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ABSTRACT OF DISSERTATION

UNIVERSAL CONSTRAINTS ON 2D CFTS AND 3D GRAVITY

We study constraints imposed on a general unitary two-dimensional conformal �eld
theory by modular invariance. We begin with a review of previous bounds on the
conformal dimension �1 of the lowest primary operator assuming unitarity, a discrete
spectrum, modular invariance, c; �c > 1, and no extended chiral algebra. We then
obtain bounds on the conformal dimensions �2, �3 using no additional assumptions.
We also show that in order to �nd a bound for �4 or higher �n, we need to assume
a larger minimum value for ctot that grows logarithmically with n. We next extend
the previous results to remove the requirement that our two-dimensional conformal
�eld theories have no extended chiral algebra.

We then show that modular invariance also implies an upper bound on the total
number of states of positive energy less than ctot=24 (or equivalently, states of con-
formal dimension � between ctot=24 and ctot=12), in terms of the number of negative
energy states. Finally, we consider the case where the CFT has a gravitational dual
and investigate the gravitational interpretation of our results. Using the AdS3/CFT2

correspondence, we obtain an upper bound on the lightest few massive excitations
(both with and without the constraint of no chiral primary operators) in a theory of
3D matter and gravity with � < 0. We show our results are consistent with facts and
expectations about the spectrum of BTZ black holes in 2+1 gravity. We then discuss
the upper and lower bounds on number of states and primary operators in the dual
gravitational theory, focusing on the case of AdS3 pure gravity.
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Chapter 1

Introduction

Quantum �eld theory is the mathematical and conceptual framework based on the
physical principles of special relativity and quantum mechanics for constructing mod-
els describing the fundamental constituents and interactions of nature. In spite of its
many successes, however, quantum �eld theory is not without shortcomings. For
example, perturbation theory is not applicable to systems in which the couplings
become large. So although the Lagrangian approach to quantum �eld theory is pow-
erful and even captures some important semi-classical non-perturbative e�ects (such
as solitons and instantons [1]), it can obscure important, genuinely non-perturbative
e�ects. There are several powerful techniques for studying non-perturbative aspects
of quantum �eld theory. A particularly fruitful approach has been to study quantum
�eld theory in two dimensions. With examples ranging from the non-linear sigma
model with non-perturbative mass generation [2, 3] to the Schwinger model with the
con�nement of electric charge [4] to the Thirring model and the fermion-boson equiv-
alence to the sine-Gordon model [5, 6, 7], two-dimensonal quantum �eld theories have
become a crucial tool for studying non-perturbative e�ects. Much of what we have
learned about general non-perturbative phenomena in quantum �eld theory has its
origin in such two-dimensional models.

Another important method for understanding non-perturbative phenomena in
quantum �eld theories is conformal invariance. Conformal �eld theories are quantum
�eld theories that, in addition to the usual invariance under Poincar�e transformations,
possess invariance under local conformal transformations (i.e. transformations that
preserve angles but not lengths). It has been shown that in two-dimensional uni-
tary interacting quantum �eld theories with well-de�ned correlation functions, scale
invariance implies conformal invariance [8, 9]. Thus in the cases we are to consider
conformal �eld theories can be thought of as quantum �eld theories with scale invari-
ance. Conformal �eld theories (CFTs) have received a great deal of attention during
the last few decades due to their importance in many di�erent areas of theoretical
physics. Their utility ranges from playing a central role in string theory to serving
as useful models for interacting quantum �eld theories to describing two-dimensional
critical phenomena and phase transitions. Conformal �eld theories have also had
an important impact in several branches of mathematics, from the theory of ver-
tex operator algebras and generalized Kac-Moody algebras to number theory and
low-dimensional topology [10, 11, 12, 13, 14].

While relatively little is known about CFTs in general, in recent years a num-
ber of constraints on their spectra and amplitudes have been obtained by means of
conformal bootstrap techniques [15, 16, 17]. The conformal bootstrap condition says
that the operator algebra must be associative| when calculating the correlator of
four primaries

h�1(x1)�2(x2)�3(x3)�4(x4)i;
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for example, the answer should be the same when we reduce it to a sum of two-
point functions via operator product expansions whether we are in the (12)(34) or
(14)(23) channel. This results in a quadratic condition on the structure constants
of the operator product expansions, and the hope is that imposing this associativi-
ty on su�ciently many primary �elds will allow one to determine the CFT data and
therefore solve the CFT. In [18, 19], bounds on the conformal dimensions of operators
in four-dimensional unitary CFTs were derived from the condition of crossing sym-
metry of the four point function, using explicit expressions for the conformal blocks
obtained in [20, 21]. More recently, similar methods have been applied to CFTs in
diverse dimensions with great success [22, 23, 24, 25, 26, 27, 28, 29].

Local conformal symmetry is of special importance in two dimensions since the cor-
responding symmetry algebra in this case is in�nite-dimensional. As a consequence,
two-dimensional conformal �eld theories have an in�nite number of conserved quan-
tities and are completely solvable by symmetry considerations. The requirement of
local conformal invariance might seem overly restrictiv; because the theory is scale in-
variant, for example, all particle-like excitations are necessarily massless. This could
be seen as an argument against any possible physical applications for such theories.
At energy scales far above or below all mass scales, all quantum �eld theories approach
scale invariant theories. Thus the infrared and ultraviolet limits of the renormaliza-
tion group 
ow of any 2D quantum �eld theory is a CFT. Deformations away from
these CFTs obrtained by turning on masses or other parameters can be described
perturbatively. [30, 31].

In two dimensions, Hellerman [32] used modular invariance of the partition func-
tion to derive a bound on �1, the conformal dimension of the lowest non-vacuum
primary operator, in any unitary 2D CFT with no chiral primary operators other
than the identity operator and with left and right central charge c; ~c > 1:

�1 � c+ �c

12
+ 0:4736::: (1.1)

Assuming c > 1 has well-known and useful implications for the structure of repre-
sentations of the Virasoro algebra [33, 34, 35] (compact, unitary CFTs with c < 1
are also completely classi�ed [36]), and assuming the theory has no chiral algebra
beyond the Virasoro algebra simpli�es the Virasoro representations. More recently,
Friedan and Keller [37] investigated additional constraints from modular invariance
systematically. Building on the work of [32], they applied the next several di�erential
constraints using the linear functional method and found that for �nite ctot the bound
(1.1) can be lowered somewhat. For large ctot, however, the bounds apparently all
asymptote to ctot

12
as in (1.1).

The goal of this work is to study constraints imposed on a general unitary two-
dimensional conformal �eld theory by modular invariance. We will begin by intro-
ducing the essentials of two-dimensional conformal �eld theories in Chapter 2, with
special emphasis on the results that have direct relevance to our derivations. Topics
include the two-dimensional conformal group, conformal transformations and genera-
tors, primary and descendant �elds, radial quantization, the Virasoro algebra, central
charge, and conditions required for unitarity. We then review modular invariance and

2



basic consequences following from this property.
In Chapter 3, we provide a detailed review of Hellerman's work [32] on deriving

a bound on the conformal dimension �1 of the lowest primary operator assuming
unitarity, a discrete spectrum, modular invariance, c; �c > 1, and no extended chiral
algebra. We then extend the work of [32] to obtain bounds on the conformal dimen-
sions �2, �3 using no additional assumptions. The bounds we obtain take the same
form as (1.1), with the same asymptotic bound ctot=12. We also investigate the pos-
sibility of deriving bounds on primary operator conformal dimensions �n for n > 3.
We �nd that in order to obtain a bound for �4 or higher, we need to assume a larger
minimum value for ctot that grows logarithmically with n. For asymptotically large
ctot with ctot &

12
�
log n, we show that all the �n obey a bound of the same form as

(1.1):

�n � ctot
12

+O(1):

These bounds, satis�ed for �xed ctot by all �n with log n . �ctot=12, collectively
imply that the total number of primaries of dimension � . ctot=12 grows at least
exponentially with ctot

N(ctot=12) & exp
��ctot

12

�
In Chapter 4, we extend the previous results to remove the requirement that our

two-dimensional conformal �eld theories have no extended chiral algebra. Assuming
the theory has no chiral algebra beyond the Virasoro removed from consideration
primary operators with left and right dimensions h = 0; �h 6= 0 or vice versa. Includ-
ing such operators changes the partition function and thus the resulting constraints.
Removing this restriction on the CFTs under consideration results in an only slightly
weaker bound on the conformal dimensions �1;�2. Following ideas introduced in
Chapter 3, we extend the results to a similar bound on �n for n . exp(�ctot=12),
constraining the CFT spectrum and resulting in another asymptotic lower bound on
the number of primary operators with dimension less than or equal to ctot=12.

In Chapter 5, we turn our focus to di�erent consequences of invariance of the par-
tition function under the S-transformation. Rather than considering the ratio of two
di�erent-order polynomial constraints (suitable for bounding conformal dimensions),
we turn our attention to consequences of single polynomial constraints (suitable for
bounding the number of states in a given energy range). We �nd an upper bound on
the number of states of positive energy less than ctot=24 (or, equivalently, of conformal
dimension ctot=24 < � � ctot=12) in terms of the number of negative energy states. In
the case of pure gravity and large central charge, this gives a leading dependence on
the central charge going as exp(�ctot=6). We then perform a similar analysis to obtain
an upper bound on the number of primaries with positive energy less than ctot=24
before discussing possible extensions to higher-order single polynomial constraints.

Finally, we consider in Chapter 6 the case where the CFT has a gravitational dual
and investigate the gravitational interpretation of our results. Using the AdS3/CFT2

correspondence, Hellerman's bound on �1 implies a bound on the lightest massive
black hole state in the corresponding dual theory of 3D matter and gravity subject
to his assumptions about the boundary CFT. We provide a brief summary of the

3



relevant dictionary between the two theories, before translating the results of work in
the previous chapters into gravitational language. We thus �nd an upper bound on
the lightest few massive excitations (both with and without the constraint of no chiral
primary operators) in a theory of 3D matter and gravity with � < 0. We show our
results are consistent with facts and expectations about the spectrum of BTZ black
holes in 2+1 gravity. In particular, our bound on the number of primary operators
corresponds to a lower bound in the 
at-space limit on the number of gravitational
states without boundary excitations, of mass less than or equal to 1=4GN . We then
discuss the upper bounds on number of states and primary operators in the dual
gravitational theory, focusing on the case of AdS3 pure gravity.

Copyright c
 Joshua D. Qualls 2014
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Chapter 2

Unitary 2D CFTs and Modular Invariance

In this chaper, we introduce the basics of unitary, two-dimensional conformal �eld
theories. The topics include the two-dimensional conformal group, conformal trans-
formations and generators, primary and descendant �elds, radial quantization, the
Virasoro algebra, central charge, and conditions required for unitarity. We then re-
view modular invariance, and basic consequences coming from modular invariance.
The discussion in section (2.1) �. is based heavily on [36, 38, 39, 40, 41]. We refer
the reader to these references for a more complete discussion.

2.1 The conformal group in two dimensions

We begin by studying the conformal group and conformal transformations in two
dimensions. A conformal transformation is de�ned as an invertible mapping x ! x0

that leaves the metric tensor invariant up to a local scale transformation

g0��(x
0) = �(x)g��(x): (2.1)

For an in�nitesimal conformal transformation x� ! x� + ��(x), the metric changes
to �rst order in � according to

g�� ! g�� � (@��� + @���) (2.2)

Requiring that this transformation be conformal as in eq. (2.1) implies

(@��� + @���) = �(x)g�� ; (2.3)

where the factor �(x) can be found to be

�(x) =
2

d
@��

�: (2.4)

To simplify the discussion here, we will assume the conformal transformation is an
in�nitesimal deformation of the 
at Euclidean metric g�� = ��� � diag(1; 1; :::; 1).
By taking linear combinations and permutations of eqs. (2.3) and (2.4) and their
derivatives, it is possible to show

(2� d)@�@�� = ���@
2�: (2.5)

From this expression, it is clear that the d = 2 case will be special; it is to this case
we turn our attention.

For two-dimensional conformal �eld theories, we de�ne the coordinates (z0; z1) on
the plane and consider a change of coordinates z� ! w�(x). For d = 2, eq. (2.5)
implies � is harmonic. This observation motivates the use of complex coordinates

5



z � z0+ iz1 and �z � z0� iz1 as well as holomorphic (and antiholomorphic) derivative
@ � 1

2
(@0 � i@1) (and �@) and metric tensor

g�� =

�
0 1

2
1
2

0

�
:

Using these variables, the holomorphic Cauchy-Riemann equations become

�@w(z; �z) = 0

whose solution is any holomorphic mapping z ! w(z) (with a similar statement for
antiholomorphic mappings). Therefore the group of conformal transformations in two
dimensions is homeomorphic to the group of analytic maps with composition as the
group operation. This group is clearly in�nite-dimensional, as in�nitely many Laurent
coe�cients are required to specify all functions analytic in some neighborhood. It is
precisely this in�nite dimensionality that allows so much to be known about two-
dimensional conformal �eld theories.

We have not yet considered global conformal transformations, which are required
to be de�ned everywhere in the complex plane and be invertible. The set of global
conformal transformations form the special conformal group, and the complete set of
these mappings as we will soon see is

f(z) =
az + b

cz + d
with ad� bc = 1; a; b; c; d 2 C: (2.6)

These mappings are called projective transformations. They can be associated with
matrices

A =

�
a b
c d

�
such that the composition of two maps corresponds to matrix multiplication. Clearly
sending a; b; c; d to their negatives does not a�ect the transformation (2.6), and thus
the global conformal group in two dimensions is isomorphic to PSL(2;C).

2.2 Classical conformal generators and primaries

We now study the classical local conformal group. Although not the complete story,
the classical case provides a natural introduction to important ideas and serves as
a foundation for later work. In order to calculate the commutation relations of the
generators of the in�nite-dimensional conformal algebra, we consider in�nitesimal
holomorphic tranformations. Any holomorphic in�nitesimal transformation can be
expressed as

z0 = z + �(z); �(z) =
1X
�1

cnz
n+1: (2.7)

The e�ect of this mapping on a dimensionless scalar �eld �(z; �z), for example, is

�0(z0; �z0) = �(z; �z) = �(z; �z)� �(z0)@0�(z; �z)� ��(�z0)�@0�(z; �z) (2.8)

6



) �� = ��(z)@�� ��(�z)�@� =
X
n

�
cn`n�(z; �z) + �cn �̀n�(z; �z)

�
:

Here we have introduced the generators

`n = �zn+1@; �̀
m = ��zm+1 �@ (2.9)

which obey the Witt algebras

[`n; `m] = (n�m)`n+m

[�̀n; �̀m] = (n�m)�̀n+m (2.10)

[`n; �̀m] = 0:

In the quantum case, we will see the algebras receive an additional, anomalous term.
Both of these algebras contains a �nite subalgebra associated with the global

conformal group generated by `�1,`0, and `1 (and antiholomorphic counterparts).
By considering the associated in�nitesimal transformations, we see that `�1 (�̀�1)
generates translations, `1 (�̀1) generates special conformal transformations, i(`0 �
�̀
0) generates rotations, and `0 + �̀

0 generates scale transformations. The special
conformal transformation can be thought of as a translation, preceded and followed
by an inversion x� ! x�=x2:

x0�

x02
=
x�

x2
� b�:

Scale transformations are de�ned as

x0 = �x

�0(�x) = ����(x);

where � is the dilatation factor and � is the scaling dimension of the �eld �. The
�nite form of these in�nitesimal tranformations associated with this �nite subalgebra
is precisely eq. (2.6) (and its antiholmorphic counterpart)|the global conformal
group.

For a �eld with scaling dimension � and spin s, we de�ne the holomorphic con-
formal dimension h and its antiholomorphic counterpart �h as

h =
1

2
(� + s) �h =

1

2
(�� s):

With these, we call a �eld quasi-primary of dimension (h; �h) if it transforms under a
conformal map z ! w(z) as

�0(w; �w) =
�
dw

dz

��h�
d �w

d�z

���h
�(z; �z): (2.11)

If the variation of a �eld under any local conformal transformation is of this form,
the �eld is known as a primary �eld. Not all �elds in a conformal �eld theory will
have this property. Fields which are not primary are called secondary. For example,
the derivative of a primary �eld of conformal dimension h 6= 0 is secondary, as well
as the stress-energy tensor T (in most cases).

7



2.3 Radial quantization and conformal charge

We now turn to the quantum properties of two-dimensional conformal �eld theories.
We begin by de�ning our Minkowski quantum theory on an in�nite space-time cylin-
der, with t going from �1 to 1 along the length of the cylinder and space being
compacti�ed with coordinate x going from 0 to L. If we contine to Euclidean space,
our cylinder is described by the complex coordinate � = t + ix. Minkowski left- and
right-moving �elds correspond to Euclidean holomorphic and antiholomorphic �elds,
so these terms will be used interchangeably. The cylinder can be mapped to the com-
plex plane (or more accurately the Riemann sphere, since with our complex plane we
must include a point at in�nity) via the mapping

z = e2��=L: (2.12)

The remote past is situated at the origin, and the remote future lies on the point at
in�nity. Equal time surfaces correspond to circles of constant radius in the complex
plane, thus dilatations z ! e�z in the plane are just time translations on the cylinder.
This means that the dilatation generator on the plane is proportional to the generator
of time translations|the Hamiltonian of the system.

We now quantize the system with respect to this Hamiltonian and the radial
\time" coordinate. In this radial quantization scheme, the time-ordering required for
products of operators becomes a radial-ordering, de�ned by

R�1(z)�2(w) =

�
�1(z)�2(w) : jzj > jwj
�2(w)�1(z) : jzj < jwj

If the �elds were fermionic, the second expression would pick up a minus sign. The
equal-time commutator [A;B] of two operators, such as in eq. (2.16), can be shown
to equal the contour integral of a radially ordered product:

[A;B] =

I
0

dw

I
w

dz a(z)b(w); where A =

I
a(z)dz; B =

I
b(z)dz; (2.13)

and where the integral over z is taken around w and the integral over w is taken
around the origin.

We will also assume the existence of a unique vacuum state j0i upon which a
Hilbert space is constructed by applying creation operators. The vacuum for free-
�eld theories can be de�ned as the state annihilated by the positive frequency part
of the �eld (as is typical in the study of quantum �eld theories).

Now we use the standard Noether procedure to investigate the conserved con-
formal charge. A quantum �eld theory with an exact symmetry has an associated
conserved current j� such that @�j

� = 0. Integrating over a �xed-time slice gives
the conserved charge Q =

R
j0(x)dx. The conserved charge generates the in�nites-

imal symmetry variation in a �eld � according to ��� = �[Q; �]. Local coordinate
transformations are generated by a charge constructed from the (generally) symmet-
ric and divergence-free stress-energy tensor T�� . In conformally invariant theories,
T�� is traceless|this follows from conservation of the dilatation current T��x

� . To
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study the conformal charge in the complex plane, we express the stress-energy tensor
in terms of its holomorphic and antiholomorphic coordinates. Based on the above
properties, the only nonvanishing components are

T (z) � Tzz(z) and �T (�z) � T�z�z(�z): (2.14)

In radial quantization, the integral of the conserved current becomes
R
j0(x)dx !R

jr(x)d�. The stress-energy tensor generates local conformal transformations, so

Q� =
1

2�i

I
dz �(z)T (z) + d�z ��(�z) �T (�z): (2.15)

The variation of a �eld due to a conformal transformation is thus given by

���(w; �w) =
1

2�i

I
[dz �(z)T (z);�(w; �w)] + [d�z ��(�z) �T (�z);�(w; �w)]: (2.16)

We also introduce the notion of the operator product expansion. It is typical of
products of operators to have singularities when the positions of two or more �elds
coincide. In general, the singularities that occur when operators approach one another
are encoded in the operator product expansion

A(x)B(y) =
X
i

Ci(x� y)Oi(y); (2.17)

where the Oi's are a complete set of local operators and the Ci's are singular numerical
coe�cients. In two-dimensional conformal �eld theories, we can always take a basis
of operators with �xed conformal weights and thus can determine by dimensional
analysis Ci � jx� yj�Oi

��A��B . While eq. (2.17) is normally an asymptotic expres-
sion, dimensional analysis lets us argue that it converges{other types of functional
dependence would require a length scale that is absent in conformal �eld theories.

2.4 Central charge and Virasoro algebra

Evaluating (2.16) using (2.13) and the result of the transformation (2.11) in the case
of in�nitesimal f(z) = z + �(z), we infer the short distance singularities of T with �
are

T (z)�(w; �w) =
h

(z � w)2
�(w; �w) +

1

z � w
@w�(w; �w) + � � � ; (2.18)

and similarly for antiholomorphic �T (�z). Thus the operator product expansion of a
primary �eld with the stress tensor will be of this form. Unlike eq. (2.18), a secondary
�eld will have higher than a double pole singularity in its operator product expansion
with T or �T . The stress tensor itself is an example of a secondary �eld for which this is
true. By performing two conformal transformations in succession, we can determine
its operator product expansion with itself to be

T (z)T (w) =
c=2

(z � w)4
+

2

(z � w)2
T (w) +

1

z � w
@T (w): (2.19)

9



This new singular term is allowed by scale invariance, analyticity, and (z $ w)
symmetry. The constant c is known as the central charge, and its value will depend
in general on the particular theory in question. A free scalar �eld contributes a central
charge of 1; a free fermionic �eld contributes a central charge of 1=2. An identical
result applies for �T with �c.

The mode expansion of the energy-momentum tensor is given by

T (z) =
X
n2Z

z�n�2Ln; Ln =
1

2�i

I
dz zn+1T (z) (2.20)

and similarly for �T (�z) in terms of �Ln. We can also expand the in�nitesimal conformal
change as

�(z) =
X
n2Z

zn+1�n:

and similarly for ��(�z). Then the conformal charge has the mode expansion

Q� =
X
n2Z

�nLn + ��n �Ln:

The mode operators Ln and �Ln of the energy-momentum tensor are the generators of
local conformal transformations, the quantum equivalents to `n and �̀

n. Likewise, the
generators of SL(2;C) are L�1, L0, and L1 (and their antiholomorphic counterparts).
In particular, L0+�L0 generates dilatations, which are nothing but time translations in
radial quantization. Thus, L0 + �L0 is proportional to the Hamiltonian of the system.

We can derive the Virasoro algebra for these quantum generators using eqs. (2.13)
and (2.19):

[Ln; Lm] = (n�m)Ln+m +
c

12
n(n2 � 1)�n+m;0

[ �Ln; �Lm] = (n�m)�Ln+m +
�c

12
n(n2 � 1)�n+m;0 (2.21)

[Ln; �Lm] = 0:

The Virasoro algebra di�ers from the classical Witt algebra by the presence of a cen-
tral term. Because energy and momentum density are observables (and thus real),
we have the usual hermiticity condition (Ln)

y = L�n As before, the generators L�1,
L0, and L1 (and their antiholomorphic counterparts) form a �nite subalgebra cor-
responding to the global conformal group. The vacuum state j0i must be invariant
under global conformal transformations, and thus the vacuum will be annihilated by
these generators.

2.5 Primary and descendant states and unitarity constraints

We now consider the e�ects of Virasoro generators on di�erent states. We �rst con-
sider the state

jh; �hi = �(0; 0)j0i; (2.22)
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created by a holomorphic �eld �(z; �z) with weights h; �h. Using equation (2.18), we
�nd that

[L0;�(w; �w)] = h�(w; �w) + �w �@�(w; �w) (2.23)

and similarly for the antiholomorphic Virasoro generator. We thus conclude that

L0jh; �hi = hjh; �hi �L0jh; �hi = �hjh; �hi: (2.24)

Therefore jh; �hi is an eigenstate of the Hamiltonian. Using the Virasoro algebra
(2.21), it is trivial to see that L�n raises the energy by n units. Similarly Ln lowers
the energy by n units.

We will be considering �eld theories where the spectrum of states has a minimum
energy | the vacuum. Thus we cannot apply Ln inde�nitely; there must be states
that are annihilated by these operators. These highest weight states are precisely the
primary states. They are therefore characterized by the relations

Lnjh; �hi = 0; n > 0;

L0jh; �hi = hjh; �hi: (2.25)

The hermiticity of L0; �L0 means that h; �h 2 R.
All other states can be generated by the raising operators L�n and will be of the

form
L�k1L�k2 � � �L�knjhi 1 � k1 � � � � � kn; (2.26)

where for now we consider a primary state that is not the vacuum and by convention
the L�ki appear in increasing order of ki. The state (2.26) is an eigenstate of L0 with
eigenvalue

h0 = h+ k1 + k2 + � � �+ kn � h+N:

States of the form (2.26) are descendants of the non-vacuum state jhi and the integer
N is the level of the descendant. The number of distinct, linearly independent states
at level N is the number P (N) of partitions of the integer N . The relevance of
descendant states lies in the fact that the e�ect of a conformal transformation on a
state is obtained by acting on it with a suitable function of the generators Lm. The
subset of the full Hilbert space generated by the state jhi and its decendants is closed
under the action of the Virasoro generators and thus forms a representation of the
Virasoro algebra.

We are interested in unitary theories and therefore in unitary representations of
the Virasoro algebra. These can be studied by requiring that any state at level N
has a positive norm. At level zero, we have by a choice of normalization jjhij2 = 1.
At level one, unitarity demands that the unique descendant state satisfy

hhjL1L�1jhi = 2hhhjhi = 2h � 0: (2.27)

Thus the holomorphic conformal weight must satisfy h � 0. We see that h = 0 only
if L�1jhi = 0, i.e. only if jhi is the invariant vacuum j0i. By considering L�mjhi, we
�nd

jL�mjhij2 =
�ctot
12

(m3 �m) + 2mh
�
hhjhi (2.28)
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Choosing very large m means that this norm will be positive de�nite only if ctot � 0.
It can also be shown that for c = 0 there are no interesting unitary representations;
all states would have zero norm and thus can be set to zero.

We point out two facts before continuing. First, in the case of h = 0 the ap-
propriate condition on ni is that 2 � k1 � � � � � kn. This is because the generator
L�1 (corresponding to translations on the complex plane) is a member of the �nite
subalgebra associated with the global conformal group. We must demand that this
subalgebra annihilates the vacuum to preserve conformal invariance of our theory.
Thus the conformal block of the vacuum (meaning the primary vacuum state and all
of its descendants) has no N = 1 states. Second, we remark on the vacuum energy of
two dimensional conformal �eld theories. Typically in a (nongravitational) quantum
�eld theory one can always shift the energy of the vacuum by a constant. This is e-
quivalent to changing the normalization of the functional integrals. In conformal �eld
theory, this is not the case; scale and rotational invariance of the SL(2;C) invariant
vacuum �x the vacuum eigenstates of L0 and �L0 to be zero. Thus our conformal �eld
theory on the plane is �xed with ground state energy E0 = 0.

Additional unitarity constraints will arise from considering norms of excited states;
the details are too involved to be reproduced here. At arbitrary level, we get the
condition that the so-called Kac determinant be nonnegative:

det(MN(c; h)) = �N
Y
pq�N

(h� hp;q(c))
P (N�pq) � 0; (2.29)

where P (x) is the number of partitions, the numbers hp;q are given by

hp;q(m) =
[(m+ 1)p�mq2]� 1

4m(m+ 1)
; (2.30)

and we de�ne

m = �1
2
� 1

2

r
25� c

1� c
: (2.31)

It can be shown that for c > 1, there are no negative normed states. For c < 1,
there are generically negative normed states unless two di�erent hp;q have the same
value. This happens precisely when

c = 1� 6

m(m+ 1)
(2.32)

(from inverting eq. (2.31)). Then the only possible values of h are given by eq. (2.30)
where p; q are in the range

m� 1 � p � q � 1: (2.33)

There are the so-called mimimal models. They are very constrained and well under-
stood models (including the Ising model and the 3-state Potts model, for example).
We will be considering only theories with c > 1 in the work to follow.
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2.6 Modular invariance

We turn now to the topological properties of our two-dimensional CFTs. The complex
plane with a point at in�nity is topologically equivalent to a sphere, a Riemann surface
of genus g = 0. One may study CFTs de�ned on Riemann surfaces of arbitrary genus
g (in string theory, this is the basis for calculating multiloop scattering amplitudes).
We will restrict our considerations to the simplest non-spherical case: that of a torus
(g = 1), equivalent to a plane with periodic boundary conditions in two directions.
A torus may be de�ned by specifying two linearly independent lattice vectors on the
plane and identifying points that di�er by an integer combination of these vectors. On
the complex plane, these lattice vectors may be represented by two complex numbers
w1 and w2 which we call the periods of the lattice. The properties of a CFT de�ned on
a torus do not depend on the overall scale of the lattice nor on the absolute orientation
of the lattice vectors. Thus the relevant parameter is the ratio � = w2=w1, called the
modular parameter.

Our strategy for de�ning CFTs on the torus is to make use of the local properties
of operators on the plane, map them to the cylinder via (2.12), and then use a discrete
identi�cation to get the torus. This procedure will preserve the local properties of
operators, but not necessarily the global properties (for example, only the generators
of dilatations and rotations survive as global symmetry generators). An important
particular case occurs when mapping a secondary �eld, such as the stress tensor T (z),
to the torus. According to eq. (2.16), under conformal transformation w ! z = ew,
T (z) picks up a piece proportional to the central charge

Tcyl(w) = z2T (z)� c

24
: (2.34)

Substituting in the mode expansions (2.20) gives the translation generator (L0)cyl on
the cylinder in terms of the dilatation generator L0 on the plane as

(L0)cyl = L0 � c

24
; (2.35)

with a similar expression for (�L0)cyl. This means that any formulas that involved L0

or �L0 will be shifted; in particular the ground state energy for the torus will equal
E0 = � c+�c

24
.

The relevant quantity we consider is the (Euclidean) partition function Z and
its dependence on the modular parameter � . We de�ne our space and time axes
respectively as the real and imaginary axes of the torus, and orient our lattice vector
w1 along the real axis. We are also free to resize all lattice vectors so that w1 = 2�.
Consider �rst the partition function with Re � = 0 (meaning w2 is strictly imaginary).
Compactifying the Euclidean time with period 2�(Im �) is equivalent to putting the
theory at an inverse temperature � = 2�(Im �):

Z(�) = Tr e��H = Tr e�2�(Im�)H ;

where H is the Hamiltonian generating a translation in the \time" direction. For
the case of a skewed torus where Re � 6= 0, a given point is transformed along the
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spatial direction of the torus by Re � . The operator that implements this translation is
e2�i(Re �)P , where P is the momentum generating a translation in the \space" direction.
On the plane we saw that L0 � �L0 generated dilatations and rotations, so according
to the discussion of radial quantization we have

H = (L0)cyl + (�L0)cyl; P = (L0)cyl � (�L0)cyl (2.36)

Thus the partition function on our torus is

Z(�) = Tr e�2�(Im�)(L0+
�L0)e2�i(Re �)(L0�

�L0)e2�(Im�)ctot=12; (2.37)

where ctot � c + �c. De�ning q = exp(2�i�) (and �q similarly), we thus arrive at the
partition function

Z(�) = Tr
�
qL0�c=24�q

�L0��c=24
�
: (2.38)

Studying CFTs on the torus gives constraints coming from the requirement that
the partition function for a given torus be independent of the choice of periods. Let
w0
1;2 be periods describing the same lattice as w1;2. Since the points w0

1;2 belong to
the same lattice, they must be expressible as integer combinations of w1 and w2:�

w0
1

w0
2

�
=

�
a b
c d

��
w1

w2

�
; a; b; c; d 2 Z: (2.39)

Clearly the above matrix should be invertible, since we should be able to express
w1;2 in terms of w0

1;2. And because the unit cell should have the same area whatever
periods we use, the determinant of this matrix should be unity: ad� bc = 1. We are
thus led to consider the group SL(2;Z). Under a transformation of this form, the
modular parameter transforms as

� ! a� + b

c� + d
; ad� bc = 1: (2.40)

The sign of parameters a; b; c; d can be simultaneously changed without a�ecting the
transformation. Thus the group we are interested in is the modular group PSL(2;Z).

The modular transformations we are interested in are

T : � ! � + 1 or T =

�
1 1
0 1

�
(2.41)

S : � ! �1

�
or S =

�
0 �1
1 0

�

These two transformations satisfy

(ST )3 = S2 = 1

and it can be shown that they generate the entire modular group. In the work that
follows, we will be considering conformal �eld theories with modular invariance|that
is, CFTs with partition functions that are invariant under modular transformations
expressible as successive applications of S and T .
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2.7 Consequences of modular invariance and Cardy's formula

Modular invariance imposes powerful constraints on conformal �eld theories. One of
the most basic constraints comes from demanding invariance of the partition function
(2:38) under the T -transformation T : � ! �+1. Demanding that this transformation
leave the partition function unchanged gives the condition

h� �h 2 Z: (2.42)

The constraints on CFTs from requiring invariance of the partition function under
the S-transformation are not nearly so straightforward.

In [41], Cardy studied basic consequences of invariance under the S-transformation.
He showed that an S-invariant conformal �eld theory with a �nite number of primary
operators must have c < 1. He also proved the contrapositive to this statement: if a
two-dimensional CFT is modular invariant with c � 1, then the theory has an in�nite
number of primary operators. His insight was that the S-transformation allows us
to relate the low-temperature (� � 1) partition function to the high-temperature
regime (� � 1). The partition function Z is generically given by

Z(�; ��) = h0je2�i[�(L0�c=24)���(�L0��c=24)]j0i+ (excited states): (2.43)

For � = Im � � 1, this trace is well approximated by

Zlow � e2�i(��
c
24
+�� �c

24
) +O(e�Im� ): (2.44)

To consider the high-temperature regime we use the fact that for a diagonalized
Hamiltonian, Tr e��H =

R
d� eS(�)���, where eS(�) = �(�) is the density of states and S

is the entropy. Then a saddle-point approximation gives the leading-order behavior
in the high-temperature regime with h�; �h� �c as

logZhigh � S(h; �h) + 2�i
h
�
�
h� c

24

�
� ��

�
�h� �c

24

�i
; (2.45)

where h and �h are respectively functions of � and �� that maximize the RHS.
Doing the inverse Legendre transform gives the entropy as

S(h; �h) � logZhigh � 2�i
h
�
�
h� c

24

�
� ��

�
�h� �c

24

�i
: (2.46)

But invariance of the partition function under the S-transformation means that

logZhigh � logZlow = 2�i
�
�� c

24
+ ��

�c

24

�
: (2.47)

Substituting this into (2.46) gives

S(h; �h) � 2�i
�
�� c

24
+ ��

�c

24

�
� 2�i

h
�
�
h� c

24

�
� ��

�
�h� �c

24

�i
: (2.48)
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Finally, extremizing over � and �� gives the Cardy formula

S � 2�

0
@rc(h� c

24
)

6
+

s
�c(�h� �c

24
)

6

1
A : (2.49)

Cardy's formula alone does not make a statement about a CFT spectrum that
can be tested at �nite energies or temperatures; we considered only leading terms and
the formula only applies for h � c; �h � �c. In order to obtain and prove bounds in
the general case using modular invariance, a discrete spectrum, and unitarity, what
we actually study are the set of modular invariant functions with a discrete Fourier
expansion having positive integer coe�cients. Equation (2:49) can be used to show
that the partition function and all its derivatives converge and are continuous in the
upper half plane. We can use this fact to study �xed points of the partition function
and derive bounds, for example, on operator dimensions.

Copyright c
 Joshua D. Qualls 2014
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Chapter 3

Bound on �n without chiral primary operators

In this chapter, we extend the results of [32] to derive an upper bound on the conformal
dimension �2 of the next-to-lowest nontrival primary operator in unitary, modular-
invariant two-dimensional conformal �eld theories without chiral primary operators,
with total central charge ctot > 2. The bound we �nd is of the same form as found in
[32] for �1: �2 � ctot

12
+O(1). We obtain a similar bound on the conformal dimension

�3, and present a method for deriving bounds on �n for any n, under slightly modi�ed
assumptions. For asymptotically large ctot and n . exp(�ctot=12), we show that
�n � ctot

12
+ O(1). This implies an asymptotic lower bound of exp(�ctot=12) on the

number of primary operators of dimension � ctot=12+O(1), in the large-c limit. This
chapter is based heavily on the work [42].

3.1 Review of the bound on �1

We begin by reviewing the methods and results of [32]. Consider a 2D CFT on the
torus with modular parameter close to the �xed point � � (K+i�)=2� = i, where � is
the inverse temperature and K is the thermodynamic potential for spatial momentum
in the compact spatial direction �1. We can parameterize the neighborhood of this
�xed point conveniently using � � i exp(s). Then invariance of the partition function
Z(�; ��) under the modular S-transformation � ! � 1

�
can be expressed as

Z (ies;�ie�s) = Z(ie�s;�ie��s) (3.1)

By taking derivatives of this expression with respect to s; �s, one obtains an in�nite
set of equations

�
�
@

@�

�NL �
��
@

@��

�NR

Z(�; ~�)

����
�=i

= 0; NL +NR odd (3.2)

For purely imaginary complex structure � = i�=2�, this condition implies

�
�
@

@�

�N

Z(�)

����
�=2�

= 0; N odd (3.3)

We will assume a unique vacuum and a discrete spectrum. By further assuming
cluster decomposition and no chiral operators other than the stress tensor, the Vira-
soro structure theorem implies that the partition function Z(�) can be expressed as
a sum over conformal families:

Z(�) = Zid(�) +
X
A

ZA(�): (3.4)
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Here Zid(�) is the sum over states in the conformal family of the identity; ZA(�) is
the sum over all states in the conformal family of the Ath primary operator, which
has conformal weights hA; ~hA and conformal dimension �A = hA + ~hA.

Hellerman considers CFTs with c; ~c > 1 and with no chiral operators other than
the stress tensor, which implies the following explicit forms for Zid(�) and ZA(�):

Zid(�) = q�
c
24 �q�

~c
24

1Y
m=2

(1� qm)�1
1Y
n=2

(1� �qn)�1 (3.5)

ZA(�) = qhA�
c
24 �q

�hA� ~c
24

1Y
m=1

(1� qm)�1
1Y
n=1

(1� �qn)�1 (3.6)

where q = exp(2�i�). The full partition function with � = i�=2� is then given by the
expression

Z(�) =M(�)Y (�) +B(�) (3.7)

with

M(�) � exp(��Ê0)

�(i�=2�)2
(3.8)

and
B(�) �M(�) (1� exp(��))2 ; (3.9)

where Ê0 � E0 +
1
12

= 1
12
� c+~c

24
and � is the Dedekind eta function. For real �, the

partition function over primaries Y (�) is

Y (�) =
1X
A=1

e���A : (3.10)

Next, Hellerman applies the di�erential constraints (3.3) to the partition function
(4.5). To simplify the analysis, we introduce polynomials fp(z) de�ned by

(�@�)
pM(�)Y (�)

����
�=2�

= (�1)p�(i)�2exp(�2�Ê0)
1X
A=1

exp(�2��A)fp(�A + Ê0):

(3.11)
The �rst few polynomials are explicitly

f0(z) = 1

f1(z) = (2�z)� 1

2

f2(z) = (2�z)2 � 2(2�z) +

�
7

8
+ 2r20

�
(3.12)

f3(z) = (2�z)3 � 9

2
(2�z)2 +

�
41

8
+ 6r20

�
(2�z)�

�
17

16
+ 3r20

�
where

r20 � �00(i)
�(i)

� 0:0120:::
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We also de�ne the polynomials bp(z) by

(�@�)
pB(�)

����
�=2�

= (�1)p�(i)�2exp(�2�Ê0)bp(Ê0); (3.13)

Explicitly,

b0(z) = 1� 2e�2� + e�4�

b1(z) =

�
(2�z)� 1

2

�
� 2e�2�

�
(2�(z + 1))� 1

2

�
+ e�4�

�
(2�(z + 2))� 1

2

�
(3.14)

bp(z) = fp(z)� 2e�2�fp(z + 1) + e�4�fp(z + 2):

Using these polynomials, the equations (3.3) for modular invariance of Z(�) for odd
p become

1X
A=1

fp(�A + Ê0)exp(�2��A) = �bp(Ê0) (3.15)

It is this expression that is used to derive an upper bound on the conformal
dimension �1. Hellerman takes the ratio of the p = 3 and p = 1 expressions to get

P1
A=1 f3(�A + Ê0)exp(�2��A)P1
B=1 f1(�B + Ê0)exp(�2��B)

=
b3(Ê0)

b1(Ê0)
� F1: (3.16)

Or, upon rearrangement,

P1
A=1

h
f3(�A + Ê0)� F1(Ê0)f1(�A + Ê0)

i
exp(�2��A)P1

B=1 f1(�B + Ê0)exp(�2��B)
= 0: (3.17)

Next assume that �1 > �+
1 , where �

+
1 is de�ned as the largest root of the nu-

merator, and proceeds to obtain a contradiction. Because �A � �1, this assumption
implies that every term in both the numerator and denominator is strictly positive.
Then equation (3.17) says that a positive number equals zero | an impossibility.
Therefore

�1 � �+
1 :

Finally, by analyzing �+
1 as a function of ctot Hellerman proves that for the given

assumptions, �+
1 � ctot

12
+ (12��)+(13��12)e�2�

6�(1�e�2�) , implying the bound

�1 � ctot
12

+ 0:4736::: (3.18)

3.2 Bounds on �2, �3

In this section, we extend the methods described above to derive bounds on primary
operators of second and third-lowest dimension. In order to bound the conformal
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dimension �2, we move the �1 term of equation (3.15) to the RHS. We then form
the ratio of the p = 3 and p = 1 equations to getP1

A=2 f3(�A + Ê0)e
�2��AP1

B=2 f1(�B + Ê0)e�2��B

=
f3(�1 + Ê0)e

�2��1 + b3(Ê0)

f1(�1 + Ê0)e�2��1 + b1(Ê0)
� F2(�1; ctot): (3.19)

Moving F2 to the left side, we getP1
A=2

h
f3(�A + Ê0)� f1(�A + Ê0)F2

i
exp(�2��A)P1

B=2 f1(�B + Ê0)exp(�2��B)
= 0 (3.20)

In Appendix A, we prove that F2 is �nite and nonzero for c; ~c > 1 and �1 in the
allowed range and thus our derivations will carry through without issue.

Before proceeding, we make some de�nitions. De�ne �+
fp
to be the largest root of

fp(�+ Ê0) viewed as a polynomial in �: The bracketed expression in the numerator
is a polynomial cubic in �2; we denote it by P2(�2), and de�ne the largest root of
P2 to be �

+
2 (ctot;�1), where Ê0 dependence has been replaced by ctot.

We now assume that �2 > max(�+
f1
;�+

2 ) and attempt to obtain a contradiction.
From our explicit polynomial expressions, we see that the leading coe�cients of both
f1 and f3 are positive. Thus both P2(�2) > 0 and f1(�2 + Ê0) > 0 for �2 >
max(�+

f1
;�+

2 ). Because �n � �2 for all n > 2, we also have P2(�n) > 0 and

f1(�n + Ê0) > 0 for �2 > max(�+
f1
;�+

2 ). Thus every term in both the numerator

and denominator of the left side of equation (3.20) is positive for �2 > max(�+
f1
;�+

2 ).
The left side thus can not be equal to zero, and we have a contradiction. We have
thus derived a bound on the conformal dimension �2:

�2 � max(�+
f1
;�+

2 ): (3.21)

From the explicit form of f1(� + Ê0) in (2.12), we see that

�+
f1
=
ctot
24

+
(3� �)

12�
: (3.22)

We will spend the next section trying to simplify our bound by deriving a manageable
expression for �+

2 .

Asymptotic expansion for large central charge

We begin by considering the limit of large positive total central charge ctot. In the
limit ctot ! 1, it is easy to see that �+

2 is proportional to ctot, plus corrections of
order c0tot. We thus expand �+

2 as a series at large central charge:

�+
2 �

1X
a=�1

d�a(�1)
�ctot
24

��a
: (3.23)

By de�nition �+
2 satis�es

P2(�
+
2 ) = 0
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and is the largest real value with that property. Substituting equation (3.23) into the
explicit form of P2(�

+
2 ) = 0, the equation to leading order in ctot is:

4(d1 � 1)2�2

242
� �2

122
= 0: (3.24)

The solution d1 = 2 gives the largest root �+
2 ,

�+
2 =

ctot
12

+ d0(�1) +O(c�1tot): (3.25)

Note how this compares to the value �+
f1
in equation (3.22). Since we are taking the

maximum of these two quantities, the true upper bound on �2 will generically be
given by �+

2 .
To determine d0 we expand P2 to the next order in ctot. Quoting the result

obtained in Appendix B, we �nd that the largest term possible at this order is given
by d0 � 0:4736:::|the same bound to this order as for �1 in [32]. Thus for large
enough central charge ctot, we can always bound the conformal dimension �2 using
the expression

�2 � ctot
12

+ 0:4736:::+O(c�1tot): (3.26)

An absolute bound on �2 can be obtained numerically. We seek a linear bound
of the form �2 � ctot

12
+D2, where D2 is a numerical constant independent of �1. In

order for this bound to universal, we need to �nd D2 so that the inequality is valid
for all possible values of �1 and all ctot > 2. This can be done by explicitly solving
the cubic polynomial P2 (in terms of radicals of exponentials) and maximizing the
expression �+

2 � ctot
12

for ctot > 2 and 0 < �1 � ctot
12

+�0. This function attains a global
maximum D2 � 0:5338::: (for ctot � 2; �1 � 0:2717:::): Therefore

�2 � ctot
12

+ 0:5338::: (3.27)

Proof and numerical bound for �3

Now that we have obtained a bound on �2, it is natural to extend our arguments to
primary operators of higher dimension. A necessary condition for our arguments to
work for �n is that Fn, de�ned as

Fn(Ê0;�1; � � � ;�n�1) �
Pn�1

i=1 f3(�i + Ê0)exp(�2��i) + b3(Ê0)Pn�1
i=1 f1(�i + Ê0)exp(�2��i) + b1(Ê0)

; (3.28)

be well-de�ned for all relevant values of its arguments. We prove in Appendix A that
F3 is well-de�ned for ctot > 2 and thus that there will be no issues. We can thus
proceed with another proof by contradiction. The result is that

�3 � max(�+
f1
;�+

3 ); (3.29)

where �+
f1
is the expression (3.22) from above and �+

3 is the largest real root of the
polynomial

P3(�3) � f3(�3 + Ê0)� f1(�3 + Ê0)F3: (3.30)
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At large central charge, one easily �nds that �+
3 � ctot

12
. Maximizing the expression

�+
3 � ctot

12
numerically as a function of �1 and �2 subject to the contraints 0 < �1 �

ctot
12

+ �0, 0 < �2 � ctot
12

+D1, and ctot > 2 gives the constant D2 = 0:8795::: and the
linear bound

�3 � ctot
12

+ 0:8795::: (3.31)

We observe that the values of �1;2 that maximize �
+
3 are degenerate: �1 = �2.

3.3 Bounds on �n

It should be clear by this point how to extend the proof to higher conformal di-
mensions. Assuming that the expression (3.28) is de�ned and nonvanishing in the
appropriate range, we can proceed as above to obtain a bound

�n � max(�+
f1
;�+

n ); (3.32)

where �+
f1
is given by (3.22) and �+

n is the largest real root of the polynomial

Pn(�n) � f3(�n + Ê0)� f1(�n + Ê0)Fn(ctot;�1; :::;�n�1) (3.33)

and is thus a function of ctot;�1; � � � ;�n�1.
The leading terms in the polynomial with largest root �+

n are independent of n;
therefore the expansion of �+

n at asymptotically large central charge again goes as
ctot
12
. Thus it seems reasonable to expect a bound of the same form as before:

�n � �+
n <

ctot
12

+O(1): (3.34)

However, there is a potential problem with this argument. For the bounds on �2

and �3, we proved in the Appendices that the functions F2 and F3 were positive and
well-de�ned for the relevant ranges of our parameters. This is not the case beginning
with the expression F4. The denominator of F4 vanishes when the total central charge
equals

cD4 =
2[
P3

i=1(�12��i � � + 3)e�2��i � � + 3 + (26� � 6)e�2� + (3� 25�)e�4�]

�(
P3

i=1�e�2��i � 1 + 2e�2� � e�4�)

As before, we extremize this expression over the appropriate ranges of its variables
(0 < �1 � ctot=12 + �0, etc.). The largest value of the total central charge for which
the denominator of F4 vanishes is given by

c+D4 = 2:3450::: (3.35)

Applying the same analysis to the numerator of F4, we �nd that the largest value of
the total central charge causing it to vanish is

c+N4 = 1:5113::: (3.36)
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Thus for 2 < ctot < c+D4,we cannot use these speci�c methods to set a bound on
�4; there is a moduli space where our parameters can fundamentally change the
polynomial Pn.

The resolution to this issue is straightforward; we will further restrict the allowed
values for the total central charge to ctot > max(c+D4; c

+
N4). Allowing ctot to range

all the way down to 2.3450... would require an in�nite constant; however, a small
additional restriction on the range to ctot � 2:5 leads to the bound

�4 � ctot
12

+ 1:0795::: (3.37)

Further restricting ctot gives a tighter bound; for example, ctot � 3 gives �4 �
ctot
12

+ 0:6740::: Similar results can be derived for arbitrary �n using the methods
described here. We note that, as before, the values of �1;2;3 that saturate the bound
(3.37) are degenerate: �1 = �2 = �3.

For larger values of n, it can be shown that c+Dn > c+Nn and thus we need only
restrict ctot > c+Dn. We can analytically solve for the value of the central charge cDn

which causes the denominator of (3.28) to vanish. The explicit form is a complicated
function of �1; :::;�n�1 in terms of Lambert W functions. In Appendix C.1, we derive
this expression. In Appendix D, we prove that c+Dn is maximized when �1 = �2 =
� � � = �n�1; when we maximize cDn over all of its arguments, it goes for large n as

c+Dn �
12

�
W0[(n� 1)] � 12

�
log(n); (3.38)

where W0 is the primary branch of the Lambert-W function. Therefore, if we require

log n .
�ctot
12

+O(1); (3.39)

then Fn will be �nite and nonzero. Then an analysis similar to before gives a bound

�n � ctot
12

+O(1): (3.40)

The O(1) term in expression (3.40) means O(1) in ctot| these subleading terms
could have dependence on n that contributes to leading order. For example, if the
O(1) term goes as log(n), then by equation (3.39) we could have contributions as
large as O(ctot). Additionally, the speci�c O(1) term will depend on how we restrict
the total central charge. In Appendix E, we show that by considering

n� e�ctot=6 +O(1); (3.41)

we can derive a bound on �n for asymptotically large ctot going as

�n � ctot
12

+O(1): (3.42)

In the limit (3.41), the O(1) term will be 0.4736... and additional corrections will
be O(nctote

�ctot=6). We are already assuming eq. (3.39), so the inequality (3.41)
necessarily follows.

Copyright c
 Joshua D. Qualls 2014

23



Chapter 4

Bound on �n with chiral primary operators

In this chapter, we extend the results of [32, 42] to derive a bound on the conformal
dimensions of the lightest few states in general unitary 2D CFTs with discrete spectra
and modular invariance. We derive a bound on the conformal dimensions �1 and �2

going as ctot=12 + O(1). We then prove the inequality �n � ctot=12 + O(1) for large
ctot and with appropriate, slightly modi�ed restrictions on n. Earlier proofs assumed
that these chiral primaries did not exist; this extension will apply, for example, to
CFTs carrying continuous global current algebra symmetries.

4.1 Deriving bound on �1

We again consider a 2D CFT on the torus with modular parameter close to the �xed
point of the S-transformation � � (K + i�)=2� = i. We have the same S-invariance
of the partition function,

Z(�) = Z

�
4�2

�

�
; (4.1)

leading to the same in�nite set of di�erential constraints (3.3). The partition function,
however, will di�er from the previous cases. We can express the partition function in
terms of characters [37]:

Z(�; ��) = j�(�)j�2
X

(h;�h)2S
N�hh�̂�h(�)�̂h(�) (4.2)

where N�hh is the number of primary operators with conformal weights (h; �h) and

�̂�h(�)�̂h(�) =

8>>><
>>>:

�q�
~c�1
24 (1� �q)q�

c�1
24 (1� q) �h = 0; h = 0

�q
�h� ~c�1

24 qh�
c�1
24 (1� q) �h > 0; h = 0

�q
�h� ~c�1

24 (1� �q)qh�
c�1
24 �h = 0; h > 0

�q
�h� ~c�1

24 qh�
c�1
24 �h > 0; h > 0

(4.3)

We can simplify these expressions using Ê0 =
1
12
+E0 =

1
12
� ctot

24
, q = exp(2�i�) =

exp(��) = �q, and � = h+ �h to give

�̂�h(�)�̂h(�) =

8>>><
>>>:

exp(��Ê0)(1� e��)2 �h = 0; h = 0

exp[��(� + Ê0)](1� e��) �h > 0; h = 0

exp[��(� + Ê0)](1� e��) �h = 0; h > 0

exp[��(� + Ê0)] �h > 0; h > 0

(4.4)

We arrange the conformal dimensions in increasing order and explicitly count de-
generacies : 0 < �1 � �2 � � � � . Then we can express the partition function in
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terms of Virasoro primaries as the sum of a vacuum contribution and non-vacuum
contributions:

Z(�) = ZA(�) + Z0(�);

ZA(�) � j�(i�=2�)j�2
X
A=1

e��(�A+Ê0)(1� e��)�hA0+��hA0 ; (4.5)

Z0(�) � j�(i�=2�)j�2e��Ê0(1� e��)2:

The �rst term is the sum over conformal weights with either or both conformal weights
being nonzero, and the second term is the unique vacuum contribution with h = �h =
0.

Before continuing, we consider the case of a CFT constructed as tensor product
of two (or more, though we consider only two) CFTs. Naively, the partition function
of such a theory will not be of the form (4.2). This is because the factor partition

functions are written in terms of their respective Virasoro algebras L
(i)
n , when in the

product case we would need to express the partition function in terms of the full
Virasoro algebra L

(1)
n +L

(2)
n . There are seemingly problematic states, such as (L

(1)
�2 �

L
(2)
�2)j0i, not expressible in the form (4.2). This state does not have well-behaved

conformal transformation properties, however. It can be thought of as a combination

of the linearly independent state
�
L
(1)
�2 + L

(2)
�2
�
j0i (the product CFT stress tensor and

thus descendent of the product CFT vacuum) and
�
c2L

(1)
�2 � c1L

(2)
�2
�
j0i (a primary

operator), where ci is the holomorphic central charge of the ith CFT.
Continuing, we apply the di�erential constraints (3.3) to the partition function

(4.5). Following [32] and [42], we abuse notation and introduce the now-modi�ed
polynomials fp(z) de�ned by

(�@�)
pZA(�)

����
�=2�

= (�1)p e
�2�Ê0

�(i)2

X
A=1

e�2��Afp(�A + Ê0)(1� e�2�)�hA0+��hA0 : (4.6)

The polynomials fp have been expressed as functions of �A, when in fact they are
functions of hA and �hA. This is because we are interested in deriving bounds on �A,
and explicit dependence on hA or �hA not in the combination hA+�hA only shows up in
Kronecker �'s multiplying otherwise constant terms. We simply note and remember
that there will be some additional dependence on hA; �hA that we often suppress. The
�rst few poynomials are explicitly

f0(zA) = 1

f1(zA) = (2�zA)� 1

2
� 2�

(e2� � 1)
(�hA0 + ��hA0) (4.7)

f2(zA) = (2�zA)
2 � (2�zA)

�
2 +

4�

e2� � 1
(�hA0 + ��hA0)

�
+

�
7

8
+ 2r20

�

�4�
�
�e2� � e2� + 1

(e2� � 1)2

�
(�hA0 + ��hA0) +

4�2

(e2� � 1)2
(�hA0 + ��hA0)

2:
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We likewise de�ne the unmodi�ed polynomials bp(z) by

(�@�)
pB(�)

����
�=2�

= (�1)p�(i)�2exp(�2�Ê0)bp(Ê0); (4.8)

The polynomials bp are exactly the same as in the nonchiral case (which is obvious
since the unique vacuum contribution does not depend on the presence or lack of
chiral primary operators). Explicitly,

bp(z) = fp(z)� 2e�2�fp(z + 1) + e�4�fp(z + 2)

����
h;�h>0

: (4.9)

Using these polynomials, the equations (3.3) for modular invariance of Z(�) for odd
p now become

1X
A=1

fp(�A + Ê0)(1� e�2�)�hA0+��hA0exp(�2��A) = �bp(Ê0): (4.10)

To clean up the work that follows, we will de�ne

(1� e�2�)�hA0+��hA0 � �A:

The derivation now proceeds as in [32]. We take the ratio of the p = 3 and p = 1
expressions to getP1

A=1 f3(�A + Ê0)�Aexp(�2��A)P1
B=1 f1(�B + Ê0)�Bexp(�2��B)

=
b3(Ê0)

b1(Ê0)
� F1

)
P1

A=1

h
f3(�A + Ê0)� F1(Ê0)f1(�A + Ê0)

i
�Aexp(�2��A)P1

B=1 f1(�B + Ê0)�Bexp(�2��B)
= 0: (4.11)

We obtain a contradiction in this case by assuming �1 > max(�+
1 ; ~�

+
1 ;�

+
f1
), where

�+
1 is de�ned as the largest root of the argument of the numerator's sum when both

Kronecker �'s vanish, ~�+
1 is the largest root when one of the Kronecker �'s is nonzero,

and f+1 is the largest root of f1. Because �A � �1, this assumption implies that every
term in both the numerator and denominator is strictly positive. Then equation (4.11)
says that a sum of positive numbers equals zero | an impossibility. Therefore

�1 � max(�+
1 ; ~�

+
1 ;�

+
f1
): (4.12)

From the explicit form of f1(� + Ê0) in (2.12), we see that

�+
f1
=
ctot
24

+
(3� �)

12�
: (4.13)

From [32], we know that �+
1 is bounded above by

�+
1 �

ctot
12

+ �0 � ctot
12

+ :4736::: (4.14)

We will spend the next section trying to simplify our bound by deriving a manageable
expression for ~�+

1 .
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4.2 Asymptotic and analytic bound on �1

In the limit ctot ! 1, ~�+
1 is proportional to ctot, plus corrections of order c

0
tot. We

thus expand ~�+
1 as a series at large central charge:

~�+
1 �

1X
a=�1

d�a
�ctot
24

��a
; such that P1( ~�

+
1 ) = 0 (4.15)

and ~�+
1 is the largest real value with this property. Substituting equation (4.15) into

the explicit form of P1( ~�
+
1 ) = 0, the equation to leading order in ctot is:

�3

1728
d1(d1 � 1)(d1 � 2) = 0) d1 = 2: (4.16)

Solving to the next order in ctot, we �nd the expression

�3

36
d0 � �3

36

(�0h + �0�h)

e2� � 1
� �2

18
+

�3

216

e2� � 13

e2� � 1
= 0:

) d0 =
(12� �)e2� � 12 + 13� + 6�

6�(e2� � 1)
= �0 +

1

e2� � 1
� 0:4755:::

Thus we see that at this order, max(�+
1 ; ~�

+
1 ;�

+
f1
) = ~�+

1 ; for large enough central
charge ctot, we can always bound the conformal dimension �1 using the expression

�1 � ctot
12

+ 0:4755:::+O(c�1tot): (4.17)

An absolute bound on �1 can be obtained with additonal work. Following steps
similar to those in the appendices of [32], we can show that a least upper linear bound
on ~�+

1 is given by the �rst two terms of equation (4.17). From Appendix A.5 of [32],
we know that �+

1 is bounded above by ctot
12

+0:4736::: Thus the bound (4.12) simpli�es
to

�1 � ctot
12

+ 0:4755::: (4.18)

This is a universal bound, true for all 2D CFTs with modular invariance, discrete
spectra, and c; ~c > 1.

4.3 Bound on �2

Following the previous chapter, we extend the methods described above as in [42]
to derive bounds on primaries of second-lowest dimension. Following identical steps
means that eq. (3.20) becomes

P1
A=2 f3(�A + Ê0)�Ae

�2��AP1
B=2 f1(�B + Ê0)�Be�2��B

=
f3(�1 + Ê0)�Ae

�2��1 + b3(Ê0)

f1(�1 + Ê0)�Be�2��1 + b1(Ê0)
� F2(�1; ctot):
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Following work from Appendix A (di�ering by small constants), it can be shown that
F2 is �nite and nonzero for c; ~c > 1 and �1 obeying eq. (4.18). ThenP1

A=2

h
f3(�A + Ê0)� f1(�A + Ê0)F2

i
�Ae

�2��AP1
B=2 f1(�B + Ê0)�Be�2��B

= 0: (4.19)

We de�ne �+
fp
to be the largest root of fp(�+ Ê0) viewed as a polynomial in �: The

bracketed expression in the numerator is a polynomial cubic in �2; we denote it by
P2(�2), and de�ne the largest root of P2 to be �

+
2 (ctot;�1) or �̂

+
2 (ctot;�1).

As before, assuming �2 > max(�+
f1
;�+

2 ; �̂
+
2 ) means every term in both the nu-

merator and denominator of the left side of equation (4.19) is positive. The left
side thus can not be equal to zero, and we have a contradiction. Our assumption is
therefore false, and:

�2 � max(�+
f1
;�+

2 ; �̂
+
2 ): (4.20)

Motivated by earlier results, we seek a linear bound of the form �2 � ctot
12

+D2,
where D2 is a numerical constant independent of �1. We seek the smallest D2 such
that the inequality is valid for ctot > 2 and for all possible values of �1, h1, ~h1, h2,
and ~h2|unlike previous work, the conformal weights appear explicitly as arguments
of Kronecker �'s. We can derive a univeral bound by �nding max(�+

2 � ctot
12
; ~�+

2 � ctot
12
)

over all its dependences for their respective domains. This function attains a global
maximum D2 � 0:5531::: (for ctot � 2, �1 � 0:2669:::; �h10+�~h10 = 1, and �h20+�~h20 =
1). Therefore

�2 � ctot
12

+ 0:5531::: (4.21)

This is a weaker bound on �2 than found in the previous chapter; this is expected
given that we are now considering 2D CFTs with no conditions on the chirality of
primary operators.

4.4 Bound on �n

The extension of these methods to primary operators of higher dimensions is straight-
forward. A condition that must hold for our proof to hold for �n is that Fn, de�ned
as

Fn(Ê0;�1; � � � ;�n�1) �
Pn�1

i=1 f3(�i + Ê0)exp(�2��i) + b3(Ê0)Pn�1
i=1 f1(�i + Ê0)exp(�2��i) + b1(Ê0)

; (4.22)

be well-de�ned for all relevant values of its arguments. Assuming so, we can proceed
as above to obtain a bound

�n � max(�+
f1
;�+

n ; ~�
+
n ); (4.23)

where �+
f1
is given by (3.22) and max(�+

n ; ~�
+
n ) is the largest real root of the polyno-

mial
Pn(�n) � f3(�n + Ê0)� f1(�n + Ê0)Fn (4.24)

and is thus a function of ctot;�1; � � � ;�n�1 in an analogous way.
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Following Chapter 3, it seems reasonable to expect a bound as before:

�n � �+
n <

ctot
12

+O(1): (4.25)

As there, however, the quantity Fn can become unde�ned for n � 4. In the case
of n = 4, we again restrict the allowed values for the total central charge to ctot >
max(c+D4; c

+
N4). This leads to the bound

�4 � ctot
12

+O(1) (4.26)

Similar results follow for arbitrary �n using the methods described here.
For larger n, we follow a procedure similar to the one in Chapter 3. In Appendix

C.2 we solve for the value of the central charge cDn which causes the denominator
of Fn to vanish, and in Appendix D.2 we show that having all �'s be degenerate
maximizes/universalizes our bound. The result is that we must again require

log n .
�ctot
12

+O(1); (4.27)

for Fn to be �nite and nonzero. Then a similar analysis gives the bound

�n � ctot
12

+O(1); (4.28)

where O(1) here means with respect to ctot. There still could be subleading corrections
that for large enough n contribute to leading order. By requiring

n� e�ctot=6 +O(1);

work similar to Appendix E gives the bound

�n � ctot
12

+O(1) (4.29)

for asymptotically large central charge and where the O(1) term here is a constant
with respect to all variables.
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Chapter 5

Bounds on number of states and primaries

In this chapter, we turn our attention to bounding the number of states in a given
energy range. We show that for a general unitary two-dimensional conformal �eld
theory with discrete spectrum and modular invariance, there are in�nitely many con-
straints on the number of states (primary and descendant) with energy E 2 (�; E),
where � � Ee�2�E . We also derive a bound on the number of primary states with en-
ergy in a similar range for the case where total central charge ctot is large and discuss
methods by which these bounds could be improved.

5.1 Polynomial constraints from thermal partition function

Consider again a two-dimensional conformal �eld theory with a discrete spectrum de-
scribed by a unitary quantum mechanics. The S-invariance of the conformal �eld the-
ory partition function resulted in eq. (3.3). For purely imaginary complex structure
� = i�

2�
, the conformal �eld theory partition function reduces to the thermodynamic

partition function, which can be written as

Z(�) = Tr
�
e��H

�
=
X
n

exp(��En): (5.1)

The En are the discrete, real (and possibly degenerate) eigenvalues of the Hamiltonian
H of the theory on a circle of length 2�.

Applying eq. (3.3) to eq. (5.1) gives up constraints in terms of polynomial func-
tions of En: X

n

exp(�2�En)gp(En) = 0; p odd (5.2)

where gp is a p
th-order polynomial de�ned by

gp(En) � exp(2�En) (�@�)
p exp(��En)

����
�=2�

: (5.3)

Some explicit expressions for gp are

g1(E) = �2�E

g3(E) = �(2�E)3 + 3(2�E)2 � (2�E)

We note that the polynomials gp(E) are related to the Bell polynomials Bp(x) [43].
De�ning x � 2�E, our polynomial constraints (5.2) can thus be expressed asX

n=0

Bp(�xn)e�xn = 0; p odd: (5.4)
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5.2 Upper bounds on the number of states

The most straightforward consequence of equation (5.2) is to give an upper bound on
the number of states (primary or descendant) with an energy in a given range. From
the p = 1 equation, it follows thatX

n

En exp(�2�En) = 0: (5.5)

We de�ne energy Ep to be the lowest positive energy level, so that Ep � 0 and
Ep�1 < 0. Then we can split equation (5.5) so that one contribution begins with
energy Ep. This gives

X
j�p

Ej exp(�2�Ej) =

p�1X
i=0

jEij exp(2�jEij): (5.6)

We will bound the LHS below and the RHS above. Every term on the RHS is
positive, and the largest term happens when i = 0. Therefore we have

p�1X
i=0

jEij exp(2�jEij) �
p�1X
i=0

jE0j exp(2�jE0j) = p
ctot
24

exp
��ctot

12

�
:

To bound the LHS, we use the fact the argument of our sum takes its maximum value
of e�1 when Ei = (2�)�1. This allows us to split the sum as

r�1X
i=p

Ei exp(�2�Ei) +
X
j�r

Ej exp(�2�Ej);

where Er � (2�)�1 and Er�1 < (2�)�1. We truncate the in�nite sum at energy E
| cutting o� a sum of positive terms will give us a strictly smaller quantity. The
crudest approximation is to drop the �rst sum completely. Then we can bound the
LHS using the fact that every term in the second sum is greater than or equal to
E exp(�2�E). By de�ning NE as the number of states with energy (2�)�1 � E � E ,
we have thus derived the inequality

NEE exp(�2�E) < p
ctot
24

exp
��ctot

12

�
: (5.7)

Alternatively, we can consider the limit of large E . In this limit all energies between
approximately Ee�2�E and E will contribute terms on the LHS of (5.6) greater than
or equal to Ee�2�E . If we label the number of energies in this range as N+

E , then we
have the inequality

N+
E E exp(�2�E) < p

ctot
24

exp
��ctot

12

�
: (5.8)

This inequality allows us to make interesting statements. For example, considering
the case of E � ctot

24
(where ctot must therefore be large), we get the result

) N+
ctot=24

� p exp
��ctot

6

�
: (5.9)
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Thus we have derived an upper bound on the number of states with energy in the range
E 2 � ctot

24
e��ctot=12; ctot

24

�
. By adding p to both sides, we can get a bound on the total

number of states of energy E < ctot
24

(except for the interval E 2 �0; ctot
24
e��ctot=12

�
):

N�
ctot=24 � p

�
1 + exp

��ctot
6

��
: (5.10)

Because equations (5.9) and (5.9) are upper bounds on the number of states for large
total central charge, they will also be upper bounds on the number of primary states.

Before proceeding, we turn our attention to the factor p. We are interested in how
p depends on ctot, for example, if we consider a theory with only the identity operator
and its descendants. We will be interested in studying pure gravity up to as high an
energy scale as possible. Given that at � = ctot=12 one must add additional primary
states, we thus consider a CFT with only the identity conformal block up to this value
of �. The number p should count all of the states with energy less than zero; we recall
the earlier fact that the number of distinct, linearly independent states at level N is
P (N). (We are actually overcounting slightly due to the absence of states at level 1,
but this does not a�ect our conclusion). This means we are interested in counting
the number of descendants of the vacuum (h = 0) with E < 0, or equivalently, with
N < c

24
. We need to calculate

p =

c=24X
n=0

P (n): (5.11)

Considering large c, we use the asymptotic behavior of the partition function [44] to
get

P (n) � P
� c

24

�
� 1

4
p
3
�
c
24

�e�q 2

3(
c
24) =

2
p
3

c
e�
p
c=6: (5.12)

This means in the case that we have only the identity operator as a primary, roughly
speaking we have

p .

p
3

12
e�
p
c=6: (5.13)

For large central charge, the factor p does not a�ect the leading behavior in terms of
the central charge. Thus in this case, eq. (5.9) goes as

log(N+
ctot=24

) � �ctot
6

+O(
p
ctot): (5.14)

5.3 Bounding number of primary operators

We now attempt to derive an upper bound on the number of primary operators with
energies that lie within a given range. To do this, we will use S-invariance of the full
partition function (4.10) instead of eq. (5.2). We will again focus on the lowest order
constraint:

1X
A=1

f1

�
EA +

1

12

�
�Aexp(�2�EA) = �b1(Ê0)exp(�2�E0); (5.15)

32



where we have used �A = EA �E0. As before, it will be convenient to refer to some
particular energies. We see the argument of the sum vanishes when Ei =

1
4�
� 1

12
+

�hA0+��hA0

e2��1 . We thus de�ne E+
p � 1

4�
� 1

12
+ 1

e2��1 ; and E�
p � 1

4�
� 1

12
: Further, we see

that the argument of our sum takes its maximum value when Ei =
3
4�
� 1

12
+

�hA0+��hA0

e2��1 .

We thus also de�ne E+
r � 3

4�
� 1

12
+ 1

e2��1 and E�
r � 3

4�
� 1

12
.

We now divide equation (5.15) into the sums

<E�pX
>E0

f1

�
EA +

1

12

�
�Ae

�2�EA +
<E+

pX
�E�p

f1

�
EA +

1

12

�
�Ae

�2�EA (5.16)

+
1X

�E+
p

f1

�
EA +

1

12

�
�Ae

�2�EA = �b1(Ê0)exp(�2�E0)

The �rst term is strictly negative by de�nition; we move it to the RHS. The
second term is more complicated. We are interested in deriving a universally true
bound using the third sum. To make sure our bound is universal, we want the second
sum that we subtract over to be as small (as negative) as possible. This will happen
if we evaluate hA = �hA = 0 and evaluate every term in the sum at E�

p . Even then,
the most negative that any term in that sum could contribute is still not as much as
evaluating any term in the sum at E0. For now we use this weaker inequality to get

1X
E+
p

f1

�
EA +

1

12

�
�Ae

�2�EA = �b1(Ê0)e
�2�E0

�
E�pX
E0

f1

�
EA +

1

12

�
�Ae

�2�EA �
E+
pX

E�p

f1

�
EA +

1

12

�
�Ae

�2�EA (5.17)

� �b1(Ê0)e
�2�E0 +m

�
�ctot
12

� �

6
+
1

2
+

2�

e2� � 1

�
e�ctot=12

where m is the number of primary operators with energy greater than the ground
state energy and smaller than E+

p . We also know that

�b1(Ê0) =

�
�ctot
12

� �

6
+
1

2

�
(1� e�2�)2 + 4�e�2�(1� e�2�)

In the limit of large total central charge ctot, then, the RHS of eq. (5.17) will be

� �ctot
12

�
m+ (1� e�2�)2

�
e�ctot=12: (5.18)

We now turn our attention to the LHS of eq. (5.17). Again, we truncate this
in�nite sum at some energy E so that the LHS is

�
EX
E+
p

f1

�
EA +

1

12

�
�Ae

�2�EA :
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We again divide this sum into pieces, as

E�rX
E+
p

f1

�
EA +

1

12

�
�Ae

�2�EA+
E+
rX

E�r

f1

�
EA +

1

12

�
�Ae

�2�EA+
EX
E+
r

f1

�
EA +

1

12

�
�Ae

�2�EA

(5.19)
The argument of the �rst sum takes its minimum for EA = E+

p ; the argument of the
third sum takes its minimum for EA = E . Every term in the second sum will evaluate
to be larger than if it were evaluated at E , for su�ciently large E . In fact, we will
assume E is large enough that

f1

�
E + 1

12

�
e�2�E � f1

�
E+
p +

1

12

�
(1� e�2�)e�2�E

+
p (5.20)

De�ning N+
E as the total number of primary operators with energies greater than E+

p

and less than E , we therefore have that the LHS is

� N+
E f1

�
E + 1

12

�
(1� e�2�)e�2�E (5.21)

Using eqs. (5.21) and (5.18) gives us the inequality

N+
E f1

�
E + 1

12

�
(1� e�2�)e�2�E � �ctot

12

�
m+ (1� e�2�)2

�
e�ctot=12; (5.22)

or,

N+
E �

�ctot
12

(m+ (1� e�2�)2)

f1
�E + 1

12

�
(1� e�2�)

e�ctot=12+2�E : (5.23)

We are already restricting ourselves to the case of large E ; ctot. For E = ctot
24

we
have

N+
ctot
24

�
�ctot
12

(m+ (1� e�2�)2)
�ctot
12

(1� e�2�)
e�ctot=6 (5.24)

=

�
m

1� e�2�
+ (1� e�2�)

�
e�ctot=6 � (m+ 1) e�ctot=6

Therefore in the limit of large ctot,

N+
ctot
24

. n ctot
24
e�ctot=6; (5.25)

where N+
ctot
24

is the number of primary operators with energy between E+
p and ctot

24

and n ctot
24

is the number of primary operators (including the vacuum) with energy less

than E+
p . Note the similarity between this bound and the inequality (5.9).

34



5.4 Higher-order constraints

We have thus far only considered the lowest order constraints p = 1. There are,
in fact, in�nitely many constraints on the number of states with energy lying in an
appropriate range. The order p constraint will involve a degree-p polynomial in E
(�) for deriving a bound on the number of states (primaries). At the level of p = 1,
we already had di�culties with Kronecker �'s and splitting up and evaluating sums in
order to derive inequalities. Thus for now we will only consider deriving a bound on
the number of states. Obviously, however, an upper bound on the number of states
will still serve as an upper bound on the number of primaries.

As found earlier, our polynomial constraints can be expressed in terms of Bell
polynomials (5.4). The properties of Bell polynomials are well understood. It can be
shown that the Bell polynomials obey the recurrence relation

Bn+1(x) = xBn(x) + xB0
n(x): (5.26)

In particular, every Bell polynomial Bn(x) with n � 1 has the root x = 0. Another
important property is that the Bell polynomial Bn(�x) has n distinct, real, non-
negative (including zero) roots. This means that a similar procedure to the p = 1
case will give an inequality in terms of a degree-p polynomial. One could hope that
by combining these constraints, the situation simplies. For example, considering
additional constraints could allow us to make statements about intervals that we
cannot easily bound. This is an interesting direction for future investigations.
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Chapter 6

Gravitational interpretation

In this chapter, we use the AdS3/CFT2 correspondence to translate our bounds on
state number and conformal dimension in two-dimensional conformal �eld theories
to bounds on the number of microstates and masses for theories of three-dimensional
gravity in anti-de Sitter spacetimes (maximally symmetric curved spacetime with
cosmological constant � < 0). We will begin with a brief introduction to the relevant
features from the AdS3/CFT2 correspondence before translating our bounds from
the boundary conformal theory to the bulk gravitational theory. This work does
not contain a detailed introduction to the AdS/CFT correspondence. For a more
complete review, we refer to [45] or [46].

We then consider the speci�c case of AdS3 pure gravity and what our bounds can
tell us about this three-dimensional theory of quantum gravity. Pure Einstein gravity
in three dimensions seems trivial because it has no local propagating degrees of free-
dom. In n dimensions, the induced metric has n(n� 1)=2 independent components,
and there are n constraint equations that need to be satised by physical solutions
(in the ADM formalism, for example, these are the Hamilton and momentum con-
straints). The number of local physical degrees of freedom, therefore, is n(n � 3)=2,
which obviously vanishes when n = 3. In [47, 48], however, it was shown that AdS3
admits black hole solutions with similar thermodynamical properties to their higher
dimensional counterparts. This suggests the study of 2+1 gravity may indeed be quite
useful for understanding relevant aspects of more realistic quantum gravity models.

6.1 AdS3/CFT2

The study of the asymptotically AdS3 spacetimes lead to the discovery that the al-
gebra of charges associated with asymptotic spacetime symmetries is given by two
copies of the Virasoro algebra [49]. Because the physical states must form a represen-
tation of this algebra upon quantization, the quantum theory of asymptotically AdS
2+1 gravity should be a conformal �eld theory of the corresponding central charge.
The obtained value for this Virasoro central charge is

c+ �c =
3L

GN
; (6.1)

where L = j�j�1=2 is the AdS radius and GN is Newton's constant. This correspon-
dence, along with Cardy's formula (2.49), showed the computation of the black hole
entropy to be in agreement with the Bekenstein-Hawking formula [50]. The result
of [49] is now seen as a precursor to Maldacena's conjecture [51] of the AdS/CFT
correspondence. This conjecture states that there is an exact equivalence between
string theory on an AdS background and a conformal �eld theory on the conformal
boundary of AdS. This correspondence is a concrete realization of the holographic
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principle of 't Hooft and Susskind [52], as it relates a theory in d + 1 dimensions to
a theory in d dimensions.

In addition to matching the total central charge and AdS radius, we wish to
match the spectrum of massive bulk objects with the spectrum of boundary primary
operators. A primary state corresponds to a state at rest with respect to the global
time coordinate of AdS, because its energy cannot be lowered by acting with boost
generators. The bulk interpretation of descendants can be interpreted as the original
massive state in the bulk with boundary metric excitations added [53]. To be more
precise, the states obtained by acting with L�n; �L�n with n � 2 correspond to cre-
ation operators for quadrupole and higher modes of the metric; these are located at
the boundary at spatial in�nity and can therefore be thought of as \boundary gravi-
tons" (since as stated earlier, there are no bulk gravitational propagating degrees of
freedom). Acting with L�1 and �L�1, on the other hand, can be though of as exciting
the dipole mode of the metric, which is pure gauge when applied to the vacuum but
not pure gauge when applied to a state with a massive object in the bulk to a state
of motion with higher energy. Thus we have the correspondence

E(rest) =
�

L
; (6.2)

where E(rest) is the rest energy of an object in the bulk of AdS and � is the dimension
of the primary operator.

6.2 Bounds in gravitational theory

We begin by interpreting our results from Chapter 3. According to eq. (6.2), we
can interpret our bounds as saying that the dual gravitational theory, when it exists,
must have massive states in the bulk (without boundary excitations) with rest energies
Mn = �n=L satisfying

Mn �M+
n �

1

L
�+

n jctot= 3L
GN

: (6.3)

Using our asymptotic bound (3.40), this inequality becomes

Mn � 1

4GN
+
Dn

L
; (6.4)

where Dn is an O(1) or smaller term in ctot and n is constrained appropriately. In
the 
at-space limit L!1, this inequality becomes

Mn � 1

4GN
:

Since n can be of exponentially large order in c according to eq.(3.39), this inequal-
ity indicates a high density of gravitational microstates of mass � 1=4GN . Indeed,
the logarithm of the number N of such states should be at least equal to the upper
bound on log(n) of eq.(3.39),

logN � �ctot
12

+O(1) =
�L

4GN
+O(1): (6.5)
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The density of these states should be strongly peaked at the upper limit of the mass
range, so this may be interpreted as a lower bound on the entropy of a spinless (2+1)-
D black hole of mass 1=4GN . The actual entropy of a spinless black hole of this mass
is [47, 48, 50]

S =
�ctot
6

=
�L

2GN

which obeys the bound (6.5).
This discussion extends in a natural way to the results from Chapter 4. Using

(6.2), the upper bounds (4.18) and (4.21) become upper bounds of order 1=4GN

on the masses of the two lightest states. In the case where one of these primary
operators is (anti)holomorphic, our correspondence (6.2) is not valid. This is because
such states have a little group di�erent from that of a massive particle in the bulk of
AdS. For large L, they can only correspond to massless states without a rest frame
or to states that don't propagate in the bulk. Despite being a special case, however,
these massless states will trivially satisfy our nonzero upper mass bound.

We can similarly discuss the gravitational interpretation of our results from Chap-
ter 5. We will consider the case of large central charge, meaning the 
at space limit
� ! 0. For large enough ctot, the bound (5.9) will hold. In the dual gravitation-
al theory (when it exists), this bound becomes an upper bound on the number of
gravitational states (including boundary excitations) with mass less than 1=4GN

N+
ctot=24

� exp
��ctot

6

�
O(exp (

p
ctot)):

As an explicit example, we consider AdS3 gravity with no other �elds. This
theory will consist of the identity conformal block | the vacuum and its Virasoro
descendants. By the discussions in Chapter 5, the factor d for this theory will not
contribute to the leading-order ctot behavior. Combining (5.9) and (6.5) gives that to
leading order in ctot,

�L

4GN
+O(1) � logN � �L

2GN
+O

 r
L

GN

!
: (6.6)

Clearly the upper and lower bounds are the same order, but they di�er by a factor
of two. We are currently employing techniques to push these bounds closer together,
but have not yet been able to improve upon eq. (6.6).
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Appendix A

Behavior of F2; F3

In this appendix, we prove that the functions F2; F3 are de�ned for all relevant values
of our parameters. The function F2 is given by

F2 � f3(�1 + Ê0)exp(�2��1) + b3(Ê0)

f1(�1 + Ê0)exp(�2��1) + b1(Ê0)
(A.1)

and the polynomials fi and bi are given in equations (3.12) and (3.14). By inspection,
we see that F2 will only become unde�ned if the denominator equals zero. The value
of the central charge when f1(�1 + Ê0)exp(�2��1) + b1(Ê0) = 0 is

cD2 =
2

�

(12��1 + � � 3)e�2��1 + � � 3� 26�e�2� + 6e�2� + 25�e�4� � 3e�4�

e�2��1 + 1� 2e�2� + e�4�
(A.2)

The maximum possible value that cD2 can take for �1 > 0 is c+D2 = 1:0868::: This
value of the total central charge, however, is outside of the assumed range ctot > 2.
Therefore the function F2 is de�ned for all relevant values of ctot;�1.

Our proof can also run into problems if F2 is vanishing for any values of our
parameter space. The condition for vanishing F2 is

f3(�1 + Ê0)exp(�2��1) + b3(Ê0) = 0: (A.3)

We once again solve for the total central charge satisfying this equation and label
it. This expression can be maximized numerically; it has a maximum value given by
c+N2 = 0:9632:::. This value of the total central charge is also outside of the relevant
range ctot > 2. Therefore the function F2 is well-de�ned and non-vanishing{in fact,
positive{ for all relevant values of ctot;�1, and our proof by contradiction will be
valid.

A similar analysis applies to the function F3 given by

F3 �
P2

i=1 f3(�i + Ê0)exp(�2��i) + b3(Ê0)P2
i=1 f1(�i + Ê0)exp(�2��i) + b1(Ê0)

: (A.4)

Once again, we are interested in where this function vanishes or becomes unde�ned.
This can be studied by solving for values of the central charge at which either the
numerator or denominator vanishes. These solutions will be labeled as cN3 and cD3;
they are functions of �1 and �2. We maximize cN3 and cD3 over the allowed range
of �1;�2 and �nd

c+N3 � 1:3929::: (A.5)

and
c+D3 � 1:8022::: (A.6)
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These values of the central charge, however, are again outside of the relevant range
for ctot, since we have restricted our work to ctot > 2. Therefore the function F3 is
de�ned and positive for all relevant values of ctot;�1; and �2.
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Appendix B

The O(1) term in �+
2

In this appendix, we calculate the O(1) term in the expansion of the largest root �+
2

of polynomial P2(�2) for asymptotically large total central charge. In the body of
the text, we reasoned that the leading coe�cient in the large-ctot expansion of �+

2 ,

�+
2 �

1X
a=�1

d�a(�1)
�ctot
24

��a
;

is d1 = 2. Expanding P2(�
+
2 ) = 0 to next order in ctot, we �nd the expression

�1
e�2��1 + (1� e�2�)2

�

18
(��e�2��1�6�d0e�2��1�13�e�4�+14�e�2��6�d0���24e�2�

+12e�4� + 12e�2��1 + 12� 6�d0e
�4� + 12�d0e

�2� � 6��1e
�2���1) = 0:

Solving for d0 gives us

d0(�1) =
(12� �) + (14� � 24)e�2� + (12� 13�)e�4� + (12� � � 6��1)e

�2��1

6�(e�2��1 + (1� e�2�)2)
:

To keep our bound universal we should take the maximum possible value of this
function. This occurs as �1 ! 1 meaning d0(�1) ! 0:4736:::|the same constant
appearing in the bound on �1. Thus for large enough central charge ctot, we can
always bound the conformal dimension �2 using the expression

�2 � ctot
12

+ �0:
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Appendix C

Condition on ctot; n

C.1 Nonchiral primaries

Here we will sketch the proof of the condition on ctot given by equation (3.38). We
begin with the condition that the denominator of Fn vanishes

n�1X
A=1

f1

�
�A +

1

12
� c+Dn

24

�
e�2��A � b1

�
1

12
� c+Dn

24

�
= 0: (C.1)

Upon expansion, this can be rearranged to give

�cDn

12

 
(1� e�2�)2 +

n�1X
A=1

e�2��A

!
=

n�1X
A=1

2��Ae
�2��A +

�
�

6
� 1

2

� 
(1� e�2�)2 +

n�1X
A=1

e�2��A

!
� 4�e�2�(1� e�2�):

Dividing through by the parenthetical expression on the LHS gives an expression for
cDn.

We wish to consider total central charge larger than cDn in equation (C.1). We
maximize cDn by di�erentiating with respect to �i to �nd critical points. We show
in Appendix D that cDn is maximized when �1 = �2 = � � � = �n�1. The value of �i

which maximizes cDn is given by

�i =
1

2�
W0[A(n� 1)] +

1

2�
� 2

e2� � 1
;

A �
exp

�
� (4�e�2�+e�2��1)

�1+e�2�
�

1� 2e�2� + e�4�
� 0:3780:::

Substituting this into equation (C.1) gives a complicated expression which may be
simpli�ed using the de�nition of the Lambert-W function

z = W0(z)e
W0(z) ) e�W0(z) =

W0(z)

z
:

After some algebra, we �nd the expression

c+Dn =
12

�
(W0[A(n� 1)] + C1) ; (C.2)

C1 � � 4�

e2� � 1
+
�

6
� 1

2
:
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We consider central charge such that ctot > c+D, and use the fact that W0(z) �
log(z) plus O(log(log(z))) corrections. Then for large n only the �rst term on the
RHS of (C.2) will survive, and we deduce

c+Dn �
12

�
W0[A(n� 1)] � 12

�
log(n)

as in eq. (3.38)

C.2 Chiral primaries

Here we will sketch the proof of the condition on ctot given by equation (4.27). We
begin with the condition that the denominator of Fn�1 vanishes and that this value
is maximized when 2��1 + �1 = 2��2 + �2 = � � � = 2��n�1 + �n�1:

�cDn

12
�
�
�

6
� 1

2

�
=

Pn�1
A=1 (2��A + �A) �Ae

�2��A + s1Pn�1
A=1 �Ae�2��A + s2

=
(2��1 + �1)

Pn�1
A=1 �Ae

�2��Ae��Ae�A + s1Pn�1
A=1 �Ae�2��A + s2

=
(2��1 + �1) e

�2��1e��1
Pn�1

A=1 �Ae
�A + s1

e�2��1e��1
Pn�1

A=1 �Ae�A + s2
=

(2��1 + �1) e
�2��1e��1m+ s1

e�2��1e��1m+ s2

and we use the de�nitions

�A � �
2�(�hA0 + ��hA0)

e2� � 1
; s1 � �4�e�2�(1� e�2�)

s2 � (1� e�2�)2; m �
n�1X
A=1

�Ae
�A :

The RHS will be maximized for

�1 =
1

2�
W0(mA) +

B1

2�
;

with

A � e
� s1
s2
�1

s2
; B1 � s1

s2
+ 1� �1

Substituting this back into our expression for the central charge, we �nd a complicated
expression. We simplify it using the de�nition of the Lambert-W function

z = W0(z)e
W0(z) ) e�W0(z) =

W0(z)

z
:

After some algebra, we �nd the largest value of the total central charge causing the
denominator to vanish

�c+Dn

12
= W0(mA) +R1 (C.3)
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where

R1 � �4�
e2� � 1

+

�
�

6
� 1

2

�
:

Let us now turn our attention to the factor

m �
n�1X
A=1

(1� e�2�)�hA0+��hA0 exp

�
� 2�

e2� � 1
(�hA0 + ��hA0)

�
:

How does a term in this sum contribute? If the Kronecker �'s vanish, then the
argument of the sum is unity. If the Kronecker �'s evaluate to unity, then the argument
of the sum is approximately 0.9864... Since we have (n � 1) terms in the sum, we
have determined that

m = �(n� 1); � 2 [0:9864; 1]:

For large arguments of the Lambert-W function, we can use the fact thatW0(z) �
log(z), plus log(log(z)) corrections. For large enough n,the RHS will go as log(n).
We will restrict the total central charge so that ctot > c+Dn, meaning that to leading
order we must require

ctot >
12

�
log(n): (C.4)
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Appendix D

Degenerate � maximizes cDn

D.1 Nonchiral primaries

In this appendix, we will prove that the value of the central charge ctot causing the
denominator of Fn�1 to vanish is maximized when its arguments are identical. The
denominator of Fn�1 vanishes when

�cDn

12
�
�
�

6
� 1

2

�
=

Pn�1
A=1 2��Ae

�2��A � 2e�2�(1� e�2�)

(1� e�2�)2 +
Pn�1

A=1 e
�2��A

or, by appropriate de�nitions,

~c =

Pn�1
A=1 2��Ae

�2��A + s1Pn�1
A=1 e

�2��A + s2
� N

D
:

In some of what follows, we will make use of the fact that D > 0 for any values of its
arguments (as can be seen from its explicit form).

In order for ~c to be a maximum when its arguments are identical, we need the
Hessian to be negative de�nite at this value (or equivalently, have all eigenvalues
negative). We denote partial derivatives of ~c with respect to �i as ~ci. We will need
to calculate partial derivatives of N or D with respect to �i:

Ni = 2� exp(�2��i) (1� 2��i) ; Nij = 0;

Nii = (2�)2 exp(�2��i) (�2 + 2��i)

Di = �2� exp(�2��i); Dij = 0;

Dii = (2�)2 exp(�2��i):

We then �nd

~ci =
NiD �DiN

D2

=
2�e�2��1

D2

"
(1� 2��i)

 
n�1X
A=1

e�2��A + s2

!
+

 
n�1X
A=1

2��Ae
�2��A + s1

!#
:

The prefactor is nonvanishing. In order have a critical point, it is necessary and
su�cient to have �'s satisfying the condition

2��crit:
i = 1 + ~c(�crit:

1 ;�crit:
2 ; � � � ;�crit:

n�1);

where we have de�ned the value of �j giving a critical point as �crit:
j . The RHS of

this equation will be the same for any value of i on the LHS. This means that critical
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points will occur when �1 = �2 = � � � = �n�1. We will make use of this in detail in
Appendix E.

To determine if a critical point is a maximum, we consider the Hessian. This
involves taking more partial derivatives; we calculate

~cii =
(NiD �DiN)iD

2 � 2DDi(NiD �DiN)

D4
:

For critical points, the second term vanishes giving

~cii ! (NiiD �DiiN)

D2
=

(2�)2e�2��i

D2

"
(�2 + 2��i)

 
n�1X
A=1

e�2��A + s2

!
�
 

n�1X
A=1

2��Ae
�2��A + s1

!#
:

Using our above condition for a critical point simpli�es this expression to

~cii = �(2�)
2e�2��i

D
< 0

We will also need to calculate mixed partials:

~cij =
(NiD �DiN)jD

2 � 2DDj(NiD �DiN)

D4
;

or in the case of a critical point

~cij ! NiDj �DiNj

D2
=

(2�)2e�2��ie�2��j

D2
(2��i � 2��j):

Again using our condition for critical points, we see that all mixed partials will vanish.
This means that the Hessian for the case where �1 = �2 = � � � = �n�1 is diagonal
with purely negative entries; all eigenvalues are negative. Thus by our analysis we
conclude that the function cDn will have a local maximum in the situation where all
of its arguments are identical.

D.2 Chiral primaries

The case with chiral primary operators is similar to the case without in Appendix
D.1. In this case, the denominator of Fn�1 vanishes when

�cDn

12
�
�
�

6
� 1

2

�
=

Pn�1
A=1

�
2��A � 2�(�hA0+��hA0)

e2��1

�
�Ae

�2��A � 2e�2�(1� e�2�)

(1� e�2�)2 +
Pn�1

A=1 �Ae�2��A

or,

~c =

Pn�1
A=1

�
2��A � 2�(�hA0+��hA0)

e2��1

�
�Ae

�2��A + s1Pn�1
A=1 �Ae�2��A + s2

� N

D
:
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Again, D > 0 for any values of its arguments.
As before, in order for ~c to be a maximum when its arguments are identical, we

need the Hessian to be negative de�nite. The partial derivatives are similar to the
previous case:

Ni = 2��i exp(�2��i)

�
1�

�
2��i � 2�(�hi0 + ��hi0)

e2� � 1

��
; Nij = 0;

Nii = (2�)2�i exp(�2��i)

�
�2 +

�
2��i � 2�(�hi0 + ��hi0)

e2� � 1

��
Di = �2��i exp(�2��i); Dij = 0

Dii = (2�)2�i exp(�2��i):

We then �nd

~ci =
NiD �DiN

D2

=
2��ie

�2��1

D2

"�
1�

�
2��i � 2�(�hi0 + ��hi0)

e2� � 1

�� n�1X
A=1

�Ae
�2��A + s2

!
+

 
n�1X
A=1

2��A�Ae
�2��A + s1

!#
:

The conditions on the �crit:'s become

2��crit:
i + �i = 1 + ~c(�crit:

1 ;�crit:
2 ; � � � ;�crit:

n�1); with �i � �
�
2�(�hi0 + ��hi0)

e2� � 1

�
:

This means that critical points will occur when 2��1 + �1 = 2��2 + �2 = � � � =
2��n�1 + �n�1.

To check the Hessian, we calculate

~cii ! (NiiD �DiiN)

D2
=

(2�)2�ie
�2��i

D2

"
(�2 + 2��i + �i)

 
n�1X
A=1

�Ae
�2��A + s2

!
�
 

n�1X
A=1

(2��A + �A)�Ae
�2��A + s1

!#
:

Using our above condition for a critical point simpli�es this expression to

~cii = �(2�)
2�ie

�2��i

D
< 0

The mixed partials at this point are

~cij ! NiDj �DiNj

D2
=

(2�)2�i�je
�2��ie�2��j

D2
(2��i � 2��j + �i � �j):

Again, all mixed partials will vanish. Thus we conclude that the function ~c (and thus
cDn) will have a local maximum when 2��1+ �1 = 2��2+ �2 = � � � = 2��n�1+ �n�1.
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Appendix E

Deriving bound on �n

Here we will provide a derivation of the bound (3.42). We de�ne x � 2�(�1+ Ê0)� 3
2

in order to depress the cubic polynomial Pn of eq. (3.33) to

Pn(x) = x3 + Ĉ1(Ê0)x+ Ĉ0(Ê0)x;

Ĉ1(Ê0) � Ĉ0(Ê0)� 3

2
; (E.1)

Ĉ0(Ê0) � �Fn + 6r20 � 1

8
:

It is known [54] that the largest real root of a depressed cubic obeys the inequality

x+ �
s

4jĈ1j
3

cos

�
�

3
+
2�k

3

�
(E.2)

=
2p
3

s����Fn � 6r2 +
13

8

���� cos
�
�

3
+
2�k

3

�
;

where j cos(�)j �
r

�27Ĉ2
0

4Ĉ3
1

and k = 0; 1; 2.

The di�erence between the bound on �1 and the bound on �n is the presence
of factors of n in terms containing Fn. Therefore we will �rst consider which limit
suppresses this dependence. It can be shown by explicit computation that the function
Fn (3.28) has a maximum when �1; :::;�n�1 are degenerate. As we will soon see
explicitly (though somewhat apparent from eq. (E.2)), maximizing Fn maximizes the
bound on �n. Thus we need to maximize Fn as a function of �1. Di�erentiating and
solving to leading order in ctot for the critical point �

max
1 gives that �max

1 � ctot
12

plus
subleading corrections.

From the de�nition of Fn, we see that it contains terms depending on n as large
as nc3tote

�2��1 � nc3tote
��ctot=6. To suppress dependence on n, we therefore impose the

condition

n� c�3tote
�ctot=6: (E.3)

In order for Fn to be nonvanishing and �nite in the case of large n, we are already
restricting ourselves to the case

log(n) <
�ctot
12

: (E.4)

Thus we will have no issues suppressing these n-dependent terms in Fn as our previous
condition on n satis�es this new condition.
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Although the argument for a bound going as ctot=12 follows immediately, we will
continue algebraic manipulations in order to provide justi�cation for previous state-
ments. In the limit (E.3), Fn will be of the form

Fn � a3c
3
tot + a2c

2
tot + a1ctot + a0

�a1ctot + �a0

= c2tot
a3
�a1

�
1 +O(c�1tot)

�
: (E.5)

The ai and �aj are obtained from eq. (3.28) evaluated at n = 0, except that a0; �a0
contain additional corrections much smaller than O(1). Because Ĉ0 and Ĉ1 are just Fn
plus constants, in the limit we consider they will be of the same form as above, with
a1 and a0 replaced by di�erent constants; that is, both Ĉ0 and Ĉ1 grow asymptotically
like c2tot.

We now turn our attention to the cos� terms in eq. (E.2). From the de�nition of
cos� and considerations of the preceding paragraph, the leading behavior of cos(�)
is O(c�1tot). By the series expansion of arccosine, we then have � � ��

2
+O(c�1tot). This

in turn implies

max

�
cos

�
�

3
+
2�k

3

��
=

p
3

2
+O(c�1tot)

plus subleading corrections. Then to leading order eq. (E.2) becomes

x+ �
p
jFnj; (E.6)

plus subleading corrections. Given eq. (E.5), the leading term eq. (E.2) is

x+ � �ctot
12

+O(1): (E.7)

Finally, the de�nition of x+ gives the result

�+
n �

ctot
12

+O(1): (E.8)

As previously stated, this result could have been argued once we placed the appro-
priate restrictions on n and ctot. The details of the preceding paragraph can also be
used to justify our assertion that the above bound on �n is attained at the minimum
allowed central charge. To see this, consider maximizing the expression (�+

n � ctot
12
).

Inspection of eqs. (E.5) and (E.6) shows that the subleading ctot dependence comes
from the expansion of the square root of the ratio of polynomials in powers of c�1tot.
Analysis of this square root shows that it is monotonically decreasing over the allowed
range of ctot. So to maximize the square root, we should let ctot take its smallest al-
lowed value.
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Appendix F

Degenerate � maximizes bound

In this appendix, we provide an argument that the bound on �n for ranges we consider
achieves a local maximimum when the �1;�2; ::: ;�n�1 approach degeneracy. We will
consider the case of theories like those found in [32]| no chiral primary operators.
The more general case with primary operators follows in a nearly identical way; it is
merely more cumbersome.

We will argue that nearly degenerate �'s will maximize the function Fn�1. Ac-
cording to Appendix E, for the limits we consider the function �+

n � ctot
12

will take its

maximum when
pjFn�1j � ctot

24
is maximized. Thus maximizing Fn�1 will maximize

our bound. The quantity F2 has degenerate �'s trivially (as there is only �1), thus it
seems possible that this condition on the �'s will give a maximum. It can be shown
analytically that for some value of �1, F2 takes its maximum value. The conditions
associated with this are

@

@�1
F2

����
�1=�max

1

= 0

,
�
f 03(�

max
1 + Ê0)� 2�f3(�

max
1 + Ê0)

��
f1(�

max
1 + Ê0)e

�2��max
1 + b1(Ê0)

�
=
�
f 01(�

max
1 + Ê0)� 2�f1(�

max
1 + Ê0)

��
f3(�

max
1 + Ê0)e

�2��max
1 + b3(Ê0)

�
and

@2

@�2
1

F2

����
�1=�max

1

< 0

,
�
f 003 (�

max
1 + Ê0)� 4�f 03(�

max
1 + Ê0) + 4�2f3(�

max
1 + Ê0)

��
f1(�

max
1 + Ê0)e

�2��max
1 + b1(Ê0)

�
<
�
f 001 (�

max
1 + Ê0)� 4�f 01(�

max
1 + Ê0) + 4�2f1(�

max
1 + Ê0

��
f3(�

max
1 + Ê0)e

�2��max
1 + b3(Ê0)

�
We will now assume that this fact is true for some �nite number of �'s and see

the e�ect of adding of one more term:

Fk+1 =
f3(�k + Ê0)e

�2��k +N

f1(�k + Ê0)e�2��k +D
; (F.1)

where N and D are the numerator and denominator respectively of Fk. To see
that degenerate �'s maximize this function, we must check several conditions. The
condition that the �rst derivative with respect to �k vanishes means�

f 03(�
max
k + Ê0)� 2�f3(�

max
k + Ê0)

��
f1(�

max
k + Ê0)e

�2��max
k +Dmax

�

=
�
f 01(�

max
k + Ê0)� 2�fk(�

max
1 + Ê0)

��
f3(�

max
k + Ê0)e

�2��max
k +Nmax

�
;
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where Nmax and Dmax are evaluated at the critical point values. Note that the
condition for a vanishing �rst derivative with respect to any of the other �'s looks the
same except we substitute �max

i in place of �max
k . This condition is of the same form

as for F2, where we know a solution exists. In the case where �'s are degenerate, it
reduces to the case of F2 di�ering only by the presence of factors of (n�1). A solution
can be easily found to this equation. Thus the case of degenerate �'s corresponds to
a critical point.

To ensure this point is a maximum, we need to consider the second derivatives.
We will consider �rst the case of mixed partials. Taking derivatives of Fk+1 with
respect to �i and �j (including with respect to �k) gives (suppressing Ê0)

@2

@�i@�j
Fk+1

����
f�g=f�maxg

=
e�2��ie�2��j

(f1(�max
k ) +Dmax)2

�

[ (@if3(�
max
i )� 2�f3(�

max
i ))

�
@jf1(�

max
j )� 2�f1(�

max
j )

�
� �@jf3(�max

j )� 2�f3(�
max
j )

�
(@if1(�

max
i )� 2�f1(�

max
i )) ]:

Clearly for degenerate �'s, all of the mixed partials will vanish. The expression for a
second derivative with respect a particular � (suppressing Ê0 once more) is

@2

@�2
i

Fk+

����
f�g=f�maxg

=
e�2��i

(f1(�max
k )e�2��

max
k +Dmax)

2 �

[
�
f 003 (�

max
i )� 4�f 03(�

max
i ) + 4�2f3(�

max
i )

� �
f1(�

max
k )e�2��

max
k +Dmax

�
� �f 001 (�max

i )� 4�f 01(�
max
i ) + 4�2f1(�

max
i )

� �
f3(�

max
k )e�2��

max
k +Nmax

�
]:

Again, the bracketed expression is of the same form as the condition necessary for F2.
In the case of degenerate �'s, the expressions become identical save for the presence
of some (n� 1) factors. And it can be shown in a similar way that this expression is
strictly negative.

Thus for the case of degenerate �'s, the second derivative test shows that Fk+1
has a local maximum. By the discussions of Appendix E, this corresponds to whenpjFn�1j � ctot

24
is maximized and thus in the limits we consider when the least upper

linear bound �+
n � ctot

12
is extremized.
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