Lys Ile 545 2210 SEQ ID No 10 2211 LENGTH: 548 2212 TYPE: PRT 2213 ORGANISM: Nicotiana tabacum 4400 SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro 1 5 5 70 Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu Ala 35 As Gla Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Leu 50 65 Ala Asp Thr Leu Asn Leu Is Asp Ile Ile Glu Arg Leu Gly Ile Ser 65 70 75 80 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys	Cys	_	_	_		Gly					Glu	-	_	-		Phe	1440	
Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Asn Leu 500 500 505 510 510 500 505 510 500 500					Glu					Asp					Leu		1488	
Ala Arg Tle Val Glu Val Thr Tyr Tle His Asn Leu Asp Gly Tyr Thr 510 cat cog gag aaa gtc tta aaa cct cac att att ac cta ctt gtg gac His Pro Glu Lys Val Leu Lys Pro His Tle He Asn Leu Leu Val Asp 530 tcc atc aaa att Ser Tle Lys Tle 545 <pre> </pre> <pre> <pre> 444</pre> 1644 1644</pre>				Pro					Phe					Leu			1536	
His Pro Glu Lys Val Leu Lys Pro His Ile Ile Asn Leu Leu Val Asp 530 tcc atc aaa att Ser Ile Lys Ile 4210> SEQ ID NO 10 4211> LENCTH: 548 4212> TYPE: PRT 4213> ORGANISM: Nicotiana tabacum 4400> SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro 1 5 15 Val Ala Asp Phe Ser Pro Ser Leu Trp Gly Asp Gln Phe Leu Ser Phe 20 25 Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu Ala 35 Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Leu 50 55 Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser 65 Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr Asn 90 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys			Ile					Tyr					Asp				1584	
Ser Ile Lys Ile 545 <pre> <210> SEQ ID NO 10 <211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Nicotiana tabacum </pre> <pre> <pre> <400> SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro</pre></pre>		Pro			_		Lys					Asn				-	1632	
<pre><211> LENGTH: 548 <212> TYPE: PRT <213> ORGANISM: Nicotiana tabacum </pre> <pre><400> SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro 1</pre>	Ser																1644	
<pre><213> ORGANISM: Nicotiana tabacum <400> SEQUENCE: 10 Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro 1</pre>	<211	> LE	NGTH	I: 54														
Met Ala Ser Ala Ala Val Ala Asn Tyr Glu Glu Glu Ile Val Arg Pro 1					Nic	otian	na ta	abacı	ım									
Val Ala Asp Phe Ser Pro Ser Leu Trp Gly Asp Gln Phe Leu Ser Phe 20 Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu Ala 45 Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Leu 50 Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser 65 Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr Asn 90 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 110 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys			~															
Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu Ala 35 Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Leu 50 Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser 65 Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr Asn 90 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys		Ala	Ser	Ala		Val	Ala	Asn	Tyr		Glu	Glu	Ile	Val		Pro		
Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Leu 50 Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser 65 Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr Asn 90 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys	Val	Ala	Asp		Ser	Pro	Ser	Leu		Gly	qaA	Gln	Phe		Ser	Phe		
Ala Asp Thr Leu Asn Leu Ile Asp Ile Ile Glu Arg Leu Gly Ile Ser 65 70 75 80 Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr Asn 95 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 105 110 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys	Ser	Ile		Asn	Gln	Val	Ala		Lys	Tyr	Ala	Gln		Ile	Glu	Ala		
Tyr His Phe Glu Lys Glu Ile Asp Glu Ile Leu Asp Gln Ile Tyr Asn 85 Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys	Leu	-	Glu	Gln	Thr	Arg		Met	Leu	Leu	Ala		Gly	Arg	Lys	Leu		
Gln Asn Ser Asn Cys Asn Asp Leu Cys Thr Ser Ala Leu Gln Phe Arg 100 105 110 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys		Asp	Thr	Leu	Asn		Ile	Asp	Ile	Ile		Arg	Leu	Gly	Ile			
100 105 110 Leu Leu Arg Gln His Gly Phe Asn Ile Ser Pro Glu Ile Phe Ser Lys	Tyr	His	Phe	Glu		Glu	Ile	Asp	Glu		Leu	Asp	Gln	Ile	_	Asn		
	Gln	Asn	Ser		Cys	Asn	Asp	Leu		Thr	Ser	Ala	Leu		Phe	Arg		
	Leu	Leu	_	Gln	His	Gly	Phe		Ile	Ser	Pro	Glu		Phe	Ser	Lys		

_															
Phe	Gln 130	Asp	Glu	Asn	Gly	Lys 135	Phe	Lys	Glu	Ser	Leu 140	Ala	Ser	Asp	Val
Leu 145	Gly	Leu	Leu	Asn	Leu 150	Tyr	Glu	Ala	Ser	His 155	Val	Arg	Thr	His	Ala 160
Asp	Asp	Ile	Leu	Glu 165	Asp	Ala	Leu	Ala	Phe 170	Ser	Thr	Ile	His	Leu 175	Glu
Ser	Ala	Ala	Pro 180	His	Leu	Lys	Ser	Pro 185	Leu	Arg	Glu	Gln	Val 190	Thr	His
Ala	Leu	Glu 195	Gln	Сув	Leu	His	Lys 200	Gly	Val	Pro	Arg	Val 205	Glu	Thr	Arg
Phe	Phe 210	Ile	Ser	Ser	Ile	T y r 215	Asp	Lys	Glu	Gln	Ser 220	Lys	Asn	Asn	Val
Leu 225	Leu	Arg	Phe	Ala	Lys 230	Leu	Asp	Phe	Asn	Leu 235	Leu	Gln	Met	Leu	His 240
Lys	Gln	Glu	Leu	Ala 245	Gln	Val	Ser	Arg	Trp 250	Trp	Lys	Asp	Leu	Asp 255	Phe
Val	Thr	Thr	Leu 260	Pro	Tyr	Ala	Arg	Asp 265	Arg	Val	Val	Glu	C y s 270	Tyr	Phe
Ser	Ala	Leu 275	Gly	Val	Tyr	Phe	Glu 280	Pro	Gln	Tyr	Ser	Gln 285	Ala	Arg	Val
Met	Leu 290	Val	Lys	Thr	Ile	Ser 295	Met	Ile	Ser	Ile	Val 300	Asp	Asp	Thr	Phe
Asp 305	Ala	Tyr	Gly	Thr	Val 310	Lys	Glu	Leu	Glu	Ala 315	Tyr	Thr	Asp	Ala	Ile 320
Gln	Arg	Trp	Asp	Ile 325	Asn	Glu	Ile	Asp	Arg 330	Leu	Pro	Asp	Tyr	Met 335	Lys
Ile	Ser	Tyr	Lys 340	Ala	Ile	Leu	Asp	Leu 345	Tyr	Lys	Asp	Tyr	Glu 350	Lys	Glu
Leu	Ser	Ser 355	Ala	Gly	Arg	Ser	His 360	Ile	Val	Суѕ	His	Ala 365	Ile	Glu	Arg
Met	Lys 370	Glu	Val	Val	Arg	Asn 375	Tyr	Asn	Val	Glu	Ser 380	Thr	Trp	Phe	Ile
Glu 385	Gly	Tyr	Met	Pro	Pro 390	Val	Ser	Glu	Tyr	Leu 395	Ser	Asn	Ala	Leu	Ala 400
Thr	Thr	Thr	Tyr	Tyr 405	Tyr	Leu	Ala	Thr	Thr 410	Ser	Tyr	Leu	Gly	Met 415	Lys
Ser	Ala	Thr	Glu 420	Gln	Asp	Phe	Glu	Trp 425	Leu	Ser	Lys	Asn	Pro 430	Lys	Ile
Leu	Glu	Ala 435	Ser	Val	Ile	Ile	Trp 440	Arg	Val	Ile	Asp	Asp 445	Thr	Ala	Thr
Tyr	Glu 450	Val	Glu	Lys	Ser	Arg 455	Gly	Gln	Ile	Ala	Thr 460	Gly	Ile	Glu	Сув
C y s 465	Met	Arg	Asp	Tyr	Gly 470	Ile	Ser	Thr	Lys	Glu 475	Ala	Met	Ala	Lys	Phe 480
Gln	Asn	Met	Ala	Glu 485	Thr	Ala	Trp	Lys	Asp 490	Ile	Asn	Glu	Gly	Leu 495	Leu
Arg	Pro	Thr	Pro 500	Val	Ser	Thr	Glu	Phe 505	Leu	Thr	Pro	Ile	Leu 510	Asn	Leu
Ala	Arg	Ile 515	Val	Glu	Val	Thr	T y r 520	Ile	His	Asn	Leu	Asp 525	Gly	Tyr	Thr

														<u></u>		
His	Pro 530	Glu	Lys	Val	Leu	Lys 535	Pro	His	Ile	Ile	Asn 540	Leu	Leu	Val	Asp	
Ser 545	Ile	Lys	Ile													
<211 <212 <213 <220 <221 <222 <221 <222 <221 <222)> FE l> NA 2> LO l> NA 2> LO	ENGTH PE: RGANI EATUR ME/F DCATI ME/F DCATI	DNA SM: RE: RE: CON: REY: CON: REY: CON:	Nico CDS (1) miss (1)	(: c_fea	na ta 1644] ature 1644]) =)		or G							
<400)> SE	QUE	ICE:	11												
_	-		_	_	_	gca Ala			_	_			-	_		48
						agt Ser										96
		-		_	-	gcg Ala	-	_		-				-	-	144
_	_	-				agt Ser 55	_	_		-					_	192
						att Ile										240
					_	att Ile	-			_	_	_				288
				-		gat Asp	_	_			_				-	336
						ttc Phe										384
						aaa Lys 135										432
					_	tat Tyr	-	_			_				-	480
-	-			_	_	gca Ala		-							-	528
	-	_			_	aaa Lys										576
						cac His										624
						tat Tyr 215	-	_			_	_				672
		_		_		ttg Leu	-			_		_	_	_		720

 											con	CIII	ueu			 	 	
caa Gln															768			
aca Thr															816			
gca Ala															864			
 ctc Leu 290	-	_				_		_		-	-	-			912			
gct Ala															960			
aga Arg		_			-		-				_		_		1008			
agt Ser															1056			
tct Ser															1104			
aaa Lys 370															1152			
gga Gly															1200			
acc Thr									_		_		_	_	1248			
gcc Ala	_			_				_		_					1296			
gaa Glu															1344			
gag Glu 450	-	Glu	Lys	-	Arg	Gly	Gln	Ile	Āla	Thr				-	1392			
atg Met															1440			
aat Asn	_	-			-			-			-				1488			
 ccc Pro			-			-									1536			
cgt Arg															1584			
ccg Pro 530															1632			
atc Ile															1644			

												••••	СТП	ucu	
	0> SE 1> LE														
<212	2> TY 3> OF	PE:	PRT				haar								
<220	0> FE	ATUE	RE:			ia co	abacc	1111							
	1> NA 2> LO					348)									
<223	3> O]	HER	INFO	RMA.	CION:	: Xaa	a = <i>P</i>	ny A	mino	Aci	Ld				
<400	0> SE	EQUE	ICE:	12											
Met 1	Ala	Ser	Ala	Ala 5	Val	Ala	Asn	Tyr	Glu 10	Glu	Glu	Ile	Val	Arg 15	Pro
Val	Ala	Asp	Phe 20	Ser	Pro	Ser	Leu	Trp 25	Gly	Asp	Gln	Phe	Leu 30	Ser	Phe
Ser	Ser Ile Asp Asn Gln Val Ala Glu Lys Tyr Ala Gln Glu Ile Glu Al 35 40 Leu Lys Glu Gln Thr Arg Ser Met Leu Leu Ala Thr Gly Arg Lys Le 50 55														
Leu		Glu	Gln	Thr	Arg		Met	Leu	Leu	Ala		Gly	Arg	Lys	Leu
Ala 65	Asp	Thr	Leu	Asn	Leu 70	Ile	Asp	Ile	Ile	Glu 75	Arg	Leu	Gly	Ile	Ser 80
Tyr	His	Phe	Glu	Lys 85	Glu	Ile	Asp	Glu	Ile 90	Leu	Asp	Gln	Ile	Ty r 95	Asn
Gln	Asn	Ser	Asn 100	Cys	Asn	Asp	Leu	C y s 105	Thr	Ser	Ala	Leu	Gln 110	Phe	Arg
Leu	Leu	Arg 115	Gln	His	Gly	Phe	Asn 120	Ile	Ser	Pro	Glu	Ile 125	Phe	Ser	Lys
Phe	Gln 130	Asp	Glu	Asn	Gly	L y s 135	Phe	Lys	Glu	Ser	Leu 140	Ala	Ser	Asp	Val
Leu 145	Leu Gly Leu Leu Asn Leu Tyr Glu Ala Ser His Val Arg Thr His Ala														
Leu Gly Leu Leu Asn Leu Tyr Glu Ala Ser His Val Arg Thr His Al															Glu
Ser	Ala	Ala	Pro 180	His	Leu	Lys	Ser	Pro 185	Leu	Arg	Glu	Gln	Val 190	Thr	His
Ala	Leu	Glu 195	Gln	Сув	Leu	His	L y s 200	Gly	Val	Pro	Arg	Val 205	Glu	Thr	Arg
Phe	Phe 210	Ile	Ser	Ser	Ile	Tyr 215	Asp	Lys	Glu	Gln	Ser 220	Lys	Asn	Asn	Val
Leu 225	Leu	Arg	Phe	Ala	L y s 230	Leu	Asp	Phe	Asn	Leu 235	Leu	Gln	Met	Leu	His 240
Lys	Gln	Glu	Leu	Ala 245	Gln	Val	Ser	Arg	Trp 250	Trp	Lys	Asp	Leu	A sp 255	Phe
Val	Thr	Thr	Leu 260	Pro	Tyr	Ala	Arg	Asp 265	Arg	Val	Val	Glu	C y s 270	Tyr	Phe
Trp	Ala	Leu 275	Gly	Val	Tyr	Phe	Glu 280	Pro	Gln	Tyr	Ser	Gln 285	Ala	Arg	Val
Met	Leu 290	Val	Lys	Thr	Ile	Ser 295	Met	Ile	Ser	Ile	Val 300	Asp	Asp	Thr	Phe
Asp 305	Ala	Tyr	Gly	Thr	Val 310	Lys	Glu	Leu	Glu	Ala 315	Tyr	Thr	Asp	Ala	Ile 320
Gln	Arg	Trp	Asp	Ile 325	Asn	Glu	Ile	Asp	Arg 330	Leu	Pro	Asp	Tyr	Met 335	Lys
Ile	Ser	Tyr	Lys 340	Ala	Ile	Leu	Asp	Leu 345	Tyr	Lys	Asp	Tyr	Glu 350	Lys	Glu
Leu	Ser	Ser 355	Ala	Gly	Arg	Ser	His 360	Ile	Val	Cys	His	Ala 365	Ile	Glu	Arg

Met Lys Glu Val Val Arg Asn Tyr Asn Val Glu Ser Thr Trp Phe Ile 370 375 380	
Glu Gly Tyr Met Pro Pro Val Ser Glu Tyr Leu Ser Asn Ala Leu Ala 385 390 395 400	
Thr Thr Thr Tyr Tyr Xaa Xaa Ala Thr Thr Ser Tyr Leu Gly Met Lys 405 410 415	
Ser Ala Thr Glu Gln Asp Phe Glu Trp Leu Ser Lys Asn Pro Lys Ile 420 425 430	
Leu Glu Ala Ser Val Ile Ile Cys Arg Val Ile Asp Asp Thr Ala Thr 435 440 445	
Tyr Glu Val Glu Lys Ser Arg Gly Gln Ile Ala Thr Gly Ile Glu Cys	
Cys Met Arg Asp Tyr Gly Ile Ser Thr Lys Glu Ala Met Ala Lys Phe	
465 470 475 480 Gln Asn Met Ala Glu Thr Ala Trp Lys Asp Ile Asn Glu Gly Leu Leu	
485 490 495 Arg Pro Thr Pro Val Ser Thr Glu Phe Leu Thr Pro Ile Leu Asn Leu	
500 505 510 Ala Arg Ile Val Glu Val Thr Tyr Ile His Asn Leu Asp Gly Tyr Thr	
515 520 525 His Pro Glu Lys Val Leu Lys Pro His Ile Ile Asn Leu Leu Val Asp	
530 535 540	
Ser Ile Lys Ile 545	
<210> SEQ ID NO 13 <211> LENGTH: 33	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: primer for mutagenesis <400> SEQUENCE: 13	
gttgaatgct acttttcggc attaggagtt tat	33
<210> SEQ ID NO 14	
<211> LENGTH: 33 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: primer for mutagenesis	
<pre><400> SEQUENCE: 14 ataaactcct aatgccgaaa agtaqcattc aac</pre>	33
actualities authorized and agrangement and	
<210> SEQ ID NO 15 <211> LENGTH: 33	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	
<pre><210> GROANISM. ATTINETAL Sequence <220> FEATURE: <223> OTHER INFORMATION: primer for mutagenesis</pre>	
<400> SEQUENCE: 15	
gctagtgtaa ttatatggcg agttatcgat gac	33
<210> SEQ ID NO 16	
<pre><211> LENGTH: 33 <212> TYPE: DNA</pre>	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: primer for mutagenesis</pre>	

-continued	
<400> SEQUENCE: 16	
gtcatcgata actcgccata taattacact agc	33
<pre><210> SEQ ID NO 17 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: primer for mutagenesis <221> NAME/KEY: misc_feature <222> LOCATION: (1)(54) <223> OTHER INFORMATION: n = A,T,C or G</pre>	
<400> SEQUENCE: 17	
gcactagcaa ctaccacata ttacnnsnns gcgacaacat cgtatttggg catg	54
<pre><210> SEQ ID NO 18 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: primer for mutagenesis <221> NAME/KEY: misc_feature <222> LOCATION: (1)(54) <223> OTHER INFORMATION: n = A,T,C or G</pre>	
<400> SEQUENCE: 18	
catgcccaaa tacgatgttg tcgcsnnsnn gtaatatgtg gtagttgcta gtgc	54
<210> SEQ ID NO 19 <211> LENGTH: 2018 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (6)(1889) <223> OTHER INFORMATION: pinene synthase	
<400> SEQUENCE: 19	
cagca atg gct cta gtt tct acc gca ccg ttg gct tcc aaa tca tgc ctg Met Ala Leu Val Ser Thr Ala Pro Leu Ala Ser Lys Ser Cys Leu 1 5 10 15	50
cac aaa tcg ttg atc agt tct acc cat gag ctt aag gct ctc tct aga His Lys Ser Leu Ile Ser Ser Thr His Glu Leu Lys Ala Leu Ser Arg 20 25 30	98
aca att cca gct cta gga atg agt agg cga ggg aaa tct atc act cct Thr Ile Pro Ala Leu Gly Met Ser Arg Arg Gly Lys Ser Ile Thr Pro 35 40 45	146
tcc atc agc atg agc tct acc acc gtt gta acc gat gat ggt gta cga Ser Ile Ser Met Ser Ser Thr Thr Val Val Thr Asp Asp Gly Val Arg 50 55 60	194
aga cgc atg ggc gat ttc cat tcc aac ctc tgg gac gat gat gtc ata Arg Arg Met Gly Asp Phe His Ser Asn Leu Trp Asp Asp Asp Val Ile 65 70 75	242
cag tot tta cca acg got tat gag gaa aaa tcg tac ctg gag cgt gct Gln Ser Leu Pro Thr Ala Tyr Glu Glu Lys Ser Tyr Leu Glu Arg Ala 80 85 90 95	290
gag aaa ctg atc ggg gaa gta aag aac atg ttc aat tcg atg tca tta Glu Lys Leu Ile Gly Glu Val Lys Asn Met Phe Asn Ser Met Ser Leu 100 105 110	338
gaa gat gga gag tta atg agt ccg ctc aat gat ctc att caa cgc ctt Glu Asp Gly Glu Leu Met Ser Pro Leu Asn Asp Leu Ile Gln Arg Leu 115 120 125	386

										CO11	CTIII	ue u			
					ctt Leu									434	
					gcg Ala									482	
					ggg Gl y 165									530	
					cga Arg									578	
					gct Ala									626	
					aca Thr									674	
					att Ile									722	
					acc Thr 245									770	
					tcg Ser									818	
					ccg Pro									866	
					gag Glu									914	
					aaa Lys									962	
					agt Ser 325									1010	
					tgc C y s									1058	
					ttc Phe									1106	
	-	_	_	-	cat His		_	-	-	-	_		-	1154	
				-	gac Asp	 _	_					_	_	1202	
-			-		tcg Ser 405		-				-			1250	
					tac Tyr									1298	
					cga Arg									1346	

-continued	
gag gct tat att gat tcg tat atg caa gaa gca agg tgg atc gcc act Glu Ala Tyr Ile Asp Ser Tyr Met Gln Glu Ala Arg Trp Ile Ala Thr 450 455 460	1394
ggt tac ctg ccc tcc ttt gat gag tac tac gag aat ggg aaa gtt agc Gly Tyr Leu Pro Ser Phe Asp Glu Tyr Tyr Glu Asn Gly Lys Val Ser 465 470 475	1442
tgt ggt cat cgc ata tcc gca ttg caa ccc att ctg aca atg gac atc Cys Gly His Arg Ile Ser Ala Leu Gln Pro Ile Leu Thr Met Asp Ile 480 485 490 495	1490
ccc ttt cct gat cat atc ctc aag gaa gtt gac ttc cca tca aag ctt Pro Phe Pro Asp His Ile Leu Lys Glu Val Asp Phe Pro Ser Lys Leu 500 505 510	1538
aac gac ttg gca tgt gcc atc ctt cga tta cga ggt gat acg cgg tgc Asn Asp Leu Ala Cys Ala Ile Leu Arg Leu Arg Gly Asp Thr Arg Cys 515 520 525	1586
tac aag gcg gac agg gct cgt gga gaa gaa gct tcc tct ata tca tgt Tyr Lys Ala Asp Arg Ala Arg Gly Glu Glu Ala Ser Ser Ile Ser Cys 530 535 540	1634
tat atg aaa gac aat cct gga gta tca gag gaa gat gct ctc gat cat Tyr Met Lys Asp Asn Pro Gly Val Ser Glu Glu Asp Ala Leu Asp His 545 550 555	1682
atc aac gcc atg atc agt gac gta atc aaa gga tta aat tgg gaa ctt Ile Asn Ala Met Ile Ser Asp Val Ile Lys Gly Leu Asn Trp Glu Leu 560 565 570 575	1730
ctc aaa cca gac atc aat gtt ccc atc tcg gcg aag aaa cat gct ttt Leu Lys Pro Asp Ile Asn Val Pro Ile Ser Ala Lys Lys His Ala Phe 580 585 590	1778
gac atc gcc aga gct ttc cat tac ggc tac aaa tac cga gac ggc tac Asp Ile Ala Arg Ala Phe His Tyr Gly Tyr Lys Tyr Arg Asp Gly Tyr 595 600 605	1826
agc gtt gcc aac gtt gaa acg aag agt ttg gtc acg aga acc ctc ctt Ser Val Ala Asn Val Glu Thr Lys Ser Leu Val Thr Arg Thr Leu Leu 610 615 620	1874
gaa tot gtg oot ttg tag caacagotoa aatotatgoo otatgotatg Glu Ser Val Pro Leu 625	1922
tcgggttaaa atatatgtgg aaggtagccg ttggatgtag aggataagtt tgttataatt	1982
taataaagtt gtaatttaaa aaaaaaaaa aaaaaa	2018
<210> SEQ ID NO 20 <211> LENGTH: 628 <212> TYPE: PRT <213> ORGANISM: Abies grandis	
<400> SEQUENCE: 20	
Met Ala Leu Val Ser Thr Ala Pro Leu Ala Ser Lys Ser Cys Leu His 1 5 10 15	
Lys Ser Leu Ile Ser Ser Thr His Glu Leu Lys Ala Leu Ser Arg Thr 20 25 30	
Ile Pro Ala Leu Gly Met Ser Arg Arg Gly Lys Ser Ile Thr Pro Ser 35 40 45	
Ile Ser Met Ser Ser Thr Thr Val Val Thr Asp Asp Gly Val Arg Arg 50 55 60	
Arg Met Gly Asp Phe His Ser Asn Leu Trp Asp Asp Asp Val Ile Gln 65 70 75 80	
Ser Leu Pro Thr Ala Tyr Glu Glu Lys Ser Tyr Leu Glu Arg Ala Glu 85 90 95	

Lys	Leu	Ile	Gly 100	Glu	Val	Lys	Asn	Met 105	Phe	Asn	Ser	Met	Ser 110	Leu	Glu
Asp	Gly	Glu 115	Leu	Met	Ser	Pro	Leu 120	Asn	Asp	Leu	Ile	Gln 125	Arg	Leu	Trp
Ile	Val 130	Asp	Ser	Leu	Glu	Arg 135	Leu	Gly	Ile	His	Arg 140	His	Phe	Lys	Asp
Glu 145	Ile	Lys	Ser	Ala	Leu 150	Asp	Tyr	Val	Tyr	Ser 155	Tyr	Trp	Gly	Glu	Asn 160
Gly	Ile	Gly	Суѕ	Gly 165	Arg	Glu	Ser	Val	Val 170	Thr	Asp	Leu	Asn	Ser 175	Thr
Ala	Leu	Gly	Leu 180	Arg	Thr	Leu	Arg	Leu 185	His	Gly	Tyr	Pro	Val 190	Ser	Ser
Asp	Val	Phe 195	Lys	Ala	Phe	Lys	Gly 200	Gln	Asn	Gly	Gln	Phe 205	Ser	Сув	Ser
Glu	Asn 210	Ile	Gln	Thr	Asp	Glu 215	Glu	Ile	Arg	Gly	Val 220	Leu	Asn	Leu	Phe
Arg 225	Ala	Ser	Leu	Ile	Ala 230	Phe	Pro	Gly	Glu	L y s 235	Ile	Met	Asp	Glu	Ala 240
Glu	Ile	Phe	Ser	Thr 245	Lys	Tyr	Leu	Lys	Glu 250	Ala	Leu	Gln	Lys	Ile 255	Pro
Val	Ser	Ser	Leu 260	Ser	Arg	Glu	Ile	Gl y 265	Asp	Val	Leu	Glu	Tyr 270	Gly	Trp
His	Thr	Tyr 275	Leu	Pro	Arg	Leu	Glu 280	Ala	Arg	Asn	Tyr	Ile 285	Gln	Val	Phe
Gly	Gln 290	Asp	Thr	Glu	Asn	Thr 295	Lys	Ser	Tyr	Val	L y s 300	Ser	Lys	Lys	Leu
Leu 305	Glu	Leu	Ala	Lys	Leu 310	Glu	Phe	Asn	Ile	Phe 315	Gln	Ser	Leu	Gln	Lys 320
Arg	Glu	Leu	Glu	Ser 325	Leu	Val	Arg	Trp	Trp 330	Lys	Glu	Ser	Gly	Phe 335	Pro
Glu	Met	Thr	Phe 340	Cys	Arg	His	Arg	His 345	Val	Glu	Tyr	Tyr	Thr 350	Leu	Ala
Ser	Сув	Ile 355	Ala	Phe	Glu	Pro	Gln 360	His	Ser	Gly	Phe	Arg 365	Leu	Gly	Phe
Ala	L y s 370	Thr	Суѕ	His	Leu	Ile 375	Thr	Val	Leu	Asp	Asp 380	Met	Tyr	Asp	Thr
Phe 385	Gly	Thr	Val	Asp	Glu 390	Leu	Glu	Leu	Phe	Thr 395	Ala	Thr	Met	Lys	Arg 400
Trp	Asp	Pro	Ser	Ser 405	Ile	Asp	Суѕ	Leu	Pro 410	Glu	Tyr	Met	Lys	Gl y 415	Val
Tyr	Ile	Ala	Val 420	Tyr	Asp	Thr	Val	Asn 425	Glu	Met	Ala	Arg	Glu 430	Ala	Glu
Glu	Ala	Gln 435	Gly	Arg	Asp	Thr	Leu 440	Thr	Tyr	Ala	Arg	Glu 445	Ala	Trp	Glu
Ala	Tyr 450	Ile	Asp	Ser	Tyr	Met 455	Gln	Glu	Ala	Arg	Trp 460	Ile	Ala	Thr	Gly
Tyr 465	Leu	Pro	Ser	Phe	Asp 470	Glu	Tyr	Tyr	Glu	Asn 475	Gly	Lys	Val	Ser	Cys 480
Gly	His	Arg	Ile	Ser 485	Ala	Leu	Gln	Pro	Ile 490	Leu	Thr	Met	Asp	Ile 495	Pro
Phe	Pro	qaA	His 500	Ile	Leu	Lys	Glu	Val 505	Asp	Phe	Pro	Ser	Lys 510	Leu	Asn

Asp	Leu	Ala 515	Cys	Ala	Ile	Leu	Arg 520	Leu	Arg	Gly	Asp	Thr 525	Arg	Сув	Tyr	
Lys	Ala 530	Asp	Arg	Ala	Arg	Gly 535	Glu	Glu	Ala	Ser	Ser 540	Ile	Ser	Сув	Tyr	
Met 545	Lys	Asp	Asn	Pro	Gly 550	Val	Ser	Glu	Glu	Asp 555	Ala	Leu	Asp	His	Ile 560	
Asn	Ala	Met	Ile	Ser 565	Asp	Val	Ile	Lys	Gl y 570	Leu	Asn	Trp	Glu	Leu 575	Leu	
Lys	Pro	Asp	Ile 580	Asn	Val	Pro	Ile	Ser 585	Ala	Lys	Lys	His	Ala 590	Phe	Asp	
Ile	Ala	Arg 595	Ala	Phe	His	Tyr	Gly 600	Tyr	Lys	Tyr	Arg	Asp 605	Gly	Tyr	Ser	
Val	Ala 610	Asn	Val	Glu	Thr	Lys 615	Ser	Leu	Val	Thr	Arg 620	Thr	Leu	Leu	Glu	
Ser 625	Val	Pro	Leu													
<211 <212 <213 <220 <221 <222	> LE > TY > OR > FE > NA > LO	ATUF ME/K CATI	DNA SM: E: EY:	.70 Ment CDS (29)	cha s	1825	5)	onene	e syr	nthas	se se					
<400	> SE	QUEN	ICE:	21												
agag	agag	gag a	aggaa	agga	aa ga	atta		_	-				tta a Leu s	-	_	52
-			_				-			_		-	ctt Leu			100
								_			-		aac Asn	_	_	148
_			_		_			_					ctc Leu			196
-	_	_								_		_	gtc Val 70			244
													gtg Val			292
-			_	-			-	-	_		_		aaa Lys	-	_	340
													agg Arg			388
				Phe									tcc Ser			436
Leu	SEL			125												
tat	ctc			cac					cct				gaa Glu 150			484

												con	CIII	uea		
		a gtc n Val														580
	u Phe	aaa Lys														628
		a gct 1 Ala														676
		g gaa g Glu														724
		gat L Asp 235	Gly													772
		cat His														820
	p Tyı	agg Arg														868
		gac 1 Asp														916
-		ttc Phe				-								-		964
		a agg a Arg 315	Asp													1012
		g cca 1 Pro	_	_		-	-	-			_	_			-	1060
	n Ālā	ctg Leu														1108
	_	a gaa 1 Glu		_				-			_	_		-		1156
		a atc		Gln		Pro	Asp	Tyr	Met	Gln		Cys	Phe			1204
		aac Asn 395	Phe	-	-	-		_		-	-	-	-			1252
		c aac L Asn)														1300
	p Lys	g tat s Tyr														1348
		g gaa 1 Glu														1396
		g tta : Leu														1444
		gtc Val 475	Asp													1492

-continued	
tcc ttc gtt ctg cgg ctt gct gat gat ttg gga acc tcg gtg gaa gag Ser Phe Val Leu Arg Leu Ala Asp Asp Leu Gly Thr Ser Val Glu Glu 490 495 500	1540
gtg agc aga ggg gat gtg ccg aaa tca ctt cag tgc tac atg agt gac Val Ser Arg Gly Asp Val Pro Lys Ser Leu Gln Cys Tyr Met Ser Asp 505 510 515 520	1588
tac aat gca tcg gag gcg gag gcg cgg aag cac gtg aaa tgg ctg ata Tyr Asn Ala Ser Glu Ala Glu Ala Arg Lys His Val Lys Trp Leu Ile 525 530 535	1636
gcg gag gtg tgg aag aag atg aat gcg gag agg gtg tcg aag gat tct Ala Glu Val Trp Lys Lys Met Asn Ala Glu Arg Val Ser Lys Asp Ser 540 545 550	1684
cca ttc ggc aaa gat ttt ata gga tgt gca gtt gat tta gga agg atg Pro Phe Gly Lys Asp Phe Ile Gly Cys Ala Val Asp Leu Gly Arg Met 555 560 565	1732
gcg cag ttg atg tac cat aat gga gat ggg cac ggc aca caa cac cct Ala Gln Leu Met Tyr His Asn Gly Asp Gly His Gly Thr Gln His Pro 570 575 580	1780
att ata cat caa caa atg acc aga acc tta ttc gag ccc ttt gca tga Ile Ile His Gln Gln Met Thr Arg Thr Leu Phe Glu Pro Phe Ala 585 590 595	1828
gagatgatga cgagccatcg tttacttact taaattctac caaagttttt cgaaggcata	1888
gttcgtaatt tttcaagcac caataaataa ggagaatcgg ctcaaacaaa cgtggcattt	1948
gccaccacgt gagcacaagg gagagtctgt cgtcgtttat ggatgaacta ttcaattttt	2008
atgcatgtaa taattaagtt caagttcaag agccttctgc atatttaact atgtatttga	2068
atttatcgag tgtgattttc tgtctttggc aacatatatt tttgtcatat gtggcatctt	2128
attatgatat catacagtgt ttatggatga tatgatacta tc	2170
<210> SEQ ID NO 22 <211> LENGTH: 599 <212> TYPE: PRT <213> ORGANISM: Mentha spicata	
<400> SEQUENCE: 22	
Met Ala Leu Lys Val Leu Ser Val Ala Thr Gln Met Ala Ile Pro Ser 1 5 10 15	
Asn Leu Thr Thr Cys Leu Gln Pro Ser His Phe Lys Ser Ser Pro Lys 20 25 30	
Leu Leu Ser Ser Thr Asn Ser Ser Ser Arg Ser Arg Leu Arg Val Tyr 35 40 45	
Cys Ser Ser Ser Gln Leu Thr Thr Glu Arg Arg Ser Gly Asn Tyr Asn 50 55 60	
Pro Ser Arg Trp Asp Val Asn Phe Ile Gln Ser Leu Leu Ser Asp Tyr 65 70 75 80	
Lys Glu Asp Lys His Val Ile Arg Ala Ser Glu Leu Val Thr Leu Val 85 90 95	
Lys Met Glu Leu Glu Lys Glu Thr Asp Gln Ile Arg Gln Leu Glu Leu 100 105 110	
Ile Asp Asp Leu Gln Arg Met Gly Leu Ser Asp His Phe Gln Asn Glu 115 120 125	
Phe Lys Glu Ile Leu Ser Ser Ile Tyr Leu Asp His His Tyr Tyr Lys 130 135 140	

Phe	Arg	Leu	Leu	Arg 165	Glu	His	Gly	Phe	Gln 170	Val	Ala	Gln	Glu	Val 175	Phe
Asp	Ser	Phe	Lys 180	Asn	Glu	Glu	Gly	Glu 185	Phe	Lys	Glu	Ser	Leu 190	Ser	Asp
Asp	Thr	Arg 195	Gly	Leu	Leu	Gln	Leu 200	Tyr	Glu	Ala	Ser	Phe 205	Leu	Leu	Thr
Glu	Gl y 210	Glu	Thr	Thr	Leu	Glu 215	Ser	Ala	Arg	Glu	Phe 220	Ala	Thr	Lys	Phe
Leu 225	Glu	Glu	Lys	Val	Asn 230	Glu	Gly	Gly	Val	Asp 235	Gly	Asp	Leu	Leu	Thr 240
Arg	Ile	Ala	Tyr	Ser 245	Leu	Asp	Ile	Pro	Leu 250	His	Trp	Arg	Ile	Lys 255	Arg
Pro	Asn	Ala	Pro 260	Val	Trp	Ile	Glu	Trp 265	Tyr	Arg	Lys	Arg	Pro 270	Asp	Met
Asn	Pro	Val 275	Val	Leu	Glu	Leu	Ala 280	Ile	Leu	Asp	Leu	Asn 285	Ile	Val	Gln
Ala	Gln 290	Phe	Gln	Glu	Glu	Leu 295	Lys	Glu	Ser	Phe	Arg 300	Trp	Trp	Arg	Asn
Thr 305	Gly	Phe	Val	Glu	Lys 310	Leu	Pro	Phe	Ala	Arg 315	Asp	Arg	Leu	Val	Glu 320
Cys	Tyr	Phe	Trp	Asn 325	Thr	Gly	Ile	Ile	Glu 330	Pro	Arg	Gln	His	Ala 335	Ser
Ala	Arg	Ile	Met 340	Met	Gly	Lys	Val	Asn 345	Ala	Leu	Ile	Thr	Val 350	Ile	Asp
Asp	Ile	Tyr 355	Asp	Val	Tyr	Gly	Thr 360	Leu	Glu	Glu	Leu	Glu 365	Gln	Phe	Thr
Asp	Leu 370	Ile	Arg	Arg	Trp	Asp 375	Ile	Asn	Ser	Ile	Asp 380	Gln	Leu	Pro	Asp
Ty r 385	Met	Gln	Leu	Суѕ	Phe 390	Leu	Ala	Leu	Asn	Asn 395	Phe	Val	Asp	Asp	Thr 400
Ser	Tyr	Asp	Val	Met 405	Lys	Glu	Lys	Gly	Val 410	Asn	Val	Ile	Pro	Tyr 415	Leu
Arg	Gln	Ser	Trp 420	Val	Asp	Leu	Ala	Asp 425	Lys	Tyr	Met	Val	Glu 430	Ala	Arg
Trp	Phe	Tyr 435	Gly	Gly	His	Lys	Pro 440	Ser	Leu	Glu	Glu	Tyr 445	Leu	Glu	Asn
Ser	Trp 450	Gln	Ser	Ile	Ser	Gly 455	Pro	Cys	Met	Leu	Thr 460	His	Ile	Phe	Phe
Arg 465	Val	Thr	Asp	Ser	Phe 470	Thr	Lys	Glu	Thr	Val 475	Asp	Ser	Leu	Tyr	L y s 480
Tyr	His	Asp	Leu	Val 485	Arg	Trp	Ser	Ser	Phe 490	Val	Leu	Arg	Leu	Ala 495	Asp
Asp	Leu	Gly	Thr 500	Ser	Val	Glu	Glu	Val 505	Ser	Arg	Gly	Asp	Val 510	Pro	Lys
Ser	Leu	Gln 515	Суѕ	Tyr	Met	Ser	Asp 520	Tyr	Asn	Ala	Ser	Glu 525	Ala	Glu	Ala
Arg	L y s 530	His	Val	Lys	Trp	Leu 535	Ile	Ala	Glu	Val	Trp 540	Lys	Lys	Met	Asn
Ala 545	Glu	Arg	Val	Ser	L y s 550	Asp	Ser	Pro	Phe	Gly 555	Lys	Asp	Phe	Ile	Gl y 560
Сув	Ala	Val	Asp	Leu 565	Gly	Arg	Met	Ala	Gln 570	Leu	Met	Tyr	His	A sn 575	Gly

Asp	Gly	His	Gly 580	Thr	Gln	His	Pro	Ile 585	Ile	His	Gln	Gln	Met 590	Thr	Arg	
Thr	Leu	Phe 595	Glu	Pro	Phe	Ala										
<213 <213 <213 <220 <223 <223)> FE l> NA 2> LC	THE : RGANI ATUF ME / F	I: 19 DNA SM: RE: REY: ON:	067 Salv CDS (13)) (1785	inali 5) 3-cir		e s y r	nthas	se					
<400)> SE	QUEN	ICE:	23												
gato	cacca	aca a	Me									al I			ag cca ys Pro	51
														cga Arg		99
														cat His		147
														gga Gly 60		195
														gac Asp		243
														ata Ile		291
														cgg Arg		339
	_		-	-		_		_				_		ttt Phe	-	387
_			_	_										aat Asn 140		435
	-	-	-	-					-		-		_	ctc Leu		483
_			_		_	-				_		_	_	ttc Phe	-	531
														act Thr		579
	_			_		-	-	_				-		ggc Gl y	-	627
-					-	-	-		-				-	cat His 220		675
-	-		-	-		-								gaa Glu	-	723

caa gag ctc aaa gag gcc tot agg tgg tgg aat agt acg ggt ctt gtc Sin Glu Leu Lys Glu Ala Ser Arg Trp Trp Aman Ser Thr Gly Leu Val 290 cac gag ctt coc ttt gtg aga gat agg att gtg gaa tgc tac tac tgg fils Glu Leu Pro Phe Val Arg Amp Arg Tie Val Glu Cys Tyr Tyr Trp 305 105 105 105 105 105 106 acg aca gga gtg gt gag cgt cgt gaa cat gga tac gag agg ata atg 1011 acg aca agg gtg gt gag cgt cgt gaa cat gga tac gag agg ata atg 1021 acg aca agg stg gt gag cgt cgt gaa cat gga tac gag agg ata atg 1021 acc aca aaa ata ast gct ctt gtt aca aca ata gac gat gtc ttt gat 105 107 107 107 107 107 107 107													con	tin	ued				
see Phe 1e Amp Ala Tyz Lyś Arg Arg Pro Amp Net Ame Pro Thr Val 255 255 265 265 265 265 265 265 265 265			Glu					Trp					Pro				771	 	
then Gin Lew Ând Lys Leú Amp Phe Amn Met Val Gin Âla Gin Phe Gin 275 276 278 288 288 288 288 288 288 288 288 288		Phe					Lys					Met					819		
cao gag ctt coc ttt gtg aga gat agg att gtg gaa tgc tac tac tagg aga gat agg att gag tac tag aga gat agg att gtg gaa tac gag agg att agg att gag tac gag agg att agg att gag tac gag agg att agg agg att agg att gag tac gag agg att agg agg att agg agg att agg agg						Leu					Val					Gln	867		
side Sul Lee Pro Pro Pri Val Arg Asp Arg Ile Val Glu Cys Tyr Tyr Trp 305 315 315 315 315 315 315 315 315 315 31					Glu					Trp					Leu		915		
the Thr Gly Val Val Glu Arg Arg Glu His Gly Tyr Glu Arg Ile Met 202 202 202 202 202 202 202 2				Pro					Arg					Tyr			963		
Leu Thr Lys Ile Asn Ala Leu Val Thr Thr Ile Asp Asp Val Phe Asp 335 340 345 345 346 345 345 345 345 345 345 345 345 345 345			Gly					Arg					Glu				1011		
The Tyr Sly Thr Leu Glu Glu Glu Cau Gln Leu Phe Thr Thr Àla Ile Gln 355 365 365 365 365 365 365 365 365 365		Thr					Leu					Asp					1059		
Arg Trp Asp Ile Glu Ser Met Lys Gln Leu Pro Pro Tyr Met Gln Ile 370 375 375 375 375 375 375 380 1203 1204 1203 1203 1203 1204 1204 1207 1208 1208 1208 1208 1208 1208 1209 1251 1208 1209 1251 1209 1251 1209 1209 1210 1209 1211 1209 1209 1211 1209 1209 1211 1209 1209 1211 1209 1209 1209 1211 1209 1209 1209 1211 1209 1209 1209 1209 1211 1209						Ğlu					Phe					Gln	1107		
Cys Tyr Leu Åla Leu Phe Asn Phe Val Asn Glu Met Åla Tyr Asp Thr 395 cett agg gat aaa ggt tte aac tee ace cea tat eta ega aaa geg tgg Leu Arg Asp Lys Gly Phe Asn Ser Thr Pro Tyr Leu Arg Lys Ala Trp 400 gtt gat ttg gtt gag tea tat eta ata gag gea aag tgg tac tac atg val Asp Leu Val Glu Ser Tyr Leu Ile Glu Ala Lys Trp Tyr Tyr Met 415 gga cat aaa cet agt ttg gaa gaa tat atg aag aat agt tgg ata tea 319 His Lys Pro Ser Leu Glu Glu Tyr Met Lys Asn Ser Trp Ile Ser 440 440 440 440 440 440 440 4					Glu					Leu					Gln		1155		
Leu Arg Asp Lys Gly Phe Asn Ser Thr Pro Tyr Leu Arg Lys Ala Trp 410 410 410 410 410 410 410 410				Āla					Val					Tyr			1203		
Val Asp Leu Val Glu Ser Tyr Leu Ile Glu Ala Lys Trp Tyr Tyr Met 425 gga cat aaa cct agt ttg gaa gaa tat atg aag aat agt tgg ata tca Glu Glu Glu Tyr Met Lys Asn Ser Trp Ile Ser 435 atc gga ggc atc ccc att cta tct cat cta ttt tc cgg cta aca gat Ile Gly Gly Ile Pro Ile Leu Ser His Leu Phe Phe Arg Leu Thr Asp 450 tcg att gag gaa gag gat gct gag agt atg cat aaa tac cat gat att Ser Ile Glu Glu Glu Asp Ala Glu Ser Met His Lys Tyr His Asp Ile 465 ggt cgt gca tcg tgt act att cta agg ctt gct gat gat atg gga aca Ser Ile Glu Glu Glu Asp Ala Glu Ser Met His Lys Tyr His Asp Ile 475 ggt cgt gca tcg tgt act att cta agg ctt gct gat gat atg gga aca Val Arg Ala Ser Cys Thr Ile Leu Arg Leu Ala Asp Asp Met Gly Thr 480 tcg ctg gat gag gag aga ggc gac gtg ccc aaa tca gtt cag tgc Is39 ser Leu Asp Glu Val Glu Arg Gly Asp Val Pro Lys Ser Val Gln Cys 505 tac atg aat gag aag aat gct tcg gaa gaa gac gc cga gag cat gt gat atg gal atg gal gad gag gc gag cgt grow Asp Sou			Asp					Ser					Arg				1251		
Gily His Lys Pro Ser Leu Glu Glu Tyr Met Lys Asn Ser Trp Ile Ser 445 atc gga ggc atc ccc att cta tct cat cta ttt tcc gg cta aca gat 1395 Ile Gly Gly Ile Pro Ile Leu Ser His Leu Phe Phe Arg Leu Thr Asp 450 tcg att gag gaa gag gat gct gag agt atg cat aaa tac cat gat att Ser Ile Glu Glu Glu Asp Ala Glu Ser Met His Lys Tyr His Asp Ile 475 gtt cgt gca tcg tgt act att cta agg ctt gct gat gat atg gga aca 1491 Val Arg Ala Ser Cys Thr Ile Leu Arg Leu Ala Asp Asp Met Gly Thr 480 tcg ctg gat gag gag aga ggc gac gtg ccc aaa tca gt cag tgc 1539 Ser Leu Asp Glu Val Glu Arg Gly Asp Val Pro Lys Ser Val Gln Cys 505 tac atg aat gag aag aat gct tcg gaa gaa gaa gcg cga gag cat gtg Clu Ala Arg Glu His Ser Cys Ile Asp Gln Thr Trp Lys Met Asn Glu Lys Asp Gln Thr Trp Lys Met Met Asn Lys Glu Met Met Ser Phe Ser Leu Ile Asp Gln Thr Trp Lys Met Met Asn Lys Glu Met Met Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala	-	Asp	_	_			Tyr				-	Lys				_	1299		
Ile Cly Cly Ile Pro Ile Leu Ser His Leu Phe Phe Arg Leu Thr Asp 450 tcg att gag gaa gag gat gct gag att gct at at Cat aaa tac cat gat att Afo					_	Leu	-	-		_	Lys		_			Ser	1347		
Ser Ile Glu Glu Asp Ala Glu Ser Met His Lys Tyr His Asp Ile 465 gtt cgt gca tcg tgt act att cta agg ctt gct gat gat atg gga aca gtt cgt gca tcg tgt act att cta agg ctt gct gat gat atg gga aca Val Arg Ala Ser Cys Thr Ile Leu Arg Leu Ala Asp Asp Met Gly Thr 480 tcg ctg gat gag gtg gag aga ggc gac gtg ccc aaa tca gtt cag tgc Ser Leu Asp Glu Val Glu Arg Gly Asp Val Pro 505 tac atg aat gag aag aat gct tcg gaa gaa gac gcg cga gag cat gtg Tyr Met Asn Glu Lys Asn Ala Ser Glu Glu Glu Glu Ala Arg Gly His Val 510 cga tca ctc ata gac caa aca tgg aag atg atg aac aac aca tgg aag atg atg aac aac aca tgg aag atg atg aca aca aca tgg aag atg atg aac aac aca tgg aag atg atg aca aca aca tgg aac aca tgg aac aca aca tgg aac aca aca tgg aca aca aca aca tgg aca aca aca aca tgg aca aca tgg aca aca tgg aca tca tca ttt tcc aca aca ttt ttgta caa gtt tct gct aca ctt gca Thr Ser Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala					Pro		Leu	Ser	His	Leu	Phe				Thr		1395		
Val Arg Ala Ser Cys Thr Ile Leu Arg Leu Ala Asp Asp Met Gly Thr 480 tcg ctg gat gag gtg gag aga ggc gac gtg ccc aaa tca gtt cag tgc Ser Leu Asp Glu Val Glu Arg Gly Asp Val Pro Lys Ser Val Gln Cys 505 tac atg aat gag aag aat gct tcg gaa gaa gcg cga gag cat gtg Tyr Met Asn Glu Lys Asn Ala Ser Glu Glu Glu Ala Arg Glu His Val 510 515 cga tca ctc ata gac caa aca tgg aag atg atg aac aag gaa atg atg aca aca tgg aag atg atg aac aag gaa atg atg aca aca tgg aag atg atg about Ser Leu Ile Asp Gln Thr Trp Lys Met Met Asn Lys Glu Met Met 530 acg tca tca ttt tcc aaa tat ttt gta caa gtt tct gct aat ctt gca Thr Ser Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala				Glu					Ser					His			1443		
Ser Leu Asp Glu Val Glu Arg Gly Asp Val Pro Lys Ser Val Gln Cys 495 tac atg aat gag aag aat gct tcg gaa gaa gcg cga gag cat gtg Tyr Met Asn Glu Lys Asn Ala Ser Glu Glu Glu Ala Arg Glu His Val 510 515 525 cga tca ctc ata gac caa aca tgg aag atg atg aac aag gaa atg atg atg Asn Ser Leu Ile Asp Gln Thr Trp Lys Met Met Asn Lys Glu Met Met 530 acg tca tca ttt tcc aaa tat ttt gta caa gtt tct gct aat ctt gca Thr Ser Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala			Āla					Leu					Asp				1491		
Tyr Met Asn Glu Lys Asn Ala Ser Glu Glu Glu Ala Arg Glu His Val 510 515 520 525 cga tca ctc ata gac caa aca tgg aag atg atg aac aag gaa atg atg Arg Ser Leu Ile Asp Gln Thr Trp Lys Met Met Asn Lys Glu Met Met 530 540 acg tca tca ttt tcc aaa tat ttt gta caa gtt tct gct aat ctt gca Thr Ser Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala		Leu					Arg					Lys					1539		
Arg Ser Leu Ile Asp Gln Thr Trp Lys Met Met Asn Lys Glu Met Met 530 535 540 acg tca tca ttt tcc aaa tat ttt gta caa gtt tct gct aat ctt gca Thr Ser Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala						Asn					Glu					Val	1587		
Thr Ser Ser Phe Ser Lys Tyr Phe Val Gln Val Ser Ala Asn Leu Ala					Asp					Met					Met		1635		
				Phe					Val					Asn			1683		

-continued
aga atg gcg caa tgg ata tac cag cat gaa tct gat gga ttt ggc atg 1731 Arg Met Ala Gln Trp Ile Tyr Gln His Glu Ser Asp Gly Phe Gly Met 560 565 570
caa cat tca ttg gtg aac aaa atg ctc aga ggg ttg ttg ttc gac cgc 1779 Gln His Ser Leu Val Asn Lys Met Leu Arg Gly Leu Leu Phe Asp Arg 575 580 585
tat gag taa ctaatcttcg cccgggttcc aaatgaatca atctgttgtg 1828 Tyr Glu 590
ttgctgttcc acctgatatc aataataatt agacaaatgt ttctgtacgg gtggcccaac 1888
cgtcaggccc atttcgctca tgttcataat aaataataaa actgttaatc aataacaaaa 1948
aaaaaaaaaa aaaaaaaaa 1967
<210> SEQ ID NO 24 <211> LENGTH: 591 <212> TYPE: PRT <213> ORGANISM: Salvia officinalis
<400> SEQUENCE: 24
Met Ser Ser Leu Ile Met Gln Val Val Ile Pro Lys Pro Ala Lys Ile 1 5 10 15
Phe His Asn Asn Leu Phe Ser Val Ile Ser Lys Arg His Arg Phe Ser 20 25 30
Thr Thr Ile Thr Thr Arg Gly Gly Arg Trp Ala His Cys Ser Leu Gln 35 40 45
Met Gly Asn Glu Ile Gln Thr Gly Arg Thr Gly Gly Tyr Gln Pro 50 55 60
Thr Leu Trp Asp Phe Ser Thr Ile Gln Leu Phe Asp Ser Glu Tyr Lys 65 70 75 80
Glu Glu Lys His Leu Met Arg Ala Ala Gly Met Ile Ala Gln Val Asn 85 90 95
Met Leu Leu Glu Glu Val Asp Ser Ile Gln Arg Leu Glu Leu Ile 100 105 110
Asp Asp Leu Arg Arg Leu Gly Ile Ser Cys His Phe Asp Arg Glu Ile 115 120 125
Val Glu Ile Leu Asn Ser Lys Tyr Tyr Thr Asn Asn Glu Ile Asp Glu 130 135 140
Ser Asp Leu Tyr Ser Thr Ala Leu Arg Phe Lys Leu Leu Arg Gln Tyr 145 150 155 160
Asp Phe Ser Val Ser Gln Glu Val Phe Asp Cys Phe Lys Asn Asp Lys 165 170 175
Gly Thr Asp Phe Lys Pro Ser Leu Val Asp Asp Thr Arg Gly Leu Leu 180 185 190
Gln Leu Tyr Glu Ala Ser Phe Leu Ser Ala Gln Gly Glu Glu Thr Leu 195 200 205
His Leu Ala Arg Asp Phe Ala Thr Lys Phe Leu His Lys Arg Val Leu 210 215 220
Val Asp Lys Asp Ile Asn Leu Leu Ser Ser Ile Glu Arg Ala Leu Glu 225 230 235 240
Leu Pro Thr His Trp Arg Val Gln Met Pro Asn Ala Arg Ser Phe Ile 245 250 255
Asp Ala Tyr Lys Arg Arg Pro Asp Met Asn Pro Thr Val Leu Glu Leu 260 265 270
Ala Lys Leu Asp Phe Asn Met Val Gln Ala Gln Phe Gln Glu Leu 275 280 285

Lys	Glu 290	Ala	Ser	Arg	Trp	Trp 295	Asn	Ser	Thr	Gly	Leu 300	Val	His	Glu	Leu		
Pro 305	Phe	Val	Arg	Asp	Arg 310	Ile	Val	Glu	Cys	Ty r 315	Tyr	Trp	Thr	Thr	Gl y 320		
Val	Val	Glu	Arg	Arg 325	Glu	His	Gly	Tyr	Glu 330	Arg	Ile	Met	Leu	Thr 335	Lys		
Ile	Asn	Ala	Leu 340	Val	Thr	Thr	Ile	Asp 345	Asp	Val	Phe	Asp	Ile 350	Tyr	Gly		
Thr	Leu	Glu 355	Glu	Leu	Gln	Leu	Phe 360	Thr	Thr	Ala	Ile	Gln 365	Arg	Trp	Asp		
Ile	Glu 370	Ser	Met	Lys	Gln	Leu 375	Pro	Pro	Tyr	Met	Gln 380	Ile	Сув	Tyr	Leu		
Ala 385	Leu	Phe	Asn	Phe	Val 390	Asn	Glu	Met	Ala	Tyr 395	Asp	Thr	Leu	Arg	Asp 400		
Lys	Gly	Phe	Asn	Ser 405	Thr	Pro	Tyr	Leu	Arg 410	Lys	Ala	Trp	Val	Asp 415	Leu		
Val	Glu	Ser	Tyr 420	Leu	Ile	Glu	Ala	Lys 425	Trp	Tyr	Tyr	Met	Gly 430	His	Lys		
Pro	Ser	Leu 435	Glu	Glu	Tyr	Met	Lys 440	Asn	Ser	Trp	Ile	Ser 445	Ile	Gly	Gly		
Ile	Pro 450	Ile	Leu	Ser	His	Leu 455	Phe	Phe	Arg	Leu	Thr 460	Asp	Ser	Ile	Glu		
Glu 465	Glu	Asp	Ala	Glu	Ser 470	Met	His	Lys	Tyr	His 475	Asp	Ile	Val	Arg	Ala 480		
Ser	Cys	Thr	Ile	Leu 485	Arg	Leu	Ala	Asp	Asp 490	Met	Gly	Thr	Ser	Leu 495	Asp		
Glu	Val	Glu	Arg 500	Gly	Asp	Val	Pro	Lys 505	Ser	Val	Gln	Cys	Tyr 510	Met	Asn		
Glu	Lys	Asn 515	Ala	Ser	Glu	Glu	Glu 520	Ala	Arg	Glu	His	Val 525	Arg	Ser	Leu		
Ile	Asp 530	Gln	Thr	Trp	Lys	Met 535	Met	Asn	Lys	Glu	Met 540	Met	Thr	Ser	Ser		
Phe	Ser	Lys	Tyr	Phe	Val 550	Gln	Val	Ser	Ala	Asn 555	Leu	Ala	Arg	Met	Ala 560		
	Trp	Ile	Tyr	Gln 565		Glu	Ser	Asp	Gly 570		Gly	Met	Gln	His			
Leu	Val	Asn	_		Leu	Arg	Gly			Phe	Asp	Arg	_				
			580					585					590				
<213 <213 <213 <223 <223 <223)> SE L> LE 2> TY 3> OF 1> NA 1-> LO	CNGTH CPE: CGANI CATUR ME/R	DNA SM: SE: CEY:	Salv CDS (11)) ((1804	l)		diph	ıosph	ıate	synt	thase	÷			
<400)> SE	QUEN	ICE:	25													
gato	cacaa		_			att a Ile S	-	_		-	_			-	_	49	
	cta Leu 15															97	

													COII	tin	ueu		
L€							ccc Pro										145
					-	-	cat His			-	_						193
							aat Asn										241
	_					_	gat Asp	_		_		_					289
-			_		_	-	aaa Lys 100	_			-			_		_	337
	.e		_	_			ttg Leu			_	_				-		385
		_					gtt Val							-			433
							atg Met										481
							ggt Gl y										529
	7S						ggt Gly 180										577
_	p	_	_		_		caa Gln	_		_					_	_	625
			_	_		_	gag Glu		_	_	_		-			-	673
							gaa Glu										721
		_			Arg	His	tct Ser	Leu	Asp	Leu	Pro		His	Trp			769
	.n						tgg Trp 260										817
	p						ttc Phe										865
			-				caa Gln	-	_		-		_				913
		-		-			gaa Glu										961
							gcg Ala										1009
	У		_	_		_	gcc Ala 340	-				-		-		-	1057

-continued

ata gat gat att tac gat gtg tat ggt aca cta gat gaa cta ga cta Ile Asp Asp Ile Tyr Asp Val Tyr Gly Thr Leu Asp Glu Leu Glu Leu 350 360 365	1105
ttt aca gac acg ttt aag aga tgg gat act gaa tca ata acc cga ctt Phe Thr Asp Thr Phe Lys Arg Trp Asp Thr Glu Ser Ile Thr Arg Leu 370 375 380	1153
cct tat tac atg caa tta tgt tat tgg ggt gtc cac aac tat att tcc Pro Tyr Tyr Met Gln Leu Cys Tyr Trp Gly Val His Asn Tyr Ile Ser 385 390 395	1201
gat gca gca tat gat att ctc aaa gaa cat ggt ttc ttt tgt ctc caa Asp Ala Ala Tyr Asp Ile Leu Lys Glu His Gly Phe Phe Cys Leu Gln 400 405 410	1249
tat ctc cgg aaa tcg gtg gta gat ttg gtt gaa gca tat ttt cac gag Tyr Leu Arg Lys Ser Val Val Asp Leu Val Glu Ala Tyr Phe His Glu 415 420 425	1297
gca aag tgg tac cac agc ggt tat aca cca agc ctg gat gaa tat ctc Ala Lys Trp Tyr His Ser Gly Tyr Thr Pro Ser Leu Asp Glu Tyr Leu 430 435 440 445	1345
aac atc gcc aag att tca gtg gcg tct cct gca ata ata tcc cca acc Asn Ile Ala Lys Ile Ser Val Ala Ser Pro Ala Ile Ile Ser Pro Thr 450 460	1393
tat ttc aca ttc gca aac gcg tct cat gac aca gca gtc atc gac agc Tyr Phe Thr Phe Ala Asn Ala Ser His Asp Thr Ala Val Ile Asp Ser 465 470 475	1441
ttg tac caa tat cat gac ata ctt tgc cta gca gga att att ttg agg Leu Tyr Gln Tyr His Asp Ile Leu Cys Leu Ala Gly Ile Ile Leu Arg 480 485 490	1489
ctt ccc gac gat ctt ggg aca tca tat ttt gag ctg gcg aga ggc gac Leu Pro Asp Asp Leu Gly Thr Ser Tyr Phe Glu Leu Ala Arg Gly Asp 495 500 505	1537
gtg ccg aaa aca atc cag tgc tac atg aag gaa aca aat gct agt gag Val Pro Lys Thr Ile Gln Cys Tyr Met Lys Glu Thr Asn Ala Ser Glu 510 515 520 525	1585
gag gag gcg gtg gag cac gtg aag ttt ctg ata agg gag gcg tgg aag Glu Glu Ala Val Glu His Val Lys Phe Leu Ile Arg Glu Ala Trp Lys 530 535 540	1633
gat atg aac acg gcc ata gca gcc ggt tat ccg ttt ccg gat ggt atg Asp Met Asn Thr Ala Ile Ala Ala Gly Tyr Pro Phe Pro Asp Gly Met 545 550 555	1681
gtg gcg gca gct aat att ggg cgc gtg gcg cag ttt att tat ctc Val Ala Gly Ala Ala Asn Ile Gly Arg Val Ala Gln Phe Ile Tyr Leu 560 565 570	1729
cac gga gat ggg ttt ggc gtg caa cac tcg aaa acg tac gag cat atc His Gly Asp Gly Phe Gly Val Gln His Ser Lys Thr Tyr Glu His Ile 575 580 585	1777
gcc ggc cta ctg ttc gag cct tat gca tga acaaatggga gactgcttga Ala Gly Leu Leu Phe Glu Pro Tyr Ala 590 595	1827
tatatattaa tttggcacac caataattgc atgttatata tgttggaaaa taagtgtctg	1887
gttgagatgt catgtggtgt attatctaaa taattcaagg ttgccttgtt tatgtagccg	1947
gtggtgcaac tacctcccat tcaaatcaat taaatctaaa cagtcgagtc aagctcgagc	2007
tcgaggaaaa aaaaaaa	2024

<210> SEQ ID NO 26 <211> LENGTH: 598 <212> TYPE: PRT <213> ORGANISM: Salvia officinalis

<400)> SE	QUEN	ICE:	26											
Met 1	Ser	Ile	Ile	Ser 5	Met	Asn	Val	Ser	Ile 10	Leu	Ser	Lys	Pro	Leu 15	Asn
Сув	Leu	His	Asn 20	Leu	Glu	Arg	Arg	Pro 25	Ser	Lys	Ala	Leu	Leu 30	Val	Pro
Суѕ	Thr	Ala 35	Pro	Thr	Ala	Arg	Leu 40	Arg	Ala	Ser	Cys	Ser 45	Ser	Lys	Leu
Gln	Glu 50	Ala	His	Gln	Ile	Arg 55	Arg	Ser	Gly	Asn	Tyr 60	Gln	Pro	Ala	Leu
Trp 65	Asp	Ser	Asn	Tyr	Ile 70	Gln	Ser	Leu	Asn	Thr 75	Pro	Tyr	Thr	Glu	Glu 80
Arg	His	Leu	Asp	Arg 85	Lys	Ala	Glu	Leu	Ile 90	Val	Gln	Val	Arg	Ile 95	Leu
Leu	Lys	Glu	Lys 100	Met	Glu	Pro	Val	Gln 105	Gln	Leu	Glu	Leu	Ile 110	His	Asp
Leu	Lys	Tyr 115	Leu	Gly	Leu	Ser	Asp 120	Phe	Phe	Gln	Asp	Glu 125	Ile	Lys	Glu
Ile	Leu 130	Gly	Val	Ile	Tyr	Asn 135	Glu	His	Lys	Сув	Phe 140	His	Asn	Asn	Glu
Val 145	Glu	Lys	Met	Asp	Leu 150	Tyr	Phe	Thr	Ala	Leu 155	Gly	Phe	Arg	Leu	Leu 160
Arg	Gln	His	Gly	Phe 165	Asn	Ile	Ser	Gln	Asp 170	Val	Phe	Asn	Cys	Phe 175	Lys
Asn	Glu	Lys	Gly 180	Ile	Asp	Phe	Lys	Ala 185	Ser	Leu	Ala	Gln	Asp 190	Thr	Lys
Gly	Met	Leu 195	Gln	Leu	Tyr	Glu	Ala 200	Ser	Phe	Leu	Leu	Arg 205	Lys	Gly	Glu
Asp	Thr 210	Leu	Glu	Leu	Ala	Arg 215	Glu	Phe	Ala	Thr	L y s 220	Cys	Leu	Gln	Lys
L y s 225	Leu	Asp	Glu	Gly	Gly 230	Asn	Glu	Ile	Asp	Glu 235	Asn	Leu	Leu	Leu	Trp 240
Ile	Arg	His	Ser	Leu 245	Asp	Leu	Pro	Leu	His 250	Trp	Arg	Ile	Gln	Ser 255	Val
Glu	Ala	Arg	Trp 260	Phe	Ile	Asp	Ala	Tyr 265	Ala	Arg	Arg	Pro	Asp 270	Met	Asn
Pro	Leu	Ile 275	Phe	Glu	Leu	Ala	L y s 280	Leu	Asn	Phe	Asn	Ile 285	Ile	Gln	Ala
Thr	His 290	Gln	Gln	Glu	Leu	L y s 295	Asp	Leu	Ser	Arg	Trp 300	Trp	Ser	Arg	Leu
С у в 305	Phe	Pro	Glu	Lys	Leu 310	Pro	Phe	Val	Arg	Asp 315	Arg	Leu	Val	Glu	Ser 320
Phe	Phe	Trp	Ala	Val 325	Gly	Met	Phe	Glu	Pro 330	His	Gln	His	Gly	Ty r 335	Gln
Arg	Lys	Met	Ala 340	Ala	Thr	Ile	Ile	Val 345	Leu	Ala	Thr	Val	Ile 350	Asp	Asp
Ile	Tyr	Asp 355	Val	Tyr	Gly	Thr	Leu 360	Asp	Glu	Leu	Glu	Leu 365	Phe	Thr	Asp
Thr	Phe 370	Lys	Arg	Trp	Asp	Thr 375	Glu	Ser	Ile	Thr	Arg 380	Leu	Pro	Tyr	Tyr
Met 385	Gln	Leu	Cys	Tyr	Trp 390	Gly	Val	His	Asn	Ty r 395	Ile	Ser	Asp	Ala	Ala 400
Tyr	Asp	Ile	Leu	Lys 405	Glu	His	Gly	Phe	Phe 410	Cys	Leu	Gln	Tyr	Leu 415	Arg

Lys	Ser	Val	Val 420	Asp	Leu	Val	Glu	Ala 425	Tyr	Phe	His	Glu	Ala 430	Lys	Trp					
Tyr :	His	Ser 435	Gly	Tyr	Thr	Pro	Ser 440	Leu	Asp	Glu	Tyr	Leu 445	Asn	Ile	Ala					
Lys	Ile 450	Ser	Val	Ala	Ser	Pro 455	Ala	Ile	Ile	Ser	Pro 460	Thr	Tyr	Phe	Thr					
Phe . 465	Ala	Asn	Ala	Ser	His 470	Asp	Thr	Ala	Val	Ile 475	Asp	Ser	Leu	Tyr	Gln 480					
Tyr :	His	Asp	Ile	Leu 485	Cys	Leu	Ala	Gly	Ile 490	Ile	Leu	Arg	Leu	Pro 495	Asp					
Asp :	Leu	Gly	Thr 500	Ser	Tyr	Phe	Glu	Leu 505	Ala	Arg	Gly	Asp	Val 510	Pro	Lys					
Thr	Ile	Gln 515	Cys	Tyr	Met	Lys	Glu 520	Thr	Asn	Ala	Ser	Glu 525	Glu	Glu	Ala					
Val (Glu 530	His	Val	Lys	Phe	Leu 535	Ile	Arg	Glu	Ala	Trp 540	Lys	Asp	Met	Asn					
Thr .	Ala	Ile	Ala	Ala	Gly 550	Tyr	Pro	Phe	Pro	A sp 555	Gly	Met	Val	Ala	Gly 560					
	Ala	Asn	Ile	Gly 565		Val	Ala	Gln	Phe 570		Tyr	Leu	His	Gly 575						
Gly :	Phe	Gly	Val 580	Gln	His	Ser	Lys	Thr 585	Tyr	Glu	His	Ile	Ala 590	Gly	Leu					
Leu '	Phe	Glu 595		Tyr	Ala			505					3,0							
<210: <211: <212: <213: <220: <221:	> LE > TY > OR > FE > NA	NGTH PE: RGANI LATUF ME/K	DNA SM: E: EY:	059 Ment CDS				a												
<210: <211: <212: <213: <220: <221: <222: <223:	> LE > TY > OR > FE > NA > LO > OT	ENGTH PE: RGANI EATUF ME/K DCATI	DNA SM: E: EY: ON: INFO	Ment CDS (71)) ((1720))		esene	e syr	nthas	3e								
<210: <211: <212: <213: <220: <221: <222: <223:	> LE > TY > OR > FE > NA > LO > OT > SE	CNGTH CPE: RGANI CATUF ME/K DCATI CHER	DNA SM: E: CEY: ON: INFO	Ment CDS (71) DRMAT)(FION:	(1720 : (E))))-B-f	Earne					aga (gagtt	ttgttç	g	60			
<210: <211: <212: <213: <220: <221: <222: <223: <400:	> LE > TY > OR > FE > NA > LO > OT > SE	CNGTH CPE: CGANICATUF CATUF CATIC CHER CQUEN CQUEN	DNA SM: E: CEY: ON: INFO	Ment CDS (71) CRMAT 27 Catat)(FION: ta ta	(1720 : (E))))-B-f tcata	Earne a aaa gto q	atcaç	gaga att 4	gaga agt	agac	tta a	agg (gaa	_	60 109			
<210: <211: <212: <213: <213: <220: <221: <2222: <2223: <400: tagt	> LE > TY > OR > FE > NA > LO TY > SE tctg gaaa agg	CCA	DNA SM: E: CY: ON: INFO CE: attto atg of 1 cct	Ment CDS (71) DRMAT 27 catat gct a	ta t	(1720) aacat aac (Asn ()) -B-f tcata ggc (5ly 7 5	ā aad a aad gto q Val V gog	atcaç gta a Val :	gaga att a Ile a	gaga agt · Ser (agac tgc : Cys : 10	tta a Leu A	agg g Arg (gaa Glu acc					
<210: <211: <212: <213: <220: <221: <222: <400: aaaac tagt gta tttt	> LE Y TY OR	ENGTH PER COLUMN	E: 19 DNA SM: EE: EY: CON: INFO CE: attto cct Pro	Ment CDS (71) RMAI 27 catat atg Met tct	ta ta ta aca a Thr A acg	(1720) aacat aac (Asn (Asn (Asn (Asn (Asn (Asn (Asn (Asn)) -B-f tcata ggc (5 5 cat His	Earne a aaa gtc q Val V gcg Ala aag	gta a Val : cca Pro	gaga att a Ile : agc Ser caa	gaga agt Ser (atg Met 25	agac tgc : Cys : 10 tgg Trp	act Thr	agg (Arg (Arg (Arg (Arg Arg)))	gaa Glu acc Thr		109			
<210: <211: <212: <213: <220: <221: <222: <223: <400: aaaac tagt gta tttt Phe	> LE TY > OR TY > NA OT > SE gaaa agg 15 tctr ser atc	ENGTHER CATURE OF THE CATURE O	I: 19 DNA SM: EE: EY: ON: INFO CE: atttc cct Pro ttt Phe gca	Ment CDS (71) RMAT 27 catat Ala : atg Met tct Ser ctt	acg acg Thr Leu 35	aacadaacadaacaac)) -B-f tcata ggc (5 cat His gat Asp	a aaa gtc g Wal V gcg Ala aag Lys	gta a Val : cca Pro gaa Glu	gaga att (agc Ser caa Gln 40	gagd agt atg Atg Act Caa Gln atg	agac. ttgc 'Cys I 10 ttgg Trp aaag Lys	act Thr tgc Cys	gat Asp tca Ser	gaa Glu acc Thr gaa Glu 45		109 157			
<2100 <211: <212: <213: <220: <220: <222: <223: <400: aaaac tagt tttt Phe 30 acc Thr	> LE TYY > TYY > NA OT Compared to the compar	ENGTH PER CONTROL OF THE CONTROL OF	I: 19 DNA SM: EE: EY: ON: INFO CE: attg 1 cct Pro ttt Phe gca Ala	Ment CDS (71) RMAT 27 catat atggct a atg Met tct Ser ctt Leu 50 caa	ta t	(172C(E)) aaacat aaac (Asn (C)) Asn (C) gac Asp Caa Gln	cat His gat Asp	a aaa gtc (Val V gcg Ala aag Lys gca Ala	gta a Val : cca Pro gaa Glu aga Arg 55	gaga att agle : agc Ser caa Gln 40 ggc Gly	gagd - see atg Met 25 caa Gln atg Met act	agac. tgc : 10 tgg Trp aag Lys ctt Leu	act Thr tgc Cys atg	gat Asp tca Ser gct Ala 60	gaa Glu acc Thr gaa Glu 45 gca Ala		109 157 205			
<210: <211: <212: <213: <220: <220: <223: <400: aaaac tagt ttt The 30	> LE TYY > TYY > NA OT total agg agg 15 totr atte atte ttg	ENGTH: (PE: (PE: (PGANI) (PE: (PGANI) (PE: (PGANI) (PE: (PGANI) (PGAN	E: 19 DNA SM: EE: EE: EY: ON: INFO CE: ttt ttt pro ttt phe gca Ala ctc Leu 65 ttc	Ment CDS (71) CDS (71) Z7 Catata atggct a atg Met tct Ser ctt Leu 50 caa Gln cat	acg acg Thr Leu 35 aag Lys	(172C) (1)) -B-f tcate ggc (53ly V 5 cat His gat Asp gaa Glu aca Thr	a aaa gtc (Val V gcg Ala aag Lys gca Ala cta Leu 70	gta atcace grant g	gaga att i lile : agc Ser caa Gln 40 ggc Gly gac Asp	gaggaggaggaggaggaggaggaggaggaggaggaggag	agacctgc : Cys : 10 tgg Trp aaag Lys ctt Leu ctc	act Thr tgc Cys atg Met gag Glu 75	gat Asp tca Ser gct Ala 60 cgt Arg	gaa Glu acc Thr gaa Glu 45 gca Ala ttg Leu cta		109 157 205 253			

_												CO11	tin	ueu				
_	ttc Phe	_	_		-				-		-		-	-	-	445		
	gac Asp	_			-		-		_		-	-			-	493		
	aat Asn															541		
	cgc Arg	-	_	_					_	-			_			589		
	ttg Leu 175	-		-			-	_				_		_		637		
	gtg Val	_	_	-	_							_				685		
	tat Tyr															733		
	gaa Glu															781		
	ttg Leu															829		
	aat Asn 255															877		
	tat Tyr															925		
	cga Arg															973		
	aca Thr															1021		
	gtc Val		Āsp	Lys	Trp	-	Arg	Asp	-	Āla	Ğlu	Arg			-	1069		
	atg Met 335															1117		
-	. cgt . Arg	_	_						_		_	_				1165		
	gaa Glu															1213		
	gtt Val															1261		
	gag Glu															1309		
	ttg Leu 415															1357		

-continued	
ccc acg ctc gca aca tcg acc gct atg atc ggt cgg tat tgg aat gac Pro Thr Leu Ala Thr Ser Thr Ala Met Ile Gly Arg Tyr Trp Asn Asp 430 435 440 445	1405
acc agc tct cag ctc cgt gaa agc aaa gga ggg gaa atg ctg act gcg Thr Ser Ser Gln Leu Arg Glu Ser Lys Gly Gly Glu Met Leu Thr Ala 450 455 460	1453
ttg gat ttc cac atg aaa gaa tat ggt ctg acg aag gaa gag gcg gca Leu Asp Phe His Met Lys Glu Tyr Gly Leu Thr Lys Glu Glu Ala Ala 465 470 475	1501
tct aag ttt gaa gga ttg gtt gag gaa aca tgg aag gat ata aac aag Ser Lys Phe Glu Gly Leu Val Glu Glu Thr Trp Lys Asp Ile Asn Lys 480 485 490	1549
gaa ttc ata gcc aca act aat tat aat gtg ggt aga gaa att gcc atc Glu Phe Ile Ala Thr Thr Asn Tyr Asn Val Gly Arg Glu Ile Ala Ile 495 500 505	1597
aca ttc ctc aac tac gct cgg ata tgt gaa gcc agt tac agc aaa act Thr Phe Leu Asn Tyr Ala Arg Ile Cys Glu Ala Ser Tyr Ser Lys Thr 510 515 520 525	1645
gac gga gac gct tat toa gat cot aat gtt gcc aag gca aat gtc gtt Asp Gly Asp Ala Tyr Ser Asp Pro Asn Val Ala Lys Ala Asn Val Val 530 540	1693
gct ctc ttt gtt gat gcc ata gtc ttt tga tttgcataat caaagaccct Ala Leu Phe Val Asp Ala Ile Val Phe 545 550	1743
ataattataa ttatatgtgt ttaagaaact aataagcttg ctttatgtat agttgtcaat	1803
tgaataataa tgtattaatt agtagagtta agaagttata aagaataaag aggagctggt	1863
agacgtaaac aagaaataat gtgtcaaaat aacttcaact ttttcaagaa taaagaattg	1923
gaagagacca atatatacaa aaaaaaaaa aaaaaa	1959
<210> SEQ ID NO 28 <211> LENGTH: 550 <212> TYPE: PRT <213> ORGANISM: Mentha x piperita	
<400> SEQUENCE: 28	
Met Ala Thr Asn Gly Val Val Ile Ser Cys Leu Arg Glu Val Arg Pro 1 5 10 15	
Pro Met Thr Lys His Ala Pro Ser Met Trp Thr Asp Thr Phe Ser Asn 20 25 30	
Phe Ser Leu Asp Asp Lys Glu Gln Gln Lys Cys Ser Glu Thr Ile Glu 35 40 45	
Ala Leu Lys Gln Glu Ala Arg Gly Met Leu Met Ala Ala Thr Thr Pro 50 55 60	
Leu Gln Gln Met Thr Leu Ile Asp Thr Leu Glu Arg Leu Gly Leu Ser 65 70 75 80	
Leu Gln Gln Met Thr Leu Ile Asp Thr Leu Glu Arg Leu Gly Leu Ser 75 80 Phe His Phe Glu Thr Glu Ile Glu Tyr Lys Ile Glu Leu Ile Asn Ala 85 90 95	
Leu Gln Gln Met Thr Leu Ile Asp Thr Leu Glu Arg Leu Gly Leu Ser 75 80 Phe His Phe Glu Thr Glu Ile Glu Tyr Lys Ile Glu Leu Ile Asn Ala	
Leu Gln Gln Met Thr Leu Ile Asp Thr Leu Glu Arg Leu Gly Leu Ser 75 80 Phe His Phe Glu Thr Glu Ile Glu Tyr Lys Ile Glu Leu Ile Asn Ala 85 90 95 Ala Glu Asp Asp Gly Phe Asp Leu Phe Ala Thr Ala Leu Arg Phe Arg	
Leu Gln Gln Met Thr Leu Ile Asp Thr Leu Glu Arg Leu Gly Leu Ser 80 Phe His Phe Glu Thr Glu Ile Glu Tyr Lys Ile Glu Leu Ile Asn Ala 95 Ala Glu Asp Asp Gly Phe Asp Leu Phe Ala Thr Ala Leu Arg Phe Arg 100 Leu Leu Arg Gln His Gln Arg His Val Ser Cys Asp Val Phe Asp Lys	

-continued

Glu	Arg	Ile	Leu	Gln 165	Glu	Ala	Val	Asn	Phe 170	Thr	Arg	His	His	Leu 175	Glu
Gly	Ala	Glu	Leu 180	Asp	Gln	Ser	Pro	Leu 185	Leu	Ile	Arg	Glu	L y s 190	Val	Lys
Arg	Ala	Leu 195	Glu	His	Pro	Leu	His 200	Arg	Asp	Phe	Pro	Ile 205	Val	Tyr	Ala
Arg	Leu 210	Phe	Ile	Ser	Ile	Ty r 215	Glu	Lys	Asp	Asp	Ser 220	Arg	Asp	Glu	Leu
Leu 225	Leu	Lys	Leu	Ser	L y s 230	Val	Asn	Phe	Lys	Phe 235	Met	Gln	Asn	Leu	Tyr 240
Lys	Glu	Glu	Leu	Ser 245	Gln	Leu	Ser	Arg	Trp 250	Trp	Asn	Thr	Trp	Asn 255	Leu
Lys	Ser	Lys	Leu 260	Pro	Tyr	Ala	Arg	Asp 265	Arg	Val	Val	Glu	Ala 270	Tyr	Val
Trp	Gly	Val 275	Gly	Tyr	His	Tyr	Glu 280	Pro	Gln	Tyr	Ser	Ty r 285	Val	Arg	Met
Gly	Leu 290	Ala	Lys	Gly	Val	Leu 295	Ile	Сув	Gly	Ile	Met 300	Asp	Asp	Thr	Tyr
Asp 305	Asn	Tyr	Ala	Thr	Leu 310	Asn	Glu	Ala	Gln	Leu 315	Phe	Thr	Gln	Val	Leu 320
Asp	Lys	Trp	Asp	Arg 325	Asp	Glu	Ala	Glu	Arg 330	Leu	Pro	Glu	Tyr	Met 335	Lys
Ile	Val	Tyr	Arg 340	Phe	Ile	Leu	Ser	Ile 345	Tyr	Glu	Asn	Tyr	Glu 350	Arg	Asp
Ala	Ala	Lys 355	Leu	Gly	Lys	Ser	Phe 360	Ala	Ala	Pro	Tyr	Phe 365	Lys	Glu	Thr
Val	L y s 370	Gln	Leu	Ala	Arg	Ala 375	Phe	Asn	Glu	Glu	Gln 380	Lys	Trp	Val	Met
Glu 385	Arg	Gln	Leu	Pro	Ser 390	Phe	Gln	Asp	Tyr	Val 395	Lys	Asn	Ser	Glu	Lys 400
Thr	Ser	Cys	Ile	Tyr 405	Thr	Met	Phe	Ala	Ser 410	Ile	Ile	Pro	Gly	Leu 415	Lys
Ser	Val	Thr	Gln 420	Glu	Thr	Ile	Asp	Trp 425	Ile	Lys	Ser	Glu	Pro 430	Thr	Leu
Ala	Thr	Ser 435	Thr	Ala	Met	Ile	Gly 440	Arg	Tyr	Trp	Asn	Asp 445	Thr	Ser	Ser
Gln	Leu 450	Arg	Glu	Ser	Lys	Gl y 455	Gly	Glu	Met	Leu	Thr 460	Ala	Leu	Asp	Phe
His 465	Met	Lys	Glu	Tyr	Gly 470	Leu	Thr	Lys	Glu	Glu 475	Ala	Ala	Ser	Lys	Phe 480
Glu	Gly	Leu	Val	Glu 485	Glu	Thr	Trp	Lys	Asp 490	Ile	Asn	Lys	Glu	Phe 495	Ile
Ala	Thr	Thr	Asn 500	Tyr	Asn	Val	Gly	A rg 505	Glu	Ile	Ala	Ile	Thr 510	Phe	Leu
Asn	Tyr	Ala 515	Arg	Ile	Cys	Glu	Ala 520	Ser	Tyr	Ser	Lys	Thr 525	Asp	Gly	Asp
Ala	Tyr 530	Ser	Asp	Pro	Asn	Val 535	Ala	Lys	Ala	Asn	Val 540	Val	Ala	Leu	Phe
Val 545	Asp	Ala	Ile	Val	Phe 550										
0.1.0															

<210> SEQ ID NO 29 <211> LENGTH: 2196 <212> TYPE: DNA

	2	00333	T C 3.4	λ ¹ .		an- 1	~										,
<22	.3> Ol	EATUI	RE:		es gi	rand:	LS										
<22	1> N 2> L	OCAT:	ON:	(69)					-+h								
	3> 0'				TION:	щу	cene	e syr	Itmas	se							
	10> S																
_		-			_	-									caaagg	60	
gaç	ıcaag									-		a Se	-		t tgc c C y s	110	
	g cgc L Arg															158	
	aca Thr															206	
	tcc Ser															254	
	aga Arg	_			_							_	-	-		302	
	cag Gln 80	Ser			_			,,,	_				_	_	-	350	
	gag Glu															398	
	gat Asp															446	
	tgg Trp		_	_	_	-	-	_	_			_	-			494	
	aac Asn					-	_	_		_		_				542	
-	aac Asn 160	Gly			_		-	_	_		_		-			590	
	act Thr															638	
	cca Pro		-			-			-				_		-	686	
	tcc Ser															734	
	cgg Arg		Ser					Pro					Met			782	
-	gaa Glu 240	Ile				-		_		-	-			_		830	
	gtc Val		-						_		-	_	-			878	

tog one and act tog one aga ttog gas gas aga act to ata gas can are trop that The Am Low Pro Arg Low Gu Ala Arg And Try Lib Ang Ang Thr 275 Cott gas and aga act aga gas tog che act and act gas gas and law of the gas act gas aga and law of the gas act gas gas tog act the act act gas act gas gas tog act the act act gas act gas gas tog act the act act can law of the gas act gas gas tog gas tog gas tog gas tog act act act gas act gas gas gas act act cat gas aga gas gas act act gas aga gas gas act act gas aga gas gas gas act gas gas gas gas gas gas act gas gas act gas	_																	 	
Leu Giù Lya Âap Thr Ser Âla Trìp Leu Ann Lya Ann Ala Giy Lya Lya 285 285 285 285 285 285 285 285 285 285					Leu					Ala					Asp		926		
Low Lee Gin Lew Aia Lye Leu Gin Phe Asm Rev Leu Cin 310 310 310 310 310 310 310 31				Asp					Leu					Gly			974		
Sin Lys Glu Leu Gln Tyr Leu Leu Arg Trp Trp Lys Glu Ser Asp Leu 320 cot and ttg aca ttt got cgg cat cgt cat gtg gaa tto tac act ttg pro Lys Leu Thr Phe Ala Arg His Arg His Val Glu Phe Tyr The Leu 3135 340 gcc tot tgt att gcc att gac ca ana cat tot goa ttc aga cta ggc part and a ser Cys He Ala Arg His Arg His Ser Ala Phe Arg Leu Gly 355 gcc tot tgt att gcc att gac ca ana cat tot goa ttc aga cta ggc part and a ser Cys He Ala Phe Ala Lys Arg His Arg His Ser Ala Phe Arg Leu Gly 355 gcc tot tgt att gcc att gac cac aga ttt gac gat att ac gac ttc gca as a set gtg c gar att cat gac att ca gac ttc gca aca att gcc gar gat gac gat try and a ser cys He Ala Lys Arg Ala Phe Ala Phe Ala Lys Arg Ala Phe Ala Lys Ala Phe Ala Phe Ala Phe Ala Phe Ala Lys Ala Phe Phe Ala			Glu					Glu					Asn				1022		
Pro Lys Leu Thr Phe Åla Arg His Arg His Val Glu Phe Tyr Th Leu 315 340 gcc tct tgt att gcc att gac cca asa cat tct gca ttc aga cta ggc Ala Ser Cys Ile Ala Ile Asp Pro Lys His Ser Ala Phe Arg Leu Gly 355 350 1166 Ala Ser Cys Ile Ala Ile Asp Pro Lys His Ser Ala Phe Arg Leu Gly 355 360 360 365 360 365 360 365 370 360 365 370 360 365 380 370 380 1214		Lys					Leu					Lys					1070		
Ala Ser Cys Ile Ala Ile Aep Pro Lys His Ser Ala Phe Arg Leu Čly 355 ttc gcc aaa atg tgt cat ctt gtc aca gtt ttg gac gat att tac gac Phe Ala Lys Met Cys His Leu Val Thr Val Leu Aep Aep Ile Tyr Aep 370 act ttt gga acg att gac gag ctt gaa ctc ttc aca tct gca att aag Thr Phe Gly Thr Ile Aep Glu Leu Glu Leu Phe Thr Ser Ala Ile Lys 385 aga tgg aat toa toa gag att gac cat tex ca gaa tat atg aaa tgt Arg Trp Aen Ser Ser Glu Ile Glu His Leu Pro Glu Tyr Met Lys Cys 400 405 405 406 407 407 407 408 408 409 409 409 409 409 409	Pro					Ala					Val					Leu	1118		
Phe Åla Lys Met Cys His Leu val Thr Val Leu Asp Asp Ile Tyr Asp 370 380 370 370 370 370 370 370 370 370 370 37	-		_		Āla		-			His		-		-	Leu		1166		
Thr Phe Gly Thr Ile Asp Glu Leu Glu Leu Phe Thr Ser Ala Ile Lys 385 390 395 395 395 395 395 395 395 395 395 395				Met					Thr					Ile			1214		
Arg Trp Asn Ser Ser Glu Ile Glu His Leu Pro Glu Tyr Met Lye Cys 400 gtg tac atg gtc gtg ttt gaa act gta aat gaa ctg aca cag agg gcg Val Tyr Met Val Val Phe Glu Thr Val Asn Glu Leu Thr Arg Glu Ala 420 gag aag act caa ggg aga aac act ctc aac tat gtt cga aag gct tgg Glu Lys Thr Gln Gly Arg Asn Thr Leu Asn Tyr Val Arg Lys Ala Trp 435 gag ggt tat ttt gat tca tat atg gaa gaa gca aaa tgg atc tct aat Glu Ala Tyr Phe Asp Ser Tyr Met Glu Glu Ala Lys Trp Ile Ser Asn 450 ggt tat ctg caa tg ttg gaa gag tac cat gag aat ggg aaa gtg ag gcg Gly Tyr Leu Pro Met Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser 470 470 485 486 487 487 488 489 480 1850 480 1850 1850 1850 1850 1860 1870 1880 1890			Gly					Leu					Ser				1262		
Vai Tyr Met Val Val Phe Glu Thr Val Asn Glu Leu Thr Arg Glu Ala 415 gag aad aad act caa ggg aga aac act ctc aac tat gtt cga aag gct tgg Glu Lys Thr Gln Gly Arg Asn Thr Leu Asn Tyr Val Arg Lys Ala Trp 435 gag gct tat ttt gat tca tat atg gaa gaa gca aaa tgg atc tct aat Glu Ala Tyr Phe Asp Ser Tyr Met Glu Glu Ala Lys Trp Ile Ser Asn 450 ggt tat ctg cca atg ttt gaa gag gad ac cat gag aat ggg aaa gtg agc Gly Tyr Leu Pro Met Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser 475 tct gca tat cgc gta gca aca ttg caa ccc atc ctc act ttg aat gca Ser Ala Tyr Arg Val Ala Thr Leu Gln Pro Ile Leu Thr Leu Asn Ala 480 tgg ctt cct gat tac atc ttg aag gga att gat ttt caa tcc agg ttc Trp Leu Pro Asp Tyr Ile Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe 495 tat gca ttg gca tcg tcc tc ctc cgg cta cga gga gac aca cgc tgc Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 515 tac aag gcc gat agg act cgt ggt gaa gaa gat gac aca cgc tgc Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 530 tat at aga aag ac act cct gga tca acc gaa gaa gat gcc ctc act cat Tyr Met Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys 540 tat atg aaa gac act cct gga tca acc gaa gaa gat gcc ctc act cat Tyr Met Lys Asp Asn Pro Gly Ser Thr Glu Glu Ala Ser Cys 540 atc act gcc atg gt act act gac act acc gaa gaa gat tca act gcc tca cac gcc atg gt act acc acc gaa gaa gat tca act tca Tyr Met Lys Asp Asn Pro Gly Ser Thr Glu Glu Ala Ser Cys 550 atc act gcc atg gt act act gca act acc acc gaa gaa gat tca act tca Tyr Met Lys Asp Asn Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 545 atc act gcc act gd cc act acc act gac gaa acc act gcc tcc tca acc acc gcc act gd ccc acc acc acc acc acc acc acc acc ac		Trp					Ile					Glu					1310		
Glu Lys Thr Gln Gly Arg Asn Thr Leu Asn Try Val Arg Lys Ala Trp 435 gag get tat ttt gat tca tat atg gaa gaa gaa aaa tgg atc tct aat Glu Ala Tyr Phe Asp Ser Tyr Met Glu Glu Ala Lys Trp Ile Ser Asn 450 ggt tat ctg cca atg ttt gaa gag tac cat gag aat ggg aaa ggg agc gly Tyr Leu Pro Met Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser 470 tct gca tat cgc gta gca aca ttg caa ccc atc ctc act ttg aat gca Ser Ala Tyr Arg Val Ala Thr Leu Gln Pro Ile Leu Thr Leu Asn Ala 480 tct cct gat tac atc ttg aag gga att gtt tcc asp fle Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe 500 aat gat ttg gca tcg tcc ttc ctt cgg cta cga ggt gac aca cgc tgc Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 515 tac aag gcc gat agg gat cgt ggt gaa gaa gat gct tcg tgt ata tca tgt Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys Ile Ser Cys 530 att at gaa agc aat cct gga tca acc gaa gaa gat tta aat tg gaa ctt at gaa gad act cat atc atc acc ga gt column Asp Ala Leu Asn His 550 att at gaa agc aca cct gga cat atc aat atc aaa gaa tta aat tgg gaa ctt Tyr Met Lys Asp Asp Asp Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn Trp Glu Leu 560 atc aat gcc atg gtc aat gac ata atc caa gag aat acc acc gct ttt 1838 atc aat gcc atg gtc aat gac ata atc caa gag aan acc ttg gaa acc tta acc tfle Asn Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu 560 560 1838 1849 1859 1850 1860 1850	Val		_	_		Phe	-		_		Glu	_		-		Ala	1358		
Glu Ala Tyr Phe Asp Ser Tyr Met Glu Glu Ala Lys Trp Ile Ser Asn 460 ggt tat ctg cca atg ttt gaa gag tac cat gag aat ggg aaa gtg agc Gly Tyr Leu Pro Met Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser 475 tct gca tat cgc gta gca aca ttg caa ccc atc ctc act ttg aat gca Ser Ala Tyr Arg Val Ala Thr Leu Gln Pro Ile Leu Thr Leu Asn Ala 480 tgg ctt cct gat tac atc ttg aag gga att gat tt cca tcc agg ttc Trp Leu Pro Asp Tyr Ile Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe 9510 aat gat ttg gca tcg tcc ttc ctt cgg cta cga ggt gac aca cgc tgc Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 525 tac aag gcc gat agg gat cgt ggt gaa gaa gat gct tcg tgt ata tca tgt 1694 Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys 545 att atg aaa gcc aat cct gga tca acc gaa gaa gat gcc ctc aat cat Tyr Met Lys Asp Asn Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn Trp Glu Leu Asp Tle Asn Ala Met Val Asn Asp Ile Ile Lys Glu Caa ag aaa cat gct ttt Leu Asn Trp Glu Leu Asp Caa ag aac act cat aga tca acc gac aat att cca atg ctg caa ag acc act gct ttt Leu Asn Trp Glu Leu Asn Trp Glu Leu Asp Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe 1838		_			Gly	-				Asn		-	-	_	Ala		1406		
Gly Tyr Leu Pro Met Phe Glu Glu Tyr His Glu Asn Gly Lys Val Ser 465 tct gca tat cgc gta gca aca ttg caa ccc atc ctc act ttg aat gca 480 tgg ctt cct gat tac atc ttg aag gga att gat tt cca tcc agg ttc Trp Leu Pro Asp Tyr Ile Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe 550 aat gat ttg gca tcg tcc ttc ctt cgg cta cga ggt gac aca cgc tgc Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 515 tac aag gcc gat agg gat cgt ggt gaa gaa gct tcg tgt ata tca tgt Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys 540 tat atg aaa gac aat cct gga tca acc gaa gaa gat gcc ctc aat cat Tyr Met Lys Asp Asp Asp Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 545 atc aat gc atg gtc ata gac ata atc aaa gaa tta att cat gag acc ctt and and gal tce Asn Asp Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu 560 cta aga tcc aac gac aat att cca atg ctg gcc aag aaa cat gct ttt 570 cta aga tcc aac gac aat att cca atg ctg gcc aag aaa cat gct ttt 570 kel aga tcc aac gac aat att cca atg ctg gcc aag aac cat gct ttt 570 cta aga tcc aac gac aat att cca atg ctg gcc aag aac cat gct ttt 580 1550 1560 157		_		Phe	_			_	Glu	_	_			Ile			1454		
Ser Ala Tyr Arg Val Ala Thr Leu Gln Pro Ile Leu Thr Leu Asn Ala tgg ctt cct gat tac atc ttg aag gga att gat ttt cca tcc agg ttc Trp Leu Pro Asp Tyr Ile Leu Lys Gly Ile Asp Phe Pro Ser Arg Phe 495 Solo Fro Ser Arg Phe 505 Fro Ser Arg Phe 510 aat gat ttg gca tcg tcc ttc ctt cgg cta cga ggt gac aca cgc tgc Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 515 Solo Fro Ser Ser Phe Leu Arg Gly Asp Thr Arg Cys 525 tac aag gcc gat agg gat cgt ggt gaa gaa gct tcg tgt ata tca tgt Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys Ile Ser Cys 535 tat atg aaa gac aat cct gga tca acc gaa gaa gat gct ctc aat cat Tyr Met Lys Asp Asp Asn Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 545 atc aat gcc atg gtc aat gac ata atc aaa gac at at caa gaa tta aat tgg gaa ctt Ile Asn Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu 560 cta aga tcc aac gac aat att cca atg ctg gcc aag aac cat gct ttt 1838 Leu Arg Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe			Leu		_		-	Glu					Gly			-	1502		
Trp Leu Pro Asp Tyr Ile Leu Lys Gly Ile Asp Pro Ser Arg Phe 510 aat gat ttg gca tcg tcc ttc ctt cgg cta cga ggt gac aca cgc tgc Asp Thr Arg Cys 525 tac aag gcc gat agg gat cgt ggt gac gaa gaa gct tcg tgt ata tca tgt Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys Ile Ser Cys 530 tat atg aaa gac aat cct gga tca acc gaa gaa gat gcc ctc aat cat Tyr Met Lys Asp Asp Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 555 atc aat gcc atg gtc aat gac ata atc atc aaa gac ata atc aat atc aat gcc atg gtc aat atc atc atc atc atc atc atc atc a		Ala					Thr					Leu					1550		
Asn Asp Leu Ala Ser Ser Phe Leu Arg Leu Arg Gly Asp Thr Arg Cys 525 tac aag gcc gat agg gat cgt ggt gaa gaa gct tcg tgt ata tca tgt 1694 Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys Ile Ser Cys 540 tat atg aaa gac aat cct gga tca acc gaa gaa gat gcc ctc aat cat 1742 Tyr Met Lys Asp Asp Asp Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 545 atc aat gcc atg gtc aat gac ata atc aaa gaa tta aat tgg gaa ctt 1790 Ile Asn Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu 570 cta aga tcc aac gac aat att cca atg ctg gcc aag aaa cat gct ttt 1838 Leu Arg Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe	Trp					Ile					Asp					Phe	1598		
Tyr Lys Ala Asp Arg Asp Arg Gly Glu Glu Ala Ser Cys Ile Ser Cys 530 tat atg aaa gac aat cct gga tca acc gaa gaa gat gcc ctc aat cat 1742 Tyr Met Lys Asp Asp Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 545 atc aat gcc atg gtc aat gac ata atc aaa gaa tta aat tgg gaa ctt 1790 Ile Asn Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu 560 cta aga tcc aac gac aat att cca atg ctg gcc aag aaa cat gct ttt 1838 Leu Arg Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe		-	_	-	Ser					Leu	-		-		Arg	-	1646		
Tyr Met Lys Asp Asn Pro Gly Ser Thr Glu Glu Asp Ala Leu Asn His 545 atc aat gcc atg gtc aat gac ata atc aaa gaa tta aat tgg gaa ctt 1790 Ile Asn Ala Met Val Asn Asp 565 cta aga tcc aac gac aat att cca atg ctg gcc aag aaa cat gct ttt 1838 Leu Arg Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe		-	-	Asp		-	_		Ğlu	-	-	_	_	Ile		-	1694		
Ile Asn Ala Met Val Asn Asp Ile Ile Lys Glu Leu Asn Trp Glu Leu 560 565 570 cta aga tcc aac gac aat att cca atg ctg gcc aag aaa cat gct ttt 1838 Leu Arg Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe			Lys					Ser					Ala				1742		
Leu Arg Ser Asn Asp Asn Ile Pro Met Leu Ala Lys Lys His Ala Phe		Asn					Āsp					Leu					1790		
	Leu					Asn					Āla					Phe	1838		

-continued	
gac ata aca aga gct ctc cac cat ctc tac ata tat cga gat ggc ttt Asp Ile Thr Arg Ala Leu His His Leu Tyr Ile Tyr Arg Asp Gly Phe 595 600 605	1886
agt gtt gcc aac aag gaa aca aaa aaa ttg gtt atg gaa aca ctc ctt Ser Val Ala Asn Lys Glu Thr Lys Lys Leu Val Met Glu Thr Leu Leu 610 615 620	1934
gaa tot atg ott ttt taa otataacoat atooataata ataagotoat Glu Ser Met Leu Phe 625	1982
aatgctaaat tattggcctt atgacatagt ttatgtatgt acttgtgtga attcaatcat	2042
atcgtgtggg tatgattaaa aagctagagc ttactaggtt agtaacatgg tgataaaagt	2102
tataaaatgt gagttataga gatacccatg ttgaataatg aattacaaaa agagaaattt	2162
atgtagaata agattggaag cttttcaatt gttt	2196
<210> SEQ ID NO 30 <211> LENGTH: 627 <212> TYPE: PRT <213> ORGANISM: Abies grandis	
<400> SEQUENCE: 30	
Met Ala Leu Val Ser Ile Ser Pro Leu Ala Ser Lys Ser Cys Leu Arg 1 10 15	
Lys Ser Leu Ile Ser Ser Ile His Glu His Lys Pro Pro Tyr Arg Thr 20 25 30	
Ile Pro Asn Leu Gly Met Arg Arg Gly Lys Ser Val Thr Pro Ser 35 40 45	
Met Ser Ile Ser Leu Ala Thr Ala Ala Pro Asp Asp Gly Val Gln Arg 50 55 60	
Arg Ile Gly Asp Tyr His Ser Asn Ile Trp Asp Asp Asp Phe Ile Gln 65 70 75 80	
Ser Leu Ser Thr Pro Tyr Gly Glu Pro Ser Tyr Gln Glu Arg Ala Glu 85 90 95	
Arg Leu Ile Val Glu Val Lys Lys Ile Phe Asn Ser Met Tyr Leu Asp 100 105 110	
Asp Gly Arg Leu Met Ser Ser Phe Asn Asp Leu Met Gln Arg Leu Trp 115 120 125	
Ile Val Asp Ser Val Glu Arg Leu Gly Ile Ala Arg His Phe Lys Asn 130 135 140	
Glu Ile Thr Ser Ala Leu Asp Tyr Val Phe Arg Tyr Trp Glu Glu Asn 145 150 155 160	
Gly Ile Gly Cys Gly Arg Asp Ser Ile Val Thr Asp Leu Asn Ser Thr 165 170 175	
Ala Leu Gly Phe Arg Thr Leu Arg Leu His Gly Tyr Thr Val Ser Pro 180 185 190	
Glu Val Leu Lys Ala Phe Gln Asp Gln Asn Gly Gln Phe Val Cys Ser 195 200 205	
Pro Gly Gln Thr Glu Gly Glu Ile Arg Ser Val Leu Asn Leu Tyr Arg 210 215 220	
Ala Ser Leu Ile Ala Phe Pro Gly Glu Lys Val Met Glu Glu Ala Glu 225 230 235 240	
Ile Phe Ser Thr Arg Tyr Leu Lys Glu Ala Leu Gln Lys Ile Pro Val 245 250 255	
Ser Ala Leu Ser Gln Glu Ile Lys Phe Val Met Glu Tyr Gly Trp His 260 265 270	

Thr	Asn	Leu 275	Pro	Arg	Leu	Glu	Ala 280	Arg	Asn	Tyr	Ile	Asp 285	Thr	Leu	Glu
Lys	Asp 290	Thr	Ser	Ala	Trp	Leu 295	Asn	Lys	Asn	Ala	Gly 300	Lys	Lys	Leu	Leu
Glu 305	Leu	Ala	Lys	Leu	Glu 310	Phe	Asn	Ile	Phe	Asn 315	Ser	Leu	Gln	Gln	L y s 320
Glu	Leu	Gln	Tyr	Leu 325	Leu	Arg	Trp	Trp	Lys 330	Glu	Ser	Asp	Leu	Pro 335	Lys
Leu	Thr	Phe	Ala 340	Arg	His	Arg	His	Val 345	Glu	Phe	Tyr	Thr	Leu 350	Ala	Ser
Cys	Ile	Ala 355	Ile	Asp	Pro	Lys	His 360	Ser	Ala	Phe	Arg	Leu 365	Gly	Phe	Ala
Lys	Met 370	Cys	His	Leu	Val	Thr 375	Val	Leu	Asp	Asp	Ile 380	Tyr	Asp	Thr	Phe
Gl y 385	Thr	Ile	Asp	Glu	Leu 390	Glu	Leu	Phe	Thr	Ser 395	Ala	Ile	Lys	Arg	Trp 400
Asn	Ser	Ser	Glu	Ile 405	Glu	His	Leu	Pro	Glu 410	Tyr	Met	Lys	Суѕ	Val 415	Tyr
Met	Val	Val	Phe 420	Glu	Thr	Val	Asn	Glu 425	Leu	Thr	Arg	Glu	Ala 430	Glu	Lys
Thr	Gln	Gly 435	Arg	Asn	Thr	Leu	Asn 440	Tyr	Val	Arg	Lys	Ala 445	Trp	Glu	Ala
Tyr	Phe 450	Asp	Ser	Tyr	Met	Glu 455	Glu	Ala	Lys	Trp	Ile 460	Ser	Asn	Gly	Tyr
Leu 465	Pro	Met	Phe	Glu	Glu 470	Tyr	His	Glu	Asn	Gly 475	Lys	Val	Ser	Ser	Ala 480
Tyr	Arg	Val	Ala	Thr 485	Leu	Gln	Pro	Ile	Leu 490	Thr	Leu	Asn	Ala	Trp 495	Leu
Pro	Asp	Tyr	Ile 500	Leu	Lys	Gly	Ile	Asp 505	Phe	Pro	Ser	Arg	Phe 510	Asn	Asp
Leu	Ala	Ser 515	Ser	Phe	Leu	Arg	Leu 520	Arg	Gly	Asp	Thr	Arg 525	Суѕ	Tyr	Lys
Ala	Asp 530	Arg	Asp	Arg	Gly	Glu 535	Glu	Ala	Ser	Cys	Ile 540	Ser	Cys	Tyr	Met
Lys 545	Asp	Asn	Pro	Gly	Ser 550	Thr	Glu	Glu	Asp	Ala 555	Leu	Asn	His	Ile	Asn 560
Ala	Met	Val	Asn	Asp 565	Ile	Ile	Lys	Glu	Leu 570	Asn	Trp	Glu	Leu	Leu 575	Arg
Ser	Asn	Asp	Asn 580	Ile	Pro	Met	Leu	Ala 585	Lys	Lys	His	Ala	Phe 590	Asp	Ile
Thr	Arg	Ala 595	Leu	His	His	Leu	Tyr 600	Ile	Tyr	Arg	Asp	Gly 605	Phe	Ser	Val
Ala	Asn 610	Lys	Glu	Thr	Lys	L y s 615	Leu	Val	Met	Glu	Thr 620	Leu	Leu	Glu	Ser
Met 625	Leu	Phe													
<213 <213 <213 <220 <223 <223	L> LE 2> TY 3> OF 0> FE L> NA 2> LO	ENGTH (PE: RGAN] EATUR AME/R DCAT]	SM:	044 Sola CDS (57)	((1724	1)		_ene	synt	chase	e			

<40	0> SE	EQUEN	ICE:	31														
gaa	agaaa	aga a	aaat	tete	tc t	gttt	tttc	c aca	aagc	aaag	agt	acac	aca (ctag	aa atg Met 1	59		
	cca Pro															107		
	ccc Pro															155		
	ttc Phe 35															203		
	act Thr															251		
	aca Thr															299		
	att Ile															347		
	tac Tyr		_	_					-					-		395		
	act Thr 115															443		
	tcc Ser															491		
	gaa Glu			_		-		_			_				-	539		
-	tcg Ser		-					_	_		_	_		-		587		
	ttc Phe															635		
	ctg Leu 195															683		
_	att Ile		-	-			-							-		731		
	gaa Glu															779		
	tta Leu		_		_				_		_	_	_			827		
	tgg Trp		-	_	_								_		-	875		
	gca Ala 275															923		

-continued

-continued	
caa tac tct cag gct cgt gtc atg ctt gct aag act ata gca atg att Gln Tyr Ser Gln Ala Arg Val Met Leu Ala Lys Thr Ile Ala Met Ile 290 295 300 305	971
tct ata gta gat gac aca ttc gat gct tat ggc att gtc aaa gaa ctt Ser Ile Val Asp Asp Thr Phe Asp Ala Tyr Gly Ile Val Lys Glu Leu 310 315 320	1019
gag atc tac acc gat gcc ata cag agg tgg gat att agc caa att gat Glu Ile Tyr Thr Asp Ala Ile Gln Arg Trp Asp Ile Ser Gln Ile Asp 325 330 335	1067
cgg ctc cct gat tac atg aaa atc agt tac aaa gca ctt tta gat ctc Arg Leu Pro Asp Tyr Met Lys Ile Ser Tyr Lys Ala Leu Leu Asp Leu 340 345 350	1115
tac aat gat tat gaa atg gag ttg tcc aag gat ggt aga tct gat gtt Tyr Asn Asp Tyr Glu Met Glu Leu Ser Lys Asp Gly Arg Ser Asp Val 355 360 365	1163
gtt cac tac gcg aaa gaa aga atg aaa gaa atc gtg aga aac tat ttt Val His Tyr Ala Lys Glu Arg Met Lys Glu Ile Val Arg Asn Tyr Phe 370 375 380 385	1211
gtg gaa gca aaa tgg ttc att gaa gga tat atg ccg cca gtc tct gag Val Glu Ala Lys Trp Phe Ile Glu Gly Tyr Met Pro Pro Val Ser Glu 390 395 400	1259
tat ctt agc aat gca tta gct acc agc act tat tac ttg ctt acg act Tyr Leu Ser Asn Ala Leu Ala Thr Ser Thr Tyr Tyr Leu Leu Thr Thr 405 410 415	1307
aca tct tat ttg ggc atg aag tct gct aac aag caa gat ttt gaa tgg Thr Ser Tyr Leu Gly Met Lys Ser Ala Asn Lys Gln Asp Phe Glu Trp 420 425 430	1355
ttg gcc aag aac cct aaa att ctt gag gct aat gtg acg tta tgc cga Leu Ala Lys Asn Pro Lys Ile Leu Glu Ala Asn Val Thr Leu Cys Arg 435 440 445	1403
gtc ata gat gac ata gcc acc tat gag gtt gag aag ggt aga ggt cag Val Ile Asp Asp Ile Ala Thr Tyr Glu Val Glu Lys Gly Arg Gly Gln 450 455 460 465	1451
att gcc act gga att gaa tgt tac atg aga gat tat ggt gta tcc aca Ile Ala Thr Gly Ile Glu Cys Tyr Met Arg Asp Tyr Gly Val Ser Thr 470 475 480	1499
gaa aag gcc atg gaa aaa ttc caa gaa atg gct gag aca gca tgg aag Glu Lys Ala Met Glu Lys Phe Gln Glu Met Ala Glu Thr Ala Trp Lys 485 490 495	1547
gat gta aat gaa gga atc ctt cga cca act ccc gtc tct aca gag att Asp Val Asn Glu Gly Ile Leu Arg Pro Thr Pro Val Ser Thr Glu Ile 500 505 510	1595
ctc act cgc att ctc aat ctt gct cgc att atc gat gtt act tat aag Leu Thr Arg Ile Leu Asn Leu Ala Arg Ile Ile Asp Val Thr Tyr Lys 515 520 525	1643
cac aat caa gat gga tac act cat ccg gaa aaa gta cta aaa cct cat His Asn Gln Asp Gly Tyr Thr His Pro Glu Lys Val Leu Lys Pro His 530 535 540 545	1691
att att gcg ttg ttg gtg gac tct att gaa att taa atcatcgatt Ile Ile Ala Leu Leu Val Asp Ser Ile Glu Ile 550 555	1737
gttttgtaca tctgggagca cttgcttccc atcccctaaa attataagta tttgattgat	1797
gccttgttgg tatctatgct gctaggcgct agctaagata ggagttgctg gagatacatg	1857
ttatagtgca gtgcagttaa ttccttaatt tttttttgta tcattattga cattttaaat	1917
atatatata atatcactgc tttttat	1944

<210> SEQ ID NO 32 <211> LENGTH: 556

											_	COII	СТП	ucu	
		PE:		Sola	anum	tube	erosu	ım							
<400)> SI	EQUE	NCE:	32											
Met 1	Thr	Pro	Ala	Ala 5	Val	Val	Met	Ser	Asn 10	Tyr	Gly	Glu	Glu	Glu 15	Ile
Val	Arg	Pro	Ile 20	Ala	Asp	Phe	Ser	Pro 25	Ser	Leu	Trp	Gly	Asp 30	Arg	Phe
His	Ser	Phe 35	Ser	Leu	Asp	Asn	Gln 40	Ile	Ala	Gly	Lys	Tyr 45	Ala	Gln	Glu
Ile	Glu 50	Thr	Leu	Lys	Glu	Gln 55	Ser	Arg	Ile	Ile	Leu 60	Ser	Ala	Ser	Ser
Arg 65	Arg	Thr	Leu	Ala	Glu 70	Lys	Leu	Asp	Leu	Ile 75	Asp	Ile	Val	Glu	Arg 80
Leu	Gly	Ile	Ala	Ty r 85	His	Phe	Glu	Lys	Gln 90	Ile	Asp	Asp	Met	Leu 95	Asp
Gln	Phe	Tyr	Lys 100	Ala	Asp	Pro	Asn	Phe 105	Glu	Ala	His	Glu	Tyr 110	Asn	Asp
Leu	Gln	Thr 115	Leu	Ser	Val	Gln	Phe 120	Arg	Leu	Leu	Arg	Gln 125	His	Gly	Tyr
Asn	Ile 130	Ser	Pro	Lys	Leu	Phe 135	Ile	Arg	Phe	Gln	Asp 140	Ala	Lys	Gly	Lys
Phe 145	Lys	Glu	Ser	Leu	C y s 150	Asn	Asp	Ile	Lys	Gly 155	Leu	Leu	Asn	Leu	Ty r 160
Glu	Ala	Ser	His	Val 165	Arg	Thr	His	Gly	Glu 170	Asp	Ile	Leu	Glu	Glu 175	Ala
Leu	Ala	Phe	Ser 180	Thr	Ala	His	Leu	Glu 185	Ser	Ala	Ala	Pro	His 190	Leu	Lys
Ser	Pro	Leu 195	Ser	Lys	Gln	Val	Thr 200	His	Ala	Leu	Glu	Gln 205	Ser	Leu	His
Lys	Ser 210	Ile	Pro	Arg	Val	Glu 215	Thr	Arg	Tyr	Phe	Ile 220	Ser	Ile	Tyr	Glu
Glu 225	Glu	Glu	Gln	Lys	Asn 230	Asp	Val	Leu	Leu	Gln 235	Phe	Ala	Lys	Leu	Asp 240
Phe	Asn	Leu	Leu	Gln 245	Met	Leu	His	Lys	Gln 250	Glu	Leu	Ser	Glu	Val 255	Ser
Arg	Trp	Trp	L y s 260	Asp	Leu	Asp	Phe	Val 265	Thr	Thr	Leu	Pro	Ty r 270	Ala	Arg
Asp	Arg	Ala 275	Val	Glu	Cys	Tyr	Phe 280	Trp	Thr	Met	Gly	Val 285	Tyr	Ala	Glu
Pro	Gln 290	Tyr	Ser	Gln	Ala	Arg 295	Val	Met	Leu	Ala	L y s 300	Thr	Ile	Ala	Met
Ile 305	Ser	Ile	Val	Asp	Asp 310	Thr	Phe	Asp	Ala	Ty r 315	Gly	Ile	Val	Lys	Glu 320
Leu	Glu	Ile	Tyr	Thr 325	Asp	Ala	Ile	Gln	Arg 330	Trp	Asp	Ile	Ser	Gln 335	Ile
Asp	Arg	Leu	Pro 340	Asp	Tyr	Met	Lys	Ile 345	Ser	Tyr	Lys	Ala	Leu 350	Leu	Asp
Leu	Tyr	Asn 355	Asp	Tyr	Glu	Met	Glu 360	Leu	Ser	Lys	Asp	Gly 365	Arg	Ser	Asp
Val	Val 370	His	Tyr	Ala	Lys	Glu 375	Arg	Met	Lys	Glu	Ile 380	Val	Arg	Asn	Tyr
Phe 385	Val	Glu	Ala	Lys	Trp 390	Phe	Ile	Glu	Gly	Tyr 395	Met	Pro	Pro	Val	Ser 400

```
Glu Tyr Leu Ser Asn Ala Leu Ala Thr Ser Thr Tyr Tyr Leu Leu Thr
Thr Thr Ser Tyr Leu Gly Met Lys Ser Ala Asn Lys Gln Asp Phe Glu
                               425
Trp Leu Ala Lys Asn Pro Lys Ile Leu Glu Ala Asn Val Thr Leu Cys
                          440
Arg Val Ile Asp Asp Ile Ala Thr Tyr Glu Val Glu Lys Gly Arg Gly
Gln Ile Ala Thr Gly Ile Glu Cys Tyr Met Arg Asp Tyr Gly Val Ser
Thr Glu Lys Ala Met Glu Lys Phe Gln Glu Met Ala Glu Thr Ala Trp
Lys Asp Val Asn Glu Gly Ile Leu Arg Pro Thr Pro Val Ser Thr Glu
                               505
Ile Leu Thr Arg Ile Leu Asn Leu Ala Arg Ile Ile Asp Val Thr Tyr
                          520
Lys His Asn Gln Asp Gly Tyr Thr His Pro Glu Lys Val Leu Lys Pro
His Ile Ile Ala Leu Leu Val Asp Ser Ile Glu Ile
<210> SEQ ID NO 33
<211> LENGTH: 3950
<212> TYPE: DNA
<213> ORGANISM: Gossypium arboreum
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1457)...(1579)
<223> OTHER INFORMATION: cadinene synthase
<221> NAME/KEY: CDS
<222> LOCATION: (1670)...(1939)
<221> NAME/KEY: CDS
<222> LOCATION: (2092)...(2466)
<221> NAME/KEY: CDS
<222> LOCATION: (2559)...(2774)
<221> NAME/KEY: CDS
<222> LOCATION: (2963)...(3103)
<221> NAME/KEY: CDS
<222> LOCATION: (3206)...(3454)
<221> NAME/KEY: CDS
<222> LOCATION: (3596)...(3886)
<400> SEQUENCE: 33
aatttaactt ttattaattt aaaatttaaa gatttcaaag gggttctaaa atggaaattt
ttcgatttta agggaattgt gccagcccct agtttcgccc ttgtttgtag tgctttattt
180
gaaaatttat ataaatgatc gctgcaagct tcaagctcac aataatatga ttctttacca
                                                                   240
tcaagaaaca ttggtgcttt atacagagaa aagaaaaact ttggtcctcc tcgtagctaa
                                                                   300
tattttaaca atttaattt tatataataa atttttaaca attattcat atttttaaa
                                                                   360
tatattcatq ttqaatqtaq caqtatataq ttatattaqt tatqctcata aattttqqat
                                                                   420
gcattagatt ttccttatgt aatttgataa caatgattat tatttttact tctaacaaat
aattaaatat tttttgttg attcgataaa tatcattatt ttttaaatga tttaaaatat
aaaaataata atagattcga ccgaacgctc accctattga gtgagtatat caattattag
                                                                   600
aatttaatta aaaaaggaaa ccaaatatag ccggcttaat tttgtttaat attaatttat
                                                                   660
gtgtggaaat tcacttaaaa acagagtcca tggctgctaa catattatat attaaaccat
                                                                   720
ttcctattaa taaatttatg aacgagagtt acatccttct aaattcattt tacttagagg
                                                                   780
```

continued	
cggagtataa tattttatgt agtagttatt cttttactat ataaataaat aaataaaatt	840
ttaatcgcct gtgtattatg attgattcag ctgaatcaaa gttggaataa tattttaatt	900
tgggatccca attaattgag attggtttga ttttgggttg taaatatttt ttattaattt	960
tagataaatt attggaagtt ggagtcaaaa ttgaccgtct cagctaatta tacaaataat	1020
aataatatag agaaatgggt atattgctca acactcacat ttactacgtc agcaatagtc	1080
agacagactg ctaagtaaac aatgtacact caattcgagt caaacaaatc ctttatccca	1140
agattctaaa ataatgtgtt tgaggcacca attttgaagg atagaaagtg gaaacaaaca	1200
aaaggatatt aaaaaacaag gaaatttctc actgtatttg catatttttc tccttccagt	1260
ataattaaaa tacgtgcaat ttacgttgta ctttgttgac tcctatctta tacctataaa	1320
tacatgcaac aattgcacac atcgtctcat ccaaaacctg tgttttaaac actaaacagt	1380
aagcaaaggc agcaaattaa totttgaatt atttgottoo aaaaccotac acttttoott	1440
caacacatcc tagaaa atg gct tca caa gct tct caa gtt ctt gct tca ccc Met Ala Ser Gln Ala Ser Gln Val Leu Ala Ser Pro 1 5 10	1492
cat ccc gcc att tca tcc gaa aat cga ccc aag gct gat ttt cat ccc His Pro Ala Ile Ser Ser Glu Asn Arg Pro Lys Ala Asp Phe His Pro 15 20 25	1540
ggt att tgg ggt gat atg ttc atc atc tgt cct gat acg gtaatctata Gly Ile Trp Gly Asp Met Phe Ile Ile Cys Pro Asp Thr 30 35 40	1589
attttttct tactttctct tttatcgatt tttaagtttt ttggagattt catggaaaag	1649
cattatacgt acttgagcag gat atc gat gct gca act gaa tta caa tat gaa Asp Ile Asp Ala Ala Thr Glu Leu Gln Tyr Glu $$45$$	1702
gaa tta aaa gca caa gtg agg aag atg att atg gaa cct gtt gat gat Glu Leu Lys Ala Gln Val Arg Lys Met Ile Met Glu Pro Val Asp Asp 55 60 65	1750
tca aac caa aag ttg ccc ttc att gat gct gtt caa aga tta ggt gtg Ser Asn Gln Lys Leu Pro Phe Ile Asp Ala Val Gln Arg Leu Gly Val 70 75 80	1798
agt tat cat ttt gag aaa gag att gaa gat gaa cta gag aat att tac Ser Tyr His Phe Glu Lys Glu Ile Glu Asp Glu Leu Glu Asn Ile Tyr 85 90 95 100	1846
cgt gac acc aac aac aat gat gcg gac acc gat ctc tac act aca gct Arg Asp Thr Asn Asn Asn Asp Ala Asp Thr Asp Leu Tyr Thr Thr Ala 105 110 115	1894
ctt cga ttc cgg tta ctt aga gag cat ggc ttc gat att tct tgt Leu Arg Phe Arg Leu Leu Arg Glu His Gly Phe Asp Ile Ser Cys 120 125 130	1939
ggtaattaag tottaaactt toataactot tottatooat ttatoaatta atattatoaa	1999
actttacatt aataatcatc tgtacaatac ttcaatatat atatatttat tgatgaaact	2059
aatgtttgat gatgattttg ggtgcttgac ca gat gca ttc aac aag ttc aaa Asp Ala Phe Asn Lys Phe Lys 135	2112
gat gag gca ggg aac ttc aag gca tca ttg aca agt gat gtg caa ggg Asp Glu Ala Gly Asn Phe Lys Ala Ser Leu Thr Ser Asp Val Gln Gly 140 145 150	2160
ttg ttg gaa ctt tat gaa gct tcc tat atg agg gtc cat ggg gaa gat Leu Leu Glu Leu Tyr Glu Ala Ser Tyr Met Arg Val His Gly Glu Asp 155 160 165 170	2208
ata ctt gat gaa gcc att tct ttc acc act gct caa ctt aca ctt gct Ile Leu Asp Glu Ala Ile Ser Phe Thr Thr Ala Gln Leu Thr Leu Ala 175 180 185	2256

cta cca act tta cac cat cct tta tcg gaa cag gtc ggc cat gcc tta Leu Pro Thr Leu His His Pro Leu Ser Glu Gln Val Gly His Ala Leu 190 195 200	2304
aag cag tot ato cga agg ggc ttg coa agg gtt gag gcc cgg aat ttc Lys Gln Ser Ile Arg Arg Gly Leu Pro Arg Val Glu Ala Arg Asn Phe 205 210 215	2352
att tcg ata tac caa gat tta gaa tcc cat aac aaa tcg ttg ctt caa Ile Ser Ile Tyr Gln Asp Leu Glu Ser His Asn Lys Ser Leu Leu Gln 220 225 230	2400
ttt gca aag att gat ttc aac ttg ttg cag ctt ttg cat agg aaa gag Phe Ala Lys Ile Asp Phe Asn Leu Leu Gln Leu Leu His Arg Lys Glu 235 240 245 250	2448
cta agt gag atc tgc agg taagtgtttg gagatcttta aagctatgaa Leu Ser Glu Ile Cys Arg 255	2496
gtctaatact atttcaattg atcacacgac tgttgctgac attttatgat gctttttta	2556
gg tgg tgg aaa gat tta gac ttt aca aga aaa cta cca ttt gca aga Trp Trp Lys Asp Leu Asp Phe Thr Arg Lys Leu Pro Phe Ala Arg 260 265 270	2603
gat aga gtg gtt gaa ggc tat ttt tgg ata atg gga gtt tac ttt gaa Asp Arg Val Val Glu Gly Tyr Phe Trp Ile Met Gly Val Tyr Phe Glu 275 280 285	2651
ccc caa tac tct ctt ggt aga aag atg ttg aca aaa gtc ata gca atg Pro Gln Tyr Ser Leu Gly Arg Lys Met Leu Thr Lys Val Ile Ala Met 290 295 300	2699
gct tcc att gtt gat gat act tat gat tca tat gca acc tat gat gaa Ala Ser Ile Val Asp Asp Thr Tyr Asp Ser Tyr Ala Thr Tyr Asp Glu 305 310 315	2747
ctc att ccc tat aca aat gca att gaa ggtgagattt tttttccttt Leu Ile Pro Tyr Thr Asn Ala Ile Glu 320 325	2794
cctccaaaaa aaaaaaaagt ttttgagatc ccccaagaat aggggaaaat atatgttttt	2854
aaacgttagg atattcactc caacttgcag ttgctcatat tttaatggtg atagtatgaa	2914
ctaaccaggc taagttttag attcaaatta accctgaaat tgtgtttt agg tgg gat Arg Trp Asp 330	2971
att aaa tgc atg aac caa ctc ccg aat tac atg aaa ata agc tac aag Ile Lys Cys Met Asn Gln Leu Pro Asn Tyr Met Lys Ile Ser Tyr Lys 335 340 345	3019
gca cta tta gat gtt tat gaa gaa atg gaa cag ctg ttg gca aat caa Ala Leu Leu Asp Val Tyr Glu Glu Met Glu Gln Leu Leu Ala Asn Gln 350 355 360	3067
ggg aga cag tac cga gtt gag tat gcg aaa aag gcg gtatgtaatg Gly Arg Gln Tyr Arg Val Glu Tyr Ala Lys Lys Ala 365 370 375	3113
atacaatagt atgatatgct ttaatcataa acgtataaaa tttgaaaatt acattagcaa tttgcttact tttttatgcc tttaatcctc ag atg ata cgt ctt gtt caa gct Met Ile Arg Leu Val Gln Ala 380	3173 3226
tac ctt ttg gag gcc aaa tgg act cat caa aat tat aaa cca acc ttt Tyr Leu Leu Glu Ala Lys Trp Thr His Gln Asn Tyr Lys Pro Thr Phe 385 390 395	3274
gag gaa ttt aga gat aat gca ttg cca acc tct ggc tat gcc atg ctt Glu Glu Phe Arg Asp Asn Ala Leu Pro Thr Ser Gly Tyr Ala Met Leu 400 405 410	3322
gct ata acg gcg ttt gtc ggc atg ggc gaa gtt ata acc cct gag acc Ala Ile Thr Ala Phe Val Gly Met Gly Glu Val Ile Thr Pro Glu Thr 415 420 425 430	3370

-continued	
ttc aaa tgg gcc gcc agt gac ccc aag atc att aag gct tcc acc att Phe Lys Trp Ala Ala Ser Asp Pro Lys Ile Ile Lys Ala Ser Thr Ile 435 440 445	3418
att tgc agg ttc atg gac gat att gct gaa cat aag gtatactata Ile Cys Arg Phe Met Asp Asp Ile Ala Glu His Lys 450 455	3464
tattcatatt caagaattct aaaaatcgat tatggtatat atatgcactt aaatctatat	3524
catagaattg taaggcttct agggtttgca tttgctaagt taattaatat acatggttca	3584
tatgggtgca g ttc aac cat agg aga gaa gac gat tgc tca gcg atc gaa Phe Asn His Arg Arg Glu Asp Asp Cys Ser Ala Ile Glu 460 465 470	3634
tgt tac atg aaa caa tat ggg gtg aca gcg cag gaa gca tac aat gaa Cys Tyr Met Lys Gln Tyr Gly Val Thr Ala Gln Glu Ala Tyr Asn Glu 475 480 485	3682
ttc aac aaa cac att gag agt tca tgg aaa gat gta aat gaa gag ttc Phe Asn Lys His Ile Glu Ser Ser Trp Lys Asp Val Asn Glu Glu Phe 490 495 500	3730
ttg aaa ccg aca gaa atg ccg aca ccc gtt ctt tgt cgt agc ctc aac Leu Lys Pro Thr Glu Met Pro Thr Pro Val Leu Cys Arg Ser Leu Asn 505 510 515	3778
ctt gct agg gtt atg gat gta ctt tac aga gaa ggt gac ggt tat aca Leu Ala Arg Val Met Asp Val Leu Tyr Arg Glu Gly Asp Gly Tyr Thr 520 525 530 535	3826
cat gtt ggg aaa gct gct aaa ggt ggg atc act tca tta ttg att gat His Val Gly Lys Ala Ala Lys Gly Gly Ile Thr Ser Leu Leu Ile Asp 540 545 550	3874
cca ata caa att tga aattcaacat tggcttaaga tttactatga gataaaatta Pro Ile Gln Ile 555	3929
ataaggtttg tacaatgaag g	3950
<210> SEQ ID NO 34 <211> LENGTH: 41 <212> TYPE: PRT <213> ORGANISM: Gossypium arboreum	
<400> SEQUENCE: 34	
Met Ala Ser Gln Ala Ser Gln Val Leu Ala Ser Pro His Pro Ala Ile 1 5 10 15	
Ser Ser Glu Asn Arg Pro Lys Ala Asp Phe His Pro Gly Ile Trp Gly 20 25 30	
Asp Met Phe Ile Ile Cys Pro Asp Thr 35 40	
<210> SEQ ID NO 35 <211> LENGTH: 90 <212> TYPE: PRT <213> ORGANISM: Gossypium arboreum	
<400> SEQUENCE: 35	
Asp Ile Asp Ala Ala Thr Glu Leu Gln Tyr Glu Glu Leu Lys Ala Gln 1 5 10 15	
Val Arg Lys Met Ile Met Glu Pro Val Asp Asp Ser Asn Gln Lys Leu 20 25 30	
Pro Phe Ile Asp Ala Val Gln Arg Leu Gly Val Ser Tyr His Phe Glu 35 40 45	
Lys Glu Ile Glu Asp Glu Leu Glu Asn Ile Tyr Arg Asp Thr Asn Asn 50 55 60	

```
Asn Asp Ala Asp Thr Asp Leu Tyr Thr Thr Ala Leu Arg Phe Arg Leu
Leu Arg Glu His Gly Phe Asp Ile Ser Cys
                85
<210> SEQ ID NO 36
<211> LENGTH: 125
<212> TYPE: PRT
<213> ORGANISM: Gossypium arboreum
<400> SEQUENCE: 36
Asp Ala Phe Asn Lys Phe Lys Asp Glu Ala Gly Asn Phe Lys Ala Ser
Leu Thr Ser Asp Val Gln Gly Leu Leu Glu Leu Tyr Glu Ala Ser Tyr
Met Arg Val His Gly Glu Asp Ile Leu Asp Glu Ala Ile Ser Phe Thr 35 \  \  \, 40 \  \  \, 45
Thr Ala Gln Leu Thr Leu Ala Leu Pro Thr Leu His His Pro Leu Ser 50 60
Glu Gln Val Gly His Ala Leu Lys Gln Ser Ile Arg Arg Gly Leu Pro
Arg Val Glu Ala Arg Asn Phe Ile Ser Ile Tyr Gln Asp Leu Glu Ser
His Asn Lys Ser Leu Leu Gln Phe Ala Lys Ile Asp Phe Asn Leu Leu
                                105
Gln Leu Leu His Arg Lys Glu Leu Ser Glu Ile Cys Arg
       115
<210> SEQ ID NO 37
<211> LENGTH: 72
<212> TYPE: PRT
<213> ORGANISM: Gossypium arboreum
<400> SEQUENCE: 37
Trp Trp Lys Asp Leu Asp Phe Thr Arg Lys Leu Pro Phe Ala Arg Asp 1 5 10 15
Arg Val Val Glu Gly Tyr Phe Trp Ile Met Gly Val Tyr Phe Glu Pro
Gln Tyr Ser Leu Gly Arg Lys Met Leu Thr Lys Val Ile Ala Met Ala
Ser Ile Val Asp Asp Thr Tyr Asp Ser Tyr Ala Thr Tyr Asp Glu Leu
Ile Pro Tyr Thr Asn Ala Ile Glu
<210> SEQ ID NO 38
<211> LENGTH: 47
<212> TYPE: PRT
<213> ORGANISM: Gossypium arboreum
<400> SEQUENCE: 38
Arg Trp Asp Ile Lys Cys Met Asn Gln Leu Pro Asn Tyr Met Lys Ile
Ser Tyr Lys Ala Leu Leu Asp Val Tyr Glu Glu Met Glu Gln Leu Leu 20 25 30
Ala Asn Gln Gly Arg Gln Tyr Arg Val Glu Tyr Ala Lys Lys Ala 35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}
```

-continued	
<pre><210> SEQ ID NO 39 <211> LENGTH: 83 <212> TYPE: PRT <213> ORGANISM: Gossypium arboreum</pre>	
<400> SEQUENCE: 39	
Met Ile Arg Leu Val Gln Ala Tyr Leu Leu Glu Ala Lys Trp Thr His 1 5 10 15	
Gln Asn Tyr Lys Pro Thr Phe Glu Glu Phe Arg Asp Asn Ala Leu Pro 20 25 30	
Thr Ser Gly Tyr Ala Met Leu Ala Ile Thr Ala Phe Val Gly Met Gly 35 40 45	
Glu Val Ile Thr Pro Glu Thr Phe Lys Trp Ala Ala Ser Asp Pro Lys 50 55 60	
Ile Ile Lys Ala Ser Thr Ile Ile Cys Arg Phe Met Asp Asp Ile Ala65707580	
Glu His Lys	
<210> SEQ ID NO 40 <211> LENGTH: 97 <212> TYPE: PRT <213> ORGANISM: Gossypium arboreum	
<400> SEQUENCE: 40	
Phe Asn His Arg Arg Glu Asp Asp Cys Ser Ala Ile Glu Cys Tyr Met 1 5 10 15	
Lys Gln Tyr Gly Val Thr Ala Gln Glu Ala Tyr Asn Glu Phe Asn Lys 20 25 30	
His Ile Glu Ser Ser Trp Lys Asp Val Asn Glu Glu Phe Leu Lys Pro 35 40 45	
Thr Glu Met Pro Thr Pro Val Leu Cys Arg Ser Leu Asn Leu Ala Arg 50 55 60	
Val Met Asp Val Leu Tyr Arg Glu Gly Asp Gly Tyr Thr His Val Gly 65 70 75 80	
Lys Ala Ala Lys Gly Gly Ile Thr Ser Leu Leu Ile Asp Pro Ile Gln 85 90 95	
Ile	
<pre><210> SEQ ID NO 41 <211> LENGTH: 1994 <212> TYPE: DNA <213> ORGANISM: Ricinus communis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (67)(1869) <223> OTHER INFORMATION: casbene synthase</pre>	
<400> SEQUENCE: 41	
actcagcage egecteteet acceeaatta geacagaaga titiggtggtt ceteteettg	60
tgaaac atg gca ttg cca tca gct gct atg caa tcc aac cct gaa aag Met Ala Leu Pro Ser Ala Ala Met Gln Ser Asn Pro Glu Lys 1 5 10	.08
ctt aac tta ttt cac aga ttg tca agc tta ccc acc act agc ttg gaa Leu Asn Leu Phe His Arg Leu Ser Ser Leu Pro Thr Thr Ser Leu Glu 15 20 25 30	.56
tat ggc aat aat cgc ttc cct ttc ttt tcc tca tct gcc aag tca cac Tyr Gly Asn Asn Arg Phe Pro Phe Phe Ser Ser Ser Ala Lys Ser His 35 40 45	04

												con	CTII	ueu			
	aaa Lys															252	
-	cgt Arg			-						-				-		300	
	tcc Ser 80															348	
	att Ile															396	
_	gat Asp					-				_			_			444	
	gta Val					-		_		_				_		492	
	ttc Phe															540	
	act Thr 160		-		-		-	-		_	_					588	
	tct Ser															636	
	gaa Glu															684	
-	tcc Ser			-				_	-			_	-	-		732	
-	ttc Phe		_	_			_			_	-					780	
	ctc Leu 240															828	
	gtg Val	Pro	Arg	Leu		Ala	Arg	Lys	Phe	Ile	Asp					876	
	att Ile															924	
	aat Asn															972	
_	tgg Trp			-	_			_	_	-				-	_	1020	
-	aga Arg 320	_							-			-				1068	
	gac Asp															1116	
	tca Ser			_	_			_			-		_		-	1164	

-continued

-continued	
act cat att ctt gct gaa gca gtc gca agg tgg gac atg agc tgc ctc Thr His Ile Leu Ala Glu Ala Val Ala Arg Trp Asp Met Ser Cys Leu 370 375 380	1212
gag aag ctg cca gat tac atg aaa gtt att tat aaa cta ttg cta aac Glu Lys Leu Pro Asp Tyr Met Lys Val Ile Tyr Lys Leu Leu Asn 385 390 395	1260
acc ttc tct gaa ttc gag aaa gaa ttg acg gcg gaa ggc aag tcc tac Thr Phe Ser Glu Phe Glu Lys Glu Leu Thr Ala Glu Gly Lys Ser Tyr 400 405 410	1308
agc gtc aaa tac gga agg gaa gcg ttt caa gaa cta gtg aga ggt tac Ser Val Lys Tyr Gly Arg Glu Ala Phe Gln Glu Leu Val Arg Gly Tyr 415 420 425 430	1356
tac ctg gag gct gta tgg cgc gac gag ggt aaa ata cca tcg ttc gat Tyr Leu Glu Ala Val Trp Arg Asp Glu Gly Lys Ile Pro Ser Phe Asp 435 440 445	1404
gac tac ttg tat aat gga tcc atg acc acc gga ttg cct ctc gtc tca Asp Tyr Leu Tyr Asn Gly Ser Met Thr Thr Gly Leu Pro Leu Val Ser 450 455 460	1452
aca gct tct ttc atg gga gtt caa gaa att aca ggt ctc aac gaa ttc Thr Ala Ser Phe Met Gly Val Gln Glu Ile Thr Gly Leu Asn Glu Phe 465 470 475	1500
caa tgg ctg gaa act aat ccc aaa tta agt tat gct tcc ggt gca ttc Gln Trp Leu Glu Thr Asn Pro Lys Leu Ser Tyr Ala Ser Gly Ala Phe 480 485 490	1548
atc cga ctt gtc aac gac tta act tct cat gtg act gaa caa caa aga Ile Arg Leu Val Asn Asp Leu Thr Ser His Val Thr Glu Gln Gln Arg 495 500 505 510	1596
gga cac gtt gca tct tgc atc gac tgc tat atg aac caa cat gga gtt Gly His Val Ala Ser Cys Ile Asp Cys Tyr Met Asn Gln His Gly Val 515 520 525	1644
tcc aaa gac gaa gca gtc aaa ata ctt caa aaa atg gct aca gat tgt Ser Lys Asp Glu Ala Val Lys Ile Leu Gln Lys Met Ala Thr Asp Cys 530 535 540	1692
tgg aaa gaa att aat gaa gaa tgt atg agg cag agt caa gtg tca gtg Trp Lys Glu Ile Asn Glu Glu Cys Met Arg Gln Ser Gln Val Ser Val 545 550 555	1740
ggt cac cta atg aga ata gtt aat ctg gca cgt ctt acg gat gtg agt Gly His Leu Met Arg Ile Val Asn Leu Ala Arg Leu Thr Asp Val Ser 560 565 570	1788
tac aag tat gga gac ggt tac act gat tcc cag caa ttg aaa caa ttt Tyr Lys Tyr Gly Asp Gly Tyr Thr Asp Ser Gln Gln Leu Lys Gln Phe 575 580 585 590	1836
gtt aag gga ttg ttc gtt gat cca att tct att tgaactcaat aattcctttt Val Lys Gly Leu Phe Val Asp Pro Ile Ser Ile 595 600	1889
ttcattttgt acttcaataa gttataaatg acccgtgcac tagcggtggt gattattgta	1949
tttaaattgc cttttaaatt aatatatgaa tcaagaattt tatag	1994
<210> SEQ ID NO 42 <211> LENGTH: 601 <212> TYPE: PRT <213> ORGANISM: Ricinus communis	

<213> ORGANISM: Ricinus communis

<400> SEQUENCE: 42

Met Ala Leu Pro Ser Ala Ala Met Gln Ser Asn Pro Glu Lys Leu Asn 1 5 10 15

Leu Phe His Arg Leu Ser Ser Leu Pro Thr Thr Ser Leu Glu Tyr Gly $20 \\ 25 \\ 30$

Asn	Asn	Arg 35	Phe	Pro	Phe	Phe	Ser 40	Ser	Ser	Ala	Lys	Ser 45	His	Phe	Lys
Lys	Pro 50	Thr	Gln	Ala	Cys	Leu 55	Ser	Ser	Thr	Thr	His 60	Gln	Glu	Val	Arg
Pro 65	Leu	Ala	Tyr	Phe	Pro 70	Pro	Thr	Val	Trp	Gly 75	Asn	Arg	Phe	Ala	Ser 80
Leu	Thr	Phe	Asn	Pro 85	Ser	Glu	Phe	Glu	Ser 90	Tyr	Asp	Glu	Arg	Val 95	Ile
Val	Leu	Lys	Lys 100	Lys	Val	Lys	Asp	Ile 105	Leu	Ile	Ser	Ser	Thr 110	Ser	Asp
Ser	Val	Glu 115	Thr	Val	Ile	Leu	Ile 120	Asp	Leu	Leu	Суѕ	Arg 125	Leu	Gly	Val
Ser	Tyr 130	His	Phe	Glu	Asn	Asp 135	Ile	Glu	Glu	Leu	Leu 140	Ser	Lys	Ile	Phe
Asn 145	Ser	Gln	Pro	Asp	Leu 150	Val	Asp	Glu	Lys	Glu 155	Суѕ	Asp	Leu	Tyr	Thr 160
Ala	Ala	Ile	Val	Phe 165	Arg	Val	Phe	Arg	Gln 170	His	Gly	Phe	Lys	Met 175	Ser
Ser	Asp	Val	Phe 180	Ser	Lys	Phe	Lys	Asp 185	Ser	Asp	Gly	Lys	Phe 190	Lys	Glu
Ser	Leu	Arg 195	Gly	Asp	Ala	Lys	Gly 200	Met	Leu	Ser	Leu	Phe 205	Glu	Ala	Ser
His	Leu 210	Ser	Val	His	Gly	Glu 215	Asp	Ile	Leu	Glu	Glu 220	Ala	Phe	Ala	Phe
Thr 225	Lys	Asp	Tyr	Leu	Gln 230	Ser	Ser	Ala	Val	Glu 235	Leu	Phe	Pro	Asn	Leu 240
Lys	Arg	His	Ile	Thr 245	Asn	Ala	Leu	Glu	Gln 250	Pro	Phe	His	Ser	Gl y 255	Val
Pro	Arg	Leu	Glu 260	Ala	Arg	Lys	Phe	Ile 265	Asp	Leu	Tyr	Glu	Ala 270	Asp	Ile
Glu	Cys	Arg 275	Asn	Glu	Thr	Leu	Leu 280	Glu	Phe	Ala	Lys	Leu 285	Asp	Tyr	Asn
Arg	Val 290	Gln	Leu	Leu	His	Gln 295	Gln	Glu	Leu	Суѕ	Gln 300	Phe	Ser	Lys	Trp
Trp 305	Lys	Asp	Leu	Asn	Leu 310	Ala	Ser	Asp	Ile	Pro 315	Tyr	Ala	Arg	Asp	Arg 320
Met	Ala	Glu	Ile	Phe 325	Phe	Trp	Ala	Val	Ala 330	Met	Tyr	Phe	Glu	Pro 335	Asp
Tyr	Ala	His	Thr 340	Arg	Met	Ile	Ile	Ala 345	Lys	Val	Val	Leu	Leu 350	Ile	Ser
Leu	Ile	Asp 355	Asp	Thr	Ile	Asp	Ala 360	Tyr	Ala	Thr	Met	Glu 365	Glu	Thr	His
Ile	Leu 370	Ala	Glu	Ala	Val	Ala 375	Arg	Trp	Asp	Met	Ser 380	Cys	Leu	Glu	Lys
Leu 385	Pro	Asp	Tyr	Met	L y s 390	Val	Ile	Tyr	Lys	Leu 395	Leu	Leu	Asn	Thr	Phe 400
Ser	Glu	Phe	Glu	Lys 405	Glu	Leu	Thr	Ala	Glu 410	Gly	Lys	Ser	Tyr	Ser 415	Val
Lys	Tyr	Gly	Arg 420	Glu	Ala	Phe	Gln	Glu 425	Leu	Val	Arg	Gly	Tyr 430	Tyr	Leu
Glu	Ala	Val 435	Trp	Arg	Asp	Glu	Gly 440	Lys	Ile	Pro	Ser	Phe 445	Asp	Asp	Tyr

450 455	Thr Gl y Leu Pro Leu Val Ser Thr Ala 460
Ser Phe Met Gly Val Gln Glu Il 465 470	Ile Thr Gly Leu Asn Glu Phe Gln Trp 475 480
Leu Glu Thr Asn Pro Lys Leu Se	Ser Tyr Ala Ser Gly Ala Phe Ile Arg 490 495
Leu Val Asn Asp Leu Thr Ser Hi	His Val Thr Glu Gln Gln Arg Gly His 505 510
Val Ala Ser Cys Ile Asp Cys Ty	Tyr Met Asn Gln His Gly Val Ser Lys 520 525
	Gln Lys Met Ala Thr Asp Cys Trp Lys
	Arg Gln Ser Gln Val Ser Val Gly His 555 560
	Ala Arg Leu Thr Asp Val Ser Tyr Lys 570 575
	Ser Gln Gln Leu Lys Gln Phe Val Lys 585 590
Gly Leu Phe Val Asp Pro Ile Se	
<pre><210> SEQ ID NO 43 <211> LENGTH: 2700 <212> TYPE: DNA <213> ORGANISM: Taxus brevifol <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (22)(2607) <223> OTHER INFORMATION: taxad</pre>	
<400> SEQUENCE: 43	
	gct cag ctc tca ttt aat gca gcg ctg 51 Ala Gln Leu Ser Phe Asn Ala Ala Leu 5 10
	aag gca atc cac gat cca acg aat tgc 99 Lys Ala Ile His Asp Pro Thr Asn Cys 20 25
aga gcc aaa tct gag cgc caa at	
	atg atg tgg gtt tgc tcc aga tca ggg 147 Met Met Trp Val Cys Ser Arg Ser Gly 35 40
Arg Ala Lys Ser Glu Arg Gln Me 30 cga acc aga gta aaa atg tcg ag Arg Thr Arg Val Lys Met Ser Ar	Met Met Trp Val Cys Ser Arg Ser Gly
Arg Ala Lys Ser Glu Arg Gln Me 30 cga acc aga gta aaa atg tcg ag Arg Thr Arg Val Lys Met Ser Ar 45 gta atg atg agc agc act gg	Met Met Trp Val Cys Ser Arg Ser Gly 35 40 aga gga agt ggt ggt cct ggt cct gtc 195 Arg Gly Ser Gly Gly Pro Gly Pro Val
Arg Ala Lys Ser Glu Arg Gln Me 30 cga acc aga gta aaa atg tcg ag Arg Thr Arg Val Lys Met Ser Arg 45 gta atg atg agc agc agc act gg Val Met Met Ser Ser Ser Thr Gl 65 tcc agt acc att gtg gat gat at	Met Met Trp Val Cys Ser Arg Ser Gly 35 40 aga gga agt ggt ggt cct ggt cct gtc 195 Arg Gly Ser Gly Gly Pro Gly Pro Val 50 55 ggc act agc aag gtg gtt tcc gag act 243 Gly Thr Ser Lys Val Val Ser Glu Thr
Arg Ala Lys Ser Glu Arg Gln Me 30 cga acc aga gta aaa atg tcg ag Arg Thr Arg Val Lys Met Ser Arg 45 gta atg atg agc agc agc act gg Val Met Met Ser Ser Ser Thr Gl 65 tcc agt acc att gtg gat gat at Ser Ser Thr Ile Val Asp Asp Il 75 ggc gat ctg tgg cac cac aat gt	Met Met Trp Val Cys Ser Arg Ser Gly 35 40 aga gga agt ggt ggt cct ggt cct gtc Arg Gly Ser Gly Gly Pro Gly Pro Val 50 55 ggc act agc aag gtg gtt tcc gag act 243 Gly Thr Ser Lys Val Val Ser Glu Thr 70 atc cct cga ctc tcc gcc aat tat cat 291 Ile Pro Arg Leu Ser Ala Asn Tyr His
Arg Ala Lys Ser Glu Arg Gln Me 30 cga acc aga gta aaa atg tcg ag Arg Thr Arg Val Lys Met Ser Arg Val Met Met Ser Ser Ser Thr Gl 60 tcc agt acc att gtg gat gat at Ser Ser Thr Ile Val Asp Asp Il 75 ggc gat ctg tgg cac cac aat gtg Gly Asp Leu Trp His His Asn Vags Cgt gag agt tct act tac caa ga	Met Met Trp Val Cys Ser Arg Ser Gly 35 40 aga gga agt ggt ggt cct ggt cct gtc Arg Gly Ser Gly Gly Pro Gly Pro Val 50 55 aggc act agc aag gtg gtt tcc gag act Gly Thr Ser Lys Val Val Ser Glu Thr 70 atc cct cga ctc tcc gcc aat tat cat Ile Pro Arg Leu Ser Ala Asn Tyr His 85 90 ggt ata caa act ctg gag aca ccg ttt Val Ile Gln Thr Leu Glu Thr Pro Phe

												COII	CTII	ueu			
	tac Tyr 140															483	
	tct Ser															531	
	cag Gln															579	
	gat Asp															627	
	aaa Lys															675	
	aat Asn 220		_					-	-		_		_	-		723	
	ata Ile				-	_	_		-	-			_			771	
	ctt Leu															819	
	gcc Ala															867	
	atg Met															915	
	att Ile 300															963	
-	tcc Ser		_	_	_	_	_				-	-		_		1011	
	ttt Phe				_		-					_			-	1059	
	tat Tyr															1107	
	cat His					_					_				-	1155	
	gat Asp 380															1203	
_	gac Asp	_		-		-					-			_	_	1251	
	ctt Leu															1299	
	aaa Lys	_	_													1347	
-	gaa Glu	_	_	-						_	-		-		-	1395	

												COII	<u> </u>	ucu			
	cct Pro 460	-	_	-	-	_	-	-	-	_			-	-		1443	
	ctt Leu															1491	
	aaa Lys															1539	
	cgc Arg															1587	
-	tgg Trp	_		_				-	_			_	-			1635	
	tgt Cys 540		_	_	-		_	-				_			-	1683	
	caa Gln															1731	
	gca Ala															1779	
	tca Ser															1827	
	aaa Lys															1875	
	gca Ala 620			-	-	_		_					-	_	_	1923	
	gat Asp			_							-	_			-	1971	
	aaa Lys	_					_	-	-	_			-		-	2019	
_	gta Val			-	-	_		-			-					2067	
	tac Tyr															2115	
	ata Ile 700				_				_			_			-	2163	
	ctt Leu		_	-								_				2211	
	aaa Lys															2259	
	ctt Leu	_		_	-		-				-					2307	
_	gct Ala	_	_	-	-				-				-	-		2355	

-continued	
atg aag gat aat cca gga gca act gag gaa gat gcc att aag cac ata Met Lys Asp Asn Pro Gly Ala Thr Glu Glu Asp Ala Ile Lys His Ile 780 785 790	2403
tgt cgt gtt gtt gat cgg gcc ttg aaa gaa gca agc ttt gaa tat ttc Cys Arg Val Val Asp Arg Ala Leu Lys Glu Ala Ser Phe Glu Tyr Phe 795 800 805 810	2451
aaa cca tcc aat gat atc cca atg ggt tgc aag tcc ttt att ttt aac Lys Pro Ser Asn Asp Ile Pro Met Gly Cys Lys Ser Phe Ile Phe Asn 815 820 825	2499
ctt aga ttg tgt gtc caa atc ttt tac aag ttt ata gat ggg tac gga Leu Arg Leu Cys Val Gln Ile Phe Tyr Lys Phe Ile Asp Gly Tyr Gly 830 835 840	2547
atc gcc aat gag gag att aag gac tat ata aga aaa gtt tat att gat Ile Ala Asn Glu Glu Ile Lys Asp Tyr Ile Arg Lys Val Tyr Ile Asp 845 850 855	2595
cca att caa gta tga tatatcatgt aaaacctctt tttcatgata aattgactta Pro Ile Gln Val 860	2650
ttattgtatt ggcaaaaaaa aaaaaaaaaa aaaaaaaaaa	2700
<210> SEQ ID NO 44 <211> LENGTH: 862 <212> TYPE: PRT <213> ORGANISM: Taxus brevifolia	
<400> SEQUENCE: 44	
Met Ala Gln Leu Ser Phe Asn Ala Ala Leu Lys Met Asn Ala Leu Gly 1 5 10 15	
Asn Lys Ala Ile His Asp Pro Thr Asn Cys Arg Ala Lys Ser Glu Arg 20 25 30	
Gln Met Met Trp Val Cys Ser Arg Ser Gly Arg Thr Arg Val Lys Met 35 40 45	
Ser Arg Gly Ser Gly Gly Pro Gly Pro Val Val Met Met Ser Ser Ser 50 55 60	
Thr Gly Thr Ser Lys Val Val Ser Glu Thr Ser Ser Thr Ile Val Asp 65 70 75 80	
Asp Ile Pro Arg Leu Ser Ala Asn Tyr His Gly Asp Leu Trp His His 85 90 95	
Asn Val Ile Gln Thr Leu Glu Thr Pro Phe Arg Glu Ser Ser Thr Tyr	
Gln Glu Arg Ala Asp Glu Leu Val Val Lys Ile Lys Asp Met Phe Asn 115 120 125	
Ala Leu Gly Asp Gly Asp Ile Ser Pro Ser Ala Tyr Asp Thr Ala Trp 130 140	
Val Ala Arg Leu Ala Thr Ile Ser Ser Asp Gly Ser Glu Lys Pro Arg 145 150 155 160	
Phe Pro Gln Ala Leu Asn Trp Val Phe Asn Asn Gln Leu Gln Asp Gly 165 170 175	
Ser Trp Gly Ile Glu Ser His Phe Ser Leu Cys Asp Arg Leu Leu Asn 180 185 190	
Thr Thr Asn Ser Val Ile Ala Leu Ser Val Trp Lys Thr Gly His Ser 195 200 205	
Gln Val Gln Gln Gly Ala Glu Phe Ile Ala Glu Asn Leu Arg Leu Leu 210 215 220	
Asn Glu Glu Asp Glu Leu Ser Pro Asp Phe Gln Ile Ile Phe Pro Ala 225 230 235 240	

Leu	Leu	Gln	Lys	Ala 245	Lys	Ala	Leu	Gly	Ile 250	Asn	Leu	Pro	Tyr	A sp 255	Leu
Pro	Phe	Ile	Lys 260	Tyr	Leu	Ser	Thr	Thr 265	Arg	Glu	Ala	Arg	Leu 270	Thr	Asp
Val	Ser	Ala 275	Ala	Ala	Asp	Asn	Ile 280	Pro	Ala	Asn	Met	Leu 285	Asn	Ala	Leu
Glu	Gly 290	Leu	Glu	Glu	Val	Ile 295	Asp	Trp	Asn	Lys	Ile 300	Met	Arg	Phe	Gln
Ser 305	Lys	Asp	Gly	Ser	Phe 310	Leu	Ser	Ser	Pro	Ala 315	Ser	Thr	Ala	Cys	Val 320
Leu	Met	Asn	Thr	Gly 325	Asp	Glu	Lys	Cys	Phe 330	Thr	Phe	Leu	Asn	Asn 335	Leu
Leu	Asp	Lys	Phe 340	Gly	Gly	Сув	Val	Pro 345	Cys	Met	Tyr	Ser	Ile 350	Asp	Leu
Leu	Glu	Arg 355	Leu	Ser	Leu	Val	Asp 360	Asn	Ile	Glu	His	Leu 365	Gly	Ile	Gly
Arg	His 370	Phe	Lys	Gln	Glu	Ile 375	Lys	Gly	Ala	Leu	Asp 380	Tyr	Val	Tyr	Arg
His 385	Trp	Ser	Glu	Arg	Gly 390	Ile	Gly	Trp	Gly	Arg 395	Asp	Ser	Leu	Val	Pro 400
Asp	Leu	Asn	Thr	Thr 405	Ala	Leu	Gly	Leu	Arg 410	Thr	Leu	Arg	Met	His 415	Gly
Tyr	Asn	Val	Ser 420	Ser	Asp	Val	Leu	Asn 425	Asn	Phe	Lys	Asp	Glu 430	Asn	Gly
Arg	Phe	Phe 435	Ser	Ser	Ala	Gly	Gln 440	Thr	His	Val	Glu	Leu 445	Arg	Ser	Val
Val	Asn 450	Leu	Phe	Arg	Ala	Ser 455	Asp	Leu	Ala	Phe	Pro 460	Asp	Glu	Arg	Ala
Met 465	Asp	Asp	Ala	Arg	L y s 470	Phe	Ala	Glu	Pro	Tyr 475	Leu	Arg	Glu	Ala	Leu 480
Ala	Thr	Lys	Ile	Ser 485	Thr	Asn	Thr	Lys	Leu 490	Phe	Lys	Glu	Ile	Glu 495	Tyr
Val	Val	Glu	Tyr 500	Pro	Trp	His	Met	Ser 505	Ile	Pro	Arg	Leu	Glu 510	Ala	Arg
Ser	Tyr	Ile 515	Asp	Ser	Tyr	Asp	Asp 520	Asn	Tyr	Val	Trp	Gln 525	Arg	Lys	Thr
Leu	Tyr 530	Arg	Met	Pro	Ser	Leu 535	Ser	Asn	Ser	Lys	C y s 540	Leu	Glu	Leu	Ala
L y s 545	Leu	Asp	Phe	Asn	Ile 550	Val	Gln	Ser	Leu	His 555	Gln	Glu	Glu	Leu	Ly s 560
Leu	Leu	Thr	Arg	Trp 565	Trp	Lys	Glu	Ser	Gly 570	Met	Ala	Asp	Ile	Asn 575	Phe
Thr	Arg	His	Arg 580	Val	Ala	Glu	Val	Tyr 585	Phe	Ser	Ser	Ala	Thr 590	Phe	Glu
Pro	Glu	Ty r 595	Ser	Ala	Thr	Arg	Ile 600	Ala	Phe	Thr	Lys	Ile 605	Gly	Cys	Leu
Gln	Val 610	Leu	Phe	Asp	Asp	Met 615	Ala	Asp	Ile	Phe	Ala 620	Thr	Leu	Asp	Glu
Leu 625	Lys	Ser	Phe	Thr	Glu 630	Gly	Val	Lys	Arg	Trp 635	Asp	Thr	Ser	Leu	Leu 640
His	Glu	Ile	Pro	Glu 645	Суѕ	Met	Gln	Thr	C y s 650	Phe	Lys	Val	Trp	Phe 655	Lys

Leu Met Glu Val Asn Asn Asp Val Val Lys Val Gln Gly Arg Asp 660 665 670
Met Leu Ala His Ile Arg Lys Pro Trp Glu Leu Tyr Phe Asn Cys Tyr 675 680 685
Val Gln Glu Arg Glu Trp Leu Glu Ala Gly Tyr Ile Pro Thr Phe Glu 690 695 700
Glu Tyr Leu Lys Thr Tyr Ala Ile Ser Val Gly Leu Gly Pro Cys Thr 705 710 715 720
Leu Gln Pro Ile Leu Leu Met Gly Glu Leu Val Lys Asp Asp Val Val 725 730 735
Glu Lys Val His Tyr Pro Ser Asn Met Phe Glu Leu Val Ser Leu Ser 740 745 750
Trp Arg Leu Thr Asn Asp Thr Lys Thr Tyr Gln Ala Glu Lys Ala Arg 755 760 765
Gly Gln Gln Ala Ser Gly Ile Ala Cys Tyr Met Lys Asp Asn Pro Gly 770 775 780
Ala Thr Glu Glu Asp Ala Ile Lys His Ile Cys Arg Val Val Asp Arg 785 790 795 800
Ala Leu Lys Glu Ala Ser Phe Glu Tyr Phe Lys Pro Ser Asn Asp Ile 805 810 815
Pro Met Gly Cys Lys Ser Phe Ile Phe Asn Leu Arg Leu Cys Val Gln 820 825 830
Ile Phe Tyr Lys Phe Ile Asp Gly Tyr Gly Ile Ala Asn Glu Glu Ile 835 840 845
Lys Asp Tyr Ile Arg Lys Val Tyr Ile Asp Pro Ile Gln Val 850 855 860
<210> SEQ ID NO 45 <211> LENGTH: 2424 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (2)(2347) <223> OTHER INFORMATION: E-alpha-bisabolene synthase
<400> SEQUENCE: 45
g ggt tat gat ctt gtg cat tct ctt aaa tca cct tat att gat tct agt 49 Gly Tyr Asp Leu Val His Ser Leu Lys Ser Pro Tyr Ile Asp Ser Ser 1 5 10 15
tac aga gaa cgc gcg gag gtc ctt gtt agc gag att aaa gtg atg ctt 97 Tyr Arg Glu Arg Ala Glu Val Leu Val Ser Glu Ile Lys Val Met Leu 20 25 30
aat cca gct att aca gga gat gga gaa tca atg att act cca tct gct 145 Asn Pro Ala Ile Thr Gly Asp Gly Glu Ser Met Ile Thr Pro Ser Ala 35 40 45
tat gac aca gca tgg gta gcg agg gtg ccc gcc att gat ggc tct gct 193 Tyr Asp Thr Ala Trp Val Ala Arg Val Pro Ala Ile Asp Gly Ser Ala 50 55 60
cgc ccg caa ttt ccc caa aca gtt gac tgg att ttg aaa aac cag tta 241 Arg Pro Gln Phe Pro Gln Thr Val Asp Trp Ile Leu Lys Asn Gln Leu 65 70 75 80
aaa gat ggt tca tgg gga att cag tcc cac ttt ctg ctg tcc gac cgt 289 Lys Asp Gly Ser Trp Gly Ile Gln Ser His Phe Leu Leu Ser Asp Arg 85 90 95
ctt ctt gcc act ctt tct tgt gtt ctt gtg ctc ctt aaa tgg aac gtt 337 Leu Leu Ala Thr Leu Ser Cys Val Leu Val Leu Lys Trp Asn Val 100 105 110

_													 		
	gat Asp														385
	cta Leu 130														433
	atc Ile														481
	ctt Leu														529
_	gaa Glu	_		-						-			 -	_	577
	cca Pro														625
_	cga Arg 210		_	_	_		_	_	_	,,,			_		673
	gct Ala														721
	gaa Glu														769
	ctg Leu														817
	gta Val														865
	ctt Leu 290														913
	aga Arg														961
	ttg Leu														1009
	ttc Phe														1057
	aaa Lys	_	_	_	_	_	_				_	_	_		1105
-	ttt Phe 370			_				-	_	_		_	-		1153
	tat Tyr														1201
	aac Asn														1249
	tgg Trp														1297

												<u> </u>	tin	ucu			
	tat Tyr															1345	
	tac Tyr 450															1393	
	att Ile															1441	
	ttt Phe															1489	
	ctg Leu															1537	
	gcc Ala		_								_	_	_	_		1585	
-	ctg Leu 530	_	_	-		-						_	_	_	-	1633	
	ttc Phe															1681	
	cca Pro															1729	
	gag Glu															1777	
	ttt Phe															1825	
-	gct Ala 610	_			_	-						_	-			1873	
	aag Lys									_			_	_	-	1921	
	gtg Val				Asp	${\tt Gly}$		Leu	Leu							1969	
	gta Val	-				-	-	-			-	-		-		2017	
	tcc Ser															2065	
	gga Gly 690															2113	
-	tgt Cys		-	-	-	-		-								2161	
	gcg Ala															2209	
	ttc Phe															2257	

		-continued	
	gga gat gga ttc ggt gtt Gly Asp Gly Phe Gly Val 760		2305
	gag tgt ctc att gaa ccg Glu C y s Leu Ile Glu Pro 775		2350
tcaaaatagt tgcaataat	a attgaaataa tgtcaactat	gtttcacaaa aaaaaaaaa	2410
aaaaaaaaa aaaa			2424
<210> SEQ ID NO 46 <211> LENGTH: 782 <212> TYPE: PRT <213> ORGANISM: Abie	s grandis		
<400> SEQUENCE: 46			
Gly Tyr Asp Leu Val	His Ser Leu L y s Ser Pro 10	Tyr Ile Asp Ser Ser 15	
Tyr Arg Glu Arg Ala 20	Glu Val Leu Val Ser Glu 25	Ile Lys Val Met Leu 30	
Asn Pro Ala Ile Thr 35	Gly Asp Gly Glu Ser Met	Ile Thr Pro Ser Ala 45	
Tyr Asp Thr Ala Trp 50	Val Ala Arg Val Pro Ala 55	Ile Asp Gly Ser Ala	
·='	Gln Thr Val Asp Trp Ile 70 75	Leu Lys Asn Gln Leu 80	
Lys Asp Gly Ser Trp 85	Gly Ile Gln Ser His Phe 90	Leu Leu Ser Asp Arg 95	
Leu Leu Ala Thr Leu 100	Ser Cys Val Leu Val Leu 105	Leu Lys Trp Asn Val	
Gly Asp Leu Gln Val 115	Glu Gln Gly Ile Glu Phe 120	Ile Lys Ser Asn Leu 125	
Glu Leu Val Lys Asp 130	Glu Thr Asp Gln Asp Ser 135	Leu Val Thr Asp Phe 140	
	Ser Leu Leu Arg Glu Ala 150 155	Gln Ser Leu Arg Leu 160	
Gly Leu Pro Tyr Asp 165	Leu Pro Tyr Ile His Leu 170	Leu Gln Thr Lys Arg 175	
Gln Glu Arg Leu Ala 180	Lys Leu Ser Arg Glu Glu 185	Ile Tyr Ala Val Pro 190	
Ser Pro Leu Leu Tyr 195	Ser Leu Glu Gly Ile Gln 200	Asp Ile Val Glu Trp 205	
Glu Arg Ile Met Glu 210	Val Gln Ser Gln Asp Gly 215	Ser Phe Leu Ser Ser 220	
	Cys Val Phe Met His Thr 230 235		
Leu Glu Phe Leu Asn 245	Ser Val Met Ile Lys Phe 250	Gly Asn Phe Val Pro 255	
Cys Leu Tyr Pro Val 260	Asp Leu Leu Glu Arg Leu 265	Leu Ile Val Asp Asn 270	
Ile Val Arg Leu Gly 275	Ile Tyr Arg His Phe Glu 280	Lys Glu Ile Lys Glu 285	
Ala Leu Asp Tyr Val 290	Tyr Arg His Trp Asn Glu 295	Arg Gly Ile Gly Trp 300	
	Ile Ala Asp Leu Glu Thr 310 315		

Arg	Leu	Leu	Arg	Leu 325	His	Arg	Tyr	Asn	Val 330	Ser	Pro	Ala	Ile	Phe 335	Asp
Asn	Phe	Lys	Asp 340	Ala	Asn	Gly	Lys	Phe 345	Ile	Сув	Ser	Thr	Gly 350	Gln	Phe
Asn	Lys	Asp 355	Val	Ala	Ser	Met	Leu 360	Asn	Leu	Tyr	Arg	Ala 365	Ser	Gln	Leu
Ala	Phe 370	Pro	Gly	Glu	Asn	Ile 375	Leu	Asp	Glu	Ala	L y s 380	Ser	Phe	Ala	Thr
L y s 385	Tyr	Leu	Arg	Glu	Ala 390	Leu	Glu	Lys	Ser	Glu 395	Thr	Ser	Ser	Ala	Trp 400
Asn	Asn	Lys	Gln	Asn 405	Leu	Ser	Gln	Glu	Ile 410	Lys	Tyr	Ala	Leu	Lys 415	Thr
Ser	Trp	His	Ala 420	Ser	Val	Pro	Arg	Val 425	Glu	Ala	Lys	Arg	Tyr 430	Cys	Gln
Val	Tyr	Arg 435	Pro	Asp	Tyr	Ala	Arg 440	Ile	Ala	Lys	Cys	Val 445	Tyr	Lys	Leu
Pro	Tyr 450	Val	Asn	Asn	Glu	L y s 455	Phe	Leu	Glu	Leu	Gly 460	Lys	Leu	Asp	Phe
Asn 465	Ile	Ile	Gln	Ser	Ile 470	His	Gln	Glu	Glu	Met 475	Lys	Asn	Val	Thr	Ser 480
Trp	Phe	Arg	Asp	Ser 485	Gly	Leu	Pro	Leu	Phe 490	Thr	Phe	Ala	Arg	Glu 495	Arg
Pro	Leu	Glu	Phe 500	Tyr	Phe	Leu	Val	Ala 505	Ala	Gly	Thr	Tyr	Glu 510	Pro	Gln
Tyr	Ala	L y s 515	Cys	Arg	Phe	Leu	Phe 520	Thr	Lys	Val	Ala	C y s 525	Leu	Gln	Thr
Val	Leu 530	Asp	Asp	Met	Tyr	Asp 535	Thr	Tyr	Gly	Thr	Leu 540	Asp	Glu	Leu	Lys
Leu 545	Phe	Thr	Glu	Ala	Val 550	Arg	Arg	Trp	Asp	Leu 555	Ser	Phe	Thr	Glu	Asn 560
Leu	Pro	Asp	Tyr	Met 565	Lys	Leu	Сув	Tyr	Gln 570	Ile	Tyr	Tyr	Asp	Ile 575	Val
His	Glu	Val	Ala 580	Trp	Glu	Ala	Glu	L y s 585	Glu	Gln	Gly	Arg	Glu 590	Leu	Val
Ser	Phe	Phe 595	Arg	Lys	Gly	Trp	Glu 600	Asp	Tyr	Leu	Leu	Gly 605	Tyr	Tyr	Glu
Glu	Ala 610	Glu	Trp	Leu	Ala	Ala 615	Glu	Tyr	Val	Pro	Thr 620	Leu	Asp	Glu	Tyr
Ile 625	Lys	Asn	Gly	Ile	Thr 630	Ser	Ile	Gly	Gln	Arg 635	Ile	Leu	Leu	Leu	Ser 640
Gly	Val	Leu	Ile	Met 645	Asp	Gly	Gln	Leu	Leu 650	Ser	Gln	Glu	Ala	Leu 655	Glu
Lys	Val	Asp	Ty r 660	Pro	Gly	Arg	Arg	Val 665	Leu	Thr	Glu	Leu	Asn 670	Ser	Leu
Ile	Ser	Arg 675	Leu	Ala	Asp	Asp	Thr 680	Lys	Thr	Tyr	Lys	Ala 685	Glu	Lys	Ala
Arg	Gly 690	Glu	Leu	Ala	Ser	Ser 695	Ile	Glu	Cys	Tyr	Met 700	Lys	Asp	His	Pro
Glu 705	Cys	Thr	Glu	Glu	Glu 710	Ala	Leu	Asp	His	Ile 715	Tyr	Ser	Ile	Leu	Glu 720
Pro	Ala	Val	Lys	Glu 725	Leu	Thr	Arg	Glu	Phe 730	Leu	Lys	Pro	Asp	Asp 735	Val

Pro	Phe	Ala	C y s 740	Lys	Lys	Met	Leu	Phe 745	Glu	Glu	Thr	Arg	Val 750	Thr	Met	
Val	Ile	Phe 755	Lys	Asp	Gly	Asp	Gl y 760	Phe	Gly	Val	Ser	Lys 765	Leu	Glu	Val	
Lys	Asp 770	His	Ile	Lys	Glu	C y s 775	Leu	Ile	Glu	Pro	Leu 780	Pro	Leu			
<21 <21 <22 <22 <22 <22	0> SI 1> LI 2> TY 3> OF 0> FI 1> NA 2> LO 3> OF	ENGTH PE: RGANI EATUR ME/K DCATI	DNA DNA SM: E: EY:	Abie CDS	(:	1743))	nene	synt	chase	e					
<40	0> SI	EQUEN	ICE:	47												
	gct Ala															48
	gga Gly															96
	ggg Gl y	-		-							_			_		144
	aag L y s 50															192
-	tta Leu			_		_		_	-		_	-	_	_		240
	gat Asp															288
-	tac Tyr	_				-								_	_	336
	ttc Phe															384
_	ctg Leu 130		-			-	_				_	_			_	432
-	gaa Glu			_			-					-	-		-	480
	gat Asp															528
	tcg Ser															576
_	gaa Glu					-		-				-			_	624
	gat Asp 210															672

	cat His															720
	gga Gly															768
_	aag Lys				_	-				_		_				816
	gag Glu															864
_	ctg Leu 290				_	_	_			-					-	912
-	atg Met	_								_	-	-		-		960
-	aaa Lys		_		_	-		-		-	-			-	-	1008
	gca Ala															1056
	gat Asp															1104
	cag Gln 370															1152
	cgg Arg				_	_				-		_	-		_	1200
	tac Tyr															1248
	att Ile					-			-			_	-	-		1296
	atg Met	_				_					_	_	_			1344
	ccc Pro 450															1392
	ctc Leu															1440
	gac Asp		_	_	-			_	-				_	-		1488
	aaa Lys															1536
	ggc Gly															1584
aag						- 1		+ a a	aad	aaa	ttc	act	ttc	aat	ata	1632

-continued	
ggt cga gga ctt caa ttc atc tac aaa tac aga gac ggc tta tac att Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 550 555 560	1680
tct gac aag gaa gta aag gac cag ata ttc aaa att cta gtc cac caa Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 570 575	1728
gtt cca atg gag gaa tag tgatggtctt ggttgtagtt gtctattatg Val Pro Met Glu Glu 580	1776
gtatattgca ttgacattta tgcttaaagg tgtttcttaa acgtttaggg cggaccgtta	a 1836
aataagttgg caataattaa tatctcgag	1865
<210> SEQ ID NO 48 <211> LENGTH: 581 <212> TYPE: PRT <213> ORGANISM: Abies grandis	
<400> SEQUENCE: 48	
Met Ala Glu Ile Ser Glu Ser Ser Ile Pro Arg Arg Thr Gly Asn His 1 5 10 15	
His Gly Asn Val Trp Asp Asp Asp Leu Ile His Ser Leu Asn Ser Pro 20 25 30	
Tyr Gly Ala Pro Ala Tyr Tyr Glu Leu Leu Gln Lys Leu Ile Gln Glu 35 40 45	
Ile Lys His Leu Leu Leu Thr Glu Met Glu Met Asp Asp Gly Asp His 50 55 60	
Asp Leu Ile Lys Arg Leu Gln Ile Val Asp Thr Leu Glu Cys Leu Gly 65 70 75 80	
Ile Asp Arg His Phe Glu His Glu Ile Gln Thr Ala Ala Leu Asp Tyr 85 90 95	
Val Tyr Arg Trp Trp Asn Glu Lys Gly Ile Gly Glu Gly Ser Arg Asp 100 105 110	
Ser Phe Ser Lys Asp Leu Asn Ala Thr Ala Leu Gly Phe Arg Ala Leu 115 120 125	
Arg Leu His Arg Tyr Asn Val Ser Ser Gly Val Leu Lys Asn Phe Lys 130 135 140	
Asp Glu Asn Gly Lys Phe Phe Cys Asn Phe Thr Gly Glu Glu Gly Arg 145 150 155 160	
Gly Asp Lys Gln Val Arg Ser Met Leu Ser Leu Leu Arg Ala Ser Glu 165 170 175	
Ile Ser Phe Pro Gly Glu Lys Val Met Glu Glu Ala Lys Ala Phe Thr 180 185 190	
Arg Glu Tyr Leu Asn Gln Val Leu Ala Gly His Gly Asp Val Thr Asp 195 200 205	
Val Asp Gln Ser Leu Leu Arg Glu Val Lys Tyr Ala Leu Glu Phe Pro 210 215 220	
Trp His Cys Ser Val Pro Arg Trp Glu Ala Arg Ser Phe Leu Glu Ile 225 230 230 235 240	
Tyr Gly His Asn His Ser Trp Leu Lys Ser Asn Ile Asn Gln Lys Met 245 250 255	
Leu Lys Leu Ala Lys Leu Asp Phe Asn Ile Leu Gln Cys Lys His His 260 265 270	
Lys Glu Ile Gln Phe Ile Thr Arg Trp Trp Arg Asp Ser Gly Ile Ser 275 280 285	

Unit Let Ash Phe Tyr Arg Lys Arg His Val Glu Tyr Tyr Ser Tyr Val 250 Val Met Cys Ile Phe Glu Pro Glu Phe Ser Glu Ser Arg Ile Ala Phe 375 Val Met Cys Thr Ala Ile Leu Cys Thr Val Leua Aga Asp Leu Tyr Asp Thr 325 Ala Lys Thr Ala Ile Leu Cys Thr Val Leua Aga Pap Leu Tyr Asp Thr 325 Mis Ala Thr Leu Mis Glu Ile Lys Ile Met Thr Glu Gly Val Arg Arg 346 Ala Sys Sis Sis Sis Sis Sis Sis Sis Sis Sis Si	_																	
310 315 320 Ala Lya Thr Ala Ile Leu Cye Thr Val Leu Asp Asp Leu Tyr Asp Thr 325 Ala Lya Thr Ala Ile Leu Cye Thr Val Leu Asp Asp Leu Tyr Asp Thr 325 Hie Ala Thr Leu His Glu Ile Lys Ile Ret Thr Glu Gly Yal Arg Arg 335 Trp Asp Leu Ser Leu Thr Asp Asp Leu Pro Asp Tyr Ile Lys Ile Ala 355 Trp Asp Leu Ser Leu Thr Asp Asp Leu Pro Asp Tyr Ile Lys Ile Ala 365 Phe Gln Phe Phe Asm Thr Val Asm Glu Leu Ile Val Glu Ile Val 370 Lye Arg Gln Gly Arg Asp Met Thr Thr Ile Val Lys Asp Cye Trp Lys 385 Arg Tyr Ile Glu Ser Tyr Leu Gln Glu Ala Glu Trp Ile Ala Thr Gly 415 Hie Ile Pro Thr Phe Asm Glu Tyr Ile Lys Asm Gly Met Ala Ser Ser 420 Cly Met Cye Ile Leu Asm Leu Asm Pro Leu Leu Leu Leu Pap Lys Leu 415 Leu Pro Asp Asm Ile Leu Glu Gln Ile His Ser Pro Ser Lys Ile Leu 455 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Fhe 460 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Fhe 460 Asp Glu Lye Glu Arg Gly Glu Met Ala Ser Ser Leu Gln Cye Tyr 485 Net Lys Glu Asm Pro Glu Ser Thr Val Glu Asm Ala Leu Asm Hie Ile 500 Lye Gly Ile Leu Asm Arg Ser Leu Glu Glu Phe Asm Trp Glu Phe Met 315 S20 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 580 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 575 Val Pro Met Glu Gln Sec Calla Note State St	G	ln		Asn	Phe	Tyr	Arg		Arg	His	Val	Glu		Tyr	Ser	Trp	Val	
Hie Ala Thr Leu His Glu Ile Lys Ile Met Thr Glu Gly Val Arg Arg Arg 340 340 345 350 350 350 350 350 350 350 350 350 35			Met	Сув	Ile	Phe		Pro	Glu	Phe	Ser		Ser	Arg	Ile	Ala		
Trp Asp Leu Ser Leu Thr Asp Asp Leu Pro Asp Tyr Ile Lys Ile Ala 360 Trp Asp Leu Ser Leu Thr Asp Asp Leu Pro Asp Tyr Ile Lys Ile Ala 360 Phe Gin Fhe Phe Phe Asn Thr Val Asn Giu Leu Ile Val Giu Ile Val 370 Lys Arg Gin Gly Arg Asp Met Thr Thr Ile Val Lys Asp Cys Trp Lys 385 Arg Tyr Ile Giu Ser Tyr Leu Gin Glu Ala Giu Trp Ile Ala Thr Gly 410 Arg Tyr Ile Giu Ser Tyr Leu Gin Glu Ala Giu Trp Ile Ala Thr Gly 410 His Ile Pro Thr Phe Asn Glu Tyr Ile Lys Asn Gly Met Ala Ser Ser 420 Gly Met Cys Ile Leu Asn Leu Asn Pro Leu Leu Leu Leu Leu Asp Lys Leu 435 Leu Pro Asp Asn Ile Leu Giu Gin Ile His Ser Pro Ser Lys Ile Leu 435 Asp Leu Leu Giu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 470 Asp Leu Leu Giu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 470 Asp Leu Leu Giu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 470 Asp Leu Leu Giu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 470 Asp Leu Leu Giu Lys Glu Arg Gly Glu Met Ala Ser Ser Leu Gin Cys Tyr 485 Met Lys Glu Asn Pro Giu Ser Thr Val Glu Asn Ala Leu Asn Mis Ile 510 Soo 500 Lys Gly Ile Leu Asn Arg Ser Leu Giu Glu Phe Asn Trp Glu Phe Met 515 Soo 535 Cly Arg Gly Leu Gin Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 Sor Asp Lys Glu Val Lys Asp Gin Ile Phe Lys Ile Leu Val Mis Gin 565 Sor Asp Lys Glu Val Lys Asp Gin Ile Phe Lys Ile Leu Val Mis Gin 565 Sor Type: DNA 2110- ERROTHE: 1785 2212- TYPE: DNA 2213- CHRITIKEN: Albeis grandis 2210- FRATURE: 2212- CHRITIKEN: Albeis grandis 2213- Grand: HimforMatton: german-humulene synthase 2400- SEQUENCE: 49 To ada get acg at tot das tot das tos cot tot acc gat tos acg acg acg acg acg acg act to act cat acc tot acc gat act gas and acg and act toc act cat acc tot acc gat act gas act toc act cat cat cat cat cat cat cat cat ca	A	.la	Lys	Thr	Ala		Leu	Cys	Thr	Val		Asp	Asp	Leu	Tyr	-	Thr	
Dee Cln Phe Phe Phe Asn Thr Val Asn Clu Leu Ile Val Glu Ile Val 375 Lys Arg Gln Gly Arg Asp Met Thr Thr Ile Val Lys Asp Cys Trp Lys 383 Arg Tyr Ile Glu Ser Tyr Leu Gln Glu Ala Glu Trp Ile Ala Thr Gly 410 His Ile Pro Thr Phe Asn Glu Tyr Ile Lys Asn Gly Met Ala Ser Ser 420 Gly Met Cys Ile Leu Asn Leu Asn Pro Leu Leu Leu Leu Asp Lys Leu 440 Asp Leu Pro Asp Asn Ile Leu Glu Gln Ile His Ser Pro Ser Lys Ile Leu 450 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465 App Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465 App Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465 App Leu Leu Glu Leu Thr Gly Arg Ile Ala Ser Ser Leu Gln Cys Tyr 495 Net Lys Glu Asn Pro Glu Ser Thr Val Glu Asn Ala Leu Asn His Ile 510 Lys Gly Ile Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met 515 Lys Gly Ile Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met 515 Lys Gly Asp Ser Val Pro Met Cys Lys Lys Phe Thr Phe Asn Ile 530 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 540 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 Val Pro Met Glu Glu Su 555 Tap Met Glu Glu Su 550 Asp Lys Glu No 49 2110- LENGTH: 1785 2122- TYPE: DNA 2123- OTHER INFORMATION: gamma-humulene synthase 4400- SEQUENCE: 49 toc atg get cag att tet gas tet gfa tea coc tet acc gat ttg asg Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys Met Lys Glu Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu	Н	is	Ala	Thr		His	Glu	Ile	Lys		Met	Thr	Glu	Gly		Arg	Arg	
John Agr Gln Gly Arg Asp Met Thr Thr Ile Val Lys Asp Cys Trp Lys 388 390 390 400 400 415 410 4	Т	rp	Asp		Ser	Leu	Thr	Asp		Leu	Pro	Asp	Tyr		Lys	Ile	Ala	
Arg Tyr Ile Glu Ser Tyr Leu Gln Glu Ala Glu Trp Ile Ala Thr Gly 405 410 415 416 His Ile Pro Thr Phe Asn Glu Tyr Ile Lye Asn Gly Met Ala Ser Ser 420 425 430 Gly Met Cye Ile Leu Asn Leu Asn Pro Leu Leu Leu Leu Asp Lys Leu 435 440 445 Leu Pro Asp Asn Ile Leu Glu Gln Ile His Ser Pro Ser Lys Ile Leu 450 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465 Glu Asp Glu Lys Glu Arg Gly Glu Met Ala Ser Ser Leu Gln Cys Tyr 485 Glu Asp Glu Lys Glu Ser Thr Val Glu Asn Ala Leu Asn His Ile 500 So 505 So 510 Lye Gly Ile Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met 515 520 Sy 525 Lye Gla Asp Ser Val Pro Met Cye Cys Lys Lys Phe Thr Phe Asn Ile 530 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 So 555 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 Ser Asp Lys Glu No 49 <2110 LENGTH: 1785 <2120 NAME/KEY: CDS <2120 TYPEI DNA <2120 NAME/KEY: CDS <2212 TYPEI DNA <2130 NAME/KEY: CDS <2221 CONTERN: <2211 NAME/KEY: CDS <2222 LOCATION: (4)(1782) <2223 OTHER INFORMATION: gamma-humulene synthase 480 481 482 483 484 485 486 486 486 486 486 486 486 486 486 486	P	he		Phe	Phe	Phe	Asn		Val	Asn	Glu	Leu		Val	Glu	Ile	Val	
His Ile Pro Thr Phe Aan Glu Tyr Ile Lys Aan Gly Met Ala Ser Ser 420 Gly Met Cys Ile Leu Aan Leu Aan Pro Leu Leu Leu Leu Aap Lys Leu 435 Gly Met Cys Ile Leu Aan Leu Aan Pro Leu Leu Leu Leu Aap Lys Leu 435 Gly Met Cys Ile Leu Aan Leu Aan Pro Leu Leu Leu Leu Aap Lys Leu 435 Leu Pro Aap Aan Ile Leu Glu Ile His Ser Pro Ser The Ile Leu 450 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Aap Aap Leu Lys Aap Phe 465 Aap Glu Lys Glu Arg Gly Glu Met Ala Ser Ser Leu Gln Cys Tyr 485 Met Lys Glu Aan Pro Glu Ser Thr Val Glu Aan Ala Leu Aan His Ile 500 Lys Gly Ile Leu Aan Arg Ser Leu Glu Glu Phe Aan Trp Glu Phe Met 515 520 Lys Gly Aap Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Aan Ile 530 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Aap Gly Leu Tyr Ile 545 Ser Aap Lys Glu Val Lys Aap Gln Ile Phe Lys Ile Leu Val His Gln 565 Ser Aap Lys Glu Val Lys Aap Gln Ile Phe Lys Ile Leu Val His Gln 565 Val Pro Met Glu Glu 580 4210- SEQ ID No 49 4211- LENGTHOR: 4221- ORGANISM: Abies grandis 4222- LOCATION: 4221- ORGANISM: Abies grandis 4222- LOCATION: 435 446 447 448 449 449 449 449 449 440 445 440 446 446		_	Arg	Gln	Gly	Arg	_	Met	Thr	Thr	Ile		Lys	Asp	Суѕ	Trp	_	
Cly Net Cys II Leu Asn Leu Asn Pro Leu Leu Leu Asn Lys Leu Asn Pro Asn Asn Pro Leu Leu Leu Asn Lys Leu Asn Pro Asn Asn II Leu Clu Clu Cln II His Ser Pro Ser Lys II Leu Asn Pro Asn Asn II Leu Clu Clu Cln II His Ser Pro Ser Lys II Leu Asn Pro Asn Asn II Leu Clu Cln II His Ser Pro Ser Lys II Leu Asn Pro Asn Asn II Leu Clu Cln II His Ser Pro Ser Lys II Leu Asn Pro Asn	A	.rg	Tyr	Ile	Glu		Tyr	Leu	Gln	Glu		Glu	Trp	Ile	Ala		Gly	
Leu Pro Asp Asn Ile Leu Glu Gln Ile His Ser Pro Ser Lys Ile Leu 450	Н	is	Ile	Pro		Phe	Asn	Glu	Tyr		Lys	Asn	Gly	Met		Ser	Ser	
Leu Pro Asp Asn Ile Leu Glu Gln Ile His Ser Pro Ser Lys Ile Leu 450 Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465	G	ly	Met	_	Ile	Leu	Asn	Leu		Pro	Leu	Leu	Leu		Asp	Lys	Leu	
Asp Leu Leu Glu Leu Thr Gly Arg Ile Ala Asp Asp Leu Lys Asp Phe 465 Glu Asp Glu Lys Glu Arg Gly Glu Met Ala Ser Ser Leu Gln Cys Tyr 485 Met Lys Glu Asn Pro Glu Ser Thr Val Glu Asn Ala Leu Asn His Ile 500 Lys Gly Ile Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met 515 Lys Gln Asp Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Asn Ile 530 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 580 <a href="https://www.new.new.new.new.new.new.new.new.new.</td><td>L</td><td>eu</td><td></td><td></td><td>Asn</td><td>Ile</td><td>Leu</td><td></td><td></td><td>Ile</td><td>His</td><td>Ser</td><td></td><td></td><td>Lys</td><td>Ile</td><td>Leu</td><td></td></tr><tr><td>Glu Asp Glu Lys Glu Arg Gly Glu Met Ala Ser Ser Leu Gln Cys Tyr 485 490 495 Met Lys Glu Asn Pro Glu Ser Thr Val Glu Asn Ala Leu Asn His Ile 500 500 510 Lys Gly Ile Leu Asn Arg Ser Leu Glu Glu Fhe Asn Trp Glu Phe Met 515 520 525 Lys Gln Asp Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Asn Ile 530 535 540 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 550 550 555 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 570 575 Val Pro Met Glu Glu 580 <210 SEQ ID NO 49 <211 LENGTH: 1785 <212 TYPE: DNA <213 NAME/KEY: CDS <222 NAME/KEY: CDS <222 NAME/KEY: CDS <222 NOTHER INFORMATION: gamma-humulene synthase <400 SEQUENCE: 49 to atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 59 agc acc gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu</td><td></td><td>_</td><td></td><td>Leu</td><td>Glu</td><td>Leu</td><td></td><td></td><td>Arg</td><td>Ile</td><td>Ala</td><td>_</td><td></td><td>Leu</td><td>Lys</td><td>Asp</td><td></td><td></td></tr><tr><td>Met Lys Glu Asn Pro Glu Ser Thr Val Glu Asn Ala Leu Asn His Ile 500 Lys Gly Ile Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met 515 Lys Gln Asp Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Asn Ile 530 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 580 <210> SEQ ID NO 49 <211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NGRAMISM: Abies grandis <220> FEATURE: <221> NGRAMISM: Abies grandis <220> COCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 96 seg cac gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu</td><td></td><td></td><td>Asp</td><td>Glu</td><td>Lys</td><td>Glu</td><td></td><td>Gly</td><td>Glu</td><td>Met</td><td>Ala</td><td></td><td>Ser</td><td>Leu</td><td>Gln</td><td>Cys</td><td></td><td></td></tr><tr><td>Lys Gly Ile Leu Asn Arg Ser Leu Glu Glu Phe Asn Trp Glu Phe Met 515 525 Lys Gln Asp Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Asn Ile 530 535 535 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 550 550 555 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 570 Val Pro Met Glu Glu 580 <210> SEQ ID NO 49 <211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Abbies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 15 agc acc gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu</td><td>М</td><td>et</td><td>Lvs</td><td>Glu</td><td>Asn</td><td></td><td>Glu</td><td>Ser</td><td>Thr</td><td>Val</td><td></td><td>Asn</td><td>Ala</td><td>Leu</td><td>Asn</td><td></td><td>Ile</td><td></td></tr><tr><td>Lys Gln Asp Ser Val Pro Met Cys Cys Lys Lys Phe Thr Phe Asn Ile 530 Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 Ser Asp Lys Glu Glu 560 Val Pro Met Glu Glu 580 <210> SEQ ID NO 49 <211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 15 agc acc gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu</td><td></td><td></td><td></td><td></td><td>500</td><td></td><td></td><td></td><td></td><td>505</td><td></td><td></td><td></td><td></td><td>510</td><td></td><td></td><td></td></tr><tr><td>Gly Arg Gly Leu Gln Phe Ile Tyr Lys Tyr Arg Asp Gly Leu Tyr Ile 545 550 550 555 560 Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 570 575 Val Pro Met Glu Glu 580 580 <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre</td><td>ь</td><td>ys</td><td>GIĀ</td><td></td><td>Leu</td><td>Asn</td><td>Arg</td><td>ser</td><td></td><td>GIU</td><td>GIU</td><td>Pne</td><td>Asn</td><td>_</td><td>GIU</td><td>Pne</td><td>Met</td><td></td></tr><tr><td>Ser Asp Lys Glu Val Lys Asp Gln Ile Phe Lys Ile Leu Val His Gln 565 Val Pro Met Glu Glu 580 <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> lt;/td><td>L</td><td>ys</td><td></td><td>Asp</td><td>Ser</td><td>Val</td><td>Pro</td><td></td><td>Сув</td><td>Суѕ</td><td>Lys</td><td>Lys</td><td></td><td>Thr</td><td>Phe</td><td>Asn</td><td>Ile</td><td></td></tr><tr><td>Val Pro Met Glu Glu 580 <pre> 565 570 575 Val Pro Met Glu Glu 580 <pre> 580 </pre> <pre> 580 </pre> <pre> 6210 NO 49 6211 LENGTH: 1785 6212 TYPE: DNA 6212 TYPE: DNA 6213 ORGANISM: Abies grandis 6220 FEATURE: 6221 NAME/KEY: CDS 6222 LOCATION: (4)(1782) 6223 OTHER INFORMATION: gamma-humulene synthase 6400 SEQUENCE: 49 tcc atg att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 15 ada acc gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag 96 Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu gag 96 Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu</pre>		_	Arg	Gly	Leu	Gln		Ile	Tyr	Lys	Tyr	_	Asp	Gly	Leu	Tyr		
<pre> <210> SEQ ID NO 49 <211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1</pre>	S	er	Asp	Lys	Glu		Lys	Asp	Gln	Ile		Lys	Ile	Leu	Val		Gln	
<pre><211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1</pre>	V	al	Pro	Met		Glu												
<pre><211> LENGTH: 1785 <212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1</pre>																		
<pre><212> TYPE: DNA <213> ORGANISM: Abies grandis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1</pre>																		
<pre><220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1</pre>	<	212	?> T	PE:	DNA		es a	rand	is									
<pre><222> LOCATION: (4)(1782) <223> OTHER INFORMATION: gamma-humulene synthase <400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1</pre>	<	220)> FE	EATUE	RE:		y.	_ 4114.										
<pre><400> SEQUENCE: 49 tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag</pre>	<	222	2> LC	CAT	ON:	(4)												
tcc atg gct cag att tct gaa tct gta tca ccc tct acc gat ttg aag Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 15 agc acc gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu							rion	: gai	nma-l	numu]	Lene	synt	chase	Э				
Met Ala Gln Ile Ser Glu Ser Val Ser Pro Ser Thr Asp Leu Lys 1 5 10 15 agc acc gaa tct tcc att acc tct aat cga cat gga aat atg tgg gag Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu																		
Ser Thr Glu Ser Ser Ile Thr Ser Asn Arg His Gly Asn Met Trp Glu	t	cc	Met				Ser					Pro					Lys	48
		-		-							_				_			96
	٥	GT.	TILE	чц	ser		тте	1111	ser	nbil	_	11TR	атХ	ASII	нет	_	GIU	

_													COII	CIII	ueu		
	-	-	-		-	tct Ser							_		-		144
						aag L y s											192
						agc Ser											240
						gat Asp 85											288
						aaa Lys											336
						gga Gly											384
						ttg Leu											432
						gtc Val											480
1						aca Thr 165											528
						atg Met											576
						gtg Val											624
						tta Leu											672
						gtg Val											720
:						gag Glu 245											768
		-				aag Lys	-		_	-			_			_	816
	-		_	_		aat Asn		_		_			_		-	_	864
	_					tgg Trp		-	_		_		_		_		912
						tac Tyr											960
				_		ttt Phe 325			_	_	_						1008
	_		_	_		atg Met		-	_	_		-					1056

												COII	CTII	ueu				
ttg (1104		
tcg t Ser I																1152		
tgg t Trp I																1200		
ggg o Gly 0 400																1248		
ctt (1296		
ccc a			_			_									_	1344		
tgt (1392		
atc q Ile A																1440		
att o Ile (-	_						-		-		-		-		1488		
gag a Glu I																1536		
cat o His I					_	-	-	-				-				1584		
ctt (Leu (_		_	-	_			_			_	_	_	1632		
gac a Asp s	-				_	-	_	_		-			-	_	-	1680		
cga a Arg s 560	-				-					-					-	1728		
aac a Asn I		-		_	-			_					-			1776		
cct a		tga														1785		
<210><211><211><212><213>	> LE > TY	NGTH PE:	: 59 PRT	3	es gi	randi	İs											
<400>	> SE	QUEN	CE:	50														
Met A	Ala	Gln	Ile	Ser 5	Glu	Ser	Val	Ser	Pro 10	Ser	Thr	Asp	Leu	Lys 15	Ser			
Thr (20					25		_			30		_			
Asp A	Arg	Ile 35	Gln	Ser	Leu	Asn	Ser 40	Pro	Tyr	Gly	Ala	Pro 45	Ala	Tyr	Gln			

											_	COII	СТП	ucu	
Glu	Arg 50	Ser	Glu	Lys	Leu	Ile 55	Glu	Glu	Ile	Lys	Leu 60	Leu	Phe	Leu	Ser
Asp 65	Met	Asp	Asp	Ser	Cys 70	Asn	Asp	Ser	Asp	Arg 75	Asp	Leu	Ile	Lys	Arg 80
Leu	Glu	Ile	Val	Asp 85	Thr	Val	Glu	Cys	Leu 90	Gly	Ile	Asp	Arg	His 95	Phe
Gln	Pro	Glu	Ile 100	Lys	Leu	Ala	Leu	Asp 105	Tyr	Val	Tyr	Arg	Cys 110	Trp	Asn
Glu	Arg	Gly 115	Ile	Gly	Glu	Gly	Ser 120	Arg	Asp	Ser	Leu	L y s 125	Lys	Asp	Leu
Asn	Ala 130	Thr	Ala	Leu	Gly	Phe 135	Arg	Ala	Leu	Arg	Leu 140	His	Arg	Tyr	Asn
Val 145	Ser	Ser	Gly	Val	Leu 150	Glu	Asn	Phe	Arg	Asp 155	Asp	Asn	Gly	Gln	Phe 160
Phe	Cys	Gly	Ser	Thr 165	Val	Glu	Glu	Glu	Gly 170	Ala	Glu	Ala	Tyr	Asn 175	Lys
His	Val	Arg	C y s 180	Met	Leu	Ser	Leu	Ser 185	Arg	Ala	Ser	Asn	Ile 190	Leu	Phe
Pro	Gly	Glu 195	Lys	Val	Met	Glu	Glu 200	Ala	Lys	Ala	Phe	Thr 205	Thr	Asn	Tyr
Leu	L y s 210	Lys	Val	Leu	Ala	Gly 215	Arg	Glu	Ala	Thr	His 220	Val	Asp	Glu	Ser
Leu 225	Leu	Gly	Glu	Val	Lys 230	Tyr	Ala	Leu	Glu	Phe 235	Pro	Trp	His	Сув	Ser 240
Val	Gln	Arg	Trp	Glu 245	Ala	Arg	Ser	Phe	Ile 250	Glu	Ile	Phe	Gly	Gln 255	Ile
Asp	Ser	Glu	Leu 260	Lys	Ser	Asn	Leu	Ser 265	Lys	Lys	Met	Leu	Glu 270	Leu	Ala
Lys	Leu	Asp 275	Phe	Asn	Ile	Leu	Gln 280	Суѕ	Thr	His	Gln	L y s 285	Glu	Leu	Gln
Ile	Ile 290	Ser	Arg	Trp	Phe	Ala 295	Asp	Ser	Ser	Ile	Ala 300	Ser	Leu	Asn	Phe
Tyr 305	Arg	Lys	Cys	Tyr	Val 310	Glu	Phe	Tyr	Phe	Trp 315	Met	Ala	Ala	Ala	Ile 320
Ser	Glu	Pro	Glu	Phe 325	Ser	Gly	Ser	Arg	Val 330	Ala	Phe	Thr	Lys	Ile 335	Ala
Ile	Leu	Met	Thr 340	Met	Leu	Asp	Asp	Leu 345	Tyr	Asp	Thr	His	Gly 350	Thr	Leu
qaA	Gln	Leu 355	Lys	Ile	Phe	Thr	Glu 360	Gly	Val	Arg	Arg	Trp 365	Asp	Val	Ser
Leu	Val 370	Glu	Gly	Leu	Pro	Asp 375	Phe	Met	Lys	Ile	Ala 380	Phe	Glu	Phe	Trp
Leu 385	Lys	Thr	Ser	Asn	Glu 390	Leu	Ile	Ala	Glu	Ala 395	Val	Lys	Ala	Gln	Gly 400
Gln	Asp	Met	Ala	Ala 405	Tyr	Ile	Arg	Lys	Asn 410	Ala	Trp	Glu	Arg	Tyr 415	Leu
Glu	Ala	Tyr	Leu 420	Gln	Asp	Ala	Glu	Trp 425	Ile	Ala	Thr	Gly	His 430	Val	Pro
Thr	Phe	Asp 435	Glu	Tyr	Leu	Asn	Asn 440	Gly	Thr	Pro	Asn	Thr 445	Gly	Met	Cys
Val	Leu 450	Asn	Leu	Ile	Pro	Leu 455	Leu	Leu	Met	Gly	Glu 460	His	Leu	Pro	Ile

Asp I:	le L	eu	Glu	Gln	Ile 470	Phe	Leu	Pro	Ser	Arg 475	Phe	His	His	Leu	Ile 480	
Glu Le	eu A	la	Ser	Arg 485	Leu	Val	Asp	Asp	Ala 490	Arg	Asp	Phe	Gln	Ala 495	Glu	
Lys A	вр Н		Gly 500	Asp	Leu	Ser	Сув	Ile 505	Glu	Сув	Tyr	Leu	Lys 510	Asp	His	
Pro G		er 15	Thr	Val	Glu	Asp	Ala 520	Leu	Asn	His	Val	Asn 525	Gly	Leu	Leu	
Gly As	sn C	ys	Leu	Leu	Glu	Met 535	Asn	Trp	Lys	Phe	Leu 540	Lys	Lys	Gln	Asp	
Ser Va 545	al P	ro	Leu	Ser	C y s 550	Lys	Lys	Tyr	Ser	Phe 555	His	Val	Leu	Ala	Arg 560	
Ser I	le G	ln	Phe	Met 565	Tyr	Asn	Gln	Gly	A sp 570	Gly	Phe	Ser	Ile	Ser 575	Asn	
Lys V	al I		Lys 580	Asp	Gln	Val	Gln	Lys 585	Val	Leu	Ile	Val	Pro 590	Val	Pro	
Ile																
<210><211><211><212><213><223><221><221><221	LENG TYP: ORG. FEA' NAM: LOC.	GTH E: ANI FUR E/K ATI	: 20 DNA SM: E: EY: ON:	124 Lyco CDS (32)	((1675	5)			e C s	s y ntl	nase				
<400>	SEQ	UEN	CE:	51												
aaaaa	aagc	c a	aaco	ctta	ga a	caaa	caag			-	-		tct Ser 1		_	52
aag to Lys Cy	ys A	_		_	_						_					100
ttc ct Phe Le						_					_		_	-	_	148
gat ga Asp G	-						-		-	_		-		-	-	196
aat aq Asn Se																244
gtg go Val A					_		-		-							292
ttt ga	sp A															340
gtg to Val Se																388
tca ga Ser As 120	_	-		_						-				_	_	436
aca ct				_	_				_	_	_		-	-		484

cot ctg aga gtg cyt act sug gag att ctt gas gas got ctt aca ttt fils Leu Arg Val Arg Asn Glu Glu Ile Leu Glu Glu Ala Leu Thr Phe 155 mac acc act cat ctc gag tct att gtc tcc aca ttg agc aat aat aat at 1770 min Thr Thr Thr His Leu Glu Ser Ile Val Ser Ann Leu Ser Ann Ann Ann Ann 170 min Thr Thr His Leu Glu Ser Ile Val Ser Ann Leu Ser Ann Ann Ann Ann 170 min Thr Thr Thr His Leu Glu Ser Ile Val Ser Ann Leu Ser Ann Ann Ann Ann 180 mac tct ctt aag gtt gag gtg gag gcc tta acc cag cct att cgc Asn Ser Leu Lys Val Glu Val Glu yGlu Ala Leu Thr Gln Pro Ile Arg 185 min Thr Leu Pro Arg Met Gly Ala Arg Lys Tyr Ile Ser Ile Tyr Glu 200 205 205 210 210 215 215 216 220 220 225 225 220 216 226 226 226 226 226 226 226 226 226																	
The Thr This Leu Glú Ser Ile Val Ser Asn Leu Ser Asn Asn Asn Asn 170 170 175 175 180 180 180 180 180 180 180 180 180 180				Val					Ile					Leu			532
Aen Ser Leu Lyé Val Glu Val Gly Glu Ala Leu Thr Gln Pro Ile Arg 185 atg act tta coa agg atg gga gct aga aaa tac ata toc att tac gaa Met Thr Leu Pro Arg Met Gly Ala Arg Lys Tyr Ile Ser Ile Tyr Glu 200 205 acc aat gat gca cac cac cat ttg ctt ttg aaa ttt gct aaa ttg gat Asn Asn Asp Ala His His His Leu Leu Leu Leu Lys Phe Ala Lys Leu Asp 220 225 225 226 227 227 228 229 229 229 220 221 221 221 223 224 225 225 226 227 227 228 229 229 229 220 227 228 229 229 229 229 220 221 221 225 227 228 229 229 229 229 229 220 221 227 228 229 229 229 229 220 221 227 228 229 229 229 229 220 220 221 225 227 228 229 229 229 229 220 220 221 225 227 228 229 229 229 220 220 221 225 227 226 227 226 227 228 229 229 220 220 221 225 226 227 226 227 226 227 226 227 228 229 229 220 220 221 225 226 227 226 227 228 229 229 220 229 220 221 225 226 227 226 227 228 229 229 229 220 229 220 221 225 227 228 229 229 229 220 229 220 220			Thr					Ile					Ser				580
Met Thr Leu Pro Arg Met Gily Åla Arg Lys Tyr Ile Ser Ile Tyr Giu 200 205 205 205 205 205 205 205 205 205		Ser					Val					Thr					628
Asn Asn Asp Ala His His His Leu Leu Lys Phe Ala Lys Leu Asp 220 ttt aac atg ctg caa aag ttt cac caa agg agg ctt agt gat ctt aca 230 772 He Asn Met Leu cln Lys Phe His Cln Arg Clu Leu Ser Asp Leu Thr 245 agg tgg tgg aaa gat ttg gat ttt gca aat aaa tat cca tat gca aga 820 Arg Trp Trp Lys Asp Leu Asp Phe Ala Asn Lys Tyr Pro Tyr Ala Arg 255 gac agg ttg gtt gag tgt tact ttc tgg ata tta gga ggt gtt at ttt gag Asp Arg Leu Val Glu Cys Tyr Phe Trp Ile Leu Gly Val Tyr Phe Glu 265 cca aaa tat agt cgt gcg aga aaa atg atg aca aaa gta ctc aac ctg Pro Lys Tyr Ser Arg Ala Arg Lys Met Met Thr Lys Val Leu Asn Leu 280 acc tcc att att gac gac act ttt gat gct tat gca acc ttt gac gaa 784 Thr Ser Ile Ile Asp Asp Thr Phe Asp Ala Tyr Ala Thr Phe Asp Glu 300 ctt gtg act ttc aat gat gca acc cag aga tgg gat gct aat gca att Leu Val Thr Phe Asn Asp Ala Ile Gln Arg Trp Asp Ala Asn Ala Ile 315 gat tca ata caa cca tat atg aga cct gct tat caa gct ctt cta gac Asp Ser Ile Gln Pro Tyr Met Arg Pro Ala Tyr Gln Ala Leu Leu Asp 330 att tac agt gaa atg gaa cag gtt ttg tcc aaa gaa ggt aga gct ata fyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Cly Lys Leu Asp 335 ctt gat act act tat gca aaa aat gag atg aaa aag ttg gt gag gct ata fyr 360 att tac agt gaa atg gaa cag gtt ttg tcc aaa gaa ggt aga gct ata Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 att tac agt gaa atg gaa cag gtt gat gct aat gca gct ata Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 aga gaa caa gtg gag aat gca atc gat gat gct gct ata gaa gct at 1156 arg Glu Gln Trp Leu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 gag gaa caa gtg gag aat gca atc gaa ggt gct tat at gat gat gct gct ata gaa gat gct gct ata gaa gat gct gct ata gaa gct gct gct ata gat gat gct gct ata gaa gat gct gct gct ata gaa gct gct gct gct ata gaa gat gct gct gct ata gaa gat gct gct gct ata gaa gat gct gct gct gct gct gct gct gct gct gc	Met					Met					Tyr					Glu	676
Phe Asn Met Leu Gln Lys Phe His Gln Arg Glu Leu Ser Asp Leu Thr 235 245 245 245 245 245 245 246 247 246 247 246 247 248 248 248 248 248 248 248 248 248 248					His					Leu					Leu		724
Arg Trp Trp Lys Asp Leu Asp Phe Ala Asn Lys Tyr Pro Tyr Ala Arg 250 gac agg ttg gtt gag tgt tac ttc tgg ata tta gga gtg tat ttt gag Asp Arg Leu Val Glu Cys Tyr Phe Trp Ile Leu Gly Val Tyr Phe Glu 265 cca aaa tat agt cgt gcg aga aaa atg atg aca aaa gta ctc aac ctg Pro Lys Tyr Ser Arg Ala Arg Lys Met Met Thr Lys Val Leu Asn Leu 280 acc tcc att att gac gac act ttt gat gct tat gca acc ttt gac gaa Thr Ser Ile Ile Asp Asp Thr Phe Asp Ala Tyr Ala Thr Phe Asp Glu 300 ctt gtg act ttc aat gat gca atc cag aga tgg gat gct aat gca att Leu Val Thr Phe Asn Asp Ala Ile Gln Arg Trp Asp Ala Asa Ala Ile 315 gat tca ata caa cca tat atg aga cct gct tat caa gct ctt cta gac Asp Ser Ile Gln Pro Tyr Met Arg Pro Ala Tyr Gln Ala Leu Leu Asp 330 att tac agt gaa atg gaa caa gtg ttg tcc aaa gaa ggt aaa ctg gac Ile Tyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Gly Lys Leu Asp 345 cgt gta tac tat gca aaa aat gag atg aaa aag tg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 att taa gaa acc caa tag ttg aat gat gaa aa aag ttg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 att taa gaa acc caa tag ttg aat gat tgt gca cat att cca aaa tat Phe Lys Glu Gly Lys Leu Asp 355 cgt gta tac tat gca aaa aat gag atg aaa aag ttg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 att aag gaa acc caa tgg ttg aat gat gtg gc cat att cca aaa tat Phe Lys Glu Glu Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 395 ttt aag gaa caa gtg gag aat gca atc gta agt gct ggc tat atg ata glu Glu Glu Glu Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 395 tca aca act tgc ttg gtc ggt ata gaa gaa ttt ata cc cac gag act 1300 ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 415 416 417 418 att gcc aga gca atg aat gaa tat gtt gga cat gaa gat gaa caa gaa Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu Glu Ado 445 aga gga cat gta tg gct tca ctt att gaa tgt tat gta aga gat tat gga Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr M			_	Leu		_			Gln	_			_	Asp			772
Asp Arg Leu Val Glu Cys Tyr Phe Trp Ile Leu Gly Val Tyr Phe Glu 275 cca aaa tat agt cgt gcg aga aaa atg atg aca aaa gta ctc aac ctg Pro Lys Tyr Ser Arg Ala Arg Lys Met Met Thr Lys Val Leu Asn Leu 280 acc tcc att att gac gac act ttt gat gct tat gca acc ttt gac gaa Phr Ser Ile Ile Asp Asp Thr Phe Asp Ala Tyr Ala Thr Phe Asp Glu 300 ctt gtg act ttc aat gat gca atc cag aga tgg gat gct aat gca att Leu Val Thr Phe Asn Asp Ala Ile Gln Arg Trp Asp Ala Asn Ala Ile 315 gat tca ata caa cca tat atg aga cct gct tat caa gct ctt cta gac Asp Ser Ile Gln Pro Tyr Met Arg Pro Ala Tyr Gln Ala Leu Leu Asp 330 att tac agt gaa atg gaa caa gtg ttg tcc aaa gag ggt aaa ctg gac Ile Tyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Gly Lys Leu Asp 345 cgt gta tac tat gca aaa aat gag atg aaa aag ttg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 ttt aag gaa acc caa tgg ttg aat gat tgt gac cat att cca aat the Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 370 gag gaa cac gtg gag aat gca atc gta agt gct ggc tat atg at gat glu Glu Gln Val Glu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 gag gaa caa gtg gag aat gca atc gta agt gct ggc tat atg ata gat glu Glu Gln Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 405 tca aca act tcc ttg gtc ggt ata gaa gat tt ata tcc cac gag act Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 tt gaa tgg ttg atg aat gat tg tt gt cac aga gat tt ata tcc cac gag act Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 att gac aga gca atg aat gaa tct gta tt gtc ga cat gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aat gaat tt gtt cga cat gaa gat gaa caa gaa Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 440 att gcc aga gca atg act cat tt tt gaa tgt ta cat gaa gat tat gga Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly			Trp		_	_	_	Phe	_				Pro		_	_	820
Pro Lys Tyr Ser Arg Ála Arg Lys Met Met Thr Lys Val Leu Asn Leu 285 acc tcc att att gac gac act ttt gat gct tat gca acc ttt gac gaa Tyr Ala Thr Phe Asp Glu 300 ctt gtg act ttc aat gat gca atc cag aga tgg gat gct aat gca att 1012 Leu Val Thr Phe Asn Asp Ala Ile Gln Arg Trp Asp Ala Asn Ala Ile 325 gat tca ata caa cca tat atg aga cct gct tat caa gct ctt cta gac Asp Ser Ile Gln Pro Tyr Met Arg Pro Ala Tyr Gln Ala Leu Leu Asp 330 att tac agt gaa atg gaa caa gtg ttg tcc aaa gaa ggt aaa ctg gac Ile Tyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Gly Lys Leu Asp 345 cgt gta tac tat gca aaa aat gag atg aaa agt tgg gag gc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 cgt gta tac tat gca aaa gat gat gat gat gat gat gat gat ga		Arg					Tyr					Gly					868
Thr Ser Ile Ile Asp Asp Thr Phe Asp Ala Tyr Ala Thr Phe Asp Glu 300 and 305 and 305 and 305 and 310 and 310 and 305 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 310 and 311 an	Pro					Ala					Thr					Leu	916
Leu Val Thr Phe Asn Asp Ala Ile Gln Arg Trp Asp Ala Asn Ala Ile 315 gat tca ata caa cca tat atg aga cct gct tat caa gct ctt cta gac Asp Ser Ile Gln Pro Tyr Met Arg Pro Ala Tyr Gln Ala Leu Leu Asp 330 att tac agt gaa atg gaa caa gtg ttg tcc aaa gaa ggt aaa ctg gac Ile Tyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Gly Lys Leu Asp 345 cgt gta tac tat gca aaa aat gag atg aaa aag ttg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 gag gaa acc caa tgg ttg aat gat tgt gac cat att cca aaa tat Phe Lys Glu Thr Gln Trp Leu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 gag gaa caa gtg gag aat gca atc gta agt gct ggc tat atg atg ata Glu Glu Gln Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 395 tca aca act tgc ttg gtc ggt ata gaa gaa ttt ata tcc cac gag act Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 ttt gaa tgg ttg atg aat gaa tg gt ggt att gtt cga gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa ga Ile Ala Arg Ala Met Asn Asp Asp Asp Glu Glu Asp Glu Gln Glu 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga aga gaa cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Ala Ser Ala Leu 426 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Ala Ser Ala Leu 436 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Ala Ser Ala Ser Ala Leu 437 Ala Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly					Asp					Āla					Asp		964
Asp Ser Ile Gln Pro Tyr Met Arg Pro Ala Tyr Gln Ala Leu Leu Asp 330 att tac agt gaa atg gaa caa gtg ttg tcc aaa gaa ggt aaa ctg gac 1108 Ile Tyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Gly Lys Leu Asp 345 cgt gta tac tat gca aaa aat gag atg aaa aag ttg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 360 365 att dat gaa aat gat gat gac cat att cca aaa tat Phe Lys Glu Thr Gln Trp Leu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 aga gaa caa gtg gag aat gaa ggt ggt ggc tat atg atg atg Glu Glu Glu Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 395 at gac aca act tgc ttg gtc ggt ata gaa gaa ttt ata tcc cac gag act 1300 ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 at gg ttg atg ggt ggt att ggt cga gct tcc gca ttg phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 435 at gcc aga gca atg gaa caa gga gaa caa gga gaa aca gga act gaa gat tt data tcc cac gag act 1348 phe Glu Trp Leu Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu Asp Ala Ile Val Arg Ala Ser Ala Leu 435 at gcc aga gca atg aac gat tt gtt gga cat gaa gat gaa caa gaa 1396 at gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa 1396 at gcc aga gca atg acc gat att gtt gga cat gaa gat gaa caa gaa 1396 at gcc aga gca atg acc gct tcc gca ttg gle Ala Arg Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga 1444 arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly				Phe					Gln					Asn			1012
The Tyr Ser Glu Met Glu Gln Val Leu Ser Lys Glu Gly Lys Leu Asp 345 cgt gta tac tat gca aaa aat gag atg aaa aag ttg gtg aga gcc tat Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 375 ttt aag gaa acc caa tgg ttg aat gat tgt gac cat att cca aaa tat 1204 Phe Lys Glu Thr Gln Trp Leu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 gag gaa caa gtg gag aat gca atc gta agt gct ggc tat atg atg atg Glu Glu Glu Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 400 tca aca act tgc ttg gtc ggt ata gaa gaa ttt ata tcc cac gag act 1300 Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 ttt gaa tgg ttg atg aat gag tct gtg att gtt cga gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa 1396 Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga 1444 Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly	_		Ile				_	Arg		_			Ala			-	1060
Arg Val Tyr Tyr Ala Lys Asn Glu Met Lys Lys Leu Val Arg Ala Tyr 375 ttt aag gaa acc caa tgg ttg aat gat tgt gac cat att cca aaa tat 1204 Phe Lys Glu Thr Gln Trp Leu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 gag gaa caa gtg gag aat gca atc gta agt gct ggc tat atg atg ata 61 Glu Glu Gln Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 405 tca aca act tgc ttg gtc ggt ata gaa gaa ttt ata tcc cac gag act 1300 Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 ttt gaa tgg ttg atg aat gag tct gtg att gtt cga gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa 1396 Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga 1444 Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly		${\tt Tyr}$	_	_		_	Gln					Ğlu				-	1108
Phe Lys Glu Thr Gln Trp Leu Asn Asp Cys Asp His Ile Pro Lys Tyr 380 gag gaa caa gtg gag aat gca atc gta agt gct ggc tat atg atg ata 1252 Glu Glu Gln Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 405 tca aca act tgc ttg gtc ggt ata gaa gaa ttt ata tcc cac gag act 1300 Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 ttt gaa tgg ttg atg aat gag tct gtg att gtt cga gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa 1396 Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga 1444 Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly	Arg					Lys					Lys					Tyr	1156
Glu Glu Gln Val Glu Asn Ala Ile Val Ser Ala Gly Tyr Met Met Ile 395 tca aca act tgc ttg gtc ggt ata gaa gaa ttt ata tcc cac gag act Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 ttt gaa tgg ttg atg aat gag tct gtg att gtt cga gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly					Gln					Cys					Lys		1204
Ser Thr Thr Cys Leu Val Gly Ile Glu Glu Phe Ile Ser His Glu Thr 410 ttt gaa tgg ttg atg aat gag tct gtg att gtt cga gct tcc gca ttg Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 440 435 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly		_		Val			-		Val	_	_			Met	_		1252
Phe Glu Trp Leu Met Asn Glu Ser Val Ile Val Arg Ala Ser Ala Leu 425 att gcc aga gca atg aac gat att gtt gga cat gaa gat gaa caa gaa Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 440 445 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly			Thr	_	_	_		Ile	-	_			Ser				1300
Ile Ala Arg Ala Met Asn Asp Ile Val Gly His Glu Asp Glu Gln Glu 440 445 450 450 455 aga gga cat gta gct tca ctt att gaa tgt tac atg aaa gat tat gga Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly		Glu					Glu					Arg					1348
Arg Gly His Val Ala Ser Leu Ile Glu Cys Tyr Met Lys Asp Tyr Gly	Ile					Asn					His					Glu	1396
	_			_	Āla				-	Cys		_		-	Tyr		1444

										-	con.	tin	ued		
gct tca Ala Ser	Lys														1492
gca tgo Ala Tr															1540
atg ttt Met Phe 505	val														1588
tta tat Leu Tyr 520	_			_					-						1636
aac ato Asn Met		Asn					_		_			taa			1678
atataat	gct g	aaat	tgca	ac ct	tcat	cato	c caa	actat	tca	cago	caaaa	ata a	aggca	atataa	1738
taaatt	jaag a	ctca	caac	a ta	atgag	gttgt	t taa	attco	ctgg	gate	gttt	jaa a	ataaa	acaata	1798
attgttt	tta t	ttaa	tttg	jc ta	aagco	caaaq	g tga	aata	atac	aaca	actto	gag t	tgta	attaaa	1858
tcatgtt	tta t	ctca	tttc	c aç	gette	gtgag	y ttt	ggat	tat	tata	attgt	ta a	attat	catca	1918
ctttata	atg t	actg	rtaat	c gt	atto	gtatt	tgt:	att	gtag	tgti	tgtca	ata a	ataaa	aatttg	1978
aataaaa	ıtat a	tttt	tgtt	t ca	aatto	ccaaa	a aaa	aaaa	aaaa	aaaa	aaa				2024
<210> S <211> I <212> T <213> O	ENGTH YPE:	: 54 PRT	8	pers	icon	ı esc	ulen	ıtum							
<400> S	EQUEN	CE:	52												
Met Ala	ı Ala	Ser	Ser 5	Ala	Asp	Lys	Суѕ	Arg 10	Pro	Leu	Ala	Asn	Phe 15	His	
Pro Ser		Trp 20	Gly	Tyr	His	Phe	Leu 25	Ser	Tyr	Thr	His	Glu 30	Ile	Thr	
Asn Glr	Glu 35	Lys	Val	Glu	Val	Asp 40	Glu	Tyr	Lys	Glu	Thr 45	Ile	Arg	Lys	
Met Let 50	ı Val	Glu	Thr	Суѕ	Asp 55	Asn	Ser	Thr	Gln	L y s 60	Leu	Val	Leu	Ile	
Asp Ala	Met	Gln	Arg	Leu 70	Gly	Val	Ala	Tyr	His 75	Phe	Asp	Asn	Glu	Ile 80	
Glu Thi	Ser		Gln 85	Asn	Ile	Phe	Asp	Ala 90	Ser	Ser	Lys	Gln	Asn 95	Asp	
Asn Asp		Asn 100	Leu	Tyr	Val	Val	Ser 105	Leu	Arg	Phe	Arg	Leu 110	Val	Arg	
Gln Glr	Gly 115	His	Tyr	Met	Ser	Ser 120	Asp	Val	Phe	Lys	Gln 125	Phe	Thr	Asn	
Gln Asp	_	Lys	Phe	Lys	Glu 135	Thr	Leu	Thr	Asn	Asp 140	Val	Gln	Gly	Leu	
Leu Ser 145	Leu	Tyr	Glu	Ala 150	Ser	His	Leu	Arg	Val 155	Arg	Asn	Glu	Glu	Ile 160	
Leu Glu	Glu		Leu 165	Thr	Phe	Thr	Thr	Thr 170	His	Leu	Glu	Ser	Ile 175	Val	
Ser Asr		Ser 180	Asn	Asn	Asn	Asn	Ser 185	Leu	Lys	Val	Glu	Val 190	Gly	Glu	
Ala Lei	Thr 195	Gln	Pro	Ile	Arg	Met 200	Thr	Leu	Pro	Arg	Met 205	Gly	Ala	Arg	

											_	COII	СТП	uea	
Lys	Tyr 210	Ile	Ser	Ile	Tyr	Glu 215	Asn	Asn	Asp	Ala	His 220	His	His	Leu	Leu
Leu 225	Lys	Phe	Ala	Lys	Leu 230	Asp	Phe	Asn	Met	Leu 235	Gln	Lys	Phe	His	Gln 240
Arg	Glu	Leu	Ser	Asp 245	Leu	Thr	Arg	Trp	Trp 250	Lys	Asp	Leu	Asp	Phe 255	Ala
Asn	Lys	Tyr	Pro 260	Tyr	Ala	Arg	Asp	Arg 265	Leu	Val	Glu	Cys	Tyr 270	Phe	Trp
Ile	Leu	Gly 275	Val	Tyr	Phe	Glu	Pro 280	Lys	Tyr	Ser	Arg	Ala 285	Arg	Lys	Met
Met	Thr 290	Lys	Val	Leu	Asn	Leu 295	Thr	Ser	Ile	Ile	Asp	Asp	Thr	Phe	Asp
Ala 305	Tyr	Ala	Thr	Phe	Asp	Glu	Leu	Val	Thr	Phe	Asn	Asp	Ala	Ile	Gln 320
Arg	Trp	Asp	Ala	Asn 325	Ala	Ile	Asp	Ser	Ile 330	Gln	Pro	Tyr	Met	Arg 335	Pro
Ala	Tyr	Gln	Ala 340	Leu	Leu	Asp	Ile	Tyr 345	Ser	Glu	Met	Glu	Gln 350	Val	Leu
Ser	Lys	Glu 355	Gly	Lys	Leu	Asp	A rg 360	Val	Tyr	Tyr	Ala	L y s 365	Asn	Glu	Met
Lys	Lys 370	Leu	Val	Arg	Ala	Tyr 375	Phe	Lys	Glu	Thr	Gln 380	Trp	Leu	Asn	Asp
C y s 385	Asp	His	Ile	Pro	Lys 390	Tyr	Glu	Glu	Gln	Val 395	Glu	Asn	Ala	Ile	Val 400
Ser	Ala	Gly	Tyr	Met 405	Met	Ile	Ser	Thr	Thr 410	Cys	Leu	Val	Gly	Ile 415	Glu
Glu	Phe	Ile	Ser 420	His	Glu	Thr	Phe	Glu 425	Trp	Leu	Met	Asn	Glu 430	Ser	Val
Ile	Val	Arg 435	Ala	Ser	Ala	Leu	Ile 440	Ala	Arg	Ala	Met	Asn 445	Asp	Ile	Val
Gly	His 450	Glu	Asp	Glu	Gln	Glu 455	Arg	Gly	His	Val	Ala 460	Ser	Leu	Ile	Glu
Cys 465	Tyr	Met	Lys	Asp	Tyr 470	Gly	Ala	Ser	Lys	Gln 475	Glu	Thr	Tyr	Ile	Lys 480
Phe	Leu	Lys	Glu	Val 485	Thr	Asn	Ala	Trp	L y s 490	Asp	Ile	Asn	Lys	Gln 495	Phe
Ser	Arg	Pro	Thr 500	Glu	Val	Pro	Met	Phe 505	Val	Leu	Glu	Arg	Val	Leu	Asn
Leu	Thr	A rg 515	Val	Ala	Asp	Thr	Leu 520	Tyr	Lys	Glu	Lys	Asp 525	Thr	Tyr	Ser
Thr	Ala 530	Lys	Gly	Lys	Leu	Lys 535	Asn	Met	Ile	Asn	Pro 540	Ile	Leu	Ile	Glu
Ser 545	Val	Lys	Ile												
<211 <212 <213 <220 <221 <222	l> LE 2> TY 3> OF 0> FE 1> NA 2> LO	ENGTH PE: RGANI EATUR ME/F	ISM: RE: KEY: ION:	Salv CDS (26)	(offici (1795 : (+)	5)	ls Diner	ie sy	vntas	se				

											con	tın	ued				
<400> S	EQUE	NCE:	53														
agcaata	tta	caac	taac	aa ta	aaaa	-				-		aac Asn		-	52		
atg cca Met Pro 10	_													-	100		
tgg tct Trp Ser															148		
tcc tta Ser Leu															196		
caa ccc Gln Pro															244		
tat aag Tyr Lys 75		_	-						_		_		_		292		
gtg agg Val Arg 90		_		_	-		_		_						340		
ttg att Leu Ile															388		
gag att Glu Ile															436		
cac aat His Asn							-							_	484		
caa cat Gln His 155															532		
gag aag Glu Lys 170	_	_	-			-			-		_	_	_		580		
atg tta Met Leu				-	-				_	-	-		-	-	628		
aca ttg Thr Leu			_	_	_				_			-	-		676		
ttt gat Phe Asp	_			_	-		_	_	_			_			724		
cgc cat Arg His 235															772		
gca aga Ala Arg 250															820		
ctt att Leu Ile				-							_	_	-		868		
tat caa Tyr Gln	-	-	_		-							-	_	-	916		

					cca Pro											964	
					gct Ala											1012	
	_			-	att Ile 335								-	-	-	1060	
					aca Thr											1108	
	_	_		-	aat Asn				-						-	1156	
		_		_	gca Ala					_				-		1204	
-				-	caa Gln				-					_	-	1252	
					gtt Val 415											1300	
					cca Pro											1348	
					cct Pro											1396	
					gaa Glu											1444	
					tca Ser							_	-	_		1492	
					gag Glu 495	_		-		_	_	_		-		1540	
					gac Asp											1588	
					ata Ile											1636	
		-	-	-	tgt C y s			-			_			-	-	1684	
-			-		gcg Ala	_	_					-		_		1732	
					tca Ser 575											1780	
	cag Gln				tga	ata	aatc	gaa a	aatco	caaco	ct a	ctato	gtato	2		1828	
ccto	gata	at a	atati	tctt	gg gg	gtta	acat	g tti	taatt	aaa	gtt	ctaat	ttd a	aaaga	agctga	1888	
atco	gatco	etc a	aaaa	aaaa	aa aa	aaa										1912	

												••••	<u></u>	u-0 u	
<211)> SE l> LE ?> TY	NGTH	I: 59												
	3> OF)> SE				ia o	offici	inali	s							
					Ile	Asn	Ile	Ala	Met	Pro	Leu	Asn	Ser	Leu	His
1	_,			5	_				10		_,			15	
Asn	Phe	Glu	Arg 20	Lys	Pro	Ser	Lys	A1a 25	Trp	Ser	Thr	Ser	30	Thr	Ala
Pro	Ala	Ala 35	Arg	Leu	Arg	Ala	Ser 40	Ser	Ser	Leu	Gln	Gln 45	Glu	Lys	Pro
His	Gln 50	Ile	Arg	Arg	Ser	Gly 55	Asp	Tyr	Gln	Pro	Ser 60	Leu	Trp	Asp	Phe
Asn 65	Tyr	Ile	Gln	Ser	Leu 70	Asn	Thr	Pro	Tyr	Lys 75	Glu	Gln	Arg	His	Phe 80
Asn	Arg	Gln	Ala	Glu 85	Leu	Ile	Met	Gln	Val 90	Arg	Met	Leu	Leu	Ly s 95	Val
Lys	Met	Glu	Ala 100	Ile	Gln	Gln	Leu	Glu 105	Leu	Ile	Asp	Asp	Leu 110	Gln	Tyr
Leu	Gly	Leu 115	Ser	Tyr	Phe	Phe	Gln 120	Asp	Glu	Ile	Lys	Gln 125	Ile	Leu	Ser
Ser	Ile 130	His	Asn	Glu	Pro	Arg 135	Tyr	Phe	His	Asn	Asn 140	Asp	Leu	Tyr	Phe
Thr 145	Ala	Leu	Gly	Phe	Arg 150	Ile	Leu	Arg	Gln	His 155	Gly	Phe	Asn	Val	Ser 160
Glu	Asp	Val	Phe	Asp 165	Cys	Phe	Lys	Ile	Glu 170	Lys	Cys	Ser	Asp	Phe 175	Asn
Ala	Asn	Leu	Ala 180	Gln	Asp	Thr	Lys	Gly 185	Met	Leu	Gln	Leu	Ty r 190	Glu	Ala
Ser	Phe	Leu 195	Leu	Arg	Glu	Gly	Glu 200	Asp	Thr	Leu	Glu	Leu 205	Ala	Arg	Arg
Phe	Ser 210	Thr	Arg	Ser	Leu	Arg 215	Glu	Lys	Phe	Asp	Glu 220	Gly	Gly	Asp	Glu
Ile 225	Asp	Glu	Asp	Leu	Ser 230	Ser	Trp	Ile	Arg	His 235	Ser	Leu	Asp	Leu	Pro 240
Leu	His	Trp	Arg	Val 245	Gln	Gly	Leu	Glu	Ala 250	Arg	Trp	Phe	Leu	Asp 255	Ala
Tyr	Ala	Arg	Arg 260	Pro	Asp	Met	Asn	Pro 265	Leu	Ile	Phe	Lys	Leu 270	Ala	Lys
Leu	Asn	Phe 275	Asn	Ile	Val	Gln	Ala 280	Thr	Tyr	Gln	Glu	Glu 285	Leu	Lys	Asp
Ile	Ser 290	Arg	Trp	Trp	Asn	Ser 295	Ser	Cys	Leu	Ala	Glu 300	Lys	Leu	Pro	Phe
Val 305	Arg	Asp	Arg	Ile	Val 310	Glu	Cys	Phe	Phe	Trp 315	Ala	Ile	Ala	Ala	Phe 320
Glu	Pro	His	Gln	Tyr 325	Ser	Tyr	Gln	Arg	L y s 330	Met	Ala	Ala	Val	Ile 335	Ile
Thr	Phe	Ile	Thr 340	Ile	Ile	Asp	Asp	Val 345	Tyr	Asp	Val	Tyr	Gly 350	Thr	Ile
Glu	Glu	Leu 355	Glu	Leu	Leu	Thr	Asp 360	Met	Ile	Arg	Arg	Trp 365	Asp	Asn	Lys
Ser	Ile 370	Ser	Gln	Leu	Pro	Tyr 375	Tyr	Met	Gln	Val	Cys 380	Tyr	Leu	Ala	Leu

Tyr Asn Phe Val	Ser Glu Arg Ala 390	Tyr Asp Ile Leu Lys Asp Gln 1	His 400
	Pro Tyr Leu Gln 405	Arg Ser Trp Val Ser Leu Val (Glu
Gly Tyr Leu Lys 420	Glu Ala Tyr Trp	Tyr Tyr Asn Gly Tyr Lys Pro : 425 430	Ser
Leu Glu Glu Tyr 435	Leu Asn Asn Ala	Lys Ile Ser Ile Ser Ala Pro '	Thr
Ile Ile Ser Gln 450	Leu Tyr Phe Thr 455	Leu Ala Asn Ser Ile Asp Glu '	Thr
Ala Ile Glu Ser 465	Leu Tyr Gln Tyr 470	His Asn Ile Leu Tyr Leu Ser (Gl y 480
Thr Ile Leu Arg	Leu Ala Asp Asp	Leu Gly Thr Ser Gln His Glu	Leu
Glu Arg Gly Asp	485 Val Pro Lys Ala	490 495 Ile Gln Cys Tyr Met Asn Asp	Thr
500 Asn Ala Ser Glu	Ara Glu Ala Val	505 510 Glu His Val Lys Phe Leu Ile 2	lra
515	520	525	 9
Glu Ala Trp Lys 530	Glu Met Asn Thr 535	Val Thr Thr Ala Ser Asp Cys 1 540	Pro
Phe Thr Asp Asp 545	Leu Val Ala Ala 550	Ala Ala Asn Leu Ala Arg Ala A	Ala 560
Gln Phe Ile Tyr	Leu Asp Gly Asp 565	Gly His Gly Val Gln His Ser of 570 575	Glu
Ile His Gln Gln 580	Met Gly Gly Leu	Leu Phe Gln Pro Tyr Val 585 590	
<pre><210> SEQ ID NO <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <223> OTHER INFO</pre>	Abies grandis CDS (3)(2606)	iene synthase	
<400> SEQUENCE:	55		
		etg tca tca cag att ccc act g eu Ser Ser Gln Ile Pro Thr A 10	
		caa tcc att ccg cat ttc tcc c Gln Ser Ile Pro His Phe Ser c 25 30	
		agc aaa cgg aga agc ttg tac o Ser Lys Arg Arg Ser Leu Tyr 1 40 45	
		atc att gcc tgt gtt gga gaa (Ile Ile Ala Cys Val Gly Glu (60	
	-	tct gct gaa aag aat gat tcg o Ser Ala Glu Lys Asn Asp Ser 1 75	
		gaa ttt cct cca gga ttt tgg a Glu Phe Pro Pro Gly Phe Trp 1 90	=
		tca tct cac aag gtt gca gca Ser Ser His Lys Val Ala Ala : 105 110	

										con	tini	uea	
gag Glu													383
tgt C y s													431
gta Val 145													479
gag Glu													527
ggt Gly													575
gca Ala	-							_					623
cag Gln													671
gaa Glu 225													719
atg Met													767
cca Pro													815
att Ile													863
ttg Leu													911
caa Gln 305													959
gta Val		Met	Arg	Gly	Asn	Lys	Lys	Cys	Leu				1007
gtc Val													1055
cta Leu													1103
gat Asp													1151
agc Ser 385										-			1199
cct Pro													1247
gga Gly													1295

and gog gog and the thit togo the thing of coas and coal gogs got and and an oly olds the pibe cyse Phe Leu (1) you first join Ang (1) you filt the coal set that the coal gog and the ten Ann Yal Ann Ang Cys Ser His Val Ser Phe Pro Gly Glu day Ann Ang Cys Ser His Val Ser Phe Pro Gly Glu day Ann Ang Cys Ser His Val Ser Phe Pro Gly Glu day Ang Ang Cys Ser His Val Ser Phe Pro Gly Glu day Glu Try Ala Leu Lyx Try Flat Phe Lyx Lyx Ann 480 day 680 da	_												CO11	CTII	ueu		
Asp Net Leu Aen val Aen Arg Cys ser His val Ser Phe Pro Gly Glu 455 ang sto aty gas gas gos ase the typ acc gas agy tant cty ang act 1439 The Tile Net Glu Glu hala 171 Eur Cyr Thr Glu Ang Tyr Leu Arg Aen 1468 got cty gas and gty gat goot tty gas can aty got tty and and and and act good and and act good gas and all Leu Glu Aen Val Aep hala Phe Aep Lyr Trp Ale Phe Lyr Lyr Aen 480 485 485 486 487 488 488 489 489 481 481 482 485 485 486 487 488 488 488 488 488 488				Phe					Gly					Gly			1343
The file seef Shu Shu Aila Isys Len Cys The Shu Aig Try Len Aig San 465 470 475 got ctg gaa aat gtg gat goc ttt gac aaa tgg got ttt aaa aag aat 1487 Alai Lou Glu Ash Val Asp Ain Pho Asp Lys Trp Ain Pho Lys Lys Ash Ain 160 485 487 489 499 499 499 499 499 499 499 499 499			Leu					Cys					Phe				1391
Ail Deu Glu Ann Val Åap Åla Phe Åap Lya Tpp Åla Phe Lya Lya Ann Ago 480 480 480 480 480 480 480 48		Ile					Lys					Arg					1439
And a set of the set o	Āla					Asp					Trp					Asn	1487
Met Pro Arg Leu Glu Ala Arg Ser Tyr Ile Glu Aen Tyr Gly Pro Aep 515 515 525 525 525 525 525 525 525 525					Val					Lys					Lys		1535
App Val Trp Leu Gly Lys Thr Val Tyr Met Met Pro Tyr Ile Ser Asn 540 gaa aag tat tta gaa cta gog aaa ctg gac ttc aat aag gtg cag tct 1679 515 550 550 550 550 550 550 550 550 550	_			Leu		-	_	_	Tyr		_			Gly		-	1583
Glu Lys Tyr Leu Glu Leu Ala Lys Leu Alep Phe Asn Lys Val Gln Ser 545 545 1727 545 555 550 555 1727 ata cac caa aca gag ctt caa gat ctt cag agg tgt gtg aaa tca tcc Tle His Gln Thr Glu Leu Gln Asp Leu Arg Arg Trp Trp Lys Ser Ser 575 1727 561 565 576 576 577 577 577 577 577 577 577 585 777 570 11e Tyr 575 587 578 577 577 577 587 578 577 577 577 587 578 578 578 578 578 587 578 578 578 578 578 587 578 578 578 578 578 588 578 578 578 578 578 589 578 578 578 578 578 580 578 587 587 583 583 583 583 583 583 583 583 583 583 583 583			Trp					Val					${\tt Tyr}$				1631
The His Gln Thr Glu Leu Gln Asp Leu Arg Arg Trp Trp Lys Ser Ser 575 ggt tto acg gat ctg ast ttc act cgt gaq cgt gtg acg gaa ata tat Gly Phe Thr Asp Leu Asn Phe Thr Arg Glu Arg Val Thr Glu Ile Tyr 580 ttc tca ccg gca tcc ttt atc ttt gag ccc gag ttt tct aag tgc aga phe Ser Pro Ala Ser Phe Ile Phe Glu Pro Glu Phe Ser Lys Cys Arg 605 gag gtt tat aca asa act tcc aat ttc act gtt att tta gat gat ctt Glu Val Tyr Thr Lys Thr Ser Aan Phe Thr Val Ile Leu Asp Asp Leu 610 tat gac gcc cat gga tct tta gac gat ctt aag tgt tc aca gaa tca Tyr Asp Ala His Gly Ser 630 gc aaa aga tgg gat cta tca cta gtg gac caa atg cca caa aca act tc act gtg gac caa acg caa acg tgc asa aca act tc act gtg gac caa acg caa acg tgc gac gat gtg tc aca aca act gtg gac caa acg tgc gc gat gtg tc tac act gtg gac caa acg cca caa aca act gc gac act acg acc acc acc acc acc acc acc acc acc	-	Lys			-		Ala		_	-		Asn	_		_		1679
Siy Phe Thr Asp Leu Asn Phe Thr Arg Siu Arg Val Thr Siu Tie Tyr 580 580 580 580 580 580 580 580 580 580	Ile					Leu					Arg					Ser	1727
Phe Ser Pro Ala Ser Phe Ile Phe Glu Pro Glu Pr					Leu					Glu					Ile		1775
Glu Val Tyr Thr Lys Thr Ser Asn Phe Thr Val I le Leu Asp Asp Leu 615 tat gac gcc cat gga tct tta gac gat ctt aag ttg ttc aca gaa tca Tyr Asp Ala His Gly Ser Leu Asp Asp Leu Lys Leu Phe Thr Glu Ser 625 gtc aaa aga tgg gat cta tca cta gtg gac caa atg cca caa caa atg Val Lys Arg Trp Asp Leu Ser Leu Val Asp Gln Met Pro Gln Gln Met 640 saa ata tgt ttt gtg ggt tc tac aat act tt aat gat ata gca aaa Lys Ile Cys Phe Val Gly Phe Tyr Asn Thr Phe Asn Asp Ile Ala Lys 665 gaa gga cgt gag agg caa ggg cgc gat gtg cta ggc tac att caa aat Glu Gly Arg Glu Arg Gln Gly Arg Asp Val Leu Gly Tyr Ile Gln Asn 675 gtt tgg aaa gtc caa ctt gaa gct tac acg aaa gaa gca gaa tgg tct Val Trp Lys Val Gln Leu Glu Ala Tyr Thr Lys Glu Ala Glu Trp Ser 690 gaa gct aaa tat gtg cca tcc ttc aat gaa tac ata agg aat gg gat gg caa gg cgt gat sca cat caa cac gag Glu Ala Lys Tyr Val Pro Ser Phe Asn Glu Tyr Ile Glu Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc gtt ctc att agg cat tac act act act act act act act act			_	Ala					Glu					Lys	-	-	1823
Tyr Asp Ala His Gly Ser Leu Asp Asp Leu Lys Leu Phe Thr Glu Ser G25 gtc aaa aga tgg gat cta tca cta gtg gac caa atg cca caa atg 1967 Val Lys Arg Trp Asp Leu Ser Leu Val Asp Gln Met Pro Gln Gln Met 640 aaa at at gt ttt gtg ggt ttc tac aat act ttt aat gat ata gca aaa Lys Ile Cys Phe Val Gly Phe Tyr Asn Thr Phe Asn Asp Ile Ala Lys Ile Cys Phe Val Gly Arg Gln Gly Arg Gln Gly Arg Gln Gly Arg Gln Gly Arg Gln Gly Arg Gln Gly Arg Asp Val Leu Gly Tyr Ile Gln Asn 685 gtt tgg aaa gtc caa ctt gaa gct tac acg aaa gaa gca gaa tgg tct Val Trp Lys Val Gln Leu Glu Ala Tyr Thr Lys Glu Ala Glu Trp Ser 690 gaa gct aaa tat gtg cca tcc ttc aat gaa tac ata gag aat gcg gat gtg cta tac atg gag acg gtg gtg cta atg gcd aaa tac atg gag acg gtg gat gtg cta atg gcd atg gad atg gtg cta Ser Ile Glu Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc ct tca at agt gat ct tac acg aat gcg gat gtg cta atg gcd atg gtg cta atg gcd atg gcd atg gad atg gcd gcd atg g		-	Tyr					Asn			_		Leu	-	_		1871
Val Lys Arg Trp Asp Leu Ser Leu Val Asp Gln Met Pro Gln Gln Met 655 aaa at at tgt ttt gtg ggt ttc tac aat act ttt aat gat at a gca aaa Lys Ile Cys Phe Val Gly Phe Tyr Asn Thr Phe Asn Asp Ile Ala Lys 660 gaa gga cgt gag agg caa ggg cgc gat gtg cta ggc tac att caa aat Chy Arg Gln Asp Val Leu Gly Tyr Ile Gln Asn 685 gtt tgg aaa gtc caa ctt gaa gct tac acg acg gat gtg cta gat gca gaa tgg tct Val Trp Lys Glu Ala Tyr Thr Lys Glu Ala Glu Trp Ser 700 gaa gct aaa tat gtg cca tcc ttc aat gaa gat at gad aat gcg agt gtg Tyr Ile Glu Asn Asp Ile Ala Lys Glu Ala Ser Val Trp Ser 700 gaa gct aaa tat gtg cca tcc ttc aat gaa gad at ac gad aat gcg agt gtg Tyr Ile Glu Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc gtc tcc att act act gad gcd tac act gad gcd tac act gad gcd tac act gad gcd tac act gad gcd tac act gad gcd tac act gcd act gcd tcc act gad gcd tac act gcd act gcd tcc tcc act gad tac act gad gcd tac act gcd act gcd tcc tcc act gcd ycd Tyr Ile Glu Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc gtc tcc act act tcc act act gcd gcd gcd gcd gcd gcd gcd gcd gcd gcd		Asp					Leu					Leu					1919
Lys Ile Cys Phe Val Gly Phe Tyr Asn Thr Phe Asn Asp Ile Ala Lys 660 gaa gga cgt gag agg caa ggg cgc gat gtg cta ggc tac att caa aat 2063 Glu Gly Arg Glu Arg Gln Gly Arg Asp 680 gtt tgg aaa gtc caa ctt gaa gct tac acg aaa gaa gca gaa tgg tct Trp Lys Val Gln Leu Glu Ala Tyr Thr Lys Glu Ala Gln Trp Ser 700 gaa gct aaa tat gtg cca tcc ttc aat gaa tac ata gag aat gcg agt Trp Ile Gln Asn Glu Trp Ser 705 gtg tca ata gca ttg gga aca gtc cat cc ttc at at agt gca at ac ata gag aat gcg agt ctc Trp Ile Glu Asn Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc gtt ctc att agt gcc ctc tcc att agt gcc ctc ttc att agt gcc ctc ttc att agt gcc ctc ttc acc acc acc acc acc acc acc a	Val					Leu					Gln						1967
Glu Gly Arg Glu Arg Gln Gly Arg Asp Val Leu Gly Tyr Ile Gln Asn 675 gtt tgg aaa gtc caa ctt gaa gct tac acg aaa gaa gca gaa tgg tct Val Trp Lys Val Gln Leu Glu Ala Tyr Thr Lys Glu Ala Glu Trp Ser 690 gaa gct aaa tat gtg cca tcc ttc aat gaa tac ata gag aat gcg agt Glu Ala Lys Tyr Val Pro Ser Phe Asn Glu Tyr Ile Glu Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc gtt ctc att agt gct ctt ttc act 2207 Val Ser Ile Ala Leu Gly Thr Val Val Leu Ser Lys Ile Asp Arg Glu Ser ggg gag gtt ctt aca gat gaa gta ctc tcc aaa att gat cgc gaa tct Gly Glu Val Leu Thr Asp Glu Val Leu Ser Lys Ile Asp Arg Glu Ser					Val					Thr					Ala		2015
Val Trp Lys Val Gln Leu Glu Ala Tyr Thr Lys Glu Ala Glu Trp Ser 690 gaa gct aaa tat gtg cca tcc ttc aat gaa tac ata gag aat gcg agt Glu Ala Lys Tyr Val Pro Ser Phe Asn Glu Tyr Ile Glu Asn Ala Ser 705 gtg tca ata gca ttg gga aca gtc gtt ctc att agt gct ctt ttc act Val Ser Ile Ala Leu Gly Thr Val Val Leu Ile Ser Ala Leu Phe Thr 720 ggg gag gtt ctt aca gat gaa gta ctc tcc aaa att gat cgc gaa tct Gly Glu Val Leu Thr Asp Glu Val Leu Ser Lys Ile Asp Arg Glu Ser 2159 2255	-		-	Glu				-	Asp					Ile			2063
Glu Ala Lys Tyr Val Pro Ser Phe Asn Glu Tyr Ile Glu Asn Ala Ser 705 710 715 gtg tca ata gca ttg gga aca gtc gtt ctc att agt gct ctt ttc act 2207 Val Ser Ile Ala Leu Gly Thr Val Val Leu Ile Ser Ala Leu Phe Thr 720 725 730 735 ggg gag gtt ctt aca gat gaa gta ctc tcc aaa att gat cgc gaa tct 2255 Gly Glu Val Leu Thr Asp Glu Val Leu Ser Lys Ile Asp Arg Glu Ser	-		Lys	_			-	Ala		_		_	Āla	-			2111
Val Ser Ile Ala Leu Gly Thr Val Val Leu Ile Ser Ala Leu Phe Thr 720 725 730 735 ggg gag gtt ctt aca gat gaa gta ctc tcc aaa att gat cgc gaa tct 2255 Gly Glu Val Leu Thr Asp Glu Val Leu Ser Lys Ile Asp Arg Glu Ser	-	Āla			-		Ser			-		Ile	-			-	2159
Gly Glu Val Leu Thr Asp Glu Val Leu Ser Lys Ile Asp Arg Glu Ser	Val					Gly					Ile					Thr	2207
			-		Thr	-	-	-		Ser			-	-	Glu		2255

-continued	
aga ttt ctt caa ctc atg ggc tta aca ggg cgt ttg gtg aat gac acc Arg Phe Leu Gln Leu Met Gly Leu Thr Gly Arg Leu Val Asn Asp Thr 755 760 765	2303
aaa act tat cag gca gag aga ggt caa ggt gag gtg gct tct gcc ata Lys Thr Tyr Gln Ala Glu Arg Gly Gln Gly Glu Val Ala Ser Ala Ile 770 775 780	2351
caa tgt tat atg aag gac cat cct aaa atc tct gaa gaa gaa gct cta Gln Cys Tyr Met Lys Asp His Pro Lys Ile Ser Glu Glu Glu Ala Leu 785 790 795	2399
caa cat gtc tat agt gtc atg gaa aat gcc ctc gaa gag ttg aat agg Gln His Val Tyr Ser Val Met Glu Asn Ala Leu Glu Glu Leu Asn Arg 800 805 810 815	2447
gag ttt gtg aat aac aaa ata ccg gat att tac aaa aga ctg gtt ttt Glu Phe Val Asn Asn Lys Ile Pro Asp Ile Tyr Lys Arg Leu Val Phe 820 825 830	2495
gaa act gca aga ata atg caa ctc ttt tat atg caa ggg gat ggt ttg Glu Thr Ala Arg Ile Met Gln Leu Phe Tyr Met Gln Gly Asp Gly Leu 835 840 845	2543
aca cta tca cat gat atg gaa att aaa gag cat gtc aaa aat tgc ctc Thr Leu Ser His Asp Met Glu Ile Lys Glu His Val Lys Asn Cys Leu 850 855 860	2591
ttc caa cca gtt gcc tag attaaattat tcagttaaag gccctcatgg Phe Gln Pro Val Ala 865	2639
tattgtgtta acattataat aacagatgct caaaagcttt gagcggtatt tgttaaggct	2699
atctttgttt gtttgtttgt ttactgccaa ccaaaaagcg ttcctaaacc tttgaagaca	2759
tttccatcca agagatggag tctacatttt atttatgaga ttgaattatt tcaagagaat	2819
atactacata tatttaaaag taaaaaaaaaa aaaaaaaaaa	2861
<210> SEQ ID NO 56 <211> LENGTH: 868 <212> TYPE: PRT <213> ORGANISM: Abies grandis	
<400> SEQUENCE: 56	
Met Ala Met Pro Ser Ser Ser Leu Ser Ser Gln Ile Pro Thr Ala Ala 1 5 10 15	
His His Leu Thr Ala Asn Ala Gln Ser Ile Pro His Phe Ser Thr Thr	
20 25	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg 35 40 45	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg 35 40 45 Trp Gly Lys Gly Ser Asn Lys Ile Ile Ala Cys Val Gly Glu Gly Gly	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg 35 Trp Gly Lys Gly Ser Asn Lys Ile Ile Ala Cys Val Gly Glu Gly Gly 50 Ala Thr Ser Val Pro Tyr Gln Ser Ala Glu Lys Asn Asp Ser Leu Ser	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg 45 Trp Gly Lys Gly Ser Asn Lys Ile Ile Ala Cys Val Gly Glu Gly Gly 55 Ala Thr Ser Val Pro Tyr Gln Ser Ala Glu Lys Asn Asp Ser Leu Ser 75 Ser Ser Thr Leu Val Lys Arg Glu Phe Pro Pro Gly Phe Trp Lys Asp	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg 45 Trp Gly Lys Gly Ser Asn Lys Ile Ile Ala Cys Val Gly Glu Gly Gly 55 Ala Thr Ser Val Pro Tyr Gln Ser Ala Glu Lys Asn Asp Ser Leu Ser 65 Ser Ser Thr Leu Val Lys Arg Glu Phe Pro Pro Gly Phe Trp Lys Asp 85 Asp Leu Ile Asp Ser Leu Thr Ser Ser His Lys Val Ala Ala Ser Asp 110 Glu Lys Arg Ile Glu Thr Leu Ile Ser Glu Ile Lys Asn Met Phe Arg 115	
Leu Asn Ala Gly Ser Ser Ala Ser Lys Arg Arg Ser Leu Tyr Leu Arg 40 Leu Asn 45 Trp Gly Lys Gly Ser Asn Lys Ile Ile Ala Cys Val Gly Glu Gly Gly 50 Ser Ser Tyr Gln Ser Ala Glu Lys Asn Asp Ser Leu Ser 80 Ser Ser Thr Leu Val Lys Arg Glu Phe Pro Pro Gly Phe Trp Lys Asp 90 Ser Leu Ile Asp Ser Leu Thr Ser Ser His Lys Val Ala Ala Ser Asp Glu Lys Arg Ile Glu Thr Leu Ile Ser Glu Ile Lys Asn Met Phe Arg	

Glu	Thr	Val	Glu	Trp 165	Ile	Leu	Gln	Asn	Gln 170	Leu	Lys	Asp	Gly	Ser 175	Trp
Gly	Glu	Gly	Phe 180	Tyr	Phe	Leu	Ala	Ty r 185	Asp	Arg	Ile	Leu	Ala 190	Thr	Leu
Ala	Cys	Ile 195	Ile	Thr	Leu	Thr	Leu 200	Trp	Arg	Thr	Gly	Glu 205	Thr	Gln	Val
Gln	L y s 210	Gly	Ile	Glu	Phe	Phe 215	Arg	Thr	Gln	Ala	Gly 220	Lys	Met	Glu	Asp
Glu 225	Ala	Asp	Ser	His	Arg 230	Pro	Ser	Gly	Phe	Glu 235	Ile	Val	Phe	Pro	Ala 240
Met	Leu	Lys	Glu	Ala 245	Lys	Ile	Leu	Gly	Leu 250	Asp	Leu	Pro	Tyr	A sp 255	Leu
Pro	Phe	Leu	L y s 260	Gln	Ile	Ile	Glu	L y s 265	Arg	Glu	Ala	Lys	Leu 270	Lys	Arg
Ile	Pro	Thr 275	Asp	Val	Leu	Tyr	Ala 280	Leu	Pro	Thr	Thr	Leu 285	Leu	Tyr	Ser
Leu	Glu 290	Gly	Leu	Gln	Glu	Ile 295	Val	Asp	Trp	Gln	L y s 300	Ile	Met	Lys	Leu
Gln 305	Ser	Lys	Asp	Gly	Ser 310	Phe	Leu	Ser	Ser	Pro 315	Ala	Ser	Thr	Ala	Ala 320
Val	Phe	Met	Arg	Thr 325	Gly	Asn	Lys	Lys	Cys 330	Leu	Asp	Phe	Leu	Asn 335	Phe
Val	Leu	Lys	Lys 340	Phe	Gly	Asn	His	Val 345	Pro	Сув	His	Tyr	Pro 350	Leu	Asp
Leu	Phe	Glu 355	Arg	Leu	Trp	Ala	Val 360	Asp	Thr	Val	Glu	Arg 365	Leu	Gly	Ile
Asp	Arg 370	His	Phe	Lys	Glu	Glu 375	Ile	Lys	Glu	Ala	Leu 380	Asp	Tyr	Val	Tyr
Ser 385	His	Trp	Asp	Glu	Arg 390	Gly	Ile	Gly	Trp	Ala 395	Arg	Glu	Asn	Pro	Val 400
Pro	Asp	Ile	Asp	Asp 405	Thr	Ala	Met	Gly	Leu 410	Arg	Ile	Leu	Arg	Leu 415	His
Gly	Tyr	Asn	Val 420	Ser	Ser	Asp	Val	Leu 425	Lys	Thr	Phe	Arg	Asp 430	Glu	Asn
Gly	Glu	Phe 435	Phe	Суѕ	Phe	Leu	Gly 440	Gln	Thr	Gln	Arg	Gly 445	Val	Thr	Asp
Met	Leu 450	Asn	Val	Asn	Arg	Cys 455	Ser	His	Val	Ser	Phe 460	Pro	Gly	Glu	Thr
Ile 465	Met	Glu	Glu	Ala	L y s 470	Leu	Сув	Thr	Glu	Arg 475	Tyr	Leu	Arg	Asn	Ala 480
Leu	Glu	Asn	Val	Asp 485	Ala	Phe	Asp	Lys	Trp 490	Ala	Phe	Lys	Lys	Asn 495	Ile
Arg	Gly	Glu	Val 500	Glu	Tyr	Ala	Leu	Lys 505	Tyr	Pro	Trp	His	Lys 510	Ser	Met
Pro	Arg	Leu 515	Glu	Ala	Arg	Ser	Tyr 520	Ile	Glu	Asn	Tyr	Gly 525	Pro	Asp	Asp
Val	Trp 530	Leu	Gly	Lys	Thr	Val 535	Tyr	Met	Met	Pro	Tyr 540	Ile	Ser	Asn	Glu
Lys 545	Tyr	Leu	Glu	Leu	Ala 550	Lys	Leu	Asp	Phe	Asn 555	Lys	Val	Gln	Ser	Ile 560
	Gln	Thr	Glu	Leu 565	Gln	Asp	Leu	Arg	Arg 570		Trp	Lys	Ser	Ser 575	

Phe	Thr	Asp	Leu 580	Asn	Phe	Thr	Arg	Glu 585	Arg	Val	Thr	Glu	Ile 590	Tyr	Phe			
Ser	Pro	Ala 595	Ser	Phe	Ile	Phe	Glu 600	Pro	Glu	Phe	Ser	L y s 605	Cys	Arg	Glu			
Val	Tyr 610	Thr	Lys	Thr	Ser	Asn 615	Phe	Thr	Val	Ile	Leu 620	Asp	Asp	Leu	Tyr			
Asp 625	Ala	His	Gly	Ser	Leu 630	Asp	Asp	Leu	Lys	Leu 635	Phe	Thr	Glu	Ser	Val 640			
Lys	Arg	Trp	Asp	Leu 645	Ser	Leu	Val	Asp	Gln 650	Met	Pro	Gln	Gln	Met 655	Lys			
Ile	Cys	Phe	Val 660	Gly	Phe	Tyr	Asn	Thr 665	Phe	Asn	Asp	Ile	Ala 670	Lys	Glu			
Gly	Arg	Glu 675	Arg	Gln	Gly	Arg	A sp 680	Val	Leu	Gly	Tyr	Ile 685	Gln	Asn	Val			
Trp	L y s 690	Val	Gln	Leu	Glu	Ala 695	Tyr	Thr	Lys	Glu	Ala 700	Glu	Trp	Ser	Glu			
Ala 705	Lys	Tyr	Val	Pro	Ser 710	Phe	Asn	Glu	Tyr	Ile 715	Glu	Asn	Ala	Ser	Val 720			
Ser	Ile	Ala	Leu	Gly 725	Thr	Val	Val	Leu	Ile 730	Ser	Ala	Leu	Phe	Thr 735	Gly			
Glu	Val	Leu	Thr 740	Asp	Glu	Val	Leu	Ser 745	Lys	Ile	Asp	Arg	Glu 750	Ser	Arg			
Phe	Leu	Gln 755	Leu	Met	Gly	Leu	Thr 760	Gly	Arg	Leu	Val	Asn 765	Asp	Thr	Lys			
Thr	Ty r 770	Gln	Ala	Glu	Arg	Gl y 775	Gln	Gly	Glu	Val	Ala 780	Ser	Ala	Ile	Gln			
C y s 785	Tyr	Met	Lys	Asp	His 790	Pro	Lys	Ile	Ser	Glu 795	Glu	Glu	Ala	Leu	Gln 800			
His	Val	Tyr	Ser	Val 805	Met	Glu	Asn	Ala	Leu 810	Glu	Glu	Leu	Asn	Arg 815	Glu			
Phe	Val	Asn	Asn 820	Lys	Ile	Pro	Asp	Ile 825	Tyr	Lys	Arg	Leu	Val 830	Phe	Glu			
Thr	Ala	Arg 835	Ile	Met	Gln	Leu	Phe 840	Tyr	Met	Gln	Gly	Asp 845	Gly	Leu	Thr			
Leu	Ser 850	His	Asp	Met	Glu	Ile 855	Lys	Glu	His	Val	L y s 860	Asn	Сув	Leu	Phe			
Gln 865	Pro	Val	Ala															
<213 <213 <223 <223 <223 <223)> FE L> NA 2> LO	ENGTH PE: RGANI EATUR ME/R DCATI	H: 20 DNA ISM: RE: KEY: ION: INFO	Abie CDS (73)	es gi	(1983	3)	-limo	onene	ıya e	nthas	se						
tgc	gtti	taa 1	tcgg [.]	ttta	aa g	aagc	tacca	a tag	gttc	ggtt	taa	agaa	gct a	accat	tagttt	60		
aggo	cagga	aat o	Me				eu Se					eu G			cc aaa co Lys	111		
											aat Asn 25					159		

												con	CTII	ueu		
	tgt C y s				-	-				_	-	-		-	_	207
	gct Ala	_	-			-		_			-			-	-	255
	aat Asn															303
	ctg Leu															351
	tct Ser 95															399
	atg Met								_	_						447
	gat Asp															495
	ata Ile															543
	tac Tyr															591
	act Thr 175															639
_	ctg Leu								_		_	_				687
-	gaa Glu	_				-	_		_						_	735
	act Thr															783
	ggg Gl y		Lys	Val		Glu	Glu	Ala								831
_	aaa L y s 255		-			-		_	-							879
	gaa Glu		_	_	_					_		_	_	_	_	927
	gca Ala															975
	aac Asn		-			-		-	_	_					-	1023
	ttg Leu								_			-				1071
	atc Ile 335															1119

-continued

												<u> </u>	<u></u>			 	
aca cgo Thr Aro															1167		
atg tto Met Lei															1215		
cat ctt His Leu															1263		
aac gaa Asn Gli															1311		
acg aca Thr Thi	Arg				-		_					_	-	-	1359		
tat caa Tyr Glr 430	_			-	_		_		_		_				1407		
cga gat Arg Asp	-							-		-	_			-	1455		
acc ttt Thr Phe															1503		
ttt gaq Phe Glu			-	-		-		-	-				-		1551		
gcc aca Ala Thi 495	Leu						_	_	_				-		1599		
ata cto Ile Leo 510		_		-				_					-	-	1647		
tcc ato Ser Ile		_		_		-	_	_	_		_		-		1695		
gcc cgt Ala Arq		_	_	-		-		_	-		_		-		1743		
cct gga Pro Gly															1791		
agt gat Ser Asp 575	Āla		-	-							-	-	-	-	1839		
aaa agt L y s Sei 590															1887		
ttc cat Phe His		_				-	-				_				1935		
gaa aca Glu Thi															1983		
taa aaa	acata	tag (aatg	catta	aa aa	atgt	ggga	a gto	ctat	aatc	tag	acta	ttc		2036		
tctatct	ttc	ataa	tgta	ga to	ctgg	atgt	g ta	ttgaa	actc	taa	aaaa	aaa a	aaa		2089		

<210> SEQ ID NO 58 <211> LENGTH: 637

											_	COII	C 111	ucu	
	2> TY 3> OF			Abie	es gi	randi	is								
<400)> SE	QUE	ICE:	58											
Met 1	Ala	Leu	Leu	Ser 5	Ile	Val	Ser	Leu	Gln 10	Val	Pro	Lys	Ser	Cys 15	Gly
Leu	Lys	Ser	Leu 20	Ile	Ser	Ser	Ser	Asn 25	Val	Gln	Lys	Ala	Leu 30	Cys	Ile
Ser	Thr	Ala 35	Val	Pro	Thr	Leu	Arg 40	Met	Arg	Arg	Arg	Gln 45	Lys	Ala	Leu
Val	Ile 50	Asn	Met	Lys	Leu	Thr 55	Thr	Val	Ser	His	Arg 60	Asp	Asp	Asn	Gly
Gly 65	Gly	Val	Leu	Gln	Arg 70	Arg	Ile	Ala	Asp	His 75	His	Pro	Asn	Leu	Trp 80
Glu	Asp	Asp	Phe	Ile 85	Gln	Ser	Leu	Ser	Ser 90	Pro	Tyr	Gly	Gly	Ser 95	Ser
Tyr	Ser	Glu	Arg 100	Ala	Glu	Thr	Val	Val 105	Glu	Glu	Val	Lys	Glu 110	Met	Phe
Asn	Ser	Ile 115	Pro	Asn	Asn	Arg	Glu 120	Leu	Phe	Gly	Ser	Gln 125	Asn	Asp	Leu
Leu	Thr 130	Arg	Leu	Trp	Met	Val 135	Asp	Ser	Ile	Glu	Arg 140	Leu	Gly	Ile	Asp
Arg 145	His	Phe	Gln	Asn	Glu 150	Ile	Arg	Val	Ala	Leu 155	Asp	Tyr	Val	Tyr	Ser 160
Tyr	Trp	Lys	Glu	L y s 165	Glu	Gly	Ile	Gly	C ys 170	Gly	Arg	Asp	Ser	Thr 175	Phe
Pro	Asp	Leu	Asn 180	Ser	Thr	Ala	Leu	Ala 185	Leu	Arg	Thr	Leu	Arg 190	Leu	His
Gly	Tyr	Asn 195	Val	Ser	Ser	Asp	Val 200	Leu	Glu	Tyr	Phe	L ys 205	Asp	Glu	Lys
Gly	His 210	Phe	Ala	Cys	Pro	Ala 215	Ile	Leu	Thr	Glu	Gly 220	Gln	Ile	Thr	Arg
Ser 225	Val	Leu	Asn	Leu	Tyr 230	Arg	Ala	Ser	Leu	Val 235	Ala	Phe	Pro	Gly	Glu 240
Lys	Val	Met	Glu	Glu 245	Ala	Glu	Ile	Phe	Ser 250	Ala	Ser	Tyr	Leu	Lys 255	Lys
Val	Leu	Gln	Lys 260	Ile	Pro	Val	Ser	Asn 265	Leu	Ser	Gly	Glu	Ile 270	Glu	Tyr
Val	Leu	Glu 275	Tyr	Gly	Trp	His	Thr 280	Asn	Leu	Pro	Arg	Leu 285	Glu	Ala	Arg
Asn	Ty r 290	Ile	Glu	Val	Tyr	Glu 295	Gln	Ser	Gly	Tyr	Glu 300	Ser	Leu	Asn	Glu
Met 305	Pro	Tyr	Met	Asn	Met 310	Lys	Lys	Leu	Leu	Gln 315	Leu	Ala	Lys	Leu	Glu 320
Phe	Asn	Ile	Phe	His 325	Ser	Leu	Gln	Leu	Arg 330	Glu	Leu	Gln	Ser	Ile 335	Ser
Arg	Trp	Trp	Lys 340	Glu	Ser	Gly	Ser	Ser 345	Gln	Leu	Thr	Phe	Thr 350	Arg	His
Arg	His	Val 355	Glu	Tyr	Tyr	Thr	Met 360	Ala	Ser	Cys	Ile	Ser 365	Met	Leu	Pro
Lys	His 370	Ser	Ala	Phe	Arg	Met 375	Glu	Phe	Val	Lys	Val 380	Cys	His	Leu	Val
Thr 385	Val	Leu	Asp	Asp	Ile 390	Tyr	Asp	Thr	Phe	Gl y 395	Thr	Met	Asn	Glu	Leu 400

50

We claim the following:

1. An isolated synthase having a region with 40% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2, wherein one or more amino acid residues of said synthase that align with amino acids at positions 270, 273, 294, 297, 298, 376, 401, 402, 403, 404, 407, 440, 444, 516, 519, 520, 525, 527, and 528 of SEQ ID NO:2 are residues other than the following ordered arrangements of residues:

Ordered Arrangement of R-Groups at α -carbons 1–19 9 1 2 3 4 5 6 7 8 10 C C Y Т G W G Α A T G C G G W W L T V C L I 60 C L P W W W W F N G I A C T 65 -continued

Ordered Arrangement of R-Groups at α-carbons 1–19

							'			
Τ	С	W	N	I	Т	Y	I	S	G	P
	C	W	N	V	T	Y	I	G	G	I
	С	Y	L	L	T	F	Α	V	T	M
	C	W	I	I	Т	Y	S	I	S	Α
	S	W	F	I	V	F	S	S	S	V
	S	W	I	Α	T	Y	S	V	Α	S
	N	W	N	L	T	Y	S	I	S	S
	F	L	Α	Q	T	Y	S	I	G	Q
	I	S	S	T	V	Y	S	I	Α	L
	Y	L	С	I	T	Y	S	С	G	H
	G	S	F	I	T	F	S	S	S	V
	Y	W	Α	С	T	Y	S	S	G	M
	Α	Α	N	L	T	N	Α	L	T	S
	F	L	С	V	T	Y	S	S	Α	\mathbf{Y}
	F	W	Α	M	T	Y	N	T	G	M
	Y	M	С	V	T	\mathbf{F}	V	S	S	G
	V	S	G	Q	V	Y	S	V	G	L
	С	S	G	Т	T	M	F	Α	L	G
	С	S	G	T	T	M	S	F	Α	L
	С	Α	G	T	\mathbf{T}	M	S	F	Α	L
	I	W	V	I	S	Y	T	Т	G	L
	Y	W	Α	С	Т	Y	S	S	G	M
	C	W	I	I	S	Y	Т	S	T	\mathbf{Y}
	Č	w	Î	Ĩ	S	Ŷ	T	T	Ť	Ŷ
	C	W	N	Ī	T	Y	s	Ī	s	Ġ
	F	A	A	Q	T	Y	S	I	G	Q

Communication													
Ordered Arrangement of R-Groups at α-carbons 1–19 F A I A T Y S V A S													
A	I	A	T Y	s	V	A	S						
12	13	14	15	16	17	18	19						
С	D	V	Т	Y	D	Y	Т						
	D	I	T	\mathbf{Y}	D	Y	T						
	D	M	L	\mathbf{Y}	D	\mathbf{Y}	T						
C		M			D		T						
Α	N	Α			D		T						
G	D	Α	V		D		T						
Α	N	Α	L	Y	D	\mathbf{Y}	S						
F	D	V	L	Y	D	F	T						
S	D	Α		\mathbf{Y}	D	\mathbf{Y}	T						
G	N	C		Y	D	\mathbf{Y}	S						
G	N	I		Y	E	F	T						
L	D	Α	M	Y	D	H	Q						
G	G	V	L	Y	D	F	T						
G	N	L	S	Y	Е	F	T						
L	D	Α	M	Y	D	Η	G						
L	D	Α	I		D		G						
	N				D		T						
					D		G						
					_		G						
							G						
					_		G						
							G						
							T						
							S						
							G						
							Y						
							N						
							S						
							S						
					_		T						
							G						
							T						
							T						
							T						
_							T						
							Y						
С	D	V	T	Y	D	Y	T						
	A 12 C C C C A G A F S G G L G G L	A I 12 13 C D C D C D C D C D C D C D C D C D C	A I A 12 13 14 C D V C D I C D M C D M A N A G D A A N A F D V S D A G N C G N I L D A L D C F C D M L C C C C C C C C C C C C C C C C C C C	A I A T Y 12 13 14 15 C D V T C D I T C D M L C D M L A N A L G D A V A N A L F D V L S D A C G N C S G N I T L D A M G G V L G N L S L D A M L S L D A I T T L D A I T T L D A I T T L D A I T T L D A I T T T T T T T T T T T T T T T T T T T	A I A T Y S 12 13 14 15 16 C D V T Y C D I T Y C D M L Y C D M L Y A N A L Y G D A V Y A N A L Y G N C S Y G N I T Y C S D A C Y G N I T Y C D A M Y C D A I T Y C T Y C D T T T Y C T T Y C T T T Y C T T T Y C T T T Y C T T T T Y C T T T T T Y C T T T T T T T T T T T T T T T T T T T	A I A T Y S V 12 13 14 15 16 17 C D V T Y D C D I T Y D C D M L Y D C D M L Y D A N A L Y D A N A L Y D S D A C Y D G N C S Y D G N I T Y E L D A M Y D G N L S Y E L D A M Y D C D A I T Y D C D C S Y D G N L S Y E L D A I Y D C D A I T Y D C S Y D G N I T Y E L D A I Y D C D A I Y D C D C S Y D C S T T Y D C S T T Y D C S T T T Y D C S T T T T Y D C S T T T T Y D C S T T T T Y	A I A T Y S V A 12 13 14 15 16 17 18 C D V T Y D Y C D I T Y D Y C D M L Y D Y C D M L Y D Y A N A L Y D Y A N A L Y D Y A N A L Y D Y S D A C Y D Y G N C S Y D Y G N C S Y D Y G N I T Y E F L D A M Y D H G G N L S Y E F L D A M Y D H L D A I Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N L S Y E F L D A M Y D H L D A I Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F G N I T Y D F C N I T Y D F C N I T Y D T C D A I Y D T C						

		1
-cont	nnı	ed

		Order	ed Arrar	ngement	of R-Gro	oups at α	-carbons	s 1–19	
5	L	С	D	I	T	Y	D	Y	T
	M	L	D	Α	M	Y	D	H	G
	L	S	D	T	I	F	D	F	G
	I	L	D	Α	I	\mathbf{Y}	D	F	G.

- 2. The synthase of claim 1, wherein said synthase has 50% or greater sequence identity to residues 265 to 535 of SEQ
- 3. The synthase of claim 1, wherein said synthase has 60% or greater sequence identity to residues 265 to 535 of SEQ 15 ID NO:2.
 - 4. The synthase of claim 1, wherein said synthase catalyses the formation of a terpenoid product from a monoterpene
- 5. The synthase of claim 1, wherein said synthase cataly-20 ses the formation of a terpenoid product from a sesquiterpene substrate.
 - 6. The synthase of claim 1, wherein said synthase catalyses the formation of a terpenoid product from a diterpene
 - 7. The synthase of claim 4, wherein said product is a cyclic terpenoid hydrocarbon.
 - 8. The synthase of claim 5, wherein said product is a cyclic terpenoid hydrocarbon.
- 9. The synthase of claim 6, wherein said product is a 30 cyclic terpenoid hydrocarbon.
 - 10. The synthase of claim 1, wherein said synthase has 70% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2.
- 11. The synthase of claim 1, wherein said synthase has 35 80% or greater sequence identity to residues 265 to 535 of SEQ ID NO:2.