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ABSTRACT OF CAPSTONE 

INCIDENCE OF NON-HODGKIN’S LYMPHOMA BY RESIDENTIAL 
PROXIMITY TO SUPERFUND SITES IN KENTUCKY: A 

MULTIVARIATE ANALYSIS 
 

Non-Hodgkin’s Lymphoma (NHL) is a category of cancers that arise from 

the lymphocytes of the immune system. The rates of NHL in the United States 

and Kentucky began to rise in the mid-20th Century, shortly after the 

manufacture, use, and disposal of numerous chemical substances began to 

increase during and after the Second World War. While the etiology of NHL is not 

fully known, there are several chemical substances for which evidence exists of a 

possible link between exposures and development of NHL and other cancers. 

Several of these substances are also present in sites within Kentucky designated 

by the US Environmental Protection Agency as hazardous waste sites under the 

Superfund program. The present investigation sought to determine whether 

residential proximity to Superfund sites in Kentucky was a significant risk factor 

for NHL. Geospatial coordinates for all Superfund sites in Kentucky were 

obtained, along with US Census 2010 population data at the census tract level, 

and de-identified data from the Kentucky Cancer Registry for all NHL cases 

between 1995 and 2012, including residential geospatial coordinates. Incidence 

data was calculated at the level of census tract, except for <5km buffer rings and 

5-10km buffer circles around each Superfund site, whose NHL incidence data 

was calculated separately. Residence within the <5km and 5-10km buffer zones 

were the exposure variables, and other potentially relevant covariates were 

considered for the models, and tested for multicollinearity and significance.  



Because of spatial autocorrelation of NHL incidence data and non-

stationarity uncovered during exploratory regression and diagnostics, 

geographically weighted regression was used in addition to ordinary least 

squares regression. Using the best-fitting models, it was determined that 

residence less than 5km and between 5-10km from the nearest Superfund site 

were both significant factors in elevated cumulative NHL incidence rates. The 

Beale Code for rural/urban characteristics of the census tract was another 

significant predictor, with more rural areas having higher NHL incidence rates. 

Directions for future research, public health implications, and potential strategies 

for distal and proximal interventions are presented based on the results of this 

study.   

  

 

KEYWORDS: Superfund, environmental exposures, non-Hodgkin’s 

lymphoma 
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CHAPTER 1 

INTRODUCTION 

 

Background – Non-Hodgkin’s Lymphoma 

 

Non-Hodgkin’s lymphoma (NHL) is a category of cancers that arise from the 

lymphocytes (white blood cells) of the immune system. NHL can arise from B-cell, T-

cell, or natural killer (NK) lymphocytes, and is differentiated from Hodgkin’s lymphoma 

(also known as Hodgkin’s disease) by the absence of a particular type of abnormal cell 

called the Reed-Sternberg cell, which is present in Hodgkin’s lymphoma1. The incidence 

and prevalence of NHL far exceeds that of Hodgkin’s lymphoma in the United States 

(U.S.); in 2014, NHL accounted for 88.5% of all estimated new lymphoma cases, and 

was responsible for sixteen times more cancer deaths than Hodgkin’s lymphoma2-3. 

Lymphomas differ from leukemia, another type of cancer that can manifest in the 

lymphatic system, in that leukemia is a cancer of the blood-forming cells in bone 

marrow, which can develop into myeloid or lymphoid variants4. By contrast, lymphomas 

arise from the abnormal transformation and growth of already differentiated B-cells 

(and, less frequently, T-cells) in the lymphatic system, often resulting in solid tumors5. 

Different types of NHL are most often categorized by the types of cells affected, 

the location(s) of solid tumors, or both. Approximately 85% of NHL cases arise from B-

cells, 15% from T-cells, and less than one percent from NK cells6-7. The most common 

forms of NHL in the U.S. are the diffuse large B-cell lymphomas (approximately 33% of 

cases)8 and B-cell follicular lymphomas (approximately 20% of cases)6. The most 

common type of T-cell NHLs are peripheral T-cell lymphomas, which account for 
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approximately 14% of U.S. NHL cases6. Cases of NHL where tumors arise from lymph 

nodes or other lymphatic tissues such as the spleen or thymus are referred to as 

intranodal NHL, whereas extranodal NHL arises from lymphatic cells in other organs 

such as the small intestine, stomach, and skin9-10. Approximately 25% of U.S. NHL 

cases are of the extranodal type10. 

In 2012, NHL was the 8th most common cancer in the overall U.S. population, the 

6th most common cancer among males, and the 7th most common among females11. 

Males have a higher incidence rate for NHL compared to females in the U.S. (22.5 vs. 

15.3 per 100,000)11 and worldwide, for reasons that are not fully understood but which 

could involve protective effects from estrogen or other hormones in females12-13.  NHL 

incidence rates in the U.S. increased markedly during the middle of the 20th Century, 

before stabilizing in the mid-1990s but remaining among the highest in the world to the 

present day2,14-16. While most other forms of cancer either showed a decline in the 

incidence rate during the 20th Century, or an increase that could be directly tied to 

known causal factors (e.g. lung cancer and tobacco smoking) or improved screening 

and early detection, the increase in NHL incidence defies simple explanations. 

Therefore, the contribution of several factors including exposures from the external 

environment must be considered. 
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Figure 1: Hon-Hodgkin’s Lymphoma Incidence rate and death rate per 100,000, 
United States, 1975-2011 (Source: National Cancer Institute, Surveillance, Epidemiology, and End 

Results (SEER) Program2) 
 

 

Background – Hazardous Waste Management Practices: United States 

The demands of the Second World War (1939-1945) led to the proliferation of 

chemical investment and innovation in both Allied and Axis nations. This set up a 

postwar technological trajectory that led to the rapid expansion of fields such as 

petrochemicals, pesticides, and pharmaceuticals17. New products were being 

introduced to the market and into the environment before all the known and suspected 

human and environmental toxicities could be fully known. The first reports of human and 

aquatic toxicities from new agricultural pesticides, which had been originally developed 

as wartime agents, began emerging as early as the late 1940s18.  

In the early 1950s, at approximately the same time when NHL incidence began 

to increase in the U.S.19, new questions began to arise about the effects that 

widespread chemical usage, contamination, and waste disposal practices might be 

having on human health and the environment, and whether these might be contributing 



11 
 

to specific disease outcomes. The tremendous increase in the production and use of 

new and established chemical products following the Second World War led to the 

generation of both hazardous and non-hazardous waste streams at previously unseen 

levels, and led to greater potential for community or ecosystem exposures20.  One 

touchstone in the development of the modern grassroots American environmental 

movement was the publication of Silent Spring by Rachel Carson in 1962, which 

detailed the negative effects of non-selective pesticides on avian species21. 

The ways in which various jurisdictions and industries chose to deal with wastes 

frequently resulted in environmental costs being borne by the disadvantaged, minorities, 

and persons other than those in the generating industry or municipality22. Greater 

environmental consciousness and demands for justice led to federal standards as a 

baseline for state and local regulations, and the eventual establishment of the U.S. 

Environmental Protection Agency (EPA) in 1970. The Clean Air Act and Clean Water 

Act were the first major regulations adopted by EPA; however, solid waste and 

hazardous waste was considered a unique local problem that resisted federal regulation 

until 197623.  

The Resource Conservation and Recovery Act (RCRA) of 1976 set forth national 

standards for sanitary landfills and other disposal methods of municipal solid wastes, 

and “cradle-to-grave” transport, storage, and ultimate disposal of hazardous wastes24. 

However, while RCRA dealt with waste disposal and reduction practices going forward, 

it did not deal with past dump sites which could continue to affect their surrounding 

communities for decades23. The need for additional federal regulations to deal with past 

hazardous waste sites was vividly illustrated in the late 1970s by the Love Canal 
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disaster in Niagara Falls, New York and the discovery of the Valley of the Drums in 

Bullitt County, Kentucky25-26. 

The Comprehensive Environmental Response, Compensation, and Liability Act 

of 1980 (CERCLA) established mechanisms for determining which sites constituted the 

greatest threat to human health and the environment, and designated a tax on 

petrochemical industries to generate a trust fund known as “Superfund” to clean up 

these sites27. When potentially responsible parties could not be found, or did not have 

the resources necessary to adequately clean-up a site, money from the Superfund 

would be used to pay for these activities. In general, all sites on which CERCLA-

covered activities have occurred or are being investigated are known as Superfund sites 

and maintained in EPA databases, whereas the most hazardous sites requiring greater 

and long-term remediation activities are put on the National Priorities List (NPL) and are 

often additionally referred to as NPL sites28. As of 2015, there were a total of 234 

Superfund sites in Kentucky, twenty of which are currently or formerly designated as 

NPL sites. 

 

Statement of the Problem 

Long before the official designation of NPL and Superfund sites, both the 

research community and those who live near these sites wondered the extent to which 

human health effects might have resulted from exposures to materials at these sites. 

The public frequently submitted requests for “cancer cluster” investigations to the 

Centers for Disease Control and Prevention (CDC) around these sites, partially due to a 
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tendency among the public to attribute negative health outcomes to external 

environmental factors to a greater extent than the scientific community28-29. 

Nevertheless, there are also scientific reasons to investigate causality of 

environmental factors for health outcomes. Several contaminants present at Superfund 

sites are of special concern due to their persistence, bioaccumulation, acute toxicity, 

and likelihood of exposure due to localized accumulation30. However, multiple spatial 

and temporal issues complicate these investigations, such as on-site process variability, 

residential mobility, latency factors for chronic diseases such as cancer, geologic and 

meteorological variance, transformation of waste products over time, and delineation of 

exposure vs. non-exposure areas31. Because human exposures to environmental 

insults from Superfund sites are usually low-level and variable, most physiological-

based pharmacokinetic modeling strategies used in classical toxicology are not a good 

fit32. Furthermore, there are numerous possible confounders with environmental 

exposure outcomes research in human subjects, such as race, socio-economic status, 

along with smoking, diet, exercise, recreational activities, and occupational exposures 

which must be considered32. 

With these caveats in mind, it remains critically important to evaluate the 

potential causality of environmental factors in negative health outcomes, particularly 

those such as NHL whose increased incidence in the U.S. and several other developed 

nations tracks reasonably closely with the wider industrial use, disposal, and dispersion 

of chemical substances into the environment. 

 

 



14 
 

Purpose and Significance of the Study 

 

Kentucky has 20 NPL sites and 234 total Superfund sites, but to date no 

analyses with geospatial tools have been published on the possible relationship 

between health status and residential proximity to these sites. Kentucky is also 

presently ranked 47th nationally for overall health and is the state with the highest 

cancer death rate33. Though several studies have examined possible cancer clustering 

around hazardous waste sites, many used crude and relatively large areas of 

“exposure” and “non-exposure”, and were not able to demonstrate possible gradient 

effects. This study will use statistical and geospatial tools to model the extent to which 

residential proximity to Superfund sites in Kentucky might explain prevalence of NHL, 

while controlling for covariates.  

NHL was chosen as the outcome variable due to its possible association with 

environmental exposures, and its unique historic incidence trends in the United States. 

For the years 2007-2011, Kentucky was ranked 4th nationally for age-adjusted non-

Hodgkin’s lymphoma death rate34. The NHL rates in Kentucky also parallel the national 

and international Western trends of increased incidence in the mid-20th Century across 

all genders and age groups35, with the highest overall rates seen in white males8,35. This 

pattern is seen in both intranodal and extranodal forms of NHL, with extranodal NHL 

exhibiting similar demographic patterns to intranodal NHL9,36.  

Geospatial analysis tools can be used to determine potential gradient effects if 

data for both exposures and outcomes can be geocoded and modeled. Ultimately, if it is 

determined that residential proximity to NPL/Superfund sites increases NHL risk, and/or 

“hot spots” are uncovered, public health strategies for prevention and early detection 
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can be directed to these areas in order to save lives and prolong quality of life37. In 

addition, if these risks are demonstrated to disproportionately affect disadvantaged 

persons, the study can provide supporting evidence for programs designed to foster 

improvements in social justice and equality. 

The current study examined incidence rates from 1995 through 2012 (the most 

recent year from which full data was available) from the Kentucky Cancer Registry for 

all forms of non-Hodgkin’s lymphoma (NHL), intranodal and extranodal. While all types 

of NHL could have heritable and lifestyle factors for risk, they also have known or 

suspected etiologies from the external environment as described earlier.  

The goal of the project was to perform a spatial analysis to examine the 

relationship between NHL cancer incidence and proximity to hazardous sites. Data 

sources included the following: 

- US EPA Superfund location data for Kentucky. Geospatial coordinates are 

available for all twenty NPL sites in Kentucky. For the non-NPL sites, 113 of 

the 214 were unique, non-duplicative sites with geospatial coordinates 

available; thus, the total number of EPA sites available for inclusion is 133; 

- Kentucky Cancer Registry 1995-2012 case data for incidence of non-

Hodgkin’s lymphoma, intranodal and extranodal;  

- 2010 US Census demographic data at the census tract level. This is a unit of 

census data that can be tabulated while maintaining subject confidentiality. 

Census tracts represent between 1500 and 8000 people, and are intended to 

represent neighborhoods that are relatively stable and homogenous38. 
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From these data, the next steps were to use methods of geospatial analysis, 

modeling, and outcome measurement to determine whether a significant effect exists 

between residential distance from Superfund sites and the incidence of NHL. The 

software utilized included ArcGIS, SPSS, and SAS in addition to MS Excel. Results 

could have a significant impact on public health if local hot spot areas are found where 

beneficial activities could be focused, such as cancer screening, nutritional interventions 

that could reduce vulnerability to stressors39, or built environment interventions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The following review of the literature is a summary of key concepts foundational 

to understanding the types of health effects that can cluster near hazardous waste sites, 

the use of geospatial tools to investigate these clusters, and the possible environmental 

causes of non-Hodgkin’s lymphoma (NHL) and other cancer types.  It represents 

theoretical and empirical knowledge gathered from the disciplines of epidemiology, 

medicine, environmental health, geography, and governance. The works cited are 

collected from peer-reviewed journal articles, book chapters, conference papers, 

symposium proceedings, and governmental agencies. Because the first Superfund sites 

were designated by the US EPA in 1981, an examination was conducted of the 

literature from 1981 to 2015 in order to capture the earliest evaluations of possible 

health effects at these sites. The databases and sources used to identify the scholarly 

literature included EBSCO Academic Search Complete, NCBI PubMed, OCLC 

WorldCat, and LexisNexis. The key words and phrases for the searches included 

“Superfund”, “environment”, “cancer”, “geospatial analysis”, “lymphoma”, “non-Hodgkin 

lymphoma”, and “non-Hodgkin’s lymphoma”. A secondary review of writings referenced 

in the bibliographies of key works augmented the process. 

The literature review also focused on the most common types of cancer in the 

study population for which it was possible that environmental exposures could play a 

role in their initiation, promotion, or progression. The primary focus was on NHL, but 

literature on breast cancer and bladder cancer was also reviewed, as these were three 
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of the ten most frequent cancers in the population study basin. The other common 

cancer types in the study basin had predominant risk factors that were genetic or dietary 

(colon cancer), or suffered from the presence of overwhelmingly powerful confounders 

(e.g. lung cancer and high rates of smoking and indoor radon exposure, skin cancer and 

ultraviolet exposure). 

One of the first epidemiologic studies of a designated Superfund National 

Priorities List (NPL) site found that white males in the county hosting the site had a 

significantly elevated odds of developing bladder cancer (OR = 1.7, p<0.025)40. The 

authors measured exposure at county level, using national averages for comparison, 

and multiple outcomes were evaluated, so the elevated risk might have been due to 

multiple comparisons40.  A study from two Superfund sites in Texas found that residents 

designated as “high-exposure” due to residential proximity to the sites self-reported 

more neurological symptoms compared to low-exposure populations41, and that 

incidence rates for multiple cancers were elevated in the vicinity of a Department of 

Defense Superfund site in Massachusetts42. Serum immunoglobulin A levels were found 

in one meta-analysis to be consistently but not significantly elevated for residents near 

Superfund sites compared to matched controls at least five miles away from sites43. 

Another study estimated that multi-state Superfund site cleanup activities reduced the 

rate of infant congenital abnormalities by 20 to 25 percent for mothers who resided 5 km 

or less from the sites44.  

Studies have also examined the degree to which contaminants could migrate 

from Superfund sites into the surrounding ecosystems and communities. Tree bark 

samples within 10 km of an NPL site in Michigan showed 10- to 100-fold increases in  
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dichlorodiphenyltrichloroethane (DDT), hexabromobenzene, and polybrominated 

biphenyls compared to sites >10 km distant45. Passive sampling devices that mimicked 

the way living organisms accumulate lipophilic contaminants were deployed near an 

NPL site in Portland, Oregon, and contaminant levels that would result in an excess 

cancer risk greater than the EPA limit of 1x10-6 were found46. Residents near former 

uranium mining NPL sites had drinking-water ionizing radiation levels that exceeded 

public limits47. Researchers have also investigated social justice concerns with the siting 

of Superfund/NPL sites and found that poor and/or minority populations tend to be 

disproportionately affected48-52.    

The addition of geospatial information and tools in public health research have 

increased precision for examining spatial patterns within data, understanding 

relationships between outcomes and environmental variables, and inferring exposure 

patterns53. When precise address information is available for cases, geospatial analysis 

can provide sharp, precise boundaries of a cluster or area of exceedance to most 

efficiently deploy public health resources54. As evaluated areas get smaller (e.g. county, 

census tract, census block, geospatial coordinates), there is less variability in 

exposures, and ecological fallacy becomes less likely55. 

A geographic distribution analysis showed that blood levels of dieldrin (an 

organochlorine insecticide) increased by 1.6 ng/g for each one mile of closer residential 

proximity to a Superfund site in Maryland56. Another study of an NPL site contaminated 

with polychlorinated biphenyls (PCBs) found that residential proximity to the site was not 

a significant factor in cord serum PCB levels, but being born before or during dredging 

activities to remove PCBs from the site was significant57. Geospatial analysis has also 
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been used to identify clusters of childhood cancer near NPL sites in Dade County, 

Florida58, very-low birth weight near multiple NPL sites in Harris County, Texas59, and to 

investigate and confirm the unequal burden of NPL/Superfund sites among specific 

racial, ethnic, and socioeconomic demographics60-64.  

Outside the context of U.S. Superfund/NPL sites, exposures to e-waste 

dismantling sites in China at the village level were found to significantly elevate serum 

levels of thyroid-stimulating hormone and polybrominated diphenyl ethers, along with 

micronucleated binucleated cells65. In Taiwan, spatial autocorrelation analysis identified 

hot spots for various cancers in females in areas with high levels of environmental 

exposures to arsenic, nickel, and chromium66. And, in Australia, excess cancer risk and 

elevated soil arsenic from historic gold-mining activities were both found in economically 

disadvantaged areas67. 

Some primary and secondary contaminants frequently found at Superfund sites 

are suspected of initiating or promoting specific types of cancer such as breast, bladder, 

and NHL. Superfund site contaminants were shown to initiate or promote breast 

tumorigenesis through endocrine disruption68. Organochlorine compounds such as 

PCBs and DDE can act as estrogen mimics and partition into adipose tissues69-70. 

Organic solvents such as halogenated hydrocarbons and aromatic amino/nitro 

compounds exhibit mammary tumorigenic activity in rodent models71, and women who 

were occupationally exposed to solvents prior to first full-term birth had a significantly 

elevated breast cancer risk72. Additional animal studies have revealed more than 200 

chemicals and heavy metals that were mammary carcinogens or estrogen mimics73-74.  
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While the predominant risk factor for bladder cancer is smoking, accounting for 

approximately 50% of all cases75, environmental exposures to aromatic amines and 

polycyclic aromatic hydrocarbons are also risk factors for bladder cancer76-79. Arsenic 

that leaches into drinking water is another known bladder cancer risk factor, though the 

mechanisms are not well understood80. 

NHL incidence rates in the United States increased dramatically during the 

middle of the 20th Century and plateaued in the mid-1990s, but incidence rates still 

remain well above the levels seen prior to the post-Second World War chemical age. 

Persistent organochlorine compounds that became prevalent in the early- and mid-20th 

Century have been suspected as a causal factor, and numerous studies have shown 

associations between these compounds and NHL81-88. Meta-analysis of multiple case-

control studies has demonstrated a significant association between occupational 

exposures to pesticides and NHL89. Non-occupational exposures to two specific types of 

organochlorines, chlordanes and DDT, have been repeatedly associated with NHL in 

multiple studies89-93. Occupational exposures to pentachlorophenol has been associated 

with increased risk of NHL94. Polychlorinated biphenyls (PCBs) are another broad 

category of organochlorines that are persistent organic pollutants with high patterns of 

usage in the early 20th Century, and which show consistent causal associations with 

NHL83,95-97.  

Other chemicals that have been positively associated with NHL and which can be 

present at Superfund sites include phenoxy herbicides87,98, carbamate insecticides87, 

organophosphorus insecticides87, benzene and benzyl compounds99-101, 

trichloroethylene16, perchloroethylene102, polychlorinated dibenzo-p-dioxins and 
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dibenzofurans103-104, 1,3-butadiene105, cadmium106, and high nitrate levels in community 

water supplies107. The incidence and mortality rates of NHL were elevated for persons 

with non-occupational exposures to herbicides108. Elevated risk of NHL was also found 

in residents living near the Italian equivalent to NPL sites109, residential areas where 

exposures to traffic noise consistently exceeded 65 decibels110, lumber and wood 

products facilities111, pulp and paper industries112-113, copper smelters113, refineries that 

emit lead and cadmium114, and residences where geothermal hot water is used115.  

Numerous mechanisms have been proposed for how environmental exposures 

could lead to increased rates of NHL. Immune system suppression, which can be 

triggered by xenobiotics, is one of the primary known risk factors for NHL95,116-118. 

Widespread exposures to lymphomagenic substances can trigger immunosuppressive 

conditions36. Conversely, persons with a history of allergies, other hyperimmune 

disorders, or asthma appear to have a reduced risk of developing NHL119-121. 

Overexpression of cellular protein Exportin-1 which mediates the transport of other 

proteins between the nucleus and cytoplasm has also been associated with increased 

risk of NHL, and Exportin-1 inhibitors have shown early promise in treatment of NHL122. 

While the Human Immunodeficiency Virus (HIV) has been suspected as one of 

the causal factors in rising NHL incidence due to its profound immunosuppressive 

effect, NHL incidence rates have also risen among the HIV-uninfected123-124. In addition, 

HIV and the associated illness of Acquired Immune Deficiency Syndrome (AIDS) did not 

rise to a level detectable by public health surveillance in the U.S. until 1981125, and the 

NHL incidence spike started decades earlier.  
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Some xenobiotics can have a directly toxic effect on the hematopoietic system, 

which can lead to various forms of lymphoma or leukemia. Examples of this include 

benzene126, cadmium127, and lead128. Another possible mechanism of toxicity is the 

generation of reactive oxygen species following xenobiotic exposures, resulting in 

damage to cellular DNA129, or chronic antigen stimulation resulting in inflammatory 

cascades36. Alternately, the site contaminants themselves can be transformed into toxic 

free radicals capable of direct cytotoxicity. Two examples of this are the transformation 

of pentachlorophenol into free radicals that can persist in the environment for 

decades130, and the generation of environmentally persistent free radicals that can 

inhibit cytochrome p450-based xenobiotic metabolism131.  An Algerian study indicated 

that pesticide exposures altered the ratio of T-helper 1 to T-helper 2 cells via 

proliferation of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), 

significantly increasing the risk of NHL132.  

It is also probable that gene-environment (GxE) interactions lead to the 

development of some NHL cases133-134. Multiple subtypes of  NHL are associated with 

the t(14;18) chromosomal translocation and oncogenic activation, which can be 

triggered by environmental toxicants129,135-138. For some cases of NHL, the relationship 

between organochlorine exposures and outcome appears to be modified by variations 

of genes for numerous interleukins139. Genetic variance in xenobiotic metabolism and 

DNA repair pathways have also been shown to likely modify the relationship between 

NHL and chlorinated hydrocarbon exposure140.  Single-nucloetide polymorphisms in the 

Ataxia-Telangiectasia Mutated and Tumor Necrosis Factor-alpha loci are associated 

with elevated risk of  multiple B-cell NHL subtypes141-142. 
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For the twenty sites in Kentucky on the National Priorities List, information on the 

contaminants of concern at each site is available from the US Library of Medicine 

TOXMAP webpage143. The following seven categories of contaminants associated with 

increased risk of NHL were present at Kentucky NPL sites: benzene and benzyl 

compounds (15 of 20 NPL sites, 75%), lead (14/20, 70%), polychlorinated biphenyls 

(11/20, 55%), cadmium (9/20, 45%), trichloroethylene (7/20, 35%), organochlorines 

other than PCBs (6/20, 30%), and perchloroethylene (2/20, 10%). Information on 

contaminants of concern was not available for the non-NPL Superfund sites in 

Kentucky. 

In summary, the literature review shows that NHL incidence in the U.S. and 

Kentucky has risen in a temporal pattern that appears commensurate with the greater 

use and dispersion of multiple chemical substances into the environment. The literature 

also demonstrated there are feasible ecological and biological mechanisms by which 

substances from Superfund and other hazardous chemical sites can enter the 

community environment and exert toxic effects, including those that could trigger NHL. 

The methodology in the next chapter details the research strategy employed to 

investigate whether residential proximity to Superfund sites in Kentucky could be at 

least partially responsible for an increased incidence of NHL. This question has not 

been previously investigated, and the results could point to the need for greater 

screening, awareness, and other interventions that might save lives, prolong the quality 

of life, or increase environmental justice in affected regions. 
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CHAPTER 3 

METHODOLOGY 

 

This is an observational population study, using data from three sources, to 

examine the relationship between the residential proximity of patients diagnosed with 

non-Hodgkin’s lymphoma (NHL) to environmentally hazardous sites and the likelihood 

for developing NHL cancer, while controlling for individual characteristics. The 

hypothesis is that residential proximity to Superfund sites in Kentucky is a significant 

factor in an increased risk of NHL, even after adjusting for other covariates.  

 

Data Sources 

The NHL cancer data from the Kentucky Cancer Registry (KCR) was obtained for 

18 years, from 1995 to 2012, following approval of the University of Kentucky 

Institutional Review Board (Appendix 1). All individual identifying information was 

removed from the data by KCR before it was given to investigators, other than the 

geospatial coordinates for their residential address. Each patient was a assigned a 

random unique identification number, which was used to unduplicate the data to retain 

the first cancer diagnosis and eliminate any subsequent ones.  

The environmental exposure data came from the US EPA Superfund website for 

Region 4 (which includes the state of Kentucky)146. The EPA sites were categorized 

based on whether they were presently or formerly on the National Priorities List, and the 

geospatial coordinates of the area where the contamination occurred or is occurring. In 

Kentucky, there are 20 current or former NPL sites, all of which had full geospatial 
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coordinates available. There were a total of 214 additional, non-NPL Superfund sites, 

for which only 113 had geospatial coordinates available (Figure 2). The 133 total sites 

with geospatial data were treated as point-sources of environmental exposure.  

 

 

Figure 2. Location of 133 NPL/Superfund sites in Kentucky for analysis 

 

 

Census tract Tiger file was obtained from the 2010 US Census website. There 

are a total of 1,115 census tracts in Kentucky of which 734 had reported cases of NHL 

between 1995 and 2012.  

 

Independent Variables 

The independent variables include categorical residential proximities to 

Superfund sites and individual patient data from the KCR. The 2010 census tract counts 
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of all people by gender and age categories (5-year increments) was used for the 

computation of age-standardized incidence rates (e.g., overall, for males, for females). 

The patient level data from the KCR included NHL cases with both types of this 

cancer: intranodal and extranodal. Other variables available for the NHL cases included 

sex, race, ethnicity, tobacco usage (categorical), age at diagnosis, family history of 

NHL, county of residence, Appalachia region designation, and Beale Code that 

categorizes areas by their level of urbanization. The exposure, or patient’s residential 

proximity to Superfund sites, was measured by an ordinal variable with three categories: 

0= exposure beyond 10 km, 1= exposure within 10 km, but beyond 5 km, and 2= 

exposure within a radius of 5 km. For the multivariate analysis the exposure variable 

was recoded into two dummy variables; exposure within 5km (yes/no), and exposure 

between 5km and 10 km (yes/no), with exposure beyond 10km as the reference group 

for the analysis.  

 

Dependent Variables 

The dependent variables in this study are the age adjusted rates: overall, by 

gender, and by cancer type (extranodal, intranodal). The age standardization of rates 

were computed  using the direct method with the 2000 US Census population as a  

weighting factor, per current recommendations from the Centers for Disease Control 

and Prevention144-145. Table 1 shows the crude rate for NHL incidence in Kentucky, 

1995-2012, the age-adjusted rate, and the weighting factors applied. 
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Table 1: Weighting Factors for Age Standardization of Kentucky NHL Data, 1995-
2012, based on 2000 US Census 

Age 
Group 

Population 
(A) 

Number of NHL 
cases 

(B) 

Age-Specific NHL 
incidence  Rate 
(per 100,000) 

(C) 

Weights for 
2000 U.S. 

Standard Pop. 
(D) 

Weighted Rate 
(E) 

0 – 9 565255 61 10.79158964 0.141668548 1.528828834 

10 – 19 580949 127 21.86078296 0.145200521 3.174197075 

20 – 29 575264 221 38.41714413 0.131007086 5.032918105 

30 – 39 566331 583 102.9433317 0.151805676 15.62738206 

40 – 49 614893 1300 211.4188973 0.153968555 32.55186211 

50 – 59 607482 2392 393.7565228 0.111169775 43.77382405 

60 – 69 436630 3546 812.1292628 0.073057233 59.33191678 

70+ 392563 6143 1564.844369 0.092122607 144.1575428 

Total 4,339,367 14373 331.223425 1.00000 305.1784718 
Note: C=B / A; E=C*D 

 

The patient data was geocoded at census tract level; each census tract has a 12-

digit Federal Information Processing Standards (FIPS) Code147. Each case was placed 

wtihin a census tract, based on its geographic coordinates. The age-adjusted incidence 

rates of NHL were estimated for each exposure area, and for all census tracts outside 

the exposure areas, by using the 2010 Census census tract population as the 

denominator and the 1995-2012 NHL cases as the numerator, along with the 2000 US 

Standard population weighting factors. Specifically, the exposure areas were developed 

in ArcMap by drawing 5km and 10km buffers around each Superfund site and by 

identifying which census tracts and how much of their geographical areas fall within 

each exposure area. When buffers of neighboring Superfund sites intersected, they 

were dissolved into a single area of exposure, and the perimeter of all of the conjoined 

buffers became the boundary of the newly created exposure areas. Therefore, the 5km 

exposure areas have different sizes and shapes, including different number of census 
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tracts (or fragments of census tracts), and different numbers of Superfund sites within 

their boundaries.  

There were 71 areas within 5km of one or more Superfund sites, and each was 

assigned a unique ID. The 5km dissolved areas were removed (erased) from the 10km 

disolved areas, to form a secondary area of exposure (that sometimes looks like a 

donut) that was outside 5km of any Superfund site, but within 10km of at least one 

Superfund site. There were 45 areas of exposure between 5km and 10km away from 

any Superfund site; these areas were also assigned a unique ID. Finally, the remaining 

areas of the state, outside the 5km and 10km exposure areas, formed the third area of 

interest, the “unexposed” areas of the state, for which the incidence rates were 

computed at census tract level.  

To account for the distribution of population across the census tract fragments 

that fall within the 5km radius, between 5km and 10km “donut”, and beyond 10km, the 

proportion of each census tract that falls within a specific area of exposure was 

calculated. This calculated percentage was applied to the computation of the census 

population with specific characteristics (e.g., in terms of age and gender) within each 

fragment. A multiple exposure variable was created to account for the differences in the 

number of Superfund sites within the boundaries of different exposure areas.   

The numerator in the formulae for the age-adjusted rates was the number of 

cases with specific gender and age characteristics within each exposure area, and was 

calculated using the spatial location of each patient’s residence. Specifically, cases 

were placed into exposure categories based on whether their residential geospatial 

coordinate was within a 5km exposure area, a 5km to 10km “donut” exposure area, or 
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outside all of the exposure areas. Cases with residence located outside of all the 

exposure areas (e.g. lived more than 10km from any Superfund site) were classified as 

“unexposed”. At the latitude where Kentucky is located on the globe, 103.44 km equals 

one decimal degree.  

Univariate analysis included counts, proportions, means, medians and standard 

deviations for the following characteristics by level of analysis: 

a) For the patient or case level data, univariate analysis is provided for the 

following variables: gender, race, age at diagnosis, current tobacco use, 

tumor type, family history of NHL, residence in Appalachian regions, Beale 

Code urban or rural designation, and residential proximity to the nearest 

Superfund site.  

b) For the census tract level, univariate analysis is provided for the following 

variables: number of NHL cases, total population, and number of Superfund 

sites within the tract. 

Bivariate analysis was conducted using statistics such as chi-square tests, t-

tests, and the one-way analysis of variance (ANOVA). The underlying population was 

naturally skewed, but the sampled data set was large enough to offset this.   

Spatial regression analyses were performed for each dependent variable. The 

dependent variables were the incidence rates of NHL at the census tract level, overall 

and stratified by gender and SEER tumor type classification. In each of these regression 

models, the principal predictor variable was the type of exposure area (within 5km, over 

5km to 10km, and over 10km) measuring the residential proximity to Superfund sites as 

a proxy for possible exposures to contaminants at these sites. Other independent 
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variables that were identified in the literature as possibly related to NHL incidence and 

also considered for the regression models were smoking status and family history of 

cancer. Race was not included in the analyses due to the small number of cases that 

were of other race than Caucasian/White.  

Due to the relatively large size of the study basin (the entire Commonwealth of 

Kentucky), and its underlying regional, cultural, and socioeconomic diversity, it was 

determined that Geographically Weighted Regression (GWR) would most likely be 

necessary for analysis. With large study areas such as an entire state or region, it is 

often not prudent to use global or aspatial regression because the impact of covariates 

can vary across the area148-149. Diagnostic tools were used on the data to detect the 

presence of spatial autocorrelation and clustering, and thus to confirm the choice to use 

GWR in addition to ordinary least squares regression modeling. 
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CHAPTER 4 

RESULTS 

 

The results of the descriptive analyses are shown in Table 2 for case data. There 

were a total of 14,373 new NHL cases in Kentucky between 1995 and 2012. Per the 

2010 US Census, Kentucky has a total of 1,115 census tracts within its 120 counties. 

While 82.3% of the NHL cases could be assigned to census tracts based on high-quality 

residential geospatial coordinates, for the remaining 17.7% the geospatial coordinate 

was the centroid of their residential ZIP code. This often occurs when a case lists their 

address as a rural route or post-office box. 

 

Univariate Analysis 

The caseload of 14,373 patient population included 51.5% males, 94.7% of all 

cases were white, and 39.1% were current users of tobacco products. Intranodal NHL 

accounted for 70.8% of all cases, 71.7% of male cases, and 69.9% of female cases. 

Only 3.7% of the cases had a known prior family history of NHL. For most cases, there 

was either no prior family history (52.2%) or an unknown prior family history (44.1%). 

Only 28.1% of cases lived in counties that were part of the designated region of 

Appalachia, and only 9.6% of cases lived in Beale Code designated rural regions. Of all 

cases that were of other than white race, only 0.6% were Hispanic or Latino of any race 

(data not shown) and 4.4% were African American; due to the low proportion of non-

white cases, analyses by race could not be completed. In accordance with national NHL 
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statistics, 67.4% of all diagnoses occurred in patients age 60 or older. Nearly 30 percent 

of cases lived within 5km of a Superfund site.  

 

Table 2: Descriptive Statistics for the Patient Data (N=14,373) 

 
Demographic Variable 
 

 
Category 

 
Number 

 
% of Total 

Gender Female 6978 48.5 
Male 7395 51.5 

 
Race 

White 13617 94.7 
Black 632 4.4 
Other/Unknown 124 0.9 

 
 
 
Age at Diagnosis 
 
 

0-9  61 0.4 
10-19 127 0.9 
20-29  221 1.5 
30-39  583 4.1 
40-49  1300 9.0 
50-59 2392 16.6 
60-69 3546 24.7 
70 and above 6143 42.7 

Tobacco Use Non-User 5715 39.8 
Cigarette Smoker 5237 36.4 
Cigar-Pipe Smoker 138 1.0 
Smokeless Tobacco User 136 0.9 
Multiple Types of Tobacco Used 116 0.8 
Not Recorded/Unknown 3031 21.1 

Tumor Type Intranodal NHL 10181 70.8 
Extranodal NHL 4192 29.2 

Family History of NHL No  7495 52.2 
Yes 533 3.7 
Unknown 6345 44.1 

Appalachia Region No 10337 71.9 
Yes 4036 28.1 

Beale Code Classification Urban 12997 90.4 
Rural 1376 9.6 

Residential Proximity to 
Nearest Superfund site  

<5 kilometers 4225 29.4 
5-10 kilometers 3570 24.8 
>10 kilometers 6578 45.8 

 

 

The total number of new cases per year showed an upward trend between 1995 

and 2007, after which rates plateaued but stayed elevated through 2012 (Figure 3). The 

highest total number of cases was in the last year of collected data (2012), and the 
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lowest number was in the first year collected (1995). When cases were stratified by race 

into white and non-white categories, this trend was more pronounced in non-white 

populations (Figure 4), though the peak year for non-white NHL cases was 2009. 

 

 

 

 
Figure 3. New non-Hodgkin’s Lymphoma Cases in Kentucky, 1995-2012 
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Figure 4. Number of new non-Hodgkin’s Lymphoma Cases in Kentucky, 

1995-2012, by Year and by Race 
 

 

 

Figures 5 and 6 show the distribution of cases by age categories, separated by 

gender and tumor classification  of intranodal (SEER classification 33041) and 

extranodal (SEER classification 33042) types. As expected, an age-related increase in 

NHL incidence was observed for both males and females, and for both SEER 

classifications, with a sharp increase in NHL for females ages 60-69. Intranodal NHL 

cases were consistently more than double the extranodal cases, across all age groups, 

and both showed sharp increases in the 60-69 age group.  
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Figure 5. NHL by Sex and Age at Diagnosis 

 
 

 
Figure 6. NHL by SEER Classification and Age at Diagnosis 

 

 

Univariate analysis at the census tract level is summarized below. The mean 

population per 2010 Census tract in Kentucky was 4104.8 (standard deviation 1721.0), 

with a median value of 3920. The number of NHL cases per 100,000 in each census 
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tract had a mean value of 209.8 (standard deviation 335.7), and a median value of 28.5. 

It is apparent that some influential census tracts are driving the mean number of NHL 

cases higher, as evidenced by the stark difference between the mean and median 

values. Eighty-seven percent of all census tracts in Kentucky did not have a Superfund 

site within their borders, and the remaining 13% had between one and five sites per 

tract.  

 

Bivariate analyses 

Table 3 presents descriptive analyses for gender, race, residence in Appalachian 

regions, Beale Code, family history of NHL, primary SEER tumor type, and tobacco use, 

stratified into three categories of residential proximity to the nearest Superfund site.  

Although analyses by race were not conducted due to the low proportion of non-white 

cases, it is worth mentioning that non-white NHL patients were more likely to live within 

5km of the Superfund sites, whereas residents of Appalachia and Beale Code 

designated rural areas were less likely to live near them. These results are not 

surprising given the distribution of the Superfund sites shown earlier in Figure 2; note 

that there is a dense concentration of sites in the area of the state with the highest 

percentage of African-American residents, and relatively few sites in the eastern and 

southern regions of Kentucky that are designated as Appalachian, and more likely to be 

classified as rural. Significant differences in categorical percentages also exist for 

tobacco use among cases, and in family history of NHL. The percentage of NHL cases 

with no family history of NHL, or without a known family history, were significantly higher 

for the cases residing within 5km of Superfund sites.  
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Table 3: Bivariate Analysis for the Case Data by Exposure 

Demographic Variable Residential Proximity to Nearest 
Superfund/NPL Site 

Chi-square 
value (df) 

P-value

<5 km 5-10 km >10 km 

Gender Male 2170 (29.4%) 1793 (24.2%) 3432 (46.4%) 3.54 (2) .170 

Female 2055 (29.4%) 1777 (25.5%) 3146 (45.1%)   

Race White 3826 (28.1%) 3400 (25.0%) 6391 (46.9%) 234.04 (4) <.001 

Non-white 351 (55.4%) 133 (21.0%) 150 (23.7%)   

Appalachia No 3459 (33.5%) 3070 (29.7%) 3808 (36.8%) 1198.44 (2) <.001 

Yes 766 (19.0%) 500 (12.4%) 2770 (68.6%)   

Beale Code 
Classification 

Urban 4157 (32.0%) 3497 (26.9%) 5343 (41.1%) 1186.59 (2) <.001 

Rural 68 (4.9%) 73 (5.3%) 1235 (89.8%)   
Family 
History of 
NHL 

Yes 133 (25.0%) 130 (24.4%) 270 (50.7%) 9.94 (4) <.001 

No 2234 (29.8%) 1817 (24.2%) 3444 (46.0%)   

Unknown 1858 (29.3%) 1623 (25.6%) 2864 (45.1%)   

SEER Type Intranodal 2969 (29.2%) 2547 (25.0%) 4665 (45.8%) 1.12 (2) .572 

Extranodal 1256 (30.0%) 1023 (24.4%) 1913 (45.6%)   

Tobacco Use 
Status 

Non-User 1716 (30.0%) 1479 (25.9%) 2520 (44.1%) 12.49 (4) .014 

Tobacco User 1653 (29.4%) 1347 (23.9%) 2627 (46.7%)   

 Not recorded  856 (28.2%) 744 (24.5%) 1431 (47.2%)   

 
 

Because census tracts can vary in both population and area, it is important to 

compute and use in the analyes the rate of NHL incidence per 100,000 persons, rather 

than the number of cases. Also, to account for aging effects on health and for the  

differences in the number of and  ages of residents across block groups, data was age-

adjusted. The cumulative incidence rates for NHL per 100,000 persons from 1995-2012 

in each census tract, age-adjusted using the 2000 US Census standard population, are 

depicted in Figure 7. Exposure and age-adjusted outcome data was aggregated at the 

levels of census tract, plus 5km buffers and 5-10km buffers around Superfund sites that 
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could contain parts of several census tracts. There are some areas of noticeably higher 

NHL incidence, scattered mostly in the western and south-central regions of Kentucky. 

 

 

 

 

 

One-way analysis of variance (ANOVA) was used to compare the average age-

adjusted cumulative NHL incidence  rates  by exposure groups (<5km, 5-10km, over 

10km). The incidence rates (overall, for males, females, for each SEER tumor 

classification, and for each SEER classification by gender) were significantly greater 

within 5km exposure areas than in the other two groups; further, the rates within 5km 

and 10km from the Superfund sites were significantly greater than the rates in the 

unexposed areas. In almost all strata, the means in the unexposed group are 

significantly lower than those in the exposed groups; at a significance level of p<0.05, 

Figure 7. Overall Cumulative NHL Incidence Rate per 100,000 People (1995-2012) 
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the only category in which the exposed and unexposed group NHL rates did not differ 

significantly was for the average incidence rate for the intranodal NHL in females 

(p=.064) . The data reflects the national trends, in that the male patients have a higher 

incidence rate than females for both intranodal and extranodal NHL (Table 4). 

 

Table 4: Age-Adjusted 1995-2012 Cumulative NHL Incidence Rates by Exposure 
Group 

 Age-adjusted NHL  
Incidence Rates 

Incidence Rate by Exposure Group  
Mean (std dev) 

ANOVA 

  <5km 
 

5-10km >10km F 
statistic 

p-
value 

Overall  457.0 (244.7) 308.6 (100.6) 290.9 (215.7) 17.8  <.001 

Gender Male 542.4 (341.2) 338.3 (113.3) 325.8 (249.5) 21.6 <.001 

Female  382.9 (240.2) 285.3 (116.7) 262.4 (303.6) 5.1 .006 

SEER 
Type 

Intranodal 323.4 (200.2) 218.7 (73.3) 208.5 (180.6) 12.3 <.001 

Extranodal 133.7 (82.8) 89.9 (49.6) 82.5 (76.6) 13.4 <.001 

Gender 
* SEER 
Type 

Intranodal -Males 384.1 (294.8) 239.7 (89.6) 235.8 (196.6) 15.8 <.001 

Intranodal - Females 267.7 (215.1) 202.4 (84.6) 185.9 (281.1) 2.8 .064 

Extranodal - Males 158.3 (154.3) 98.6 (60.2) 90.0 (102.1) 12.3 <.001 

Extranodal - Females 115.2 (83.5) 82.8 (60.3) 76.5 (97.4) 5.0 .007 

 

 

In addition, independent samples t-tests were used to compare the mean age-

adjusted incidence rates between Appalachia and Non-Appalachia regions (Table 5). 

None of the incidence rates were significantly different between Appalachia and non-

Appalachia. This finding is important because, for most types of cancer, Appalachia is 

generally known to have significantly higher incidence rates. 
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Table 5: Age-Adjusted 1995-2012 Cumulative NHL Incidence Rates by Region 

 Age-Adjusted NHL 
Incidence Rates 

Mean Number of Cases  (std dev) Independent t-test  

Appalachia Non-Appalachia T-statistic p-value 

Overall  305.8 (184.0) 308.0 (261.2) -0.137 .891 

Gender Male 338.1 (275.4) 350.9 (249.5) 0.654 .513 

Female  283.3 (388.3) 268.4 (203.6) -0.676 .499 

SEER 
Type 

Intranodal only 222.4 (226.0) 217.1 (142.5) -0.393 .695 

Extranodal only   85.6   (79.8)   88.7   (75.4) 0.533 .594 

Gender * 
SEER 
Type 

Intranodal for Males 246.0 (219.6) 251.4 (197.7) 0.344 .731 

Intranodal for Females 202.3 (371.2) 188.6 (167.6) -0.675 .500 

Extranodal for Males   92.1 (103.3)   99.5 (110.2) 0.921 .357 

Extranodal for Females   81.0 (102.1)   79.8   (89.9) -0.172 .863 

 

 

Multivariate Analyses 

Spatial regression models were developed using the ArcMap software. For 

multivariate analysis, the exposure was measured with two dummy variables: exposure 

within 5km (yes=1/no=0), and exposure between 5km and 10km (yes=1/no=0), with 

exposure beyond 10km as the reference group for the analysis. Because the outcome 

and exposure data have a spatial dimension, it was important to determine whether 

spatial autocorrelation existed in the data. Exploratory regression and diagnostic tests 

were conducted to verify whether geographically weighted regression (GWR) would be 

necessary, or if standard ordinary least squares (OLS) regression modeling alone would 

suffice. Testing was also performed to determine whether predictor effects on the 

outcome were consistent across the studied area (stationarity), as an additional 

determination whether GWR would be necessary. 

Data characteristics from the individual level such as race, smoking status, and 

family history of NHL, which were compared across exposure categories in bivariate 
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analysis, were not available at the census-tract level and thus were not included in 

multivariate models. Two other individual-level data characteristics (gender and SEER 

tumor type) were controlled at the multivariate level by calculating age-standardized 

NHL incidence rates by gender and SEER tumor type, along with the overall rate. 

Exposure categories, Appalachian status, Beale Code, and a series of population and 

housing characteristics at the census tract level were considered for inclusion in 

multivariate models. Multicollinearity coefficients obtained during the exploratory 

regression steps showed that most of the population and housing characteristics at the 

census tract level exhibited significant multicollinearity and could not be included in the 

same model (Variance Inflation Factors >10). Furthermore, none of these tract-level 

characteristic variables had a significant effect on NHL incidence rates, so they were not 

considered for subsequent regression modeling. There was no multicollinearity between 

Appalachian status and Beale Code, so both variables were considered for regression 

modeling.  See Appendix 2: Exploratory Regression Output. 

The Global Moran’s I tool in ArcGIS was used to quantify the presence of spatial 

autocorrelation among residuals (Table 6). Overall rates were examined, along with 

rates by gender, SEER tumor classification, and by both gender and SEER 

classfication.  All showed significant and positive Z-scores, and thus significant 

autocorrelation and clustering of similar residual values.  

The Anselin’s local Moran’s I tool (also known as the Local Indicators of Spatial 

Association or LISA) in ArcGIS also confirmed the presence of autocorrelation, 
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Table 6: Tests for Spatial Autocorrelation of Outcome Data Using Global Moran’s I 

Stratum Global Moran’s I Z-score P-value 

Overall 0.033592 7.303229 <.001 
Intranodal 0.023284 5.168179 <.001 

Extranodal 0.058884 12.61339 <.001 
Male 0.038898 8.384161 <.001 

Intranodal 0.028624 6.203308 <.001 
Extranodal 0.051379 11.03733 <.001 

Female 0.02186 5.121112 <.001 
Intranodal 0.010848 2.720941 0.007 

Extranodal 0.053696 11.53571 <.001 
 

 

clustering, and spatial outliers. Figure 8 depicts, for the overall NHL incidence data, the 

existence of multiple geographic areas where significant high and low clustering of NHL 

rate data exist, along with areas where significant spatial outliers occur (e.g. low-NHL 

local areas adjacent to high-NHL areas, or vice versa). The pattern is similar to what 

was observed in the overall incidence data from Figure 7, with high clusters in the 

western and central regions, and low clusters and high-low outliers predominate in the 

eastern and southern regions that are also designated as Appalachia. 

The clustering and outlier areas of NHL incidence data stratified by gender, 

SEER classification, and both gender and SEER classification are collectively depicted 

in Figures 9 through 11. Each of these maps also confirm that spatial autocorrelation 

and clustering exist in this data. For the most part, these maps show a profile similar to 

the overall NHL incidence data, with the notable exception that a cluster of extranodal 

NHL incidence in females was observed in the Appalachian region of Ashland-Boyd 

County in northeastern Kentucky, an area with abundant petrochemical industries and 

Superfund sites. 
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Figure 8. Anselin’s Local Indicators of Spatial Association (LISA) for Overall 
Cumulative NHL Incidence Data 

 

 

  

 

Figure 9. Anselin’s LISA for Cumulative NHL Incidence Data by Gender Strata 
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Figure 10. Anselin’s LISA for Cumulative NHL Incidence Data by SEER Tumor 
Classification Code 

 

  

  

 

Figure 11. Anselin’s LISA for Cumulative NHL Incidence Data by Gender and 
SEER Tumor Classification Code 
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 The hot spot analysis was conducted to identify areas of significant high or low 

spatial clustering of NHL incidence data using the Getis-Ord Gi* statistic. This differs 

from the Anselin’s LISA analysis in that each feature (e.g. census tract/buffer zone) and 

its neighboring features are compared to the average of all features on the map, 

whereas Anselin’s LISA only compares values from each feature to contiguous 

neighboring features. Hot and cold spots were mapped at the 99%, 95%, and 90% 

confidence limits. Results for overall data are depicted in Figure 12, and results by 

gender and SEER tumor classification are shown in Figures 13 and 14, respectively. 

There are interesting differences between the maps, as the profile of hot and cold spots 

is not necessarily uniform between overall data, data by gender, and data by SEER 

classification. As with the Anselin LISA tests, the overall data map shows the hot spots 

being located predominantly in the western and central parts of the state. When data is 

split by gender, the hot spots are more prominent for male cases, particularly the spots 

in the western region of the state, and the central region of the state corresponding to 

metro Louisville and Hardin County. When data is split by SEER classification, the 

western and metro Louisville hot spots become less prominent, and for extranodal NHL 

a hot spot emerges in Ashland-Boyd County. Collectively, these maps present further 

evidence of the need to utilize GWR in modeling the effect.  
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Figure 12. Hot Spot Analysis for Cumulative NHL Incidence Data – Overall 
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Figure 13. Hot Spot Analysis for Cumulative NHL Incidence Rates by Gender 

 

 

 

 

 

Figure 14. Hot Spot Analysis for Cumulative NHL Incidence Rates by SEER Tumor 
Classification Code 
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Regression Analysis 

The ordinary least squares (OLS) regression predicts the age-adjusted NHL 

cumulative incidence rates per 100,000 people using the two variables measuring 

exposure (<5km from nearest Superfund site, 5-10km from nearest Superfund site), 

along with Appalachian region (yes=1/no=0), and Beale Code (1 to 9) as independent 

variables. OLS modeling was performed for the cumulative incidence rate per 100,000 

people for total NHL, intranodal NHL (SEER code 33041), extranodal NHL (SEER code 

33042), and incidence rates for total NHL per 100,000 males and females. For each 

category, a base model was calculated with only the two exposure variables, and a full 

model which added the Appalachia and Beale Code variables. This resulted in a total of 

ten OLS models. Key outputs are summarized in Table 7. For the full list of OLS outputs 

and diagnostics, see Appendix 3. 

Specificially, the analysis showed that both exposure categories had significant 

and high coefficient values in all ten OLS models, with higher value in the category 

closer to the Superfund sites (Exposure <5km). Compared to the reference group 

(exposure beyond 10km), the <5km groups had significantly more NHL cases per 

100,000, ranging from 35.9 additional cases/100k in Model 9 (the base extranodal NHL 

model) to 157.92 additional cases/100k in Model 4 (the full male cases NHL model), 

when all other variables were held constant. Compared to the reference group, the 5-

10km exposure groups also had significantly more NHL cases/100,000 ranging from 

15.60 in Model 9 to 65.03 in Model 4.  
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Table 7: OLS Regression Modeling Results 

Model 

 

Variables Coefficient Std. Error Prob. Wald  

(Pr>2)  

Koenker (BP) 

(Pr>2) 

AIC Adj R-

squared 

Model 1:  

Overall Cumulative 

Incidence Rate (CIR) 

Intercept 261.26 8.43 <.001  

121.04 

(<.001) 

 

14.20  

(<.001) 

 

25137.29 

 

0.070 Exp <5km 113.60 10.76 <.001 

Exp 5-10km 50.82 8.98 <.001 

 

Model 2:  

Overall CIR 

Intercept 239.54 9.93 <.001  

 

125.89 

(<.001) 

 

 

20.08 

(<.001) 

 

 

25127.17 

 

 

0.076 

Appalachia -2.55 13.36 0.85 

Beale Code 5.80 1.93 0.003 

Exp <5km 123.82 11.60 <.001 

Exp 5-10km 57.19 9.11 <.001 

Model 3: 

Male CIR  

Intercept 292.56 9.70 <.001  

137.81 

(<.001) 

 

29.59 

 (<.001) 

 

25825.84 

 

0.082 Exp <5km 147.43 13.01 <.001 

Exp 5-10km 59.19 10.36 <.001 

 

Model 4:  

Male CIR 

Intercept 

Appalachia 

Beale Code 

Exp <5km 

Exp 5-10km 

269.53 

-23.89 

8.28 

157.92 

65.03 

11.61 

14.36 

2.38 

14.17 

10.52 

<.001 

0.10 

<.001 

<.001 

<.001 

 

 

141.04 

(<.001) 

 

 

47.17 

(<.001) 

 

 

25814.09 

 

 

0.089 

Model 5: 

Female CIR  

Intercept 

Exp <5km 

Exp 5-10km 

235.61 

85.05 

44.61 

11.30 

13.10 

11.80 

<.001 

<.001 

<.001 

 

50.01 

(<.001) 

 

4.20 

 (0.12) 

 

25938.92 

 

0.027 

 

Model 6:  

Female CIR 

 

Intercept 

Appalachia 

Beale Code 

Exp <5km 

Exp 5-10km 

215.19 

16.51 

3.56 

94.96 

51.42 

13.13 

18.60 

2.49 

13.91 

11.80 

<.001 

0.38 

0.15 

<.001 

<.001 

 

 

66.92 

(<.001) 

 

 

7.25 

(0.12) 

 

 

25933.66 

 

 

0.030 

Model 7: 

Intranodal CIR  

 

Intercept 

Exp <5km 

Exp 5-10km 

187.19 

77.70 

35.21 

6.91 

8.67 

7.28 

<.001 

<.001 

<.001 

 

89.27 

(<.001) 

 

7.81 

(0.02) 

 

24294.79 

 

0.052 

 

Model 8: 

Intranodal CIR  

 

Intercept 

Appalachia 

Beale Code 

Exp <5km 

Exp 5-10km 

173.59 

-6.91 

4.17 

84.01 

38.98 

8.27 

11.37 

1.57 

9.42 

7.39 

<.001 

0.54 

0.01 

<.001 

<.001 

 

 

92.62 

(<.001) 

 

 

12.30 

(0.02) 

 

 

24289.26 

 

 

0.055 

Model 9: 

 Extranodal CIR 

Intercept 

Exp <5km 

Exp 5-10km 

74.07 

35.90 

15.60 

2.91 

3.64 

3.27 

<.001 

<.001 

<.001 

 

107.84 

(<.001) 

 

39.73 

(<.001) 

 

21117.27 

 

0.057 

 

Model 10:  

Extranodal CIR 

 

Intercept 

Appalachia 

Beale Code 

Exp <5km 

Exp 5-10km 

65.95 

4.35 

1.64 

39.81 

18.21 

3.52 

4.17 

0.72 

3.95 

3.37 

<.001 

0.30 

0.02 

<.001 

<.001 

 

 

119.96 

(<.001) 

 

 

71.29 

(<.001) 

 

 

21104.74 

 

 

0.064 
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The Beale Code was also a significant predictor for the NHL cumulative 

incidence in most of the full models: the only full model in which it was not significant at 

p=0.05 was Model 6 (female cases, p=0.15). Being a resident of the Appalachia region 

was not a significant predictor in any of the OLS models; furthermore, the effect of living 

in the Appalachia region was not consistent across models, as the regression 

coefficients were negative in Models 2, 4, and 8 (the all-cases, male, and intranodal 

case models, respectively), and positive in Models 6 and 10 (female and extranodal 

case models, respectively). Full interpretation of the OLS model regression coefficients 

is provided below. 

 

Interpretation of OLS Model Coefficients: Model 4 

 For the OLS model which had the highest coefficient of determination (Model 4, 

with an adjusted R2 value of 0.089) and thus represented the best-fitting of the OLS 

models, the regression equation is:  

 18-year Cumulative Incidence of NHL /100,000 males = 269.53 - 23.89*Appalachia + 
8.28*BealeCode + 157.92*Exp<5km + 65.03*Exp5-10km. 

 

The reference group is made up of male cases who reside in Kentucky, outside the 

Appalachia region, and within an urban metro area with a population of one million or 

more (Beale Code = 0), and at least 10km away from all Superfund sites. Thus, the 

intercept shows that the overall NHL incidence rate (DV) for the reference group is 

269.53/100,000 males.  

The variable Appalachia measures the difference in the NHL cumulative 

incidence rate per 100,000 persons between the people residing in the Appalachia 
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region and the people residing elsewhere in the state. For males, the regression 

coefficient is -23.89 indicating that Appalachia region has on average lower NHL 

cumulative incidence rates than the rest of the state for males. The 18-year cumulative 

incidence rate for males was lower than in the reference group, and equaled (269.53 - 

23.89) = 245.64 cases/100,000 males. Thus, the regression coefficient (b=-23.89, 

p=.010) shows that the Appalachian region in Kentucky has on average an overall NHL 

cumulative incidence rate for males that is 23.89 cases/100,000 lower than the non-

Appalachian Kentucky, when all other variables in the model are held constant; 

however, this regression coefficient was not significantly different from zero, and can be 

approximated to be zero in the calculations. In addition, the Appalachia variable was not 

significantly different from zero in any of the other full OLS models, and had a positive 

coefficient value in the female and extranodal case models (Models 6 and 10, 

respectively). 

The variable Beale Code measures urbanicity and rurality. Values range from 0 

to 9; the smaller the code value, the more urban an area. The Beale Code value of 0 is 

assigned for residence within a metropolitan area of population 1,000,000 or more, and 

Beale Code 9 is assigned for residence within a rural area (population <2500) not 

adjacent to any urban areas (population >2500). The regression coefficient (b=8.28, 

p=<.001) in the best-fitting OLS model (Model 4) shows that as the Beale Code 

increases by 1 unit, the overall cumulative male NHL incidence rate increases by 8.28 

NHL cases/100,000, when all other variables in the model are held constant; thus, the 

more rural an area is the higher the overall cumulative NHL incidence rate. For the most 

rural areas, where Beale Code = 9, the incidence rate numerator equals [269.53 + 
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(8.28*9)] = 344.05 NHL cases/100,000, an increase of 74.52 cases per 100,000 males 

above the rate for the reference group. The most urban Beale Code value in the study 

basin was 1, as there were no central metropolitan areas with population >1 million in 

Kentucky. When Beale Code = 1, the incidence rate numerator equals [269.53 + 

(8.28*1)] = 277.81 NHL cases/100,000, an increase of 8.28 cases/100,000 males above 

the reference group. The Beale Code regression coefficient was significantly different 

from zero (p<.05) in the best-fitting model and in all other OLS models except for the 

female cases model (Model 6, p=0.15). 

The regression coefficients for the exposure variables show the difference in the 

NHL cumulative incidence rate per 100,000 between the reference group and cases 

who reside within 5km from one or more Superfund sites (Exp<5km), or more than 5km 

away but within 10km of one or more Superfund sites (Exp5-10km). For the best-fitting 

OLS model (Model 4), when examining residence within 5km of Superfund sites 

(b=157.92, p<.001), the NHL incidence rate per 100,000 males equals (269.53 + 

157.92) = 427.45 NHL cases/100,000. For residence within 5km and 10km of one or 

more Superfund sites (b=50.82, p<.001), the male NHL cumulative incidence rate 

equals (269.53+ 65.03) = 334.56 NHL cases/100,000. Both coefficients are significantly 

different from zero, but the Exp<5km exposure variable has a much larger effect on 

NHL incidence rates. 

 

Interpretation of OLS Model Coefficients: Model 2 

For all the OLS models, the exposure variables have significant and positive 

regression coefficients (p<.001), with the <5km variables having higher values than the 
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5-10km variables. For Model 2, which is the best-fitting model that includes all NHL 

cases in Kentucky from 1995-2012, rather than subdividing by gender or SEER type, 

the regression equation is:  

 

18-year Cumulative Incidence of Intranodal NHL /100,000 = 239.54 +  

(-2.55)*Appalachia + 5.80* Beale Code + 123.82*Exp<5km + 57.19*Exp5-10km. 

 

The reference group is made up of NHL cases who do not reside in the Appalachia 

region, and reside within an urban metro area with a population of one million or more 

(Beale Code = 0), and at least 10km away from all Superfund sites. Thus, the intercept 

shows that the cumulative NHL incidence rate per 100,000 people (DV) for the 

reference group is 239.54.  

As with Model 4, the coefficient Appalachia in Model 2 is negative but not 

significant (b=-2.55, p=.85). The incidence rate was lower than in the reference group, 

and equaled (239.54 – 2.55) = 236.99 cumulative NHL cases/100,000, or 2.55 

cases/100,000 lower than non-Appalachian Kentucky residents, when all other variables 

in the model are held constant. 

The Beale Code coefficient is positive and significant in Model 2 (b=5.80, 

p=.003). For the most rural areas (Beale Code = 9), the cumulative intranodal NHL 

incidence rate is [239.54 + (5.80*9)] = 291.74 cases/100,000, an increase of 52.2 

cases/100,000 above the reference group. For the most urban areas in the study basin 

(Beale Code = 1), the increase above the reference group is 5.80 cases/100,000, for a 

total of 245.34 cases/100,000, when all other variables are held constant. 
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Both of the exposure variables are positive and highly significant in Model 2, but 

the Exp<5km variable has a much larger effect on cumulative NHL incidence rates. For 

residence within 5km of Superfund sites (b=123.82, p<.001), the cumulative NHL 

incidence rate per 100,000 equals (239.54 + 123.82) = 363.36 NHL cases/100,000. For 

residence >5km but within 10km of one or more Superfund sites (b=57.19, p<.001), 

incidence rate equals (239.54 + 57.19) = 296.73 NHL cases/100,000. 

 

Other OLS Models 

The remaining OLS models (which include every base model, plus the full 

models that separately evaluated female, intranodal, and extranodal cases) had lower 

coefficients of determination compared to the best-fitting models, indicating a poorer fit 

around the regression line. None of the OLS models in Table 7 explained a large 

amount of the variability around the fitted regression line, with the coefficients of 

determination ranging from 2.7% to 8.9% (Appendix 3). The OLS models had 

acceptable levels for the variance inflation coefficients, but significant Koenker (BP) 

statistics in almost all models indicate non-consistent relationships between the 

dependent and independent variables (non-stationarity); thus, a geographically 

weighted regression (GWR) is more likely to be appropriate than the OLS models. 

 

Geographically Weighted Regression 

GWR was the final stage of analysis. As with OLS models, the explanatory 

variables included the two exposure groups, Appalachia region (1=yes, 0=no), and 

Beale Code (numeric code, higher for rural areas). Adaptive kernel density estimation 
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was utilized, along with the Akaike Information Criterion (corrected) to estimate 

bandwidth.  

Base models (exposure groups only) and full models (exposure groups plus 

Appalachia plus Beale Code) were generated for five different age-adjusted NHL 

incidence rates: all cases, male cases, female cases, intranodal cases, and extranodal 

cases, for a total of ten GWR models. These ten models were labeled as Models 11 

through 20, and the outputs for each of these GWR models are listed in Table 8.  

The Akaike’s Information Criterion (AIC) values were compared between each 

GWR models and their analagous OLS models from Table 7. For example, Model 11 in 

GWR was compared to Model 1 in OLS, since both used the same subset of data and 

predictor variables. In each case, for all ten model pairs, the AIC values were lower for 

the GWR models compared to their OLS counterparts, indicating that the GWR models 

were a better fit for the data. Comparing the adjusted R-squared values from the OLS 

models (Table 7) to the unadjusted R-squared values in GWR models (Table 8) also 

makes it apparent that the GWR models represent a better fit around the regression 

line, and explain a larger percentage of the variability. For the OLS models, the 

coefficients of determination ranged from 2.7% to 8.9%, whereas for the GWR models, 

these ranged from 6.6% to 24.6%.  Adjusted R-squared values should not be used to 

make inferences about the proportion of variance explained by GWR models, since 

these values are sensitive to bandwidths used to calculate degrees of freedom150. The 

R-squared results are in agreement with the AIC and confirm that, when looking at all 

NHL cases in the data set, the best-fitting model of the set is Model 11 (the GWR base 

model), which explains approximately 23.1% of the variability in the overall NHL 
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incidence rate. When looking at subsets of NHL cases, the best-fitting model is Model 

13 (the GWR base model for males), which explains approximately 24.6% of the 

variability in NHL incidence rate for male subjects, and represents the overall best-fitting 

model of all GWR and OLS models.  

 

Table 8: GWR Modeling Results 

Model Variables Number of 
Neighbors  

Sigma Akaike’s Information 
Criterion 

R-square 

Model 11:  
Overall CIR 

Exp <5km 
Exp 5-10km 

 
241 

 
155.81 

 
24893.80 

 
0.231 

 
Model 12:  
Overall CIR 
 

Appalachia 
Beale Code 
Exp <5km 
Exp 5-10km 

 
 

834 

 
 

163.24 

 
 

25047.16 

 
 

0.134 

Model 13:  
Male CIR 

Exp <5km 
Exp 5-10km 

 
241 

 
185.75 

 
25569.11 

 
0.246 

 
Model 14:  
Male CIR 
 

Appalachia 
Beale Code 
Exp <5km 
Exp 5-10km 

 
 

834 

 
 

194.50 

 
 

25720.15 

 
 

0.152 

Model 15:  
Female CIR 

Exp <5km 
Exp 5-10km 

 
241 

 
196.84 

 
25791.99 

 
0.154 

 
Model 16:  
Female CIR 
 

Appalachia 
Beale Code 
Exp <5km 
Exp 5-10km 

 
 

836 

 
 

204.10 

 
 

25905.25 

 
 

0.066 

Model 17:  
Intranodal CIR 

Exp <5km 
Exp 5-10km 

 
241 

 
125.65 

 
24067.25 

 
0.209 

 
Model 18:  
Intranodal CIR 

Appalachia 
Beale Code 
Exp <5km 
Exp 5-10km 

 
834 

 
131.76 

 
24224.08 

 
0.107 

Model 19:  
Extranodal CIR 

Exp <5km 
Exp 5-10km 

 
241 

 
55.10 

 
20900.00 

 
0.210 

 
Model 20:  
Extranodal CIR 

Appalachia 
Beale Code 
Exp <5km 
Exp 5-10km 

 
 

834 

 
 

57.01 

 
 

21005.11 

 
 

0.132 
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When non-stationarity is present in the data, GWR is designed to allow local 

variation in the explanatory variable coefficients. For Model 11, the all-cases best-fitting 

GWR base model, the coefficient values for the Exp <5km and Exp 5-10km variables 

are listed and depicted in Figure 15. The mean value for the Exp <5km coefficient was 

120.67 (standard deviation 84.48, t-statistic=62.59, p<.001), and for Exp 5-10km it was 

45.94 (standard deviation 66.35, t-statistic=30.37, p<.001). Therefore, the average 

increase in cumulative NHL incidence rate per 100k above the baseline condition (Exp 

>10km) in areas within 5km of Superfund sites in Kentucky was 121 cases/100k, and in 

areas between 5km and 10km from Superfund sites it was 46 cases/100k. 

 

Figure 15: GWR Coefficient Values for All-Cases Best-Fitting Model 
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For the overall best-fitting model (Model 13, the GWR base model for all NHL 

cases in male subjects), the coefficient values for the Exp <5km and Exp 5-10km 

variables are listed and depicted in Figure 16. The mean value for the Exp <5km 

coefficient was 159.93 (standard deviation 104.01, t-statistic=67.39, p<.001), and for 

Exp 5-10km it was 58.59 (standard deviation 69.70, t-statistic=36.84, p<.001). 

Residence within 5km of a Superfund site in Kentucky increased the cumulative NHL 

cases per 100,000 males above the baseline by 160, and residence 5-10km away 

increased cases/100,000 males by 59, when all other variables were held constant.  

 

 

Figure 16: GWR Coefficient Values for Male Cases (and Overall) Best-Fitting 
Model 
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The coefficient values for the best-fitting models that examined only female, 

intranodal, and extranodal NHL cases are depicted below in Figures 17 through 19. 

Only the “base” models are shown, since in each case the “full” models had higher AIC 

values and lower R2 values. In all three models, both of the exposure variables were 

positive and significantly different than zero.  

Figure 17 shows that, for female cases (Model 15), the mean value for the Exp 

<5km coefficient was 85.86 (standard deviation 88.33, t-statistic=42.60, p<.001), and for 

Exp 5-10km it was 33.95 (standard deviation 80.67, t-statistic=18.45, p<.001). Figure 18 

shows that, for intranodal cases (Model 17), the mean value for the Exp <5km 

coefficient was 80.95 (standard deviation 67.01, t-statistic=52.95, p<.001), and for Exp 

5-10km it was 30.04 (standard deviation 55.60, t-statistic=23.68, p<.001). Figure 19 

shows that, for extranodal cases (Model 19), the mean value for the Exp <5km 

coefficient was 39.71 (standard deviation 24.84, t-statistic=70.07, p<.001), and for Exp 

5-10km it was 15.90 (standard deviation 25.15, t-statistic=27.71, p<.001). The results 

depicted in Figures 15 through 19 demonstrate that, in both the overall NHL data set 

and subsets of data by gender and SEER tumor classification, residential proximity of 

less than 5km from the nearest Superfund site, or between 5km and 10km from the 

nearest Superfund site, is a significant predictor of NHL incidence.  
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Figure 17: GWR Coefficient Values for Female Cases Best-Fitting Model 

 

 

 

Figure 18: GWR Coefficient Values for Intranodal Cases Best-Fitting Model 
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Figure 19: GWR Coefficient Values for Extranodal Cases Best-Fitting Model 

 

The mapped outputs of the GWR model residuals are depicted below. Figure 20 

shows the residuals for Model 11 (the all-cases base model), Figure 21 shows residuals 

for Model 13 (male cases base model, and the overall best-fitting model) and Model 15 

(female cases), and Figure 22 shows the residuals for intranodal and extranodal NHL 

base models (Models 17 and 19, respectively). The GWR residuals for “full” models 

(which include Appalachia and Beale Code) are not shown because in every instance 

they had higher AIC values and lower R2 values than their base counterparts.  

The patterns and magnitudes of residuals by census tract, 5-10km buffer zone, 

and 5km buffer zone depicted in Figures 20 through 22 are not surprising, given that the 

best-fitting GWR model still only explained 24.6% of the variability in the dependent 
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variable. An additional 75.4% or more, depending on the particular model, is therefore 

not explained, and these errors between the observed incidence rates and the rates 

predicted by models do not show any readily apparent pattern in any model. It can be 

noted that in all models, there appear to be more areas of “high” standardized residuals 

than “low” standardized residuals. The highest magnitude areas, where the observed 

incidence rates exceed the predicted rates by more than 2.5 standard deviations, are 

most prominent in the central and western areas of Kentucky.  Low areas, where the 

observed incidence rates are lower than the predicted rates, are randomly scattered 

throughout the state. Across all residual maps, the tracts/buffer zones with high and low 

residual values tend to hold up across all models, though the color shading might 

change slightly to indicate lower-magnitude residuals in the 1.5 to 2.5 standard 

deviations range. 

The combination of standardized GWR regression residual diagrams and the 

adjusted R2 values strongly suggest that there are likely other explanatory variables 

which might contribute to NHL incidence, and which we were unable to capture in the 

current investigation. However, the data collected and analyzed in the present 

investigation supported the hypothesis that residential proximity to Superfund sites in 

Kentucky is a significant factor in elevated incidence of non-Hodgkin’s lymphoma. 

These results are similar to those documented in Georgia by investigators who looked 

at NHL risk and residential proximity to areas where benzene was released and 

documented in the EPA Toxics Release Inventory151.  
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Figure 20. Geographically Weighted Regression Residuals, Cumulative NHL 
Incidence Data for All Cases, Kentucky, 1995-2012 

  

Model 11 
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Figure 21. Geographically Weighted Regression Residuals, Cumulative NHL 
Incidence Data for Male and Female Cases, Kentucky, 1995-2012 

Model 13 

Model 15 
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Figure 22. Geographically Weighted Regression Residuals, Cumulative NHL 
Incidence Data for Intranodal and Extranodal Cases, Kentucky, 1995-2012 

Model 17 

Model 19 
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CHAPTER 5 

IMPLICATIONS FOR PUBLIC HEALTH 

 

 

Non-Hodgkin’s lymphoma is one of the most prevalent cancers in Kentucky, the 

United States, and many Western countries. Incidence and prevalence rates both 

increased markedly during the latter half of the 20th Century, in a time-lagged 

concurrency with the marked increase in the manufacture, use, and disposal of 

chemical products, which strongly links the two phenomena together. Research is 

ongoing to discover ways to diagnose, treat, and prevent NHL, and the current five-year 

survival rate following NHL diagnosis in the United States is 69%152.  This research is 

urgently needed, because persons are more susceptible to NHL as they age, and 

demographic trends point toward the aging of the U.S. population between 2015 and 

2050153.  

The present study investigated whether residential proximity to NPL/Superfund 

sites in Kentucky could be at least partially responsible for the increasing and then 

plateauing incidence of NHL from the mid-20th Century to the present. Data 

representing all cases of NHL reported to the Kentucky Cancer Registry between 1995 

and 2012 were acquired and cleaned. This data was used to calculate 18-year 

incidence rates for NHL at the 2010 U.S. Census tract level. Because NHL risk is not 

evenly distributed across the lifespan, incidence data was age-adjusted using a 

standard population from the 2000 U.S. Census. These age-adjusted NHL rates were 
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the outcome data, which were evaluated through both conventional and geospatial 

statistical methods. 

The total number of cases of NHL in Kentucky showed an upward trend from 

1995 to 2012, which was more pronounced in non-white subjects. Bivariate analysis 

revealed that non-white cases, and cases with no prior known family history of NHL, 

were significantly more likely to live within 5km of Superfund sites. Rates were 

significantly higher in the exposed (10km or less) regions than in the unexposed 

regions, across every outcome stratum except intranodal cases in females. Rates of 

NHL were not higher in the Appalachian (eastern and southern) regions of Kentucky, 

making NHL unlike many other forms of cancer which show clustering or higher rates in 

Appalachian compared to non-Appalachian regions of the United States154-157.  

The outcome data was spatially autocorrelated, clustered, and exhibited non-

stationarity, all indicators that geographically weighted regression (GWR) techniques 

would be necessary. Both Ordinary Least Squares (global) regression and localized 

GWR showed that NHL rates were significantly elevated in geographic areas within 5km 

of Superfund sites, and in areas between 5km and 10km of Superfund sites, when 

controlling for covariates which were significant in bivariate analysis. The effect size was 

greater in the population with more exposure (<5km). Therefore, the investigation 

supported the hypothesis that closer residential proximity to Superfund sites in Kentucky 

was a significant factor in NHL risk. 

The results from the present study point to disparities in rate of NHL across 

Kentucky due to living near recognized areas of environmental toxicity. These areas, by 

virtue of being on the U.S. EPA Superfund list, were formally designated as needing 
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evaluation and some degree of clean-up. The results raise questions about 

environmental justice. Persons in disadvantaged positions often do not have the political 

or economic power to organize resistance to nearby hazardous or noxious land uses, 

whereas more affluent regions are able to mount NIMBY (Not in my Backyard) 

responses and keep them away158. Unequal burdens of exposure and outcome along 

racial, ethnic, and socioeconomic lines are often the product of facility siting decisions 

that make initial economic sense due to lower property costs, lower required 

compensation levels for adjacent landowners, or a desire to reduce local levels of 

unemployment or underemployment159. While multivariate analysis by race could not be 

conducted in the present study due to the small proportion of non-white NHL cases, it 

must be noted that non-white cases were significantly more likely to live within 5km of 

Superfund sites compared to white cases. This is consistent with patterns that exist 

nationwide, particularly among African-Americans160.  

Are persons who live closer to Superfund sites, and have higher rates of NHL, 

actually exposed to higher levels of contaminants which can trigger NHL? The nature 

and pathways of exposure to potentially hazardous substances from Superfund sites in 

Kentucky are not fully known, but reasonable hypotheses can be drawn from limited 

available data. Of the twenty Kentucky sites that scored highest in the EPA’s Hazard 

Ranking System and were thus on the National Priorities List, a majority had one or 

more on-site contaminants known or suspected to increase NHL incidence. The most 

commonly found of these contaminants were benzene, lead, PCBs, cadmium, 

trichloroethylene, organochlorines other than PCBs, and perchloroethylene143. The most 

likely exposure pathways in the current context would be through ground water or 
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surface water, whereas offsite exposure through air or contaminated soil would probably 

be limited. Air exposures from Superfund sites are generally due to gaseous pollutants, 

secondary pollutants generated by reactions, or wind erosion from contaminants 

deposited onto surfaces, which are not as likely with the sites in the present study. 

While contaminated soil itself does not migrate off-site, plumes of pollutants can migrate 

with the water table and move laterally through soils.  

 

Recommendations 

Persons who live close to Superfund sites in Kentucky appear to have a 

significantly higher NHL risk. As with many public health issues, there are a variety of 

target areas where efforts can be directed. These will be described below, starting with 

the upstream (distal, societal) factors, then working down to community, neighborhood, 

and individual-level approaches. 

Upstream approaches that prevent the problem from occurring can be a possible 

target, but these approaches are often expensive, beyond the scope of traditional public 

health practice, and require extensive inter-agency involvement. For example, 

mandatory evictions and buyouts of residences near the most contaminated sites can 

prevent residential exposure, and have occurred in areas such as Niagara Falls, NY161, 

Times Beach, MO162, and Houston, TX163. However, this can lead to numerous legal 

and ethical challenges. Land values might be depressed due to the adjacent activities 

that necessitated the buyouts, or persons might resist buyouts and leaving their 

ancestral domiciles. It is not likely that the U.S. EPA or any governmental agency with 
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eminent domain powers would deem it feasible or desirable to evict/buyout residents 

living near Superfund sites to reduce NHL risk, based on current evidence. 

American environmental policy and siting decisions are slowly transitioning from 

NIMBY to “Not in Anyone’s Backyard” as the knowledge of both the direct (toxicity, 

illness, reduced property values) and indirect (stress, allostatic load) effects of 

residential proximity to hazardous materials and processes become more known164. In 

the United States, the burden for absorbing the externality of pollution has shifted from 

the surrounding community to the generating entities through federal environmental 

laws such as SARA Title III (also known as the Emergency Planning and Community 

Right-to-Know Act), the Hazardous and Solid Waste Amendments of RCRA, and the 

Ground Water Rule. These efforts have resulted in improvements to new and existing 

hazardous sites, but vigilant surveillance from both regulatory and community entities is 

still necessary to ensure that environmental outcomes are fair and just. Upstream 

interventions, education, and advocacy could improve justice in future siting, monitoring, 

clean-up, and closure activities, but would be slow to impact those currently affected.  

Another factor curtailing the ability to clean existing sites and reduce possible 

NHL risk is that the actual “Superfund” from CERCLA no longer exists. The tax on 

petrochemical industries that created the fund to perform cleanups ceased in 1995 

following significant pressure on the Legislature, and the fund officially went bankrupt in 

2003165. Since that time, Superfund site activities have been funded by annual 

appropriations to the EPA, which have been stagnant or declining for years in a highly 

competitive environment for Federal dollars166. While there has been an effort to 

reinstate the Superfund tax during the Obama administration166, as of 2015 it has still 
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not been enacted and is not likely to be considered soon. Unless grassroots advocacy 

can mobilize a groundswell of support from citizens to bolster the Superfund program, 

the current slow pace of assessment and cleanup will continue, and persons who live 

near contaminated sites will continue to be at higher risk for NHL and other negative 

effects to health and well-being. To the extent that public health can advocate for those 

who share unequal health burdens due to hazardous sites, and for increased funding for 

CERCLA and other beneficial programs that tackle the problem upstream, it should do 

so. However, in the present climate, it is more prudent to apply public health efforts 

downstream at the regional, community, or individual level.  

Research on the potential causal factors of NHL has already provided several 

interesting clues, but must continue until definitive linkages are found. Community and 

regional research on NHL incidence is also critical. The present study provides an 

important example of possible causal linkage between hazardous waste site exposures 

and NHL; however, studies similar to this one should be replicated in other settings, 

particulary in areas with greater racial and ethnic diversity. Also, more research is 

needed to bring exposure pathways into clearer view so that exposure misclassification 

is minimized. Water would be the most likely media for transfer of toxicants from 

Superfund sites to adjacent residential areas, with soil and air as less likely paths. 

Tracking drinking-water sources for NHL cases and controls, and comparing levels of 

possible NHL-triggering toxicants in surface water and groundwater samples, would be 

an important next step, as would examination of groundwater hydrography data to know 

which direction(s) from the site would be most likely affected. For sites where 

soil/surface contamination is the primary hazard, examining wind-rose data might show 
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where airborne/dustborne contaminants are most likely to have an impact. 

Misclassification due to residential mobility could not be evaluated in the present study, 

as only the residential coordinates at the time of diagnosis were available. Studies that 

are able to include model components for residential change would be helpful, and have 

shown promise167.  

Community and individual level efforts at education and screening are critical, 

even though these are downstream actions that do not directly address the upstream 

factors driving NHL incidence. Education and awareness campaigns about NHL, its risk 

factors, and symptoms could lead to earlier diagnosis and better outcomes in affected 

communities. At the present time, there is not a simple, inexpensive screening test for 

NHL that makes it amenable to a “mobile clinic” setting like other cancers such as 

breast and colon. Early detection relies on techniques such as lymph node biopsy, 

blood cell chemistry and morphology tests, or imaging scans which can detect not just 

NHL but other hematological malignancies168. Encouraging persons who score high on 

risk factor and symptom surveys for NHL to seek medical advice and screening could 

save lives and improve outcomes, if combined with funding for tests and specialized 

medical knowledge in the communities most affected by NHL. Medical research should 

continue to investigate simple, low-cost, sensitive and specific methods for detecting 

NHL, as it will most likely continue to be a cancer of high-incidence as the population 

ages.  
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Summary 

Non-Hodgkin’s lymphoma (NHL) incidence in the United States and many other 

Western nations increased throughout the 20th Century, in a pattern that suggests 

greater exposure to chemicals might be a causal factor. Mechanistic research suggests 

many pathways by which chemicals and xenobiotics can trigger NHL. The present study 

demonstrated that residential proximity to hazardous waste sites in Kentucky was a 

significant risk factor for NHL. Additional research, advocacy, and education should 

focus on mechanisms of NHL incidence, replicating the present study in other contexts 

and with monitoring data, addressing upstream factors that lead to unequal burdens of 

hazardous material exposures and NHL, downstream education and awareness, and 

better methods for NHL screening and early detection.  
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APPENDIX 2: EXPLORATORY REGRESSION OUTPUT 
 
****************************************************************************** 

Choose 1 of 22 Summary 

    Highest Adjusted R‐Squared Results    

AdjR2     AICc   JB K(BP)  VIF   SA   Model     

 0.06 25165.51 0.00  0.77 1.00 0.00  +EXP5KM*** 

 0.00 25271.59 0.00  0.17 1.00 0.00  +H4**      

 0.00 25273.79 0.00  0.89 1.00 0.00  +H10*      

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

****************************************************************************** 

Choose 2 of 22 Summary 

          Highest Adjusted R‐Squared Results           

AdjR2     AICc   JB K(BP)  VIF   SA   Model                  

 0.07 25137.29 0.00  0.00 1.28 0.00  +EXP5KM***  +EXP5_10*** 

 0.06 25159.76 0.00  0.49 1.01 0.00  +H17***  +EXP5KM***     

 0.06 25160.08 0.00  0.62 1.01 0.00  +H14***  +EXP5KM***     

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

****************************************************************************** 

Choose 3 of 22 Summary 

                 Highest Adjusted R‐Squared Results                 

AdjR2     AICc   JB K(BP)  VIF   SA   Model                               

 0.08 25125.05 0.00  0.00 1.32 0.00  +H17***  +EXP5KM***  +EXP5_10***     

 0.08 25125.22 0.00  0.00 1.39 0.00  +EXP5KM***  +EXP5_10***  +BEALE_R*** 

 0.07 25129.02 0.00  0.00 1.36 0.00  ‐H3***  +EXP5KM***  +EXP5_10***      

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

****************************************************************************** 

Choose 4 of 22 Summary 

                     Highest Adjusted R‐Squared Results                     

AdjR2     AICc   JB K(BP)  VIF   SA   Model                                       

 0.08 25122.72 0.00  0.00 1.39 0.00  +H14**  +EXP5KM***  +EXP5_10***  +BEALE_R*** 

 0.08 25122.73 0.00  0.00 1.32 0.00  +H4**  +H17***  +EXP5KM***  +EXP5_10***      

 0.08 25122.77 0.00  0.00 1.51 0.00  +H17*  +EXP5KM***  +EXP5_10***  +BEALE_R**   

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

****************************************************************************** 

Choose 5 of 22 Summary 

                       Highest Adjusted R‐Squared Results                        

AdjR2     AICc   JB K(BP)  VIF   SA   Model                                            

 0.08 25119.56 0.00  0.00 1.38 0.00  +H4***  ‐H11***  +H17***  +EXP5KM***  +EXP5_10*** 
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 0.08 25121.71 0.00  0.00 1.56 0.00  +H4*  +H17*  +EXP5KM***  +EXP5_10***  +BEALE_R*   

 0.08 25121.94 0.00  0.00 1.39 0.00  +H4  +H14**  +EXP5KM***  +EXP5_10***  +BEALE_R*** 

       Passing Models        

AdjR2 AICc JB K(BP) VIF SA   Model 

****************************************************************************** 

************** Exploratory Regression Global Summary (R_CT_ADJ) ************** 

              Percentage of Search Criteria Passed              

                   Search Criterion Cutoff Trials # Passed % Passed 

             Min Adjusted R‐Squared > 0.50  24509        0     0.00 

            Max Coefficient p‐value < 0.05  24509       86     0.35 

                      Max VIF Value < 7.50  24509    22413    91.45 

            Min Jarque‐Bera p‐value > 0.10  24509        0     0.00 

Min Spatial Autocorrelation p‐value > 0.10     18        0     0.00 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

     Summary of Variable Significance     

Variable % Significant % Negative % Positive 

EXP5KM          100.00       0.00     100.00 

H4               50.39       0.00     100.00 

H5               36.12      85.02      14.98 

H2               25.26      14.62      85.38 

H17              24.22       3.32      96.68 

EXP5_10          19.48      76.30      23.70 

H14              18.84       0.00     100.00 

H9               15.10       0.24      99.76 

H10              15.10       0.24      99.76 

H3               13.57      72.24      27.76 

H13              12.61       0.26      99.74 

BEALE_R          11.20      45.77      54.23 

H8                7.97      83.39      16.61 

H1                4.68      58.18      41.82 

H7                4.68      58.18      41.82 

H11               2.50      36.29      63.71 

H15               2.39      35.82      64.18 

P77               0.00      14.79      85.21 

H12               0.00       0.09      99.91 

H16               0.00       0.59      99.41 

APPAL             0.00      85.54      14.46 

H6            ‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐   ‐‐‐‐‐‐‐‐ 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
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                                                       Summary of Multicollinearity*                                                         

Variable      VIF Violations Covariates                                                                                                         

P77          2.83     0      ‐‐‐‐‐‐‐‐                                                                                                           

H1         412.67    679     H8 (50.22), H15 (2.07)                                                                                             

H2         624.13    105     H8 (7.77), H5 (7.77), H15 (0.15)                                                                                   

H3         247.02     13     H8 (0.96), H4 (0.96), H5 (0.96)                                                                                    

H4         115.62     13     H3 (0.96), H8 (0.96), H5 (0.96)                                                                                    

H5         489.10    118     H8 (8.73), H2 (7.77), H3 (0.96), H4 (0.96), H15 (0.15)                                                    

H6       ‐‐‐‐‐‐‐‐    ALL     INTERCEPT (100.00)                                                                                                 

H7         412.67    679     H8 (50.22), H15 (2.07)                                                                                             

H8         361.82    1476    H1 (50.22), H7 (50.22), H5 (8.73), H2 (7.77), H15 (4.29), H3 (0.96), H4 (0.96)         

H9         393.81    310     H15 (15.01), H17 (0.44), H11 (0.15), H13 (0.07)                                                              

H10        393.81    310     H15 (15.01), H17 (0.44), H11 (0.15), H13 (0.07)                                                            

H11         37.42     4      H15 (0.30), H10 (0.15), H9 (0.15), H13 (0.15), H17 (0.15)                                                

H12          1.38     0      ‐‐‐‐‐‐‐‐                                                                                                           

H13          9.01     2      H11 (0.15), H15 (0.15), H17 (0.15), H10 (0.07), H9 (0.07)                                                 

H14          1.65     0      ‐‐‐‐‐‐‐‐                                                                                                           
H15        226.36    464     H9 (15.01), H10 (15.01), H8 (4.29), H1 (2.07), H7 (2.07), H17 (0.89), H11 (0.30), 
H2 (0.15), H13 (0.15), H5 (0.15) 

H16          1.10     0      ‐‐‐‐‐‐‐‐                                                                                                           

H17         44.50     12     H15 (0.89), H10 (0.44), H9 (0.44), H11 (0.15), H13 (0.15)                                              

EXP5KM       1.45     0      ‐‐‐‐‐‐‐‐                                                                                                           

EXP5_10      1.35     0      ‐‐‐‐‐‐‐‐                                                                                                           

APPAL        1.48     0      ‐‐‐‐‐‐‐‐                                                                                                           

BEALE_R      2.31     0      ‐‐‐‐‐‐‐‐                                                                                                           

* At least one model failed to solve due to perfect multicollinearity. 

Please review the warning messages for further information. 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

             Summary of Residual Normality (JB)              

      JB     AdjR2         AICc    K(BP)      VIF       SA   Model 

0.000000  0.000557 25274.824611 0.030913 1.000000 0.000000  +H2    

0.000000 ‐0.000136 25276.155398 0.159671 1.000000 0.000000  +H1    

0.000000  0.000288 25275.340849 0.158239 1.000000 0.000000  +P77   

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

        Summary of Residual Spatial Autocorrelation (SA)        

      SA    AdjR2         AICc       JB    K(BP)      VIF   Model     

0.000000 0.000557 25274.824611 0.000000 0.030913 1.000000  +H2        

0.000000 0.002236 25271.593816 0.000000 0.171381 1.000000  +H4**      

0.000000 0.055842 25165.510295 0.000000 0.771149 1.000000  +EXP5KM*** 
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‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Table Abbreviations 

AdjR2 Adjusted R‐Squared                                      

AICc  Akaike's Information Criterion                          

JB    Jarque‐Bera p‐value                                     

K(BP) Koenker (BP) Statistic p‐value                          

VIF   Max Variance Inflation Factor                           

SA    Global Moran's I p‐value                                

Model Variable sign (+/‐)                                     

Model Variable significance (* = 0.10, ** = 0.05, *** = 0.01) 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
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APPENDIX 3: OLS OUTPUTS AND DIAGNOSTICS  

 

Model 1: Base Model for all NHL 
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Model 2: Full Model for all NHL 
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Model 3: Base Model for Male NHL 
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Model 4: Full Model for Male NHL 
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Model 5: Base Model for Female NHL 
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Model 6: Full Model for Female NHL 
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Model 7: Base Model for Intranodal NHL 
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Model 8: Full Model for Intranodal NHL 
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Model 9: Base Model for Extranodal NHL 
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Model 10: Full Model for Extranodal NHL 
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