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ABSTRACT 

The coefficient of friction on dry highway surfaces regardless 
of stone composition .and texture has in most cases been at least 0. 6 or 
above. However, some of these same surfaces when lubricated by a 
small amount of water have given test results dangerously lower. Some 
interesting theoretical aspects of this situation are presented here along 
with results from a laboratory study of the fundamental factors affecting 
tractive friction. 

A machine is de scribed for measuring the coefficient of fric-
tion between the plane surfaces of four-inch diameter stone specimens 
and a rubber annulus of slightly smaller diameter. Measurements were 
made both wet and dry on finely polished surfaces and on surfaces ground 
with 80 and 150 grit Carborundum. Tests were conducted under varying 
loads and speeds. A 60-degree reflectometer was used to evaluate texture 
and roughness of the plane surfaces. Reflectivity (gloss) values correlat­
ed significantly with wet friction values in the highly polished ranges. 
Tests were conducted on representative samples of four limestones and 
two sandstones. 

Coefficient of friction values of 0. 0 I and lower were measured 
on finely polished wet limestone surfaces. Sandstones subjected to the 
same polishing action averaged about 0. 22 when wet. In another series 
of testing, the specimens were abraded with a coarse Carborundum grit, 
and the wet friction values were consistently between 0. 6 and 0. 7 for both 
limestones and sandstones. For further comparison a piece of plate glass 
was abraded with this same material, and it too measured within the above 
limits. Dry friction values remained fairly constant regardless of type of 
stone or texture. 

Test results reveal the tendency for fine grained particles 
bound in a matrix of similar hardness to polish more readily and to a 
greater extent than hard particles such as quartz bound in a soft matrix. 
Limestones, being typical of the former condition, polished easier than 
sands tone s. 

= ii co 
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I: INTRODUCTION 

Pavement slipperiness is an intrinsic hazard often associated 

with wet-weather driving. Even the most skilled drivers are not im­

mune to its dangers. Highway departments, generally alert to the 

problem, erect emergency warning signs at critical locations once 

they are discovered, or may even begin de-slicking treatment. While 

Kentucky, at present, has no specific program for measuring and 

monitoring the slickness of highways, de-slicking operations using 

natural sandstone rock asphalt or chip seals have been normal practice 

for many years. Actually, in many cases only slight distinction can 

be drawn between de-slicking and some maintenance re-surfacing. 

Oftentimes slickness has been one of the principal reasons for resur~ 

facing. 

For the past few years, Kentucky has required 50 percent 

natural silica sand in high-type bituminous concrete surface courses. 

This is in response to a de sire to "build in" skid-resistance and re­

cognizes the susceptibility of surfaces composed entirely of limestone 
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aggregates to polish and become slick. It may be also a reaction 

from the ideas that high dens\ity and high bitumen contents were 
~) 

requisites for durability. While this reaction was not necessarily 

in repudiation of those ideas, it was an expedient recourse from the 

slipperiness that they fostered. 

The use of 50 percent sand is attributed to the work in Tennessee 

(24)* and Virginia (29). The work in Virginia has demonstrated that 25 

to 30 percent sand gives slight although inadequate improvement in 

skid-resistance, and the work in Tennessee has indicated further im-

provement as the percentage of sand is increased. However, with 50 

percent sand, additional problems arise in the design of the mixtures. 

The percentage voids in these mixes may be as high as 10 percent; 

and while these combined circumstances have apparently alleviated the 

slickness problem to some degree, the possibility remains that this 

approach may not make the most advantageous use of the sand and lime-

stone aggregates. 

Since test data from various sources prove rather conclusively 

that limestone surface courses are inherently responsible for slickness, 

this does not present a very favorable outlook for a state where lime-

stones are abundantly used for highway construction,unless skid-resis-

tance can be artifically induced in the limestone or else achieved by 

some other means, 

Elementary physics points out that the coefficient of friction is 

a property between two materials and that it is thereby largely indepen-

dent of surface textures, areas of contact, velocities and normal loading 

--~--·---

* The underscored numbers in parentheses refer to the list of references 

at the end of the report. 
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(weight). All of this seems to be fairly true for non-lubricated surfaces, 

and it is not surprising that clean dry pavements regardless of com­

position always have high resistance to skidding. Likewise, and as 

this report later confirms, it has been the general belief that friction 

between lubricated surfaces is largely dependent upon the texture of the 

surfaces and on film- strength and viscosity of the lubricant. Thus, 

from an academic point of view, wet-slickness of a pavement is attri­

buted to texture and not categorically to the identity of the material 

comprising it. Susceptibility to polishing, however, appropriately 

classifies such materials. 

To further understand the mechanism of wet-slickness, it 

must be realized that stress at a point-contact is infinitely large and 

is capable of rupturing or penetrating through a lubricating film. In 

other words, it is capable of squeezing the lubricant from the contact 

point. On the other hand, a tire riding on a wet, polished surface 

tends to trap water within the contact area; and since there are no 

points of high stress, the escape velocity of the water is very low. 

The result is that at high speeds the tire tends to ride up on the water 

film, and the tire is, at least in part, out of actual contact with the 

surface. Thus a porous surface, or one comprised of sharp angular 

particles,would tend to relieve these excess hydraulic pressures and 

thereby produce greater skid-resistance. 

Briefly, the present approach to the problem involves a labora­

tory study of the polishing characteristics of limestones and sandstones 

in regard to their petrology, resulting textures, and corresponding 

coefficients of friction, wet and dry. The results, in general, confirm 

the susceptibility of lime stones to polishing as reported elsewhere, but 
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only slight differences were apparent among the various limestones 

in comparison to the wide difference between the limestones and 

sandstones. Such differences are attributed to the relative hardness 

of the grains and cementing materials. 
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II: SOME BASIC ASPECTS OF PAVEMENT FRICTION 

An automobile or truck is accelerated by an engine, and decele~, 

rated, normally, by brakes. But, regardless of the power of its 

engine or the size and efficiency of its brakes, the maximum rate at 

which it can vary its speed is ultimately controlled by the coefficient 

of friction-- or traction-- between its tires and the pavement. This 

coefficient, in turn, depends primarily upon the condition of the pave-

ment surface -- whether it is wet or dry. To some extent wet fric-

tion is affected by speed and by qualities of the tire, such as the hard-

ness and compliance of the tread rubber, the design and condition of 

the tread, and the inflation pressure. Most dry pavements, regardless 

of type, provide enough traction to prevent skidding under normal 

driving conditions; but when they are wet considerable differences in 

traction rna y appear dramatically -- often dramatically enough to 

result in death. 

When the brakes of a vehicle are locked and all wheels are 

sliding, the skid resistance of the pavement can be expressed by the 

formula 

where F is the maximum force of friction and denotes the tangential 

force in the direction of motion; W the normal force or weight of the 

vehicle; and f the effective coefficient of friction between tires and 

pavement. 

The acceleration of the vehicle due to the force F is expressed 

as 

Wa 
F=Ma=--­

g 
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where a denotes the acceleration, and W the weight of the vehicle. 

Combining these two equations gives 

f" a/g. 

Thus when a vehicle is moving in any given direction with all its wheels 

sliding or spinning, its maximum acceleration or deceleration express-

ed in g's is equal to the coefficient of friction between the tires and 

pavement. 

The most familiar equation applied to this problem is derived 

by equating frictional energy, F.E. = fWS, with kinetic energy, 

K. E. = l/2 mV2 , from which fWS = WV2 /2g and f = v2 /2gS, where V 

is the maximum velocity and Sis the sliding stopping distance. Actually, 

in this equation f represents a theoretical value of the maximum possible 

traction during stopping. When Vis expressed in miles per hour and 

S in feet the equation becomes 

2 
f= v_ 

30's. 

Differentiating either frictional or kinetic energy with respect 

to time (work/time) gives an equation for power in which f appears as 

a limiting factor, and P = l/2 fWV. Expressing Pin horsepower, V 

in miles per hour, and assuming W to be 3850 lbs., the equation be-

comes 

H. P . = 5. l 8 fV. 

This equation de scribes the time rate of the work done while 

skidding to a stop, 

These expressions assume that all four wheels of the auto-

mobile are in traction and skidding. Except for the fact that during 

maximum acceleration-- "scratching off" -- only the rear wheels 

are normally in traction, the equations would apply equally well to 
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decelerations and accelerations. However, by assuming the weight of 

the vehicle to be equally distributed over the front and rear wheels, the 

maximum tractive force that can be developed during acceleration can 

be expressed approximately as 1/2 fW. Or, in other words, the maxi­

mum horsepower that can be utilized in acceleration is approximately 

half the amount used in a skidding stop on any particular pavement. 

For example, from the stopping distance equation, iff= 0.14 

and V = 60 mph., S =857ft, and H.P. = 42; iff= 0.6 and V = 60 mph., 

S =200ft., and H.P. = 187; then iff= 1 and V = 60 mph., S =120ft. 

and H. P. = 310. Here it is seen that the maximum horsepower that 

could be utilized in accelerating to 60 mph. on a pavement where f = 

0.14wouldbe2l. Similarly, whenf=0.6,H.P. = 94;whenf= 1, 

H.P. = 155. Finally, considering f = 1 and V = 100 mph., H.P. = 259. 

As f approaches unity, the direction of least resistance becomes 

inclined upward and tends to limit the maximum force of friction to F = 

W. Therefore, it is not surprising that pavement friction values may 

approach but never exceed unity, From above then, if f = 1, the 

stopping distance equation becom.e s equivalent to v2 = 2gh and it is seen 

that 310 H.P. if fully utilized would produce. the same velocity in either 

a horizontal or vertical direction. At this velocity, 60 mph., regard­

less of weight, a vehicle has enough stored kinetic energy to cause it 

to hurtle 121 ft. in a vertical direction. 

It is understood, of course, that these calculations have not 

considered the intangible factors of di:\iver reaction time and safe 

stopping distances. It is obvious, however, that even the highest coef­

ficient of friction can not guarantee safety or even prevent sliding; but 

it may be reasonably assumed that there would be a greater likelihood 

of a skidding accident as the coefficient decreases. 



Stutzenberger and Havens - 8 

Giles {32) has presented an excellent treatise on the physical 

and statistical aspects of the problem. He points out a likelihood and 

hazard of unseating unwary passengers if a vehicle is decelerated at 

greater than 0. 5 g. and places the comfortable limit of cornering at 

about 0. 3 g. He observed that most drivers occasionally require de­

celerationsof0.4g. andhigher. Whenf<0.4g., theriskandfrequency 

of accidents due to skidding increased rapidly, but when f>O. 5 g. the 

risk and frequency decreased rapidly. Vectoral additions of the simul­

taneous affects of cornering and braking indicated an occasional need 

for f >O. 5 g. 

Most road surfaces when dry provide coefficients of 0. 4 or 

greater. While the minimum value of 0. 4 is not necessarily accepted 

as a criterion of safety, it is being used by some states as a criterion 

for de- slicking. If f<O. 4 when tested wet, de~ slicking treatments are 

recommended. 
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III: EQUIPMENT, MATERIALS AND PROCEDURE 

For the comparisons intended, it was necessary to devise a 

means evaluating the degree to which the stone specimens were polished, 

and to determine as accurately as possible the coefficient of friction 

between a prepared specimen of stone and a piece of rubber similar to 

that used in tires. The use of controlled polishing agents and a 60~deg. 

reflectometer ~-a gloss meter -- was found sufficient to deal with the 

first problem; but the second required the designing and building of hew 

equipment. 

Friction Measuring Device 

The device, shown in Figure l, is designed simply to rotate a 

rubber ring, or annulus, against the surface of a stone of known composi­

tion and degree of polish and to measure the amount of torque transferred 

to the stone . In the description which follows, the numbers in parentheses 

refer to the corresponding numbers of the parts in the illustration. 

The shell of the device consists of a framework of 2- by 8~in. 

channel beams bolted together to provide a rigid support. A 1/3 h. p., 

1750 rpm electric motor furnishes the driving power through a hydraulic 

torque converter ( 1) which permits the rotation of the upper shaft to be 

controlled within a range of 0 to 300 rpm. A face plate (2), threaded 

so it can be detached from the upper shaft, supports the annulus rigidly. 

A cup- shaped container ( 4) with three curved metal clamps holds the 

specimen securely with its face parallel to the surface of the annulus. 

The cup and the supporting shaft be low are de signed for use with speci­

mens varying in length from one to five inches, and the clamps can ac­

commodate a 4-in. diameter specimen with a tolerance of~ 1/4 in. 



Fig. I: Friction Measuring Device 
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A steel disk (5) transfers the torque developed in the lower shaft 

through a steel rod to a strain gauge bar ( 7). This torque transfer rod can 

be attached by a pin through either of three holes at different distances 

from the shaft-- l. l-3/4, or 2~1/2 inches-- depending on the intensity 

of torque developed. 

The loading mechanism ( 6) consists of a pneumatic cylinder fitted 

with a plunger at the top in order to transfer a given load -- from 0 to 32 

psi. -~to the lower shaft, and hence to the specimen. The pressure cell 

gauge was calibrated by loading the lower shaft with dead weights, open­

ing the air metering valve, and then recording the reading of the gauge 

at the instant the shaft began to move upward. This procedure was carried 

out for several known weights, as well as for the unweighted shaft itself, 

and from the data obtained a curve was plotted of pressure readings versus 

the e££e c ti ve load . 

The strain gauge bar (7) is attached to the side frame by two 

clamps, leaving an unsupported free length of ten inches to the point 

where the rod is attached. On each side of the bar, just above the top 

clamp, are fastened two type A··1, SR··4 strain gauges. When the machine 

is in operation the torque of the lower shaft, which holds the specimen, 

is transferred to the gauge bar, causing it to deflect. This deflection is 

is measured by the changes in resistance within the strain gauges, which 

are connected in a Wheatstone Bridge circuit, with readings taken from 

a connected galvanometer. By varying the voltage on the bridge, curves 

were established for 5, 10, 15, 20, 30 and 50 pounds of load, at full 

scale on the galvanometer. By changing the voltage to correspond with 

one of these curves, an appropriate scale of the galvanometer could be 

selected for each test condition. The annuluses were made from a sheet 

of camelback cold retread rubber and vulcanized in the specially designed 

mold shown in Figure 2. Each annulus had an outside diameter of 3-3/8 

in. and a contact rim width of 1/2 in. 
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Fig. 2: Two of the Annuluses used for Testing, Shown with the Vulcanizing Mold 

used in their Preparation 

Reflectometer 

A 60~deg. specular reflectometer was built for use in deter~ 

mining the degree of fine polish of the stones' surfaces, This device, 

- ll 

illustrated in Figures 3 and 4 ,.works simply by directing a beam of light 

onto a plane surface at an angle of 60 degrees from the vertical, and then 

measuring the intensity of the beam reflected at sixty degrees in the oppo-

site direction. Thus, if the surface had "perfect" smoothness -·· no 

ridges or peaks whatever -- all of the light incident at 60 degrees would 

be reflected at 60 degrees, except for that portion absorbed. But .the 

more irregularities in the surface, the more the projected beam will be 

scattered, and the less the intensity of the 60-deg.-specular-reflection. 

A measurement of this specularly reflected light indicates comparatively 

the degree of irregularity of the surface, and consequently its smoothness 

or degree of polish. 

The reflectivity readings presented in Table 3, in Section IV 

of this report, are referred to and based on an assumed 100 percent 



Fig. 3: Sixty Degree Reflectometer in Position for Measuring Surface Gloss of 
Specimen 

WESTON 

TRANSFORioiEII 

110 to 6 VOLTS 
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D-C MICROAMMETER 

RHEOSTAT 

Fig. 4: Schematic Drawing of Sixty Degree Reflectometer 
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reflection of a first surface mirror, and are not corrected for the minor 

differences in absorption of the samples., 

Materials 

Twenty-four specimens of stone were selected from six quarries 

throughout the state - ~ four lime stone and two sandstone. These were 

chosen to include the various limestone formations and the varied physical 

properties of these formations. The limestone quarries supply the stone 

used on many of the highway projects within their areas, and pass all 

the requirements of Kentucky highway material specifications. Most 

sandstones, however, will not meet the state's requirements and there­

fore are little used in highway construction at pre sent. Considerable ex­

perimental work has been done with sandstones and it is anticipated that 

in the future it may be possible to use more of then1. For this reason 

it was considered important to include sandstone specimens in this pro·· 

ject for practical application as well as for comparative purposes. 

Samples were secured from both open face and underground 

quarries. Several chunks were taken at each location in an attempt to 

choose a .representative sanrple from each quarry. Pieces of stone 

whose faces were fairly parallel were selected, for ease in coring. A 

four-inch core-drill was used to cut the necessary specimens from the 

chunks. 

After the cores were cut, a masonry saw was used to cut the 

end faces perpendicular to the axis. Cores ranged from 2 to 4 inches 

in length and when sawed they were ready to be polished. 

The specimens were designated as A, B, C, W, Sand F, depend~ 

ing on the quarry from which they were obtain.ed. Four or more specimens 

in each classification were prepared, with the exception of the Oregon 
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limestone and calcareous standstone groups, which had l and 2 stones 

respectively. The four limestone classifications were Camp Nelson, 

Tyrone, Oregon, and oolitic*; the sandstones were graywacke and calca-

reous. (Camp Nelson, Tyrone and Oregon are names of Kentucky lime-

stone formations, while oolitic, graywacke, and calcareous are merely 

identifying adjectives, used since no definite formation names have been 

as signed to these types.) 

A petrographic examination was made of each specimen to 

determine the stone's classification. For descriptive purposes, some 

two or three stones were grouped as one when they were geologically 

alike. However, each stone was tested independently in measuring the 

coefficient of friction. A thin section was prepared from a small chip 

of each and studied to determine the size and kind of mineral particles 

composing the stone. Photomicrographs taken of the thin sections are 

presented in the appendix, along with photographs of the polished and 

roughened surfaces. From the photomicrographs the fine matrix grains 

can be easily distinguished from the coarser grains. Stones containing 

large areas of fossil debris or limestone fragments show plainly on these 

photographs. 

Preparation of Specimens 

After considerable experimentation a method of polishing was 

set up and followed. The sawed faces of the specimens were first 

ground on a wheel faced with a No. 40 aluminum oxide abrasive paper, 

This was done to smooth off any rough places left after the faces were 

sawed. The specimens were then ground on a glass plate in a slurry 

of coarse Carborundum, and this process was repeated with a fine grit 

Carborundum. There was no set length of time for grinding the specimens; 

':' These were actually bioc,clastic limestones, but are referred to in 
this text under the general classification of Oolitic, 
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each was ground until the surface was uniform and smooth. Grinding 

was then continued further on another glass plate with a slurry of levi­

gated Alumina No. 1. For the final polish, an eight-inch buffing wheel 

was used. This was faced with a heavy gauge duck material saturated 

with a No. 3 Alumina slurry. The stones were polished on this wheel 

and periodically measurements were taken of the reflectance of their 

surfaces. Polishing was continued unti.l three consecutive readings on 

the reflectometer remained unchanged. The stones were then considered 

ready for measuring the frictional resistance, They could, of course, 

have been polished to a higher degree, but for the purpose of this work 

and within the limits o£ the methods used this was considered the end 

point. 

After testing, the faces of the stones were prepared for t¥.O other 

conditions-- roughening with a No. 80 and then a No. 150 Carborundum. 

In each case a slurry was made with the designated grit size and using this 

the stone was ground on a glass plate until the surface was uniform. Here 

again the amount of surface reflectance was determined with the reflecto­

meter. Final reflectometer readings were taken of all specimens after 

the polishing or roughening was completed. 

Method of Testi~ 

Tests were conducted on all three types of surfaces under both 

wet and dry conditions. Although the principal interest was in slipperi­

ness, or that condition developed from pavement wetness, consideration 

of the stones when dry was necessary to provide a clearer picture of the 

problem involved. 

Preliminary testing led to the conclU"sion that tests could be 

conducted best at speeds of 180 and 240 rpm and at pressures of 10, 15 
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and 20 psi. This would provide a range such that sufficient data could 

be collected and dependence would not be merely on a few specific tests. 

Also, the speeds and pressures were well within the limits of the machine. 

The testing operation i.tself was relatively simple. The speci-

men was placed in the holder, leveled, and locked tightly into place by the 

thumb screw clamps. The motor switch was opened and the lever on the 

converter box was set to provide the desired rpm. The air valve was 

opened to the de sired pressure. With everything now in operation the 

galvanometer was read as soon as it reached a steady position and held it. 

This completed the testing operation. For running the wet tests a large 

rubber band was clamped around the top of the specimen. An amount of 

water sufficient to keep the surface well covered was placed within this 

band. If the water became hot during the testing period the test was halted, 

water changed, and the test begun again. Three runs were performed for 

each setting of pressure and speed, and from these the average was calcu­

lated. 
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IV: RESULTS AND ANALYSIS 

The coefficient of friction values for all stones were calculated 

by the following method, The readings taken from the galvanometer 

were converted into pounds, using the calibration graphs for each re~ 

spective bridge voltage 0 Since the frictional resistance was taken in 

pounds, it was necessary to multiply the tangential force in pounds by 

the distance from its line of action to the center of the shaft. All read~ 

ings were taken when the rod was fastened at either l-3/4 or 2~1/2 inches 

from the shaft center 0 

The basic friction formula is stated as 

f = FIN 0 

The normal load, N, in this case becomes moment of normal force (applied 

pressure in pounds times the mean radius of the annulus) and F. becomes 

moment of the tangential force, or by formula, 

M 
f = P( rz ~ q. ) 

This formula was used in computing all coefficients of friction values 0 

Each specimen was tested wet and dry for three different surface 

conditions at various loads and speeds 0 The values determined for each 

classification group and test condition were averaged. There being but 

one specimen in the Oregon classification its value in comparison was 

limited. The results of all friction tests are given in Tables l and 2. 

Reflectivity data for all specimens and conditions reported in Tables l 

and 2 are given in Table 3. 



TABLE I 

OF VALUES FOR WET 

Surface Polished 150 Grit 80 orl.t 
Specimen Load 20 si 1 i 0 si si 1 

No. R.P.M. 180 240 I 180 240 180J 240 180 I 240 I 180 I 240 180 240 I 180 I 240 180 .uc 
Camp Nelson 

al 0.095 0.090 0.044 0.032 0.69 0.63 0.70 0.60 0.49 0.38 0.68 0.66 0.66 0.63 0.47 0.41' 
02 0.034 0.030 0.023 0.025 0.69 o.6; 0.70 0.67 0.46 0.,20 o.67 o.66 0.,68 0.65 0.46 0.45 
a, 0.083 0.080 0.032 0.030 0.69 0.61 0.73 0.65 0.47 0.21 0.67 0.69 0.67 0.65 Oo49 0.49 
Al 0.056 0.053 0.034 0.030 0.66 0.61 0.67 0.68 0.34 0.26 o.63 0.66 0.64 0.62 0.56 Oe42 
A2 0.039 0.034 0.029 0.026 0.66 0.60 0.67 0.65 0.42 0.25 0.65 0.66 0.64 0.65 0.42 0.46 
A4 0.051 0.047 0.027 0.025 0.66 0.62 0.75 0.66 0.53 0.44 0.59 0.59 o.66 0.60 0.52 0.48 
B4 0.053 0.052 0.024 0.023 0.73 0.69 0.68 0.64 0.22* 0.47 0.67 0.71 0.69 0.65 0.55 0.48 
B; 0.047 0.045 0.023 0.022 0.66 0.62 0.67 0.63 o.5o 0.43 0.70 0.72 0.67 0.66 0.48 0.49 

Avge 0.057 0.054 0.030 0.027 0.68 0.63 0.70 0.6; 0.46 0.33 0.66 0.67 0.66 o.64 0.49 0.47 

Tyrone 

A3 0.053 0.049 0.027 0.023 0.,68* 0.61* 0.69• 0.61* 0.,43* 0.38* 0.66 0.67 0.66 0.63 0.55 0.51 
B1 0.019 0.016 0.011 o.oos 0.37 0.36 0.29 0.27 0.19 0.15 0.79 0.77 0.72 0.65 0.55 0.39 
B2 0.020 0.016 0.013 o.o1o 0.32 0.31 0.29 0.27 0.13 0.14 0.75 0.73 0.70 0.65 0.49 0.39 
BJ o.o95 0.083 0.034 0.030 0.35 0.34 0.28 0.26 0.15 0.15 0.75 0.77 0.67 0.65 0.46 0.44 
04 0.059 0.052 0.030 0.024 0.23 0.22 0.24 0.23 0.12 0.14 0.68 0.68 0.66 0.63 0.44 0.46 

Avg., 0.049 0.043 0.023 0.019 0.32 0.31 0.28 0.26 0.15 0.15 0.73 0.72 0.68 0.64 o.;o 0.44 

Oregon 
C; 0.102 0.093 0.036 0.033 0.70 o.6B 0.73 0.66 0.28 0.22 0.68 0.66 o.66 0.63 0.48 0.4J 

OOlitic 
W]_ 0.060 0.052 0.040 0.037 0.61 0.59 0.65 0.59 0.51 0.44 0.70 0.69 0.67 0.63 0.44 0.45 

w2 0.052 0.048 0.,021 0.020 0.72 0.63 0.65 o.61 0.36 0.42 0.74 0.73 0.66 0.65 0.38 0.46 

~ 
o.o61 0.052 0.037 0.032 0.65 o.63 0.66 0.59 0.50 0.43 0.69 0.71 0.64 0.67 0.49 0.49 
0.057 0.044 0.032 0.028 0.69 0.61 0.62 0.58 0.41 0.37 0.72 0.70 0.64 0.66 0.49 0.46 

4 0.058 0.049 0.033 0.029 0.67 0.61 0.65 0.59 0.45 0.42 O.?l O.?l 0.65 0.65 0.45 0.47 A.vgG 

Graywacke 
s1 0.099 0.090 0.053 o.o5o 0.70 0.64 0.66 0 .. 62 0.49 0.49 0.72 0.72 0.65 0.62 0.51 0.46 

52 0.325 0.295 0.143 0.:!.30 0.72 O.?l 0.70 0.67 0.53 0.51 O.?l 0.70 0.73 0.66 0.54 0.51 

S3 0.337 0.316 0,096 0.079 0.73 0.66 0.67 0.64 0.51 0.50 0.66 0.69 0.72 0.65 0.54 0.50 

s4 0.350 0.334 0.240 0.227 0.66 0.65 0.64 0.61 0.52 0.48 0.73 0.72 0.68 0.65 0.52 0.51 
Avg .. 0.278 0.257 0.133 0.122 0.70 0.67 0.67 0.64 0.51 0.50 O.?l 0.71 o.?o 0.65 0.53 0.50 

Calcareous 

Fl 0.189 0.172 0.115 0.096 0.70 0.67 0.71 0.61 0.50 0.43 0.67 0.69 0.64 0.65 0.49 0.49 

F2 0.234 0.2o6 0.121 0.097 0.73 0.73 0.63 0.62 0.51 0.47 0.73 0.73 0.63 0.62 0.51 0.47 
Avg~ 0.212 0.189 o.ns 0.097 0 .. 72 0.70 0.67 0.62 0.51 0.45 0.70 O.?l 0.64 0.64 0.50 0.48 

Plate Glass 
0_011 O.Oll 0.010 0.011 0.64 0.60 o.6o 0.61 0.46 0.49 0.72 0.69 0.66 0.61 0.63 0.56 

* Not included in average 



TABLE 2 

OF FRICTION VALUES FOR 

! R"P<•o 
--·-

150 Grit 
Specimen 1 10Dsi 20PSi 

I 15mr1 I lOpsi 
No. 1 RPM noinient 180 I 240 180 240 180 I 24o 

Camp Nelson 

cl 0.89 0.45 0.96 0.89 0.97 0,87 0.84 0,6) 
c2 .o .. ~S 0.59 0.96 0.92 0.98 0.98 0,82 0.77 
c3 0,82 o.;o 0.99 0.95 0.97 0.96 0,80 0.69 
Al 0.6) 0.39 0.99 0.94 0.98 0.93 0.83 0.75 
A2 0.69 0,37 0.96 0.92 0,98 0.95 0,80 0.74 
A4. 0,75 0.44 0,87 0,87 0.98 0.91 0.91 0.76 
B4 0.87 0,58 0.85 0.83 0,96 0.94 0,78 0.71 
B; 0,9/, 0,60 0.81, 0.81 0.94 0,89 0.72 0.68 

Avg~ 0,81 0.49 0.93 0.89 0.97 0.93 0,81 0,72 

Tyrone 

A3 0.72 0.45 0.99 0.98 0.90 0.92 0.74 0.66 
Bl 0.79 0.1,4 0.93 0.94 0.99 0.98 0,93 0.79 
B2 0.89 0.47 ---- 0.98 0.99 0.99 0,76 0.71 
BJ 0.81 0,62 --- 0.99 0.91 0.95 . 0.69 0.71 
c4 0.93 0.49 -- ---- 0,95 0,88 0,76 0.65 

Avg. 0.83 0,49 0.96 0.97 0.95 0.94 0.78 0,70 

Oregon 
C5 0,67 0.37 0,89 0.86 0 .. 99 0,95 0.86 0,68 

OOlitic 

1IJ. 0.69 0.41 0.94 0.91 0,92 0.87 0.69 0.64 
012 0.89 0.43 0.95 0.89 0.98 0.74 0.94 0.71 

~ 
0.72 0.41 0.81 0.79 Q.97 0.79 0.71 0.63 

4 0.82 0,51 0.93 0.87 0.99 0.94 0.75 0,73 
Avg. 0.78 0.44 0.91 0.87 0,97 0.84 0.77 0,69 

Graywacke 

sl 0.84 0,44 o.83 0.78 0,90 0.86 0.68 0,68 

82 0.92 0.53 0.89 0.86 0.89 0,88 0.68 0,67 

83 0.77 0.49 o.s2 0.77 0.90 0,84 0.67 0.63 

s4 0.59 0.58 0.84 0.77 0,86 0.81 0.65 0.63 
Avg. 0,78 0.51 o.85 0,80 0,89 0,85 0.67 0,65 

Calcareous 

Fl 0.78 0.39 0,87 0.84 0.87 0.84 0,66 0.62 

F2 0.78 0.34 0.81 0,75 0.86 0,87 0.64 0.66 
Avg. 0.78 0,37 0,84 o.so 0.87 0.86 0.65 0.64 

P1 at"" r.l A.!=!!'! 

0.99 0.77 0,88 0.82 0.96 0.90 0,80 0,68 

' 80 Grit 
I 20psl. I 15psi 

I 180 I 240 ' 180 !2W 

0.98 0.95 0.99 0.89 
0.96 0.94 0,98 0,91 
0.97 0,94 0.99 0,86 
---- 0.93 0.97 0,90 
0.93 0.88 0.94 0.92 
0.90 0.84 0.99 0,85 
0.97 0.92 0.97 0.90 
0,91 0.83 0.93 0,80 
0.95 0.,90 0.97 0.88 

0.94 0.89 0.96 0.86 
---- 0.94 0,99 0.95 
0.95 0.90 0.94 0,87 
---- 0.95 0.97 0,81 
---- 0.95 0.98 0,87 
0.95 0.93 0.97 0.87 

0.96 0.92 0.96 0.87 

0.91 0.88 0.89 0.85 
0.87 0,83 0.98 0.77 
0.83 0.76 0.86 o.8o 
0.91 0.86 0,91 0.87 
0.88 0,83 0.91 0.82 

0.84 0.79 0.84 0.79 
0.86 0.80 o.81 0.76 
0.85 0.79 0.75 0.70 
0,83 0.78 0.74 0.71 
0.85 0,79 0.79 0.75 

0,90 0,83 0.82 0.78 
0.84 0.78 0,81 0.78 
0.87 0.81 0,82 0.78 

0.96 0.90 0.92 0,81 

I lOpsl 
! 180 -j 

' 

0.68 
0.87 
0,82 
0.81 
o.n 
0.78 
0.74 
0.73 
0.77 

0.75 
0.82 
0.73 
0.78 
0.74 
0.76 

0,70 

0.65 
0.77 
0.66 
0.71 
0.70 

0.67 
0,65 
0.53 
0,65 
o.63 

0,65 
o.63 
0.64 

0.73 

5 
'9 

64 
2 
'4 
6 
2 
'1 
8 

'0 

6 

7 

0,72 
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TABLE 3 

REFLECTOMETER READINGS IN PERCENT* 

Sample Polished Surface 150 Grit Surface 80 Grit Surface 

Ar 6 .. 5 0.7 0.7 

A2 7.8 0.7 0.7 

A3 7.0 0.7 0.7 

A4 7.0 0.7 0.7 

Br 10. 4 0.9 0.9 

B2 8.7 0.9 0.9 

B3 5.7 0.9 0.7 

B4 7.4 0.7 0.7 

B5 7.2 0.4 0.4 

cr 4.3 0.7 0.7 

c2 7.8 0.7 0.7 

c3 5.9 0.7 0.7 

c4 7.0 0.9 0.9 

c5 5.2 0.7 0.7 

Wr 3.7 0.7 0.7 

w2 5.7 0.7 0.7 

w3 3.9 0.4 0.4 

w4 4.6 0.7 0.7 

sr 4.3 0.5 0.5 

Sz 2.6 0.4 0.4 

s3 2.2 0.4 0.4 

s4 2.2 0.4 0.4 

Fr 1.7 0.4 0.4 

F2 I. I 0.4 0.4 

* Based on an assumed IOOo/o reflectance value as taken from a first sur~ 

face mirror. 
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Figure 5 gives a comparison of the average coefficient of friction 

for each classification at each loading for the polished wet and dry 

surfaces. For the wet surfaces the variation between the four lime­

stones was slight.. At a nox-malload of 15 psi. the range was from 

0. 019 to 0. 033, with an average of 0. 02 7. The value for the two sand­

stones was somewhat greater, approximately 0.1, or more than three 

times the average of the limestones. For the 20 psi. load the average 

of the limestones was about 0.06, with the sandstones averaging 0.223, 

approximately four times the limestone value. {As a note of comparison 

and interest, it was fuund that the coefficient of friction for ball bear­

ings was in the range of 0.0011 to 0.0015.) 

The Tyrone formation was found to have the lowest average of 

all classifications at both loadings. The petrology indicates the average 

grain size of the Tyrone stones to be approximately 0. 0043 mm., or 

the smallest of any of the groups. Another interesting fact is that the 

stones in this group reflected a larger percentage of light when the surface 

gloss was measured than any other group. The variation in the two sand­

stones might be due to the large areas of fossil debris present in the 

calcareous stones compared with the little or none pre sent in the gray­

wackes. This debris, evident in the photographs of the polished stone 

surfaces, polished easily and seemed much smoother than the base ma­

terial. 

Figures 6 and 7 present a wet and dry surface comparison of 

the No. 80 and 150 grit surfaces respectively. The graphs showing 

coefficients for the 15 and 20 psi. loadings indicate that the coefficients 

are virtually the same for the wet surfaces, with one exception: the 150 

grit surface of the Tyrone classification is consistently lower at each 
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testing load. It is known that the Tyrone specimens are more dense and 

fine grained than any other stones ~~sted. It is probable, then, that when 

the specimens are roughened with the 150 grit a certain amount of the sur­

face area remains unaltered or is altered to such a small degree that the 

area as a whole remains polished and, compared with the other classifica-· 

tions, only a few small, rounded asperities are formed. Since the stones 

are so dense, it is difficult to tear the grains apart or loose; and moreover, 

when a grain is torn loose its area compared to the entire surface area 

is so minute that its effect on the surface as a whole is slight. There was 

positive evidence in polishing the sandstones that a certain number of 

surface grains were broken from the loose cementing material, while 

little or no evidence of this was found among the limestones. 

It was found that for all classifications other than the Tyrone the 

wet coefficient of friction values are within a close range. In no case is 

there more than 0. 1 difference between the specimens for any corre s­

ponding load. For the 150 grit wet surface the over-all average values 

are 0. 66, 0. 63 and 0. 38 for 20, 15 and 10 psi. loadings respectively. 

For the 80 grit wet surface the averages are 0. 70, 0. 64, and 0. 47 for 

like loadings. The 80 grit specimens were less variable than the 150. 

Figure 6 shows that at the 15 psi. loading the variation on the 80 grit 

roughened surface for all specimens is less than 0.03. 

When the coefficient of friction reaches an equal, constant value 

for the various stones this would indicate the coefficient to be independent 

of the type of stone, grain size, and chemical or petrological composition, 

and dependent principally upon the surface texture and condition. This is 

believed to be the case for all stones roughened with the 80 grit. There 

was little fluctuation for some stones even when roughened with the 150 
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grit. However, to determine that point where the coefficient of friction 

is dependent upon the surface condition rather than independent of it, 

it would be necessary to roughen the specimens with varying grit sizes 

smaller than 80 until the coefficient of friction measurements responded 

with a definite decrease in value. 

The 80 and 150 carborundum grits were used to grind a piece of 

plate glass. This glass was tested and its value of friction was well with~ 

in the range of the stones tested under like conditions. The reflectometer 

readings for all stones roughened with the 80 to 150 grit showed less than 

one percent reflectance, which would indicate little polished surface area 

remaining. In this case, however, the values are so small the applicability 

of the reflectometer for determining minor differences within this range 

would be impractical. 

Reviewing figures 6 and 7 for the coefficient of friction for 80 and 

150 grit roughened dry surfaces a much wider variation is found than for 

the wet surfaces. Values range from approximately 0. 75 to 0. 97 for the 

15 and 20 psi. loadings. Here, too, there appears to be a differentiation 

between the Camp Nelson, Tyrone and Oregon limestone group and the 

sandstones and o61itic lime stone group. The average for the first group 

both 80 and 150 grit at 15 and 20 psi. loading -- being 0. 90 and 0. 82 .. 
for the sandstones and oolitics. Problems encountered in conducting the 

dry tests were those of the heat generated and of the rubber's shearing. 

These were held to a minimum but could not be eliminated entirely; it 

was realized that their effect was present but the degree by which they 

altered the results could not be directly ascertained. During the progress 

of the tests it w,_as noted that the fine grained stones-~ Camp Nelson, 

Tyrone and Oregon -- generated heat and burned rubber more rapidly 
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than the other stones. It is likewise true that sheared rubber shreds 

tended to contaminate the interface. These facts may account for some 

variations in. the stones and possibly explain why the finer grained stones 

had coefficients higher than the others when tested dry. 

The problem of heat, shredding and adhesion of rubber from the 

annulus was of such magnitude that it was impossible to measure the 

coefficient of friction of the polished dry surface at the same speeds used 

in the other tests. The results given in Figure 5 are those of tests per-

formed at incipient motion and at loads of 10 and 15 psi, only. At the 

15 psi. loadir.g all classifications averaged near 0. 78 while the 10 psi. 

loading was less, averaging about 0. 44. Because of the complex effects 

of velocity on frictional forces these measurements made at incipient 

motion can not be directly compared with those conducted at other speeds. 

The coefficient values do follow the laws governing friction in that 

kinetic friction was found to be less than static friction. It is generally 

accepted that frictional resistance will vary with speed, but no established 

relationship has been formulated. 

The discussion of the friction values determined in this project 

was restricted to those data taken with an annulus rotation of 240 rpm. 

Throughout the testing procedure it was found that the operation of the 

friction measuring device was s·moother and more consistent at 240 rpm. 

The difference between the values at 240 and 180 rpm is slight, however; 

most of them fall within 0. 05 of each other for the particular loading con·· 

ditions. Also, more emphasis is placed upon the values at the 15 and 20 

psi. load, because here again it is believed these data represent the 

operation of the friction measuring machine at its best. 
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V: CONCLUSIONS 

It has been deduced here and elsewhere that the polishing 

of pavement aggregates is due principally to fine abrasive particles 

~ 21 

found in "road scum" and imbedded in tire treads, The continual attri-

tion of these materials produced by the movement of traffic may cause 

coarse wear in some cases without producing slickness; while in others 

it may cause fine wear, polishing and consequent slickness when wet, 

This action is analogous to wear on a grinding wheel; it is well known 

that grinding wheels must undergo a certain amount of coarse wear or 

else they become dull and clogged, Thus the hardness and cementation 

of the grains are very important factors in their de sign, There was an 

obvious parallel to this in attempting to polish sandstones: oftentimes 

the quartz particles would be torn loose from the weaker cementing ma­

terials, whereas grains more firmly bound eventually polished, and the 

surrounding cementing material was abraded away, Since this resulted 

in a surface comprised of polished facets and inter-spaced cavities, the 

sandstones always retained a significantly higher wet friction factor 

than the lime stones, 

The tendency of sandstones to undergo coarse wear, even when 

subjected to fine abrasion, is attributed to the differential in hardness 

between the quartz sand particles and the cementing materiaL Also, 

since quartz is ranked seventh in the scale o£ mineral hardness, the 

only mineral abundantly present in road scum that would be sufficiently 

hard to cause its polishing would be quartz itself, 

Limestones (calcite) rank third in the hardness scale and are 

therefore susceptible to polishing or wear by almost any grit that might 

be present in road scum, However, some differences among limestones 
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are apparent; and these seem inherently related to the size, interlock­

ing, and cementation of the crystals. Fine-grained, dense stone 

polished more readily than coarse-grained stone and gave consi~tently 

lower wet friction coefficients and higher gloss readings, Close 

attention to the photomicrographs of the polished and roughened surfaces 

and thin sections (see Appendix) of these stones w~ll show the variations 

in grain size and crystallization, None of the lime stones "showed any 

evidence of grains being torn out of their sockets during polishing. 

The general conclusions from the study are as follows: 

l. The dry friction factors between tread rubber and the limestones, 

sandstones, and glass seem to be largely independent of the types of 

materials and their surface textures. Values ranged from about 0. 4 

upward, 

2. The wet friction factors seem to be independent of the types but 

inherently dependent upon the textures of the materials. Values ranged 

from 0. 010 upward to 0. 73 from the most highly polished to the rough­

est conditions, 

3. Sandstones never exhibited as low a wet-friction value as lime­

stones because they could not be polished to the same degree. 

4. The low friction values on wet surfaces are attributed to lubrication 

of the contact interface. Highly polished dense surfaces are easily 

lubricated, whereas the asperities of rough surfaces tend to protrude 

through the water film, and the excess hydrauHc pressures within the 

contact interface tend to dissipate through the valleys or pores of the 

rough surfaces. 

5. These results also suggest that a high friction coefficient might be 

preserved or even restored in soft pavement aggregates by inducing 
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coarse wear. To accomplish this, it would be necessary to provide 

periodically a coarse grit such as sharp sand and to rely upon traffic 

to grind and roughen the pavement surface. 

~ 23 

The report deals only with specific aspects of pavement 

slipperiness related to or influenced by the aggregate. It has been 

shown that some control over slickness may be exercised by selection 

of types of aggregate or possibly by inducing sacrificial wear. The 

authors, of course, recognize that there are many aspects of the pro~ 

blem beyond the scope of the pre sent report. Sand-asphalt surface 

treatments offer an obvious alternative method of providing skid-resis­

tance ,irrespective of the structural aggregate within the pavement; 

and it is anticipated that future research will be directed along that line, 

as well as towards the further development of polishing "Tesistant 

aggregates. 
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Limestones 

Al,2,4 

APPENDIX: DESCRIPTIONS OF SPECIMENS 

A Camp Nelson brown dolomitic limestone with a mortar texture 

consisting o£ a matrix of anhedral calcite crystals ranging from 0. 00086 

mm. to 0.017 mm. with average size of 0,0043 mm., fibrous calcite, 

and zones of dolotomized areas ranging up to 9 mm. wide and 35 mm. 

long. 

A light brown Tyrone dolomitic limestone with a mortar texture 

consisting of anhedral calcite crystals ranging from 0.00086 mm. to 

0. 017 mm. with average size of 0. 0043 mm., areas of few dispersed 

dolomite rhornbs to areas which are predominately dolomite, sizes of 

the dolomite rhombs ranging from 0.017 mm. to 0.13 mm. 

A light gray lithographic Tyrone lime stone with a mortar texture 

consisting of anhedral and euhedral calcite crystals measuring from 

0.00086mm. to0.017mm. withaverage si.zeof0.0034mm. The 

stone also contains a few dispersed dolomite rhombs up to 0.05 mm. 

and areas of clear anhedral and euhedral calcite crystals up to 0. 58 

mm. 

A light brown Tyrone lime stone with a mortar texture consist­

ing of anhedral calcite crystals from 0. 00 I 7 mm. to 0. 013 mm. with 

average size of 0.0043 mm., numerous dispersed euhedral dolomite 

rhombs ranging from 0. 017 mm. to 0. 083 mm., and area.s of clear 
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calcite crystals ranging from 0, 017 mm. to 1 mm. Matrix shows 

cell structure of fossils. 

A light brown Camp Nelson limestone with a. ~ortar texture 

consisting of anhedral calcite crystals ranging from 0. 0017 mm. to 

0. 015 mm. with average size of 0. 0061 mm,; there are areas of very 

few dolomite rhombs to areas of numerous dolomite rhombs ranging 

in size from 0,025 mm. to 0,083 mm., and dispersed euhedral calcite 

crystals up to 0. 58 mm, 

A grayish brown Camp Nelson dolomitic limestone with a 

mortar texture consisting of anhedral crystals of calcite ranging from 

0.0016mrn, to0.0103mm, withaverage sizeof0.0043rnm., numer­

ous dolomite rhombs ranging from 0. 017 mm., to 0. 041 mm. and 

areas of clear anhedral calcite crystals up to 1. 58 mm. in length with 

crystal sizes up to 0.33 mm. 

A Camp Nelson formation mortar textured pink calcitic dolomite 

consisting of anhedral calcite crystals ranging from 0. 00086 mm. to 

0.0103 mm. and slightly dispersed dolomite rhombs ranging from 0.017 

mm. to 0. 125 mm. Gray areas are due to disseminated pyrite and 

carbonaceous matter. 

c2 & c3 

A Camp Nelson formation pink dolomite with euhedral mosaic 

texture consisting of dolomite rhombs ranging from 0, 017 mm. to 

0.091 mm. in cubic packing, The voids are filled with anhedral calcite 
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crystals ranging from 0.0017 mm. to 0.017 mm. Portions of the 

stone are gray in color due to the disseminated pyrite and carbona­

ceous matter. 

A Tyrone formation light brown lime stone with a mortar tex­

ture consisting of anhedral calcite crystals ranging from 0. 00086 

mm. to 0. 019 mm. and numerous dispersed euhedral crystals of 

dolomite ranging from 0.017 mm. to 0.175 mm. There are also 

numerous precipitated calcite infillings ranging up to 7 mm. in size. 

An Oregon formation light pink dolomite with a simple mosaic 

texture of dolomite rhombs ranging from 0. 025 mm. to 0. 12 mm. with 

average size of 0.083 mm. 

w1 & w2 

A bio~clastfc. lime stone with a crystalline calcite matrix en­

closing partly silicified fossils, limestone fragments, chlorite, and 

disseminated pyrite within the interstices. The gray color of the rock 

is accredited to the pyrite. 

Grain sizes are as follows: 

fossils- up to 4.6 mm. 

limestone fragments - up to 6. 0 mm. 

pyrite - up to 0. 12 mm. 

A bio-clastic lime stone with matrix composed of calcite, 

quartz, chalcedony, and pyrite. Enclosed within the matrix is 

detrital carbonate, silicified fossil debris, chlorite, muscovite, 

biotite, and angular quartz. 
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Grain sizes are as follows: 

detrital carbonate - l. 0 mm. to 2. 0 mm. 

fossil debris - 0. 03 mm. to 0. 5 mm. 

chlorite- 0.06 mm. to 0,2 mm. 

muscovite - up to l, 0 mm. 

biotite - up to 0. l 7 mm. 

quartz -up to 0. 17 mm. 

A bio-clastic lime stone composed of matrix of quartz, 

chlorite, clay and calcite. Enclosed within the matrix are ·.Umestone 

fragments, calcareous and silicified fossil debris, and chlorite 

aggregates. 

Grain sizes are as follows: 

Sandstones 

lime stone fragments - up to 1. 74 mm. 

fossil debris- up to 1.2 mm. 

chlorite - up to 0. 24 mm. 

A light gray subgraywacke with matrix composed of calcite, 

iron oxide, quartz, sericite and chlorite. The disrupted framework 

is composed of angular to sub-angular quartz, muscovite, chlorite 

andesine, and rnicrocli.ne. 

Grain sizes of disrupted framework are as follows: 

quartz- up to 0.44 mm. 

muscovite- up to 1. 0 mm. 

- 27 
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chlorite ~ up to 0. 5 mm. 

microcline ~ 0.067 mm. to 0.33 mm. 

andesine ~ 0. 067 mm. to 0. 33 mm. 

- 28 

A light gray subgraywacke with framework composed of 

angular to sub-rounded quartz, chlorite, muscovite, microcline and 

andesine. The interstices are filled with cement of quartz, limonite, 

and very little calcite. Some interstices are impregnated with asphalt 

residue. 

Grain sizes offrarnework,are as follows: 

quartz- 0.008 rnm. to 0.50 mm. 

chlorite- 0.07 mm. to 0.50 rnm. 

muscovite~ up to 0.6 mm. 

microcline - up to 0. 20 mm. 

andesine- up to 0.20 mm. 

A light gray- green subgraywacke composed of matrix of cal­

cite, iron oxide, quartz, and chlorite. Areas up to l mm. are im­

pregnated with asphalt. The disrupted framework is composed of 

angular to sub-rounded quartz grains, muscovite, chlorite, micro­

cline, and andesine. 

Grain sizes of disrupted framework are as follows: 

quartz- up to 0. 5 mm. 

muscovite - up to 1. 0 mm. 

chlorite~ up to l.l mm. 

microcline -up to 0. 46 mm. 

andesine -up to 0. 46 mm. 
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A light gray graywacke composed of a cubic packed frame­

work of angular to sub-rounded quartz grains, plagioclase feldspar, 

scattered grains of chlorite, and numerous muscovite flakes. The 

interstices are filled with cement consisting of quartz, calcite, and 

limonite. Some interstices are impregnated with asphalt. 

Grain sizes of framework are as follows: 

quartz~ up to 0.45 mm. 

muscovite - up to 0. 83 mm, 

chlorite - up to 0. 22 mm. 

feldspar- up to 0.25 mm. 
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A light gray calcareous sandstone with matrix of fibrous 

calcite, euhedral and anhedral calcite, sericite, and quartz. 

Dispersed within the matrix are debris of angular to sub-rounded 

quartz grains with the edges partially replaced, few plagioclase 

feldspar fragments with edges partially replaced, muscovite, chlorite 

and rounded fossils, 

Debris grain sizes are as follows: 

quartz - up to 0. 44 mm. 

feldspar - up to 0. 22 mm. 

chlorite -up to 0. 75 mm. 

muscovite - up to l. 0 mm. 

fossil debris- up to 10.0 mm. 

A light gray calcareous sandstone with matrix of fibrous 

calcite, anhedral calcite, quartz, sericite, chlorite and feldspar. 
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Dispersed within the matrix is debris of angular to sub-rounded 

quartz grains with the edges partially replaced, few plagioclase 

feldspar fragments with edges partially replaced, muscovite, biotite, 

chlorite and rounded calcareous fdssils. 

Debris sizes are as follows: 

quartz- up to 0.40 mm. 

feldspar~ up to 0.26 mm. 

muscovite - up to 2. 3 mm. 

biotite -up to 0. 55 mm. 

chlorite ~up to 0. 9 mm. 

fossils- up to 9.0 mm. 



TYRONE CAMP NELSON 

Polished ( 10 X) Polished ( 10 X) 

Rough ( 10 x) Rough ( 10 X ) 

Thin Section ( 103 X) Thin Section ( 103 X) 

Fig. 8: Photomicrographs of Prepared Specimens of Tyrone and Camp Nelson Limestones 
it> 



OOLITIC OREGON 

Polished ( 10 X) Polished ( 10 X) 

Rough(lOX) Rough ( 10 X) 

Thin Section ( 103 X) Thin Section ( 103 X) 

Fig. 9: Photomicrographs of Prepared Specimens of OOlitic and Oregon Limestones 



GRAYWACKE CALCAREOUS 

Polished ( 10 X ) Polished ( 10 X ) 

Rough ( 10 X) Rough ( 10 X) 

Thin Section ( 103 X) Thin Section ( 103 X ) 

Fig. 10: Photomicrographs of Prepared specimens of Graywacke and Calcareous Sandstones 
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