

COMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS FRANKFORT

January 21, 1959

Ward J. Oates COMMISSIONER OF HIGHWAYS ADDRESS REPLY TO DEPARTMENT OF HIGHWAYS MATERIALS RESEARCH LABORATORY 132 GRAHAM AVENUE LEXINGTON 29, KENTUCKY

> D.1.7. P.3,1.

MEMO TO: D. V. Terrell Director of Research

The attached report, "Re-Evaluation of the Kentucky Flexible Pavement Design Criterion," is the result of a study requested by the office of the State Highway Engineer. The Research Division made a comprehensive study in 1947 and 1948, "Investigation of Field and Laboratory Method for Evaluating Subgrade Support in the Design of Highway Flexible Pavements." The 1948 report recommended a method of flexible pavement design using the laboratory California Bearing Ratio test and equivalent wheel loads to arrive at a flexible pavement thickness. Revisions involving refinements in predicting traffic and additional curves for higher traffic volumes and equivalent wheel loads have been added since 1948.

Gross load limits were changed from 42,000 pounds to 59,600 pounds by the 1956 Legislature. The use of 4-axle semi-trailer type vehicles has increased greatly since the change in the gross load limit. Traffic designs have been changed from 10 years to 20 years.

The flexible pavement design criteria has been in use since 1948, and a variety of projects involving a range of design variables were available for performance evaluation. Visual performance data, rutting measurements, pavement deflections and pavement openings were used to evaluate the performance of pavements.

Waterbound macadam type base was found to be susceptable to infiltration of subgrade soil. Clay type soil in granular base results in a loss of the load supporting or load distribution value and may result in rutting or failure. A dense-graded aggregate base was opened and no subgrade infiltration was observed. It is believed that a dense-granular type base will not be affected by subgrade infiltration.

The design curves in Fig. 20 represent the recommended thickness for subgrade and traffic conditions.

D. V. Terrell

- *

- 2 -

۰.

This report was sponsored by the Flexible Pavement Design Committee of the Highway Research Board, and was presented in oral form to Session 36 of the 1959 Board meeting.

Respectfully submitted,

122

W. B. Drake Associate Director of Research

WBD:dl Enc. cc: Research Committee Bureau of Public Roads (3) Commonwealth of Kentucky Department of Highways

RE-EVALUATION OF THE KENTUCKY FLEXIBLE PAVEMENT DESIGN CRITERION

by

W. B. Drake, Associate Director of Research and James H. Havens, Assistant Director of Research

Highway Materials Research Laboratory University of Kentucky

January, 1959

CONTENTS

Page

ABSTRACT

1.28

I.	INTRODUCTION	1
II.	PRELIMINARY STUDIES	4
	Selection of Projects Design Data Evaluation of Traffic Traffic vs Pavement-Life	
III.	PERFORMANCE SURVEYS	12
	Visual Inspection Rutting Road Roughness Pavement Deflections Pavement Openings	
IV	SUMMARY	32
v.	APPENDIX	

ABSTRACT

RE-EVALUATION OF THE KENTUCKY FLEXIBLE PAVEMENT DESIGN CRITERION

Prior to 1948, the criterion in Kentucky for designing the thickness of bituminous pavements was based upon a modified laboratory CBR and the 1942 curves developed by the California Department of Highways. In 1948, the Materials Research Laboratory reported: "An Investigation of Field and Laboratory Methods for Evaluating Sub-grade Support in the Design of Highway Flexible Pavement." Included in that report as a recommended method of thickness design for use in Kentucky was a set of curves based upon an empirical relationship between minimum laboratory CBR and observed pavement performance. These five curves accounted for traffic groups up to 10,000,000 EWL's. Since that time six additional curves have been included in the design charts for EWL groups up to 320,000,000. These additional curves were determined by extrapolation of the results from the 1948 study. Early in 1957, an evaluation of the design method was undertaken. The basis for this re-evaluation was a statistical comparison of actual pavement performances with the designed life as anticipated or predicted by the design curves currently in use. On this basis, projects were selected, design records assembled, performances surveyed, and the data analyzed. Selected pavements which had been designed by the method developed in the 1948 study were checked for performance by visual survey, by roughness measurements, by measurements of rutting, by measurements of loaded-deflection with the Benkelman Beam, and by opening pavements for observation and sampling. Flexible base types studied included waterbound macadam, bituminous concrete, granular dense-graded aggregate and combinations. Laboratory evaluation on basis of bearing tests were made.

- 1. The visual survey established a range of performance.
- 2. Road roughness measurements were related to CBR but no attempt was made to draw design curves from this data since it could be greatly affected by factors not related to structural design.
- 3. Pavements opened for inspection revealed permanent deformation in the upper layers of the system as well as intrusions of subgrade in waterbound base courses.
- 4. An alternate method of design based on limiting deflection under load was developed from the Benkelman Beam measurements. Curves drawn from this data indicate a need for a slightly greater thickness than provided by the 1948 curves.

المشرقين ا

INTRODUCTION

Pavement design engineers are charged with the responsibility of determining the thickness and types of pavement courses necessary to support millions of vehicle-passes, intense loads, and to withstand extreme weather conditions. Most soils are inadequate for direct service of this type; and so pavements of differing thicknesses, depending on the supporting ability of the soil and the amount of anticipated traffic, are needed to distribute the loads and to confine and protect them. Pavement design engineers are, in fact, charged with more far-reaching responsibilities in the sense that thicknesses must be adequate but not excessive. It is this rather tedious balance between economy and pavement-sufficiency that guides the engineers and constitutes the general basis for any thickness-design criterion. Criteria of design are semi-empirical and semi-theoretical. In theory they involve boundary applications of stresses on layered, semi-infinite masses. Often these stresses are either indeterminate or obscure, and therefore theory must be compensated by empiricisms. Basically, of course, empiricisms are founded on experience and experiment. In this sense, each road that is designed and built is, in part, an experiment or test of the design system used. Thus, a statistical analysis of the performance histories of a large number of pavements with regard to design-parameters, i.e. bearing capacity of the soil, traffic, and pavement thickness, should provide a reliable derivation of a design criterion and should likewise reveal any need for modifications or re-adjustments in a criterion so derived and used.

- 1 -

Prior to 1949, the criterion in Kentucky for designing the thicknesses of flexible pavements was based upon a modified laboratory California Bearing Ratio (CBR) and the 1942 curves developed by the California Department of Highways(1). In 1948, the Materials Research Laboratory, in a report on "An Investigation of Field and Laboratory Methods for Evaluating Sub-grade Support in the Design of Highway Flexible Pavements" (2), recommended a similar method of thickness design for use in Kentucky and included a set of five curves based upon empirical relationships between EWL's, minimum laboratory CBR, and the observed performance of Kentucky pavements (Fig. 1).

Fig. 1: Kentucky Flexible Pavement Design Curves. Curves I through V proposed in 1948; IA and VI through X added by extrapolation, 1954.

- 2 -

- 1922 - E

These five curves accounted for traffic groups up to 10,000,000 EWL's (Equivalent 5,000-lb. wheel loads, two directions). Since that time, six additional curves have been included in the design charts and cover EWL-groups up to 320,000,000. These additional curves were determined partly by extrapolation of the results from the 1948 study. This series of eleven curves, with some modification in methods of evaluating traffic, has been used by the Department to design flexible pavements during the past ten years. Early in 1957, the Research Division was requested to evaluate the effectiveness of the extrapolated curves as well as the original five curves and to determine if the curves should be further revised in any way or if factors heretofore not considered in the design of pavement thicknesses should now be taken into account.

Logically, of course, the basis for this re-evaluation would have to be a statistical study of actual pavement performances, accumulated EWL's, and subgrade CBR's. On this basis, projects were selected, design records assembled, performances surveyed, the data analyzed, and recommendations offered for revising the present design chart.

- 3 -

12

PRELIMINARY STUDIES

e e se se se como como com

Selection of Projects for Study

The first criterion for selecting the projects to be studied was that the pavement must have been designed by the method recommended in the 1948 study. It was desired that the pavements be of high-type bituminous construction and have been in service as long as l year. The records were studied and a list of all eligible projects, meeting these requirements, was obtained. From a list of some 100 sections of road built since 1948, projects were selected so as to be distributed over the state as well as possible. Most of the major soil and geologic areas of the state were represented, and projects were selected so that available traffic groups were represented. An attempt was also made to select projects so that all of the more common base materials would come under study. Projects 1 mile or less in length and those not having sustained sufficient traffic were eliminated. Thus, curve revisions and bridge approaches were excluded. Projects involving large areas of salvaged pavement were also excluded. On the basis of these criteria, 70 projects representing 388.7 miles of Kentucky's flexible pavements were selected for study (See Fig. 2 and Table 1). Of these 70 projects, 57 were considered eligible, from the records available, for statistical analysis.

The Fayette-Madison County project and the Johnson-Lawrence County project, pavements studied in the 1948 investigation and not actually designed by the method currently under study, were included so as to provide extended distributions of projects.

- 4 ~

Fig. 2: Map Showing Locations and Distribution of Projects Studied.

Design Data

From the Division of Design, the design thickness of each pavement component for all projects was obtained and recorded. These values were then compared with the values as recorded on the plans and adjusted accordingly. When available, the design EWL and design CBR were also obtained. CBR's for most of the projects were gathered from soil reports on file in the Design Division and Materials Division. All relevant design data are given in Table 1 of the Appendix.

Evaluation of Traffic

Traffic data were obtained from the Division of Planning. For most of the projects, the ADT* for each year, from the time the

* ADT - Average Daily Traffic, two directions

project was completed through 1957, was recorded. Also available were weight data and vehicle classification counts for each year, from and including 1951, for the ten permanent loadometer stations located over Kentucky (Tables 8 and 9, Appendix). With this information, it was possible to calculate the EWL's which had passed over the pavements (Table 12, Appendix) and thus to study the traffic history of each project.

By comparing the actual EWL value with the designed 10-year EWL's, a "traffic age" or "service age" for the projects could be determined (Table 2, Appendix). Thus, if the actual EWL's at any

- 6 -

11 j 1 (j 2

age exceeds the anticipated EW L's at that age, this would indicate that traffic has increased more rapidly than anticipated and that the serviceage of the pavement exceeds its chronological age.

1.124

For computations of EWL's in the 1948 study, the only type of data available for the entire life of all roads studied was average yearly 24-hour traffic counts. Loadometer data were available from 10 permanent loadometer stations for the period between 1942 and 1947. During 1947, by the aid of temporary loadometer stations, loadometer data were obtained for all roads studied. Thus, where applicable, EWL's were computed from actual loadometer data. However, since many of the roads were built before 1942, it was necessary to project the trends in traffic and distribution factors, evident in the 1942-1947 data from each of the 10 permanent stations, to a year somewhat beyond the earliest construction date of any road studied. On this basis, the trends of each of the 10 stations were projected backwards to 1934. Then, for the year 1947, a ratio of EWL's to total vehicles per year was calculated for each road and each of the 10 permanent loadometer stations. On the basis of these ratios, similarity between a particular loadometer station and a particular road was established. Thus, the trends in traffic distribution where lacking on a particular road were calculated from a typical or similar loadometer station. These trends in distribution, when applied to the average yearly 24-hour traffic counts, provided a cumulative total of EWL's which was considered to be the total EWL's on each road since its construction or last resurfacing. The EWL's calculated in this manner were correlated empirically with other design parameters (CBR's, pavement thicknesses,

- 7 -

and pavement conditions); and the best fitting curves, so derived, were adopted as the criterion for design.

None of these traffic data was tested for statistical reliability; and since the period involved the war-years, it was suspected that these data were unsuitable for predicting future traffic trends. Alternatively, it was assumed that truck traffic, in percent of existing ADT, would double in 10 years*. Thus, if it is also assumed that EWL's

*An example of the method of estimating 10-yr. design EWL's for all roads included in this study is given in the Appendix. In 1954, the method was revised to a 20-yr. estimated design EWL basis wherein traffic volume projection factors, vehicle classification factors, and axle and weight distribution factors are used in the computation. Examples of this method are also given in the Appendix.

would increase in direct proportion to the volume of truck traffic, the accumulation of EWL's at any age throughout the 10-year period, expressed in percent of the 10-year estimate, could be described theoretically by:

% of 10-yr. estimated EWL = $6.67x + .333x^2$ where x = chronological age in years

The equation above describes the "theoretical curve", curve No. 1, shown in Fig. 3. Curve No. 2, a locus of points determined by the least squares method, represents calculated actual accumulations of EWL's at all ages for all roads which were designed and built according to the 1948 criterion and for which traffic data were sufficiently complete to be included in this re-evaluation study.

While there is wide variance among the data (standard deviation = $\frac{1}{2}$ 67.64%); the average or trend shows close agreement with the

1997 (MAR)

1

- 12 A

Fig. 3: Graph Illustrating Statistical Relationship Between Percent of Designed EWL Accumulated and Percent of Designed Chronological Age.

theoretical curve. To this extent, it may be said that actual accumulations of EWL's have closely paralleled the predicted accumulations and that, on the average, "traffic age" or "service-age" has closely paralleled chronological age. On the other hand, extreme variations in the percentage of accumulated EWL's at a particular chronological age, expressed as the 99.9% confidence limit, would be equivalent to $\frac{+}{3}$ standard deviations or approximately $\frac{+}{2}$ 200%. Expressed on a 75% confidence limit basis, the extreme deviations, of course, would not exceed $\frac{+}{2}$ 1.15x67.64%. It may be similarly stated, therefore, that 15.9% of the roads accumulated traffic at a rate 1.68 times greater than the predicted rate. Likewise, 15.9% of the roads would reach 100% of their designed traffic age within 68% or less of their designed lifeexpectancy.*

* To be precise, statistically speaking, we could have used the mean square error rather than the variance since the ratio estimates used involve a slight bias. However, the bias would be negligible in comparison with the variance and can safely be ignored.

Traffic vs. Pavement-Life

Since the only parameters considered in the present design criterion are CBR's, pavement-thicknesses, and EWL's predicted for a chosen number of years in the future, it is implied thereby that a pavement would have a designed life-expectancy comparable to the number of years for which the EWL's were predicted. Hence, the variations evident in actual accumulations of EWL's should have an analogous effect on actual pavement-life statistics. While terminallife statistics are not available for this study, it may be surmised from variations in traffic alone that the service-life of 68% of the roads in this series may vary between 68% and 168% of their so-called designed life-expectancy or between 6.8 and 16.8 years.

Actual average life and survivor statistics (3)(4) should provide helpful insight into this aspect of the problem and should also provide a test of the validity of the design system. For instance, if the EWL's were accurately predicted for a 10-year period and the average life of the pavements proved to be 18 years, it would have to be concluded that the thicknesses were excessive and that the design curves were unrealistic. The design system would seem equally unrealistic, of course, if the EWL's were accurately predicted for 18 or 20 years and the average life from survivor statistics proved to be only 9 or 10 years. Likewise, it can be seen from the present design curves (Fig. 1) that the difference in thickness between a 10-year design and a 20-year design, assuming that the 20-year estimate of EWL's exceeds the 10year estimate by a factor of 2, would be about 1-1/2 inches.

~ 11 -

1.11.24

u coirri

PERFORMANCE SURVEY

يقبر أأتر والمع

Visual Inspection

Visual inspections of the various projects were made in the summer of 1957. To aid in evaluating pavement condition, each project was inspected throughout its entire length, and all evidences of distress were noted as to type, extent, and location. Conditions recorded included cracking of all kinds -- logitudinal, alligator, hairline -- and skin and structural patching. Wavy sections, any signs of slides, fill settlement, as well as any adverse or unusual drainage conditions were noted. Numerous measurements of rutting were taken on each project in order to obtain an indication of the extent of permanent deformation in the wheel tracks. In order to reduce the notes taken during the visual inspection to a numerical value, the lengths of wheel track showing longitudinal cracking, alligator cracking, skin patching, and structural patching were summed for each project and tabulated as a percent of the total length of wheel track in the project (Table 3).

Unfortunately the only traffic groups represented by enough samples to permit a cursory correlation of pavement condition with CBR and thickness were Groups IV and VI. For projects in traffic Group IV, a plot of thickness vs CBR, with the percent of pavement failed noted by each point, is shown in Fig. 4. Here again, there was not a sufficient number of failed pavements to clearly define a relationship, and the straight line represents an approximation of the required thickness assuming that the excessively failed pavement (13 percent) and the two adequate pavements falling on this line are near or below the critical thickness.

- 12 -

. 1928

Fig. 4: Plot of Pavement Thicknesses vs Median Subgrade CBR's For all Projects in Which the Accumulated EWL's Fell Within the Limits of Traffic Group IV, 3 to 6 Million.

Fig. 5: Plot of Pavement Thicknesses vs Median CBR's for all Projects in Which Accumulated EWL's Fell Within Traffic Group VI.

Data for projects in Traffic Group VI plotted in the same manner are shown in Fig. 5. Here better control for the curve was provided by nearly equal numbers of failed and unfailed pavements in this group. The two excessively failed pavements, shown below the curve at CBR values of approximately 16 and 17, were on the same route (different projects); and performance may have been affected by other factors. Placing these points above the curve would require flattening the curve more sharply at CBR 10.

In Fig. 6, the curves in Figs. 4 and 5 are shown superimposed upon the original design curves and may indicate a need for slight revision of the design chart.

Fig. 6: Present Kentucky Design Chart Showing Trend Lines From Figs. 4 and 5 Superimposed.

102

Rutting

Rutting measurements were made by laying a straight-edge transversely across a traffic lane and measuring the maximum deviation (See Fig. 7). This measurement is not entirely rutting in the strict sense because a portion of the deformation may be the result of upheaval between the wheel tracks as illustrated in Fig. 8. However, throughout this report the term "rutting" implies the total deviation from a straight edge. Measurements were made at more or less random intervals. From these measurements, a simple arithmetic mean of all values was computed for each project. These average values are summarized in Table 3 of the Appendix.

At first it was thought that rutting was the result of consolidation either in the pavement courses or in the subgrade. Any extreme rutting would then be considered an advanced stage of failure extending into the subgrade. However, from information obtained by opening selected pavements showing medium to extreme rutting, it was noted that, on the average, only 4% of the rutting occurred within the bituminous layers while 72% occurred within the granular base courses. These percentages are based upon comparisons of the thicknesses of the layers within and outside the wheel tracks. This indicated that the original thoughts concerning rutting were in error and that waterbound macadam is more highly susceptible to consolidation or movement under traffic than previously suspected. The densities of the WBM obtained while opening the pavements do not indicate any great degree of consolidation in most cases; thus, the deformations must result primarily from particle rearrangement and movement and must be the combined result of upheaval and subsidence.

- 15 -

Fig. 7: Photograph Illustrating Rutting of Pavement Within Wheel Tracks as Deviation from a Straight-edge.

Fig. 8: Photograph Illustrating Extreme Rutting and Upheaval.

From what has been said, it might be expected that rutting would increase with total pavement thickness and with traffic. These general trends are also indicated by Fig. 9. However, the implied increases in rutting with increased pavement thicknesses are considered to be in the nature of a paradox and should be more properly interpreted as indicating that the conditions causing rutting are more critical in the thicknesses designed for high intensities of traffic.

Fig. 9: Generalized Apparent Relationship Between Thickness and Rutting, According to Traffic-Age.

. . .

Road Roughness

rend with r

With information from the field condition survey available, the traffic lane which exhibited the most distress was selected for an evaluation of roughness by the triaxial acceleration method reported in 1955 (5). The only deviation from the reported procedures was in evaluating the roughness records. The following method was used in determining the roughness of a road in terms of change in acceleration, sometimes referred to as "jerk". To obtain average acceleration, a compensating polar planimeter was used to measure the area under the vertical acceleration curve representing the length of pavement under consideration. Since the recorder chart was driven at a pre-set speed of 1/4 in./sec., each inch of chart length representing an elapsed time of 4 seconds, and the galvanometer sensitivity pre-set to 2 inches per g, it was possible to resolve the total area beneath the curve into g sec. (1 sq. in. = 2 g sec.); and:

> Area (in sq. in.) x 2g sec. = Total g sec. <u>Total g sec.</u> = Avg. g <u>Total Time</u>

(Total time = 4 x length of chart considered, in inches)

By careful measurement of many charts, the average frequency of the acceleration wave was found to be 5 cycles/in. or 5/4 cps., giving a period of 0.8 sec./cycle. Since "jerk" is described as da/dt; average "jerk" would be:

$$\frac{\text{Average a}}{\text{Average t}} = \frac{\text{A}}{1.6\text{L}}$$

The vertical acceleration wave was analyzed by dividing the curve into short lengths of particular interest and determining the average "jerk" for that length using the above equation. To obtain an average "jerk" value for the entire project a weighted average was calculated. The average values are recorded in Table 3 of the Appendix.

In reviewing the roughness values it was noted that there is a general tendency for roughness to increase with increased rutting. However, in certain instances, it was noted that rutting could be rather uniform throughout a project and still result in good riding qualities provided that the vehicle remained in the wheel tracks. The curve in Fig. 10 indicates that roughness decreases as the bearing capacity of the subgrade increases.

Fig. 10: Generalized Apparent Relationship Between Average Roughness Values and Median CBR of the Subgrades.

Pavement Deflections

In the late summer and early fall of 1957, Benkelman beam measurements were made at 50 locations on 20 projects. Deflections were measured in both the outside and inside wheel tracks under an 18,000-1b. axle load on dual tires. In order to evaluate the seasonal effect, deflection measurements were made again under the same conditions of loading in the spring of 1958 at the same locations previously visited as well as an additional 18 locations representing 11 other projects.

To obtain deflection readings, the probe beam was placed between the dual tires of the test vehicle so that the foot of the beam rested on the pavement 5 ft. ahead of the axle (See Fig. 11). The reference beam then rested on the pavement well back of the influence of the loaded wheels. As the test vehicle moved forward at creep speed, the probe foot deflected with the pavement, and the amount of deflection was read from an Ames dial. At each location, measurements were made until two consecutive readings were in agreement.

Also, in 1958, deflection measurements were made under a tandem axle loading of 32,000 lbs. at 8 locations on 5 projects. Two of these locations were also loaded with a 36,000-lb. tandem axle load and deflection measurements recorded.

Since the length of the probe beam on the Benkelman beam was designed for obtaining deflection measurements under single axles, modifications in the method of measuring were necessary. The probe beam was placed between the dual tires so that the foot rested on the pavement beneath the front axle (See Fig. 12). As the test vehicle moved ahead, the partial rebound between axles was noted, then the deflection was read as the rear axle passed the probe foot, and finally the complete rebound was read as the loaded vehicle moved well away from the setup. See Tables 4 and 5 (Appendix) for a listing of deflection measurements.

Fig. 11: Photograph Showing Benkelman Beam In-Place for Measuring Pavement Deflection Under 18,000-Lb. Single Axle.

Fig. 12: Benkelman Beam In-Place for Measuring Pavement Deflection Under 32,000- or 36,000-Lb. Loads on Tandem Axles.

the innerwheeltracks during the spring measurements. This was probably due to greater susceptibility of the outer portion of the subgrade to climatic changes.

Four of the locations measured under 32,000-lb. tandem axle loadings were over waterbound bases, one was over combined waterbound and bituminous base, and three were over full depth bituminous bases. At creep speed over waterbound base, the tandem wheels acted independently. Rebound between the wheels was about one-half the maximum deflection and maximum deflection was 15.8 percent less than for the 18,000-lb. single axle. For the combined waterbound and bituminous bases, rebound was less than one-half the maximum deflection and maximum deflection was 15.3 percent less than for the 18,000-lb. single axle. For full depth bituminous bases, the tandem axles acted as a unit with no appreciable rebound between wheels. Maximum deflections for the 36,000-lb. tandem and 18,000-lb. single axle were equal. The lack of rebound between tandem wheels demonstrates the slab or beam action of bituminous concrete under the test conditions.

Deflections under a 36,000-1b. tandem axle loading were measured at two locations over a combined waterbound and dense-graded aggregate base. Rebound between the wheels was more than half the maximum deflection, and the maximum deflection was approximately equal to the maximum deflection under an 18,000-1b. single axle.

A plot of deflections according to traffic groups, with all points marked to distinguish between satisfactory or unsatisfactory pavements, is shown in Fig. 13. Pavements marked unsatisfactory were showing patching or cracking at or near the point measured. The curve best

- 23 -

с. ₁₉₁

an an Ara

Fig. 14: Pavement Deflections as Obtained in Fig. 13, Plotted according to the Logarithm of the Mid-Point Value of the Respective EWL Groups.

separating satisfactory and unsatisfactory pavements implies a maximum deflection that can be tolerated by pavements in each traffic group. Deflection values were subsequently interpolated from this curve and plotted semi-logarithmically against the mid-points of the corresponding EWL group. Thus, Fig. 14 relates permissable deflections with EWL's. Independently of this apparent relationship, deflections taken in the spring of 1958 were plotted against the corresponding thicknesses of pavements that were adjudged satisfactory (Fig. 15). Spring measurements were used here in order to eliminate seasonal influences, and only satisfactory pavements were used in order to eliminate exaggerated deflections due to failed or weakened pavements. Here, also, a best-fitting curve was drawn, and a relationship between deflections and thicknesses appears to exist. Assuming these two relationships to be valid, to the extent that whatever hidden variables may be involved are either of minor influence or else vary only slightly, thicknesses and EWL's corresponding to the same limiting deflections were interpolated from Figs. 14 and 15 and were plotted as shown in Fig. 16.

According to Fig. 16, pavement thicknesses should be increased in proportion to the logarithm of the EWL's. This relationship appears to have been derived more-or-less independently of any parameter describing subgrade support. However, it is rather evident, since each pavement involved in the derivation was originally designed on the basis of a subgrade support parameter, that Fig. 15 must reflect a modal or prevailing subgrade CBR. Otherwise, the curve could not have been drawn. Therefore, while the relationship between thickness and log EWL may be of a general nature, the plot itself would be

- 25 -

- . C23

Fig. 15: Pavement Deflections Representing only Satisfactory Pavements Plotted According to Corresponding Pavement Thicknesses. The curve, as drawn, implies that deflections of equal or lesser magnitude would be within safe limits.

Fig. 16: Plot of Thicknesses and EWL's Interpolated from Figs. 14 and 15 for Corresponding Deflections.

significant only with respect to a particular CBR value which, in this case, should be very close to the average or median value of the group of roads involved or of the entire series.

To test the logic employed here, a cursory analysis of the frequency and distribution of project median CBR's was made; and itwas found that 90% of the CBR values from all data available fell within the range of 3 to 11. Within this range, the arithmetic mean was 7.1, and the average deviation was only 1.7. Thus, the assumption of a strong central tendency in CBR's seemed proper.

Taking 7.1 as the value most likely associated with Fig. 16, thicknesses for each of the EWL groups were interpolated from Fig. 16 and replotted at CBR 7.1 on the original design chart as shown in Fig. 17. Here the points tend to favor somewhat greater thicknesses than were required by the original curves. However, considering the fact that these points were derived on the basis of satisfactory pavements only (Fig. H), the points would naturally reflect safe design thicknesses but not necessarily the minimum design thicknesses. In any case, the derivation of these points provides a rather unique independent check upon the original curves as well as the revisions previously indicated in Fig. 6.

- 27 -

1997 (A.S.

l

1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

Fig. 17: Present Design Chart Showing Thicknesses for each Median Point of the Traffic Volume Groups, Taken from Fig. 16, Plotted at an Average CBR of 7.1.

ı.

Pavement Openings

In order to investigate the extent to which rutting, evident at the surface, penetrated the different layers of the pavement, eight locations on seven projects were opened to expose a cross-section to full view. An eighth pavement not originally scheduled for study was opened (in Bullitt County) in order to examine the performance of a different type of granular base material with regard to subgrade infiltration. The Bullitt County base was dense-graded aggregate (DGA).

To open the pavements, a pavement saw with an 18-in. diamond blade was used. An opening approximately 30 in. wide was made across the full width of a traffic lane. The saw was used to cut through the top layers of the pavement while the granular base materials were carefully removed by hand so that the layers could be separated and studied. Samples were obtained from the bituminous layers and returned to the laboratory for density determinations (by weighing in air and in water). These samples were taken from the wheel tracks as well as from between the wheel tracks. In-place density tests were made on the different layers of granular base by the calibrated sand method. Subgrade densities were obtained by both the rubber balloon method and the sand method (See Table 6, Appendix). Sufficient measurements were made so that the extent of rutting in most of the pavement components could be noted (See section on Rutting).

Disturbed samples from the layers of granular base and from the subgrade were returned to the laboratory for other testing, the results of which are presented in Table 7 of the Appendix. It may be noted that no significant difference in density occurred between samples taken from the wheel tracks and those taken between the wheel tracks.

- 29 -

i

This was particularly true of the surface and binder courses but less so of the lower portions of the pavement.

It was observed that much subgrade material had penetrated the WBM base courses as much as 10 inches in some places (See Figs. 18 and 19.) This indicates that the insulation or subbase courses normally used in waterbound base construction in Kentucky has not performed properly and is not fulfilling its intended function, which is to protect the WBM courses from infiltration of soil and subgrade material. Observations made in this investigation indicate that soil in the WBM courses is a result of improper rolling during construction or as a result of traffic action. In those instances where the penetration of soil was rather uniform across the section, infiltration appears to have been caused by construction rolling while the subgrade was wet. In other instances, greater penetration within the wheel tracks indicates that the clay or soil was forced up by traffic. Naturally, some loss of strength of the affected WBM courses would be expected; however, the degree of this loss and its equivalent in terms of reduced pavement thickness could not be determined.

- 30 -

1911 A.S.

Fig. 18: Photograph Showing Exposed Cross Section of a Rutted Pavement.

Fig. 19: Photograph Showing Exposed Cross Section of a Rutted Pavement. Markers indicate the thickness of pavement layers. Demarcation line shows the height to which subgrade soil had intruded into the WBM base.

SUMMARY

This re-evaluation of the Kentucky flexible pavement design criterion has emphasized some recognized shortcomings of pavement design systems in general and has further clarified some opinions concerning needed revisions in the present flexible pavement design.

Traffic evaluation based upon summations of equivalent-wheel loads does take into account both volumes and weights of traffic. The projected service-life of a flexible pavement designed by this method is dependent upon the accuracy of the traffic projections. The original 10-yr. basis of predicting traffic has been revised to a 20-yr. basis, and the report indicates that the 20-yr. traffic projections may be reasonably valid. The average value for each volume system analyzed is close to the projected traffic value.

The need for an adequate method of rating pavement performance is recognized. The four methods used here are advocated only as being a combination that can be used. The visual rating while probably the oldest and soundest method is usually open to more criticism than some of the others. Visual ratings were the basis for selection of locations for load deflection measurements and pavement openings. Design curves for two traffic volume groups were prepared from the visual performance ratings.

The roughness measurements taken by the triaxial acceleration method, though difficult to analyze on a project basis, undoubtedly have basic significance with regard to over-all pavement adequacy. The data appear to correlate with the visual performance rating.

- 32-

Load-deflection measurements were used in the analysis of adequate pavement thickness for average subgrade support on various traffic volume groups. Those points indicated a need for revision of thickness.

Pavement openings were used to examine the layered system of selected rutted pavements. The openings permitted the determination of the extent of rutting in each layer of the pavement. The majority of the pavements studied were constructed using water-bound macadam base and 7 of the 9 locations opened were constructed with layers of WBM base. Of the pavements opened, it was noted that 72 percent of rutting was confined to the layers of WBM base while 4 percent was localized in the bituminous courses. Only 24 percent of the rutting penetrated the pavement structure to the subgrade. It appears that one of the greatest shortcomings of WBM type base is its susceptibility to subgrade infiltration. Clay subgrades tend to fill the voids in the base and to lubricate the stone and cause rutting.

Clay subgrade can be forced into the base during construction by extensive rolling over a wet subgrade. Water bonding itself can provide the moisture for the subgrade softening. Where the infiltration of subgrade does not vary through the cross section and is at the same elevation in the wheel tracks as elsewhere, it appears that the infiltration occurred at the time of construction.

Traffic can pump subgrade soil into the voids of WBM. If traffic is the motivating force, the height of infiltration would normally be greater in the wheel tracks. In the majority of the locations opened the infiltration was to a uniform elevation, and it is deduced that the subgrade soil was rolled into the base by construction equipment.

- 33 -

소문공품

ł

Dense-graded aggregate base is less susceptibile to damage from subgrade infiltration and lubrication. Present Kentucky specifications require the moisture to be added to the stone in a plantmix operation, thereby eliminating the possibility of over-wetting the subgrade at that time. Dense-graded aggregate type base having considerably less voids than the average waterbound macadam is a much better insulation against subgrade infiltration.

The flexible pavement design curves shown in Fig. 20 represent the combination of the data from the 1948 study, revisions to 1957, and the results of the various approaches presented in the present investigation. These curves require a somewhat greater total thickness of pavement in the lower CBR range. The curves have been extended to a CBR value of 2, primarily to emphasize the need for subgrade improvement or stabilization of soils with CBR values of less than 3. It is still recommended that soils with CBR of less than 3 not be used for subgrade. The curves have been extended to CBR 100 to permit the use of the curves for subbase or local granular materials. The thicknesses have been reduced for CBR values of over 20.

Present Departmental policies regarding the types of base materials and relative course thicknesses for the various Highway systems appear to be sound.

- 34 -

ang se s

MINIMUM LABORATORY CBR VALUE

ż

FLEXIBLE PAVEMENT DESIGN CURVES

Fig. 20: Revised Flexible Pavement Design Curves.

ACKNOWLEDGEMENTS

المرجع المرج المرجع محمد المرجع ال

The authors wish to acknowledge the coooperation and assistance of many individuals in the Kentucky Department of Highways: Mr. D. H. Bray, State Highway Engineer; Mr. A. O. Neiser, Assistant State Highway Engineer, who through his special interest in pavement design requested that the study be made and suggested specific approaches that should be investigated; Messrs. George D. Aaron, Acting Director, J. R. Pulliam, Engineer of Traffic Surveys, J. J. Constantine, Head of the Statistical Section, Division of Planning; Mr. J. A. Spears, Director of Maintenance; Messrs. W. B. Carrington, Director, and S. T. Collier, Assistant Director, Division of Design; and Messrs. J. A. Bitterman, Director, and O. R. Threlkeld, Soils Engineer, Division of Materials. The cooperation of the District Engineers and their Maintenance Assistants aided materially in the field operations.

Mr. Robert C. Deen, Research Engineer and Head of the Soils Section, presently on educational leave of absence, was directly responsible for assembling the design data, the soil testing, and analysis and some phases of the performance survey.

Mr. Loren H. Strunk, formerly Research Engineer and Head of the Bituminous Section, supervised the laboratory testing of base materials and conducted certain phases of the performance surveys.

REFERENCES

 Grumm, Fred J.; "Designing Foundation Courses for Highway Pavements and Surfaces", <u>California High-</u> ways and Public Works, Nov. 1941 and March 1942.

- Baker, R. F., and Drake, W. B.; "Investigation of Field and Laboratory Methods for Evaluating Subgrade Support in the Design of Highway Flexible Pavements", Bulletin No. 13, Engineering Experiment Station, University of Kentucky, Sept. 1949 and Proceedings, Highway Research Board, Vol. 28, 1948.
- Gornberg, G. D., and Blosser, N. B.; "Lives of Highway Surfaces - Half Century Trends", Public Roads, Vol. 29, June 1956.
- Carter, Jas. Lee, Jr.; "A Study of the Service Life of Pavements in Kentucky", Master's Thesis, College of Engineering, University of Kentucky, 1955 (Unpublished).
- Gregg, L. E., and Foy, W. S.; "Triaxial Acceleration Analysis Applied to the Evaluation of Pavement Riding Qualities", Proceedings, Highway Research Board, Vol. 34, 1955.

÷

n men en fan de fan Men en fan de Men en fan de Ling (1994) and the second second

APPENDIX

COUNTY_	ra - and -	ROAD NA	ME	مەركەر 200 0-يىلىك مەركەر 2000-يىلىكىكى مەركەر 2000-يىلىكىكىكى مەركەر 2000-يىلىكىكىكى مەركەر 2000-يىلىكىكىكى مەركەر 2000-يىلىكىكىكى	ROU	TE NO		
PROJECT	LIMITS	naanaa ahaa ahaa ahaa ahaa ahaa ahaa ah	IIX-DR-24 (DPD-D-10-P114-DP-		PROJECT N	0	999	
LOADOME	TER STATION R	eference <u>579</u>	te Ave	erage 1	957 · Volu	al Gri	nup 3,000-3,9	999
(1) Per	Cent of Truc	ks	a • a <u>,</u> a			• _/_	5.4	
(2) Axl	es per Truck					. <u>Z.</u>	557	
(3) Ave	rage 24 hour '	Iraffic				<u>3</u>	640	
(4) Av.	24 hour Truc	k Traffic <u>-</u> (1) x (3) .			5	61	
(5) Av.	Yearly increa	ase, 10 yr. pe	riod = $(\frac{4}{2})$.)		. <u> </u>	.80	
(6) Av.	24 hr. Truck	Traffic for 1	2 Oyr. per	iod <u>-</u> (4) +	(5)	• _ &	41	
(7) Av.	Axles per Tr	uck for 10 yr.	period =	(2) 🗲 0.05	t t 6 t t 5 5	• <u>Z</u> ,	607	
(8) Tot	al Azels in l	0 years <u>-</u> (6) :	x (7) x 1	0 x 365 <u>-</u> .	* 5 4 • 5 9 •	. 80	02,578	
(1) Axle Load (tons)	(2) Total Axles	(3) % of Total Axles from L. Sta.	(4) Plus Correct.	(5) Gorrected % of total Axles (3) ≠ (4)	(6) Total Axles by Wt. Class (2) x (5)	(7) Calif. Factors	(8) EWL for two directions (6) x (7)	
42-52	5;007,518	5,Z05	0	5,205	416,534	1	416,534	
5 2-62	11	4.732	0	4,732	39 <i>8,68</i> Z	2	757,364	
62-72	11	4.732	1.25	5.98Z	478,714	4	1,914,856	
7 2-82	11	4.574	0.85	5,424	434,060	8	3,492 ,4 80	
8 호~9 호	11	4.101	1.50	5.601	448,224	16	7,171,584	
9 호- 10호	11	1,261	0.35	1.611	128,922	32	4, 125,504	
10호-11호	11	0.158	0	0.158	12,644	64	809, Z16	
11호-12호	11	0	0		0	128	0	
	I	OTAL EWL for]	LO year p	eriod (two a	directions)		18,667,538	

a de la companya de l

Fig. IA: Sample Calculation for Estimating 10-Yr. EWL's.

TRAFFIC VOLUME GROUP 3000+

- -

COUT	ROAD NAME		JTE NO.
PROJ	JECT LIMITS	PROJECT N	
1:04D	DOMSTER STATION REFERENCE State Average, 1957, Volu	те вгоцр	<u> 3000-3999</u>
(1)	Per Cent of Trucks	, <u>_</u>	15.4
(2)	Average Axles per Truck.		2.557
(3)	Average 24 Hour Traffic		3640
(4)	Average 24 Hour Truck Traffic = (1) x (3)		561
(5)	Average 24 Hour Truck Traffic at End of 10 Year Period = 1.	.465 x (4)	822
(6)	Average Axles per Truck at End of 10 Year Period = (2) + 0.	.19	2.747
(7)	Total Axles in 20 Years = (5) x (6) x 365 x 20	* * * * * *	16,483,650

(A) Axle Ioad (Tons)	(B) Total Axles (7)	(C) % of Total Axles From Load Sta.	(D) Correction	(E) Corrected % of Total Axles (C) + (D)	(F) Total Axles by Weight Class (B) x (E)	(G) EWL Factor	(H) EWL for Two Directions
4 ¹ / ₂ -5 ¹ / ₂	4	5 ZO.5	0.09	5.295	812,809	1	812,809
5 1 2-612	4	4,732	0.13	4.86 Z	801,435	2	1,602,870
6 ¹ / ₂ -7 ¹ / ₂	les,	4,73Z	0.27	5.00 Z	824,512	4	3,295,048
$7\frac{1}{2} - 8\frac{1}{2}$	~	4.574	0.15	4.724	7789688	8	6, 229,504
8 <u>1</u> -912	50	4.101	0.11	4.211	694,127	16	11,106,03Z
9 ¹ / ₂ -10 ¹ / ₂	20	1.261	0.05	1.311	216,101	32	6,915,232
10 ¹ / ₂ 11 ¹ / ₂	UP	0.158	0.00	0.158	26,044	64	1,666,816
11 <u>1</u> -1212	(۷	0	0.00	0	0	128	0
		тота	L EWL for 20	year period (two	directions)		3/69/311

Fig. IIA: Sample Calculation for Estimating 20-Yr. EWL's.

PROJECT DESIGNATION, LOCATION, AND DESIGN DATA FOR ALL PAVEMENTS STUDIED TABLE I.

	HOIBER SLORY	<i>ی</i> ت		1	\$		1	6	5	ý						- 25	9		11			ng 1		<u>~~</u>		 9.02	5
	FGP OF OF	8	 1		~	 81				00		25	 } [6	6		35	<u>لام</u>	 2221	 '		6. 65	8 H	 \	ية س	\$
e DATA	HYJCZK	0.0	•	8.1 1	8.2	2.0	£.4	4.0	6.1	4	, a	v r		ງ່≁. ບໍ∩່	÷.6	7.0	7.B	5 1	0.9 2.5	000			B_1	8°5		6.5 6.5	8.3
CBB	uvih	8		0	<u>م</u>	г	ņ	°,	2,	-				t.vĵ	<u>ب</u>	2		•	49 99	تانين تانين		v-4	- -	ņ9		<u>م</u>	~
	DZ216A	PI S	1 	6 1	2	1	<u>v</u> i	vi vi	vë m	1 4	==		`:	±1×1	4	5	60 60	я ,	4.8	∞ ໜ່າວໍ່ໄ ເ າ ເ ∨			80	60'40	i ,	10°10 1-10	2
	(MCITTIN) DEPICE SAL	• •	<u>ו</u>	1	~ 7:	<u>ו</u>	<u> </u>	3.0) ⁴ . ((0-3			10.5			(0*1	6.1	5.0)	1	11				5.0)	5.0) 2.0)	1 . 1	66	6.0
	20 27 27 27	-53		-50	25	ŝ	-20	e-52 (-52 (\ 9	<u></u> ر و	<u>;</u>	20 25	. ~ 	-53 	-26	- 	05-2		 }	3.3. ·	13 14 14	. 95		-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	<u>ខ</u> ភូនុ
	ACCEP	12-18	forder [10-11	-11-1	3-14	10-11	1-12	-12-7	-12-0			``````````````````````````````````````	5-15-	5-6-2	12-16	-53-E	112-11	-11-22				1-2-11		-2-6 21-21	-91-9	1-1-1-
	Former 10 There	Zutlrs project	Entire project	mattre project	Futtre Project	Ratirs project	Entire project	Entire project	Thtire project	Trating constant	Tative project	and notice at the second	347+00 to 444+00	Hemanuer of project Entire project	Entire project	Entire project	Entire project	Zatire project	737 to 764; 210 to 447 800 to 56	99 to 160; 171 to 210 764 to 800; 147 to 516 56 to 99; 160 to 171	and ford array	10412 to 56400 Remainder of project Watire wraiget	45+50 to 325+84.7	441400 to 475400 326400 to 369400 369400 to 441400	Entire project Entire project	Madison County only Moodford County Presh14 County	Entire project Entire project
(8	SSIMOIHI	13 3/4	2/T OT	13 1/2	16 3/4	2	4 7	14 3/4	12 1/4	4/ L 6 L		416 61		14 3/4 15	9 3/#	д	7/11 177	70	#1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r :	다.25 4 <u>/1</u> 51 4 <u>4</u> 4	ີ. ເ	11	11 1/2	ي م	15 1/4
(INCHES	ZOVANOS I SEVID	섬	1	者	1Å	중 	<u>ب</u>	4	1	4	∳4 1 -	2 1	17	5÷	Ŕ	霄	ኇ	ች	<u>ተ</u>	****	5	222	11	* *	۲. ۳.	aa:	\$ "- "
CPON DEFIN	NICNIE I SSVIO	霄	择	42	ŝ	ł.	<u>ግ</u>	ኇ	r,		r 7	° 1	£.	**-#¥ 	ኛ	١	4	<u>م</u>	***	nn Ni	'	***	ነ ታ 	* *	* *		作 5
MEET 00	I 9783 Civer I	m	1	1	ŝ	1	1	~	~					11	١	I	Ś	2 \$	11	11	·	1 19	. 1	11	7. È	1	1
(AVA SO E	- ^L HAJUKARO KEAH	3 2.	[# J.	*	6 0	æ	3	4		r	- 5			11	5	61	Ŕ	ጵ	r-0	848,	n !	9 1 4	ę	ä۶	1	6	9
HI CLERES	ASVEENS EC HOILVINSHI	-	1	н		н		м	н	ć	v -	• •	4	<u></u>			۲	1	нн	нын	•	I	Į	11	ч	ታ.	1
-	RES	1	4 3.	ł	~	I	1	8	Ť		φ., .	2 C	4	~	ι.γ	10	8	1	11	111	N	200 201 201 201 201 201 201 201 201 201	· 1		!	~~~	1°
* <u>***********</u>	(HITES) FIGLE LEGIEL	2,060	9-420	12.069	5.360	2-044	6.750	816 -1	0,682	; ; ;	10°()T	2 10k	1	2,148	8.816	7.164	3-019	260-2	821-11		T69*n7	6.139 1-041	8.157		1.004	7.985	3.502
- <u></u>	ß	Hear Tyrone Bridge (Sta 133+31.1)	ailivoot	(Sta. 95+49.4) Canmer (Sta 646+01)	Fage (Sta 320+50)	US 25-E suct of Hiddleebory	(sta 649.400) Approz. 12 miles west of Cannonsburg	(Sta 301+90) Cannoneburg	(BTB. 755409)	(\$ta 35+00) (\$ta 98+50)	(Sta 553+50)	(Sta 29/450)	(Sta 499+42.5)	WCL of Grayson (Sta 119408)	Jet with Ky 80	Sta 1122+10) Wayne County Line	(Sta 245466.4) Jot with IY 61	(Star 162-03) Mear Chapman's Store	L.055 miles morth of Hartford (Sta 518+26.4)		(Ste 565+63.7)	Georgetown Hoad (Sta 317+67) Posemout Gerdan	Lerdneton	(3te. 476+24.4)	(Stg l01+00) Fayette	County side Rear Moore's Foint (st. : coultoo)	Mear Camp Dick Robinson
	NCH	Hear Fairfield St in Jawrenceburg	(Ste 24+50) Bendens	(Sta J17+97.1) Hear Bear Wellow (Sta 10+00)	Mastoto (Sta 37472.8)	Tennery Cut-off (Sta 543+00	SCL of Ashiand (Sta 25+71.3)	Princess	Revisions at Clarks	(Sta 73+00)	[Sta 24+83.3)	(Sta 159475)	Sta 294+50)	Approz. 12 miles east of Olive Hill	(Sta 4+63) Enow Connty Line	Ict with Ey 55 at Ida	(Sta 336+00) Jet with IT 100	(Sta 5+20) End of FCC pavement in	Webshoro (Sta Lart)) Mear Pleasant Mige (Sta 737+00)		[(Sta 1+00) [(Sta 1+00)]	Richmond Road (Sta 10412) HS 27 south of lardno-	ton (Sta (2481.1)	(Sta 45+50)	Clays Farry Bridge	approaches(Sta 15+00) Near Midway	House the second state
0. <u></u>	100 TCON	TS 62 ₹ 208(4)	54 A3	AB 63(4) US 31-E T 28(5)	7 7(5) 72 119 7 151(7)	T 21(5) US 25-I U 322(7)	US 60 FI 8(4)	1 1(4) 11 50	TI 8(6)	(+)++2 2	T 523(3)	(†)† II	1 1 4(9)	US 60	EV II.	ET 72(4)	s 10(5) Ky 90	F 116(10)	[1 25(14) [1 25(14)		5 173 1 1 288(5)	Relief Road UI 538(5)	TIS 27	F 524(4)	Besurfacing US 25	FI 124(4) Besurfacing US 421	E SCOVEL
- <u></u>	00 00	Ånderson	Ballard-	NeCrecken Berren-Eert	Bell	Bell	Bayd	Boyd	Boyle		BreckInridge- Meade	Gerter	Garter	Certer	CLAY	Clinton	Cumberland	Deviese	Daviess-Ohio		Elliott-Rotan	Tayette	Parette-	Jessenine	Tayette-	Madison Franklin-	Nood ord

All granular haves are WEN unless otherwise noted.
One course of vibrated WEN.
Bank gravel.
Vanker in percentingels evitation from promeant thickness and design CBR.
Socia suphati.
ADAL
ADAL

TABLE I. (Continued)

		_														<u> </u>													_
	NOISTE TAGEN BINE DE SE			I	20	ŝ	ŧ	vo	88	ł	2	ł	м	39	27	8	60	1	80	1	I	I	8 <u>5</u>	£4	1		-	<u>88</u>	8
	RED TO . OF STRAT	경추	1	1	35	e.	ę	16	Ŕ	66	£	1	<u>д</u>	5	នសេដ		9	7	5	m	1	I	77	20	+		121-		5
CER DATA	RA TOEN	10.8 4.5	ł	1	6.6	5.5	5.2	4.7	18.3	14,1	10.1	!	8°4	15.3	5-6 10-3	2.8	0.11.	5.2	8.5	8.0	1	ł	6.5	6.2	8.5		8.9 9.0		2.8
	eferi	5.7	1	ł	7.6	6 ° 9	7.2	2 . 2	17.3	14.5	4.'01	١	8°*	13.9	10 D	6.9	10.5	9.2	9.6	2 ~0	1	1	4 *6	8.9	0.11	<u>ا</u>	8	2446	9.6
	E916%C	11	9	1	9	9	Ś	r-	9	1	80	Ś	\$	97	857	n r-	9	I	•0	1	1	\$	9	¢	ł	1	[]	5.05	80
	(HULLIOH) THE EDISED	11	13.0	1	35.5	(6.5)	(15.0)	(2,0)	(0.25.0)	(0°°C)	(0"0€)	2.5	2,5	(18.0)	(33.0)	(0-05)	(80.0)	(Bo.0)	(80.0)	ł	J	(0°°)	(0.65)	(0"0£)	ł			333	(10,0)
	<u> </u>	61-62-II	10-29-56 12-2-55	81-21-4	10-29-56 9-12-56	12-18-53	15-91-4	12-1-57 12-1-52	3-20-53	2-24-50	9-9-53	11-20-56	12-2-55	84-1-21	05- 1 -8	5-23-53	4-12-57	4-12-57	4-12-57	10-26-42	9-21-53 12-6-51	1-2-53	10-19-51	10-19-51	(TH-01-TT)	8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		12-28-51	
	edista 10 leaxx	299-400 to 361-400 Remainder of project	Buttre project Entire project	Eatire project	Entire project Entire project	Entire project	Entire project	All but north 2.2 miles Entire project	All but south 1.0 wile Entire project	Eath.re project	Katirs project	Entire project	Matire project	Intire project	130 to 280; 360 to 365 Remainder of project	Entire project	Entire project	Entire project	Entire project	Entirs project	Entire project Entire project	Intire project	Entire project	Intire project	Entire project	Morth 6,110 miles 1 c0400 to 106400	6 to 150; 275 to end	Remainder of project 196400 to 377400 Remainder of project	790+00 to 896+00
0	SSIRIOIHL TVLOL	12 15	13 3/H	41	14 3/4	7 1/2	16 1/2	ħ/t 27	2/1 SX	11	1/1 SI	11 3/4	4/1 1 1	15	12 21	14 1/2	†r/τ 6τ	1/1 BE	1/1 61	9 1/H	6 3/h	6	13 1/2	14	4/T 8	-	- 22 5	17 18 12 1/2 12 1/2	14 1/2
(INCHIS	SOVARAS I BRVID	년 다 다 다	ц. Ц.	цţ	1. 14	ış	1 3	년 년 년 년	다. 다.	먂	낞	12		과	100-00-1 1 - 1 - 1	n • ,⊷t		참	1è	궎	ч Ц	цł	цÀ	13	18	1.	t ret e	s's Refer	• •
SLEXEOA	I BEALO EXUEIS	***	T P	Ŀţ	ŕ	1	Ť	ħ	· 齐		r#	r#	雪	7		a r⊀a I Fi	15		-# *	49	1	ł	걥	霄	ŕř	~	1010		5
TET CON	2374 I 887'10	11	ŝ	I	~	1	1	ł	1	ł	ł	ł	Ι	1		3	\$	é	6	3	I	1	ł	ł		I	11	H	!
ELLA TO :	ESLE ELITES	8 8	7 <u>4</u>	2	æ	Ť	1	2		7	30	7	7츞	60	° ដ°	മ	동스	ę۲	7월	;	Ŕ	£	お	10	1	4. 3.	ដង		- 6
LI CERES	ISTRUCE HO ROLLVIDERI	1 1	ч	ч	7	1	ï	T	.1	гī	ĩ	2	ī	ŗ	~~		8	24	(1	1	I	ч	1	ч	ł	1	15	I	1
14	10 15	FI	I	I	1	2 4 6.	- 	1ş	52	I		1	1	ŝ	11	I	ri	I	-	1	64	ev	1	!	1	I	11	ท่า กกลี่	54.2
	(NILES) ETORI FOJECE	5.304	1.837	2.427	7.075	10.748	460"4	1.,503	2.985	941-6	7.593	4 11.1	5.308	4.731	5.264	2.066	77942	3.025	2.670	5.800	11,936	5.345	2.507	7.590	17.083	8.916		8.312 7.874	
	2	1.5 miles south of Camp Dick Robinson (Sta 406+	Toward Blenclasville	(Ste 383+26) Toward Lencester	increation and a state of the s	Wingo (Sta 386+00) Jet with IV 105	(Sta 593450) Hear Lear (sta 21/200)	Hant Linear Control	Toward Elizabethtown (Sta 1312+14.0)	McEinley Ave. in Hen-	Gergon (Sta 750450) Near Robards	(574、201400) 600 = morth of LAN NE (Sta 400400)	1.2 miles south of Campbelishurg	(Bta 337 HBL) Blaughtars (st. 202148 2)	(But 50, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	(Sta 626+36) US 60	(Eta 715+89.1) Peachtree St.	Poplar Level Boad	Bardstown Road	Lawrence County Line	Clay County Line (sta county c)	Bridge at Leurol. Efver	Hear Pine Lodge	Backcastle Haver	test of the south of Log and south of	Tentucky Inn	(Sta 476+36)	Berca (Sta. 590+52.2) US 68 morth of Benton	(Star 941490)
	NORIA	2.5 miles south of Gamp Melson (Sta 136+50)	1.0 mile morth of Len-	caster (Sta 174+50) Usep Helson	(ST& LUTUU) Will of Mayfield	(Sta 10+00) ECL of Lettehfield	(Sta 56+20.2) Bridge at Cynthiana (st. r.oc)	Star Leer Star Jeer (Sta 207400)	1.75 miles morth of Munfordville	(Bta 1154+50.2) Hear Robards	(Sta 201400) Main St. in Sabres	(Sta 503425) 1.2 miles south of Gampbellsburg	(Sta 337+81) Mear HCL of Mew Castle (Sta 57+50)	Hanson (Sta odlarc)	Mediscarille (Bta 83400)	(Star 500+20) Breadinridge Lens	(Sta 606+00) US 31-7	(sta u+cy.o) Peachtree St. (c+	Poplar Level Road	Jet with US 460	US 25-I at Barbour-	VILLE (Sta VI+30.0) US 25 at London	Jet with IT 80	Lota Potou) Rear Pine Lodge	Johnson County Line	Tut tava	(Sta 6+00)	Terrill (Sta 150+00) Wear Fair Dealing	(Bts 520+00)
	i oti poet	T 525(4)	Resurfacing US 27	T 525(5)	F 525(3) Remrfacing US 45	F 146(19) FJ 54	8 462(4) US 27	Testarfactag US 27 Th 180(6)	Rentfacing US 31-W FI 169(12)	14 SD	r 526(9) US 41	r 526(12) DS 421 \$ 552(1)	552(2) 552(2) 1536(3)	Ity SII	1 526(7)	U 528(2) Inner Belt Mane	U 528(10) Inner Belt Mare	U 526(12) Inner Belt Line	Inner Belt Line	US 23	Hesurfacing Esurfacing Ey 13	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	10 25 10 25	25 25	T 78(6)	Resurfacing US 62	₹ 530(6)	T 299(6) T 299(6) T 299(6)	T 163(9/
	3.1.50 OD	Gamard	Prarran	Gerrard	Grates	Grayson	Harri son	Harrison	Нате	Henderson	Henderson-	Kebatar Herry	Henry	Hopkins	Норгие	Jufferson	Jefferson	Jefferson	Jefferzon	Johnson	ZDOX	Leurel	Laurel	Leurel	Lewronce	id vincatione-	Lyon	Marshell Marshell	
															_			-											

122

۰.

TABLE I. (Confinued)

0.000																<u> </u>			
	EDISEL ZACEY BIERO ZO S	1	63	FF	1	48	1	ł	8	60	8	Ħ	3	Ř	국 5 K	86	•	° 2	14
3	NO, OF CER TZ6TE	13	n	282	٩ <i>٥</i>	# ~	ł	ł	20	SL SL	~	58	67	5	68 89	đ		48	11
CBB DW	evicen	2-6	6.8	8.8 9.7	ο ο	5-2	Ι	1	8,1	8.0	4.4	5.3	6,2	3.9	0,8 4,6 4,6	16.4	. :		11
	evik	ויזו	6.8	5.0 8.0	, ., , .,	5.0 6.0	I	ł	6-7	8.5	5.4	5.6	6.8	8.4	10.0 8.1 8.9	17,2			11
	e918au	I	*	11	1	<i>4</i> 4	1	æ	80	8	'n	7	vo	Ś	ងក្នុ	9	ŝ	ς ν	11
	(EOITTIM) The edised	ł	(8.0)	11	11	2.B 1.2	ł	(0.4)	(10,0)	18.8	(18.8)	(80.0)	(0°0 4)	(30.0)	(22,0) (50,0) (50,0)	(0,8L)		(18.0)	11
	<u>a</u> dcæyae ce dafe	1-29-57	45-6-2	8-25-53	10-21-52	10-5-61	10-11-56 12-21-54	10-20-53	11-28-51	3-16-56	15-6-8	9-20-5h	1-4-50	15-6-51	2-1-50 3-16-55	11-28-51	; ; ;	7-20-53	8 h-1- 21
	normal of design	toslord extim	Rutire project	156 to 239; 253 to 271 Establisher of project 20 to 60, or 1 100	Entire project	346400 to 396400 Remainder of project	Entire project Entire project	Fatire project	Eatire project	mutire project	Entire project	Zntire project	Zatire project	Intire project	1+50 to 807+00 807+00 to 718+60 Entire project	Entire project		Eguador of project	248 to 270; 336 to 357 Remainder of project
	SSIKIO (H.L. TVJQJ	2/1 61	16 3/4	12 1/4 15 1/4	14 1/2	13 16	9 1/2	21	4		16 1/2	16 3/4	17	20	14 15 15 14	۲	die er	16 3/4	สว
(BELLER)	207 <i>2</i> 108 1 99710	Ŧ	Ť	វវជ	7 ,,	<u> </u>	цц. Цц.	ч	N	ы	1출	Ŗ	Ľ\$	13	<u>음</u> 음음	ŕ	7	¥¥.	ê÷ F:F
STRUEO	I SEAJO EXCRIS	姧	13	12°C	а-аз 1 - 1	음음 음음	۱	ħ	ł	Ť	ኇ	цş	Ŧ	đ	R ^{an} ter	ት	1	\$ * \$	* *
	I BEVIO	2 \$	ł	11			ŧ	1	ł	6	ł	ţ	ł	1	110	1	1	11	11
HIATE IO	HAIORAF) Ealar	12 3.	Ħ	~ <u>q</u> ?	çđ.	10	6 7.	9	2		Ħ	1	2	316	ец [£]	ø		~a	44 11
ET CK E E E	NOITAIUSKI NGAGNUZ KO	۱	1 1		414		ł	rt	1	н	~	m.	N	н	ння	F			rt rt
	XEZ,	2	ţ.	***	12	NN	12	궛	2	ł	먥	1	ł	1	114	۶ŋ	•	* ~*	11
	LT CET (EXTIN) TOT CET	13.692	3.189	5-277	6. júg	454-4	6,692	л.132	5-261	3.942	1.732	2.953	6.226	4.716	3-308	¢€4*†	2	nc/-+	3.015
	ç	Reidland, Jot with US	Toward Dawille	(Sta 27410) Central C147 (Sta 288467.8)	Bastward (a+- 36erco)	Toward Maysville (Sta 396400)	Jot with Ky 85 (24m 376475)	Sulphur Springs (and caning)	Somerset Somerset	(See Jury//) Bear Borwood	Jet with Ey 80 (81-07-20 Å)	6.0 miles east of Mt. Tarmon (st. Officks a)	Boundsteas (Sta 376400)	Livingstane (ate 753-50)	Licting River (Sta 718460) Jet with US 68	(Sta 1305400) 5.0 miles south of	Sebree (Sta 250400)	(Bta 503+25)	4.0 milgs morth of Jellico, Tenn. (Ste. 191400)
	RCUL	Kentucky Das	Etr Str. 547 400) Herrodeburg	(Starzitud) 1.0 mile morth of Greenville(Sta 5+50)	1.0 mile east of Bards-	2.0 miles morth of Bourbon County Line	(Big 77+00) 0.2 mile west of Jct with UB 231	(Ste 16+32) Hertford (st. cood	Stray Sarey (st. oktor)	(Star Jetuc) Jet with Ky 80 (st. court a)	US 27 Bouth of Bomer-	Bridge in Livingstone	Mt. Ternon (ate Mason)	Rockcastle Hyer	0.8 mile east of Blue- stone (Sta 1+50) MOL of Bowling Green	(Star LOL4400) Slaughters	(Ste 0+00)	Behrae (Sta 250+00)	5.0 miles south of Williamsburg (Bta 357+50)
	10 <u>2</u> ford	US 62	E 530(5)	F 40(6)	US 150	T 222(4) T 68 T 234(9)	Resurfacing Ky 69 SP 92-224	Ey 69	IT 80	10)((2-001 M	(*)202 2 115 27 110(14)	UB 25	UB 25	UB 25	71 9(8) 11 3(8) 14	#1 16(2) #1 16(2) US #1	T 526(10)	F 526(13)	NI 23(16)
	COUNTY	Mershell-	McCrecken Norger	Mublenburg	Belaga	Ficholas	Ohto	0hio	Pulasiti	Pulant	Pulasiri	Rockcastle	Bockcastle	Bockcastle	Кочка Магтеп	Webuter		1913094	Weitley

11 C. 22

··- ·

TABLE 2. SUMMARY OF ACTUAL TRAFFIC AS DETERMINED BY TRAFFIC COUNTS

					AVERAGE DA	LY TRAFFIC	C (VEHICI.E	S FER DAY)					TOTAL ACTUAL		TRAFFIC	
oounti	PROJECT	1948	1949	1950	1951	19 %	1953	1954	1955	1956	1957	DESIGN EVL	19 <i>5</i> 7	AGE IN TRAES	YEARS	RIMIES
Anderson Ballard-	1 208(4) A9 63(4)						1800	1900 650	2000 665	2050 670	2100 67 <i>5</i>	6,000,000 —	2,935,819 171,357	5 4	4.9 	3
Barren-Hart	1 28(5) 1 7(5)			1000	1100	1150	1250	1275	1200	1300	1400	-	2,277,801	8	-	
Boll	F 151(7) F 21(5)	÷								2500	2500	23,400,000	2,162,165	2	1.0	ĺ
Bell Boyd	U 322(7) FI 8(4)			4000 2300	2500	2650	3000	3750	4500	3200	3900		3,087,991	8	-	
Boyd Boyle Breckinridge-	F 1(4) FI 8(6) F 244(4) F 523(3)					2050 3750	2091 3900 1 <i>5</i> 00	2700 3950 1550	3200 4000 1 600	3100 3800 1675	3 040 3600 1750	(8,000,000) ¹ * (6,000,000) (4,000,000)	1,909,637 7,523,949 2,230,655	6 6 5	2.4 12.5 5.6	
Carter Carter Carter Carter Olay	FI 4(4) FI 4(6) FI 13(5) SF 72(4) S 10(6)					1670 1662	2200 1785 1780	2750 2293 2115 695 625	3300 2800 2450 700 700	3450 2950 2575 705 775	3600 3100 2700 710 850	(15,000,000) (15,000,000) (39,000,000) (1,000,000) (1,000,000)	2,083,640 1,669,6 <i>5</i> 7 1,593,981 743,629 205,654	6 5 6 4 5	1.4 1.1 0.5 7.4 2.3	
Comberland Daviess Daviess-Obio	F 116(10) F 125(18) F 125(19)		1650	1900 1 <i>5</i> 00	2600 1700	2850 1850	3000 1915	3050 1970	2800 2000	1000 3900 2050	1050 4500 2100	(12,000,000)	874,189 10,407,664 4,579,400	2 9 8	0.7	
Elliott-Howen Fayette	5 288(5) UI 538(5)							3200 5000	4005	4468 7878	5500 11749	(40,000,000)	9,513,732	- 44 - 14	2.4 5.8	10+12 to 56+00 Remainder of project
Fayette Jayette- Jessamine	RS 34-304-10 P 524(4) F 524(5)		3000 3000	3200 3200	3800 3800	4300 4300	4500 4500	5000 5000	6000 6000	6500 6500	7000 7000	(<u>1</u> 5,000,000) (35,000,000)	12,881,449 12,881,449 4,302,0952	4 9 9 2 •	8.6 2.9 ² .	Jessemine County Remainder of project Jessemine County
Fayette-	FI 124(4)	2600	3245	3678	4145	3943	4020	5200	5650	5500	5400	—	30,065,608	12 11 ² .	Ē	Medison County only
Madison Franklin- Woodford	F 326(22)				2200 2200	3200 3200	3350` 3350	3450 3450	3550 3550	4150 4150	4235 4235	(20,000,000) (15,000,000)	20,984,190 20,984,190 13,416,528 ²	7 72. 52.	10.5 14.0 6.7 ² .	Woodford County Franklin County Woodford County
Garrard Garrard	s 366(2) F 525(4)		2100	2300	2000	3000	3000 3500	3100 3650	3200 3800	3400 3900	3600 395¢	(20,000,000)	5,283,036 8,214,869 5,009,095 ²	5 972.	2.6	
Garrard Garrerd	T 525(5) T 525(3)	500	2900	3000	3100	3000	3200	3350	3200 3500	3300 3650	3400 3800	13,000,000	3,503,837 8,644,529	3 10 82.	2.7	
Graves Grayson Earrison	F 146(19) S 462(4) F 189(5)				1800	4000	300 4100	310 4150	320 4000	4300 360 4100	4350 400 4200	35,500,000 (500,000) (15,000,000)	5,916,077 138,911 4,214,916 3,070,214 ²	2 5 72.	1.7 2.9 2.8 2.8 2.02	All but north 2.2 wiles
Harrison	F 189(6)					2225	2290	2320	1550	2600	2800	(5,000,000)	2,338,362 1,256,670 ²	6 4 ²	4.?	All but sonth 1.0 mile
Hart Henderson Henderson-	FI 169(12) F 526(9) F 526(12)			700	1100	2300	5800 3500 2950	5850 3750 3300	51.00 4000 3650	5250 4750 4300	5400 5100 4650	(35,000.000) (30,000,000) (30,000,000)	17,388,184 15,434,726 11,955,706	5 8 5	5.0	
webster Eenry	\$ 552(1) \$6 552(2)									1225	1250	2,500,000	1,055,558	2	0.4	
Henry Hopkins Jefferson Jefferson Jefferson Jefferson Jefferson	F 536(3) F 526(6) F 526(7) U 528(2) U 528(10) U 528(12) U 528(14) U 528(16)	350	75	453 677	775 1750	2776 3400	3000 3700	3350 4000	1200 3850 4250	1225 4050 4750 16250 9820 18363 23469 23076	1250 4200 5300 30029	2,500,000 (18,000,000) (35,000,000) (20,000,000) (30,000,000) (80,000,000) (80,000,000) (80,000,000)	1,258,611 14,741,344 16,839,804 	3 10 8 8 5 2 2 2 2 2	5.0	

S,

...

Values in parenthesis setimated from pavement thickness and design OBE.
Up to time of resurfacing.

i

	F	I <u></u>						<u> </u>				·	·	· · · · · · · · · · · · · · · · · · ·	·	
					AVERAGE DAD	LY TRAFFIC	CARRICTER	S PER DAY)					TOTAL ACTURL		TEATTIC	
COUNTY	PROJECT	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	DESIGE ENL	1957	CHRONOLOGICAL AGE IN IRABS	AGE IN YEARS	REMARKS
Johnson Enox Laurel Laurel Laurel Lawrence Livingstone- Lyon Madison	77 A(23) 5 72(3) 5 150(4) F1 29(9) F1 517(6) F 78(6) F 530(6) F1 299(6)				1500 475 3900 2500 1500	1500 500 5200 3050 1500 33200	1600 510 400 6200 3500 1600 1750 3350	1750 550 700 4700 1750 2150 4500	2230 600 900 7500 5200 2230 2450 5100	2100 750 1100 7600 5500 2100 3600 5300	2125 800 1200 7700 5700 2125 400t 5450	(1,000,000) (35,000,000) (30,000,000) (40,000,000)	1,107,629 1,112,567 24,600,076 16,605,879 6,028,322 16,851,911	7577		
Marshall Marshall- McCrocken Nercer Nuhlenburg Nelson Nicholas	F 163(9) F 530(8) F 294(2) F 40(6) F 222(4) F 234(9)				1600 800 800	1800 1900 1000 1000	3000 1950 1275 1275	1850 2800 3100 2000 1425 1425	1880 2900 3250 2100 1600 1600	3000 3400 2150 2300 2300	3094 3500 2500 2500	(10,000,000) (8,000,000) (8,000,000) (8,000,000) (8,000,000) (1,192,060 2,781,650	3,086.579 3,603,824 5,828,966 3,573,263 3,068,187 3,068,187 923,0642.	7 2 4 5 6 7 7 2	3.1 - 4.5 - 11.0 3.3 ² -	346400 to 396400 Remainder of projec 346400 to 396400
Ohio Ohio Pulaski Pulaski Bockcastle Rockcastle Bockcastle Bovan Warren	SF 92-224 S 473(2) SF 100-235(6) F 502(4) U 110(4) FI 70(6) FI 68(6) FI 517(7) FI 3(6) FI 113(5) FI 113(5) FI 16(2)			3800 1500	2400 4000 2600 1600	2700 2300 4200 2700 1 <i>5</i> 75	400 2800 4300 3480 1400	575 600 2900 5100 4900 4500 2000	590 760 3000 5250 5400 5200 2200 9000	625 780 3100 5325 5500 5225 2325 9100	650 800 3200 5375 5550 5250 2460 9200	(4,000,000) (10,000,000) 18,800,000 (18,800,000) (80,000,000) (40,000,000) (30,000,000) (25,000,000) (50,000,000)	923,064-4 645,572 883,898 6,505,380 12,173,323 20,143,023 15,697,549 1,780,638 18,862,057	5 5 7 2 7 4 8 7 8 3	2.2 6.5 1.5 5.1 5.2 3.8	Remainder of project
Webster Webster Whitley	F 526(10) F 526(13) FI 23(16)	3100	2800	3100	350 3400	2287 2900	2600 2700 3000	3100 3125 3800	3600 3650 4500	3800 3825 4650	3900 4000 4750	(18,000,000) (18,000,000) —	12,534,236 11,153,720 19,215,579	7 5 10	6.2	

TABLE 2. (Continued)

TABLE 3. SUMMARY OF VISUAL SURVEY AND ROAD ROUGHNESS DATA

			THA	EL TRACK 1	NULLOW	(1/16")											-
		0 8.4	E K.B. LANE	E.B. OI	2 S.B. LANE	AVERAGE	VALUES			SPRED OF		EXT	ENT OF PAVENE	T DISTRESS (\$)	_		
		0.TSPEC	TWSIDE	TNST DR	OKRESI DE	an sh	LANE OF	LANE OF FUED	TUPETU	ROUGHNESS	TONGTARDIALL	ATT: CARAGE	Sert 18	11011010000		TOTALS	
COUNTY	PEO. J. SCP	TRACE	TEACK	TRACK	TRACE	PEOJECT	BOUGHNESS	BOUGENESS	7385	(HAN)	CRACKING	CRACKING	PATCHING	PARDELRG	MAJOR	MINOR	TOTAL
Anderson Ballard-	F 208(4) AS 63(4)	2 . 67	6-00	00°"1	6.00 1.25	5.59	5.84 2.63	-E.N	.0672 .0816	55		0,2	00	6.0	0	0 2.6	3-7
Revren-Hert	F 28(5)	3.20	2.40	2.80	3,80	3°02	2,80	.E.N	.0632	55	o	0	0-2	¢	0	7.0	7.0
Bell	F 151(7)	1.60	2,00	4-80	04″°E	2.45	1.80	ч.я.	• 0807	55	0	o	0	o	0	o	0
Bell Boyd	0 322(7) #1 8(4)	म अन्य	1.75	2.50	5.00 2.75	7.38 2.88	9.50 3.13	E N	12/21 72/21	55 35	00	0,1,0	00	5.2	5-7 1-7	0.9	25
Boyd Boyle Breckiaridge-	F 244(4) F 244(4) F 523(3)	202	3.75	3-00 1-1- 1-1-2-00	0.5 0.5 25	2,88 3,86 4,21	3.275		.0869 .0697 .0863	25 55 S	400	000	000	4 000	• • • •	1.00	1.1
Seade Garter Garter	FI 4(4) FI 4(6) 12 3/4" FI 4(6) 12 3/4"	8.6.5 2.9.9	888	5.00 00.25	8-5 2-2 2-2	7.00 6.06	7.50		.0909 .0859 .0871	555	0.7 1.0	0.2 0.6	0 0	0,2	0.2	1.0	0.9
Carter Clay	ET 13(5) SP 72(4)	100	8.99	53	8.67 11.00	8.2.0	6.84 5.80	A A	0915	52	6.0	9.9 9.9	00	1.7	4.9 19.6		9.61 29.61
Clinton Cumberland Daviese	8 10(5) F 116(10) F 125(18)	525	9899 1 N M-	112	2-75 2-75	2.51 2 .5	2080	គំគំគំរ សំគំ ឆំ សំ	-0783 -0602	16 10 10 1	ייי	0000	000,	000	0000	00 5 7	9 0 0 1
669 TV 61	12t (21)(21 1 12t 14t	6.00	1.00	4 a 4 9	20.9 20.9 20.9 20.9	10.5 P	11.00 25.52	ล่ต่อ สุดังชุญ	1038 1038 1084			~°0	1.2 0 15-6	N 2000		11.65	2979
Viliott-Rowan Favette	1.5" 1.288(5) UI 538(5) 11 3/4"	6.46	4 0 00	8 8 9 8 7 8 9 8	2.88 2.88 2.88 2.88 2.88 2.89 2.89 2.89		4°00		π60Γ.	20 ft	5 N O	6.0	000	0.10 0.10	 0 0 0	0 % 0 V 4	0 v 6 v 0 0
Fayette- Fayette-	ILS 34-304-10. F 524(4) 13" F 524(4) 13"	8 N N N	6.00	2888	5.0 25.0 25.0	6 8 6 6 1 6 8 8	3.38 2.1 80.4		180.	÷5123	0000	0000	0000		, . 	0000	6000
Fayette-	F 124(4)	14 N	88	84.2	88	2.25	5-60	н н н н н н н н н н н н н н н н н н н	2080. 2080.		000	000	000	000	000		
Nadison Franklin-	(Truck lane) F 326(22)	4.20	01 ⁻ 6	2.50	00°°+	54-4	5.10	*E*S	-0789	55	o	Ö	0	0	0	0	0
Root DIG Garrerd Garrerd	s 366(2) F 525(4) 12" L5"	49°C	0,10,	6.00	6,00 4,00	26.4	38°	н ц ц ц ц ц ц	6090. 6090.	555	000	000	000	000	000	000	000
Gerrerd Gerrerd	F 525(5)		185	49.00		1.6	0.2	E X	0805		000	000	000	000	000	000	000
Graves Grayson Harrison Horrison	F 146(19) 5 462(4) F 189(5) v 189(5)	1838			1,51,0 1 2,518,6	* · · · · ·	11.44 11.44 6.60	ក្រុក គេ គេ ហើល	6750 1280	N 20 20 20	0000	8000	0000		 0000	0000	<u>~</u>
Hart	EI 169(12) (Truck Lane)	5-33	£6-5	2.75	00°8	5-74	5.78		9060.	22	0	0	Ð	0	0	ċ	0
Henderson Henderson-	F 526(9) F 526(12)	6 8 6 8	8.8	6.83 7.20	8.83 9.20	8 8 2 2	7.83 8.20	E S	-1257	55	110	1.0	2-2	2 2 2 2 2 3	15.2	9.5 0.7	23.0
мерать Нелгу	1 552(1)	4,00	00*† (2*00	5,00	2*00	6,00	5.B.	.0897	55	a	0	0	£.º	6.0	0	0.3
Henry Bopkins Hopkins	F 536(3) F 526(6) F 526(7) L2"	8 9 9 9 9 9	2.17 5.33 4.67	89.6 188	18.33 5.67 5.00 5.00	다 다 다 다 다 다	13-22 5-83 4,00	ក គេ ក សំហំ ហំ	-0936 -0877 -1062	858		0-4 10.2	NB C	0.46 0.00	7.2	9.00 9.00 9.00	7.8 23.8 23.6
Jefferson	υ 528(2) Έ 228(2)	28. 11		885 494	8.8 9.6	200 200 200	6.00	e e e vi e e	1001.	212 2	1.00	2.0 0	000	000	000	0 6.0	000
Jefferson	U 528(12) 05 In.	. K 6		88	50	2.69	2.5	۹,	.0526	255	10	0	0	0	••		10
Jefferson	U 528(14) OS Im.	88	88	6.6	88	2-53	3*00	R.B.	6890"	55	c	o	0	1.0	1.0	0	0°.1
lefferson.	т 528(16) 05 Гл. . т 528(16) 05 Гл. . т IS	58 500 500 500 500 500 500 500 500 500 5	R88		688 888 888	2.56	2.50	.E.N	<i>6/9</i> 0*	55	¢	o	D	o.	ð	o	a

- ...

1. 1972 - 19 1

TABLE 3. (Continued)

:

. .

			WHEE	L TRACK DE	TOPATION	(1/16")							-				
		I.B. OR	N.B. LADE	E.B. OR	S.B. LANE	AVERAG	E VALUES			SPEED OF		EX	TENT OF PAVEM	ENT DISTEESS (\$)		
COUNTY	PROJECT	UTSIDE TRACE	INSIDE TEACK	INSIDE TRACK	OUTSIDE TRACK	ENTIRE PROJECT	LANE OF FOAD ROUGHNESS	LANE OF BOAD ROUGENESS	AVERAGE JEEK	EDUGENESS HUN (MPH)	LONGITUDINAL CHACKING	ALLIGATOR CRACKING	SKIN PATCHING	STEUCTURAL PATCHING	MAJOR	TOTALS MINOR	TOTAL
COUNTY Jebnson Enox Laurel Laurel Laurel Laurel Livingstone- Lyon Matison Marshall- McToracken Mercer Muhlenburg Nelson Nicholas Ohio Ohio Pulaski Pulaski Pulaski	FR0JECT 77 A(23) 5 72(3) 5 150(4) FI 29(3) FI 150(6) F 78(6) F 78(6) F 530(6) F 129(7) FI 299(6) F 1291 F 163(9) 122" 124" F 530(8) F 294(2) F 40(6) F 224(2) 162" 162" 162" 162" 55" SP 20224 SP 100-235(6) F 50(2) SP 100-(25)(6) F 100(4)	TEACE 4.00 5.50 5.00 7.00 9.17 10.00 2.25 6.20 7.00 2.25 3.50 2.00 6.67 4.80 2.00 6.67 5.50 2.200 1.60 2.200 2.60 6.67 5.50 2.200 1.60 2.80 5.60 5.500 2.200	THACX 2.00 2.25 8.25 8.25 9.17 9.170 1.50 5.50 9.067 3.80 1.50 6.67 4.20 6.67 4.000 0.800 4.501 6.67 4.000 0.800 4.603 4.603 4.605 4.605 4.605	TRACE 2.00 5.50 7.60 7.00 4.80 12.00 5.75 12.00 5.75 12.00 5.75 12.00 5.75 12.50 2.63 4.67 2.50 5.500 6.50 4.75 10.40 3.75 0.60 1.80 4.80 2.75 1.80 4.80	124.CT 3.00 7.00 10.00 5.86 5.80 9.75 9.75 7.86 11.40 2.33 2.17 13.00 6.00 2.33 2.17 13.00 6.00 2.25 2.50 1.25 2.50 2.80 1.60 2.80 1.60 2.83 2.17 1.00 2.85 2.50 2.80 1.60 2.85 2.55	PROTECT 2-75 5.06 7.71 1.81 3.75 6.81 7.79 8.34 4.06 3.00 2.04 9.19 6.17 5.13 6.00 2.75 3.39 1.20 2.75 4.60 3.59 1.20 4.50 2.75 4.60 3.50 4.50 4.50 2.75 4.60 3.50 4.50	ROUVERY ESS 3.00 6.25 6.63 9.84 1.88 3.75 5.88 8.75 7.58 9.50 4.30 2.50 1.75 6.67 6.59 4.13 6.59 4.13 6.75 5.00 3.75 5.00 5.25 5.00 5.25 5.00 5.25 5.00 5.25 5.40 5.50 5.60 5.60 5.60 5.60 5.75 5.00 5.75 5.00 5.75 5.00 5.75 5.00 5.75 5.00 5.25 5.00 5.25 5.00 5.25 5.00 5.340 5.50 5.40 5.50 5.40 5.50 5.40 5.50 5.50 5.40 5.50 5.40 5.50 5.40 5.50	ROUGENESS N. B. S. D. N. B. S. B. N. B. S. B.	JJ28 .0718 .1157 .0802 .1006 .0707 .0641 .0574 .0655 .0690 .0546 .0866 .0866 .0866 .0855 .1048 .0973 .0546 .0866 .0855 .1048 .0973 .0599 .0765 .0862 .0765 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0855 .0866 .0859 .0597 .0649 .0597 .0649 .0597 .0649 .0596 .0546 .0556 .0546 .0556 .0546 .0555 .0546 .0555 .0546 .0555 .0546 .0855 .0596 .0555 .0546 .0855 .0597 .0661 .0546 .0855 .0597 .0661 .0546 .0855 .0597 .0649 .0597 .0661 .0574 .0659 .0597 .0661 .0855 .0697 .0649 .0855 .0697 .0649 .0855 .0866 .0855 .0778 .0677 .0649 .0649 .0677 .0649 .0649 .0597 .0649 .0597 .0649 .0597 .0649 .0577 .0649 .0577 .0649 .0577 .0649 .0773 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0774 .0775 .0774 .0774 .0774 .07755 .07755 .07755 .07755 .077555 .0775555555555	(MPE) 55 45 55 55 55 55 55 55 55 55 55 55 55	CRACIING 0 0 0 0 0 0 0 0 0 0 0 0 0	CRACKING 8.8 10.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PATCHING 0.5 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PATCHINE 2.1 8.3 0 2.4 10.3 3.8 24.6 0.2 1.3 1.4 0.1 0 0 0.5 0 0 3.4 1.2 10,1 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	NAJOR 10.9 18.5 0 2.9 10.3 3.8 24.6 0.2 1.3 1.4 0.1 0 0 1.0 0 1.2 10.1 0 1.2 10.1 0 0 0 0 0 0 0 0 0 0 0 0 0	MINOR 0 0.5 0.6 0 0 0.3 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL 10.9 19.0 3.5 10.3 3.8 24.6 0.5 1.4 2.9 0.1 0 0 1.0 0 1.2 10.3 0 0 1.2 10.3 0 1.2 10.3 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lockcastle	(Truck Lane) FI 88(6)	7.00	3.40	5.00 11.60	7.00 7.60	10.93	13.80	S.B.	.1087	55	2.3	0.4	0	0	0.4	2.3	2.7
Rockcastle Rovan Warren	(Truck Lane) FI 517(7) FI 3(8) 12" 15" FI 113(5) OS In.	17.40 4.00 5.00 5.00	11.60 5.00 6.67 4.50	16.00 5.40 5.00 4.00 5.25	20.00 6.40 3.67 4.00 7.50	10.20 4.42 4.92 4.19	14.50 4.50 5.84 6.38	N.B. W.B. W.B. S.B.	.0951 .0869 .0881 .0780	55 55 55 55	1.0 0 0.5 1.0	15.3 0 0	0.6 0 0 0	3.6 4.6 4.5 0.1	18.9 4.6 4.5 0.1	1.6 0 0.5 1.0	20.5 4.6 5-0 1.1
Webster Webster Whitley	FI 16(2) IS Ln. F 526(10) F 526(13) 12 3/4" I 3/4" FI 23(16) 11" 15"	2.75 7.20 10.00 8.67 10.00 9.00	2.25 4.40 5.50 7.67 9.00 7.00	3.50 6.60 9.50 10.33 6.33 4.50	2.75 9.40 12.00 8.67 7.67 8.50	6.90 9.25 8.84 8.25 7.25	8.00 10.75 9.50 7.00 6.50	5.B. 5.B. 5.B. 5.B. 5.B.	.0870 .0953 .0872 .0716 .0972	55 55 55 55 55	7.1 1.1 3.0 1.1 0.1	1.1 3.1 0.1 1.1 0	0-4 0 0 0	6.1 2.5 1.7 0.8 0.1	7.2 5.6 1.8 1.9 0.1	7.5 1.1 3.0 1.1 0.1	14.7 6.7 4.8 3.0 0.2

-

TABLE	4.	SUMMARY	OF	PAVEMENT	DEFLECTIONS	UNDER	AN	18,000 POUND	SINGLE	AXLE	LOAD
-------	----	---------	----	----------	-------------	-------	----	--------------	--------	------	------

	1		γ	זיומר	THAN DEAN DE		(1950)		
			1	FALL, 1957	בינן האשות פצראיי	SPRIN	10. 1958	_	
COUNTY	PROJECT	PAVINENT* THICKNESS (INCHES)	INSIDE TRACK	OUTSIDE TEACK	AVEBAGE	INSIDE TBACK	OUTSIDE TRACK	AVERAGE	PAVENENT CONDITION
Anderson	F 208(4)	13 3/4	.016	.010	.013	.016	.010	.013	Satisfactory
Barren-Eart	1 28(5) 1 7(5)	13 1/2 13 1/2	-	=	-	.020 .015	.018 .016 .017	.019 .016 .017	Satisfactory Satisfactory
Boyd	FI 8(4) F 1(4)	14			-	.010	.014	.012	Satisfactory
Boyd	FI 8(6)	12 3/4 12 3/4 Averege	.007 .007 .007	.009 .009 .009	.008 .008 .008	.008 .009 .009	.012 .011 .012	.010 .010 .010	Satisfactory Satisfactory
Boyle	F 244(4)	10 3/4 10 3/4 Average	.012 .012 .012	.010 .016 .013	.011 .014 .013	.007 .010 .009	.007 .012 .010	.007 .011 .009	Setisfactory Satisfactory
Carter	FI 13(5)	15	_	-	-	.036	.016	.026	Satiefactory
Elliott-Bowan	B 288(5)	5 1/4 5 1/4 Average	=			.080 .051 .066	.114 .098 .106	.097 .075 .086	Satisfactory Satisfactory
Fayette	RS 34-304-10	10 3/4 .10 3/4 Average	.020 .012 .016	.019 .023 .021	.020 .017 .019	.028 .019 .024	.028 .025 .026	.028 .022 .025	Satisfactory Satisfactory
Fayette Madison	F1 124(4)	11 1/2	.009	.010	.010	.007	.008	.008	Satisfactory
Garrard	F 525(4)	15	-		-	.032	.034	.033	Uneatisfactory
Garrard	P 525(5)	13 3/4 13 3/4 Average	=	=	-	.015 .017 .016	.016 .014 .015	.016 .015 .016	Satisfactory Satisfactory
Garrard	F 525(3.)	14	- 1	-	-	.021	.028	.025	Satisfactory
Garrard	8 366(2)	13 3/4 13 3/4 Average	=	=	-	.015 .033 .024	.020 .023 .022	.018 .028 .023	Satisfactory Satisfactory
Graves	F 146(19)	14 3/4 14 3/4 Average	.008 .031 .020	.014 .029 .021	.011 .030 .021	.012 .035 .024	.017 .037 .027	.015 .036 .026	Satisfactory Satisfactory
Grayeon	s 462(4)	7 1/2 7 1/2 Average	.038 .126 .082	.032 .168 .100	.035 .147 .091	.077 .180 .129	.062 .190 .126	.070 .185 .128	Satisfactory Uneatisfactory
Hart	FI 169(12)	13 1/2 13 1/2 Average	.011 .015 .013	.014 .026 .020	.013 .021 .017	.014 .016 .015	.014 .022 .018	.014 .019 .017	Satləfaotory Satləfactory
Henry	¥ 536(3)	11 1/4 11 1/4 11 1/4 Average	.058 .042 .077 .059	.050 .040 .060 .050	.054 .041 .069 .055	.044 .043 .061 .049	.045 .050 .056 .050	.044 .047 .059 .050	Unsatisfactory Satisfactory Unsatisfactory
Hopkins	¥ 526(7)	12 12 Average	.046 .024 .035	.036 .026 .031	.041 .025 .033	.032 .051 .042	.039 .049 .044	.036 .050 .043	Unsatisfactory Satisfactory
		15 15 Average	.022 .028 .025	.022 .036 .029	.022 .032 .027	.038 .029 .034	.048 .031 .040	.043 .030 .037	Unsatiafactory Satisfactory
Laurel	8 150(4)	6 6 Average	.060 .061 .061	.047 .050 .049	.054 .056 .055	.072 .136 .104	.072 .096 .084	.072 .116 .094	Satisfactory Unsatisfactory
Laurel	FI 29(9)	13 1/2 13 1/2 Average	.008 .025 .017	.011 .041 .026	.010 .033 .021	.012 .030 .021	.015 .034 .025	.014 .032 .023	Satisfactory Unsatisfactory
Lawrence	F 78(6)	8 1/4 8 1/4 8 1/4 Average		-	=	.107 .059 .019 .062	.122 .117 .022 .087	.115 .088 .021 .075	Uneatisfactory Unsatisfactory Satisfactory
Livingstons- Lyon	¥ 530(6)	15 15 Average	=	=	=	.012 .022 .017	.024 .031 .028	.018 .026 .022	Satiafactory Satisfactory
Madison	FI 299(6)	15 1/2 15 1/2 15 1/2 Average	.041 .017 .020 .026	.041 .023 .023 .029	.041 .020 .022 .028	.038 .020 .021 .026	.042 .019 .026 .029	.040 .020 .024 .028	Unsatisfactory Satisfactory Unsatisfactory
		14	.004	.006	.005	.018	.023	.021	Satisfactory

*Excluding TEM.

÷

TABLE 4.	(Continued)
----------	-------------

÷

1000

	ŀ .			BENK	ELMAD BEAM DE	FLEOTIONS (I	NCHES)		
				FALL, 195?		SPRI	NG, 1958		İ
CODALL	PEOJEC T	TRICKRESS (INCHES)	INSIDE TRACE	OUTSIDE TRACE	AVERAGE	INSIDE TRACE	OUTSIDE TRACK	ATERACE	PATEMENT CONDITION
	D 2 (<i>a</i> /a)					alia			
EAPPLAII	¥ 163(9)	10 10 Averaga	.030 .018 .024	.024	.035 .021 .028	.042 .016 .029	.082 .026 .054	.062 .021 .042	Unsatisfactory Satisfactory
		12 12 Avoraga	.024 .023 .024	.030 .026 .028	.027 .025 .026	.041 .031 .036	.054 .031 .043	.048 .031 .040	Unsatisfactory Satisfactory
Mercar	¥ 294(2)	15 1/4 15 1/4 Average	.041 .016 .029	.049 .022 .036	.045 .019 .032	.041 .020	.044 .024 .034	.043 .022	Uzzztisfactory Sztisfactory
Mublesburg	¥ 40(6)	10 3/4 10 3/4 Average	.056 .045 .051	.062 .032 .0 ⁴ 77	.059 .039 .049	.062 .057 .060	.062 .048	-062 -053 -058	Unsatisfactory Satisfactory
		13 3/4 16 3/4	.025 .030	.028 .032	.027 .031	.063 .032	.044 .030	.054 .031	Satisfactory Satisfactory
Yelcon	T 222(4)	13 13 Average	-	=	=	.034 .044 .039	.034 .056 .045	·.03# •050 •042	Unsatisfactory Unsatisfactory
Wiobolas	P 234(9)	11 14	.067 .028	.074 .030	.071 .029	.056 .030	.063	.060 .035	Satisfactory Vasatisfactory
Obie	82° 92-224	7 1/2 7 1/2 Average	.074 .082 .078	.071 .070 .071	.073 .076 .075	.114 .070 .092	.124 .142 .133	.119 .106 .113	Uzetisfactory Satisfactory
Lough .	PI 3(8)	12 12 Average	.022 .025 .024	.016 .011 .014	.019 .018 .019	.047 .027 .037	.041 .016 .029	.044 .022 .033	Satisfactory Satisfactory
		15	.015	.013	.014	.026	.025	.026	Satisfactory
Whitley	FI 23(16)	11	.024	.026	.025	.032	.029	.031	Unsatisfactory
		15 15 Average	.026 .021 .024	.024 .024 .024	.025 .023 .024	.027 .025 .026	.030 .023 .027	.029 .024 .027	Satisfactory Vusatisfactory

TABLE	5.	SUMMARY	OF	PAVEMENT	DEFLECTIONS	UNDER	A	32.000 POUND	TANDEM	AXLE	LOAD

					1	BREEMAD BE	N DEFLECTION	8 (INCEES)				
		DA THUNGRÓ	IN	IDE WEEL TU	OR	00	SIDE WREEL T	RACE		ATELOES		
COUSTY	FROUND?	THICKELSS (INORES)	PBONT AILE	BE TVERY AIL BB	HEAR ALL B	FRONT ALL B	BETWEEN AXLES	REAR AXLB	FRONT ALL X	BRTVLES AILES	PEAR ATLE	PATEMENT CONDITION
Ange 1000	F 208(4)	13 3/4	.013	•00B	.012	.009	.006	.009	.011	.007	.011	Batisfactory
Beyle	F 246(6)	10 3/4 10 3/4 Average	.008 .010 .009	.007 .010 .009	.008 .010 .009	.008 .011 .010	.00B .011 .010	.008 .011 .010	.008 .011 .010	.008 .011 .010	.008 .011 .010	Satisfactory Satisfactory
Fayette	95 J4-304-10	10 3/4 10 3/4 Average	.026 .013 .020	.010 .007 .009	.026 .014 .020	.026 .021 .024	.012 .010 .011	.022 .021 .022	.026 .017 .022	.011 .009 .010	.024 .018 .021	Batisfactory Batisfactory
Feyette ^{ee}	R\$ 34~304-10	10 3/4 10 3/4 Average	.027 .017 .022	.011 .007 .009	.027 .017 .022	.026 .026 .026	.011 .012 .012	.023 .026 .025	.027 .022 .024	.011 .010 .011	.025 .022 .024	Satisfactory Satisfactory
Sejette-	%1 124(4)	11 1/2	. 007	.005	.007	.007	_005	.007	.007	.005	•007	Satisfactory
865343	F 294(2)	15 1/4 15 1/4 Average	.033 .016 .025	.018 .004 .011	.033 .015 .024	.037 .021 .029	.019 .008 .013	.037 .021 .029	.035 .019 .027	.019 .006 .012	.035 .018 .027	Unsatisfactory Batisfactory

· Busluding TBN. • 36,000 pound tankes arts load.

TABLE 6. SUMMARY OF FIELD DENSITY MEASURMENTS

ेल न

					IN PLACE D	ENSITIES OF (10s. per c	PAVEMENT COMI	Ponents							
COUNTY	PROJECT			SUBGRAD	E SOIL			GRANUI (sand	AR BASE method)			BITUMINOUS CONCRETE (we.ter displacement)			
		1wT 3.	вит3.	ORL ,	METEOD	M. C. (pet)	MATERIAL	COURSE	I₩T	BWT	OWT	IWT	BWT	0 W2	
Boyle	T 244(₺)	110 106	111 109	102	Rainhart Sand	24.1						153	151	153	
Bullitt		101	100	100	Rainbart Sand	23.3	DGA	Total	139	130	138	146	144	144	
Daviess	F 125(18)	112 103	117 116	111 109	Rainhert Sand	23.9	MBM	Totel	146 	128	130 	144	145	146	
Tayette	UI 538(5)	104 98	104 104	108 91	Rainhart Sand	28.0	WBM WBM	Top Bottom	138 137	147 148		145	147	147	
Laurel	FI 517(6)	 98	115	108	Rainhart Sand	19.4	WBM WBM	Top Bottom	147	148 	144 	147	148	148	
Madison	₱1 299(6)	113 95	115 108	113 109	Rainhart Sand	19.7	nibim Nibim	Top Bottom	118	137 145	148 	148	149	148	
Mercer	F 294(2)	914 83	116 99		Rainhart Sand	16.0	WEM WBM	Top Bottom	161 137	112 130	151 	149	149	147	
Rockcestle ¹ .	FI 88(6)	111	121 111	118 113	Rainhart Sand	18.7	WBM WBM	Tep Bottom	126 122	126 139	98 135	148	151	149	
Rockcastle ^{2.}	FI 88(6)	 		117 114	Rainhart Sand	28.9	WIEM. WIEM	Middle Bottom	159 123	136 137	138 116	145	148	148	

Truck Lane
Passing Lane
I^{AT} indicates inside wheel track.
D^aT indicates between wheel track.
OwT indicates outside wheel track.

ς.

.

TABLE 7. SUMMARY OF DATA FROM BASE AND SUBGRADE SAMPLES

					STD. PROCTOR		61	RAIN SIZE	di stribut:	ION			
County	PROJECT	SAMPLE IDENTIFICATION	LIQUID LIMIT	PLASTICITY INDEX	MAX. Den.	ОРТ. М.С.	PERCENT SAND	PERCENT SI LT	PERCENT CLAY	PERCENT COLLIODS	SPECIFIC GRAVITY	MIN. LAB. CBR	ERB CLASSIFICATION
Boyle	F 244(4)	Subgrade - Inside Wheel	31	10	106	18	25	56	19	0.	2.71	28	A-4(8)
Daviess	F 125(18)	Subgrade - Inside Wheel	30	12	111	17	12	64	24	9	2.76	7	A-6(9)
		NBM - Outeide Wheal Track	18	3			95 *	· 3	2	0			
Fayette	UI 538(5)	Subgrade - Outside Wheel Track	49	23	99	26	26	44	30	12	2.79	8	A-7-6(15)
		WBM - Bottom Two Courses -	21	5			92*	4	4	1			
Laurel	FI 517(6)	Subgrade - Outside Wheel	34	14	110	17	23	37	40	14	2.76	3	A-6(9)
		Subgrade - Ineids Wheel	27	9	113	14	39	39	22	6	2.64	6	A-4(8)
		WBM - Bottom Course - Between Wheel Tracks	19	5			9 5 •	3	2	0			
		NBM - Middle Course - Between Wheel Tracke	16	¥P			95 °	3	2	1			ĺ
Madison	FI 299(6)	Subgrade - Ineide Wheel	30	12	113	17	19	49	32	12	2.79	7	A-6(8)
		MBM - Bottom Course - Outside Wheel Track	20	6			93*	3	11	1			
Mercer	r 294(2)	Subgrade - Between Wheel Tracks	29	11	118	14	25	42	33	15	2.81	Э	A-6(B)
1		WBM - Bottom Course - Inside Wheel Track	14	NP		ĺ	96*	2	2	1			
		NBM - Middle Course - Outside Wheel Track	16	2			93*	3	4	1			
Rockcastle	FI 88(6)	Subgrade - Outside Wheel	31	14	112	16	23	52	25	5	2.70	13	A-6(9)
(11-11-12-0)		WBM - Bottom Course - Outside Wheel Track	21	7			92*	4	4	1			
	· }	WBM - Middle Course - Outside Wheel Track	18	5			97*	2	1	1			
Rockcaetle	FI 88(6)	Subgrade - Outside Wheel Track	31	14	113	16	27	47	26	5	2.70	-	A-6(10)
Lane)		WEM - Bottom Course - Outside Wheel Track	15	NP			98 *	1	1	0			
Bullitt		Subgrade - Between Wheel Tracks	35	16	108	19	19	40	41	10	2.75	5	A-6(10)
		DOA - Outside Wheel Track	17	NP			91 *	6	3	1			

* Porcent larger than silt size.

Note: The date for base material was obtained on that worthon tasking the number 40 sieve.

						FAC	ORS FROM IA	DADOMETER	STATION DATA							
IOADONETER	19	51	19	52	19	53	19	54	195	5	195	6	195	57	TYPICAL V	ALUES**
TRAFFIC VOLUME GROUP	PERCENT TRUCKS	AXLES PER TRUCK	PERCENT TRUCKS	AXLES PER TRUCK	PERCENT TRUCES	AXLES PER TRUCX	PERCENT TRUCKS	AXLES PER TRUCK	Percent Truces	AXLES PER TRUCK	PERCENT TRUCKS	AXLES PER TRUCX	PERCENT TRUCKS	AXLES PER TRUCK	PERCENT TRUCKS	AXLES PER TRUCE
4 10 27 340 41 43 447 46 47 48 9 50 51 52 53	20.6 21.4 14.7 28.9 30.6 29.5 24.6 13.9 16.8	2.372 2.152 2.337 2.438 2.610 2.579 2.522 2.602 2.188 2.615	18.8 16.7 14.0 26.1 27.1 21.7 25.2 11.7 18.0	2.405 2.176 2.377 2.554 2.651 2.653 2.653 2.619 2.272 2.670	20.7 13.8 12.9 28.9 28.2 24.6 25.7 12.0 17.1	2.486 2.310 2.419 2.675 2.655 2.703 2.706 2.295 2.728	17.9 14.7 16.2 23.8 27.3 25.6 23.1 11.3 15.6	2.482 2.259 2.675 2.675 2.746 2.713 2.733 2.733 2.736 2.741	17.4 12.9 14.8 22.9 25.4 24.2 24.2 22.6 11.4 16.7	2.477 2.343 2.411 2.748 2.816 2.763 2.728 2.333 2.773	19.8 15.2 15.3 25.3 24.4 12.3 19.5 17.7 24.4 19.5 17.7 21.4 16.1 14.6 21.5 23.5	2.581 2.358 2.451 2.841 2.895 2.910 2.933 2.418 2.895 2.933 2.418 2.846 3.038 2.997 2.396 2.997 2.396 2.997 2.396 2.946 2.747 2.645	23.6 24.6 22.3 23.7 22.1 18.5 15.4 15.3 22.9 21.8	2.995 3.087 3.337 2.970 3.245 3.152 2.557 2.646 2.889 2.745		
Averages	22.5	2.442	20,5	2.503	21.0	2,566	19.6	2.575	18.9	2.609	20.5	2.736	21.0	2,962		
0-399		-	-				~								8.7	2.046
400-999							-				~		-~		12.9	2.131
1000-1999		2 .375*	-	2.415*		2,460*	-	2.511*		2.570•	23.5	2.645	21.8	2.745	14.4	2,510
2000-2999	21.0	2.395	18.7	2.475	22.2	2.630	16.8	2.612	.17.4	2.477	18.2	2.787	20.2	3.056	14.8	2.864
3000-3999	26.9	2.551	23.0	2.482	19.4	2,492	19.7	2.560	18.4	2.667	20.8	2.640	15.4	2.557	27.5	2.841
4000-4999	30.6	2,610	21.7	2.653	26.4	2.692	18.5	2.526	17.3	2,523	20.3	2.736	23.7	2.970	38.8	2 .7 ₩₽
5000-over	14.7	2.337	20.1	2.514	12.9	2,419	27.3	2.673	23.1	2.731	22.7	2.871	22.9	3.043	13.4	3.004

-

TABLE 8. DISTRIBUTION OF TRUCKS WITH RESPECT TO ADT BY YEARS

a di tak

Extrapolated,
Typical Values furnished by the Division of Planning, Kantucky Department of Highways.

7. 2.1

TABLE 9. DISTRIBUTION OF TRUCK AXLES BY WEIGHT GROUPS

الأعوار والمرود

[LOADOMETER				PER	ENT OF TOTA	L AXLES BY	WEIGHT GROU	P			
YEAR	STATION OR TRAFFIO VOLUME GROUP	UNDER 7000	7000 TO 9000	9000 TO 11000	11000 TO 13000	13000 TO 15000	15000 TO 17000	17000 TO 19000	19000 TO 21000	21000 TO 23000	23000 10 25000	25000 TO 27000
1951	4 10 27 31 40 41 42 43 44 45 Averages 2000–2999 3000–3999 4000–4999	65.820 80.309 58.118 53.970 57.881 61.720 75.711 64.764 65.751 55.760	10.010 7.499 80.707* 10.906 12.332 14.743 11.932 67.278* 10.816 70.149* 74.990* 11.339 7.387 10.542	4.059 2.013 3.751 5.092 5.596 4.309 4.461 3.466 2.994 5.597 4.134 3.870 4.385 5.596	3.505 4.362 4.180 7.214 7.482 5.450 3.112 4.995 3.294 8.582 5.218 5.325 4.281 7.482	6.458 2.685 3.859 7.3543 8.238 4.979 5.607 2.694 8.023 5.744 5.470 6.609 7.543	7.749 2.125 5.788 8.062 6.995 6.971 5.913 8.053 3.593 4.851 6.010 5.739 6.442 6.995	2.030 0.336 1.286 4.562 2.155 6.120 9.072 0.599 2.052 3.076 2.773 4.138 4.562	0.369 0.671 0.322 0.707 1.277 0.253 1.452 1.427 0.299 0.746 0.752 0.703 0.853 1.277	0.107 0.182 0.311 0.102 0.070 0.102 0.102 0.311 0.182	 0.006 0.006	
<u> </u>	5000-over	65.938	14.769	3.751	4.180	3.859	5.788	1.286	0.322	0,107	-	_
1952	4 10 27 31 40 41 42 43 44 45	73.323 84.525 59.974 54.763 58.691 60.101 72.952	11.151 7.892 80.835* 11.254 12.513 14.949 11.619 65.994* 10.422 76.961*	2.638 1.230 5.641 3.581 4.245 5.046 5.730 3.650 2.015 5.065	3.339 1.947 5.178 5.243 4.138 5.870 3.696 4.035 3.023 4.085	3.172 1.844 4.250 5.243 5.750 6.591 9.981 5.764 5.290 5.392	4.174 2.152 2.782 6.777 8.436 5.973 7.024 7.973 2.519 5.392	1.836 0.410 0.850 4.859 9.350 1.853 1.479 12.008 3.275 3.105	0.167 0.309 2.685 0.645 0.926 0.370 0.480 	0.155 0.384 0.160 0.096 0.504		
	2000-2999 3000-3999 4000-4999 5000-over	67.237 69.531 60.317 60.504	11.772 7.812 11.403 13.552	3.375 3.309 5.730 4.943	3.923 3.951 3.696 4.658	4.774 4.733 9.981 5.000	4.716 5.365 7.024 5.609	3.269 4.757 1.479 5.100	0.713 0.469 0.370 0.477	0.222 0.032 0.158	0.034 	1111
1953	4 10 27 31 40 41 42 43 44 45	73.983 80.723 60.347 53.329 60.224 57.185 68.581	11.251 7.537 83.071* 11.324 12.186 15.339 11.055 65.192* 9.797 70.304*	2.234 2.348 5.709 4.047 4.496 4.180 4.425 4.259 3.153 6.977	2.234 3.949 4.429 5.483 4.770 4.180 6.096 3.604 4.054 7.335	4.122 3.308 2.265 7.311 5.811 8.253 6.981 6.224 4.730 7.871	2.991 1.601 2.854 7.702 5.976 5.895 9.342 8.518 4.279 4.830	2.813 0.427 1.476 3.394 11.897 1.393 4.425 10.975 4.279 2.504	0.186 0.107 0.098 0.392 1.425 0.214 0.295 1.228 1.127 0.179	0.186 0.098 0.055 0.214 0.098	 0.055 0.108 0.098 	11111111
	Averages		75.143*	4,183	4.613	5.688	5.399	4.358	0.525	0.065	0.026	-
	2000-2999 3000-3999 4000-4999 5000-over	64.445 69.086 56.244 67.869	11.284 7.762 10.634 15.202	4.419 3.485 4.461 5.709	5.017 3.947 5.433 4.429	6.434 5.629 6.396 2.265	5.174 4.398 7.659 2.854	2.903 4.269 8.161 1.476	0.252 0.669 0.860 0.098	0.062 0.054 0.077 0.098	0.027 0.077 	
1954	4 10 27 31 41 42 43 44 45	65.866 80.402 53.787 52.919 51.283 52.104 68.454	10.016 7.507 74.326* 10.093 11.919 13.062 10.073 58.049* 9.7?9 66.667*	3.824 1.849 5.816 5.017 4.808 6.257 6.061 5.587 5.678 6.996	4.412 2.276 7.376 9.197 4.921 5.313 6.061 5.303 3.470 8.025	6.471 2.276 5.532 9.030 5.769 7.084 6.173 7.102 5.047 6.584	4.706 3.414 3.262 7.023 8.428 9.091 11.672 9.754 2.524 7.613	3.235 2.134 2.411 4.181 11.143 6.257 6.958 13.258 4.101 3.909	0.882 0.142 1.277 0.836 0.735 1.535 0.786 0.852 0.631 0.206	0.588 0.836 0.113 0.118 0.112 0.095 0.316		
ĺ	Averages		67 . 423*	5.187	5.576	6.108	7.561	7.159	0.817	0.218	-	-
	2000-2999 3000-3999 4000-4999 5000-over	60.635 63.364 57.362 52.356	10.620 7.119 10.845 11.727	5.410 4.878 5.939 4.808	6.219 5.112 6.719 4.921	6.528 6.108 5.853 5.769	6.160 6.361 7.467 8.428	3.572 5.986 4.685 11.143	0.544 0.799 1.032 0.735	0.294 0.273 0.056 0.113		1111
195 5	4 10 27 31 40 41 42 43 43 44 45 Averages	72.907 81.954 56.711 51.304 59.185 57.425 72.794	11.087 7.652 79.208* 10.642 11.723 15.075 11.101 63.744* 10.399 75.138* 72.762*	2,249 1,422 5,831 4,881 4,737 4,261 4,442 3,870 4,442 3,6*3 4,072	2.778 2.845 5.061 5.315 4.348 6.238 4.976 3.361 3.499 4.607	3.175 2.845 4.620 7.484 6.355 6.174 7.561 6.951 3.151 6.630 5.769	3.836 1.860 2.970 8.894 6.239 6.609 6.522 8.531 2.731 6.446 5.799	2.778 0.985 1.980 4.772 12.652 3.565 4.820 10.742 2.101 3.867 5.861	1.058 0.328 0.330 1.193 1.444 0.696 1.701 1.027 0.840 0.737 0.997	0.108 0.173 0.093 0.159 0.211 - 0.074	0.132 0.109 0.087 0.095 0.042	
	2000-2999 3000-3999 4000-4999 5000-over	71.479 65.049 68.142 53.7 ¹ :0	12.515 7.308 12.883 12.037	2.249 4.212 3.838 4.590	2.778 4.288 4.085 5.777	3.175 6.054 4.546 6.958	3.836 6.651 3.813 6.381	2.778 5.371 2.177 8.736	1.058 0.949 0.451 1.573	0,120	0.132 0.065 0.048	

• Under 9000.

۰.

•

TABLE 9. (Continued)

۰.

nanan. An est

[LOADOMETER	1			PER	CENT OF TOTA	L AXLES BY	WEIGHT GROU	P			
YEAR	TRAFFIO VOLUME GROUP	UNDER 7000	7000 TO 9000	9000 TO 11000	11000 TO 13000	13000 TO 15000	15000 TO 17000	17000 TO 19000	19000 TO 21000	21000 TO 23000	23000 TO 25000	25000 TO 27000
1956	40 43 46 47 48 49 50 51 52 53 Averages 1000-1999 2000-2999 3000-3999 4000-4999 5000-ever	49.607 49.509 59.381 48.319 51.466 47.327 78.076 79.321 57.547 69.419 55.585 69.419 58.317 63.793 48.319 52.868	11.565 9.278 9.897 9.349 13.145 11.881 7.159 5.493 9.691 7.645 10.045 7.645 8.907 8.219 9.349 11.466	5.337 5.263 5.267 5.777 4.146 5.545 3.132 2.262 4.717 3.058 4.753 3.058 4.753 3.058 4.528 4.198 5.777 4.733	5.913 8.118 3.711 7.038 6.876 10.890 2.685 2.100 5.746 3.670 6.055 3.670 6.055 3.670 6.675 5.402 7.038 6.178	7.902 10.883 4.536 9.664 10.010 10.297 2.908 4.523 7.118 6.728 8.026 6.728 8.161 6.896 9.664 8.342	10.152 8.296 8.041 11.450 8.392 6.337 3.356 3.393 7.290 4.587 8.050 4.587 7.059 5.826 11.450 8.610	8.373 7.583 8.041 7.983 5.763 7.129 2.237 2.262 6.947 3.670 6.689 3.670 6.689 3.670 5.791 4.910 7.983 7.027	0.942 0.981 0.826 0.315 0.202 0.594 0.447 0.646 0.858 1.223 0.716 1.223 0.716 1.223 0.518 0.714 0.315 0.607	0.209 	0.089 	
1957	40 43 46 47 48 49 50 51 52 53 Averages 1000-1999 2000-2999 3000-2999 3000-3999 4000-4999 5000-ever	53.785 55.882 56.305 51.488 45.184 47.619 68.612 70.681 53.182 58.621 56.136 58.621 57.622 68.612 51.488 50.717	12.100 9.349 14.032 9.447 11.534 13.741 6.625 8.377 11.675 11.576 10.846 11.576 11.576 11.576 11.577 11.675 11.577	5.011 4.517 8.881 6.043 4.518 4.490 5.205 3.403 5.779 5.911 5.376 5.911 5.323 5.205 6.043 5.103	5.064 5.882 11.190 5.363 5.886 7.075 4.732 3.796 7.064 5.172 6.122 5.172 6.122 5.172 6.986 4.732 5.363 6.005	5.171 9.349 6.927 10.383 9.572 11.701 4.732 5.236 8.757 6.404 7.823 6.404 8.303 4.732 10.383 7.833	6.503 7.038 2.131 8.511 12.188 6.803 4.574 4.450 6.538 6.650 6.539 6.650 5.106 4.574 8.511 8.410	8.635 7.248 0.178 8.085 9.869 6.666 4.101 3.272 5.196 4.680 5.793 4.680 4.341 4.101 8.085 7.900	3.305 0.630 	0.159 0.105 0.178 0.170 	0.267 	0.178
Typical Values	0-399 400-999 400-999 Haul Roads 1000-1999	89.274 84.214 82.216 81.359	3.761 5.692 3.162 4.791	2.635 2.401 2.106 2.983	1.692 2.891 2.503 2.945	0.754 1.958 1.976 2.927	0.754 1.600 1.843 2.200	0.943 0.976 2.106 1.398	0.189 0.089 3.032 1.007	0.133 0.790 0.280	0.044 0.132 0.095	0.132

 $\langle C_{i}\rangle$

TABLE 10. ACTUAL TRAFFIC ACCUMULATION EXPRESSED AS PERCENT OF DESIGN TRAFFIC

Act		DESIGN			≜CCU MU]	LATIVE PERCEN	TAGE OF DESI	GN TRAFFIC E	Y CHRONOLOGI	CAL AGE		
COUNTY	PROJECT	(MILLIONS)	1 YEAR	2 YEARS	3 YEARS	4 YEARS	5 YEARS	6 years	7 YEARS	8 YEARS	9 YEARS	10 YEARS
Anderson Ballard-	F 208(4) AS 63(4)	6.0	4.86	10,10	18,11	32.21	48.93					
McCracken ² Barren-Hart ¹ Bell Bell ¹ Boyd ¹	r 28(5) F 7(5) F 151(7) r 21(5) U 322 (7) F I 8(4)	23.4	4.41	9.52								
Boyd Boyle Breckinridge- Weada	F 1(4) FI 8(6) F $2^{4\mu_1}(4)$ F 523(3)	8.0 6.0 4.0	1.37 22.71 6.07	2.90 42.17 12.47	6.39 70.38 19.22	9.80 83.62 35.93	15.48 109.06 55.77	23.87 125.40				
Carter Carter Clay Clipton Cumberland Davies	FI 4(4) FI 4(6) FI 13(5) SP 72(4) S 10(5) F 116(10) F 125(18)	15.0 15.0 30.0 1.0 1.0 12.0	0.60 0.70 0.29 18.40 3.56 3.32	1.45 2.28 0.64 36.80 7.62 7.28	3.35 3.87 1.37 55.49 12.11	5.23 6.75 2.07 74.36 17.08	8.60 11.13 3.33 22.56	13.89 5 . 31				
Elliott-Rowan Fayette	s 288(5) UI 538(5)	1.0 40.0 40.0	4.03 3.43 10.66	8.64 5.42 21.36	13.80 12.19 33.68	23.78 58.44						
Fayette- Jessamine Fayette-	RB 34-304-10 F 524(4) F 524(5) FI 124(4)	15.0	5.27	10.75	17.45	21.99	28.50	39.25	48.81	64.57	85.70	
Madison ⁴ Franklin- Woodford Garrard	F 326(22) S 366(2)	20.0 15.0 20.0	7.89 10.52 3.26	19.59 26.12 8.26	35.20 46.94 12.08	49.92 66.56 18.26	67.08 89.44 26.42	84.05 112.07	104,92 139.90			
Garrard Garrard Garrard ¹	F 525(5) F 525(5) F 525(3)	13.0	5.89	15.11	26.95							
Graves Grayson Harrison Harrison Hart Henderson- Webetan	F 146(19) S 462(4) F 189(5) F 189(6) F 169(12) F 526(9) F 526(12)	35.5 0.5 15.0 5.0 35.0	7.35 1.47 0.98 6.01 6.61	16.67 3.00 4.58 14.01 18.47	4.60 9.36 21.44 25.30	6.36 13.86 25.13 35.14	27.78 17.04 31.51 49.68	20.47 46.77	28.10			
Renry	S 552(1) SG 552(2)	2.5	1.93	4.00								
Henry Hopkinel Hopkinel Jeffersonl Jefferson Jefferson Jefferson Leurel Leurel Leurel Leurel Levrencel Livrencel		2.5 80.0 1.0 35.0 30.0	8.12 10.84 2.61 6.19 4.63	27.66 29.35 7.10 10.89 7.85	50.34 12.91 20.51 14.19	56.84 32.25 23.38	111.26 43.64 32.59	56.69 43.61	70.29 55.35			
Hadison Marshell Marshall- McCracken ¹	FI 299(6) F 163(9) F 530(8)	40.0 10.0	6.12 2.50	8.73 5 . 36	13.18 8.33	19.89 11.38	26.66 14.56	34.62 22.14	42.13 30.87			
Mercer Muhlenberg ¹ Neleon ¹ Nicholes ¹	F 294(2) F 40(6) F 222(4) F 234(9)	8.0	10.75	19.46	34.52	45.05						
Nicholas Ohiol	F 234(9) SP 92-224	2.8	1,84	7.52	14.91	23.32	32.97	66.90	109.58			
Ohio Pulaski Pulaskil Pulaski ¹	s 473(2) sp 100=235(6) F 502(4) V 110(4)	4.0 10.0	2,68 7.11	6.63 14.56	11.67 23.26	16.82 32.17	22.10 43.87	56.33	65.05			
Rockcaetle Rockcaetls Rockcastle Rowanl	FI 70(6) FI 88(6) FI 517(7) FI 3(8)	80.0 40.0 30.0	3.74 5.19 4.81	7.06 10.74 7.68	11.06 14.06 13.99	15.22 19.90 21.82	27.09 31.03	34.26 \$1.51	42.53 52.33	51.11		
Warren Webster ¹ Webster	FI 113(5) FI 16(2) F 526(10) F 526(13)	50.0 18 . 0	8.44 7.55	20.38 18.44	37.72 29.77	45.06	61.97					
Whitley⊥	FI 23(16)											

1 Incomplete traffic data,

 $<_{-}^{*},$ •