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Characterization of culturable
bacterial endophytes and their
capacity to promote plant growth
from plants grown using organic or
conventional practices
Ye Xia1, Seth DeBolt1, Jamin Dreyer2, Delia Scott1 and Mark A. Williams1*

1 Department of Horticulture, University of Kentucky, Lexington, KY, USA, 2 Department of Entomology, University of
Kentucky, Lexington, KY, USA

Plants have a diverse internal microbial biota that has been shown to have an important
influence on a range of plant health attributes. Although these endophytes have been
found to be widely occurring, few studies have correlated agricultural production
practices with endophyte community structure and function. One agricultural system
that focuses on preserving and enhancing soil microbial abundance and biodiversity
is organic farming, and numerous studies have shown that organically managed
system have increased microbial community characteristics. Herein, the diversity and
specificity of culturable bacterial endophytes were evaluated in four vegetable crops:
corn, tomato, melon, and pepper grown under organic or conventional practices.
Endophytic bacteria were isolated from surface-sterilized shoot, root, and seed tissues
and sequence identified. A total of 336 bacterial isolates were identified, and grouped
into 32 species and five phyla. Among these, 239 isolates were from organically
grown plants and 97 from those grown conventionally. Although a diverse range
of bacteria were documented, 186 were from the Phylum Firmicutes, representing
55% of all isolates. Using the Shannon diversity index, we observed a gradation
of diversity in tissues, with shoots and roots having a similar value, and seeds
having the least diversity. Importantly, endophytic microbial species abundance and
diversity was significantly higher in the organically grown plants compared to those
grown using conventional practices, potentially indicating that organic management
practices may increase endophyte presence and diversity. The impact that these
endophytes could have on plant growth and yield was evaluated by reintroducing
them into tomato plants in a greenhouse environment. Of the bacterial isolates
tested, 61% were found to promote tomato plant growth and 50–64% were
shown to enhance biomass accumulation, illustrating their potential agroecosystem
application.
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Introduction

Plant endophytes have been defined as organisms that colonize
internal plant tissues without causing apparent harm to the host
(Petrini, 1991). The association between plants and bacterial
endophytes developed very early in evolution (Saikkonen et al.,
2004; Zhao and Qi, 2008; Kawaguchi and Minamisawa, 2010),
and it is likely that this association occurs in all plant species
(Rosenblueth and Martínez-Romero, 2006). In these mutualistic
interactions, the plant host provides diverse protective niches
for endophytic organisms, and endophytes can produce useful
metabolites and signals (Gary, 2003; Rosenblueth and Martínez-
Romero, 2006) which can increase nutrient uptake (Ramos
et al., 2011), modify plant growth, development and biomass
(Compant et al., 2005; Hardoim et al., 2008), induce resistance
to pathogens (Sturz and Matheson, 1996; Nagarajkumar et al.,
2004; Padgham et al., 2005) and insects (Azevedo et al., 2000),
and increase resistance to osmotic stress (Sziderics et al.,
2007), heavy metals (Rajkumar et al., 2009), contaminated
chemicals (Siciliano et al., 2001), and other abiotic factors. Plant–
endophyte interactions have also been shown to have critical
impacts on the integrity, proper function and sustainability
of agro-ecosystems (Barac et al., 2004; Nagarajkumar et al.,
2004).

Although originally documented long ago (Perotti, 1926),
there are many aspects of plant–endophyte associations that
remain poorly understood. For example, the physiological,
genetic and molecular mechanisms utilized during this
inter-organism association, both by the host plant to select
mutualistic rather than pathogenic associates, and also by the
cognate microbe during association is unclear. Additionally,
although there are examples of endophytes colonizing aerial
plant organs, the majority of studies have focused on root
endophytic associations (Lundberg et al., 2012, 2013; Romero
et al., 2014). Importantly, the environmental factors and
farming practices that affect endophyte community diversity,
and the mechanisms in which plant–endophyte associations
occur in agroecosystems are not well studied (Rosenblueth
and Martínez-Romero, 2006; Reinhold-Hurek and Hurek,
2011).

Organic farming has been one of the fastest growing segments
of agriculture in the United States since the early 1990s, and
total cropland in certified organic production from 2000 to 2011
increased by 153% to over 3 million acres (U.S. Department of
Agriculture [USDA], 2013). Among the defining characteristics
of organic systems are the integration of practices that aim
to increase soil quality and optimize nutrient cycling, while
excluding synthetically derived pesticides, and petroleum based
fertilizers. From the beginning of this farming movement, one
of the central philosophies has been to utilize techniques, such
as adding compost, manure and cover crop amendments to
build soil humus in order to optimize soil microbial health
and biodiversity (Zarb et al., 2005; Heckman, 2006; Thilmany,
2006). Multiple studies have compared conventional and organic
farming systems. These studies reveal that organic practices
influence soil, and notably are linked to higher soil microbial
populations, activity and community diversity (Monokrousos

et al., 2006; Esperschütz et al., 2007; Fließbach et al., 2007; Araújo
et al., 2009; Li et al., 2012). To conserve system biodiversity,
including soil microbes, organic practices exclude conventional
pesticides (e.g., fungicides, bactericides, insecticides, herbicides)
and effectively reduce their impact on non-target organisms
(Kuepper and Gegner, 2004). An outlying question is whether
organic practices could positively influence the plant bacterial
endophyte community (phytobiome). Here, we take initial steps
to address this question by examining the culturable endophyte
phytobiome from four economically important vegetable crops
grown under organic or conventional management practices. The
goal of this study was to advance our understanding of whether
plant endophyte communities are impacted by production
system.

Materials and Methods

Plant and Soil Sample Collection
Whole plants of sweet corn (Zea mays L.), tomato (Solanum
lycopersicum L.), watermelon (Citrullus lanatus Thunb.), and
bell pepper (Capsicum annuum L.) were collected during the
summer of 2012 at the University of Kentucky Horticulture
Research Farm in Lexington, KY (lat. 38◦ 3′N, long. 84◦
30′W). The soil on the farm was a Maury silt loam series
(0–2% slope), which is a fine, mixed mesic Typic Alfisol. For
each species, five fruiting stage plants were collected separately
on a section of the research farm that has been managed
using typical conventional farming practices appropriate for the
region, as outlined in the University of Kentucky Vegetable
Production Guide for Commercial Growers (University of
Kentucky, 2014) for over 30 years, or on a section of the farm that
has been managed using USDA certified organic management
practices according to the National Organic Program’s Organic
Standards, since 2005 (U. S. Department of Agriculture [USDA],
2014). Representative soil samples in the area around the
root zone from each plant were collected at a depth of 0–
15 cm and within 30 cm of the plant stem/root interface. The
soil samples were analyzed for pH, and other soil chemical
parameters by the University of Kentucky Regulatory Service
Soil Testing Lab according to (Soils and Plant Analysis Council,
2000).

Isolation of Bacterial Endophytes from Shoot,
Root, and Seed Tissue
Shoot (collectively the leaf and stem) and root segments were
prepared as described in Xia et al. (2013). Briefly, segments of
∼1–1.5 cm in length with similar weight were hand cut from
plant tissue samples and washed with deionized water (dH2O)
prior to sequential rinsing with 95% ethanol (EtOH) for 2 min.
Finally, segments were immersed in a solution of 30% Clorox
(household grade) bleach in sterile dH2O for 20 min, followed
by a series of five rinses with sterile dH2O. Seeds were excised
from their respective fruits, cut in half, and surface-sterilized
as above. All surface-sterilized plant specimens were placed
separately on culture plates containing YPDAmedium (Clontech
Laboratories, Inc., Mountain View, CA, USA). Nystatin (Fisher
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Scientific, Bridgewater Township, NJ, USA) was added to the
YPDA medium to a final concentration of 100 µg/ml to prevent
fungal growth. Aliquots of the final dH2O rinse were plated on
YPDA plates to verify that no surface bacteria were present. Equal
numbers of tissue samples from plants grown in the two systems
were incubated at 26◦C for 3–5 days on YPDA plates and the
endophytic bacteria emerging from the cut ends of the samples
onto the culture plates were selected and streaked on YPDA plates
separately. Single colonies were selected from each formation and
sub-cultured separately (Long et al., 2008). This procedure was
repeated 2–3 times in order to obtain a pure isolate.

DNA Extractions, 16S rDNA Gene
Amplification, Sequencing, and Species
Identification
Individual colonies were isolated from plates using a sterile
pipette tip and transferred to a streak plate to confer
uniformity, and grown separately in liquid culture (YPD
broth; Clontech Laboratories Inc., Mountain View, CA, USA)
overnight at 26◦C on a rotary shaker at 200 rpm. From the
resulting pelletized cells, DNA was extracted using a Zymo
Research fungal/bacterial DNA miniprep kit (Zymo Research,
Irvine, CA, USA). Amplification of the 16S rDNA (50 µl
reaction) included 3 µl DNA template (1–20ng), 100 µM of
primers 27f (5′-GAGTTTGATCCTGGCTCA-3′) and 1498r (5′-
ACGGCTACCTTGTTACGACTT-3′), which are complementary
to the conserved regions at the 5′-and 3′- ends of the
Escherichia coli 16s rRNA gene at the positions of 9–27
and 1477–1498 respectively (Lane, 1991; Reddy et al., 2000),
3 mM Mgcl2, 3 mM dNTPs, 5 µl of Taq buffer, and 1 U
Taq DNA polymerase (Fermentas, Inc., Hanover, MD, USA).
PCR amplification was performed on an icycler PCR machine
(Bio-Rad Laboratories, Berkeley, CA, USA), with the initial
denaturation at 94◦C for 5 min, followed by 50 cycles of
amplification (94◦C for 1 min, 54◦C for 1 min, 72◦C for 2 min)
and an extension step (72◦C for 5 min). The PCR products
were purified using a Fermentas GeneJET PCR purification
kit (Fermentas, Inc., Hanover, MD, USA), quantified on a
nanodrop spectrophotometer and sequenced by Elim Biopharm
Inc. (Hayward, CA, USA). Sequences were edited manually
or by Bioedit Sequence Alignment Editor, and subjected to
BLASTn searches in the NCBI and BIBI Databases (Devulder
et al., 2003; Mignard and Flandrois, 2006). The top database
hits were used to identify the most probable taxonomic
resolution to species level with at least a 95% confidence
interval.

Bacterial species derived from specific host plants were
grouped into their higher taxonomic level (Phylum level) so that
the Phylum frequencies could be evaluated based on their tissue
and farming system (conventional vs. organic management)
distribution. Species diversity and the relative species abundance
of the 32 microbial species identified in this study were calculated
using the Shannon diversity index (Bowman et al., 1971). Prior
to diversity analysis, samples that did not test positive for any of
the 32 bacterial species were removed and the data were square
root transformed. The effects of farming method, plant species,
and tissue type on the abundance and diversity of endophytic

bacteria in the four plant species was compared using two-
way PERMANOVAs with 9999 permutations in the “vegan”
package (Oksanen et al., 2013) of R 3.0.1 (R Core Development
Team, 2013). Bacterial species presence was summed across tissue
types within the five replicate plants of each species to test
the overall effect of farming method and their interaction with
plant species, while non-aggregated bacteria counts were used
to analyze the effects of farming method by tissue type within a
plant species, and tissue types by farming method across plant
species.

P-values for the bacterial species abundance based on
plant type and production system (conventional or organic)
analysis were calculated using the Mann–Whitney pairwise
post hoc test through the PAST software program (http://
folk.uio.no/ohammer/past/, version 3.05, University of Oslo,
Oslo, Norway). The experimental design was a factorial
arrangement comparing five replications of the four plant
species, each grown under two production systems: organic or
conventional.

Screening for Plant Growth Promoting
Bacterial Isolates
Tomato seeds (cultivar Rutgers, Ferry Morse, MA, USA) were
washed with 95% EtOH in dH2O for 2 min and then treated
for 25 min in a solution of 30% Clorox, 5% sodium dodecyl
sulfate (SDS) solution in dH2O. They were then rinsed five
times with sterilized dH2O and incubated at 4◦C for 24 h. Seed
sterility was assessed by plating aliquots of the seeds on YPDA
plates and confirming no microbial growth. Individual colonies
of endophytes isolated from plants grown in both production
systems were grown in YPD broth medium overnight at 26◦C
on a rotary shaker at 200 rpm to the log phase of the bacteria
growth (OD600 = 0.6). The sterilized tomato seeds were added
to the bacteria broth, with a final concentration of approximately
10e8 bacteria per seed, and grown at 26◦C on a rotary shaker at
200 rpm for an additional 24 h. The bacteria-treated tomato seeds
were then sown into 15 cm diameter pots containing autoclaved
Pro-Mix potting media (Premier Horticulture, Inc., Quakertown,
PA, USA), and sterilized seeds without the bacterial treatment
were sown as controls in separate pots. The plants were grown
in a green house for 60 days with constant temperatures of 28◦C,
and 16 h of light followed by 8 h of dark. The above soil height,
fresh weigh and dry weight of the tomato plants were recorded
and the comparison of height, fresh weight and dry weight
between plants treated with each individual bacterial species were
compared with the untreated control plants by the Student t-test
at a 95% confidence level. All the experiments contained three
replicates (n = 3).

Results

Endophyte Community Diversity and
Abundance
A total of 336 endophytic bacterial isolates were cultured
from tomato, corn, watermelon, and pepper plants that
were grown in either a conventional or a certified organic
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production system. Through 16S rDNA sequence identification
we demonstrated that these plant-associated endophytic bacteria
could be classified into 32 distinct species (summarized in
Figure 1). Further classification showed that the 32 species
belonged to five bacterial phyla. The most commonly isolated
bacteria were in the phylum Firmicutes, which included 14
species and 186 isolates and constituted ∼44% of the total
species types in this study (Figures 1A,B). Species in phylum
Firmicutes included Bacillus cereus, B. licheniformis, B. pumilus,
B. simplex, Bacillus sp., B. subtilis, B. thuringiensis, Brevibacillus
reuszeri, Brevibacillus sp., Lysinibacillus fusiformis, Paenibacillus
polymyxa, P. sp., Staphylococcus sp., and uncultured Bacillus sp.
Other phyla identified included Proteobacteria, Actinobacteria,
Bacteroidetes, and Deinococcus-Thermus. Proteobacteria
was the second most abundant phylum and contained 105
isolates and 11 species including Burkholderia cenocepacia,
B. gladioli, B. gladioli pv. allicola, Paracoccus halophilus,

Pseudomonas putida, P. sp., Sphingomonas sp., Stenotrophomonas
chelatiphaga, S. maltophilia, Stenotrophomonas sp., and
uncultured alpha proteobacterium. The phylum Actinobacteria
included four species: Kocuria kristinae, Microbacterium sp.,
M. oleivorans, Micrococcus sp. The phylum Bacteroidetes
included Chryseobacterium sp. and Flavobacterium sp. The
phylum Deinococcus-Thermus had the lowest abundance and
included only one species, Deinococcus sp.

Identification of bacterial isolates below the species level,
referred herein as genotypes, revealed that the species Bacillus
sp. and B. cereus contained the highest number of genotypes,
with 10 each, followed by B. pumilus and B. thuringiensis,
which contained three genotypes each, while the other 28
species only contained 1–2 genotypes each (Figure 1C).
Interestingly, examination of the distribution pattern within the
endophytic bacterial isolates showed that 10 species comprised
∼61% of the total 336 isolates, with the most abundant being

FIGURE 1 | Taxonomic distribution of endophytic bacteria isolated from
corn, watermelon, pepper, and tomato grown under two production
systems: organic and conventional. The distribution of species (n = 32; A),
strains (n = 58; B). All data reflect the total from all four plants and both
production systems. Distribution of strains beyond the species level was

examined (C) where bars represent the occurrence of genotypes/subspecies
(n = 58) among the 336 different bacterial isolates from the four plants in this
study. Relative species abundance was examined between the two production
systems (D). Data are broken into organic or conventional production systems
in each species.
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B. cereus, followed by Bacillus sp., Stenotrophomonas sp.,
B. thuringiensis, Stenotrophomonas maltophilia, Lysinibacillus
fusiformis, Deinococcus sp., B. licheniformis, B. pumilus,
Paracoccus halophilus (Figure 1C).

Endophyte Relative Species Abundance and
Diversity Associated with Farm Management
Practices
Of the 336 total isolates, 71% (239 isolates) were obtained
from plants that were grown using organic farming practices,
and 29% (97 isolates) from plants grown using conventional
farming practices. The relative species abundance of bacterial
endophytes was significantly higher in plants through organic
practices than conventional practices (Figure 1D, P < 0.05,
Table 1). A total of five phyla and 28 species were common to
both systems (Figure 1D). Unique to the organically grown plants
were the species B. simplex, Flavobacterium sp., Microbacterium
oleivorans, Paenibacillus polymyxa (Figure 1D). Collectively
there were 32 species isolated from plants grown organically,
and 28 species from plants grown conventionally (Figure 1D).
The Shannon diversity index value revealed that the species
diversity of bacterial isolates were higher in all of the organically
managed plants, although this difference was only significantly
higher in pepper (Table 2). Importantly, the endophyte diversity
was significantly higher among all crops grown organically versus
those grown using conventional practices (Table 2, P = 0.049).

TABLE 1 | Bacterial species abundance based on plant type and
production system (conventional or organic).

Tissue type Relative abundance Relative abundance P-value

Conventional Organic

Tomato Shoot 0.06 0.13 0.04

Root 0.02 0.08 <0.001

Seed 0.03 0.01 0.66

Total 0.11 0.22 <0.01

Corn Shoot 0.03 0.1 <0.01

Root 0.02 0.08 <0.001

Seed 0.01 0.02 0.4

Total 0.06 0.2 <0.001

Melon Shoot 0.09 0.15 0.1

Root 0.01 0.1 <0.001

Seed 0 0 Na

Total 0.1 0.25 <0.001

Pepper Shoot 0.02 0.04 0.08

Root 0 0.01 Na

Seed 0 0.01 Na

Total 0.02 0.05 0.03

Frequency is shown based on the number of times individual bacteria were cultured
from shoot, root or seed tissues in each crop species: tomato, corn, melon, or
pepper. P-value was calculated using the Mann-Whitney pairwise post hoc test
(PAST version 3.05, University of Oslo, Oslo, Norway). A statistical comparison
was not possible when no bacteria species were isolated from individual tissues,
and this is noted with na = not applicable. The number of species assessed in
this experiment for each tissue type is 32 and the assessment was done from five
replicates of each plant species.

TABLE 2 | Shannon diversity indices and the results of two-way
PERMANOVAs with 9999 permutations analyzing the effect of farming
method and plant tissue origin on the diversity of endophytic microbiota
in four plant species.

Plant Factor Shannon indices F-value N P-value

Total Con. vs. Org. 2.96 vs. 3.14 2.24 35 (16, 19) 0.049

Corn Con. vs. Org. 2.58 vs. 3.01 1.48 16 (6, 10) 0.21

Melon Con. vs. Org. 2.75 vs. 3.08 1.63 15 (6, 9) 0.17

Pepper Con. vs. Org. 1.24 vs. 2.34 3.06 10 (3, 7) 0.026

Tomato Con. vs. Org. 2.57 vs. 2.88 1.42 19 (10, 9) 0.22

All Shoot vs. Root 3.08 vs. 3.18 1.09 50 (34, 16) 0.37

All Shoot vs. Seed 3.08 vs. 2.22 2.69 44 (34, 10) 0.023

All Root vs. Seed 3.18 vs. 2.22 2.59 26 (16, 10) 0.017

Microbial abundance was summed across tissue types within the five replicate
plants of each species to test the overall effect of farming method and its interaction
with plant species (Plant = “Total”), while non-aggregated microbe counts were
used to analyze the effects of farming method by tissue type within a plant species
(Plant = species), and tissue types by farming method across plant species
(Plant = “All”). Con. is conventional and refers to plants grown using conventional
practices, Org. is organic and refers to plants grown using organic practices. Bold
identifies significant differences at P < 0.05.

Among the four plant species evaluated in this study, the
diversity index was highest in melon, and lowest in the bell
pepper, and this trend was consistent across management systems
(Table 2).

Soil pH has been found to influence soil bacterial community
diversity (Fierer and Jackson, 2006) and bacterial endophyte
diversity (Xia et al., 2013). Therefore, we evaluated soil pH for
any shifts in correlation with endophyte diversity. Although the
soils in both management systems were of the same soil series and
on the same farm, differences in soil pH were observed between
the different plants and between production systems (Table 3).
Initially, we analyzed a pairwise comparison of Shannon diversity
index values in the four plants in this study versus pH. These data
revealed no correlation between soil pH and endophytic bacteria
species diversity across all four plant species (data not shown);
however, the data showed a consistent pattern within the same
plant species, with a higher species diversity for all the organically

TABLE 3 | Correlation of soil pH and bacterial diversity as measured by the
Shannon diversity index for plants grown under organic or conventional
practices.

Crop Shannon index (Hs) Soil pH

Org. melon 3.08 5.58

Conv. melon 2.75 5.37

Org. tomato 2.88 5.78

Conv. tomato 2.57 5.37

Org. corn 3.01 6.15

Conv. corn 2.58 5.15

Org. pepper 2.34 5.49

Conv. pepper 1.24 5.27

Soil samples from each plant were collected from the rhizosphere at a depth
of 0–15 cm and within 30 cm of the plant stem/root interface. Shannon index
represents bacterial diversity over five replications for each plant type (n = 5). Org.,
organically grown plants; Conv., conventionally grown plants.
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FIGURE 2 | Relative species abundance among plant tissues. The frequency at which an isolated endophyte was counted was based on sequence based
classification at the species level, which were organized into a meta-analysis bar chart, revealing the relative abundance of specific species among the three tissues.
P < 0.0001.

grown plants versus those grown using conventional practices.
This diversity within each plant species seemed to be correlated
with pH, in that higher pH values were consistently associated
with higher diversity indices (Table 3).

Bacterial Community Diversity Associated with
Specific Tissues
Only two phyla, Firmicutes and Proteobacteria, were distributed
in all plant tissues, while phylum Actinobacteria, Bacteroidetes,
and Deinococcus-Thermus were only found in root and shoot,
but not seed tissues. In comparing the Shannon diversity index
value of bacterial endophytic communities based on the plant
tissue they were extracted from, we found that shoots and roots
displayed a similar diversity, but seeds had the lowest diversity
(Table 2). Notably, of the 32 species only 11 were distributed in
all tissues, these including B. cereus, B. licheniformis, B. pumilus,
B. simplex, Bacillus sp., B. thuringiensis, Burkholderia gladioli,
B. gladioli pv. Alliicola, Paracoccus halophilus, Stenotrophomonas
maltophilia, and Stenotrophomonas sp. (Figure 2). Of the 336
isolates identified within this study, the shoot community had
206 isolates belonging to 32 species; the root community had 106
isolates belonging to 30 species; and the seed community had 24
isolates belonging to 12 species, which meant that there were 61,
32, and 7% bacterial isolates distributed in shoot, root, and seed
tissues, respectively (Figure 2, see Table 1 for analysis based on
production system).

Analysis of Endophytic Bacteria and their
Capacity to Influence Plant Growth
To advance our understanding of the functionality of the bacteria
isolated in this study, we inoculated surface-sterilized tomato
seeds with isolated bacteria and evaluated their potential to
modulate plant growth and development. As noted above, we
isolated a total of 58 different bacterial genotypes that were

composed of 32 different species. We therefore screened all
58 genotypes derived from plants grown in both production
systems for their capacity to modify plant growth in tomato.
Surprisingly, 61% of the bacteria co-inoculated with tomato seeds
were found to promote plant growth (aerial height) compared
with mock controls; 64% were found to increase the fresh weight
of tomato plants, and 50% were found to increase the dry weight
of the tomato plants (Supplementary Tables S1–S3, P < 0.05,
Student t-test). Bacteria that increased plant height, fresh weigh
and dry weight more than 25% relative to the mock control
were mostly in the phylum Firmicutes. Bacterial genotypes that
had the highest levels of growth promoting activity included
Bacillus sp. clone D12, Bacillus sp. DB12, B. cereus isolate T1-
9, Brevibacillus sp. Z0-YC6800 and Burkholderia gladioli strain
PA17.2, etc. (Supplementary Table S1). These data demonstrate
that many of the isolated bacterial species fromwithin plant tissue
were capable of positively impacting growth when re-applied to a
host plant in isolation.

Discussion

One of the central management goals of organic farming is to
optimize soil microbial community health and diversity. Many
of the core practices associated with organic farming, such
as organic amendment addition, and humus deposition have
been shown to positively impact soil microbial communities,
with the ultimate goal of increasing nutrient uptake, disease
suppression, and enhancing plant health, potentially through
microbial mediated processes. Since it is thought that many
endophytes colonize plants from a sub-population of the
rhizosphere microbiome (Compant et al., 2010), enrichment of
soil microbial communities, as has been observed in organically
managed systems, plausibly results in an increased presence
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of endophyte bacteria, but this remains unclear. Elucidating
whether farming practices, such as organic principles versus
conventional practices that employ pesticides, can be correlated
with modification or enhancement of elements of the plant
microbiome is therefore of considerable interest. Numerous
evaluations of bacterial endophytes have shown them to be
widespread in the plant kingdom (Olivares et al., 1996; Pillay
and Nowak, 1997; Siciliano and Germida, 1999; Sessitsch et al.,
2004; Hardoim et al., 2008; Lundberg et al., 2012), and consistent
with these findings we were able to isolate endophytes from
all of the plants in this study (Table 1). There were unequal
distributions of bacteria isolates among species and genotypes,
and the most abundant species were Bacillus cereus and Bacillus
sp., which constituted more than 35% of total genotype variants.
To the phylum level, these species all belonged to phylum
Firmicutes and Proteobacteria. The Firmicutes constituted ∼44
and 66% of the total bacterial species and genotype variants
(Figures 1A,B). While we are acutely aware that the distribution
and identification of specific bacteria may be a consequence of
the cultivability, these findings are consistent with others that
have found Firmicutes to be the most predominant phylum
of the bacterial endophytes in ginseng (Vendan et al., 2010)
and Proteobacteria to be the most abundant phylum of potato
(Garbeva et al., 2001).

The relative species abundance of endophytes was consistantly
higher in plants grown in the organic than conventional systems
(Figure 1D; Table 1). Of the 32 species isolated, 29 were present
in plants grown in both production systems, and three species
(Flavobacterium sp., Bacillus simplex, Paenibacillus polymyxa)
were only present in the organically grown plants (Figure 1D).
Flavobacterium has been shown to be enriched in the rhizosphere
of a range of plants, including two in this study (bell pepper
and tomato), and has been implicated in the induction of plant
defense stimulation, and growth promotion (Soltani et al., 2010).
It has been proposed that Flavobacterium enrichment may be
associated with their strong copitrophic properties (Fierer et al.,
2012). Although not specifically evaluated in this study, many
of the practices associated with organic farming are known to
increase soil organic matter (SOM) and this could potentially
result in increased Flavobacterium abundance. Bacillus simplex
has recently been shown to have plant growth promoting
characteristics, particularly in roots, through the production of
siderophores, as well as anti-fungal properties against pathogens
such as Fusarium (Schwartz et al., 2013). Paenibacillus polymyxa
has also been shown to have plant growth promoting attributes
and increases resistance to certain biotic and abiotic factors
(Timmusk et al., 2005). It is beyond the scope of this study to
conclusively determine why these three endophytes were only
distributed in the organically managed plants, however, prior
evidence supports their capacity for positive impact on plant
health.

Evaluation of endophyte distribution among plant tissues
revealed that only two phyla- Firmicutes and Proteobacteria
were distributed in all the tissues, while phylum Actinobacteria,
Bacteroidetes, and Deinococcus-Thermus were only found in
root and shoot, and not in seed tissues. We caution that culturing
techniques exclude a portion of the non-culturable microbiome,

which could be revealed through culture-independent
approaches using extracted microbial DNA or RNA and
analyzing the phylogenetic relevant 16SrRNA or DNA
by PCR/RT-PCR and cloning approaches or by bacterial
metagenome or metatranscriptome approaches using techniques
such as pyrosequencing (Fischer et al., 2012; Lundberg et al.,
2013). Out of all the 32 species cultured, only 11 were widely
distributed in all the tissues. Shoot tissues contained all 32
species, while roots and seed tissues contained 30 species and
12 species respectively (Figure 2). Community diversity analysis
revealed distinct difference between the tissues. For example, the
bacteria community diversity was slightly higher in roots than
shoots, and both tissues had much higher diversity than seed
tissues (Hs shoot = 3.08 vs. Hs root = 3.18; Hs shoot = 3.08
vs. Hs seed = 2.22; Hs root = 3.18 vs. Hs seed = 2.22, Table 2).
These results suggest that endophytic bacteria may display tissue
specific distribution, which has been found in other systems (Chi
et al., 2005; Sun et al., 2008; Reinhold-Hurek and Hurek, 2011;
Thaweenut et al., 2011; Thomas and Reddy, 2013). Analysis of
bacterial endophyte diversity revealed a difference based on plant
species. For example, bell pepper had the lowest, and watermelon
the highest overall diversity (Table 2), and these values were
consistent across the two production systems. These findings
are consistent with those from other studies that indicate that
host selection may play a critical role in establishing internal
microbiota (Berendsen et al., 2012; Bulgarelli et al., 2012; Neal
et al., 2012), and that this selection may be based on host genetic
background, as well as developmental and physiological needs
(Siciliano et al., 2001; Rosenblueth and Martínez-Romero, 2006).

Analysis of endophyte community diversity among the two
production systems revealed a distinct trend: plants grown
using organic practices had higher diversity than those grown
using conventional practices (Hs organic = 3.14 vs. Hs
conventional = 2.96, P = 0.049, Table 2). This was consistent
across all four plants, although the difference varied between
the different crops, with pepper having the largest diversity
difference, followed by corn, melon and tomato (Table 2).
One potential explanation for the endophyte diversity difference
between the two systems is that there were differences in
the rhizosphere microbiome, which could presumably result
in differential bacterial colonization into the plant endosphere.
Although there were distinct variations in the way the soil was
managed between the systems (e.g., tillage technique, cover crop
usage, compost and fertility application, and pesticide usage),
both soils were very similar (from the same soil series) and
of a very high agricultural quality. While it is likely that the
soil management practices between these systems could result
in multiple soil chemical, physical and biological differences, we
chose to simplify our assessment of how soil-level characteristics
could be attributed to endophyte differences by focusing on
soil pH, which has been reported to be a key determinant
of soil bacterial community structure (Fierer and Jackson,
2006). In this study a pairwise comparison between the species
diversity and rhizosphere soil pH showed that between the two
production systems the organically managed soils consistently
had higher pH values, which correlated with higher species
diversity in each of the crop plants (Table 3). While it is possible
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that other soil attributes, such as SOM could play a role in
rhizosphere and endophyte bacteria diversity, SOM was not
shown to be a significant factor in determining endophyte
community diversity in switchgrass (Xia et al., 2013). Considering
that organically managed soils typically have higher microbial
abundance and activity, it is possible that the soil microbial
community structure differences between these production
systems played a major role in determining endophyte
colonization. Pyrosequencing of both the rhizosphere and
endophyte bacterial communities, coupled with an extensive soil
analysis, is now needed to further elucidate the complexities of
how soil properties impact plant microbiome dynamics.

A principal goal of this work was to evaluate the plant growth
promoting attributes of the isolated endophytes, which required
that we utilize a culturing technique rather than pyrosequencing.
Of the 58 endophytic bacterial genotypic variants evaluated
in tomato, 61% were found to result in increased growth,
and around 50–64% were shown to enhance shoot biomass
accumulation compared with the mock control. There could be
several possible mechanisms of increasing plant growth and yield,
as has been observed in other endophytes, such as increased
nitrogen fixation, hormone production, or enhanced phosphate
and iron utilization (Compant et al., 2005; Hardoim et al., 2008).
Our results showed that the genotypes exhibiting the best growth
promotion belonged to phylum Firmicutes, particularly Bacillus
sp., Bacillus cereus, and phylum Proteobacteria, particularly
Burkholderia gladioli. In addition to growth promotion some
of the bacteria isolated in this study have been shown to

have other beneficial effects between systems, such as Bacillus
thuringiensis isolate LDC-391 having specific cytocidal activity
against cancer cells (Poornima et al., 2010), and Bacillus sp.
DU39 showing extreme virulence to the free-living nematodes
(Rae et al., 2010). Collectively, data presented herein supports
the notion that production practices can impact plant endophyte
communities. Interestingly, our data for the four commercial
horticultural crops studied suggested that organic production
practices changed or even increased endophyte diversity. Future
studies that investigate the same question using pyrosequencing
are also needed, as are studies that correlate specific production
practices, such as soil disturbance through tillage, organic
matter management, and pesticide usage, with endophyte
community dynamics. Recent experiments using pyrosequencing
have confirmed that organic management practices can indeed
result in a modification of soil microbial community structure
(Hartmann et al., 2014) but further work correlating these
changes with plant endophyte community structure is needed.
Additionally, and of critical importance, is the elucidation of the
impacts that these endophyte communities could impart of their
plant hosts, and how these associations could be preserved or
increased to enhance the sustainability of agroecosystems.

Supplementary Material

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2015.00490
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