

COMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS FRANKFORT

MITCHELL W. TINDER

May 25, 1967

ADDRESS REPLY TO DEPARTMENT OF HIGHWAYS DIVISION OF RESEARCH 533 SOUTH LIMESTONE STREET LEXINGTON, KENTUCKY 40508 Telephone 606-254-4475

H-2-20

MEMORANDUM

TO:

W. B. Drake Assistant State Highway Engineer Chairman, Research Committee

SUBJECT: Research Report, Interim; "Flow Behavior of Asphalt Cements;" KYHPR-64-20 HPR-1(2), Part II

A few years ago the term "rheology" (flow) was familiar to only a few scholars and researchers; the term embraces the whole science of material mechanics -- elasticity, viscosity, creep, and relaxation. In a simpler sense, however, paving asphalts (bitumens) are glues or cements which hold aggregate particles together; if the glue were ideally elastic (Hookean), it could be represented as being analogous to a simple spring; but, inasmuch as bitumens are semi-solids and exhibit properties of both solids and liquids -that is, elasticity and viscosity --, tractive or cohesive resistance necessarily becomes an extremely complex combination of mechanical moduli, temperature and time. A rheological model is, therefore, conceptually, a complete mechanistic analog of the behavior of a real material. Rheological coefficients are ultimately applicable to the design of paving mixtures and pavement structures. Although the ultimate objective has not yet been achieved, the true nature and quality of bituminous cements is best described in tese terms -- for example, there is considerable interest nationally in developing specifications in which asphalt cements will be designated according to ranges of viscosity. The report submitted herewith relates interim progress toward these objectives.

Mr. Mossbarger resigned from the Department June 30, 1966; Dr. Deacon rejoined our research staff last August and has continued the study to its present stage. The report, of course, reflects their joint authorship and individual dedication. The investigative work continued while the report was in `

W. B. Drake

preparation. Additional measurements at low temperatures are either in progress or are planned.

Special attention is invited to the rational treatment of viscosity coefficients and to the evident necessity of discreet obedience to discrete definitions and measurement techniques. The curve-fitting technique employed in the viscoelastic analysis is thought to be somewhat original and may be useful in analyses of other types of data. The time-temperature superpositioning technique summarily portrays the viscoelastic character of a material throughout a given range of temperature.

The report does not require any Departmental action at this time; it is being issued as reference information and is somewhat pertinent to matter of viscosity-grading of asphalt cements, as mentioned previously.

Respectfully submitted,

Jas. H. Havens Director of Research Secretary, Research Committee

JHH:em Attachment

cc: Member, Research Committee

A. O. Neiser

R. O. Beauchamp

- T. J. Hopgood
- R. A. Johnson

H. G. Mays

:

Research Report

FLOW BEHAVIOR OF ASPHALT CEMENTS KYHPR-64-20: HPR-1(2)

by W. A. Mossbarger, Jr., Former Research Engineer and J. A. Deacon, Research Engineer

į.

Е., 1.).

Division of Research DEPARTMENT OF HIGHWAYS Commonwealth of Kentucky

In cooperation with the U.S. Department of Transportation Federal Highway Administration Bureau of Public Roads

The opinions, findings, and conclusions in this report are not necessarily those of the Department of Highways or the Bureau of Public Roads.

May, 1967

	1.000	n i Huigdiddidir (Menningi		ur nun nun hei semt förförförförda.	en ne Stoketstigsen
			•		

:

PREFACE

The Kentucky Department of Highways in cooperation with the Bureau of Public Roads is conducting a continuing investigation of the fundamental mechanical properties of flexible pavement materials. The ultimate objective of this investigation is to gain sufficient knowledge of the fundamental mechanical behavior of these materials to support the establishment of a responsive flexible pavement design procedure.

A preliminary report $(\underline{1})$, issued in 1964, contained the results of the preparatory phase of this investigation. This report summarized from a theoretical point of view efforts that had been made to quantify the mechanical response of viscoelastic materials to known conditions of loading. In addition, it described the development of a rotating coaxial cylinder viscometer which was designed to measure the creep response in shear of solid or semi-solid bituminous materials. The usefulness of this viscometer was verified by testing a rubberized asphalt cement at several temperature and torque levels. It was found that rubber, when added to the asphalt cement in significant quantities, tended to increase, at the higher temperatures, the steady-state viscosity, the stiffness, the retardation time of the viscoelastic response, and the complexity of flow.

The current report summarizes results of a second phase of the continuing investigation in which the preparatory efforts have been expanded to encompass the creep testing of 13 asphalt

-iii-

cements in a second rotating coaxial cylinder viscometer. The 13 asphalt cements were selected to represent a variety of crude sources, penetration grades, and manufacturing processes. Design and construction of the viscometer, which were accomplished as a portion of this phase, reflect the basic features of the earlier viscometer modified on the basis of the recommendations contained in the first report (1).

In analyzing the data reported herein, efforts were made to apply existing theories for simple ideal materials such as the Newtonian liquid and the Bingham plastic whenever these theories produced results in reasonable accord with the actual data. In many instances, however, it was necessary to combine these simple theories with somewhat more complex concepts of linear viscoelasticity in order to adequately characterize the deformation properties of the materials.

-iv-

TABLE OF CONTENTS

and and a second and An and a second and a	Page
PREFACE	iii
LIST OF TABLES	vii
LIST OF FIGURES	ix
INTRODUCTION	1
THEORETICAL CONSIDERATIONS	7
Steady-State Liquids Viscoelastic Materials Other Materials	
APPARATUS, MATERIALS, AND PROCEDURE	25
Apparatus Materials Test Procedure	
PRESENTATION OF RESULTS	37
Tests at 104 ^o F Tests at 77 ^o F Tests at 39.2 ^o F	
ANALYSIS OF RESULTS	61
Apparent Viscosity Temperature Susceptibility Viscosity-Penetration Relationship Time-Temperature Superposition	
CONCLUSIONS	85
REFERENCES	89
APPENDIX A - TEST PROCEDURE	95
APPENDIX B - CURVE-FITTING TECHNIQUE	99

. . .

TABLE OF CONTENTS (Cont'd.)

Page

LIST OF TABLES

Tab1e		Page
1	Effective Dimensions of Cup, Bob, and Specimen	31
2	Crude Sources, Penetration Grades, and Manufacturing Processes for Asphalt Cements	32
3	Results of Standard Tests on Asphalts	34
4 <u>č</u>	Test Program.	35
5	Material Parameters Evaluated at 104°F	41
6	Classification of Asphalts by Plastic Viscosity at 104 ⁰ F	42
7	Material Parameters Evaluated at 77 ⁰ F	44
8	Classification of Asphalts by Plastic Viscosity at 77 ⁰ F	45
9	Elastic and Steady-State Material Parameters Evaluated at 39.2°F	46
10	Classification of Asphalts by Plastic Viscosity at 39.2°F	49
11	Viscoelastic Material Parameters Evaluated at 39.2°F	58
12	Comparison Between Viscosities Obtained with Rotating Coaxial Cylinder Viscometer and Sliding Plate Viscometer	69
13	Fundamental Differences Between Viscometers and Test Procedures	72
14	Temperature Susceptibility	74
15	Material Parameters Evaluated at 0°F (Asphalt 53)	78
16	Shift Factors	82

~vii-

i

1999) Hereiter g

S

LIST OF FIGURES

:

Figure		Page
1	General Mechanical Model Applicable to Rubberized Asphalt Cements (<u>1</u>)	6
2	Cross Section Through Rotating Coaxial Cylinder Viscometer	7
3	Flow Behavior of Newtonian Liquid in Rotating Coaxial Cylinder Viscometer	12
4	Flow Behavior of Bingham Plastic in Rotating Coaxial Cylinder Viscometer	15
5	Flow Curves for Various Steady-State Liquids	18
6	Flow Behavior of Various Steady-State Liquids in Rotating Coaxial Cylinder Viscometer	18
7	Generalized Voigt Body	20
8	Creep Curve for a Material Exhibiting Instantaneous Elastic Deformation, Retarded Deformation, and Steady-State Flow	22
9	Viscometer and Related Equipment Assembled for Testing	26
10	Rotating Coaxial Cylinder Viscometer without Weights (Large Cup and Bob)	26
11	Rotating Coaxial Cylinder Viscometer with Weights (Small Cup and Bob)	28
12	Large Cup-and-Bob Assembly	28
13	Pouring Mold Used with Large Cup-and-Bob Assembly	29
14	Small Cup-and-Bob Assembly	29
15	Creep Curves for Asphalt 72 at Three Temperatures	38
16	Steady-State Angular Velocity vs. CT Product for 104°F Tests	40

-ix-

. .

LIST OF FIGURES (Cont'd.)

Figure		Page
17	Steady-State Angular Velocity vs. CT Product for 77 ⁰ F Tests	43
18	Steady-State Angular Velocity vs. CT Product for 39.2°F Tests	48
19	Experimental Creep Functions for Asphalt 72 at 39.2°F	50
20	Average Creep Functions for All Asphalts at 39.2°F	52
21	Viscoelastic Analysis for Asphalt 72 at 39.2°F	54
22	Comparison Between Observed and Computed Creep Functions for Asphalt 72	57
23	Comparison Between Observed and Computed Creep Functions for Asphalt 3	5 7
24	Evaluation of Angular Velocity by Secant Method	62
25	Comparison of Viscosities of Asphalt 3 at 39.2°F	63
26	Evaluation of Angular Velocity in Region of Steady-State Flow	64
27	Theoretical Comparison of Steady-State, Apparent Viscosity, n _a , and Plastic Viscosity, n _p	66
28	Comparison Between Viscosities Obtained with Rotating Coaxial Cylinder Viscometer and Sliding Plate Viscometer (Asphalt C-10 at 45°F)	68
29	Comparison Between Limiting Viscosity and Plastic Viscosity	71
30	Largest and Smallest Temperature Susceptibilities	75
31	Relationship Between Plastic Viscosity and Penetration (100 g., 5 sec.) at 77°F	77

LIST OF FIGURES (Cont'd.)

Figure		Page
32	Relationship Between Plastic Viscosity and Penetration (200 g., 60 sec.) at 39.2°F	77
33	Average Creep Functions for Asphalt 53	80
34	Relationship Between Shift Factor and Temperature	81
35	Master Creep Function for Asphalt 53 (Reference Temperature of 50 ⁰ F)	83
C=1	Source Program for Viscoelastic Analysis	115
C - 2	Source Program for Matinv Subprogram	120
D ~ 1	Viscoelastic Analysis for Asphalt 3 at 39.2°F	124
D - 2	Viscoelastic Analysis for Asphalt 13 at 39.2°F	126
D - 3	Viscoelastic Analysis for Asphalt 45 at 39.2°F	128
D - 4	Viscoelastic Analysis for Asphalt 53 at 39.2°F	130
D - 5	Viscoelastic Analysis for Asphalt 67 at 39.2°F	132
D~6	Viscoelastic Analysis for Asphalt 71 at 39.2°F	134
D - 7	Viscoelastic Analysis for Asphalt 72 at 39.2°F	136
D-8	Viscoelastic Analysis for Asphalt 91 at 39.2°F	139
D - 9	Viscoelastic Analysis for Asphalt 116 at 39.2°F	140
D-10	Viscoelastic Analysis for Asphalt 127 at 39.2°F	142
D-11	Viscoelastic Analysis for Asphalt 200 at 39.2°F	144
D-12	Viscoelastic Analysis for Asphalt PR-103 at 39.2°F	147

-xi-

war bury sub-hubblede

1 1

;

INTRODUCTION

In the past, flexible pavement design procedures have been based largely upon empiricism; that is, empirical correlations between observed pavement performance and various traffic, pavement, and other parameters thought to be significant with respect to their effects on pavement performance. Recently, however, emphasis has shifted to analyses of stresses, strains, and deflections in the pavement structure (2,3). The basic intent is to limit the magnitudes of the critical stresses, strains, and deflections to levels below those thought to cause distress. Because of this emphasis on the mechanical behavior of the pavement structure and on the concept of critical levels of stresses and strains, this more fundamental approach is not unlike that commonly employed in conventional structural analyses.

There are at least five major determinations to be made before the theoretical approach can be translated into a design criterion. These include: (1) the development of a suitable technique for computing the mechanical response of a pavement structure to highway loads; (2) the adoption of standard methods of test for measuring the pertinent mechanical properties of the component layers; (3) the identification of those critical stresses, strains; and deflections which control the development of various forms of distress; (4) the establishment of tolerable levels of these critical stresses, strains, and deflections; and (5) a characterization of the loading and environmental variables. It is to the first two of these determinations that this continuing study is being directed.

-1-

The most suitable technique currently available for computing the mechanical response of a pavement structure to highway loads appears to be that which embodies the classical concepts of elastic analyses. Solutions are currently available for the computation of stresses, strains, and deflections in multi-layered elastic systems (4-6). These solutions have been found to approximate the behavior of pavements in service particularly for small stresses, short durations of loading, and limited strains or deformations (2, 7, and 8). However, the constituent materials which comprise a flexible pavement system are known to exhibit time-dependent mechanical behavior, the time-dependent character of which is not directly compatible with the doctrines of elastic theory.

This apparent incompatibility between the time-dependent mechanical behavior of the constituent materials in a pavement structure and the time-independent assumptions of elastic theory has turned the attention of several researchers to theories of mechanical behavior which encompass the time-dependent domain. Of particular significance is the theory of linear viscoelasticity which, despite being relatively new in its application to pavement materials, offers some promise in this regard. The major attention has focused on investigating convenient mathematical representations of viscoelastic behavior and on developing methods to measure this behavior. Suitable techniques for computing the mechanical response of a viscoelastic pavement structure to highway loads are generally unavailable though some preliminary work has been accomplished (9-14).

- 2 -

The general mechanical response of linear viscoelastic materials has been adequately reviewed (<u>15-18</u>). Ferry (<u>19</u>)has discussed suitable techniques for measuring viscoelastic behavior and has pointed out difficulties which often arise in instrumentation.

In 1944, Traxler et al. (20) investigated the flow characteristics of several asphalts from different sources and processed by various methods. They used a rotary viscometer and found that some asphalts do exhibit complex flow characteristics, the complexity being evaluated by the slope of a double logarithmic plot of stress against rate of strain. Van Der Poel (21, 22) studied the mechanical behavior of bitumens under both static and dynamic test conditions and presented the results in terms of static and dynamic stiffness moduli which were defined to be the ratio of stress to strain and the ratio of the amplitude of alternating stress to that of strain, respectively. His results indicated, as stated earlier by Saal (23), that the classification of bitumens, according to their rheological properties at normal temperatures, can generally be divided into three groups: (1) those that behave entirely or almost entirely as Newtonian liquids, (2) those which show elastic effects upon initial deformation and Newtonian flow thereafter, and (3) those which show almost complete resilience after comparatively slight deformation and for greater deformations cease to exhibit proportionality between stress and rate of strain. Brodnyan (24), Gaskins et al. (25), and Brodnyan et al. (26) investigated several different asphalts representing

-3-

a wide variety of industrial stocks and found that asphalt behavior is very similar to that of concentrated solutions of high polymers, that is, typical viscoelastic bodies. Corresponding studies by others: (27=30) have indicated similar results.

Application of viscoelastic techniques to the study of bituminous mixes has also been attempted. Wood and Goetz (31) studied a sand-asphalt mixture subjected to static loading. They found that the mixture exhibited instantaneous elastic deformation, retarded elastic deformation, and flow. Upon removal of load, instantaneous elastic recovery was obtained . Pister and Monismith (32) reviewed the limitations imposed by elastic analyses of flexible pavements, and presented experimental data verifying the viscoelastic nature of bituminous mixes. They also illustrated the use of mechanical models to describe viscoelastic behavior and showed the formulation and solution of boundary value problems. In a later publication, Secor and Monismith (33) analyzed triaxial test data obtained on an asphalt concrete mixture and suggested a simplified mechanical model representing its viscoelastic response. The results of Baker and Papazian (34) indicated that elastic theory is satisfactory for small durations of time; however, they suggested that a more systematic and less empirical approach may be obtained by considering the behavior of flexible pavements to consist of both elastic and viscoelastic components. Papazian (35) presented a general review of linear viscoelastic theory and applied it to a study of asphalt concrete. He discussed the concept of complex material moduli, determined under dynamic test conditions, and illustrated methods for correlating dynamic with

- A -

static test results.

Recently, advances have been made in the application of viscoelastic concepts to the study of soils (<u>36-41</u>) which indicate that some soils exhibit viscoelastic properties.

As stated earlier, it is necessary to fully understand the mechanical behavior of the constituent materials in order to predict the mechanical response of the pavement structure. For this reason, attention has first been directed toward a study of the mechanical behavior of asphalt cements. This report summarizes the work that has been directed to this phase of the study. The foregoing literature review dictated, in large measure, the approach that was taken. The total mechanical behavior had to be analyzed: various common measurements of consistency such as apparent viscosity and penetration would not suffice since they are point measurements and greatly dependent upon the use of standardized test procedures and conditions. The rotating coaxial cylinder viscometer enabled the accumulation of data for a wide range of temperatures and stress levels and loading times which extended into the equilibrium or steady-state flow regime. This viscometer was also particularly suitable for an analysis of the total flow behavior based on a model of the type illustrated in Figure 1 or simplifications thereof.

- 5 -

-6-

THEORETICAL CONSIDERATIONS

The creep behavior of certain ideal materials in the rotating coaxial cylinder viscometer can be readily determined. It is convenient first, however, to investigate the states of stress and strain in the viscometer when a constant torque is applied. A cross section through a rotating coaxial cylinder viscometer of the type employed in this study is depicted schematically in Figure 2. While testing, the cup is held stationary and a torque

Figure 2. Cross Section through Rotating Coaxial Cylinder Viscometer.

is applied to the rotating bob. The resulting shear strain and rate of shear strain within the test material are given by the following equations (1, 42):

-7-

 $\gamma(\mathbf{r},\mathbf{t}) = -\mathbf{r}\partial\theta(\mathbf{r},\mathbf{t})/\partial\mathbf{r}$

یال بر محمد در میکند.

l...

(1)

and

 $\dot{\gamma}(r,t) = -r\partial\omega(r,t)/\partial r$

- where r = distance from axis of rotation to a point within the test material
 - t = elapsed time from beginning of test
 - $\gamma(r,t)$ = shear strain in test material at distance, r, and time, t
 - θ(r,t) = angle of rotation of a point in the test material at distance, r, and time, t, which is a function of both the angle of rotation of the bob relative to the cup and the response of the material to shear stress
 - $\hat{\gamma}(r,t) = \partial \gamma(r,t)/\partial t$ = rate of shear strain in test material at distance, r, and time, t
 - $\omega(r,t) = \partial \theta(r,t)/\partial t =$ angular velocity within test material at distance, r, and time, t.

The shear stress resulting from the application of a constant torque is described by the following equation:

$$S(r) = T/2\pi r^2 L$$
(3)

where S(r) = shear stress at distance, r

T = constant torque applied to the bob

L = the length or height of the annulus of test material.

STEADY-STATE LIQUIDS

The behavior of certain ideal liquids is such that a steadystate flow condition is reached instantaneously after load application and the rate of strain is dependent only on the shearing stress. This behavior may be described in general by an equation

(2)

of the following form:

 $\mathring{Y} = f\{S\}$ (4)

where $f{S}$ = some time-independent function of stress. When these materials are tested in a rotating coaxial cylinder viscometer, the rate of shear becomes:

 $\hat{\gamma}(\mathbf{r}) = -\mathbf{r} d\omega(\mathbf{r}) / d\mathbf{r}_{\circ}$ ⁽⁵⁾

Combining Equations 4 and 5, the following equation is obtained:

$$f\{S(r)\} = rd\omega(r)/dr_{o}$$
(6)

Assuming no slippage occurs at the surfaces of the bob and cup, Equation 6 yields upon integration the following expression for angular velocity at a point:

$$\omega(\mathbf{r}) = -\int_{a_2}^{\mathbf{r}} f\{S(\mathbf{r})\} \frac{d\mathbf{r}}{\mathbf{r}}$$
(7)

where a_2 = radius of the stationary cup.

For the rotating coaxial cylinder viscometer, Equation 7 becomes:

$$\omega(\mathbf{r}) = -\int_{a_2}^{\mathbf{r}} f\left[\frac{T}{2\pi r^2 L}\right] \frac{d\mathbf{r}}{\mathbf{r}}$$
(8)

Using the relationship, dr/r = -dS/2S, which was derived from Equation 3, a change in the variable of integration of Equation 8 yields:

$$\omega(\mathbf{r}) = \frac{1}{2} \int_{S_2}^{S_{\mathbf{r}}} \frac{f\{S\}}{S} dS$$
⁽⁹⁾

where S_r = shear stress at radius r

 S_2 = shear stress at the inner wall of the cup.

The angular velocity of the bob relative to the cup can be obtained by selecting appropriate limits of integration in Equation 9 as follows:

$$\Omega = \omega(a_1) = \frac{1}{2} \int_{S_2}^{S_1} \frac{f\{S\}}{S} dS$$
(10)

where Ω = angular velocity of the bob relative to the cup S₁ = shear stress at surface of the bob.

Since the angular velocity, Ω , is constant for steadystate liquids, the angle of rotation of the bob relative to the cup is given by the following equation:

$$\Theta = \Omega t \tag{11}$$

where 0 = angle of rotation of bob relative to cup

t = elapsed time.

Equations 10 and 11 yield the desired relationships for describing the behavior of ideal, steady-state liquids when subjected to a constant torque in a rotating coaxial cylinder viscometer. The first of these ideal liquids to be examined in detail is the Newtonian liquid.

Newtonian Liquid

The basic flow equation for a Newtonian liquid is: $\hat{\gamma} = f\{S\} = S/n$ (12)

where $\eta = coefficient$ of viscosity.

Substituting Equation 12 into Equation 10 one obtains upon integration

$$\Omega = CT/\eta$$

here C = $\frac{1}{4\pi L} (1/a_1^2 - 1/a_2^2)$.

(13)

The quantity, C, represents an instrument constant which is dependent upon the dimensions of the annulus of liquid. The angle of rotation as a function of time can be found by combining Equations 11 and 13 as follows:

$$\Theta = CTt/n.$$
(14)

The rate of shear is found by substituting Equations 3 and 13 into Equation 12 and is given by

$$\mathring{\gamma}(\mathbf{r}) = \begin{pmatrix} 2\Omega \\ 1/a_1^2 - 1/a_2^2 \end{pmatrix} 1/r^2.$$
(15)

The average rate of shear becomes:

$$\mathring{\gamma}(av) = \begin{pmatrix} 2a_1a_2 \\ \frac{a_2}{a_2} & a_1^2 \end{pmatrix} \Omega$$
(16)

where γ (av) = average rate of shear.

Figure 3 depicts the flow behavior of a Newtonian liquid in terms of the measurable parameters of the rotating coaxial cylinder viscometer. To evaluate the coefficient of viscosity for a Newtonian liquid, sufficient tests should be performed to enable the construction of curves similar to those shown on Figure 3. The coefficient of viscosity can be readily determined from the slope of the straight line of Figure 3b.

Bingham Plastic

. . .

	The	basic flow	v equation	for	a Bingham	plastic	is
	Υ =	0		for	S ≤ S _y	. v. 1	(17a)
and		S			· · · · ·		
	Ý =	<u> </u>		for	$S > S_v$		(17b)

12.83

ηp where S_v = yield stress

 n_p = coefficient of plastic viscosity.

Figure 3. Flow Behavior of Newtonian Liquid in Rotating Coaxial Cylinder Viscometer.

Flow occurs in these materials only when the applied shearing stress exceeds the yield stress. For this reason it is necessary to consider three distinct conditions of loading when a Bingham plastic is sheared in a rotating coaxial cylinder. viscometer.

The first condition occurs when the applied torque is so small that the maximum shear stress (at the surface of the bob) is less than the yield stress. For this condition no flow occurs and

$$\Omega = 0 \qquad \text{for } S_1 \leq S_y \text{ or } (18a)$$
$$T \leq 2\pi a_1^2 LS_y \circ$$

The second condition occurs when the yield stress is bracketed by a lower applied stress at the surface of the cup and a higher applied stress at the surface of the bob. Flow occurs only in that layer of material located between the surface of the bob and a critical radius, $r_c = (T/2\pi LS_y)^{1/2}$. The material located between this critical radius and the surface of the cup remains stationary. The angular velocity of the bob relative to the cup is then given by:

$$\Omega = \frac{1}{2} \int_{S_y}^{S_1} \frac{f\{S\}}{S} dS$$
(19)

which upon evaluation yields:

$$\Omega = \frac{1}{2\eta_{p}} \left[\frac{T}{2\pi a_{1}^{2}L} - S_{y} - S_{y} \ln \left(\frac{T}{2\pi a_{1}^{2}LS_{y}} \right) \right]$$
(18b)

for
$$S_1 > S_y \ge S_2$$
 or
 $2\pi a_1^2 LS_y < T \le 2\pi a_2^2 LS_y^\circ$

The third condition occurs when the applied stress at the surface of the cup exceeds the yield stress and flow occurs throughout the annulus of the material. The angular velocity becomes

$$\Omega = \frac{CT}{n_p} - \frac{S_y}{n_p} \ln \left(\frac{a_2}{a_1}\right) \qquad \text{for } S_y < S_2 \text{ or} \qquad (18c)$$
$$T > 2\pi a_2^2 LS_y^{\circ}$$

The angle of rotation of the bob relative to the cup is simply the product of elapsed time and the appropriate angular velocity of Equation 18.

Figure 4 depicts the flow behavior of a Bingham plastic in terms of the measurable parameters of the rotating coaxial cylinder viscometer. To evaluate the constants, n_p and S_y , sufficient tests should be performed to enable the construction of curves similar to those shown on Figure 4. The coefficient of plastic viscosity can be readily determined from the slope of the inclined, straight-line portion of Figure 4b. The yield stress is best determined from the intercept at point B of Figure 4b. It can also be estimated from the torques corresponding to points A and C. These torques are related by the following equation:

$$T_A/T_C = (a_1/a_2)^2$$
. (20)

Other Steady-State Liquids

The preceding analysis demonstrates the procedures used for predicting the behavior of certain steady-state liquids, namely, the Newtonian liquid and the Bingham plastic, in a rotating

Figure 4. Flow Behavior of Bingham Plastic in Rotating Coaxial Cylinder Viscometer.

coaxial cylinder viscometer. While other steady-state liquids do not exhibit the same linear relationship between rate of shear strain and shear stress as do these materials, the procedures for deriving the equations which predict their behavior in this viscometer remain essentially the same and, hence, are not included herein. At the same time, it is useful to define the basic flow equations for several of these materials and to present the equations describing their behavior in the coaxial cylinder viscometer.

Pseudoplastic liquids obeying the power-law relationship $(\underline{43})$ are described by the following basic flow equation:

$$\hat{\gamma} = (S/k)^{1/n} \tag{21}$$

where k = a material constant related to the consistency of the liquid

n = a material constant assuming values less than one. The non-Newtonian properties of these liquids become more pronounced as n diverges from a value of one. Their behavior in the rotating coaxial cylinder viscometer is described by the following equation:

$$\Omega = \frac{n(2/k)^{1/n} (CT)^{1/n}}{(1/a_1^2 - 1/a_2^2)^{1/n}} \left[(1/a_1^2)^{1/n} - (1/a_2^2)^{1/n} \right] . \quad (22)$$

The pseudoplastic liquids have no yield stress and the ratio of shear stress to rate of shear (the apparent viscosity) <u>decreases</u> with increasing shear rates.

Another of the steady-state liquids is the dilatent liquid which conforms to the same power-law flow equation as pseudoplastic liquids (Equation 21) with the exception that n exceeds the value of unity (43). Dilatent liquids exhibit no yield stress but, in contrast to pseudoplastics, their apparent viscosities <u>increase</u> with increasing rates of shear.

The final steady-state liquid to be considered is one conforming to the following basic flow equation:

$$= (S/n_i) [1 + (S/G_i)]$$
 (23)

where $\eta_i = \text{visco-ity constant defined as the limiting value}$ of $S/\hat{\gamma}$

This equation has been employed by Ferry (42) to describe the behavior of polymeric systems at low rates of shear. The angular velocity for a creep test in the rotating coaxial cylinder viscometer is given by the following equation:

$$\Omega = (CT) \left[\frac{1}{n_{i}} + \frac{CT}{G_{i}} \left(\frac{a_{1}^{2} + a_{2}^{2}}{a_{2}^{2} - a_{1}^{2}} \right) \right]$$
(24)

The basic flow properties of the various steady-state liquids are graphically compared on Figure 5. Figure 6 depicts the type of behavior experienced when testing these materials in the rotating coaxial cylinder viscometer. It is recalled that, because of the steady-state nature of these liquids, their angles of rotation in the viscometer are linear functions of elapsed time.

Torque, T

Figure 6. Flow Behavior of Various Steady-State Liquids in Rotating Coaxial Cylinder Viscometer.

VISCOELASTIC MATERIALS

When steady-state liquids are subjected to a constant torque in the rotating coaxial cylinder viscometer, a linear relationship is observed between the angle of rotation and time; that is, the angular velocity is independent of time. In contrast, a liquid for which the angular velocity is dependent on elapsed time may be called a non-steady-state liquid. Such liquids may exhibit either thixotropic or rheopectic behavior depending upon whether the shear strains cause a respective breakdown or formation of internal structure. However, neither of these two basic types of liquids possess properties of instantaneous and retarded elasticity and, upon load removal, elastic recovery.

To describe this somewhat more complex behavior, it is necessary to consider materials which simultaneously possess both elastic and viscous properties, that is, viscoelastic materials. Of particular interest is the special case where the ratio of stress to strain is a function only of elapsed time and not of the stress magnitude. Viscoelastic materials demonstrating this property are termed linear and are of primary importance since their mechanical behavior is mathematically tractable.

A linear viscoelastic material may be visualized in terms of the generalized Voigt body of Figure 7 (43). This mechanical model is composed of a series of elements, each of which consists of a spring and a dashpot which are connected in parallel. The relationship between strain and stress for a constant stress or creep test is as follows:

 $\gamma(t) = S_{0} \sum_{k=1}^{\infty} J [1 - \exp(-t/\tau_{k})]$ (25)

-19-

where	γ(t)	=	shear strain at time, t
	So	=	constant shear stress
	J _k	=	compliance (1/G _k)
	ⁿ k	53	viscosity coefficient
	τk	=	retardation time (n_k/G_k)
	t	=	elapsed time
	Gk		shear modulus (rigidity modulus)
	n	=	number of elements.

The generalized Voigt body represents a linear viscoelastic material with a discrete spectrum of retardation times. As the number of elements in this model approaches infinity (that is, $n + \infty$), the stress-strain relationship for a creep test may be more conveniently specified in terms of the following:

-20-
$$\gamma(t) = S_0 \int_0^{\infty} J(\tau) \left[1 - \exp(-t/\tau) \right] d\tau$$

where $J(\tau)$ = compliance distribution function τ = retardation time (continuous variable).

This concept of a distribution of retardation times simplifies the mathematical approach since the mechanical behavior of the material can be described in terms of the compliance distribution function, $J(\tau)$.

The relationship between angle of rotation and time for a linear viscoelastic material subjected to a constant torque in the coaxial cylinder viscometer can be derived using Equations 1, 3, and 25 and is given by the following expression: $n = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$

$$O(t) = \sum_{k=1}^{\infty} CT J_k [1 = exp(-t/\tau_k)].$$
(27)

The corresponding angular velocity is

$$\Omega(t) = \frac{d \Theta(t)}{dt} = \sum_{k=1}^{n} \frac{CTJ_k}{\tau_k} [exp(-t/\tau_k)]. \qquad (28)$$

The creep function, $\Psi(t)$, for a linear viscoelastic material is defined as the ratio of strain to stress when the material is subjected to constant loading. Thus, from Equation 25, the creep function is

$$\Psi(t) = \gamma(t)/S = \sum_{k=1}^{n} J_{k}[1 - \exp(-t/\tau_{k})]$$
(29)

where $\Psi(t) = creep function$.

But, from Equation 27,

$$\Theta(t)/CT = \sum_{k=1}^{n} J_k [1 - \exp(-\tau t/\tau_k)].$$
 (30)

(26)

On the basis of Equations 29 and 30, the creep function for a linear viscoelastic material may be evaluated using the coaxial cylinder viscometer in the following way:

$$\Psi(t) = \Theta(t)/CT.$$
(31)

OTHER MATERIALS

There are other engineering materials whose mechanical behavior may best be characterized by a series combination of an elastic element (spring), a viscous element (steady-state liquid), and a viscoelastic body (generalized Voigt body). When these more complex materials are subjected to a constant torque in the rotating coaxial cylinder viscometer, a creep curve similar to that illustrated in Figure 8 is observed. The total angle of rotation of the bob relative to the cup is depicted by curve 4.

Time, t

Figure 8. Creep Curve for a Material Exhibiting Instantaneous Elastic Deformation, Retarded Deformation, and Steady-State Flow.

Each ordinate on this curve may be considered to equal the sum of the corresponding ordinates on the remaining three curves.

The equation of curve 1, which represents an instantaneous elastic deformation, is

$$\Theta_1 = CT/G_0 \tag{32}$$

where $G_0 = elastic shear modulus.$

Curve 2 represents the steady state flow behavior of a steady state liquid. Its equation is

 $\Theta_2 = \Omega_0 t$ (33)
where $\Omega_0 =$ the steady-state angular velocity given by Equation
13, 18, 22, or 24.

From Figure 8 and Equation 33, the steady-state portion of the angle of rotation is seen to linearly increase with time. Curve 3 represents the retarded elastic flow of the viscoelastic components. Equation 27, therefore, specifies the shape of this curve.

The total angle of rotation (curve 4) can be computed as follows:

$$\Theta = \Theta_1 + \Theta_2 + \Theta_3 \tag{34}$$

or

$$\Theta = CT/G_0 + \Omega_0 t + \sum_{k=1}^{n} CT J_k [1 - exp(-t/\tau_k)].$$
(35)

Equation 35 represents a general flow equation describing the response of a wide variety of engineering materials to creep loading in a rotating coaxial cylinder viscometer. The parameters of Equation 35 may be evaluated for a specific material by obtaining 0-t curves from a suitably designed creep test program. The procedures recommended for this type of evaluation are discussed in subsequent sections.

e

I

APPARATUS, MATERIALS, AND PROCEDURE

AP**PA**RATUS

The rotating coaxial cylinder viscometer is a modified version of one used in the preliminary phases of the study (1). Its function is to apply a creep stress in shear to an annular specimen of solid or semi-solid bitumen over a wide range of stresses and temperatures. Figure 9 shows the viscometer and related equipment assembled for testing.

As depicted in Figure 10, the viscometer consists of an inner cylinder (or bob) and an outer cylinder (or cup) which are mounted concentrically to form an annulus. This annulus is filled with the test material which is subjected to shear stresses by applying a torque to the bob. The bob is rigidly attached to an axle or spindle which is supported by a ball bearing at the upper plate of the apparatus. The torque is generated by the suspension of weights from the drive pulley at the upper end of the axle. To eliminate bending in the axle, equal weights are suspended over diagonally opposite idle pulleys.

The angle through which the bob rotates is measured by a rotary variable differential transformer, type R3B2S, manufactured by SchaevitzEngineering. This device produces a voltage having a magnitude which varies linearly with the angular position of its shaft for a range of \pm 40° from its null position. The voltage is monitored with a Sanborn, Model 321, carrier-amplifier recorder. An appropriate scale and vernier are also provided above the drive pulley for visual checking and calibration.

-25-

Figure 9. Viscometer and Related Equipment Assembled for Testing.

Figure 10. Rotating Coaxial Cylinder Viscometer without Weights (Large Cup and Bob).

In order to provide a wide range of shear rates, two different cup-and-bob assemblies are used. For testing the less viscous asphalts, the large cup and bob shown in Figure 10 may be used. The small cup and bob shown in Figure 11 are used for testing more viscous materials. For equal weights of the suspended loads, a lower shear rate is attained with the large cup-and-bob assembly.

Figure 12 shows the components of the large cup-and-bob assembly. The stainless steel bob contains a hardened steel, 60° conical bearing point which bears on a hardened steel cap screwed into the steel base plate. The cap contains a conical depression which receives the bearing point of the bob. This bearing arrangement is essentially free of friction and provides an excellent means for centering the bob.

During assembly the amalgamated brass ring is placed within the groove of the base plate. The stainless steel cup also fits within the groove and bears lightly against its outer edge. The bob extends into the groove of the base plate but bears only on the hardened steel bearing cap. Sufficient clearance is provided between the bob and the brass ring and between the bob and the base plate to insure freedom of rotation. When assembly is completed, mercury is poured into the annulus until its level is slightly above the lower edge of the bob. This prevents the test material from flowing beneath the bob and provides a completely fluid, floating bearing for the specimen which virtually eliminates end effects due to adhesion.

1000

The pouring mold shown in Figure 13 is used to fill the annulus of the large cup-and bob assembly with heated asphalt.

-27-

Figure 11. Rotating Coaxial Cylinder Viscometer with Weights (Small Cup and Bob).

Figure 12. Large Cup-and-Bob Assembly.

jun en la

Figure 13. Pouring Mold Used with Large Cup-and-Bob Assembly.

Figure 14. Small Cup-and-Bob Assembly.

-29-

This mold, which is constructed in two semi-circular sections, is supported by and temporarily mounted on the bob. Its narrow discharge opening (3/32 inch), which is centered over the annulus, permits the annulus to be progressively filled from the bottom to the top. This eliminates the necessity for heating the cup-andbob assembly (which would be hazardous due to the presence of mercury) and prevents the inclusion of voids within the specimens.

Components of the small cup-and bob assembly are shown in Figure 14. The cup and bob are made of stainless steel and the base plate of brass. The cup, bob, and base plate are assembled in much the same manner as for the larger assembly with the exception that no brass ring is used. A pouring mold is unnecessary due to the increased thickness of the annulus.

The two different cup-and-bob assemblies were constructed in order to extend the range of shear rates. Similarly, two drive pulleys, which differ in diameter, were constructed in order to provide two different torques by the suspension of a load of constant weight. The large pulley has an effective diameter of 7.875 inches and the small pulley, 3.875 inches. The idle pulleys may be properly aligned with either of the two drive pulleys. Proper use of these pulleys eliminates the necessity for suspending either excessively large or excessively small weights from the loading system.

Cups and bobs for both assemblies are provided with 1/64inch-deep vertical grooves extending their full lengths. These grooves prevent the formation of slippage surfaces at the inter-

- 30 -

faces due to insufficient adhesion between the cup or bob and the specimen. The effective dimensions of the cups, bobs, and specimens are shown in Table 1.

TABLE 1

EFFECTIVE DIMENSIONS OF CUP, BOB, AND SPECIMEN

Item	Small Assembly	Large Assembly
Cup		
Diameter (in.)	2.005	7.741
Height (in.)	2.023	1.115
Bob		
Diameter (in.)	1.235	7 。365
Specimen		
Thickness (in.)	0 。385	0.188
Height (in.)	Variable.	Variable,
5	2.023 Ḿax.	1.115 Max.

MATERIALS

The 13 asphalt cements used in this study were selected on the basis of the following factors: (1) crude source, (2) penetration grade, and (3) manufacturing process. Table 2 classifies the asphalts on the basis of these three factors. The asphalt numbers are identical to those used by the Bureau of Public Roads ($\underline{44}$, $\underline{45}$) with the exception of asphalts PR-103 and PR-132 which were not evaluated by the Bureau. However, the asphalt samples were obtained from current production runs for which the refining processes and crude sources may have been slightly altered. Therefore, direct comparison between the results of this study and those of the earlier studies ($\underline{44}$, $\underline{45}$) must be avoided.

CRUDE SOURCES, PENETRATION GRADES, AND MANUFACTURING PROCESSES FOR ASPHALT CEMENTS

Asphalt	Crude	Penetration	Method of 1
Number	Source	Grade	Manufacture
3	Mexico	85-100	S
13	Venezuela	85-100	V,S
45	Arkansas	85 - 100	V, S
53	Midcontinent	85-100	V,O
67	Texas	85-100	V
71	Midcontinent	85-100	V, P, B
72	Oklahoma	85-100	V, P, O, F
91	California	85-100	V,S,B,O
116	Wyoming	85-100	V
127	Venezuela	60-70	V,S
200	Venezuela	120-150	V,S
PR - 103	Unknown	141^{2}_{2}	" 3
PR-132	Unknown	24^{2}	_ 3

 1 V = vacuum distillation, S = steam distillation, O = blowing (oxidation), B = blending (different grade asphalts), P = propane fractionation, and F = fluxing (heavy oils).

²Test values.

³Petroleum pitch residue derived from cracking petroleum feed stocks for the production of ethylene.

Essentially six different crude sources based on geographical location were studied¹. To investigate the variation in mechanical properties as related to penetration grade, three different grades (PAC-3, PAC-5, and PAC-7) from the Venezuelan crude were studied. Attempts were made to obtain samples which represented straight-run distillation, straight-run distillation with air blowing, and cracking manufacturing processes. As seen in Table

¹These included Midcontinent, Gulf-Coastal, Rocky Mountain, Californian, Mexican, and Venezuelan crudes.

2, the asphalts are representative of the first two of these three processes. Asphalts manufactured by the cracking process were not available for testing. However, asphalts PR-103 and PR-132 were included in the test program since their properties are similar in nature to those of cracked asphalts despite their somewhat greater temperature susceptibilities.

The results of standard laboratory tests performed on the asphalt cements are presented in Table 3. The 85-100 penetration grade asphalts exhibited essentially similar properties with the exception of the low Saybolt Furol viscosities of asphalts 91 and 116. The thin film oven loss was somewhat high for asphalt 13 in comparison to the other 85-100 penetration asphalts but was properly ordered with respect to asphalts 127 and 200 which were obtained from the same crude source and refining process.

TEST PROCEDURE

Each asphalt was tested at temperatures of 39.2, 77, and 104°F. At each temperature, a minimum of three intensities of torque were applied. These intensities were chosen so as to provide significant angular displacements in a reasonable period of time. In order to avoid possible effects of strain history, a new specimen was used for each increment of torque. A single specimen was tested for each combination of temperature and torque.

Table 4 summarizes most of the testing reported as a portion of this study phase. Only the small cup-and bob assembly was employed for these tests. The large drive pulley was used for

- 33-

•

RESULTS OF STANDARD TESTS ON ASPHALTS

Asphalt Number	Penetration		Ductility		Softening	Specific	Saybolt	Thin Film Oven Test			
	Grade	100 gm 5 sec 77°F (.1 mm)	200 gm 60 sec 39.2°F (.1 mm)	Pen. ratio 39.2/77 (%)	5 cm/min 77°F (cm)	1 cm/min 39.2°F (cm)	(°F)	@77°F	Viscosity @275°F (sec)	% Loss	Pen. Res. Pen. Orig. (%)
3	85-100	87	13	<i>A</i> 0	150+	56	121	1 035	267	0 27	63
13	85-100	88	31	35	150+	84	125	1 032	253	0.73	37
45	85-100	92	29	32	150+	30	114	1.020	189	+0.09	62
53	85-100	86	33	38	150+	22	120	0.998	159	+0.28	67
67	85-100	90	41	46	150+	14	122	1.031	215	0.06	59
71	85-100	90	22	25	96	48	112	1.005	146	+0.02	64
72	85-100	95	37	39	150+	24	116	0.994	175	+0.54	58
91	85-100	96	25	26	150+	150+	111	1.013	84	0.09	69
116	85-100	88	28	32	150+	8	113	1.023	76	0.03	53
127	60-70	60	29	49	150+	16	119	1.033	348	0.65	50
200	120-150	122	40	33	150+	110	113	1.032	250	1.26	40
PR-103		141	50	35	-	110+	106	1.167	22	10,98	5
PR-132		24	2	8	-	, •	134	1.163	43	7.54	0

,

TEST PROGRAM

		Total	Approxim	ate Sheari	ng Stress
Asphalt	Temperature	Load	Maximum	Average	Minimum
Number	(°F)	(gms)	(d/cm^2)	(d/cm²)	(d/cm^2)
A11 ,					
Asphalts ¹	3 9 ° 2	800	107,700	66,400	40,900
		1,400	189,800	116,200	71,500
		2,000	269,000	100,000	102,200
	77	45	2,920	1,800	1,110
		90	5,840	3,600	2,220
		135	8,760	5,400	3,330
		180	11,680	7,200	4,440
	104	10	649	400	246
		15	973	600	370
	:	20	1,298	800	492
		25	1,620	1,000	615
32	39 2	800	107,700	66,400	40,900
		1,200	161,400	99,600	61,400
		1,600	215,000	133,000	81,800
		2,000	269,000	166,000	102,200
200 ²	39.2	400	53,800	33,200	20,400
	1	600	80,600	49,800	30,700
		800	107,700	66,400	40,900
$PR = 132^2$	39。2		No	Tests	
	77	1.80	11 680	7 200	4 440
		360	23.300	14,400	8,900
	,	540	35,000	21,600	13,300
		720	46,700	28,800	17,800

 $^{1}\mbox{All}$ asphalts were tested under these conditions with the exceptions noted below.

 $^2{\rm The}$ tabulated data indicate how the testing for specific asphalts differed from the general testing program.

tests at 39.2°F, and the small pulley was used at the remaining two temperatures. The maximum and minimum shearing stresses noted in Table 4 were located at the surfaces of the bob and cup, respectively, and were computed using Equation 3. The average shearing stress through the annulus of the specimens was computed as follows:

 $S_{av} = T/2\pi a_1 a_2 L.$ (36)

The procedures for preparing the viscometer and specimens for testing and for conducting the creep tests are described in Appendix A. These procedures were prepared to guide laboratory personnel by standardization.of the test methods.

After each set of tests was completed, arithmetic plots of Θ vs. t and Ω_0^1 vs. CT were constructed. These plots were analyzed to ascertain the characteristics of observed flow behavior. The detailed procedures of data analysis are more fully described in subsequent sections.

 $^{1}\Omega_{0}$ is the steady-state angular velocity of the bob relative to the cup.

PRESENTATION OF RESULTS

a di ta wa

Creep curves, which are plots of the angle of rotation of the bob relative to the cup and elapsed time, are the basic form of output from the viscometer. The graphs of such curves for asphalt 72 are shown in Figure 15. These graphs are similar in shape to those for all of the other asphalts and, therefore, may be considered typical creep curves. One graph has been constructed for each of the three test temperatures and an individual curve has been drawn for each value of the CT product -- that is, each level of shearing stress. The scales for each of these three graphs were chosen so as to best represent the extent of testing accomplished and, for this reason, are not identical. The curves do, however, retain their same relative shapes when identical scales are used.

It is readily apparent that the complexity of flow is influenced by the test temperature. For the duration of each test at temperatures of 104°F and 77°F, a linear relationship was observed between the angle of rotation and time. In each case, the experimental line may be assumed to pass through the origin. This behavior is indicative of steady-state flow. However, at 39°F a slight intercept with the angle-of-rotation axis was observed¹, a distinct curvature was noted for small times, and a linear condition was approached as the test progressed. This behavior is similar to that depicted by Figure 8 which

¹This is not readily apparent from Figure 15 because of the scale that was used for this presentation.

-37-

Figure 15. Creep Curves for Asphalt 72 at Three Temperatures.

represents a material exhibiting instantaneous elasticity, viscoelasticity, and steady-state flow.

TESTS AT 104°F

Angle of rotation vs. time plots were constructed for the tests at 104°F. The form of these plots revealed that all of the asphalts exhibited steady-state flow behavior at this temperature. The steady-state, angular velocity, Ω_0 , was then determined from the slope of the linear O-t plot for each test condition. Figure 16 shows the relationship between the steadystate velocity and the CT product for each of the 13 asphalts. The curves of this figure show distinct linear relationships with extrapolated intercepts on the CT axis. Comparing this observed behavior with that summarized in Figure 6 for various ideal, steady-state liquids, it is concluded that each of the asphalts behave essentially as Bingham plastics at 104°F. The flow behavior of an ideal Bingham plastic in a rotating coaxial cylinder viscometer is more clearly depicted in Figure 4.

After the manner suggested in Figure 4, the yield stress, S_y , and the coefficient of plastic viscosity, n_p , were evaluated for each of the asphalts. The results of this evaluation are presented in Table 5. The yield stresses are quite small and range in value from 108 dynes/cm² to 216 dynes/cm². Since the minimum applied shearing stress of 246 dynes/cm² (from Table 4) exceeded all yield stresses, flow occurred throughout the annulus of the material and Equation 18c adequately describes the flow behavior.

- 39 -

Figure 16. Steady-State Angular Velocity vs. CT Product for 104°F Tests.

MATERIAL PARAMETERS EVALUATED AT 104°F

Yield Stress, S (10 ² dynes/cm ²)	Coefficient of Plastic Viscosity,np (10 ⁴ poises)
1.98	7。03
1.73	5 ° 3 2
1.97	3 。 5 4
1.82	3 . 56
1.33	6.13
1.73	3.40
2。09	3.66
2.00	2 . 31
2.05	2 。 2 2
2 .09	10.30
2 .09	2。49
1.08	1.02
2 . 16	25 50
	Yield Stress, S (10 ² dynes/cm ²) 1.98 1.73 1.97 1.82 1.33 1.73 2.09 2.00 2.05 2.09 2.09 1.08 2.16

The coefficient of plastic viscosity exhibited considerably more variability among the asphalts than did the yield stress. The coefficient of plastic viscosity ranged from a minimum of 1.02×10^4 poises (asphalt PR-103) to a maximum of 25.50 $\times 10^4$ poises (asphalt PR-132). No discernable relationship was found to exist between the yield stress and the coefficient of plastic viscosity.

The plastic viscosity measurements may be used to classify or group the asphalts on the basis of their consistency at 104°F. Such a classification is presented in Table 6. The viscosity intervals were selected so that their ranges were approximately identical on a logarithmic plot. It is interesting to note that two of the PAC-5 asphalts (91 and 116) were slightly less viscous at 104°F than the PAC-7 asphalt (200). It may be recalled that

CLASSIFICATION OF ASPHALTS BY PLASTIC VISCOSITY AT 104°F

Viscosity Interval (10⁴ poises) Asphalt Numbers

 1.0-1.6
 PR-103

 1.6-2.6
 91,116,200

 2.6-4.2
 45,53,71,72

 4.2-6.8
 13,67

 6.8-11.0
 3,127

 >11.0
 PR-132

these two PAC-5 asphalts had relatively low Saybolt Furol viscosities and ring-and-ball softening points.

TESTS AT 77°F

The test results obtained at 77°F were analyzed in a manner similar to those at 104°F. Once again all of the asphalts exhibited steady-state flow throughout the test duration. Figure 17 shows the relationships between the steady-state, angular velocities and the CT product for all of the asphalts tested at this temperature.¹ As before, all of the asphalts (with the exception of asphalt 127) exhibited properties indicative of a Bingham plastic. Asphalt 127 had no discernable yield stress and was, therefore, assumed to exhibit pure Newtonian flow.

Table 7 summarizes the values of the material parameters evaluated at 77°F. The yield stresses are again quite low and

¹Asphalt PR-132, although tested at 77°F, was omitted from this figure because of its highly viscous properties when compared with the other asphalts. However, it also exhibited properties characteristic of a Bingham plastic.

-27-

MATERIAL PARAMETERS EVALUATED AT 77°F

A 1 - 1 +		Coefficient of
Asphalt	lield Stress, Sy	Plastic Viscosity,nn
Number	$(10^2 \text{ dynes/cm}^2)'$	(10 ⁰ poises) ^P
7	1 0 4	
3	1.04	1.47
13	3,66	1.34
45	4.63	0。94
5 3	1.45	1,15
67	1.94	1,51
71	3.73	0 。97
72	3.66	1.24
91	2.91	0.70
116	4,97	1.12
127	0	3 . 89
200	4.07	0 。5 3
PR-103	8.56	0 . 34
PR-132	11.90	21.60

asphalts 3, 53, and 127 had smaller yield stresses at this temperature than they had at 104° F. This apparent inconsistency is attributed to a combination of experimental and graphical errors magnified in effect due to the small yield stress levels. Comparing the yield stresses of Table 7 with the minimum applied shearing stresses of Table 4, it is apparent that flow occurred throughout the annulus of each test specimen with the exception of asphalt PR-132. Asphalt PR-132 had a yield stress of 1,190 dynes/cm² which was slightly in excess of the minimum applied shearing stress of 1,110 dynes/cm² for one of the tests. Again no discernable relationship was found to exist between the yield stress and the coefficient of plastic viscosity.

The asphalts are grouped according to plastic viscosity at 77°F in Table 8. The asphalts maintained their same relative

CLASSIFICATION OF ASPHALTS BY PLASTIC VISCOSITY AT 77°F

Viscosity Interval (10 ⁶ poises)	Asphalt Numbers
0.3-0.5	P R-103
0.5-0.8	91,200
0.8-1.4	13,45,53,71,
	72,116
1.4-2.4	3,67
2.4-4.0	12́ 7
> 4.0	PR-132

grouping as at 104°F (Table 6) with the exception of asphalts 3, 13, and 116. Asphalts 3 and 13 became relatively less viscous due to their smaller temperature susceptibilities and asphalt 116 became relatively more viscous due to its greater temperature susceptibility.

TESTS AT 39,2°F

All of the test results at 39.2°F showed instantaneous elasticity and a combination of steady-state and viscoelastic flow. The creep curves were similar to those depicted in Figure 8 and Figure 15 (39.2°F). Each curve was analyzed by separating it into the three basic components (as shown in Figure 8); Θ_1 which represents instantaneous elastic deformation, Θ_2 which represents steady-state flow, and Θ_3 which represents viscoelastic flow.

The instantaneous elastic deformation, Θ_1 , is described by Equation 32. This equation may be used to evaluate the elastic

shear modulus, G_0 , providing Θ_1 and CT are known. The angle, Θ_1 , was determined by rapidly loading and unloading each sample a number of times and computing an average value for the instantaneous angle of rotation. This determination was made after each creep test was completed since Θ_1 is time-independent and should not be influenced by previous stress history. The elastic shear modulus, G_0 , was determined from the slope of the linear plot of CT against Θ_1 . Its value for each of the 12 asphalts tested at this temperature is summarized in Table 9.

TABLE 9

ELASTIC AND STEADY-STATE MATERIAL PARAMETERS EVALUATED AT 39.2°F

Asphalt Number	Elastic Modulus,G _o (10 ⁷ dynes/cm ²)	Yield Stress,Sy (10 ⁴ dynes/cm ²)	Coefficient of Plastic Viscosity,n _p (10 ⁸ poises)
3	2.67	1.12	3 . 32
13	3 . 20	1.46	5.51
45	3.04	0	8.66
53	2,70	0	9.85
67	2,26	2.75	5.11
71	1.89	1.86	9.52
72	2.08	1.10	9 . 6 3
91	1.95	0.37	4.61
116	2 .04	2.05	19.40
127	1.83	0.90	14.80
200	1,56	0	2。47
PR-103	1,55	0	2 . 8 4
PR-132	1	Not Tested	

The steady-state flow deformation, Θ_2 , is described by Equation 33. The steady-state, angular velocity of this equation was determined by computing the slope of the straight-line portion of each creep curve. A plot of these steady-state, angular velocities against CT product was made for each asphalt tested

-46-

at 39.2°F. The resulting graphs are presented in Figure 18. An analysis of these graphs indicates that the steady-state portion of flow is similar in some cases to that of Bingham plastics and in other cases to that of Newtonian materials. The distinction appears to be relatively insignificant, however, due to possible errors occasioned in extrapolation of the Ω_0 -CT curve to its intercept on the CT axis and the relatively small intercepts that were observed.

The yield stress, S_y , and the coefficient of plastic viscosity, n_p, were evaluated from the steady-state behavior of each asphalt using the curves of Figure 18. The results of this evaluation are also summarized in Table 9. The yield stresses are relatively small and are exceeded in every case by the minimum applied shearing stresses (compare with Table 4). Once again, this indicates that steady-state flow occurred throughout the annulus of the test material. The steady-state flow deformation, 0_2 , may then be computed using Equations 18c and 33.

The asphalts are grouped according to their plastic viscosity at 39.2°F in Table 10. Again there were slight readjustments from the groupings at 104°F (Table 6) and 77°F (Table 8) which were caused by different temperature susceptibilities of the various asphalts.

The viscoelastic flow deformation, Θ_3 , is described by Equation 27. To evaluate the constants, J_k and τ_k , of Equation 27, the following procedure was employed. First, Θ_3 was computed as follows:

 $\Theta_3 = \Theta - CT/G_0 - \Omega_0 t$

(37)

Figure 18. Steady-State Angular Velocity vs. CT Product for 39.2°F Tests.

CLASSIFICATION OF ASPHALTS BY PLASTIC VISCOSITY AT 39.2°F

Viscosity Interval (10 ⁸ poises)	Asphalt Numbers
2 • 4 - 3 • 7 3 • 7 - 5 • 6 5 • 6 - 8 • 5 8 • 5 - 1 3 • 1 1 3 • 1 - 20	3, PR-103, 200 13,67,91 45,53,71,72 116,127

where $\Theta_3 =$ viscoelastic flow deformation

 Θ = total observed angle of rotation

- G_0 = experimentally evaluated elastic shear modulus
- Ω₀ = experimentally evaluated steady-state angular velocity.

Equation 37 simply states that the viscoelastic flow deformation equals the total deformation less its components of steady-state flow and instantaneous elasticity. The quotient of Θ_3 and the CT product is the creep function, Ψ , for viscoelastic flow behavior and is ideally independent of shearing stress (see Equations 29 and 31). Thus,

$$\Psi(t) = (\Theta - CT/G_{O} - \Omega_{O}t)/CT_{O}$$
(38)

The experimental creep function for each of the asphalts and each level of applied shearing stress was computed using the above procedures. Figure 19 shows the results for asphalt 72. The creep functions for the three different stress levels should theoretically coincide if the viscoelastic behavior were linear and there were no experimental errors. Figure 19 shows that the experimental creep functions for asphalt 72 are obviously not identical. The data for this asphalt are representative of those

1.0

Figure 19. Experimental Creep Functions for Asphalt 72 at 39.2°F.

for the other asphalts. The results among the different asphalts were not predictable, however, in that the largest creep function generally occurred at the smallest stress level for six of the asphalts, at the intermediate level for four of the asphalts, and at the largest level for two of the asphalts.

Since there was apparently no consistent relationship between creep function and stress level, it was felt that the discrepancies among the creep functions could probably be attributed to experimental and graphical errors rather than to material behavior. This conclusion was substantiated by comparing the creep functions computed on the basis of the total angle of rotation, Θ , with those computed on the basis of Θ_{3} . The absolute value of the

- 50 -

differences among the total-angle creep functions for the three stress levels averaged about 6 percent while for the 0_3 creep functions this average difference was about 25 percent. Since the discrepancies in the total-angle creep functions were acceptably small (average of 6 percent) and well within the limits of experimental error, the asphalts appear to behave linearly under the conditions of test employed herein. Therefore, the larger discrepancies observed in the 0_3 creep functions (average of 25 percent) are most probably due to experimental and graphical errors.

Despite these errors, it is felt that the creep functions do furnish a reliable indication of the general viscoelastic properties of the materials. Thus, an average creep function was calculated for each asphalt and this average was used in the evaluation of the viscoelastic parameters, G_k and τ_k . Figure 20 shows the average creep functions, computed on the basis of Θ_3 , which were used in this analysis.

On the basis of Equation 29, the creep function for linear viscoelastic behavior is as follows:

$$\Psi(t) = \sum_{k=1}^{n} [1 - \exp(-t/\tau_k)]/G_k^{\circ}$$
(39)

A curve-fitting technique, which is described in detail in Appendix B, was developed and used to evaluate the material parameters of Equation 39. The material parameters were selected so that a best fit by the least squares criterion was achieved between the theoretical relationship of Equation 39 and the observed, average creep functions for the various asphalts. The number of Voigt elements, n, was varied beginning

- 51 -

Figure 20. Average Creep Functions for All Asphalts at 39.2°F.

.1

with one and increasing by increments of one until the computed values of the creep function were in satisfactory agreement with the observed values. The technique was programmed for the IBM 7040 computer: a discussion of this program is included as Appendix C.

A print-out of the results for asphalt 72 is included for illustration as Figure 21. The basic data for the analysis are given in the columns aligned beneath the heading "Data Sheet". The values of the observed, total angle of rotation and the 03 creep function computed for each value of the CT product are printed for selected values of elapsed time. The headings "THETA 1" and "CF 1" correspond to the observed, total angle of rotation and the computed creep function respectively for the smallest CT product noted in the heading; "THETA 2" and "CF 2" correspond to the intermediate CT product; and, finally, "THETA 3" and "CF 3" correspond to the largest CT product. Only three levels of the CT product are permitted. The average creep function for these three levels is shown in the last column of the "Data Sheet".

Information concerning the equation of best fit is given in the set of columns aligned beneath the heading, "Equation of Best Fit". One such set of columns is shown for each value of n, the number of Voigt elements in the model. For a two-element model, for example, "TAU1", "G1", and "VISC1" refer to the retardation time, shear modulus, and coefficient of viscosity, respectively, for the first element while "TAU2", "G2", and "VISC2" refer to the same values for the second element. The values shown for these parameters are those derived from the

- 53 ×

Figure 21. Viscoelastic Analysis for Asphalt 72 at 39.2°F.

	TINE THEYA IN DAJUSCCA	7557 16MP- 39.7 F
	74514 2 CF 2 THET* 1 - 220 RATOJSCON RAT	CIS- 22044, 54617, 0
_ 310 OEW	42-60. 22-600.	3485. DY/SQCH
x 0.754095-02	DESERVED CALCULATED	TAUL - 0-12738666 1
10-364073-0	CH36RV60 CALCUL THETA 2 THETA (NAU) (340	1 SEC 51 4 9-5
19496-0	2 THEAN 3	Sqipite of Dimesisd:C
E-02 0.	ALCOURTIN GESERVE THEIA 3 CP FUNCTS (8A55) (NA/D/SQC	2-D - 1351A W
171256-37° ste odv.•	D CALCULATED DA	229096 D9 9015E5
d.715536-02	55AVEQ. CALCULATES ETA 1 HELA (HSC) (ALC)	1AUZ * 0.1040739E D
0-14202E-01	DESSBURG CALCUL THEIR 2 THEIR (RAD) (RAD)	SEC 62 4 6.3
1166.04-0	aTED DASERVED C 2 HIETA 3 1 HADI	PROZECE OF DYNES/SU ?
	THETA J CP FUNCTI	5.2. ZJSIA K
1471 CE +U?	CO LATCHTATED	VAME OF PUISES

SUPPARY SHEEF FOR VISCOELASTIC ANALYSIS

Tatl - 0-19659488 04 540

-4250558E 06 DYNES/SD EM

VISC1 - 0-1220827E 10 PDISES

p gev •						
6-715					AU3 *	r ≥ny.
20-361					1.269009E 02 CALCULATEC THE'S L (RAC) 0.15642E-02 0.25932E-02 0.45942E-02 0.45942E-02 0.45942E-02	1.39934195 03
0.14					SEC 03 CDSERVED THETA 2 THETA 2 THETA 2 THETA 2 0.575500 0.575500 0.6473500 0.6473500	SEE GS
10-951					- 0.769729 GALCULAFED Thigh 2 Thigh 2 G.78250L-02 G.7750L-02 G.7750L	= 0.305843
0.61	0.431976 0.451976 0.4				46 07 07NES/S 085ERVED THETA 3 THETA 3 THETA 3 THETA 3 0.334076-02 0.12043E-01 0.12043E-01 0.12043E-01 0.12043E-01 0.12043E-01	TE OT OTHES/S
2678-02	0.765/18 (0) 0.765/18 (0) 0.755/18 (0) 0.755			a 175/01 a 175/01 b 213/01 b 213/01 c 213/01 b 213/01 c 213/01	6 Cm VE	t CH VI
6.8			0.01250000000000000000000000000000000000		AC2 = 0.204 ObSERVED De Function I PA/0/SQCH 0.79427E-0 0.79427E-0 0.79427E-0 0.79427E-0 0.79427E-0 0.79427E-0 0.15194E-0	3C2 - 0.100
					CALCULATED CALCULATED CALCULATED CALCULATED CALCOSCEN CA	SIDA DI HIZDA
EV C			1 1		ES TAUX ESSENY ESSEN	ES TAUX
.714958-02 Untered CN 5					- D.75468511 - D.75468511 - THED 1 - THED 1 - THED 1 - THED 1 - THED 2 - 2 0.154628 - 2 0.154628 - 2 0.154628 - 2 0.155628 - 2 0.15568 - 2 0.155688 -	- C-91441351
YSLEP INPUT.7					E CH SEC CH SEC CHSERV CHSE	F, CZ, SAC
.1+216€-01					ED CALCULST 2 THETA 2 1 THETA 2 2 THETA 2 1 CALCULST 2 CALCUL	C3 - 0.666
					44026 08 000 60 08564 1860 1860 -02 0,34907 -02 0,12043 -02 0,12045 -02 0,12055 -02 0,12055 -02 0,12	84246 O' DYNE
0-47236E-02					ES750 CH	S/SC CN
					TED 08588 3 182/07/08	VI\$C3 = 0.
0,507752-0		12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		12 전체 가는 전·가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가		.6U97697E D9

Figure 21. Viscoelastic Analysis for Asphalt 72 at 39.2°F (Cont'd.).

÷

<u>- S S -</u>

least squares criterion and, hence, represent the best values for the two-element model. The first three pairs of columns compare the observed total angles of rotation for the three stress levels with those calculated on the basis of the generalized model (Equation 35). The last two columns show a comparison between the observed average creep function and the creep function computed from Equation 39 using the tabulated values of G_k and τ_k . The standard deviations between the observed and calculated values are printed at the bottom of each pair of "observed" and "calculated" columns. As a matter of record, the output for all of the asphalts tested at 39.2°F is included as Appendix D.

The best correlation between the observed and computed creep functions was obtained for asphalt 72. Figure 22 depicts the data for this asphalt. The agreement between the observed creep function and that computed for the three-element model is considered quite acceptable and no significant improvement can be realized by increasing the number of elements. The worst correlation was obtained for asphalt 3, the data for which are shown in Figure 23. The two-element model is considered optimal in this instance since further increases in the number of elements do not significantly improve the correlation.

The viscoelastic material parameters for all of the asphalts are summarized in Table 11. The optimal number of Voigt elements was selected as that number beyond which significant increases in the degree of correlation between the observed and computed creep functions could not be achieved. This selection was made by

- 56 -

Figure 23. Comparison Between Observed and Computed Creep Functions for Asphalt 3.

TABLE 11

VISCOELASTIC MATERIAL PARAMETERS EVALUATED AT 39.2°F

 1 1.70 x 10³⁸ poises

	Optimal Number	Viscoelastic Parameters							
Asphalt		First Element		Second Element		Third Element		Standard Deviation	
Number	Voigt Elements	$(10^6 \frac{G_1}{d/cm^2})$	ⁿ 1 (10 ⁹ poises)	$(10^{6} d/cm^{2})$	(10 ⁹ ⁿ 2 (10 ⁹ poises)	(10^6 d/cm^2)	(10 ⁹ poises)	$(10^{-8} \text{ rad/d/cm}^2)$	
PR-103	1	3.17	1.38	: · ·				2.60	
3	2	0.41	1	2.27	0.15			4.35	
13	2	0.48	1.02	2.34	0.26			2.34	
53	2	0.68	1.09	4.18	0.46			1.50	1
71 ·	2	0.64	1.26	5.82	0.62			0.94	
91	2	1.09	5.67	9.54	0.27			3.30	ĩ
116	2	0.86	1.47	7.76	0.63			3.41	
45	3	0.70	1.54	2.92	1.05	7.92	0.21	0, 64	
67	3	0.49	0.95	2,38	0.46	7.64	0.10	1.49	
72	3	0.67	1.52	3.06	1.09	7.69	0.21	0.61	
127	3	0.81	1.68	3.82	0.92	12.10	0.21	0.90	
200	3	3,71	0.11	0.53	1.07	0.87	0.33	2,92	

ascertaining the minimum number of elements for which the decrease in standard deviation due to an increase of one in the number of elements was less than 20 percent.

A strategies of the strategies of t

No particular physical significance should be attached to the optimal numbers of elements given in Table 11 since the analysis was based on empirical correlations and curve-fitting techniques. What is of importance, however, is the fact that the viscoelastic portion of the total flow behavior can be closely approximated by the generalized Voigt body consisting of a maximum of three elements.

-

ANALYSIS OF RESULTS

APPARENT VISCOSITY

The method for evaluating material parameters which has been used in preceding sections is based on an analysis of the complexity of flow exhibited by each asphalt under each set of test conditions. At the same time, the rotating coaxial cylinder viscometer can also be used to obtain a shear-dependent, apparent viscosity¹ which does not require an evaluation of the complexity of flow. The apparent viscosity is computed as follows:

$$\eta_a = \frac{CT}{\Omega}$$
(40)

where $n_a = apparent viscosity$

 Ω = angular velocity of bob relative to cup. The corresponding rate of shear and average rate of shear are given by Equations 15 and 16, respectively, which are repeated here for convenience.

$$\ddot{Y}(\mathbf{r}) = \left[\frac{2}{1/a_1^2 - 1/a_2^2}\right] \left[\frac{1}{\mathbf{r}^2}\right] \Omega$$
(15)

¹The apparent viscosity (46) is the ratio of shearing stress to rate of shear and, for non-Newtonian liquids, is dependent upon rate of shear and, in some instances, upon shearing stress.

$$\dot{\tilde{\gamma}}(av) = \frac{2a_1a_2}{a_2^2 - a_1^2} \quad \Omega \tag{16}$$

The angular velocity in these equations may be defined simply as the quotient of the angle of rotation and elapsed time. Figure 24 shows a hypothetical creep curve that may be used to

Time, t (seconds)

Figure 24. Evaluation of Angular Velocity by Secant Method.

illustrate this method of defining angular velocity by the secant method. For a creep curve having this characteristic shape, the angular velocity at point 1 exceeds that at point 2. According

-62-

to Equations 15, 16, and 40, the apparent viscosity is, therefore larger at point 2 while the shear rate is larger at point 1. Thus, for this type of creep testing and non-Newtonian materials, the apparent viscosity is obviously a function of shear rate.

When the shearing stress is changed, an entirely new relationship is obtained. This is illustrated in Figure 25 which shows viscosities obtained for asphalt 3 at 39.2°F. At this temperature, asphalt 3 has a creep curve similar in shape to

Constant Provide

Figure 25. Comparison of Viscosities of Asphalt 3 at 39.2°F.

-63-

that shown in Figure 24. Examine now only those curves of Figure 25 for which the apparent viscosities have been computed using the previously explained secant method of defining angular velocity. The secant, apparent viscosity is obviously a function of both shearing stress and shearing rate.

Because of this dependence of the secant, apparent viscosity on both shearing stress and shearing rate, it is usual to redefine the angular velocity of Equation 40 as that velocity corresponding to steady-state flow (47). Figure 26 shows hypothetical creep curves which extend into the region of steadystate flow -- that is, the region in which there is a linear

Figure 26. Evaluation of Angular Velocity in Region of Steady-State Flow.

-64-

relationship between angle of rotation and time. The steadystate, angular velocity then equals the slope of the creep curve in this region. Both the angular velocity and the shear rate in the steady-state region increase as the stress level is increased. Since the secant, angular velocities for a given shearing stress exceed the steady-state, angular velocities, the steady-state, apparent viscosities generally exceed the secant viscosities (Equation 40). This is also depicted in the actual data of Figure 25. From this figure, the apparent viscosities evaluated by the steady-state flow method are seen to be dependent only upon shearing rate. By specifying a standard shear rate, a viscosity measurement can be obtained which is useful in classifying or grading asphalts on the basis of consistency (<u>46, 47</u>).

There are two other viscosity measurements of interest because of their independence of both shearing rate and shearing stress. The first of these is the limiting or initial viscosity which occurs at low rates of shear and low shearing stresses -that is, when the material is behaving in a Newtonian fashion -and which is generally considered to exceed the apparent viscosities evaluated in the shear-dependent region (<u>48</u>).

The second of these shear-independent viscosity measurements is that of plastic viscosity. Before evaluating the plastic viscosity, it is necessary to first establish that the behavior of asphalt cements in the steady-state flow regime may be represented by that of a Bingham plastic. Figures 16,17, and 18 indicate that the 13 asphalt cements of this study generally behave as Bingham plastics in the steady-state region (at least

--65-

for temperatures between 39.2°F and 104°F and for moderate shearing stresses). Figure 27 shows the theoretical relationship

Figure 27. Theoretical Comparison of Steady-State, Apparent Viscosity, n_a, and Plastic Viscosity, n_p.

between the steady-state, apparent viscosities and the plastic viscosity, n_p . It is obvious from this figure that the steadystate, apparent viscosities should generally exceed the plastic viscosity and should approach its value only at high shearing stresses or high rates of shear¹. This is supported by the actual data of Figure 25.

¹A word of caution is warranted at this point. This observation is based on the premise that the steady-state flow behavior may be represented as a Bingham plastic. While this premise is supported by the data of this study, it may be in error if a wider range in shearing rates or temperatures is considered.

It is of interest to compare the apparent viscosity measurements obtained with the rotating coaxial cylinder viscometer with those obtained on identical asphalts but with a different type of viscometer. To enable such a comparison, the Bureau of Public Roads furnished three samples of their viscosity-graded asphalts. These samples were all of the AC-10 grade and were designated C-10, E-10, and 0-10. A complete description of these asphalts and a summary of the viscosity measurements obtained by the Bureau may be found in Reference 48.

The Bureau used a sliding plate viscometer which was operated at controlled rates of shear. Computations of apparent viscosity were based on the maximum load attained at each rate of shear. The test equipment and procedures are fully described in Reference 46.

Figure 28 shows a comparison between the viscosities obtained with the coaxial cylinder viscometer and those obtained with the sliding plate viscometer for asphalt C-10 at 45°F. These results are generally indicative of those obtained for each of the three asphalts at all test temperatures. It was impossible to obtain a limiting viscosity for the tests with the coaxial cylinder viscometer since a rather limited range in shearing rates was employed. The apparent viscosities obtained with the coaxial cylinder viscometer were larger than those obtained with the sliding plate viscometer. Ideally, of course,

-67-

Figure 28. Comparison Between Viscosities Obtained with Rotating Coaxial Cylinder Viscometer and Sliding Plate Viscometer (Asphalt C-10 at 45°F).

they should have been equal. The plastic viscosity was also larger than the limiting viscosity. The preceding rationale would indicate that ideally the limiting viscosity should exceed the plastic viscosity.

The data of Table 12 may also be used to compare the two viscometers. The apparent viscosities at a specified shear rate of 0.001 sec⁻¹ are tabulated for each of the three asphalts. Again the coaxial cylinder viscometer generally yielded viscosities in excess of those obtained with the sliding plate

TABLE 12

COMPARISON BETWEEN VISCOSITIES OBTAINED WITH ROTATING COAXIAL CYLINDER VISCOMETER AND SLIDING PLATE VISCOMETER

A	Temperature (°F)	Apparent (Shear Rate	Viscosity of 0.001 sec ⁻¹)	Democrate co	limiting	Diastia
Number		Sliding Plate ¹ Coaxial Cylind (megapoises) (megapoises)		Difference (%)	Viscosity ¹ (megapoises)	Viscosity (megapoises)
C-10 C-10	45 60	73 11.0	107 11.0	+47 0	77 11.3	97.7 7.1
E-10 E-10 E-10	39.2 45 60	5770 3850 625	2 2 625	- 0	36,000 12,000 860	45,400 22,900 1,030
0-10 0-10 0-10	39.2 45 60	950 314 21.5	1200 400 26.5	+26 +27 +23	950 315 22.0	1,150 396 23.0

¹Obtained from Reference 48. ²Extrapolation impossible.

-69-

viscometer. The differences between the two types of viscosity measurements, expressed as a percentage of the viscosities obtained with the sliding plate viscometer, are also shown on Table 12. The average percentage difference between the apparent viscosities is 21 percent. Figure 29 compares the plastic viscosities (coaxial cylinder data) with the limiting viscosities (sliding plate data). Again the plastic viscosities are generally in excess of the limiting viscosities.

The data that have been presented definitely indicate a difference in viscosity measurements obtained using the two viscometers. The magnitude of the difference is not excessive, however, and may have been anticipated due to certain fundamental differences between the two viscometers and their operation by different laboratories. Several of these differences are listed in Table 13. The possible effects of these differences are generally unknown at this time.

It is concluded that the rotating coaxial cylinder viscometer can be effectively employed to evaluate apparent viscosities of asphalt cements at relatively low temperatures. Data obtained with this viscometer compare favorably with similar data obatined with the sliding plate viscometer.

TEMPERATURE SUSCEPTIBILITY

Data reported herein are sufficient to compare the susceptibilities of the consistency of the various asphalts to changes in temperature. Three of the techniques for defining the temperature susceptibility of asphalt cements are used in this comparison including the penetration ratio, the penetration index.

- 7.0 -

Figure 29. Comparison Between Limiting Viscosity and Plastic Viscosity.

TABLE 13

-72-

FUNDAMENTAL DIFFERENCES BETWEEN VISCOMETERS AND TEST PROCEDURES

Variable	Sliding Plate Viscometer	Coaxial Cylinder Viscometer
Film Thickness(in.)	0.01-0.02	0.385
Stress or Strain History	Controlled rate of shear	Creep
Approximate Range in Shear Rates (sec ⁻¹)	10^{-3} - 10^{-1}	$10^{-6} - 10^{-2}$
Specimen Preparation		
Temperature (°F)	260 - 280	290
at Room Temperature		
_(min)	60-90	30
Time to Reach Temperature	25 70	<u>()</u>
Equilibrium (min)	25-30	60
Specimen Reuse	Permitted for several shear rates	Not permitted
Basis for Computations	Maximum load	Steady-state flow

and the slope of the viscosity-temperature relationship.

The penetration-ratio technique is based on determining the consistency of an asphalt cement at 39.2°F and 77°F by means of the standard penetration test. The penetration ratio is computed as follows:

Pen. Ratio =
$$\frac{\text{Pen. @ 39.2°F}}{\text{Pen. @ 77°F}} \times 100.$$
 (41)

A large temperature susceptibility connotes a low penetration ratio.

The penetration-index technique is based on two different consistency tests: the penetration test is used at the lower temperature (77°F) and the ring-and-ball softening point test is used at the higher temperature. The penetration index is computed as follows:

$$PI = \frac{20 - 500A}{50A + 1}$$
(42)

where PI = penetration index

- $A = \frac{1 \cdot 8 \log(800/\text{Pen})}{\Delta T}$ log = common logarithm Pen = penetration at 77°F $\Delta T = \text{temperature different}$
- ΔT = temperature difference (°F) between the ring-and-ball temperature and 77°F.

The penetration index normally varies between -2.5 and +8 $(\underline{49})$. A large temperature susceptibility yields a low penetration index.

The slope of the viscosity-temperature relationship may also be used as a measure of temperature susceptibility. This slope is normally determined from a plot of log log viscosity versus log absolute temperature. The following equation has been used in this determination:

VTS =
$$\frac{\log \log n_{p(1)} - \log \log n_{p(2)}}{\log T_2 - \log T_1}$$
 (43)

where VTS = viscosity-temperature slope

 $n_{p(1)}$ = plastic viscosity in poises at T_1

 $\eta_{n(2)}$ = plastic viscosity in poises at T_2

 $T_1 = 1 \text{ argest temperature in } ^\circ R(104^\circ F)$

 T_2 = smallest temperature in $^{\circ}R(39_{\circ}2^{\circ}F)_{\circ}$

Naturally a larger slope is associated with an asphalt of higher temperature susceptibility. This technique for evaluating temperature susceptibility is normally employed for a higher temperature range, for example, 140°F to 275°F. However, it may still furnish a useful measure of temperature susceptibility within a lower temperature range such as that employed here (39.2°F to 104°F). This is particularly valid since the plastic viscosities are independent of shear rate at all temperatures.

The results of this analysis are shown in Table 14. With the possible exception of asphalt $PR-132^{1}$, there is not a great

TABLE 14

TEMPERATURE SUSCEPTIBILITY

Asphalt Number	Penetration Ratio	Penetration Index	Viscosity- Temperature Slope
3	49	+0.1	4 . 5
13	35	+ 0.8	5 🖁 0
45	32	-0.8	5 。4
53	38	- 0 . 1	5.5
67	46	0.0	4.8
71	25	-1.2	5 • 5
72	39	-0.7	5。4
91	26	-1.3	5 。 5
116	32	<u>-1.1</u>	6.1
127	49	-1.2	4 . 8
200	33	- 0 . 1	5.2
PR-103	35	- 1 。0	6 。0
PR-132	8	- 1 . 2	æ

deal of difference among the temperature susceptibilities of the various asphalts. All of the asphalts would be classified by Pfeiffer as normal types on the basis of their penetration indices (-2.0 < PI < 2.0) (<u>49</u>). Asphalts 71 and 91 exhibited

¹Asphalt PR-132 was not tested at 39.2°F and, hence, the viscosity-temperature slope could not be evaluated. However, it does have a low penetration ratio which would indicate a high temperature susceptibility.

perhaps the largest temperature susceptibilities and asphalt 3, the smallest. The viscosity-temperature relationships for asphalts 3 and 91 are compared on the Walther plot of Figure 30.

Figure 30. Largest and Smallest Temperature Susceptibilities.

The data of Table 14 are not sufficiently extensive to enable a thorough evaluation of the possible effects of crude source and manufacturing process on temperature susceptibility. The Venezuelan asphalts (asphalts 13, 127, and 200), which differ only in penetration grade, exhibited essentially identical temperature susceptibilities. Asphalts in which air blowing was used (asphalts 53, 72, and 91) were not particularly resistant to changes in temperature. The Californian crude (asphalt 91) and a Midcontinent crude (asphalt 71) exhibited the highest temperature susceptibilities and the Mexican crude (asphalt 3), the lowest. However, since the differences were not large and since only a single asphalt from each crude source was evaluated, a definitive conclusion relative to crude source cannot be drawn on the basis of these data.

VISCOSITY-PENETRATION RELATIONSHIP

Figures 31 and 32 show the relationship between plastic viscosity and penetration at temperatures of 77°F and 39.2°F, respectively. Both figures indicate a clearly defined trend with increasing penetrations corresponding to decreasing viscosities. As expected, the variability is greater with the 39.2°F measurements than with the 77°F measurements. At 39.2°F, the penetrations are relatively small and within the length of the truncated cone portion of the penetration needle.

The viscosity measurements are considerably more sensitive than the penetration measurements both in evaluating the differences among asphalts at a single temperature and in evaluating the effect of temperature for a single asphalt. The variability¹ among asphalts at a given temperature averaged about \$4 percent for the penetration measurements and about 250 percent for the viscosity measurements. In going from 77°F to 39.2°F, the mean penetration decreased about 64 percent while the mean viscosity increased about 63,000 percent.

¹In this case, the variability is expressed as the range of the measurements divided by their average values.

Figure 32. Relationship Between Plastic Viscosity and Penetration (200 g., 60 sec.) at 39.2°F.

TIME-TEMPERATURE SUPERPOSITION

Asphalt S3 was tested at 0°F in addition to the three temperatures which were employed for all of the asphalts. Three levels of shearing stress were applied at this temperature. The duration of each of the three tests was approximately two weeks. The characteristic relationship between angle of rotation and time was observed; that is, elastic, steady-state flow, and viscoelastic processes were all in evidence. The steady-state flow condition was reached after a period of approximately three to nine days depending upon the stres: level. The material parameters evaluated at this temperature are summarized on Table 15. The two-element viscoelastic model was found to satisfactorily describe the viscoelastic portion of flow,

TABLE 15

MATERIAL PARAMETERS EVALUATED AT 0°F (ASPHALT 53)

Parameter		Value
Elastic Modulus, G _o Yield Stress, S _v	3,46 x	10^7 dynes/cm ²
Coefficient of Plastic Viscosity, np Viscoelastic Parameters	1,65 x	10 ¹³ poises
G ₁	1.71 x	10^7 dynes/cm ²
η	5,05 x	10 ¹² poises
G ₂	3,39 x	10^7 dynes/cm ²
⁷¹ 2	0.58 x	10 ¹² poises

The tests using asphalt 53 covered a sufficiently wide range of temperatures and durations of loading to enable investigation of the possible applicability of the time-temperature superposition principle in the low-temperature region. As a basis for this investigation, the average creep function at each of the four

-78-

temperatures was plotted as shown on Figure 33. The totalangle creep functions, averaged for the three stress levels, are shown on this figure. The averaging process is thought to be valid since no evidence was found that the material is non-linear under the particular test conditions evaluated herein. The average creep function was reduced after the manner discussed by Ferry (50) by multiplying it by the ratio of the absolute value of the test temperature to the absolute value of a suitable reference temperature (in this case 50° F).

The reduced average creep functions of Figure 33 were then shifted horizontally until their overlapping portions were made to coincide. The magnitude of translation is defined as $\log \alpha_T$ where α_T is the shift factor. The shift factor was then adjusted to the reference temperature of 50°F; that is, $\log \alpha_T$ was adjusted to zero at a temperature of 50°F. The relationship between the shift factor, thus obtained, and the test temperature is shown on Figure 34.

The shift factor may also be computed from the following relationship (50):

 $\alpha_{\rm T} = (\eta T_0 \rho_0) / (\eta_0 T \rho)$

(44)

where α_T = shift factor

(a) A set of the se

n = steady-flow viscosity at temperature, T n_0 = steady-flow viscosity at temperature, T₀ T = any temperature in absolute units T_0 = reference temperature in absolute units ρ = density at temperature, T ρ_0 = density at temperature, T₀°

Figure 33. Average Creep Functions for Asphalt 53.

E.

-80-

Figure 34. Relationship Between Shift Factor and Temperature.

This expression is theoretically valid for uncross-linked polymers of low molecular weight and, in certain instances, for those of high molecular weight (50). The shift factor was evaluated using Equation 44 which was slightly modified by omitting the density terms because of their minor importance. The coefficients of plastic viscosity were used to represent the viscosity measurements. A comparison between the computed and measured shift factors is given in Table 16. The agreement is relatively surprising even though the range in test temperatures is somewhat limited. The comparison demonstrates that the measured shift

TABLE 16

SHIFT FACTORS

	Computed	Measured
Temperature (°F)	Shift Factor, α _T (Equation 44)	Shift Factor, α_{T}
0	1.63×10^5	2.14×10^5
339,2	8.99 -2	8.70 -2
77	0.98×10^{-2}	1.26 x 10 ⁻²
104	2.88 × 10 ⁻⁴	5.00 x 10-4

factors are of the proper order of magnitude and are properly related to temperature within the low-temperature range of these tests.

Figure 35 shows the master creep function for asphalt 53 at a reference temperature of 50°F when the experimentally determined shift factors are applied to the data of Figure 33. The master creep function satisfactorily fits the data points obtained at the four different test temperatures.

Ferry (50) lists the following three criteria for determining the applicability of the time-temperature superposition principle (method of reduced variables) to a given set of test data: (1) exact matching of the shapes of adjacent curves obtained at different test temperatures, (2) superposition of the values of the shift factor for different viscoelastic functions, and (3) a reasonable form of the temperature dependence of the shift factor consistent with experience. A study of Figure 35 leads to the conclusion that the first criterion is satisfied for these data. The second criterion cannot be evaluated since only one viscoelastic function. The third criterion seems to have been

satisfied by the comparison of Table 16. It is concluded, therefore, that the time-temperature superposition principle is valid for asphalt 53 when tested in the low-temperature range. A cursory evaluation of other of the asphalt cements tends to support the extension of this conclusion to all of the materials of this study.

CONCLUSIONS

The following conclusions are substantiated by the data obtained in this phase of the study:

1. The rotating coaxial cylinder viscometer is a useful research tool for examining the flow behavior of asphalt cements at relatively low temperatures. It may also be effectively employed to evaluate apparent viscosities of these materials.

2. The curve-fitting technique for evaluating the parameters of viscoelastic behavior has proven to be extremely useful and reliable. The principles underlying this technique may be readily extended to other types of equations in which a best fit by the least squares criterion is required.

3. All of the asphalt cements exhibited steady-state flow behavior at 77°F and 104°F. At these temperatures, their flow behavior under creep loading could satisfactorily be characterized by that of a Bingham plastic. At 39.2°F, however, all asphalts exhibited instantaneous and retarded elasticity, steadystate flow, and elastic recovery following load removal. This behavior could satisfactorily be characterized by a generalized model consisting of a series combination of an elastic element (spring), a Bingham element (steady-state liquid), and a viscoelastic body (generalized Voigt body). It follows, then, that the complexity of flow behavior increases as the temperature is reduced.

4. The steady-state flow behavior of each of the asphalt cements in the low-temperature range was found to be similar to

- 85-

that of a Bingham plastic. The coefficient of plastic viscosity is an appropriate means for defining a shear-independent measure of consistency for classification purposes.

5. Coefficients of plastic viscosity in the range of 10^4 to 10^{13} poises were measured with the rotating coaxial cylinder viscometer. In no case was a discernable relationship observed between the yield stress and the coefficient of plastic viscosity.

6. For the one set of tests conducted at 0°F, steady-state flow was reached after a period of approximately three to nine days. For tests at 39.2°F, approximately one to five hours were necessary to achieve the steady-state condition. This emphasizes the necessity for a long-duration test when evaluating the steadystate flow behavior of asphalt cements at relatively low temperatures.

7. All of the asphalts appeared to behave linearly under the conditions of test employed herein. The tentative nature of this conclusion is emphasized, however, pending the outcome of a more exhaustive set of tests directed specifically to this determination.

8. The time-temperature superposition principle (method of reduced variables) appears to be applicable to the behavior of normal asphalt cements at least in the low-temperature range (0°F to 104°F).

9. A relationship exists between plastic viscosity evaluated with the rotating coaxial cylinder viscometer and the results of standard penetration tests when both types of tests are conducted at identical temperatures. The correlation at 77°F is superior to that at 39.2°F because of the varying nature of the shear strains and shear rates when the penetrations are small as they

- 86 -

were at 39.2°F. The viscosity measurements are considerably more sensitive both to changes in temperature and to changes in material properties than are the penetration measurements.

10. The effect of penetration grade was evaluated using the three asphalts obtained by vacuum and steam distillation from the Venezuelan crude. As anticipated, the viscosities of these asphalts were properly arranged in the order indicated by the penetration grade at all temperatures. The temperature susceptibilities of these asphalts were approximately the same: this indicates that asphalts produced from the same crude source by similar refining processes will have similar temperature susceptibilities.

11. The effect of manufacturing process on the viscosities of materials of the same penetration grade was somewhat indeterminant. Those asphalts in which air blowing was used, namely, asphalts 53, 72, and 91, did not have particularly low temperature susceptibilities. Asphalt 91 had a consistently low viscosity at all temperatures but asphalts 53 and 72 were not significantly different from the other 85-100 penetration materials in this respect.

12. The effect of crude source for materials of the same penetration grade is also difficult to evaluate. The Californian asphalt exhibited a lower viscosity than most of the other asphalts at all temperatures and the highest temperature susceptibility of the group. The Mexican asphalt exhibited relatively high viscosities at the two higher temperatures and the lowest temperature susceptibility of the group. However, since the differences

-87-

among asphalts was not large and since only a single asphalt from each of these two crude sources was evaluated, definitive conclusions as to the potential importance of crude source must be withheld.

13. Two of the 85-100 penetration asphalts, namely, asphalts 91 and 116, had significantly lower Saybolt Furol viscosities than the others. This lower consistency at the higher temperatures is reflected in the fact that the plastic viscosities of these asphalts at 104°F were the lowest of the 85-100 penetration grade asphalts. Due to the different temperature susceptibilities of the various asphalts, however, they did not maintain this relatively low ranking at the lower temperatures. Asphalts 91 and 116 were also less viscous at 104°F than the one 120-150 penetration asphalt that was tested. This emphasizes the necessity for specifying the consistency of asphalt cements at more than one temperature level.

REFERENCES

- Mossbarger, W.A., Jr., "A Rheological Investigation of Asphaltic Materials," Research Report, Division of Research, Kentucky Department of Highways, January, 1964.
- Peattie, K_oR_o, "A Fundamental Approach to the Design of Flexible Pavements," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, 1963.
- 3. Skok, E.L., Jr. and Finn, F.N., "Theoretical Concepts Applied to Asphalt Concrete Pavement Design," <u>Proceedings</u>, International Conference on the Structural Design of Asphalt Pavements, 1963.
- 4. Jones, A., "Tables of Stresses in Three-Layer Elastic Systems," <u>Bulletin 342</u>, Highway Research Board, 1962.
- 5. Peattie, K.R., "Stress and Strain Factors for Three-Layer Elastic Systems," Bulletin 342, Highway Research Board, 1962.
- 6. Burmister, D.M., "The General Theory of Stresses and Displacements in Layered Systems," <u>Journal of Applied Physics</u>, Vol. 16, Nos. 2,3, and 5, 1945.
- 7. Coffman, Bonner S., "The Structural Evaluation of Flexible Pavements," <u>Report No. 235-2</u>, Engineering Experiment Station, The Ohio State University, 1966.
- 8. Whiffin, A.C. and Lister, N.W., "The Application of Elastic Theory to Flexible Pavements," Proceedings, International Conference on the Structural Design of Asphalt Pavements, 1963.
- 9. Pister, K.S. and Westmann, R.A., "Analysis of Viscoelastic Pavements Subjected to Moving Loads," <u>Proceedings</u>, International Conference on the Structural <u>Design of Asphalt</u> Pavements, 1963.
- 10. Lee, E.H., "Stress Analysis in Viscoelastic Materials," Journal of Applied Physics, Vol. 27, 1956.
- 11. Lee, E.H., "Viscoelastic Stress Analysis," <u>Structural</u> <u>Mechanics</u>, <u>Proceedings</u>, First Symposium on <u>Naval Structural</u> <u>Mechanics</u>, <u>edited by Goodier</u>, J.N. and Nicholas, Jr., Pergamon Press, New York, 1960.

REFERENCES (Cont'd.)

- 12. Hoskins, B.C. and Lee, E.H., "Flexible Surfaces on Viscoelastic Subgrades," Proceedings, American Society of Civil Engineers, Vol. 85, No. EM 4, October, 1959.
- 13. Mase. G.E., "Behavior of Viscoelastic Plates in Bending," Proceedings, American Society of Civil Engineers, Vol. 86, No. EM 3, June, 1960.
- 14. Pister, K.S. and Williams, M.L., "Bending of Plates on a Viscoelastic Foundation," Proceedings, American Society of Civil Engineers, Vol. 86, No. EM 5, October, 1960.
- 15. Alfrey, T., Jr. and Doty, P., "The Methods of Specifying the Properties of Viscoelastic Materials," <u>Journal of Applied</u> <u>Physics</u>, Vol. 16, 1945.
- 16. Alfrey, T., Jr., <u>Mechanical Behavior of High Polymers</u>, Interscience Publishers Inc., New York, 1948.
- 17. Leaderman, H., "Viscoelastic Phenomena in Amorphous High Polymeric Systems," <u>Rheology</u>, Theory and Applications, Vol. 2, edited by Eirich, F.R., Academic Press Inc., New York, 1958.
- 18. Alfrey, T., Jr. and Gurnee, E.F., "Dynamics of Viscoelastic Behavior," <u>Rheology</u>, <u>Theory and Applications</u>, Vol. 1, edited by Eirich, F.R., Academic Press Inc., New York, 1956.
- 19. Ferry, J.D., "Experimental Techniques for Rheological Measurements on Viscoelastic Bodies, "<u>Rheology</u>, <u>Theory and</u> <u>Applications</u>, Vol. 2, edited by Eirich, F.R., Academic Press Inc., New York, 1958.
- 20. Traxler, R.N., Schweyer, H.E., and Romberg, J.W., "Rheological Properties of Asphalt," <u>Industrial and Engineering Chemistry</u>, September, 1944.
- 21. Van Der Poel, C., "A General System Describing the Viscoelastic Properties of Bitumens and Its Relation to Routine Test Data," Journal of Applied Chemistry, Vol. 4, May,1954.
- 22. Van Der Poel, C., "Road Asphalt," <u>Building Materials, Their</u> <u>Elasticity and Inelasticity</u>, edited by Reiner, M., Interscience Publishers Inc., New York, 1954.
- 23. Saal, R.N.J., "Physical Properties of Asphaltic Bitumen," <u>Properties of Asphaltic Bitumen</u>, edited by Pfeiffer, J.Ph., <u>Elsevier Publishing Co., Inc.</u>, New York, 1950.
- 24. Brodnyan, J.G., "Use of Rheological and Other Data in Engineering Problems," Bulletin 192, Highway Research Board, 1958.

REFERENCES (Cont'd.)

- 25. Gaskins, F.H., Brodnyan, J.G., Philippoff, W., and Thelen, E., "The Rheology of Asphalt. II. Flow Characteristics of Asphalt," Transactions, Society of Rheology, Vol. IV, 1960.
- 26. Brodnyan, J.G., Gaskins, F.H., Philippoff, W., and Thelen, E., "The Rheology of Asphalt." III. Dynamic Mechanical Properties of Asphalt," <u>Transactions</u>, Society of Rheology, Vol. IV, 1960.
- 27. Brown, A.B., Sparks, J.W., and Smith, F.M., "Viscoelastic Properties of a High-Consistency Asphalt," <u>Journal of</u> Colloid Science, Vol. 12, No. 3, 1957.
- 28. Brown, A.B. and Sparks, J.W., "Viscoelastic Properties of a Penetration Grade Paving Asphalt at Winter Temperature," <u>Proceedings</u>, Association of Asphalt Paving Technologists, Vol. 27, 1958.
- 29. Wood, P.R., "Rheology of Asphalts and Its Relation to Behavior of Paving Mixtures," <u>Bulletin 192</u>, Highway Research Board, 1958.
- 30. Kuhn, S.H. and Rigden, P.J., "Measurement of Visco-Elastic Properties of Bitumen Under Dynamic Loading," <u>Proceedings</u>, Highway Research Board, Vol. 38, 1959.
- 31. Wood, L.E. and Goetz, W.H., "The Rheological Characteristics of a Sand-Asphalt Mixture," <u>Proceedings</u>, Association of Asphalt Paving Technologists, Vol.28, 1959.
- 32. Pister, K.S. and Monismith, C.L., "Analysis of Viscoelastic Flexible Pavements," <u>Bulletin 269</u>, Highway Research Board, 1960.
- 33. Secor, K.E. and Monismith, C.L., "Analysis of Triaxial Test Data on Asphalt Concrete Using Viscoelastic Principles," Proceedings, Highway Research Board, Vol. 40, 1961.
- 34. Baker, R.F. and Papazian, H.A., "The Effect of Stiffness Ratio on Pavement Stress Analysis," <u>Proceedings</u>, Highway Research Board, Vol. 39, 1960.
- 35. Papazian, H.S., "The Response of Linear Viscoelastic Materials in the Frequency Domain," <u>Report No. 172-2</u>, Transportation Engineering Center, Engineering Experiment Station, Ohio State University, 1961.
- 36. Schiffman, R.L., "The Use of Viscoelastic Stress-Strain Laws in Soil Testing," <u>STP No. 254</u>, American Society for Testing Materials, 1959.

1 I.,

REFERENCES (Cont'd.)

- 37. Folque, J., "Rheological Properties of Compacted Unsaturated Soils," <u>Proceedings</u>, Fifth International Conference on Soil Mechanics and Foundation Engineering, Vol. I, Paris, 1961.
- 38. Murayama, S. and Shibata, T., "Rheological Properties of Clays," <u>Proceedings</u>, Fifth International Conference on Soil Mechanics and Foundation Engineering, Vol. I, Paris, 1961.
- 39. Vialov, S.S. and Skibitsky, A.M., "Problems of the Rheology of Soils," <u>Proceedings</u>, Fifth International Conference on Soil Mechanics and Foundation Engineering, Vol. I, Paris, 1961.
- 40. Goldstein, M.N., Misumsky, V.A., and Lapidus, L.S., "The Theory of Probability and Statistics in Relation to the Rheology of Soils," <u>Proceedings</u>, Fifth International Conference on Soil Mechanics and Foundation Engineering, Vol. I, 1961.
- 41. Tjong-Kie, Tan, "Consolidation and Secondary Time Effect of Homogenous, Anistropic Saturated Clay Strata," <u>Proceedings</u>, Fifth International Conference on Soil Mechanics and Foundation Engineering, Vol. I, Paris, 1961.
- 42. Oka, S., "The Principles of Rheometry," <u>Rheology</u> <u>Theory</u> <u>and Applications</u>, Vol. 3, edited by Eirich, F.R., Academic Press Inc., New York, 1960.
- 43. Wilkinson, W.L., <u>Non-Newtonian Fluids Fluid Mechanics</u>, <u>Mixing and Heat Transfer</u>, <u>Pergamon Press Ltd.</u>, <u>New York</u>, 1960.
- 44. Welborn, J. York and Halstead, Woodrow J., "Properties of Highway Asphalts - Part I, 85-100 Penetration Grade," <u>Public Roads - A Journal of Highway Research</u>, Vol. 30, No. 9, August, 1959.
- Welborn, J. York, Halstead, Woodrow J., and Boone, J. Gayloid, "Properties of Highway Asphalts - Part II, Various Penetration Grades," <u>Public Roads - A Journal of Highway</u> <u>Research</u>, Vol. 31, No. 4, October, 1960.
- 46. "Proposed Method of Test for Viscosity of Asphalt with a Sliding Plate Viscometer at Controlled Rates of Shear," <u>ASTM Standards, Part 11</u>, March, 1966.
- 47. "Proposed Method of Test for Viscosity of Asphalt Cements with Falling Plunger Viscometer," <u>ASTM Standards, Part 11</u>, March, 1966.
REFERENCES (Cont'd.)

-93-

- Welborn, J. York, Oglio, Edward R., and Zenewitz, Joseph A.,
 "A Study of Viscosity-Graded Asphalt Cements," <u>Public Roads</u>
 <u>- A Journal of Highway Research</u>, Vol. 34, No. 2, June, 1966.
- 49. Pfeiffer, J. Ph. (ed), <u>The Properties of Asphaltic Bitumen</u>, Elsevier Publishing Co., Inc., New York, 1950.
- 50. Ferry, John D., <u>Viscoelastic Properties of Polymers</u>, John Wiley and Sons, <u>Inc.</u>, New York, 1961.

. a , ----

APPENDIX A

TEST PROCEDURE

The following specification describes the procedures for testing with the rotating coaxial cylinder viscometer.

1. Water Bath

Temperature control shall be provided by immersing the specimen and portions of the viscometer in a suitable water bath. The bath shall be sufficiently large to contain the viscometer and to permit the specimen to be submerged to a depth of at least 1 inch below the water surface. The temperature of the bath shall be allowed to vary not more than 0.5°F from the specified test temperature.

2. Preparation of Viscometer

The appropriate cup-and-bob assembly and drive pulley shall be selected. The pulley, scale, and rotary differential transformer shall then be attached to the axle. The upper surfaces of the grooved brass base plate (used with the small cup-and-bob assembly) or the brass ring (used with the large assembly) shall be thoroughly amalgamated with mercury and properly positioned in the viscometer. A sufficient quantity of mercury shall be poured into the annulus of the base plate so that, when the bob and cup are assembled, the level of mercury will be slightly above the lower edge of the bob. The cup shall be rigidly affixed to the base of the viscometer. In a like manner, the bob shall be affixed to the axle of the load system and properly positioned

-- 95 --

12

in its bearing receptacle.

3. Special Precautions for Handling Mercury

Due to the possible danger to health if mercury is handled carelessly, the following precautions shall be observed at all times:

- a. Mercury shall be stored in a closed jug or other suitable, unbreakable container in a cool place.
- b. Extreme care shall be exercised to avoid spilling any mercury.
- c. Mercury vapors shall be removed by working under a suitable hood with adequate ventilation.
- d. The amalgamated brass plates and other components of the viscometer shall be maintained at normal room temperature except when testing.
- 4. Weight Attachment

After the cup and bob have been properly assembled on the viscometer, the drive pulley shall be firmly anchored by placing the trip release in the locked position. The idle pulleys shall be aligned with the drive pulley. The weights necessary to produce the desired torque shall then be attached to the drive pulley and suspended over the idle pulleys. The weights shall be attached symmetrically so as to produce a couple and thus eliminate the possibility of introducing bending in the axle. Caution should be exercised at all times to prevent shearing the test material prior to the beginning of a test.

5. Preparation of Test Specimen

A suitable container holding the bituminous material to be tested shall be placed in an oil bath maintained at a temperature

of $290^{\circ}F^{1}$ (plus or minus 5°F). During heating, the sample shall be stirred intermittently to maintain, as well as possible, a uniform temperature distribution within the sample. When the sample has been completely melted, it shall be thoroughly stirred to insure that it is homogenous and free from air bubbles. The assembled viscometer, with weights attached, shall be placed on a perfectly level surface. In filling the annulus formed by the cup and bob, the material shall be poured in a thin stream from two separate containers at points approximately 180° apart. During filling, each container shall be moved back and forth over a 180° segment of the annulus until the annulus is slightly more than level full. The viscometer and test material shall be cooled at room temperature for a period of 30 minutes. They shall then be placed in the water bath maintained at the specified temperature of test for an additional period of 30 minutes The excess bitumen shall then be struck off with a heated, straight-edged spatula or knife.

6. Establishment of Temperature Equilibrium

After trimming the specimen and prior to testing, the viscometer shall be returned to the water bath and maintained at the specified test temperature for a period of 30 minutes.

7. Testing

The recording equipment shall be started and the test shall

In no case shall the sample be heated to a temperature greater than 200°F above its softening point, determined in accordance with the Method of Test for Softening Point of Bituminous Materials (Ring-and-Ball Method, ASTM Designation: D36).

begin by actuating the trip release. At subsequent intervals of time, the angle of rotation shall be read directly from the recording equipment. Checks shall be made by noting the angle of rotation from the scale attached to the viscometer. The test shall be allowed to continue until a steady-state or near steady-state condition is reached, that is, until a linear relationship between the angle of rotation and time is observed. After the steadystate condition has been reached, the load shall be instantaneously removed and the rebound, if present, shall be recorded as a function of time. After rebound has been completed, the load shall be quickly applied and removed a number of times to assist in determining the instantaneous angle of rotation.

8. Procedures after Testing

The viscometer shall be disassembled and the height of the specimen determined. The apparatus shall then be cleaned in preparation for subsequent testing.

-98-

APPENDIX B

CURVE-FITTING TECHNIQUE

The following discussion describes a method for determining values of the constants, a_k and b_k , in an equation of the form

$$\Psi = \sum_{k=1}^{n} a_{k} [1 - \exp(-b_{k}t)]$$
(B-1)

to yield the equation of a curve which gives the best fit by least squares criterion for a set of experimental data known to conform to a general equation of this type.

in Na Initial values for the constants, a_k and b_k , say a_k^1 and b_k^1 , are assumed. It is preferable that a_k^1 and b_k^1 be close to the best values of a_k and b_k° . Equation B-1 is expanded in a Taylor's series about the values a_k^1 and b_k^1 to yield:

$$\Psi_{a} = f(\Psi_{1}) + \sum_{k=1}^{n} \frac{\partial \Psi}{\partial a_{k}} \begin{vmatrix} \Delta a_{k} & + \sum_{k=1}^{n} \frac{\partial \Psi}{\partial b_{k}} \\ a_{k}^{1}, b_{k}^{1} & k = 1 \end{vmatrix} \begin{pmatrix} \Delta b_{k} \\ a_{k}^{1}, b_{k}^{1} \end{pmatrix} (B-2)$$

where
$$f(\Psi_1) = \sum_{k=1}^{n} a_k^1 [1 - exp(-b_k^1 t)]$$
 (B-3)

$$\Delta \mathbf{a}_{\mathbf{k}} = \mathbf{a}_{\mathbf{k}} - \mathbf{a}_{\mathbf{k}}^{\mathbf{I}} \tag{B-4}$$

$$\Delta b_{k} = b_{k} - b_{k}^{1}$$
 (B-5)

Equation B=2 actually represents an approximation to the Taylor's series expansion because terms containing second and higher order quantities have been neglected.

<u>9</u>9-

Performing the operations indicated in Equation B-2 on Equation B-1 yields:

$$\frac{\partial \Psi}{\partial a_{k}} = [1 - \exp(-b_{k}^{1}t)] \quad k=1,2,3...n \quad (B-6)$$

and

$$\frac{\partial \Psi}{\partial b_k} \begin{vmatrix} a_k^1, b_k^1 \\ a_k^1, b_k^1 \end{vmatrix} = a_k^1 t [exp(-b_k^1t)], \quad k=1,2,3...n \quad (B-7)$$

Substituting the results of Equations B-3, B-6, and B-7 back into Equation B-2 it is seen that

$$\Psi_{a} = \sum_{k=1}^{n} a_{k}^{1} \left[1 - \exp(-b_{k}^{1}t)\right] + \sum_{k=1}^{n} \left[1 - \exp(-b_{k}^{1}t)\right] \Delta a_{k}$$
$$+ \sum_{k=1}^{n} a_{k}^{1}t \left[\exp(-b_{k}^{1}t)\right] \Delta b_{k}, \qquad (B-8)$$

ι, -

Here the subscript "a" is placed on Ψ to denote an approximation to the true value.

If the set of data points contains r observations, then Equation B-8 may be written:

$$\Psi_{a(i)} = \sum_{k=1}^{n} \left[a_{k}^{1} \left[1 - \exp(-b_{k}^{1}t_{i}) \right] + \left[1 - \exp(-b_{k}^{1}t_{i}) \right] \Delta a_{k} + a_{k}^{1} t_{i} \left[\exp(-b_{k}^{1}t_{i}) \right] \Delta b_{k} \right]$$
(B-9)

Thus from Equation B-9, one has r linear equations in $\Delta a_k^{}$ and $\Delta b_k^{} \, {}_{\circ}$

where i = 1, 2, 3...r.

The deviation, δ_i , which represents the difference between the Ψ 's calculated by Equation B-9 and the actual or observed Ψ 's may be determined from the relationship:

$$\delta_{i} = \Psi_{a(i)} \Psi_{i} = \sum_{k=1}^{n} \left[a_{k}^{1} [1 - \exp(-b_{k}^{1} t_{i})] + [1 - \exp(-b_{k}^{1} t_{i})] \Delta a_{k} + a_{k}^{1} t_{i} [\exp(-b_{k}^{1} t_{i})] \Delta b_{k} \right] \Psi_{i}$$
(B-10)

The sum of the squares of the deviations, defined by the relationship

$$S = \sum_{i=1}^{r} \delta_{i}^{2}, \qquad (B-11)$$

becomes

第二次の第二次に、第二人があったが、「第二人が見」のです。

$$S = \sum_{i=1}^{r} \left[\sum_{k=1}^{n} \left[a_{k}^{1} [1 - \exp(-b_{k}^{1} t_{i})] + [1 - \exp(-b_{k}^{1} t_{i})] \Delta a_{k} + a_{k}^{1} t_{i} [\exp(-b_{k}^{1} t_{i})] \Delta b_{k} \right] - \Psi_{i} \right]^{2}$$

$$(B-12)$$

Using the least-squares criterion, in order for Equation B-8 to yield a curve which fits the data, it is necessary that the parameters Δa_k and Δb_k be chosen so as to make the sum of the squares of the deviations a minimum. Thus it is necessary that the relationships

$$\frac{\partial S}{\partial (\Delta a_k)} = 0 \text{ and } \frac{\partial S}{\partial (\Delta b_k)} = 0 \tag{B-13}$$

be satisfied.

From Equation B-11, it is seen that

$$\frac{\partial S}{\partial (\Delta a_j)} = 2 \sum_{i=1}^{r} \delta_i \frac{\partial \delta_i}{\partial (\Delta a_j)}$$
 (B-14)

Returning to Equation B-10,

$$\frac{\partial \delta_{i}}{\partial (\Delta a_{j})} = [1 - \exp(-b_{j}^{1}t_{i})]. \qquad (B-15)$$

Substitution of this result along with the result from Equation B-10 into Equation B-14 after simplification yields:

$$r n \sum_{i=1}^{r} \sum_{k=1}^{n} [1 - \exp(-b_{k}^{1}t_{i})] [1 - \exp(-b_{j}^{1}t_{i})] \Delta a_{k}$$

$$+ \sum_{i=1}^{r} \sum_{k=1}^{n} a_{k}^{1}t_{i} [\exp(-b_{k}^{1}t_{i})] [1 - \exp(-b_{j}^{1}t_{i})] \Delta b_{k}$$

$$= \sum_{i=1}^{r} \Psi_{i} [1 - \exp(-b_{j}^{1}t_{i})]$$

$$- \sum_{i=1}^{r} \sum_{k=1}^{n} a_{k}^{1} [1 - \exp(-b_{k}^{1}t_{i})] [1 - \exp(-b_{j}^{1}t_{i})] ,$$

$$j=1,2,3...n$$

$$(B-16)$$

Simultaneous solution of Equations B-16 and B-17 will yield the Δa_k 's and Δb_k 's from which the a_k 's and b_k 's may be calculated using the relationships given by Equations B-4 and B=5. Once a_k and b_k are determined, they are substituted back into Equation B-1 and the sum of the squares of the deviations are calculated using the relationship:

$$S_{1} = \sum_{i=1}^{r} \begin{bmatrix} n \\ \Sigma \\ k=1 \end{bmatrix}^{2} a_{k} \begin{bmatrix} 1 - \exp(-b_{k}t_{i}) \end{bmatrix}^{2} \psi_{i} \end{bmatrix}^{2}$$
(B-18)

If S_1 is too large, the values of a_k and b_k as calculated above are used as new approximations, say a_k^2 and b_k^2 , and new values of Δa_k and Δb_k are determined using Equations B-16 and B-17. A new value for the sum of the squares of the deviations, S_2 , is calculated which will be less than S_1 . Again, if S_2 is too large, the newly determined values of a_k and b_k are used as new approximations, a_k^3 and b_k^3 , and new values of Δa_k and Δb_k are determined. This process is repeated until the difference between the sum of the squares of the deviations calculated for two successive approximations is less than or equal to an allowable difference. In equation form, this may be written:

$$S_{b-1} - S_b \leq \Delta S_a \tag{B-19}$$

where S_{b-1} and S_b = sum of the squares of the deviations for two successive approximations

 ΔS_a = allowable difference.

The accuracy with which Equation B-1 fits a set of experimental data also depends on the value of n, that is, the number of terms used in the summation. Of course, the smaller the number of terms,

-104-

the simpler the equation; therefore, the first logical value for n would be one. If, after determining the final value for a_k and b_k (for n=1), it is found that the sum of the squares of the deviations (S_b) is greater than some predetermined allowable value, say S_a , then it will be necessary to assume a new value for n in Equation B-1 and determine the corresponding values for the a_k 's and b_k 's. Since it is desirable that n be as small as possible and still satisfy the condition that

 $S_b \leq S_a$ (B-20) it is logical that successive determinations be made for n = 2, n = 3, and so forth until Equation B-20 is satisfied.

As stated earlier, in order for this technique to work it is necessary that the assumed values for the a_k 's and b_k 's be reasonably close to their true values. If this condition is not met, the procedure yields diverging instead of converging values for the parameters. This a paradox which could limit the utility of the technique, particularly if there is no prior knowledge of reasonable values to assume. In order to eliminate this problem, a ratio test is performed which consists of examining the two ratios $\Delta a_k/a_k$ and $\Delta b_k/b_k$ after each iteration. It has been found from experience that the assumed values are close enough to the true values to yield convergence if these ratios are between the limits:

 $-1.0 < \Delta a_k / a_k < 5.0$ (B-21)

 $-1.0 < \Delta b_k / b_k < 5.0.$

(B-22)

If a ratio falls outside these limits, the new or adjusted value of the parameter for the next iteration is evaluated from one of the following relationships:

$$a_k = a_k^{\circ} + {}_{\circ}40 a_k^{\circ}$$
(B-23)

$$b_k = b_k^{\circ} + 40 b_k^{\circ}$$
(B-24)

where a_k° and b_k° = previously assumed values of a_k and b_k° .

If the ratio is positive the plus sign is used; if it is negative the minus sign is used. The factor of .40 was found by trialand error to be the most satisfactory adjusting factor to use. Of course, if the ratios fall within the limits given by Equations B-21 and B-22, the new or adjusted values for the next iteration are evaluated from Equations B-4 and B-5.

Using this ratio-test technique, results have been obtained using initially assumed parameter values which differed from the true values by as much as one million times. This permits an extremely wide range of "guesses" for the initial values thus increasing the usefulness of the method.

where the state of -. and the first the fact that the second second

APPENDIX C

COMPUTER PROGRAM FOR VISCOELASTIC ANALYSIS

I. Purpose

The viscoelastic material parameters for asphalts tested in the rotating coaxial viscometer may be evaluated using a computer program. This program was written in FORTRAN IV for processing with the IBM 7040 computer system. The purpose of this program is essentially threefold. First, it computes that portion of the total angle of rotation which may be properly attributed to viscoelastic flow. Equation 37 is used for this computation. Second, it evaluates the constants in Equation B-1 which yield an equation which best fits the viscoelastic portion of flow by the least squares criterion. The techniques which are used in this evaluation are described in Appendix B. The viscoelastic parameters are computed from these constants by means of the following relationships:

$$G_{k} = 1/a_{k} \tag{C-1}$$

$$\tau_k = 60/b_k \tag{C-2}$$

and

$$\eta_k = G_k(\tau_k)$$
(C-3)

Third, it assesses the degree to which the equation of best fit approximates the experimental data. This is accomplished by calculating the square root of the average squared deviations between the experimental data and the equation of best fit. Such

-107-

standard deviations are computed with respect to the viscoelastic creep function and the total angles of rotation for each of three stress levels.

II. Limitations

It is necessary to provide, as input, data from the results of three tests, each of which is normally conducted at a different stress level. The number of data points (that is, pairs of observations between time and total angle of rotation) may be any integer not exceeding 120. The same number of points, however, must be provided for each of the three tests. The number of Voigt elements in the viscoelastic model is limited to a maximum of 10. Any number less than 10 may be evaluated.

i (L

III. Job Submission

To submit a job to the University of Kentucky IBM 7040 computer system, the following items must be submitted in the order indicated.

- A. \$JOB Card
- B. \$IBJOB NOSOURCE Card
- C. Viscoelastic Object Deck
- D. Matinv Object Deck
- E. \$ENTRY Card
- F. Data Cards for First Asphalt
 - 1. Asphalt Header Card
 - 2. Steady-State Angular Velocities Card
 - 3. Load Header Card (First Load)
 - 4. Data Cards (First Load)
 - 5. Load Header Card (Second Load)

6. Data Cards (Second Load)

7. Load Header Card (Third Load)

8. Data Cards (Third Load)

9. N-Card

10. Voigt Model Cards

G. Data Cards for Other Asphalts as Desired

IV. Input Data Cards

A. Asphalt Header Card

1. Format

Columns	Symbol	Subject	Units	Format
1 - 3	NØ	Asphalt number	.	I 3
4 - 7	L1	Smallest load	gms	I 4
8 = 13	L2	Intermediate load	gms	I 6
14~19	L 3	Largest load	gms	I 6
20-24	TEMP	Test temperature	°F	F 5.1
25~32	CT1	Smallest CT product	d/cm^2	F 8.0
33-40	CT2	Intermediate CT product	d/cm^2	F 8.0
41-48	CT 3	Largest CT product	d/cm^2	F 8 ₀ 0
49-62	GØ	Instantaneous elastic shear modulus	d/cm ²	E14.7

2。Use

This card serves to identify the test results under consideration and to transmit the instantaneous elastic shear modulus for internal computations.

3. Remarks

The loads which are indicated are the total loads suspended on both sides of the pulley. The instantaneous elastic shear modulus is the load-independent modulus which has been

independently evaluated (see "Presentation of Results").

B. Steady-State Angular Velocities Card

1. Format

Columns	Symbol	Subject	Units	Format
1-14	WØ1	Steady-state angular velocity under smallest load	rad/sec	E 14.7
15-28	WØ2	Steady-state angular velocity under inter- mediate load	rad/sec	E 14,7
29-42	WØ3	Steady-state angular velocity under largest load	rad/sec	E 14.7

2. Remarks

The steady-state angular velocities under the three test conditions must be evaluated independently prior to the computer run. The techniques for this evaluation are presented in the section entitled "Presentation of Results".

C. Load Header Card

1. Format

<u>Columns</u>	Symbol	Subject	Units	Format
1-15	WØ	Steady-state angular velocity for given load	rad/sec	F 15.0
16-30	СТ	CT product for given load	d/cm^2	F 15.0
31-40	Τ1	Corresponding time to achieve steady-state flow	min	F 10.0
41-50	THETF	Corresponding angle of rotation at Tl	degrees	F 10.0
51-54	М	Number of data points	aa aa	I 4
	2 11.00			

2. Use

This card furnishes the necessary information to enable the computation of the viscoelastic creep function for the given load level. It also specifies the number of data points which follow on the data cards.

3. Remarks

One load header card is necessary for each of the three test conditions.

D. Data Card

1. Format

Columns	Symbol	Subject	Units	Format
1-6	T(I)	Time corresponding to Ith data point	min	F 6.2
7 - 12	THETA(I,J)	Angle of rotation correspond ing to Ith data point and Jth load level	degrees	F 6.2

Times and angles of rotation are alternately punched to and including column 72. Six data points will thus be included on each card except perhaps the last.

2. Use

The basic data for the analysis are transmitted by means of these data cards.

3. Remarks

The data are punched in the order of increasing times. The number of cards necessary will be precisely M/6 if this quotient is an integer or M/6 (expressed as the nearest larger integer) if the quotient is not an integer. The cards must be ordered by increasing times. E. N-Card

1. Format

Columns	Symbol	Subject	Units	Format
1 - 3	Ν	Minimum number of Voigt elements to consider	92 CB	I 3

2. Use

This card establishes the minimum number of Voigt elements in the viscoelastic model. After evaluating the constants for the N-element model, the program proceeds to evaluate an (N + 1)-element model, and so forth until one of the following conditions occurs: (1) the product of one of the assumed B parameters and the time value corresponding to the second data point exceeds 30,(2) 100 iterations are tried for a specific number of elements without convergence, (3) a specified maximum time is exceeded, or (4) the number of Voigt elements exceeds 10. The first condition is provided in order to eliminate the inclusion of numerical quantities greater than those permitted by the computer. The second condition is provided as a means for discontinuing execution if divergence is occurring.

F. Voigt Model Card

1. Format

<u>Columns</u>	<u>Symbol</u>	Subject	Units	Format
1-14	A(K)	Best prior estimate of 1/G (the reciprocal of the shear modulus of the kth element)	cm ² /d	E 14.7
15-28	B(K)	Best prior estimate of $1/\tau_k$ (the reciprocal of the retardation time of the kth element)	min ^{~1}	E 14.7

-112-

2。 Use

ない 一部門 前月

The N, Voigt model cards which are necessary are ordered by increasing element numbers. The estimates of A(K) and B(K) serve as the initial point for the iteration process.

3. Remarks

The estimates of A(K) and B(K) may differ from the true values by a factor as large as 10^6 . The program uses an iteration process which evaluates a power series at successive values of A(K) and B(K) until the series converges. However, if the estimates of A(K) and B(K) are greatly in error, the iteration process will not be executed and the program will terminate.

If a value of N = 1 is specified by the N-Card, only one value of A(K) and B(K) must be estimated, that is, A(1) and B(1). For the tests reported herein (asphalt cements at 39.2° F), good estimates of A(1) and B(1) are 0.2×10^{-5} and 0.5×10^{-1} , respectively. The program then computes values of A(1) and B(1) by the iteration process which yield the best fit by the least squares criterion. From these values, G_1 and τ_1 are computed. The program then evaluates a two-element model. It first estimates A(1), B(1), A(2), and B(2) and then, by the iteration process, finds the best values for these four variables. G_1 , G_2 , τ_1 , and τ_2 are then computed. This process is repeated automatically until one of the four conditions of Section IV, E,2 is encountered.

V_o Output

All output from this program is in the form of tabular printouts. The section entitled "Presentation of Results" describes

: • 113 -

the content and format of these printouts. Output data for all of the asphalts tested at $39.2^{\circ}F$ are included as Appendix D.

VI. Source Program

A listing of the source program for the viscoelastic analysis is included as Figure C-1. A listing of the source program for the Matinv subprogram is included as Figure C-2. This subprogram, which was obtained from the University of Kentucky Computing Center, is used in the solution of the simultaneous equations (Equations B-16 and B-17).

DIMENSION T(120), THET(120, 3), CF(120, 3), ADIFF(120)
<u>30 READ(5,1) NO.LL.L2,L3,TEMP,CT1,CT2,CT3,GO</u>
1 FORMAT(I3,I4,216,F5.1,3F8.0,E14.7)
KEAD(5,9)W01,W02,W03,
9 FORMAT(3E14-7)
$1 + (N_0) + $
IU WRITE(6,8) NUJLIJEZJEJJTEMPJUTIJUTZJUTJ 9 CODMAT JULI JOV ADU SUMMADV SUBET COD VISCOELASTIC ANALYSIS.//.9V.
<u> </u>
2E5.1.2H E.12X.6H CIS3E8.0.8H DY/SOCM.//. 88H TIME THETA 1
3 CF 1 THETA 2 CF 2 THETA 3 CF 3 AVG
4 CF1/, 89H MIN RAD RA/D/SOCM RAD RA/D/SOCM
5 RAD RA/D/SQCM RA/D/SQCM,//)
40 DO 50 J=1,3
REAO(5,2)WO,CT,T1,THETF,M
2 FORMAT (2F15.0,2F10.0,14)
WD = WO + 60.0
$\begin{array}{c} U = 0 I = 1, \text{ if } 0 \\ 4 D \in A \cup \{0, 2\}, T \in I \setminus \{1, 1\}, T \in I \setminus \{1, 2\}, T \in I \setminus I \setminus \{1, 2\}, T \in I \setminusI \setminusI \}$
0 KCAD());) 1(1); TCT(1;); TCT(1; 1); TCT(1; 1); (1+2); TCT(1+2); (1+
3 EDDMAT (1264.2)
D = 50 $I = 1.0$
THET $(1,j) = \text{THET} (1,j) * .0174533$
CF(I,J) = ((THET(I,J) - WO * T(I))/CT) - THET(I,J)/CT
50 CONTINUE
-D0 60 I = 1,M
ADIFF(1)=(CF(1,1)+CF(1,2)+CF(1,3))/3.
<u>60 WRITE(6,4) T(I), THET(I,1), CE(I,1), THET(I,2), CF(I,2), THET(I,3), CF(I</u>
1,3),ADIFF(I)
4 FURMAT(F6.1;6E12.5);E14.71
DIMENSION DIFF(120 , 10 , 10 , 11 , 120 , 10 , 120 , 120 , 10 , 10 , 10 , 10 , 10 , 10 , 10 , 1
$20(10) \cdot E01EE(120) \cdot S(120) \cdot THEI1(120) \cdot THEI2(120) \cdot THEI3(120) \cdot S(120) \cdot CONTRACT - CONTRAC$
352(120) + 53(120)
(EAD (5,12) N
<u>12 FORMAT (13)</u>
00 70 K=1,N
70 READ(5,13) A(K),B(K)
13 FURMAT(E14.7,E14.7)
109 II = 0
26 NI = N+L
2=2 s N + 1
TEST2 = 0.0
DO 16 J=1.L1
DO 16 I=1,L2
16 AA(J_1) =0.0
DD 200 J=1,N
DO 200 K=1.N1
DU 200 I=1,M2
200 AA11J.K.I)=0.0
10 203 1=1;0 16 (8(K)=1(2).06 30 0) 00 TO 20
$\frac{AL}{1000} = \frac{1000}{1000} $
X=1a/FXP(B(K)*T(I))

Figure C-1. Source Program for Viscoelastic Analysis.

-115-

a

-116-

	GO TO 205
.204	x=().0
205	[F(B(J)*T(2),GE.30.0) G0 T0 30
	IF (ABS(B(J)*T(F)).GE.30.0) G0 TO 208
	Y=1./EXP(R(J)nf(I))
	GO TO 209
208	Y = 0
209	$A \land 1 (J \cdot K \cdot L) = (1 \cdot - X) * (1 \cdot - Y)$
203	AAI(J,K,M+1) = AAI(J,K,I) + AAI(J,K,M+1)
202	AA(J,K) = AA(J,K,M+)
	i(1, 300) J = 1.14
	D0 300 K=1+N1
	D0 300 [=1.42
300	$AA1(J_1K_1)=(I_0)$
	D0 302 J=1.N
	UD 302 K≂1.N
	U(1 303 1=1.4
	IE (ABS(B(K)*T(I)).GE.30.0) GO TO 304
	X=1./EXP(B(K)*)(1))
	60 10 305
304	X = (), ()
305	LE (AB_(3(J)*T(1)).GE.30.0) GO TO 308
	Y=1./EXP(P(J)*T(I))
	60 TO 309
308	¥=0.0
309	AA1(J,K,J) = A(K) + T(T) + (X) + (J,-Y)
303	AA!(J.K.(9+)) = AA!(J.K.() + AA!(J.K.(+1))
	1 = N+K
302	A(J,I) = AAI(J,K,M+I)
	DI) 400 J=1, 1
	DO 400 K=1, M1
	00 400 1=1.12
400	AA1(J,K,[)=0.0
	DO 401 J=1,1
	UU 401 I=1,M2
401	BA1(J, 1)=0.0
	DC 408 J=1,N
	_UO_407 K=1.N
	00 406 1=1.14
	IF((B(K)*T(1)), CF. 30.0) CO TO 402
	X = 1. / EXP(B(K) * T(I))
	<u>GU TU 403</u>
402	X = 0 • 0
403	<u>IE((B(J)*T(L)).GE.30.0) 60 TU 404</u>
	Y=1./EXP(8(J)*F(I))
	GD <u>TO 405</u>
404	Y = 0 • 0
405	BA1(J, <u>I)=40IFF(I)*(1Y)</u>
	AAl(J+K+1)=A(K)*(1X)*(1Y)
	BAl(J,M+1)=BAl(J,L)+BAl(J,M+1)
406	AA1{J,K,M+1}=AA1{J,K,[}+AA1{J,K,M+1}
407	$AAl(J_N+1_M+1) = AAl(J_K_M+1) + AAl(J_N+1_M+1)$
	$\mathbf{R} = h \mathbf{i}$
408	AA(J, 1, 2) = (BA1(J, M+1)/R) - AA1(J, N+1, M+1)
	Di 500 J=1,N
	<u>un 500 k=1,N1</u>
	00 500 I=1, M2
500	
	$AA1(J_{1}K_{1})=0.0$
	$AA1(J_3K_1) = 0.0$ 10 502 J=1.4

.

.

÷.

Figure C-1. Source Program for Viscoelastic Analysis (Cont'd.).

	40 500 L 1 H
	DU 503 I=1,M
	IF (ABS(B(K)*T(I)).GE.30.0) 60 10 504
	X=1./EXP(B(K)*I(I))
	<u>_CO_TO_SC5</u>
504	x=0.0
505	IF (ABS(¥(J)*T([)).GE.30.0) GD TO 508
	Y=1./EXP(B(J)*T(1))
	GOTO 509
508	Y = 0.●
509	$\Delta\Delta1(.1.K.1) = (1X) * A(.1) * T(.1) * (Y)$
503	$\Delta \Delta 1 (1, K, M+1) = \Delta \Delta 1 (1, K, 1) + \Delta \Delta 1 (1, K, M+1)$
	12-N+1
502	$\Delta \Lambda (12, K) = \Lambda \Lambda (1, K, M+1)$
200	
	ED 640 K=1.N1
600	
000	AAL(J)((1)-0.0
	DO 602 V-1 N
	00 + 02 - 1 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
	IE (ABS(R(Y)) T(1)) CS 30 0) CO TO 404
	IF (AD3(D(N/*)(1))+9E+30+0) 00 10 004
	60 10 805
0.04	
605	-1F (A85(B(J)*I(1))+6E+30+0) GU (0 608
	Y=1./FXPIB(J)*/(]))
	G0_T0_609
608	Y=0.0
609	AAl(J,K,I) = A(K) * T(I) * (X) * A(J) * T(I) * (Y)
603	$A \land [\{ J_*K, M+1 \} = A \land [\{ J_*K_*1 \} + A \land [\{ J_*K_*M+1 \}]$
	L = N + K
	J2=N+J
602	AA(J2,L) = AA1(J,K,M+1)
	00 700 J=1,N
	DU 700 K=1,N1
	UO_700 I=1.M2
700	AAl(J,K,I)=0.0
	DO 701 J=1.N
	●0 701 I=1,M2
701	. ŮA1 (J, I) =0.0
	00 708 J=1,N
	DO 707 K=1,N
	DD 706 I=1,M
	IF((B(K)*T(I)).GE.30.0) GO TO 702
	X=1./EXP(B(K)*T(I))
	<u>CO TO 703</u>
702	X=0.0
7.03	1F((B(J)*T(I)).GE.30.0) GO TO 704
	Y = 1./EXP(B(J) * T(I))
	GO TO 705
704	Y=0.0
705	BA1(J,I)=ADIFF(I)*A(J)*T(I)*(Y)
<u> </u>	$AA1\{J,K,I\} = A(K) * (1,-X) * A(J) * T(I) * (Y)$
	$BA1\{J,M+1\} = BA1(J,\xi) + BA1(J,M+1)$
706	$\Delta \Delta \{ \{ \}, K, M+1 \} = \Delta \Delta \{ \{ \}, K, I \} + \Delta \Delta \{ \{ \}, K, M+1 \}$
707	$\Delta\Delta\{(1, N+1, M+1) = A\Delta\{(1, K, M+1) + \Delta\Delta\}((1, N+3, M+1))$
	.12=N+.1
	R=N
709	$\Delta \Lambda (12, 12) = (8 \Lambda 1 (1, M+1) / P) = \Lambda \Lambda 1 (1, M+1) / M (1)$
100	$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$

Figure C-1. Source Program for Viscoelastic Analysis (Cont'd.).

1.2	
43	
	CALL MAILING IABELIA, ISDELI
	DU 100 I=1,N
	L=N+1
	$RATIO_{(I)} = Ot: LTA(I)/A(I)$
100	8ATIO(1) = OELTA(1)/9(1)
	$f_{1} = 106 \ 1 = 1.00$
	1F (8A110, 11), 11, 01, 01, 01, 01, 02, 00, 00, 00, 00, 00, 00, 00, 00, 00
	GD 10 103
101	$A(I) = A(I) + \cdot (40 \times A[I])$
	TEST2 = 2.0
	<u>GC TO 103</u>
102	A(I) = A(I)40 + A(I)
	TFST2 = 2.0
103	IE (BATIG (1), GT-5-0) GO TO 104
	$IE \left(RATIO(1) + L + (\pi) + 0 \right) = 60 \text{ TO } 105$
104	
104	
	1512 = 2.0
105	
	TEST2 = 2,0
106	CONTINUE
	<u>TF (TEST2, EU.2.0, AND, II, GT-1)_00, TO 5</u>
	IF (TEST2+E0+2+) GO TO 5
	D0 29 K=1.N
	L =//+ K
	F (ABSIDELTAIK)).GE001*A(K))GU_IU_27
	$1 \in (ABS(DETTA(1)), GE, 0.01 \in (K)) \subseteq 0.10, 27$
27	
20	
20	
27	D(K) = OLE(A)L(TD(K))
	1F TEST.GI.U.U.U.U.E.ESTZ.GI.U.U. DU 117 5
	IF(II.EE.00) G) 10 26
	WP.ITE (6,31)
31	FCR#4AT (1H1)
	D0 900 K=1,N
900	WRITE (6,32) K, DELTA(K), K, A(K), K, RATIO(K)
.32	FORMAT(4X,6H DELTA,11,2H =,E14.7,4X,2H A,11,2H =,E14.7,4X,6H R
	ATI0.11.2H =
	UC 901 K=1.N
	J = N + K
901	$WRITE (6.42) = 0EITA(1) \cdot K \cdot B(K) \cdot I \cdot RATIO(1)$
	$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left[$
42	$F(M^{(A_1)}, M^{(A_1)}, M^{(A_1$
~**	
	G(1) = 1 (A(1))
	IAU(1) = 60./B(1)
107	VISC(1)=G(1)+TAU(1)
	WRITE(6+910)
910	FURMAT (1H1)
	WRIFE(6,108) (K,(TAU(K)),K,(G(K)),K,(VISC(K)),K=1,N)
10.8	FORMAT (1HU, 10X, 4H TAU, 11, 2H =, 1X, E14.7, 4H SEC, 6X, 2H G, 11, 2H =, 1X,
_	1E14-7,12H DYNES/SQ CM.6X,5H VISC,11,2H =,IX,E14-7,7H PUISES)
	DO 807 I = 1, M

Ļ

Figure C-1. Source Program for Viscoelastic Analysis (Cont'd.).

-118-

•

	0 807 J=1,10
807	1FF(I,J)=0.0
	D 808 I=1,M
	0 809 J=1;N
	F((T(I)+B(J)).GE.30.0) GO TO 812
	=1./EXP(T(I)*B(J))
÷ • •	010 813
812	=0.0
813	$I \vdash \{1, J\} = \{1, J \mid J \mid J\}$
809	
	D(F(I) = D(F(I), N(I))
	$H_{E}[\underline{I}(1) = (\underline{I}[1],\underline{G}U) + (\underline{W}U] = [\underline{I}(1) + \underline{G}U,\underline{I} + [\underline{G}U] + [\underline{G}U,\underline{G}U,\underline{G}U] = [\underline{I}(1) + \underline{G}U,\underline{G}U,\underline{G}U] = [\underline{I}(1) + \underline{G}U,\underline{G}U,\underline{G}U,\underline{G}U] = [\underline{I}(1) + \underline{G}U,\underline{G}U,\underline{G}U,\underline{G}U,\underline{G}U] = [\underline{I}(1) + \underline{G}U,\underline$
	HE12([]=[[]2/GU]+(WU2*]([]*OU*]+(C2*CU[F1[]])
000	□□□□□□□=\L□>/\U□+\WU2*\\\+\$\$00*\+(\ 3\$P\]+F(\]
<u> </u>	
	ATED OBSERVED CALCOLATED OBSERVED CALCOLATED #/#ITON
	$\frac{1}{2} \qquad 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$
-	
850	0.020 1-111 RITEL6.811)T(1).THET(1.1).THET1(1).THET(1.2).THET2(1).THET(1.3).T
0,0	\mathbf{T}
811	DRMAT(FA.).8F)3.5)
•••	
	$1(1) = 0_{-}0$
	2(1) = 0.0
	3(I)=0.0
822	(I)=0,0
	O 820 I≐1,M
	1(I)=(IHET(I,1)-THET1(I))**2
	2(I)=(THET(I,2)-THET2(I))**2
	3(I) = (THEŤ(I,3) - THET3(I)) * * 2
	(I) = (ADIFF(I) - EDIFF(I)) + 2
	1(M+1)=S1(M+1)+S1(I)
	2(M+1)=S2(M+1)+S2(I)
	3(M+1)=S3(M+1)+S3(T)
820	(#+1) = S(M+1) + S(I)
	=M
	D1=(S1(M+1)/H)++.5
	D2=(S2(M+1)/H)**.5
	D3=(S3(M+1)/H)**.5
	Ω=(S(M+1)/H)**-S
	RITE(6,821)S01,S02,SD3,SD
821	$\frac{ORMAT(1H-10H SID DEV = 3X + E12 + 5 + 14X + E12 + 5 + 14X + E12 + 5 + 14X + E12 + 5)}{ORMAT(1H-10H SID DEV = 3X + E12 + 5 + 14X + E12 + 5 + 14X + E12 + 5)}$
	(N+1) ≃ A(N)+.1
	10+11 = 3101+10
20	
20	ALL EALI

Figure C-1. Source Program for Viscoelastic Analysis (Cont'd.).

c	PROGRAM ND. 13-7040-F4	
<u> </u>		
č	SPECIAL MACH REQ - NONE	
<u> </u>		
č	SUBROUTINES REQUIRED - NONE KEY WORKS - SIMULTANEOUS COLLATIONS, OFTERMINANT, INVERSE, MATRIX	
<u> </u>	KET NORKJ	
6 TOF 7/		CMV10010
<u> </u>	UNVI FULISI, KEF	
	SUBRUUTINE MATINV(A, N, B, M, DETERM)	
<u> </u>	SUBRUUTINE MATINY	
C	THIS SUBROUTINE COMPUTES THE INVERSE AND DETERMINANT OF MATRIX A,	
C	<u>OF ORDER N.BY THE GAUSS-JURDAN METHOD, A-INVERSE REPLACES A .AND</u>	
С	THE DETERMINANT OF A IS PLACED IN DETERM. IF M=1 THE VECTOR B	
C	CONTAINS THE CONSTANT VECTOR WHEN MATINY IS CALLED, AND THIS IS	
С	REPLACED WITH THE SOLUTION VECTOR IF M=0,NO SIMULTANEOUS	
C	EQUATION SOLUTION IS CALLED FOR, AND B IS NOT PERTINENT. N IS NOT	
С	TO EXCEED 100.	
<u>C</u>	A,N,B,M,AND DETERMIN THE ARGUMENT LIST ARE DUMMY VARIABLES.	
	DIMENSIONIPIVOT(100),A(100,100),B(100,100),INDEX(100,2),PIVOT(100)	
<u> </u>	INITIALIZATION	
10	DETERM=1.0	
15	DO 20J=1.«N	
20	IPIVOT (J)=0	
30	00550 I=1.N	
C	SFARCH FOR PLVOT FARMENT	
۵۵ آ	AMAX=0,0	
45	DO 1051=1-N	
50	LE(LELVOIL), EQ.1) 60 10 105	
60		
70	$\mathbf{F}(\mathbf{F}) = \mathbf{F}(\mathbf{F}) + F$	
80	$\frac{1}{1} \frac{1}{1} \frac{1}$	
00		
90		
105		
105		
L 130	INTERCHANGE RUWS TO POT PIVOT ELEMENT DI DIAGONAL	
130		• nit:
140		
150		
160		
170		
200	A(ICULUM,L)=SWAP	
205	1F(M_LE.0) GO TO 260	
210	D0250 L=1,M	
220	SWAP=B[IROW,L]	
230	B(IROW,L)=B(ICOLUM,L)	
250	BIICOLUM.L)=SWAP	
260	INDEX(I,1)=IR()₩	
270	INDEX(I,2)=1COLUM	
310	PIVOT(I)=A(ICOLUM,ICOLUM)	
320	DETERM=DETERM=PIVOT(I)	
С	DIVIDE PIVOT ROW BY PIVOT ELEMENT	
330	A (I COL UM , I COL UM) = 1 _ O	
340	00350 L≈1,N	
350	A(ICOLUM.L)=A(ICOLUM.L)/PIVOT(I)	
355	IF(M.LE.0) GO TO380	
360	D0370L=1.M	

Figure C-2. Source Program for Matinv Subprogram.

,

.

-370	B(ICOLUM,L)=B(ICOLUM,L)/PIVOT(I)
C	REDUCE NON-PIVOT ROWS
380	D0550 L1=1,N
390	IF(L1.EQ.ICOLUM) GO TO 550
400	T=A(L1,ICOLUM)
420	A(L1,ICOLUM)=0.0
430	00450 L≂1,N
450	A(L1.L)=A(L1.L)-A(ICOLUM.L)*T
455	IF(M.LE.O) GO TO 550
460	D0500 L=1,M
500	B(L1,L)=B(L1,L)-B(ICOLUM,L)*T
550	CONTINUE
C	INTERCHANGE COLUMNS
600	00710 I=1,N
610	L=N+1-1
620	IF(INDEX(L,1).EQ.INDEX(L,2)) GO TO 710
630	JROW=INDEX(1,1)
640	JCOLUM=INDEX(L.2)
650	DO 705 K=1,N
66.0	SWAP=A(K, JROW)
670	A(K, JROW)=A(K, JCOLUM)
700	A(K, JCOLUM) = SWAP
705	CONTINUE
	CUNTINCE
710	
<u>710</u> 740	CONTINUE

mus de la mune de la mune de la mune mus la face de la mune de la m La mune de la

Figure C-2. Source Program for Matinv Subprogram (Cont'd.).

• •

* .

APPENDIX D

VISCOELASTIC ANALYSIS OF DATA

All of the test data taken at 39.2°F were analyzed using the computer program to evaluate the viscoelastic material parameters. All output from this analysis are summarized herein in tabular form. The format of these figures is described in the section entitled "Presentation of Results".

(a) A set of the se

1....

'igure P F F Viscoelastic Analysis for Asphalt ω а сt 39.2°F

11

-124-

SHEET

EQUATION q BEST FIT n=2

EQUATION OF BEST FIT, n=3

EQUATION OF BEST FIT, n=4

Figure D-1. Viscoelastic Analysis for Asphalt 3 at 39.2°F (Cont'd.).

DATA SHEET

.

EQUATION OF BEST FIT, n=1

													11	i i							4	
	56564		76.0	10.0	00000			2223		2000	5575	10.0	2222				55					: :
	0.4338	0,3482	0.3298 0.3368 0.3434 0.3586 0.3586	0.2316	0.2583	0-21463	0.1549	0 1340	0.1256	0.9896	0 8412	0.5969	0.3404	0.2391	0.2042	0.1650	011343	0-1047	0 130	0.3490	RAD	165
	28888	121224 888888		888888	888888	888888	88888	22222		10 00		21-01				10-01		25-01		177797-03 17222	1	
	19265	6655555	111111	0.29	0.000		0120			0000		10010	0 0 0 0 0 1 2 3 3				0.28			19990 11990	94/0	10 10
				21777			234	TIT						TTTT		1001	101	511-			Shew	-
	100000						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0 1 5 0 1	0000	0000	3988	6 6 6 6 6 0 0 0 0 0 0 0 0	0000	5 5 5 5 6 6 6 5 6 5 6 6 6 6 5 6 5 6 6 6 6	000	0.2					
	9459E 24346 5451E 5451E	2324E 2365E 4804E 5991E	38696 61306 61306 73526 85386 85386	7360E 7360E 7360E	961 96 215 06 215 06 215 06	1022E	52908 52908 52908 52908	181 TE 341 TE 391 LE	97050	5900E	291 50 545 66 545 76	91865 06126	3808F 3756F 3066F 2067F	20.05	5041E	9671E	6005E		291 SE	11/00 59936	ALD A	
	88888	888888 999999	8888888	888888	888888	88888	88888	8888	8888	8888 9999	8888	88999 99999								2 8 8 8 8 8 9 9 9 9 9 9	2	CTS-
	20322	194365 194637 19466 20015 20015	18767	17633	14302	14963 14963 15176 15507	13300	12782	11803	10049	12125 29215 29215 29215 29215	14630	48891	38913 40505 41595	34945	30569	25621	20674	13642	140040 17382 10316	7675q	342
	39535		893395	333333						89.99		8888		2000		000				88295	Π.	93. 3
	1011	0.9124 9285 9285 9452 9625	8161 8321 8321 8321 8321 8325	7269	5951 6326 6517	5020 5103	4061 4251	3366	3263	2764	211	162	1225	1208	593+ 6126 6192 6192	-5375	4328	140	2373	1145	B A A	200
	22228	21 12 12 21 12 21 21 21 21 21 21 21 21 21 21 21 21 2	8888888	286888	. # # # # # # # 8 8 8 8 8 8 8 8	888888	86886	8888	11 11 11 11 11 11 11 11 11 11 11 11 11	5888 8888	8888			26-01			111	1111			3	0 93
	0.19	0-192 0-1920		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	799999	00000	0.10	0000	000	0 0 0 13 0 13 13	0000		0.76	0000		000	0.3	0,00	0 0 2 2		100	41. D
	1015-0	12E-0		34E-0			296-0	366-0	26 E - 0	1206-0 1206-0	720-0	26-0	901-0 842-0	25E-0		1231-0		22-0	111-0		SOCA	1390.0
	00000	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00000		000000	0000	C C C C C C C C C C C C C C C C C C C		000	0000	2000	5 0 0 5 5 0 0 5 7 0 0 5	0000	00000		0.0				3	
	578370 561929 561929 568949	352592 3585250 3585260 3585260 3585250		19487) 220567 244295 267305 287305	036534	816111 849111 849111	500678 695249	178845 560311 529531	100	237960	08476	06856 91685 29010 25565	90182 77260 20798 20798	53039 529120 503098	099344 24236 32094	14459	96144 10586 21693	533061 533061	631243 631243	1 1 2 2 3 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	ANG CO	
570 BI	53555	11111	333359	6655555		36688	99895	8888		5655		888			988888 8888		0.00					
	0.44	0.361	0.329	0.294		0 21 2	0 154			0.103	000	0.516	0 330	2000	0.209	0.175	111		0.645	0.349	1.200	
2		24E 0				200000	94E 0		50E 0		225-0	246-0 52E-0									TA L	AUI -
12166-	00000							10000	000	0000										0000		0-13
5	2193E 2193E	4447E 4471E 5497E 5497E	14205 14205 14205 22345	4634E 7267E 7897E 8524E	4061E	8625E	4902E 4902E 5475E 7175E	3305E	1195£ 2056E	9962E	4701E	1115	9969E	75255 81385 93685	4438E	25695	6233F		31265	12028 12028 12028	CULAT ETA 1 RADI	13433
	88888	888888	888888	888888	888888	888888	88888	88888	8888	8820;		0000	22222	2000	669996	0000	228	3838	****	\$ \$ \$ \$ 5	ē	E 04
	1240	-6101 -6101 -6154	5613	L4736 L4736 L4736	4084 4084 4215 4345	3192	-2670	2391	1970	1145	1304	-8918 -9773 -1061	+4380 +5375 +7208	-41049	3120	3054	.2443	21919	1291	-1745	UBSE FHET	F F
0.17	86828	8122222		822222	8888888	8888888	122222 22222	3282	1999 1999 1999	8888 8888	16.8% 1000 1000 1000 1000		10-12	8-01							RVED	ø
1246-0	P# 96 9						0,200	0.2	000	***		P P P 9	0000	0000		000	000				-35]
-	1046 1046	089E		970E	2836 2836	012E 012E	9376 9376 9376	221E	2776	044E	5566 5566	3476	466E- 1466E- 1942E-	959E- 062E- 203E-	105E	131E-	128E-	100				4285
	22222	******	8888888 999999	8888888	8888888	888888	88888	8888	8888	8888	8888	8822		2222		2222	2222		2222		•	- BIE
	19501 19514	92852 92852 94527 94527 94255	11612 11612	70860 720860 72593 74524 74524 76155	59516 51383 51383 53208 53208 53208 53208 53208	48340 50266 52185 54035	37600 40607 42551 42551	33647	306871	25499 26599 27646 28676	22222	14992	75398 92153	64591 10337 72002 73653	51261 53006 53006	21487	43284 45379 4712	3403	23130	17453	DESER NRC 1	NAG 95
5. LVJ	22228	8888888	888888	888888	828888	888888	88888	8888	888	8888	8888	8888	33899			2000	122				u n	E\$/ 50
38E-01	0.100	0.012		0.743				0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- 32	0 2 2 3	0.0	0.12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.24		000	0.77		ç
	20220						1956 0 1956 0 1956 0	246 0		550 0 0		17E 0	776-0	201-0 201-0		TTT	936-0 90E-0	100-0	0-196		ATEO A 3	
	1111			999999		000000	00000 00000			0000		0000				0000	000				22	1251
	234036	235256 235856 236326 236526	2351200 2351200 2351200 2351200 2351200 2351200 2351200	219496 219496 222066 224436 224436 229266	10111111111111111111111111111111111111	13612	109528	150036	2715	12380	11222	84 926 90 104 99 258 99 258	49018 577264 572680 72680	5304 6291	2126 239637 2126 2126 2126	36368	31059	23910	19683	00060	POLC N	
1192	82525	*****		*****				66661	988	\$ 6 6 6	6865		2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8888	65555	8889	8 5 5	288	06		L ON L ON	76583
46-04	11210	224	221	0.2210	0.212	0.197	0-172 0-172 0-172 0-192	0.101		0.124	0.103	0.700	0-347	255	0.228	0-170	0 14	101	0.514	0.207		0E 69
	10-04			10E-05		14-03	11E-05		100 - O		116-05	10E-06		10-06		10E-00	19E-00	11-04 11-04	100-07		ATED	15104
															TT.							1

Figure D-2. Viscoelastic Analysis for Asphalt 13 at 39.2°F.

Figure D-2. Viscoelastic Analysis for Asphalt ц മ ന 39.2°F (Cont'd.).

EQUATION OF BEST FIT, . n=2

n "

EQUATION OF BEST FIT.

TAUL - 0.10103036 04 SEC CL + 0.6527202E D6 DYNES/SO CH VISCE . D.1701412E J9 POLSE SUMMARY SHEET FOR VISCOLLASTIC ANALYSIS TAUL = 0.11522875 04 SEC 61 - 0.50871396 06 DYNES/SQ CM VISCI - 0.6783674E 09 POISES TAUZ = 0.1008153E 03 560 62 . 0.3359ZETE 07 DYNES/SQ CM ¥ISC2 - 0.3362478E 092015E LDADS- 800 1400 2000 DR CTS- 32906. 57708. 81931. 0Y/SOCK ASPHALT NO- 45 TEST TEMP- 39.2 F TIPE THETA I CF I THETA I TH UBSERVED CALCULATED DISCOVED CALCULATED THUTA 1 THETA 1 YHETA 2 THUTA 2 (RAD) (RAD) (RAD) (RAD)

Figure D-3. Viscoelastic Analysis for Asphalt 45 at 39.2°F.

| - - \sim ∞

0-142175-07

DATA SHEET

EQUATION OF BEST FIT, n=1

EQUATION OF BEST FIT, n=2

0 45-716 01
.

5

EQUATION OF BEST FIT, n=3

. .

									YAUL -	0.23 133595 24	SEC C	I . D. 7267543	E D& DYNES/SC		C3 - 0.14812	446 LO POLSES	
	TAU1 +	0.2194466E C	sec G	1 * 0.18387+	66 G6 DYNES/50	CH VI	SCL # 0.19444	JOE LO POLSES	TAUZ .	C.4674416E C	stc s	2 . 0.2750099	E OT DYNES/SO	CH VIS	62 - 0.12860	0 9E 10 POISES	
	= 54£T	0.36034536 03	a sec d	2 - 0.292507	LE CT OWNES/SO	CH ¥1	\$£2 • D.10540	30E LO POISES	taus -	C.3835328€ 02	Z SEC G	3 # 0.8312123	E OT DYNES/S4	0 C.H V IS	C3 = 0-48503	97E 09 P01565	
	TAU'S =	0.20073498 82	z sec G	3 - 0.792346	96 07 DYNES/50	сн vi	SC3 = 0.2065	126 DA BOISES	TAUS =	0.3383262E 01	I SEC G	4 - 0.2360821	E DS CYNES/SC	CM VIS	C4 = 6. 79872	74E DB PUISES	
						6 6 ATEA			Ancraire	6	005104050	C 11 C 11 - 750	ORECOVED	C 11 C 11 A 750	DECERNED	C III CIIII ATER	
17 INC	THEFA 1	JACTA 1	THETA 2	CALCULATED	DUSERVED THETA 3	THETA 3	CP FUNCTION	CP FUNCTION	THETA 1	THETA L	THETA 2	THETA 2	THETA 3	THETA 3	CP FUNCTION	CP FUNCTION	
	(RAC.)	1840)	\$9401		(RAD)	(840.L	(RAZD/SQCH)	JRAZDZSOCHI	(RAD)	GRADI				(SAU)	NAZOZ SOLILI	JRAZUZ SOCH)	
0.0	0.436336-02	0-10814E-02 0-2484CE-02	0.48869E-02	0-18964E-D2 0-49349E-D2	D.26280E-D2 D.698136-D2	0.209216-02	-D-000002-38 0-55460E-07	_0-00000E-30 0-35+66E-07	0.43633E-02	0.31308E-02	0.488492-02	0.189645-02	D.690136-02	0.264216-02	0.55460E-07	9.551236-07	
0.2 g.j	0.52360E-02	C-37078E-DZ C-47888E-02	0.6373F-02 0.63776E-02	0.0333276-02	0.122176-02	0.010556-02	0.106692-05	0.91191E-07	0.52360E-02 0.61087E-02	0.41794E-02 0.50286E-02	0.663235-02	D+728585-02 D,875326-02	0.12217E-01	0.124666-01	0.100596-06	0.986790-07	
	0.096136-02	0.575578-02	0,101238-01	0.10007E-01	0.139638-01 0.151685-01	0-142588-01	0.11975E-06	0.11342E=04.	0-63813E-02	0-55710F-02	0-101236-01	0.101148-01 0.1(4146-01	D-139636-01 D-157086-01	0.144116-D1 0.14270E-01	0.119756-06 0.128958-06	0.115206-00 0.131036-00	
Q. (.	_0		0.12566E-01	0-129046-21	D.174535-D1	0-18401E-01	0.142995-06	0.150L0E-00	0.785468-02	9.72569E-02	0-12566E+01	D. 126667-01	0.174536-01	0.180606-01	0.142996-06	0.145942-05	
0.8	3.907576-02	D.88744E-02	0.155336-01	6-15384[-01	n.209446-01	0.71952E-01	D. [#2785-05	5.17956E-06	0.90757E-02	0.86764E-07	0.155336-01	D.15041E-01	0.209446-D1	0.214596-01	0.112781-06	0-17354E-04	
1.0	d.10472E-02	C.101606-01	0-174536-01	0.15216-01 0.17600E-01	D. 24435E-D1	0.251165-01	0.198305-06	D.20+338-04	0.104726-01	0.99738E-02	0.174538-01	0.172736-01	D. 244356-01	0.246538-01	0.198308-06	D.198658-00	
1.1	0.108216-01 0.11345E-01	C-10763E-C1 C-11365E-D1	C.[8850E-0] 0.157726-01	C.186356-61 C.196346-DI	D.279256-01	0.200326-01	0.22653E-06	0.22601E-06	G.11345E-D1	0.120396E-01	0.108502-01 0.19772E-01	D.19385E-01	0.279256-01	G.Z7678E-D1	0.220535-06	0.221698-00	
1.3	0.122176-01	C.11910E-Dt C.12961F-Ct	0.209446-01	0.20603E-01 0.215+8E-01	0.2967tE-01 0.30543E-01	0.294216-01 0.30775E-01	0.23657z-06 0.24198E-06	0.23602E-06 0.245612-06	0.122176-01 0.123926-01	0.11795E-01 0.12375E-01	0.20944E-01 6.22146E-01	0.204028-61	0.305435-01	0.291366-01	0.236576-06	0.232546-04	
1.5	0-13090E-01	C-13COLE-C1	0.276896-01	G-224726-61	0.322896-01	0.321015-01	0.252226-05	0.25+850-04	0-13090E-01	C-12943E-01	0-22689E-01	0-223716-01	0.372899-01	0.319576-01	0.252226-06	0.253108-05	
1.7	0.141376-01	C.14052E-D2	C.24784E-01	0.242736-01	6.349178-01	0.54683E-01	0.271665-06	D.27249E-0e	£.141376-01	C.14047E-01	0.24784E-C	0.242636-01	0.349079-01	0.34670E-01	0-21E00E-06	0.212336-0%	
1.5	0.15708E-01	C.150756-01	6.26529E-01	0.200238-01	0.383476-61	0-37194E-01	0-207032-06	0.259255-05	6-15708E-01	G.15114E-01	0-26529E-01	0.260916-01	0.303414-01	0.372916-01	0.291436-00	0.240440-00	
2.0	0.158836-01	0.10074E-D1	0.25274E=01	0,27734E-01	D. 392706-01 D. 41015a-01	0.384786-01	0.302346-06	0.105362-04	C.158932-D1 C.15683E-D1	0.141500-01	0.27576E-01	0.26934L-01 0.27864E-01	0.342705-01	0.398356-01	0.30651E-06	0.307606-00	
2-2	0.165018-01	C.1557CE-01 C.17C60E-01	0.29322E-01	0.285796-01	D.413566-D1 D.436336-D1	0.408628-08	0.314732-06	0.3132UE-05 0.320946-06	C.165H1E-01 G.17453E-01	C.166586-01 C.17163E-01	G.29322E-Ot	0.28733E-01	0.436330-01	0.42315-01	0.316236-06	0-315888-06	
	0-174535-01	C-179468-DI	0.308526-01	0.302476-01	D.44506E-D1	0.432588-01	0.330875-06	0.328566-05	C.17453⊆ D1	C.17656E-01	C. 30592E-01	0.304395-61	0.445065-01	0.439306-01	0.33087E=04	0.331800-06	
	1-193265-01	0.11563E-01	0.374636-01	0.318926-61	0.471248-01	0.456205-01	0.345526-06	0.343516-00	D.183268-01	0.186326-01	0-329636-01	0.321075-01	0-471296-01	0.459256-01	0.34952C-0a	0-347230-06	
2.8	0.191598-01	5.156616-01	0.34034E-01	0.339876-01	D.491425-01	0.479535-01	0.360162-06	6.358106-06	C.191958-01	0.195906-01	C.34034E-01	0.33744E-DL	0.497422-01	0-482755-01	0.36016E-06	0.50203E+04	
2.9	0.141590-01	0.199336-01 0.204026-01	0.34901E-01 0.35779E-01	0.34323E-01 0.55124E-01	0.506156-01	0.491205-01	0.361795-05 0.333815-05	D.372346-06	0.17199E-D1 D.20071E-D1	C.20043E-01 C.20532E-03	C.34907E-D1 C.35779F-D1	d.34551E-01 d.35352E-01	0.523606-01	0.494346-01 0.505846-01	0.36179E-06 0.3758LE-06	0.36924E-06 0.37634E-06	
4.C 5.C	0.24435E-0L 0.279256-01	C.245706-C2 C.293426-01	0.430685-01	0.42916E-01 0.50264E-01	0.545775-01 0.759226-01	0.619556-01	0.446508-05	0.534615-05	C.24435E-01 D.27925E-01	C.25C57E-01 C.293616-01	C.423CBE-01 C.51836E-02	0.43069E-01 0.5Ce006-01	0.64517L-01	D-616722-01	0.446502-06	0.442265-66 0.501498-06	
0.0	0.314168-01	0-335485402	0.593412-01	0.575240-01	0.963998-01	0.62+50E+51 0.92392E+51	0.556502+00	6.557142-05 0.408975-05	C.31416E-01	C.33505E-01	0.5534LE-D1	0.574546-02	0-863946-66	0.021025-01	0.556506+05	0-55514E=06	
6.0	0.303970-01	C.41544E-C:	0.733040-01	0.71104E-01	0.107348 00	0.102018 00	0.653641-06	0.494766-04	0.361976-01	D.414405-01	D. 123046-D1	6.109276-01	0.10734E D0	0.101756 00	0.653876-05	0-053806-04	
10.0	0.453796-01	C_49095E-01	0.851112-01	0.039195-01	0.126546 00	0.12046E 00	0-742151-06	0.743276-04	0.453/96-01	C.484835-01	0.869176-01	9.037176-01	0.126546 00	0.120176 00	0.742151-08	0.739646-04	
12-0	0-52360E-01	C-92737E-01 C-96302E-01	0.43201E-01 0.49484E-01	0_920H2E=01	D.139268 00	0.120948 00	0.817275-06	D.82340+05	0.52300E-01	0.526325-01 0.56211E-CI	0.99464E-01	C.95956E-01	0.135260 00	0.12908E 00	0.779711-06	0.010325-00	
13.0	0.549735-01		0.105596 DG	0.102036.00	0-15272E D0 D-15144E D0	0.146578 00	0.E4498E+06 0.R81332-06	D.85382E-06	0-549786-01	0.5972+E~GL C.83179E+G1	0.105598 00 0.111708 00	0.10774E 00	0,152726 00 0,161446 00	0.14639E 00	0.044986-00	0.651526-30	
15.0	0.614546-01	0-666206-01	C.117296 D0	_0.113566 CD	D.17017E D0	0.153208 00	0.915052-06	D.913922-06	0-619598-81	0.66580E-01	0.127298 00	0.113498 00	0-17017E 60	0.14310E D0	0.91505E-36	0.956696-55	
17.0	0.600636-01	C-102456-CS	C.12915E 00	9-124746 60	0.156756 00	0.179346 00	0.933741-06	0.570065-06	0-680686-01	0.752385-01	0-129156 00	0,124725 00	D-15675E 00	0.177326 00	0.97314E-06	0.975847-05	
L9-0	0-750-90-01	C. 19707E-01	0.1-015E 00	0.13563E 0D	0.202466 00	0.19507E 00	0.L0. /=-US	0.102436-02	0.798496-01	0-791278-61	C-14015E 00	D.13561E 0D	0-202466 00	0.195126 00	g_103276-05	0.102441-05	
20.0	0.00265E+01	C.SE0326-01	0.1+556E 00 0.15132E 00	0.146296 00	0.212356 00	0.210476 00	0.103441-03	0.107036-05	0.002356-01	0.840735-01	C.15132E 00	0.141042 00 0.146367 00	D.212065 00 D.218175 D3	0.25289E 00 0.21057E D0	0.10750E-05	0.107965-05	
27.0	0.637746-01	C.922416-01	0.154512 09	0.15154E GD 0.15674E SD	D.2333006 DG	0.216055 00	0-110148-05 0-113038-05	0.110198-05 0.112388-05	0.03774E-01	0.09159E-01	0.155915 00	0.151620 00	0.225150 D0 0.233002 00	0.210176 00	0.110146-09	0.110306-05	
24.0	0.025022-01	0.952676-01 0.982686-01	0.16773E D3 0.17279E D0	0.161966 CO 0.167016 CD	0.240366 DC	0.232026 00	D.115052-05	D.114545-05	0.899646-01	0-\$5965E-CL 0-\$8608E-01	0.167735 00	0.162005 00	0.240065 00	0.233176 00	0-115056-05	0-115010-05	
26-0	0.551206-01	5.101976 CD	D.179SWE DO	0.17209E GD	D.25492E DO	0.24/756 00	D.119976-05	D.113642-05	0-95120E-01	D.10143E CD	0.119595 GC	D.172205 GD	0.254826 00	5.24741E 00	0.11697E-05	0.116936-07	
28-0	0.101230 00	6-10734E CO	0.14G24E 00	0.182136 30	D.270536 00	0.262296 00	D. (2378E-05	0.122435-05	0-101536 00	C-10740E CC	0.190245 00	0.182242.00	0.270532 00	U-242436 00	0.123766-05	0-12266E-D5	
50°0	0.10847€ 00	C-11324E CO	0.200896 00	0.19204E 00	0.262746 00	0.276618 00	0.123545-05	0.1260VE-05	0.106476 0C	0.11930E CD	0,200695 00	0.192135 00	0.262745 00	0.27674E 00	0.125846-05	0.1244410-05	
38.0	0.111708 00	0.11507E CC 0.12433E CO		0.20182E.00 0.20149E.00	5.30892E 60	0.30416E 00	0.128945-05	0,129400+05	0.111708_00	0.124876 60	0.2211088_00	D.261904_00	0.205635 00	0.290886.00 0.304856.00	0.128940-DS	0.132796-05 0.132796-05	
0.55	0.129158 00	C.130546 CC	C.231266 DO	0.221046 00	D. 122898 00	0-31661E 00 0-33232E 00	0-137975-05	0.135702-05	0.12305E CC	0.130546 00 0.130708 00	0.231265 00	0.271136 CD	0.372893 00 0.33510F 05	0.31367E 00	0.13519E-05	0.1155796-05	
40.0	0-134396 00	C.14178E CC	0.25123£ 00	0.239915 05 0.26920E 00	0.349278 D0	0.345985 00	D. F4109F-01	D.141749-05	0-1364396 CD	0.14179E CC	C.25133E 30	0.239916 60	0.34907E 00	0.34590E DC	0.141096-05	C.14125E-05	
46-0	0.146618.00	C-15203E CO	0.270606 00	0.250426 0D	0.375266 00	0.372106 00	0.147052-05	0.146192-05	0.14661E 0D	0.152825 CD	0.17003.00	0.25837F 00	0.375258 00	0.37266E DO	0.14106E-00	0.146145-60	
45.0	0-15108E.00	0-16371E CO	0.207566 00	0.275621 09	0.400556 00	0.197086 00	0.050516-05	0+15663E-05	0.15708E CD	0-103006 00	0.41800E 00	0.20/512 00	0.387566 00 0.40055F 00	0.165062 00	0-14056E-05 0,15051E-05	G_1+84DE-05 G_15D54F-05	
52-0	0.143198 00 0.169306 00	C.169108 CC C.17444E CC	0.296710 00	0.29563E 0D 0.29455E 00	0.426736 D0	0.41213E 00 0.42508E 00	0.053142-05	0.154596-05 0.154596-05	0.163191 00	0.14906E 30 0.11440E 00	0.30576F CC	0.285566 00	0.413649 00	0.4(2035 00 0.424975 00	0.15314E-05 0.15557E-05	0.152558-05	
50.0 56.0	0.174538 00	G_17975E 00 G_18503E 00	0.31301E 00 C.32254E 00	0.303446 00	D.439826 D0 D.451176 D0	0.437958 00	D.15732E-05 D.15836E-05	0-106422-05	0.L74536 00 0.L79776 ch	0.134596 CD	0.313818 00	0.303346 00	D.439826 DD	0.437845 00	D-197328-09 9-15836E-05	0.156268-00 0.156268-00	
SE-0	D. LBSCOE DC	4-19578E 05 0-19551F 05	C.33091E 00	0.32103E 00	0.463396 00	0.443456 00	0-109562-05	0.159782-05	0.10500E 00	0.196246 00	0.330915 00	0.320995 80	0.463393 00	0.463348 00	0.159568-05	0.159646-05	
62.0	D.19548E 00	0.20070E 00	0-34872E CO	0.338431 00	0-461926 00	0.+0860E 00	D.162558-05	C-162805-03	0.19548E CO	0.20065E CD	0.348726 00	0.339346 00	D.48762F 0D	0.488565 00	0-16255E-05	9.162668-05	
65.0	0.206821 00	0.21101E 00	0.369656 00	0.35563E 20	0,512250 00	0.513016 00	0.165926-05	0.165508-07	0.205028 00	0.210976 00	0.365655 00	0.355566 00	D.512258 0D	D.Stasse Do	0.165920-05	0.165386-05	
70.0	0.21642E 00	C.221236 GO	0.302236 00	0.372086 60	D. 93756E D3	0.52603E 00 0.53837E 00	0.167685-05	0.107928-05	0-21204E CD	0.2212096 00	0.382236 00	0.364116 00	0.524416 00	D.525945 00 D.538305 00	0.16705E-05 0.16749E-05	6.16663E-05 0.1678JC-05	
14-0	0.226895 00	C-23137E CO	0.396556 00	0.38115E 00 0.389596 00	D.548914 D0 D.56025E D0	0.557406 00	0+16915E-05	0,16904E=05 0,17007E=05	0-221866 00	0.226785 00	0.390955 00	0.33111E 00 0.33955E CO	0-540918 00	0.550606.00	0.168725-05	0.16696E-01 0.17004E-05	
76.0	0.232130 00	0.236418 CD 0.241438 CD	0.40701F 00	0.39739E 40	0.57247E D0 0.582946 D0	0.575106 00	0.119355-05 0.170836-05	0.172045-05	0-212138 50	0.236405 CO	Q_40701E_00	0,39797E 40	0-572478 00	D.57507E 00	0,170356-05	0.17L066-05	
	0.242605 00	C.24644E CC	C.42412E 00	0.414706 00	0.596936 00	0.59935E 00	0.172506-05	0.172946-05	0.242646 00	0-24644F CO	0+424625 80	0.414716 60	0-596036 00	D.59936E DG	0.172586-05	G-172956-05	
	0-253671 00	0.255406 00	0.440006 00	d.431316 20	D-41785E 00	0.62346E 00	0.173/06-05	0.174591-05	0.203076 00	0.25144E CO 0.25642E CO	0.43232E GD	0.42304E 00 0.43134E 00	0.606508 00	0.61146E 00 0.62351E 00	0.17296E-05 0.17340E-05	0.17382E-05 0.17465E-05	
00	0.26354E 00	0.260318 00	0.45710E 00	0.647816 00	P-64228E DD	0.63546E 00	0.175996-05	0.175356-05	0.258316 00	0-26139E 00 0-26635E CD	0.448555 00	0.43962E \$0 0.44788E 80	0.43006E 0D 0.44228E 00	0.63553E 00	0.174696-05	0.1754-E-05 0.17619E-05	
90.0 92.0	0.26965E 00 C.275765 00	0.27125E 00 0.27617E 00	0.46478E 00 0.47298E 00	0.456036 60	D.454506 D0 D.466726 D0	0.65935E 00 0.67126E 00	0.177602-05	0.176756-05	0.269656 00	0.271296 00	0.464785 00	0.456118 00	0.654508.00	0.659475 00 0.671405 00	0.17766E-05	0,17690E-05 0,17757E-05	
94.0	0.38300E NO	0-28108E 0C	0.+7997E 00	0.472400 00	0.67119E DO	0.68313E 00	0.179316-05	0.175015-05	0.28100E 60	0.281156 00	0.474976 00	C-472526 00	0.677144 00	0.683305 00	0.179312-05	0-17821E-05	
5T0 0	(Y • 0.41	0502-02	0-45	4826~02	0.410	\$21-92	6 414	5-6-04	n +**	5855-02	· · ·	5034-07		7854-02		× 35-08	
							-,,430			1012-02	0.65		0.40		0.530		

Figure D-3. Viscoelastic Analysis for Asphalt 45 at 39.2°F (Cont'd.).

EQUATION OF BEST FIT. n=2

ج:

	SUMMARY SH	HERT, FOR VISCOGLASSIC, AN										TAUL *	0.14104088 04	- <u>- 282</u>	61 - 0.67531	DDE Q4 DYNES/SC	ън - 10	5C1 - D.1007	8621 10 P01525		
	ASPHALT NO: 53	CTS- 320405	4pg 2000 1	и Фака, пу/хося	· · · · ·	T401 *	D.12047018 0	sec c	- 0.600186-	46 CA DYNES/SI	0 CM - VI	801 - 0.7230	125 DV POISE	5TAU2.*.	0.1049/506_03		GZ_4Q_4)750	726 07 DYNN 3/55	_59V	\$57 z 9-9590	6578. <u>99 PUISES</u>
TINE	THETA I CP 1	THETA 2 GP 8	7HETA 3	66.3	249. C)	ONSERVED.	CALCULATER.	Daserveo	CALCULATED	OUSERYND	GALGULATES .	DESHRVED	GALCULATED	GEZERVED	CALCULATED	CBSERVED	GALEULAIED	065ERVED	CALCULATED	UBSERVED	CALCUEATED
	440 467 467 G	, pad		KAYDY SACH		1(40)	IRACI	IRACI	18401	(440)	IKAD1	LRA/O/SUCHT	CRAZQZSQCH1		THETA 1	14407	THETA 2	TRAD J	IRAD)	TRAFUSED	(QAZBZSECK)
G.D	0_251800-02-0-050000-38 0_349010-02 0-207506-07	0.0000000-30-0.005008-36 0.296712-02 0.447748-03	0.0149016- 0.010079-	-02-5.00000000-3 -32 5.249776-0	6-9-01000008+36 7 9-30000292+01	0.26100E-02 0.34907E-02	5.12049E-01 0.12515E-01	5-350002-34 0-298712-02	D.21762E-01	0-349076-02	0-312202-01 0-374298-01	-0.500002-36 0.3000000-07	-0-0000038 0-027766-04	0.261305-02	0-120496+02 0-126436-01	0.00000E-33 0.29671E-02	3 0.21762E-51 A.732036-0	D.349076-02	0.312302-01 0.332779-01	at-300000_0-0- 70-300000_0	-0.000005-36 0.135345-07
D-3 0.4	0.610376-02 0.622506-07 0.610376-02 0.622506-07	0.610372-22 0.5004445-01 0.733046-22 0.9799448-01	7 0.765406- 1 0.959936- 7 0.104726-	-d2 01348128-0 -d2 01542473-0 -d1 01589406+0	<pre>r 0.49642236*64 7 0.692421287*3 7 0.60494448**3 </pre>	0.523605-02 0.61087F-02	0.124018-01 0.134446-01 0.134078-01	C.410078-02 G.733046-02	c.24304E-01 d.251468-01	0.105405-02 0.95993£-02 0.10472£-01	0.348362-01	0.46405-07 0.672HDE-07 0.004966-07	0-100140-07 0-247106-07 0-320651-07	0.523606-02	0-13614E-07 0-14363E-01 0-15091E-01	0.65370F-02	2 0.24603L-03 2 0.25963E-0 2 0.272065-0	0.765400+02 0.45043E+62	0.352758-03 0.37216F-03	0.435402-07	0.359505-07 0.529156-07
n, s D. 6	0.496136-02 0-101750-56 0.795496+02 0-124556-56	0.677676+02 0.117538-07 0.102976-01 0.138056+08	6 0.12717E- 6 0.139630-	-01 0.71175F-0	17 0.46145275-01	0.498138-02 0.785408-02	0.140206-01	0.872878-02 0.102975-01	0.234878-01 0.246256-01	0.122176-U1 2.139638-02	D. 172308-01 D. 38421E-01	0.981455-07 G-116795-06	0.409791-0/ 0.49953E-07	0.698136-02	0-104900E-01	0.87267E-0	0.205735-0. 0.295225-0.	1 0.12217E-01 1 0.139676-01	0.407466-01	0.961452-07	0.849516-07 0.190155-56
0.7 0.8	1 0.672678+02 0.139296-Da 1 0.672678+02 0.139296-Da 1 0.956938-02 0.159956-Da	0.109956-35 0.143748-46 0.123926-31 5.161318-48 0.123926-31 5.161318-48	0.0.140356- 0.157555-	-01 0-421036+0 -01 0-423066-0	1 0.12703717-07 7 0.13230348-01	0.872678-02 6.0.872678-02 6.0.872678-02	0.152316-01	0.109466-01 0.17392E-01	0.276607-01 0.284936-01	0.14935C-U1 G.15738E-DL	0.39610E-01 0.607956-01	0.127036-06	0.978676-07	0.872676-02	0_17418E-01	0.12392E-D1	(3)344E=0 332340E=0	0.14835E-01 0.15708E-01	0-444716-01	0.12703E-Da D.13230E-Da	0.114/02-00 0.120705-04
116	0.104728-03 0.180756-04 0.153456-03 0.201465-06	D.1446AF-01 0.1845ab-04 D.15865E-01 0.202146-04	6 0.103260- 6 0.153266-	01 0.115528-(01 0.119528-(a 0.10020116-Da	0.104728-01	0.17103E-01	0.144648-01 0.15883F-01	0.301536-D1 0.309796-D1	0.103268-01	0.431535-01	0.17540E-06	0. K095007	0.104726-01	0.19003E-01 0.19694E-01	0.144867-01	0.34539E-D 0.35549E-D	1 0.(\$3265-01 1 0.(\$3265-01	0.494486-01 0.510306-01	D.14020E-06	0.155515-35
1.2	0.122176-01 0.22223E-56 0.122176-01 0.226166-06 0.122176-01 0.226166-06	0.171045+01 2.214745-06 0.17520E+01 2.219478+06 5.10100E-01 2.219478+06	6 0.20944E- 6 0.21017G-	-01 0.13425E-0 -01 0.13456E-0 -01 0.13856E-0	 0.19104526-04 0.19139186-04 0.19139186-04 	0.122176-01 0.122176-01 0.122176-01	0.17560E-01 0.1601JE-01	0.171042-31 0.17628E-01	0.326246-01	0.20944E-01 0.21817E-01	0.455016-01	0,191076-06	D_966625+07 D_1D4465+06	0.122170-01	0.202915-01	0-17104E-0 0-17628E-01	0.367358-0 1 0.3719/E-0	0.2094-2-01	0.52577E-01	0.19107E-06 0.19139E-06	0.180512-00 0.1974000
. 1.5	0.13363E-01 0.25766E-26 0.13963E-01 0.251636-06	0.200715-01 0.298678-08 5.209440-01 0.251366-08	6 0.24435E- 6 0.25307E-	D1 0.15/475-0	6 0.22126785-04 6 0.22357156-04	0.139635-01	0.169075-01 0.19956E-01	0.20071E-01 0.2094+F-01	0.35376C-01	0.244358-01	0.501558-01	0.221276-04	D. 119446-06 D. 127620-Da	0-130636-01	0.220078-01	0.200716-01	0.399576-D	0-244352-01	G.570255-01 0.564693-03	0.22032E-06 0.22357E-06	0.215085+05 0.225901-05
	0.15/095-01 0.27236E-06 0.15/095-01 0.29311E-06	5.221567-01 0.271902-08 5.228896-01 0.275676-08	<u>6 0.26180F-</u> 6 0.21053E-	AL 0.14404-3	6 7.23676686-DE	0.14035E-01 0.15708E-01	0.1939/c=01 0.20246E=01	0.22166F-01 0.226698-01	0.3546996-31	0.261805-01	0.513121-01 0.524655-01	D.23679E-08 D.24689E-06	0.135266-56 0.14287e-06	0.14835F-01 0.157085-01	0.23095E-01 0.236246-01	0.22100E-0	1 0.415376-3 1 0.42500E-0	0.26180E-0L 0.27053E-0L	0.598455-01	0.23674E-66	0.236412-05 D.256612-05
2.0	0.145818-01 0.307018-04 0.145818-01 0.307018-04 0.145818-01 0.301775-06	0.246595-01 0.294975-04 0.246595-01 0.412546-04	6 0.287925L- 6 0.28798E- 6 0.29671E-	01 0.1/0945-0 01 0.1/0945-0	A 5.25057286-50 A 5.26057286-50 A 5.26584406-60	5 0.151002=01 5 0.155818-01 5 0.165818-01	0.211328-01	D.240072-01 D.240072-01	0.303136-61	D.287986-01 D.297986-01	0.54758E-01 0.55900E-01	0-20057c-00 0-2057c-00	0.15797t-36 C.15797t-36	0.165816-01	0.246556-01 0.251576-01	0.246092*01 0.260092*01	1 0.45146765-0 1 0.455906-0	1 C.287986-01 1 C.287986-01 1 C.284718-01	0.5355538-01 0.535962-02	0.200576+00	D-256151-54 D-266151-54 D-275535-504
2.3	0.174538+01 0.322625-06 5.163262+01 0.343272-06	0-26706E-01 0-31723E-00 0-279252-01 0-33283E-02	0 0.31416E- 6 0.32269E-	31 D.177Hot-0	6 0.27953638-0	6 0.174636-01 6 0.183266-01	0.220125-01 0.224516-01	0.257040-01 0.279251-01	0.399184-01	0-32289E-01	D-570406-01 D-586765-01	0-292756-06	d.13039E-06	0.174536-01 0.163262-01	0.25651E-01 0.20138E-01	D.257042+0 D.279252-0	1 0.46490±-0 1 0.473766-0	1 0.31418E~01 1 0.32289E-01	D-40448E-DI 0-07729E-DI	0.27154E-04 0.29275E-05	0.204658-05 5.293556-36
2.5	5.103268-01 0.337328-05 5.103948-01 0.357978-06 5.200758-01 0.370778-06	0.204496-01 0.315566-06 0.2460712-01 0.350166-06 0.361066-01 0.352066-07	6 0.331616- 6 0.340346- 6 0.349376-	-01 D.206456-0 -01 D.210746-0 -01 D.2150-6-0	6 0.29307829-01 6 0.30629258-01 6 0.37555637-01	6 0,103266-01 6 0,19199E-01 6 200716-01	0.233246-01	0-29671E-05 0-30196E-05	0.415150-01	0.340342-01 0.340342-01	0-004406-01 0-004406-01 0-015076-01	0.29306E=06	0.195061-06 0.20213-06	0.191996-01	0.275517E-01 0.27555E-01	0.24671E-DI	1 0.462495-0. 1 0.491095-0. 1 0.499565-0.	1 0.340346-01 1 0.340346-01	0-80971E-01 0-70175E-01	0.306298-06	0.302220-36 0.328931-006
	0.200716-01 0.372678-05 0.209996-01 0.393428-06	0.314166-01 0.367496-00 0.321148-01 0.373195-00	6 D.35779E	01 0-219336-0 -01 0-223626-0	6 0.3196324c-0	0.200716-01	0.24193E-01 0.24624F-01	0.314166-D1 0.321146-D1	0.436936-01 0.446826-01	0.35779E-DE 0.36652E-DE	G.e2691E-01 G.e3612E-01	0.43763E-06 0.33608E-06	0-2096406	0.200716-01 0.20944F-01	0.260150-01	0-321146-01	0.50795F-0 0.516715-0	0.360520-01	G. 12573E-01 G. /3760E-01	0.319836-06 0.330086-06	0.326995-06 0.334676-05
3-0	1 0.200446-01 0.381382-08 3 0.210170-01 0.400136-08 3 0.201306-01 0.40045208	0.33639L-01 0.36463E-00 0.33639L-01 0.36756E-00 0.43753E-01 0.46756E-00	6 0.375255 6 D.383976-	-gl 0.227926-0 -gl 0.232216-0	6 0.23437252-05 6 0.34263015-08	6 0.20944E-01 0.210170-01	0.2505(E-0) 0.254678-0(0.263278-0)	0,331616-01	0.467526-01	0.375256-01	0.66045E-01 0.66045E-01	0.333318-05	0-224366-05	0.20944E-CI 0.216170-01	D.293586-01	0.331616-01	1 0.5243EE-0	0.315256-01	0.749295-01 0.760755-01	0.333376-86	0.342572-05 0.350(12-05
5.6.(0.305436-01 0.555366-06 0.349076-03 0.626676-06	0.504536-51 D.548996-00 0.575966-51 D.658948-00	0 0.559766 0 0.6283318	-01 0.34031E-1	6 0.47067538-0	6 0.30543E-CL 8 0.349078-CL	0.130506-01 0.370806-01	0.50440E-01 0.57596E-01	0.4(5(4E-D) 0.680560-01	0.549795-01	0.03713E-01	0.470635-06	D. 3+1285-06 D. 430345-06	0.30943E-21 0.34907E-01	0-3/3915-05 0-410546-31	0.50440E-0 0.5759eE-0	1 C.67098E-0 1 0.74551E-0	0-540786-0L D-628328-0L	0.968912-01	0.47063E-46 0.5259AE-45	0.475872-08 p.527226-06
7.0 B.C	0.39276E-01 0.702(GE-06 0.4276[E-01 0.7489[F-06 1 0.4276[E-01 0.7489[F-06	0.645776-51 5.66592E-01 0.735596-51 5.72798E-01	6 0.698135- 6 0.785485-	-01 0.302551-1 -01 0.40545E-1	0 0.57686886-0	0.42763E-01	0.458346-01	0.21559E-01	0.740076-01 0.840076-01	0.090135-01	0.118260 00	0.57609E-06 0.62576E-06	C. 43043E-26 C. 347555-26 E. 601008-56	0.352706-01	0.479326-01	0.645778-0	1 0.89947L-6 1 0.87157E-0	1 0.696138-01 1 0.785408-01	0.1154DE DC 0.124215 DC	0.576698-05	0-576252-00 0-618110-00
10.0	0.49742E=01 0.84235E-04 0.53233E=01 0.84235E-04	0.053476-51 0.938896-01 0.907576-01 0.064162-01	5 J-925026- 5 0.994/46-	01 0.449986-3	6 0.74101720-D	0.53233E-01	0.530265-01	D.953472-01 D.907576-01	0.96505E-01 0.10303E 00	0.92502E-01 0.99484E-01	0.131416 D0 0.148575 D0	0.141825-00	0.653631-36 0.702890-06	0.497625-01	0.54504E-01 0.57701E-01	0.853478-0	0.99173E-0	0.925026-01 0.994846-01	0-141248 00	0.708765-06	5-696976-66 0-736691-05
	1 0.54/238-01 0-935796-04 1 0.602146-01 0.987516-04	D.077336-01 0.922146-00 D.109325 07 0.954366-00	4 0.10647E	00 0.494475-0	16 3.78379352*0	0.56723E-01	0.600718-01	0.477386-01 0.103325 pd	0.109418 00 5.11566E 00	0.104476 09	0.15572E 00 0.1645EE 00	G. 7838DE-D6 0.81787E-D6	0.749602-06	0.567232-01	0-60849E-01 0-63950E-01	0.97738E-01	1 0.11070E 00	0.113456 00	0-157698 00	D.783806-06	0.77207L-06 0.607631-05
15.0 L6.0	0.643738-01 0.104912-05 0.6498136-01 0.104912-05	D.115378 00 0.132576-05 D.121136 00 0.132576-05	5 0-12900E 5 0-13265E	00 0.540546-0 00 0.540546-0	6 0.07512144-00	0.663235-01 5 D.690135-01	0.701412-01 D.733596-01	0.115378 00 0.121(3E 00	0.127786 00	D-175666 00 3-132656 00	0-19011E 00	0.47512E-06 0.910L8E-36	0.875815-05 0.975165-05	0.663236-01	0.700255-01 0.730048-01	0.115578 00 0.12113E 00	0 0.12757E 00 0 0.13303E 00	0.175668 Q0	0.181975 00	0.a7512E-06 0.9101HE-06	0-87326-06 0-90-256-05
17-0	0.72431E-0: 0.111582-05 0.75922E-0: 0.110255-05	0.126715 02 0.1105[E-0 0.132656 03 0.114435-05	5 0.13963E 5 0.15661E	0D 5-585028-0 0D 5-65726-0	6 0.93531526-01 5 0.97136175-01	5 D.124316-01 5 0.759226-01	0.76517E-01 0.77616E-01	0.126716 00 0.192656 DU	0.139442 00	0.13963E 00 0.14661E 00	0-196296 DD 0-206336 DD	0.935528-06 0.911361-05	U. 75155c-00 0. 986361-06	0.12+31E-01 0.15922E-01	0.75945E-01 0-78851E-01	0.126718 00	0.13841L 00 0.14373E 01	D.13963E 00 D.1466LE 00	0.196815 DC 0.204346 DC	0.935328-06	0.924101-04
20,0	D.49495451 0.119742-05 D.420315-01 0.122925-05 D.820315-01 0.122925-05	0.143120 00 0.11969E-0 0.14653(n0 0.12292F-0	5 0.15272E 5 0.159705 5 0.159705	00 0-641418-1 00 0-641418-1	6 0.10241526-0	5 0-82031E-D1 5 0-82031E-D1 5 0-84649E-D1	0.85674E-00 0.85674E-00	0.14312E DO 0.14553E DO	0.156170 00	0.159/0E 00 0.159/0E 00 0.166936 00	0-22197E 00 0-22197E 00	0.102322-05	0.10508L-05 0.10508L-05	0.70540E-01 0.82031E-01 0.84659(-01	D_R45806+01 D_R45806+01	0.137885 00	0 0.15417E 04 0 0.15937F 0	0 5.15272E DU 0 6.15970E DO	0.219146 00	0_102326-05	D_100540-06 D_101720-05
22.0	0 6.872667-01 0.12630E-05	0.153596 00 D.125356-0 0.158336 00 0.120086-0	5 0.171925 5 2.17715E	00 0.6665226-1	b 0.1052593€-0 b 0.105777€€-0	G_67266E-01 0.90757E-01	0.914925-02	0-153596 00 0-150836 00	0.16686E 00 0.17208E 00	0.171926 00 0.177156 00	0-237102 00 D-244492 00	0.106265-05 0.108786-05	0.11092E-05 0.11362E-05	0.07266E-01 0.00757E-01	0.901+26-01 0.908886-01	0.153596 00	0 0.164422 0	0.17192E dD 0.17715E de	D-233616 00 D-240726 30	0.105262-05	0.10617E-05 0.10916E-55
25-0	C.435752-01 0.133562-03 C.459936-01 0.1335562-05 C.496116-01 0.1375562-05	0.14932E 20 0.13111E-0 0.14932E 20 0.13354E-0 0.13453E 20 0.13628E-0	5 0.190248 5 0.190248 5 0.190358	00 0.20903E-0 07 0.70093E-0 07 0.712646-0	6 0.11306455-0 6 0.11306455-0	5 0.95993E-01 5 0.96911E-01	0.945172-01	0.16424E 05 0.16130E 05 0.17453E 00	D.18230F 00 D.18730F 00	0.190246 00 0.190246 00 0.196356 00	D-25894E 00 D-26601E 00	3.11305E-D5	0.118052-05 0.12090:+05	0.959935-01	0-405465-01 0-105465 05	D.1593DE 00 D.17453E 00	0 0.179376 DC 0 0.179376 DC	0.196246 00 0.196246 00	0.254146 00 0.254146 00 0.254146 00	0.11306E-05 0.11306E-05	6.113671-05 0.11560E-05
27. (28. c	0-101236 DC 0-139546-65 0-103856 D0 0-141536-65	0.179946 SD 5.139302~0 0.1351g6 GD 5.142936-0	5 G.262466 9 0.209346	00 0.72+7+5+0 50 0.746982+0	0 0.1171D56F-D	5 0.10125E 00 9 0.10365E 00	0.105148 00	0.139748 04 0.165189 04	0.192236 0D 0.197100 00	0.209442 00	0-272996 D0	0.11711E-05 0.11942E-05	0.123145-05	0.101230 DC 0.103856 03	0.10360F 00 0.10671E 00	0-17994E 00 0-18518E 01	D 0.15909F 00 D 0.19389F 00	0.202446 00	0.24848E 00 5.27526E 00	0.11711E-05 0.11942E-05	d.117845-05 0.119645-05
30-0	1 0.100060 00 0.143520-05 1 0.100060 00 0.143206-05 1 0.115195 00 0.152196-05	5,204207 05 0-147470-0 5,204207 05 0-147470-0	5 0.234090 5 0.22070E 5 0.231670	00 0.740398-0 00 0.760995-7 00 0.794908-0	6 0.12301302-0; 6 0.12711076-0;	5 0.109966 dD 5 0.119195 dD	0.113215 00	0.195465 00 9.204205 00	0.200402 00	0.220762 00 G.233975 00	0-29334E 20 0-30658E 00	0.123816-05	0.129226-05	0.10946E 00 0.11519E 00	0.111375 00 0.111446 00	0_195488 00	0 0-193642 01 0 0-203548 01 0 0-212646 01	0.220766 00	0.268635 00	0-123616-05 0-123616-05	0.123593-05 0.123593-05
34.0 50.0	0.120411 00 0.151176-25 0.124795 00 0.151176-05	5.2146840 00 0.155150-D4 5.224270 03 0.157(36-0)	9 0.294352 5 0.254545	00 0.151128-0 00 0.825136-0	n 0.13034335-0 15 0.1329176e-0	0.120438 05 0.12479E 05	0.173288 00 0.12817E 00	0.214685 DO	0.22516E 00 0.234136 03	0.24435% D0 0.256566 D0	0-919968 00 0-392165 00	0.130346-05 0.132926-05	0.13547E-05 0.13546c-05	0.120416 00	0.121436 00 0.126356 00	0.224688 00	0,77Jaik 0/ 0,23D945 0	0.244350 00	0.321466 00	0-130368-05 0-130368-05	0.13029k-0x 0.12329k-05
30.) 40.) 92.(3 0.130532 30 0.101462-05 3 3.136303 30 2.162762-05 3 3.136303 30 2.162762-05	0.233708 0J 0.162216-0 0.242788 00 0.165906-0 0.251538 50 0.16/098-0	5 D.267922 5 D.279262 5 C.250602	00 0-04846-1 00 0-04846-1	NG D. 13592156-01 NG D. 13783-30-01 NG D. 13945-164-01	5 0.130016 Dg 5 0.134598 00 5 2.536758 00	0.13768E 00 0.13768E 00 0.14732E 00	0.24370E 00 0.24270E 00 0.25133E 00	0.25159E D0 0.25159E D0	0-2579256 00 0-279256 00 0-250656 00	0.3445940 00 0.356806 00 0.366836 00	0.137432-05	0.143806-05 0.143806-05	0.134341 00 0.134341 00	0.135978 ed 0.135978 ed	0.24278e 00 0.252356 00	0 0.257187 00 0 0.257187 00	0.24791:00 0.279258 00 0.290606 00	0.334996 00 0.352386 00 0.354616 00	0.137858-05	0.136071-05 0.138651-35 0.261062-35
64-0 64-1	C.14394C GD C.16805E-05 C.148356 No C.16935E-05	0.26549L 20 0.171186-01 0.27534E 00 0.171785-01	5 0,30394E V 0,31241E	00 0.019996-0	6 0.14225648-0 6 0.14431400-0	0-143996 DQ	G.LAGROE CU G.LOIAGE DG	0.25040E 20 0.27035E 00	0.26653F D0 0.21683F D0	0-301946 GD 0-312418 00	0.380587 00 0.392381 00	0.142265-05	0.247990-35 0.349366-55	0.143946 db 0.148355 00	0.14535F 00 0.1494aL 00	0.260408 00	0 0.265765 0 0 0.274226 0	0.301945 03 0.312410 00	0.316128 30 0.386656 00	0.142265-05	0.19327L-25 0.195336-05
40.0 50.1	5 G.1533596 D3 U-171346-05 2 d.157596 D3 U.171346-05 1 d.157596 D3 U.175356-05	0.278736 00 C.177655-03 0.207136 00 S.179555-03 0.205148 00 0.190866-03	5 01322396 5 01333366 5 01343836	00 0.001645-0 60 0.064776-0 60 0.087896-0	6 3114638476403 6 311475571840 6 3 1465317640	5 0.15795 D0 5 0.157956 D0 6 0.16232F 00	0.16027E 00 0.16027E 00	0-207136 00	0.29314E 00 0.29314E 00	0.333356 00	0.415376 00	0.14738E-05 0.14736E-05	0.192600-05	0.15795F 00 0.15795F 00	0-104526 00 0-109046 00 0-103526 00	D.28711E 00	0 0.202611 00 0 0.290926 00	2 0.522646 05 2 0.533366 03 1 0.343835 00	0.40047E 8E 0.41218E 8E 0.42378E 85	0.14636E-05 0.14756E-05 0.14853E-05	0,147251-05
54.5 56.0	0.147556 00 0.179908-55 0.171028 00 0.101245-05	0.303512 50 5.19276F-01 5.311898 00 0.104665-01	5 0.356056 5 0.36652E	00 0.9L1702-0	6 0.1512064E-6	0.107556 20	0.153988 40 0.173758 00	0.303516 00	0.309128 00 0.317038 00	0.356055 00	0.437898 00 0.449608 00	0.151296-65	0.155307-05 0.196377-05	0.167555 00	5-10790E 00 0.172361 00	0.303516 00	0 0.307315 DU 0 0.315408 SU	0.356058 00 0.356525 00	0.43528E 00 0.446692 00	0.151296-05	0.152222+05 0.153532+05
50-0 60-0) 5.183535 00 0.182845-05) 5.183535 00 0.186535-05 1 5.183636 00 0.183835-05	0.427992 00 0.10727E-D: 0.427992 00 0.10727E-D: 0.427993 00 0.10727E-D:	5 0.37874F 5 0.389212 5 0.389246	00 0.936636-0 00 0.94175E-0 00 0.944866-1	6 0.15599122-03 6 0.15599122-03	0.181515 00 0.181515 00	0.177008 00 0.161735 00	0.319745 00	5.324852 00 5.332678 00 0.340356 00	0.373745 00 D.364216 00 0.399488 00	0.9600086.0 0.970986.00	0-155796-05	0.158775-05 0.158775-05	0.181516 00 0.165846 00	0.191565 03 0.18537F 00	0.32795E 00 0.33563E 00	D 0.931425 D(D 0.931425 D(D 0.931425 D(0.318795 00	0.469265 00	0.155998-05	0.156160-65 0.156160-65 0.157128-05
04.0 56.1	5.170746 00 5.189165-05 3 5.194608 00 5.199465-05	0.44343F 00 0.164596-05 0.35203F 00 0.191196-05	5 5.41015E 5 6.42231E	00 0-97101E-1	6 D.15784168-0	0-19024E 00 5 0-19460E 00	0.190105 00	0.35203E 00	0.355466 DD	0.41015e 00 0.422376 00	0-992685 00 0-993946 00	0.15764E-05 0.15960E-05	0.15974E-05 0.16034E-05	0.190246 DG 0.194606 D0	0.159652 03 0.19391E 08	0.343830 00 0.352030 01	D D.34723E 30 D D.35507E 01	0 0.4:015E D0 0 0.42237E 60	0.491538 00 D.502568 00	0.157041-05	D.158375-05 0.159355-05
50.0 70.0	0 C.200976 DC C.191762405 2 0.203336 DC C.193056405	0.35969E 50 0.173602-01	5 0.434595 5 0.465066	02 0.99561E-1	6 0.16116956-0	5 0.198977 00 5 0.203332 00 6 0.306852 03	0.19830E US 0.20249E DC	0.35939E 00 0.36809E 00	0.370866 00	0.434596 DD 0.445065 DD	0-515480E 00 0-53542E 00	0.161176-05 0.16224E+05	0.16098E-05 0.160516-05	0.198976 00	0.178156 00	0.354098 00	C 0.36284E 0 0 0.37062E 0	0 0.434598 00 0 0.445066 00	D.913548 DC D.52446E DC	0.161178-05	0.160265-05
74 6	0 0.211100 DC 0-14290E-D5	0.392961 30 0-145652-0	5 0.46779E	04 0.10257E-0	5 0.16340-58-54 5 0.16427026-54	5 0.21110E 00 5 0.21555E 00	4.21067E 00 0.21474E 00	0.38327E 00 0.39095E 00	0.305920 00	0.467156 DO 0.418226 do	0.5460GE 00 0.55554E 00	0.163497-05 0.16427E-05	0.15244E-05 0.152836-05	6-2111AC 00 6-21555E 00	0.21073F 00	0.39327E 0	0 0.386039 0	0.467750 02	0.546158 00 0.556938 00	D-16427E-05	0.162625-03
70-0	0.229916 6d 0.195596-05	0.39528E 20 9.195775-0 D.40614L 00 0-196786-0	5 0.45044E 5 0.50091E	00.0.105266-0	5 0.16553928-3 5 0.1555216E-0	5 0.21991E 00 6 0.223466 00	0.21879E 00 0.22254E 00	0.39828E 00 0.406(48 00	0.40009E 00 0.40834E 00	0.500916 00	0-567052 00 0-57753F 00	D.16554E-DS D.16552E-DS	5.15319E-05 0.16352E-05	0.219910 00	0,21903E 00 0,22316E 00	0.39826C DC	0 0.40132£ 00 0 0.40892£ 00	0.49044E 00 0 0.500916 00	0-54767E 00	D.16554E-05 D.16552E-05	0.103925-05
	0.2227775 00 0.195455-05 0.222195 00 0.195455-05 0.2255622 00 0.195455-05	0.421321 D5 0.1979LE-01 5.429355 D0 0.19921E-01	5 0.52340E 5 0.52340E	00 0.108276-0 00 0.110656-0	5 0.10760512-0	0.23713E 00 5 0.235628 00	0.23069E 00 0.23491E 00	0.421326 00	0.42319E 00 0.430598 00	0.523600 00	D-50942E 00 D-608836 00	0-167676-05 0-16844E-05	0.104092-05	0.232136 00	0-23137E 00 0-23137E 00	0.421326 00 0.429356 00	0 0.42405E 00 0 0.431588 00	0.523601 00	0.610268 DC	0.10707L-09 0.16844E-05	0.16554E-05 0-16601E-05
88.C 90-C	1 0.239935 10 0.190765-05 1 0.244356 00 0.198065-05	0.436662 00 0.199385-0	5 D.54803E 5 D.55851E	00 0.113036-0 00 0.113346-0	5 0.16970502-0 5 0.17058076-0	5 0.23998E DD 5 0.24435E GD	0.238925 00	0.43668E 00 0.44454E 00	0.43198£ 00 0.445356 00	0.548056 00 0.558516 00	0-619225 DD 0-6296DE DD	0.17058E-05	0.164538-05	0.239982 00 0.24435£ 00	0.23954E 00 0.24361E 00	0.43668E 00 0.44454E 00	D 0.43910E 00 0 0.44659E 00	0.54893E D0 0.55651E D0	0.629838 DD 0.631366 DD	0.16970E-05 0.11058E-05	0-16644E-15 0-16684E-55
92.0	0 0.241842 GD 0.196695-05 0 0.251338 00 0.195315-05 0 0.256566 00 0.196295-05	0.45470E 00 0.20135E-05 0.45470E 00 0.200885-05	> U.SB#98E 5 C.S7#58E 5 0.5881×C	00 0.11293E-1 00 0.11293E-1	5 0.1/054716-0 5 0.16470538-0 5 0.1708338F-0	5 0.251336 00 5 0.254566 00	0.25071E 00 0.25071E 00	0.45937E 00	0.46007E 00	0.57858E 00 0.56816E 00	0+0503DE 00 0-06004E 00	0.16971E-05 0.17063E-05	0.16537E-05 0.16522E-05	0.251336 00 0.256566 00	0.25172E 00 0.25576E 00	0.459375 0	0 0.46[54E 3	0 0.58818E 00	0.65240F DC	0.1697LE-05	0.167568-05
93.0 100-0	0.200056 00 0.197926-05 0.200426 00 0.199226-05	0.473860 00 0.200828-0 0.481540 00 0.201588-0	5 0,598458 5 0.60737E	00 0.112526- 00 0.11276E-0	5 0.1704206E-0	5 0,260050 00 5 0,264426 00	0.253888 00 0.262866 03	0.47386E DO 0.48154E DO	0.47476E 00 0.48209E 00	0.59865E D0 0.60737E 00	0-07096E 00 0-08127E 00	0.170422-05	0.16535E-05 0.15557E-35	0.260856 00	0.25980£ 00 0.26383€ 00	0.473808 00	0 0.47642E 0	0 0.598658 00	0-67334E 00 0-68378E 00	D.170426-05	0.168186-05
105.0 110.0	0 0.284496 00 0.20039E-05 0 0.284496 00 0.20039E-05 1 0.294966 00 0.202316-06	0.500918 00 0.203616-01 0.518366 00 0.202432-01 0.537566 00 0.202432-01	5 0.6345DE	00 0.10948E-0 00 0.10612E-0 00 0.10587E-0	5 0.1705194F-D 5 0.1896467E-D 15 0.17079736-0	0.274028 00 0.28449E 00 0.29696F 00	0.272786 00 0.282696 00 0.297596 00	0.51836E 00 0.53754E 00	0.51845F 00 0.33687E 00	0.65450E 00 0.67981E 00	0.732695 00	0.15955E-05 0.15955E-05 0.17080E-05	0.165920-05 0.165920-05	0.28449E 00 0.29495E 00	0.20388E 00 0.20388E 00	0.518366 00	0 0.520805 00 0 0.520805 00	0 0.654500 00 0 0.654500 00 0 0.679810 00	0.735765 00	0.109658-05	0-16957E-05 0-16957E-05 0-13998E-05
120.0	0.303690 DG 0.198375-05 0.315160 D0 0.200805-05	0.555018 00 0-20303E-01 0.572478 00 0-20184E-01	5 0.705(1) 5 0.72955E	00 0.10561E-0 00 0.104338-0	5 0.16917233-0	0.303496 00 0.314166 00	0.302.8E 00	0.555016 00	0.54511E 00 0.57332E 00	0.70511E 00 0.72955E 00	0.783966 00	D.16917E-05 D+16899E-05	0.166195-05	0.303698 00	0.30302E 00 0.313765 00	0.55561E 00	0 0.557556 00	0.70511E 00 0.72955E 00	0.707456 00	0.10917E-05 0.168996-05	0.170336-05 0.170626-05
130-1	0 0.322890 DC 0.19736E-05 0 0.331616 DD 0.19392E-05 0 0.34036F DD 0.19069E-05	0.56992E D0 0.20066E-0 0.608251 D6 0.20096E-0 0.626575 D6 0.20124E-0	5 0.75573E 5 0.78191E 5 0.80809F	00 0.10511E-0 00 0.10589E-0 00 0.106676-0	5 0.1677088E-0	5 0.32289E DO 5 0.33161E DO 5 0.34034E DO	0.32222E DO	0.53992E 00 0.60825E 00 0.62657E 00	0.691516 00	0.751732 00	0-850716 00 0-850716 00 0-68627E 00	0-16771E-05 0-16672E-05 0-16616E-05	0.166362-05 0.166416-05 0.166466-05	0.322898 00 0.331616 09 0.330346 00	0.32369E 00 0.33360E 00 0.34350E 00	0.58992E 00 0.60825E 00 9.62657E 00	0 0.612426 00 0 0.612426 00 0 0.630676 00	0.755740 00 0.781918 00 0.808096 00	D-86463E 00 D-89029E 00	0.16092E-05 0.16614E-05	0.171068-05 0.171068-05
145.0	0.350810 00 0.192410-05	0.647286 DG 0.197116-05	5 D.832576	00 0.105388-0	5 0.1649650E-D	6 0.35D81E 00	0.351806 00	0.64228E 00	0.046046 00	0.832526 00	0.911826 00	0.164965-05	0+166496-04	0-350916 00	0.353396 00	0-64228E 0	0 0.648906 00	0.832526 00	0-91592E 00	0.164965-05	D.171365-05
						DEV = 0.39	604F-02	0-10	939E-01	0.60	659E-01	0.63	3215-87 510	DEV0.51	15/6-02	0+13	29906-01	0.614	588-01	0.LS	0336-07

Figure D-4. Viscoelastic Analysis for Asphalt 53 at 39.2°F.

-130-

EQUATION OF BEST FIT n=3

Figure D-4. Viscoelastic Analysis for Asphalt 53 at 39.2°F (Cont'd.).

"131*"*

EQUATION OF BEST FIT; n=1

							_								TAUL *	0.1830286E 04	SEC GI	L = 0,4721093	DE OYNES/SE	<u> </u>	C1 > 0.66409	26 D4 POISES
	STIMICALLY 2	HEET FUR VIS	CUELASYTC AN	AT 4212			-	a 11623338 at	CEC 61	0.4176618	DA DANES/SC	. CA VI	sc1 = 0.47552	402 04 PD15E5	TAU2 -	0.98539216 02	56C G	2 . 0.2135505	OT DYNES/S	95 M	5C2 - 0.210+3	222304 90 30L
15PH 7557	11" NO- 67 1000- 39.7 F	L0 C1	405- 800 LA 5	59197. A	м 2 <i>093</i> , пү/50с	N	- 1401 -	0.01312130 04							00710710	6 H C - 1 4 7 5 0	DAGERNED	CALCULATED	DESERVED	CALCIN ATED	DASERVED	CALCULATED
TIRE THETA	1 GF A RA/D/SQCH	THETS Z	RA/D/SBCH	RAD	66-3 94/0/500#	AVC CF RA/D/SQCH	THETA L	CALCULATED	THETA 2	CALCULATED THETA 2	THETA 3	THETA 3	CP FUNCTION IRA/D/SOCN1	CP FUNCTION	THETA L (RAD)	THETA 1 (340)	THET A 7 (AAD)	THETA 2 (RAD)	THETA S	THETA 3	CP FUNCTION (RA/2/SUCPI	CP FUNCTION TRAVUT SUCHS
0.0.15708		n-17453E-02-	-0.00000E-38	0.54165E-1	02-0.000002-	36-0-00000E-38	0.15T08E-92	0-150540-02	0.274538-02	0.26175E-02	0,54105E-02	0.362976-02	-0.300008-48	-0.000008-38	0.157086-02	0.150546-92	9-17-538-02	9=261755-02	0.54105E-R2	0.362996-02	-0,000000-30_ 0.73165E-07	0.00000F=38
0.1 0.36652	6-02 0.339530-01	0.040136-02	0-79854E-07 0-12728E-06	0.132656-	01 0.856592- 01 0.176675-	07 0.7816523E-07 06 0.1155112E-06	0-36652E-02 0-52360E-02	0.287316-02	0.498135-02	0.512138-02	0.13269E-01	0.733485-02	0.115518-06	0.25154c-07	0.573605-07	DAALL 70E-07	0,102976-01 0,123926-01	0.743295-02	0.174536-01 0.21416E-01	0.142165-01	0.115518-06	0-075326-07
0.3 0.69813	-02 0.13e32E-00	0.12392E-01	G.154G4E-06 G.18874F-06	0.211186-	01 0.16130E~ 01 0.19169E-	06 3.1505605E-06 06 3.177s140E-05	0.78540E-02	0-35534E-02 0-42319E-02	0.148358-01	0.636741-02	0.24435E-01	0.110(8E-01	D.1/7618-06	0.499496-07	0.78540E-02	0.071116-02	0.172796-01	0,122790-01	0.24+35E=01	0.174-36-01	0.177618-36	0,12H820-De 0,15734b-De
0.5 0.89012	2=02 0.17764E-04	0-1/2/98-01	0.219425-06	0.277518=	01 0.2220TE- 01 0.2375TE-	06 0.2063763E-06 06 0.23030363E-06	0+104725-01	0.558206-02	0.188502-01	0.10083E-01	0.298456-01	0.146811-01	0.236396-56	0.745302-07	0.105725-01	0.932816-02	0-100505-01	0-10596E-01	0.29845E=01	0.266096-01	0.246665-06	0.21056E-Da
0.7 3.10821	2-DI D.218466-D4	0.207596-01	0.282085-06	0.329478-	01 D.26582E- 01 D.27920E-	06 0.2+80004E-06 96 0.2712397E-05	0.10621E-01 0.12217E-01	0-692356-02 0-692356-02	D.22515E-01	0.125-16-01	0-349076-01	0.183226-01	0-271240-00	0.90868E=07	0.122175-01	0.115726-0:	0.225156-01	0-206235-01	0.34907E-D2 D.37350E-D1	0.323025-01	0.201046-06	D. 259140-06
0-9 0-12392	E-01 0.25003E-04	0.237366-01	0.29413E-36 0.31207E-66	0.37350F-	01 0.299956- 01 0.318766-	06 0.2810351E-06 06 0.306555-06	0.12392E-01	0.825635-02	D.25307E-DL	0.149848-01	0.39794E-DI	0.219416-00	0.306470-06	0.122955-05	0,13963E-91	0,13667E-01 0,166666-01	0.253078-01 0.27953E-01	0-26L0HE-01	0.19794E-01 0.41886E-01	0.349096-01		0-261070+94
1.1 0.14312	E-D1 0.29135E-00	0.27053E-01	0.33295E-30 5.347946-06	D.458E88-	OL 0.33420E- 01 0.34973E-	00 0.3195017E-06 06 0.3391154E-06	0.14312E-01	0.959566-02	0-284496-01	0-17413E-01	0.439026-01	0-25543E=D	0.319128-06	0.14618E-06	0.15533E-01	0,156306-01	0.294496-01	2-27931E-01 5-296236-01	0.43982E=0) 0.462515-02	0.401305-01	3_39320-56 3.349910-06	0-324475-Da 0-344455-0a
1.3 0.15003	E=01 0.32242E-00 E=01 0.34555E-00	D.276716-DI	0.35999C-06 0.38067E-06	0.462518-	01 0.307328- 01 0.38495F-	06 0.34991045-06 06 0.34991045-06	0.158030-01	6-10897E-01	0.314168-01	0.19826E-01	6.48520E-01	0-24123E-00	0.370496-06 0.384258-06	C. 310366-06 C. 312366-06	0.16930E-01	0.124775-01	3.314156-01 2.329876-01	0.328666-D1	0.506156-01	0.413.3E-01	0.38425E-06	0.362056-08
1.5 0.17493	E=01 0.35349E=04 E=01 0.37159E=04	0.3385967E-D1	D.34881E-06 D.605968-06	0.50615E-	01 0.40045E- 01_0.41170E-	06 0-38425131-06 06 0-39408161-06	0.163268-01	D.122040-01	0.330598-01	0.222268-01	0.52360E-01	0.326836-03	0-390086-Da D-41157F-06	D.193706-De D.205286-06	0.191996-01	0.20355E-01	0.338590-01 0.352566-01	0.35939E-01	0.542606-01	0-516176-01	0-411576-De	0.4167e1-06
1.7 0.19199	E-01 0.38969E-0/	0.306526-01	0.41995E-04	0.542808-	01 0.4250 FE- 01 0.43644E-	06 0.4302212E-06	0.193736-01	0.13504E-01	0.366328-01	0.24611E-01 0.25793E-01	D. 56200E-01	0-36224E-01	C.420228-06 D.440826-05	5.2168DE-06 0.220266-06	_0.19373E-03 0.20595E-03	0.21363E=01	0.38223E-D1	0-3846LE-01	0.582745-01	0.561026-01	D.440225-06	0.448932-02
L.9 0.20995 2.0 3.20945	C=01 G.41563E=De C=01 S.41835E=De	0.34075E-01	0.452885-04	. 0.98294E-	01 0.45394E	05 3.4608(761-06 05 3.66823021-06	0-2094+6-0L	0-147956-01	0.390958-01	0.26952E-01	0.60214E-01	0.397448-03	D-44823E-05 D-457638-06	0.23966E-06 0.25100E-06	0-21468E-01	0.22437F-01 0.23194E-01	D. 110156-01 D. 401436-01	0.402706-01 0.416465-01	0.619596-01	0.00149E-01	0.457636-06	0.478828-0A
2.1 0.21460	E-01 1.42620E-De	0.401+36-01	0.489312 -04 0.489316-05	0.61959E- 0.63819E-	01 0.47856E- 01 3.49194E-	06 0.4576258E-06 06 0.4767875E-06	0.22515E-01	0.160788-01	0.41688E-01	0.29339E=0L	0.638798-01	0.45245E-31 0.44969E-01	0.436390-06	0-26228E+05 0-27350E-06	0.225158-01	0.23935F-01	D.42761E-01	0.443156-01	0.638792-01	0-041318-31	0.48320E-D6	0.506631-06
2.3 0.22084	2-01.0.447016-D	6 0.427612-01 0.438886-01	0.504258-04	5.65973E- 5.67893E-	01 0.557446	06 5.4967218E=06	0.23562E-DI	0.173536-01	0.438086-01	0-316828-01	0.67893E-Dt	0.467216-01	0.496728-66	0.284672-06	0.244356-01	0.25163E-01	0-45379E-01	0.408768-01	0.696135-01	0.67915E-01	0.513196-08	0.532758+05
2.5 3.24435	2-01 0.46371E-0	6 0.455795-01 6 0.466006-01	0.522186-01	6 0.098130-	01 0.334138-	06 3-5201527E-06	0.24609E-01	0.18620E-01	0.46500E-01	0.34011E-01 0.35170E=01	0.71559E-D1	3.50195E-D	0.52015E-00 0.53029E-06	0.30662E-06 0.31781F-06	0.24609E-01	0.26736E-01	D.46600E-01	D.49343h-01	0.73129E-01	0. 11508E-01	0.530290-06	0.557222-08
2-7 0-29482 2-8 0-26180	E-DI D.4989DE-D	6 0.47298E-01 6 0.58803E-01	0.537421-07	6 0.768756-	gi p.565602	16 0.5443443E-06	0.26130F-01	0.198805-01	0.4806VE-01	0.36326E-01	0.74875E-01	0.5534340-D	0.54434E-06 0.55500F-06	0.32875E-06 0.35963E-06	0.26529E-0	0.28700F-01	0.406696-01	0.517248-01	0.766701-01	D. 751046-01	D. 154005-06	0.58027E-06
2.9 0.2652 3.0 0.2740	10-01 0.514596-0	6 0.5026 [-0]	0.57039E-00	6 0.76620E	UL D. 50829E	66 0.5147862-06	0.274026-01	0.211321-01 0.27272N-01	D-50964E=01	0.38629E-01 0.43943E-01	0.783656-01 0.938995-01	0-5705-2E-0 5-7393 sE-0	0.554348-Db	0.350456-06 0.455618-06	0.33:61E-0		0.909696-01	0.635752-01	3.938991-01	0.92956E-01	D. 562035-06	0.037592-05
4_0 0_33161 5_0 0_3857	18-01 0.626526-0 28-01 0.110108-0	6.0.12955E-01	Q-17312E-0	6 0.938991- 6 0.109045	00 D.76272E	06 0-7484784E-05	0.36572E-01	0-332418-01	0.72955E-01	0.60941E-01 0.71640E-01	0.123056 00	0.104316 D	0.74848E-06 Q.82676E-06	0, 535458-06 D. 63021E-06	0.385726-0	g.453026-01	0.82554E-01	0-825408-01	0.123056 00	D.12144E 00	0.026/65-06	5.83435E-06 5.834002-06
6-0 0.44151	E-01 0.795306-0	6 0.82554E+01	0.925525-04	6 0.135966	00 D.83957E-	06 0.09396215-06	D.49044E-0E	0.44660E-01	0.921536-01	0.0205+E-01 0.92197E-01	0.135968 00	0.12193E D	0.955376E-06	0.340176-06 0.375578-06	0.542808-0	0.4930%E-0L	0,10140: 00	0.997598-01	0.14923E 90	0.157+56 20	0.964036-06	0.95331E-06 5.10075E-05
8.0 0.54Z80 	10-01 0.945460-0	5 0.10140E DO	0.104376-0	5 0.161976	D0 0.10059E	05 0.1029280F-05	0.573416-06	0.35457E-D1 0.60652E-01	0.11040E 00 0.11921E 00	0.102086 0D	0.16197E 30 0.17453E 30	0.152048 D	D.10203E-05	D. 906636-06 D. 98358E-06	0.640542-0	0.63219E-DI	0.119215 00	0-116716 0D	C.17453E CD	0.172/9E St	0.108642-05	0.10592E-05 0.10669E-05
11.0 0.6824	E-01 0.10819E-0	5 0.11921E DL 5 0.12706E DC	0.117136-0	5 0.186058	00 0.10970E-	05 0.1134304E-05	0.682428-01	0.656946-01 0.70629E-0)	3.12706E 00 0.13526E 00	0.121:46 GD	0.18605E 00 p.19809E 00	0.160796 0	0.119338-05 0.118918-05	D. 10566E-D9 D. 1126DE-D9	0.731296-0	0.07476E-01	0.139246 00	0.13716E 0D	D.19809E 00	0.197/4E 50 0.20925E Do	0.110912-05	3.11568E=05 0.12051E=05
13-0_0-7711	8E-01 0.12454E-0	5 0.1992aE 00	0.1201/f=0	5 0_20764F	00 0.11536E	05 0-1230305E-05	0.77318E-01	0-001152-01	0.142595 00	0.13932E 00 0.14611E_00	0.20944E 00 0.22078E 00	0.208336 0 0.271695 0	0 0.123032-05 0 0.127498-05	0-125438-05	0.814565-0	0.796976-01	u_1+992E_00	0-147728 00	5.22078E 00	0.22114E DC	0.127495-05	2.124796-05
15.0 D.8185	0E-01 0.130340-0 0E-01 0.13460E-0	5 0.149926 DO	5 0.13523E-0	5 0.22018E	00 0.124415	05 0-1315802E-05	0.85870E-01	0.847022-01	0-15813E 00 D-16581E 00	0.15671E 00 0.16513E 00	0.23126E 00 0.24173E 00	0.23477E 0 0.24761E 0	0 0.135548-05	0.131366-05	0.90059E-0	0.879216-01	0.105010 05	5-162938 00	0.241736 00	0.24456E DO	0.135545-05 0.139865-05	0.13328E-05 0.13732C-05
11.0 0.9525	WE-OL 0.13937E=0 0E-0L_0.15413E=0	5 0-18581e 0	Q_Q_153786-0	5_2.25.3076.	00 0.1314ME	05 9-11986076-D	0.942482-01	0.935592-01	D.17349E 00 D.L8004E 00	0.17330E 00 0.18147E_00	0.25307E DO	3.240716 3 3.272006 0	0 0-15302E-05	0.142332-05	0.97913E-0	0.957e0E-01	0.18564E 03	0-17782E 3D	0.26354E D0	0.26753E DO	G-143025-05	0.141241-05
19-0 0-9791	3E=DL D.1.737E-D BE_DO.0.152656-D	5.0.10015C_0	0.151508-0	5 3.27402h	0D 0.13095E	05 0-1+70520E-0	0.10228E D	D.1020/6 00 D.10019F 00	0.10615E D	0 0.1894LE D0 0.1972LE D0	0.27402E 00 0.20397E 00	0.296758 0	0 0.14705E-05 0 0.150446-05	0.152221-05 0.156792=05	0.10629E 0	0 0.103438 00	0.195488 00	0.197416 DD	0.26397E D0	0.29019E 00	0.190++E-05	C. 148698-05 0. \$57238-05
21.0 0.1002	46 00 0.140346-0	5 0.20298E 0	D 0.15943E-0	5 6-293746	00 0.14095E	05 0.15350386-0	0.10976E 00	0.11023E 00 0.11420E 00	0.202988 D	0 0.20406E 00 0 0.21239E 00	0.29374E 00 0.30369E 00	0.30853E D	u 0.156356-05	0.165258-05	0.11302E 0	0 0.110930 00	0.209966 02	D.206728 00	D.3D349E DC	0.312266 00	0.156352-05	D.15566t-05 0.358052-06
23.0 0.1172	96 05 0, 1606.0Emp	5 0,214945 0	0 0.165879-0	5 D.112415	00 0.143675 30 0.145355	05 0-15869728-0 05 0-1616436E-0	0.127295 00 0.121305 00	0.11409E 00	0.216948 0	0 0.21979E 00 0 0.2270EE_00	5.312412 0C	0.331566 0 0.14283E_0	0 0.141648-D5	d. 13268E-05	0.12130E 0	0 0.114292 00	0.22375E 00	D. 220 765 00	0.32201E 00	0. 334 66 E 00 U. 34484E 00	0.10164E-05 6.104T9E-C5	0-107204-45
	1 00 0.1751L	5.0-23091E_0	0_0,17222E-0	5 0.331615	00 0.147035 00 0.140715	05 0-1647867F-01	0.125316 00	0.129196 00	0.23091E 00 0.23736E 01	0 0.23426E 00 0 0.24132E 00	0.331615 00 0.341215 00	0.35544LE 0	G-14719E-05	a. 519746-35	9.1289BE 0	0.125502 00	5.237368 00 0.244358 00	0 5-234366 50 D-24137F 00	0.341216 00	0.355530 00	C.L67[92-35 C.L7008F-35	D. 14E 32C-35 D. 171236-53
27.D 2.1324	7E 00 0.181065-0	5 0.24435E 0	0 0.17773E-0	5 0.331698 4 0.361200	00 0.151458 00 0.153138	-05 0.1700813E-05 05 0.1729552E-05	0.132416 00	0.136636 00	0.24435E 01 0.251334_0	0 0.24829E 00 0.25517E 00	0.35168E 03	0.30653E_0	0.0.172968-03	D. E11593E-05	0.13631E D	0 0.132585 00 0 0.13608F 02	0.251836 00 0.25779E 00	0.234040 00	0.36128E 00 0.37055E 00	0.376673 0:	0.17296E-GS	D. 37405E-C5 C. 376781 -C5
	af up 0.16105E+6	5 0+25779E.0	0 0.18324E-0	5 0.37053E	00 0.15+32E	-05 0-17522162-0	0.139985 00	0.14017E 00 0.14305E 02	0.25779E 0 0.26372E 0	0.260645_00	0,37461E 00	0.407456 0	D D-177126-05	0, 131518-29 D. 136568-D3	0.14364E D	0 0.133546 0D	0.26372E 30	0.261498 50	0.3796(€ 00 0.398818 00	0.397529 0.	0.17712E-05	0.179426-05
0.0.1994	SE 00 0.196298-0	0.216816.0	0.0.109596-0 c 0.194216-0	6.0.396818. 5 0.417318	00 0.15879k	-05 0.1015243E=0; -05 0.1055445E-0	0.15725E C	0.15717E 00	0-289726 C	0.29+65E 00	0.41731E 00	0.468175 0	0 0.105548-05	D. 20107E-06	D.15725E D	0 0.153120 00 0 0.159250 00	3.20972E 00 5.30194E 05	0.267604 00	0.417316 00 .0.435A4804	0.438392 0	C.105940-09 C.109940-09	0.143578-05
16-0 0-1654	at on p.210156-5	15 0,30194E 0	0 0.20110E-0	5 0.43546E	DO 0.166339E	-05 0.1941698E-0	0.16546E 00	0.163698 00	0.31410	0 0.307252 00	0.+54316 00	0.407425	0 0.1941 TE-01	D.204926-05	0.17226E 0	g g.13628E 00 g g.17273E 00	0.31+16E 00 0.32707E 00	0.32548E.DQ	0.454316 00 0.477985 US	0.416286 0	0-14417E-05 C-14E04E-05	0.117700-07
+0.0 0.1769	06 00 0.219+86-0	5 0.327076 0	0_0_235732-0 0_0_20947E-0	15 3.472986 15 2.491666	00 0.164046	-05 0.2025658E-D	3_0.17640E D	0.1825eC 0	0.33947E D	0 0.34369E 00	0.300100E.0	0.5254TE 0	0.202578-00	0.219126-05	0.192655 0	0 3.17909E 00	0.33947E DO	0 0.337806 00 00.349996 03	0.491665 00	0.51/51E 0	0.203058-05	0.206080-00
44.5 0.1926	0E 00 0.229856-0	5 0.36390E 0	0 0-212628-0 0 0-216762-0	15 G.510335 15 S.528836	00 0.1744.92	-05 0.20545268-0	0.192651 D	D.19440E 00	0-103405 0	0 0.367076.00	0.528315 0	0 0.54255E 0	0 0.209176-02	g, 22024E-05	0.19949E 0 0.2061ZE 0	0 0.19159E 00 0 0.19773E 00	D. 1639DE DO	0.362056 00	0.528316 00	0.J14416.0		0.715731-02
46.0 0.2063	25.05.0-23910E- 05 00 0.24462E-	14 D.37699E 0	D 22129E-0	15 D. 54664E	G0 0.178665 G0 0.16053E	-05 0.2190473E-0 -05 0.2165295E-0	5_0.21310E_0	0 0.20615; 00	0.369638.0	00.389888_90	0.564616 0	0 0,59084b 0 0 0.61674E 0	0.21996E-0	0-224395-05	0.21974E 0	0 0.203816 00 0 0.20983E.00	0.38903E D	0 0.305610 00 0 0.307536 00	0-565618 00	5.51174E 0	0.219965-05	0.220136-35
52.0 0.2193	16 00 0.25903E-	0,41329E 0	0.0.227596-0	05 0.585290 05 0.600740	20 0.163250	-05 0+22298938-0	0.226316_0	0.217546 0	0.413298.9	0 0.41275 00	0.400745 0	0_0,03449E	GQ_22299E-U3	0.227705-05 0.22920E-05	0.224371 0	0 0.215746 DD 9 0.221106.00	0.425605_0	0 0.420698 03	0.617326 0	Q. 05054E_0	0.2253 HE-55	0, 224 961-25
	45 00 0.2550105	05_0_425868_0 25_0_438788_0	0 0.53304E-0	05.0.61732E 05.0.63478E	00 0-13589E	-05 0-228a037E-0	0.235946_2	0.228755 00	G.43878E 0	0 0.53521E 00 0 0.55508E 00	0.634786 0	0 0.66963E	g g-22668E-09 g g-23112E-09	0.23050E-05 0.23167E-05		0 0.22756E CO	0.438782 00	0-4-3507 00	0.652276.00	0.015030.0	0.231128-05	0.229033-05
60.0 0.2420	41 00 0.26314E=	05 0.45099E 0	0 0.24314E-0	0.66968E	00 0.1887158	-05 0.73403032-1		0 0.230TTE 0	D.463391 0	p 0.45594E 00	0.685265 0	D. 704326 0	0 0.23575E-05	0.21213F-05		D 0.23915E D0 D 0.266876 D0	0.463342 00	0.466010 00	0.686766.0	0.720706 S	0.23575E-05	0.232555-05
66-0 0.2011	1E 00 0.209876-1	05_0_47413E_0 05 0.486776 0	0 0.252016-0	0-70337E	00 0.189348	-05 0-21766920-0	5 0.24337E_0	0 0.25004E 01	D.486776 0	D 0.47730E 0/	0.703375 0	D 0.755746 0	0 0.23769E-0	0.23530t-03	0.263378 0	0 0.250576 00 0 0.256226 00	0.486776 04	0_0.+ABZAE.0D	C. 72030E 31	0,15020E 0	0,23892E-05	0+235656-25
10.0 0.214	9E 00 0.27254Em	05 0.978278 9	0 0.257726-0	15 D.73600E	00 0.190110	-05 3-2403989E-0	5 0.27419E 0	0 0.26140c.0	0.521856 0	0 0.49652E 00 0.50907E 00	0.753116 0	0 0.789726	0 0.24940E-0	5 0+236020-D1	0.27995E 0	0 0.267446 00	0.521856.0	0.0.510275 00	0.75311E 0	0.791386 0 0.908876 0	0.24159E-05	0.230695-55 0.239926-05
74.0 0.295	19E DO 0.27522Em	05 0.53302E	0 0.26137E-C	15 0.749875	00 0.190246	-03 0-2430624E-0	5 0.285696 0 5 0.29130E 0	0_0+27207E_0	00.53302E 0	0 0.51958E 00 0 0.53006E 00	0.76987E 0 0.76900E 0	0 0.82348E	0 0.242766-0	5 D.237706-05	0.29130E 0	D D.278536 D3	0.54384E.0	0-51208E 00	0.78400E 0	0.826298.0	0.242765-05	0.24111E-D5
78.0 0.290	1E 00 0.27923E-	05 D.554676	0 0.26354E-C	05 0.800230	00 0.18718	-05 0.2433171E-0	0.29671E 0	0 0.28246E 0 0 0.28793E 0	0.55567E 0	0 0.54051E 00 0 0.55093E 00	0.81681E 0	0 0.85708E	0 0.243328-0	5 0.23857E-05	0,30194F 0	0 0.28454E DO	0.36531E D	0 0.553718 00	0.81631E 0	0 0.840936 0	0 0.24374E-05 0 0.24448E-05	0.244246-05
0.0 0.301 02.0 0.307	195 00 0.27954E=	95 0-57596E 0	DO 0.26513E-4	05 0-833748 05 0-833748	00 0.18795	-05 0-2444800E-0	5 0.30735E 0	0 0.293126 0 0 0.29641E 0	0.585618 0	0 0.55133E 0	0.85032E 0	0 0.87362E	0.24448E-0	5 0.23927E=0	0.31259E 0	0 0.305436 00	0.506018 0	0 0.575187 00	0.85032E 0	0 0.89536E 0 0.91259E 0	0 D.2458DE-D5	D.245156-25 D.24601k-05
86.0 D.318	006 QD D.28150E-	05 0.59778E	DD D. 26760E-1	05 0.005910	90 0.16829 00 0.18740	-05 0.2457980E-0	0.31800E 0	0 0.30364E 0	0.60025E	0 0.582065 0	0.8509tr 0 0.88261E 0	0 0.923696	0.24580E-0	5 0.239856-01	0.32306F	0 0.31125E DO	0.608755 D	0 0.596525 00 0 0.607145 00	0.85261E 0	D. 92960E 0	0 D.245606-05	0.240815-05
90.0 0.320	47E 00 D.20212E-	05 0.618726	00 0.26859E-	05 0-899191	00 0-18757	-05 0-2460954E-0	5 0.33441E 0	0 0.31419F 0 0 0.31930E 0	0.62919E	0.60272E 0	0.91577E 0	0.957156	0.24711E-D	5 0.24032E-01	0.33541E	0 0.322015 00	0.62919E D	0 0.62830E 00	0.932538 0	0 0.943686 0	0 0.24711E-05 0 0.24811E-05	0.246926-05
94-0 0.340	LAE DO 0.28533E	05 0-63984E	00 0.26909E-	05 0.932530	00 0-13813	-05 0-2481144E-0	5 0.34540E 0	G G.32450E 0 G G.32967E 0	0.639840 0 0.650148 0	0 0.62332E 0	0.942532 0	D 0.94034E	0 0.248278-0	0.24059E-01	0.34540E 0	0 0,332708 00	0.66014E 0	0 0.63884E 00 0 0.64936E 00	0.948946 0	0.10145E 0	D.24021E-05	0.250126-05
98.0 0.350	ALE DO 0.285426-	05 0.64061E 0	00 0.27059E-0	05 0.965346	00 0.15804	-05 0-2480155E-0	5 0.35011E 0	G 0.33488E D	0.550616 0 0.57108E	0 0.654148 0	0.90534E 0	0 0.102356	0.24917E-0	5 0.241008-01	0.35405E 0	0 0.343348 00	0.07108E 0	0.4508AF 00	0.98227E 0	0.107356 0	0.24917E-05	0.25187E-25
105-0 0-349	84E D0 0.2904LE- 23E D0 0.289135-	05 0.69569E	00 0.269682-0 275055-0 00	05 0-102596 05 0.106811	01 0.19173	-05 0.25066968-0	5 0.36984E 0	0.35299E 0	0.693695 0	0 0.70535E 0	0.104012 0	1 0-110510	0.25250E-D	5 0.24154E-01 5 0.24172E-01	0.382236 0	0 0.369756 00	0.72431E 0	0.717076 00 0.718021 00	0.10681E 0 0.11087E 0	0-115720	0.253646-05	0+25376E-05
115.0 0.396	196 00 0-292676-	05 D.75049E	00 0.276296-	05 D.11083	01 0.19195	-05 0.25363612-0	0.39619E C	D. STOREC	o or a stand of the	0.130401 0	U									1545-01		176-07
						ST	DEV - 0.0	22908-02	0.3	00571-01	0.2	68516-01	0.1	32896-06 570	OF Y - 0,1	11046-02	0-5	40145-02	p. »		0.23	

Figure D-5. Viscoelastic Analysis for Asphalt 67 at 39.2°F.

EQUATION OF BEST FIT, n=4

58. 187	15		s t 9 4 9 9		2 2 2 2	19 19 19	9999	9999		0000		~~~~						42 20							911091.0		
104 60 J65	104 80 3661	CALCULATED CP FUNCTO	0-159156-0 0-15926-0 0-179056-0	0-364936 0-36932 0-36932 0-304936 0-304936	0.320506-0 0.334316-0 0.351606-0 0.351606-0	1-349464 0-3409450 0-3409450 0-3409450 0-3409450	D. 481 418-55- D. 481 418- D. 473 935- 0. 438-248-	0.510206-0	0.55573E-0 0.55573E-0 0.56673E-0 0.56728E-0	0.53462E-0 0.63160E-0 0.90110E-0 0.96422E-0	0-107246-0 0-112766-0 0-112766-0	0.120545-0 0.120545-0 0.130736-0	0-1547761-0	0-150201-0	0-15555-0 0-158335-0 0-171135-0	0-179656-0	0.18850E-0 0.18850E-0 0.192850E-0	0-200685-0 0-201266-0 0-201645-0 0-210825-0	0.213796-0	0-224256-0	0-23025E-0	0.236936-0 0.238366-0 0.239706-0	0-240976-0 0-242166-0 0-253276-0	0-245316-0 0-245316-0 0-246246-0 0-247126-0	0.248716-0 0.248716-0 0.249446-0 0.250126-0	0-36446210 -36426210 -36426210 -346156210	
15C2 * 0.47302 15C3 * 0.43153	04EJT-0 × 1751	DBSERVED CP FUNCTION (BAAZD/SQCAL	90-302-0 90-0 90-302-0 90-302-0 90-302-0 90-302-0 90-302-0 90-302-0 90-302-0 90-302-0 90-300-0 90-300-0 90-0 90-0 90-0 90-0	0.248661-05 0.211245-05 0.281049-05	E 0.31950E-06 0.33912E-06 0.34991E-06 0.37049E-05	C 0.,384254-06 0.3945082-06 1.0.421572-06 0.420225-06 0.4426225-06	0.45823E-06 0.4575-06 0.47679E-06 0.48320E-06	0.520156-06 0.520156-06 0.520156-06	0-34634E-06 0.55484E-06 0.56484E-06	2 0.748485-06 0 0.82676E-06 1 0.83355-06	0-102934-05 0-102934-05 0-113336-05	0-127496-05	0-135548-05 0-139868-05 0-143026-05	0-153505-05	20-367/212-02 20-14/21-02 20-170036-05	0.175226-05 0.175226-05 0.177128-05	0 0.191526-05 0 0.195545-05 0 0.190505-05 0 0.194176-05	0.190991-02	0.21046-05	0.225186-05	0.235758-05	0.24306-05	0.243326-05	0.24580E-05	0-246106-05 0-246106-05 0.246116-05 0.246116-05	0.248026-05 0.249176-05 0.259676-05 0.252506-05 0.253442-05	
5 5	-	CALCIA ATED THETA 3 LEACI	0.104546-00 0.104546-00 0.14406-01 0.14406-01 0.246546-0	0-2916-0 0-322746-0 0-322746-0 0-345836-0	0.30983E-0 0.41102E-0 0.43180E-0 0.45271E-01	0.472319-0 0.492136-0 0.511696-0 0.511696-0 0.511016-0	0.559016-01 0.927704-01 0.606206-01	0.642616-0	0.730*36-01 0.730*36-01 0.748136-01	0.12177E 00 0.12177E 00 0.14514E 00 0.14555E 00	0.154146 00 0.174216 00 0.18661E 00 0.19879E 00	0.21077E 00 0.22257E 00 0.23425E 00	0.245796 00	0.312706 00	0.355538 00	0. 37650E 00 0. 38649E 00 0. 39720E 00	0.437056 90 0.437056 90 0.47706 90	0-5116-00 0-518456-00 0-518456-00	0.59244E 00	0-66012E 00 0-66012E 00	0, 720236 00	0. 77353E 00 0. 79115E 00 0. 80850E 00	0-82617E 00 0-94358E 00 0-86094E 80	0-878240 00 0-895505 00 0-912705 90	0-946475 00 0-964056 00 0-980380 00 0-998086 00	9-10151E 01 0-10742E 01 0-11502E 01 0-11502E 01	
07 DYNES/50	DB DYNES/SO	DASERVED THETA 3 LEAD1	0-11459-01 0-11459-01 0-21118-01 0-21118-01 0-21118-01 0-21118-01	0.329875-01 0.329875-01 0.373506-01 0.397946-01	0.413086-01 0.439826-01 0.462516-01 0.485206-03	0.523606-01 0.523606-01 0.542806-01 0.542806-01	0-602146-01 0-619596-01 0-638796-01 0-659736-01	0-73129E-01	0.76620E-01 0.76620E-01 0.78305E-01	0.109086 00 0.129086 00 0.135966 00 0.135966 00	0-1-1976 00 0.174536 00 0.174536 00 0.184056 00 0.194096 00	00 3021200	0.241735 00 0.253072 00 0.263545 00 0.264525 00	00 303050	0.341216 00	0.30128E 00 0.37053E 00 0.37951E 00	0.45431E 00 0.41731E 00 0.45546E 00 0.45431E 00	0.528315 00 0.519386 00 0.528315 00	0.564616 00 0.564616 00 0.583795 00	0.61732E 00 0.63476E 00 0.65223E 00	0.556266 00 0.556266 00 0.703376 00	0. 736486 00 0. 753118 00 0. 759318 00	0. 84000 00 0. 820236 00 0. 836016 00	0.65932E 00 0.65932E 00 0.68261E 00	0.89919E 00 0.92577E 00 0.93253E 00 0.94894E 00	0.945346 00 0.942376 00 0.102396 01 0.106816 01 0.10834 01	
***********	- 0.45001396	CALCULATED THETA 2 (RAD)	0.745455-02 0.745455-02 0.120375-01 0.130375-01 0.130375-01	0.226025-01 0.226025-01 0.227035-01	0.271886-01 0.266326-01 0.300466-01 0.314346-01	0.324902-01 0.354726-01 0.354726-01 0.354726-01	0.393536-01 0.406176-01 0.418696-01 0.411056-01	0-479302-01	0-51511E-01 0-51511E-01 0-51611E-01	0-127328-01 0-823092-01 0-915805-01 0-10041E 00	0-108945 00 0-117245 00 0-133285 00	0-14104E 00 0-140764 00 0-196344 00	0.14381E 90 0.17120E 00 0.17851E 00 0.18515E 00	0-20900E 90 0-20703E 00 0-21400E 00	0-241315 00	0-248016 00 0-254665 00 0-254665 00	0-274326 90 0-287216 00 0-292966 00 0-312526 90	0.337265 00	0.38527E 00 0.38527E 00 0.397D1E 00	0.420235 00 0.433695 00 0.4499093 00	0-505678.00	0.499086 00 0.510106 00 0.52107E 00	0-252005 00 0-5-1726 00	0-57528E 00 0-57528E 00 0-59670E 00	0.60736E 00 0.61800E 00 0.62061E 00 0.63913E 00	D64975E D4 066028E D0 068653E D0 012666 D0 071870E D0	
540 63 55	49 795	OBSERVED THETA 2 LEADL	0-10-375-35 0-02975-01 0-102975-01 0-123926-01 0-123926-01 0-123926-01 0-1229	0.207491-01 0.225155-01 0.231706-01	0.27053E-D1 0.28449E-01 0.29471E-01 0.114166-01	0.329876-01 0.35556E-01 0.35256E-01 0.36558E-01 0.36658E-01	0-29955E-01 0-401430-01 0-42868E-01 0-42861E-01	0.45379E-01 0.45379E-01 0.47296E-01	10-368424-0	00 1053555 0 0.8255555 0 10-321535 0 0.8255555 0	0.1192489 00 0.119246 00 0.127066 00 0.135266 00	0.142596 00 0.149928 00 0.158136 00	0-165816 00 0-175496 00 0-175496 00 0-100456 00	0-20298E 00 0-20996E 00 0-20996E 00 0-20996E 00	0-230916 00 0-237366 00 0-246326 00	0-251336 00 0-257795 00 0-263726 00	0.20972E 00 0.20972E 00 0.314108 00	0.33947E 00 0.33947E 00 0.35151E 00	0.587036 50 0.387036 50 0.40108E DD	0.425866 00 0.438786 00 0.450996 00	0.40677E 00 0.40677E 00	0, 933025 00 0, 933025 00	0.95467B 00 0.95467B 00 0.955815 00	0.597785 00	0-618725 00 0-629195 00 0-659045 00 0-659045 00	00 11000000000000000000000000000000000	
1,19718866 03	. 2364947E 00	CALGULATEO THETA 1 CRN01	0-1505-15-02 0-425126-02 0-594435-02 0-594435-02 0-78945-02 0-978946-02	0.11794-01 0.127106-01 0.135436-01	D.152396-01 D.16033E-01 D.14810E-01 A.17573E-01	0.18322E-01 0.19059E-01 0.19786E-01 0.23203E-01 0.23213E-01	0.2260E-01 0.22601E-01 0.2264E-01 0.2364E-01	0-252885-01	0-218495-01	10-36125470 10-36125470 10-36125470	0-59400E-01 0-63810E-01 0-68104E-01 0-72315E-01	0-75440E-01 0-80496E-01 0-84490E-01	0.085298-01 0.923176-01 0.951596-01 0.993576-01	0,115126 00 0,115126 00 0,115126 00 0,115126 00	0.121955 00 0.129556 00 0.129026 00	0.13251E 00 0.13597E 00 0.13941E 00	0.156206 00 0.159596 00 0.159596 00 0.159596 00	0-178786 00 0-18586 00 0-185066 00	0.203506 00 0.203536 00 0.215506 00	0-22143E 00 0-22730E 00 0-223314E 00	00 364650 00 01 264589 00 01 264076 00	0.261726 00 0.26734E 00 0.27293E 00	0.284026 00 0.289536 00	0.30593E 00	0.31677E 00 0.32216E 00 0.32754E 00 0.33290E 00	0. 338255 00 0. 35886 00 0. 370105 00 0. 370105 00	
TAU2 - 0 TAU3 - 0	5AU4 - 0	08568460 THETA ((8AD)	0.15708E-02 0.36652E-02 0.52360E-02 0.59813E-02 0.785590E-02	0-106216-01 0-122126-01 0-123926-01	0,143126-01 0,195336-01 0,158836-01 0,169306-01	0,174936-01 0,183266-01 0,191996-01 0,193736-01		10-35095-01	-20529E-01	-34572E-01 -59944E-01	10-325-11-01- 1-94054E-01	10-301-01	10-3626546-01 10-3621876-01	-10996 00	00 3742614 00 3848214 00 5162514	00 3199111	-15725E 00 -15725E 00 -15224E 00	192685 00 192685 00	21310E 00	23894E 00 24694E 00	263376 00	27419E 00 27935E 00 285892E 00	-296716 00 -301945 00	31254E 00 31800E 00	328476 00 334416 00 3464166 00 345406 00	35011E 00- 3503E 00 36984E 00	
2 09 POISES	6 09 P01565	ALCULATED	400006-38 4114269-09 41142616-09 1112416-09 1112416-09	1036746-06 1269446-06 126936-06	13139550-06 1335550-06 1355550-06			- 510125-00 - 521885-06	55600E-06	A 75945E-06 A 332606-06 A 90178E-06	102285-05 0.107695-05 0.112775-05	0.122156-05 0.12652E-05 0.130726-05	1,2305-05	0,152906-05 0,159366-05 0,159366-05	1.15542E-05	20-32592110	1192815-05	2052/1-25	-21925F-05	0, 224986-05		0.234376-05 0.234376-05	242165-05	0-345316-05 0-345246-05 0-345246-05	2.24794E-05 0 2.24871E-05 0 2.25012E-05 0	22201201000000000000000000000000000000	
0.4593222	0.1048032	OBSERVED C	0.000005-38 -0 1.731656-07 0 0.115515-06 0 0.115515-06 0 0.175410-00 0 0.177410-00 0 0.208385-06 0	2.27124E-06 0 2.28104E-06 0 2.28104E-06 0	0.31950E-06 0 0.339126-06 0 0.37049E-06 0	3, 38, 258-96 9, 3%606-06 0, 411578-06 0, 420228-06 0, 440828-06 0, 440828-06	0.451636-06 0.451636-06 0.47619E-06 0.47819E-06	0-513196-00	0-652025-06	0.74849E-06 0.82676E-06 0.89396E-06 0.99483E-06	0,102935-05	0.121546-05	0-134861-05	0-153506-05	0-141796-05 0-17008E-05	0.1752E-05 0	0-181545-05 0-180545-05 0-19040E-05 0-19417E-05	0.202576-05 0.205576-05	0-21451E-05	0.22518E-05 0.22860E-05 0.23112E-05	0.235756-05	0.241598-05 0.241598-05 0.241996E-05	0.243325-05	0.244918-05	0.24610F-05 0.24511E-05 0.24831E-05	20-3/2014 00 00 00 00 00 00 00 00 00 00 00 00 00	
H VISC	AISE	THETA 3	0.36299E-02 9.1653E-02 0.14653E-01 0.18570E-01 0.21873E-01	239765-01	0-369366-01 0-4104.16-01 10-491046-01 0.451476-01	0.471,575-01 1.491,425-01 511,035-01 1.511,035-01	1.56856E-01 0.58713E-01 0.40591E-01 0.42532E-01	1.61245E-01	10-11-10-10-01-01-01-01-01-01-01-01-01-0	-106755 00 -121305 00 -135205 00	. tel'itt 00 1.174235 00 3.186425 00 3.198795 00	00 34245 00 00 34245 00 00 234245 00	0.25716 00 0.257186 00 0.2548486 00 0.274676 00	0.30177E 00 0.31298E 00 0.32351E 00	0.34443E 00 0.34605E 00	0.37650E 00	0.437856 00 0.437856 00 0.437896 00	0.535776 00	0.592456 00	0.65613E 00 0.65613E 00 0.68427E 00	0.73005 00	00 1151700	0.843595 00 .860946 00	0. 812306 00 0.912705 00	0.944975 00 -954045 00 -995085 00 -995085 00	0.103205 01 0.103205 01 0.111535 01 0.115535 01	
05 DYNES/50 0	07 DYNES/Se	065EAVED (THETA 3 LRAD1	241056-02 10-25116-01 241356-01 241356-01 241356-01 241356-01 241356-01	239875-01 1373505-01	+13886-01 0 +439826-01 0 +452515-01 0	15428015E-01 154280E-01 154280E-01 156280E-01	10-362654	10-362181-1	10-36566-1	-10708E 00 -12305E 00 -123596E 00	-161977 00 -174535 00 -1745055 00	-231246 00 -231246 00	-241736 00 -25307E 00 -243546 00	1,29374E 00 1,30369E 00 1,3124.1E 00		-35420E 00 -		00 311882 00 01 210 228 315 00		0.63476E 00		77605 00 1.753116 00 1.753016 00	-800275 09 -81681E 09	1.850325 00 1.860916 00	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	10 345245 10 342276 10 342276 10 342276 10 34201 10 34001 10 34000 10 3400000000000000000000000000000000000	
0.48604366	actorest.d	44CULATED 19674 2 18403	26175E-02 10065E-02 10065E-02 110065E-01 110065E-01 15451E-01 15451E-01	226396-01 0	1211545-01 0 1285886-01 0 1285886-01 0 1285886-01 0 13815-01 0		.39321E-01 0 .40591E-01 0 .41847E-01 0	10-354625	10-32135-01 0 -514486-01 0	10-312416-01 0 1-1324306-01 0 1-1315216-01 0	-117256 00 0	14103E 00 0	11111111111111111111111111111111111111	220395 00 00 00 00 00 00 00 00 00 00 00 00 00	1.227766 00 1.239366 00 1.241316 00	1.2465E 00 0	0.20121E 00 0.20121E 00 0.21252E 00	00 304101 00 304101	00 31220E	1.42022E 00 1	00 300004-	-521077 09	253728 00 0	1.575286 00 1 0.586015 00 0	0.428505 00 0		
5 51 51		DBSERVED C THETA 2 ISADI	127453E-02 0 09413E-02 0 10297E-01 0 12392E-01 0 148354-01 0 148354-01 0	0 10-340522	279575-01 0 -294495-01 0 -294716-01 0 -294716-01 0	-3229676-01 0 -332596-01 0 -352566-91 0 -355566-91 0	- 190956-01 0 - 401436-01 0 - 418086-01 0	<pre>10-3006-01 10-30566-01 10-30566-01 10-30566-01 10-30566-01 10-30566-01 10-30566-01 10-30566-01 10-30566-01 10-30566-</pre>	5026666-01 0	- 729596-01 0 - 921536-01 0 - 921536-01 0	- 110486 00 0	00 3619511	113155 00 00 113155 00 0 183155 00 0	202906 00 20996E 00 21694E 00	00 316062*	251371 00 00	20972E 00 20972E 00 30194E 00	33257E 00 35151E 00		42504E 00 0		.51051E 00 .52165E 00 .53302E 00	55467E 00 56531E 00	597786 00 0			
2 VO STORESOL	13721526 02.5	THETA L THETA L THETA L	150546-02 0 399386-02 0 1590896-02 0 1590896-02 0 154936-02 0 874196-02 0 874196-02 0 987205-02 0	1358AE-01 0	15219E-01 0	0 10-305-001 0 19190306-01 0 191905-01 0 2017995-01 0 2017995-01 0	6 10-304642* 0 10-324242* 0 10-324642* 0 10-324812**	0 10-328252	0 10-300555		638185-01 0 638185-01 0 681136-01 0 723155-01 0	-76434E-01 C	947575-91 941527-91 941527-91 941527-91	-114146 00 0	12956 00 0	13515 00 0	15995 00 0	121276 00 0	2020536 00 0		25608E 00 0	-26172E 00 0	289535 00 0	305936 00 0	1,327566 00 0 1,327566 00 0 1,327566 00 0	2,352,355 00 5 2,356,076 00 6 1,370,096 00 0	
TAUX - 0.	TAU3 - 9.	DAS ERVED C THE CA L	157086-02 0 166952-02 0 523606-02 0 698135-02 0 785606-02 0 7850126-02 0	122175-01 0	153125-01 0 155335-01 0 154834-01 0 1548305-01 0	19125-01-0	0 10-348922	0 10-350992	27402E-01 0	.38572E-01 0 441572-01 0 49044E-01 0 54200E-01 0	59341E-01 0 04054E-01 0 6442E-01 0 644742E-01 0	81856E-01 0 81856E-01 0 85876E-01 0	91913555 01 0	0 00 345601	12531E 00 0 12898F 00 0 13247E 00 0	130115 00 0 139916 00 0	12226 00 0	192456 00 0	219746 00 0	232306 00 0 230945 00 0 245046 00 0	25761E 00 0 263376 00 0 263376 00 0	212595 00 0 245895 00 0	301945 00 0	323046 00 0	328476 00 0 334416 00 0 345406 00 0	300115 00 5 350055 00 5 365855 00 5 385235 00 0 396145 00 0	
		LINE NI	6 9 6 9 6 6 6 9 6 9 6 6 6 9 6 9 6 6		0000		9-12			000	12.0 0.	13-0 0			26.0 0.2	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.2	52-0 0-	0 0 0 0	1000	000	180.0 80.0 0 0 0 0	86-0 0	10000		

Figure D-5. Viscoelastic Analysis for Asphalt 67 at 39.2°F (Cont'd.).

-133-

.

and a second provide the second provide the second provide the second provide the second provides of the second

		SUMMARY S	INEET FIIR VE	SCOELASTIC AN	ALYS IS			-							
	ASPHALT TEST TEM	ND- 71 P- 39-2 F.	L C	0ADS- 800 140 TS- 33826.	00 2000 GM 57110. 040	29. 01.5958		TAUL	0.1562522E 04	SEC	2_0,5979629	<u>E.06.01465/50</u>	CH V1	501 - 0.9343)	THE DO POISES
TIRE	<u>тнета (</u>	CE 1 RAZOZSOCK	KAD	65 2 R4/D/SQCN		CF 3 MAZOZSQCH	AVE OF RA7D/SOCH	THETA 1	THETA L IRADJ	DBSERVED THETA 2 (RAD)	CALCULATED THETA 2 (RAD)	DESERVED THETA) (RAD)	CALCULATED THÉTA 3 IRAD)	CP FUNCTION (AA/D/SQCA)	CALCULATED CP FUNCTION CRAFO/SDCH1
0-0	P-174535-02	-0.0000E-W	0.174536-0	2-0.00000E-18	0.174538-0	-0.00000E-3/	-0.00000006-38	0.17453E-02 0.19194E-02	0.182596-01	0.174538-02 50-310642-0	0.301745-01 0.308165-01	0-17453E-02 0-64577E-02	0.443922-01	-0.000008-38 0.25387E-07	-0.05000F-30 0.640946-06
0.2	0.76190E-02	0.157076-0	7 0.488646-0	12 0.453548-07	0.155716-0	0.623926-0	0.5510438E-07	0.26180E-02 6.34907E-02	0.186468-01	0.52360E-02	0.320955-01	6.10123E-01	0.4745nE-01	0.551644-07	0.191555-07
	6. 34907E-02	0,31519E-0	7 0.68058E-0	2 0.70601E-07	0.13090E-0	1 D. 953135-0	0.4534945F-07 0.7431077E-07	0.34907E-02	0.194170-01	0.68068E-02 0.71999E-02	0.333496-01	0.130905-01	0.494896-01	0.703118-07	0.315026-07
0.0	0.52360E-02	0.729276-0	7 0.83776-0	07 0.8710AE-07	0.148351-0	0.129936-0	6 0.9375042E-07 6 0.9561977E-07	0.52360E-02 0.52360E-02	0.20184E-D1 0.20567E-01	0.83776E-02 .92-310579.0	0.340052-01	0,160576-01	0.51513F-DI	0_95420E=07	0.443535+07
0.0	0.525602-02	0,856365-9	7 0.977384-0	1 0.101746-94	0.134586-0	L 0.15077E-94	0.1194797E-06	0.61087E-02 Q.65577E-02	0.20948E-0L 0.21329E-01	0_977386-02 0_10472E-01	0.352691-01	0.19199E-QL	0.535306-01	0.12968F-04	0.55808F-07
	0.496136-92	0.105355-0	0.0.111706-0	1_0.114756=06	0.20595E=0 0.218L7E=0	0.17539E-0	5 0.1202386E-06 5 0.1339640E-06	0.69813E-02 0.69813E-02	0.217096-01	d.11170E-01 d.12043E-01	0.371575-01	0.218176-01	0.55514F=D	0-133968-06	0.011685-07
	0.785405-02	0.12005F-0	0.123925-0	01 0.12849E-06	0.228648-0	1 0.132085-0 1 0.195066-0	6 0.1435405E-D6 6 0.159269DE-D6	0.78540E-02 0.07267E-02	0.224676-01	0.139395-01	0.337832-01	D_24436E-DL	0.575398-01	0.15577F-0.5	0.814335-07
	0-872676-02	0-13576F-0	6 D. 13963E-	01 0.158745-06	0.255316-0	1 0.21046E-0	6 0.16264956-06 6 0.16497148-06	0.87267E-02 0.87267E-02	0-23222E=01 0-23598E=01	0-13963E=0L 3-14001E=0L	0.396555-01	0.267046-01	0.595376-0	0.144978-05	0.93634F-07
1.0	0-890125-02	0.130636-0	6 D.14533E-	01 0-162425-04	0.281006-0	1 0.2213DE-D 1 0.24423E-D	6 0.17210 26-06 6 0.18446416-06	0+89012E-02 0+99484E-02	0.23973E=01 0.24346E=01	0.15533E-01 0.157086-01	0.402762-01	9.29671E-01	0.51517E-D	0.134465-04	D. 10568F-06
1.7	0.30472E-01	0.156738E-D	6 D.165E1	Of D. 172878-06	0.305436-0	1 0-23884E-0	6.0.1929644E-06 6.0.1952863E-06	0.10472E-01 0.10472E-03	0.24721E=01 0.250946=01	0.16581E-01 0.17279E=01	0,421325-01	0.30543L-Cl 0.314366-01	0.525036-0	g-195795-06	D. 117675-96
2.9	0.10472E-01 0.10994E-01	0.18214E=0	6 0.17493E-	01 n.17850E-06	C. 37987E-0	1 0.25637E-0	6 0.2075016E-05	0.10996E-01	0-25464E=01 0-25838E=03	0-17453E=01 0-18675E=01	0.427485-01	0.32987E-0L 0.34034E-0L	0.454176-0	0.211995-04	0.129561-16
2.1	0.116948-01	0.189320-0	6 0.191796-	01 0.149405-04	5-350AL6-0	0.23976E=0	6 0.2174272E-08	0.11694E-01 0.12217E-01	0.26208E-02 0.26578E-01	0.19199E-01 0.19548E-01	0.439768-01	0.35081E-01 0.364275-01	D.48443E-0	0.22+956-06	0.1-137t-06
2.3	0.12217E-01	0.14356E-0	6 0.20420E-	01 D. 71114E-04	0.375255-0	1 0.25124e-D	5 0.27898172-05 6 0.28888456-06	0.12217E-01 0.13090E-01	0-269576-D1 0-273166-D1	0.204285-01	0.451995-01	0.37525E-01	0.68403E-0 D.69373E-0	0.228962-06	_0.1530AF_06
2.5	0.13090E-0 0.13439E-0	0.214545-0	6 0.21118E	01 0.213715-04	D. 399686-0	0.30485E-0	6 0.2443598E-06 6 0.25307086-06	0.13439E~01 0.13963E-01	0-27683E-01 0-28050E-01	0-21110E-01 0-22166E-01	0.4702-01	0.39968E-01 0.40E416-01	0.113756-9	D.253986-06	0.1547CF-06
2.7	0.139636-0	0.219935-0	6_0.22h898=	01 0.231945-04	0.414841-1	0.314135-0	6 3.25587446-06 6 0.2610700E-06	0.13963E-01 0.14312E-01	0-20416E-01 0-28782E-01	0-226896-01 0-23038E-01	0.482348-01	0.41EBBE-01 0.43284E-01	D. 722458-0 D. 73265E-0	0.255076-06	C. 11624E-06
2.5	D.14312E-0	1 0.235A4E-0	6 0.23911E	01 0.24330E-0	6 0.44157E-0	0.33159E-0	6 9-2701763E-46	0.14939E-01 0.19192E-01	0-2914eE=DE 0-32752E=03	0.23911E-01 0.29496E-01	0.488376-01 0.548016-01	0.441576-01	D.34237E-0 D.338926-0	D.334458-04	d.258118-06
15.0	0.191990-0 0_218176-0	1 0.314148-0 1 0.343148-0	6 0.34737E	01 0.536275-0	6 0.64577F-0	0.459175-0	6 0.3789452E-26	0.21017E-DE	0.36286E-01 0.39751E-01	0.34732E-01	0.606432-01	0.645176-01 0.740026-01	D.931906-0	D D.42803E-De	0.34414F-06
6.0	0.25307E-D	1 0.39369E-0	0. 391442-	01 0.401765-0	6 0.83427E-1	D. 1000000-0	16 3.47515L3C-De	0.26796E-01	0.43150E-01 0.46485E-01	0.44331E-01 0.49044E-01	0.71984E-01 0.77491E-01	0.83427E-01	D.11146E 0 D.12035E 0	0 0.47415E-06 0 0.50646E-06	0.467324-06
8.0	0.31416E-D	1 0.47358E-0 1 0.926336-6	06 0.0000000000000000000000000000000000	0-395974.0 10-	6 G.LOOULE	0 0.049951-0	6 0-551#564F-0	0.349078-01	0.49799E-51 0.52976E-01	0.53731E-01	0.82894E=01 0.86198E=01	0.10001E 00	0.1293DE 0 0.3377CE 0	0 0.55106E-06 0 J.525556-06	0.533251-00
10.0	0.37525E-0	1 0.553280-0	04 0.586431	01 0.544715-0	o 0.11641E	10 0.729755-0	6 3-6107321E-00	D-401436-08	0.56132E-01	0.03181E=01	0.934566-01	0.116418 00	D-14613E 0 D-15448E 0	0 0.61823E-06 0 0.65078E-06	0.576161-06
12.4	0 0.436730-0 0 0.46251E-0	1 0.612980-0	06 D.680686 06 D.774516	-01 0.582011-0 -05 0.61014E-0	5 0-12342E	0 0.79502E-1	0 3.6683603E-00	0.462515-01	Q-62285E-01	0.724318-01	0.103558 00	0.13160E 00	0.14266E 0 0.17073E 0	D D.68336E-D6 0 0.715176-06	0.657202-06 0.695445-06
14.	0 0.48867E-0 0 0.52360E-0	1 0.68638E-0	06 0.16795E 05 0.81631E-	-01 0.63026E-0 -01 0.635565-0	6 0-138580 6 0-146268	09 0.854036-1	0.756-1136-00	0.523608-01	0.652578-01	0.81681E-01	0,11335E 00	0.133245 00	D.17867E 0 D.18653E 0	0 0.15641E-06 2 C.180175-06	0.752241-06
16-	0 0.54978E-0	1 0.76657E-	06 0.85521E- 06 0.90408E-	-01 0.69452E-0 -01 0.78181E-9	6 D.153246 6 D.160576	0D 0.87941L-1	04 0.8026222E-0	0.567236-01	0.14000E-DI	0.904088=01	0-12283E 00	0.16057E 00 0.16738E 00	0.19421E 0 0.20112F 0	0 0.902926-00 0 0.826716-00	0.801746-00
18.	0 0.593418-0	1 0.79468E-	06 0.94622E- 06 0.98611E-	-01 0.75303E-0 -01 0.77890E-0	6 0.167382 6 0.17418E	00 0.932210-0 00 0.95550E-0	06 3.8606065F-0	0.428326-01	0.795906-D1	0.936216-01	0.13202E 00	0.17418F 00	0.20932E 0	D 0.36061E-0/ D D.88147E-00	0.800100-06
20.	0 0.654502-0	0.87437E-	06 0.10297E 06 0.10681F	DO 0.82594E-0	6 D.181175	00 0.98086E-	05 0.9111760E-0	0.660665-01	10-991048-0	0.105015 00	0.1+0946 00	0.193915 03	0.224036 0 0.231246 0	D D.911386-D0 D D.935386-D0	0.92570L-06 0.953935-06
22.	D D.706861-0	0.928275-	06 0.11(352 06 0.115195	DO 0.85717E-0	6 D.193916 6 D.200716	00 0.101/0E-0 00 0.10403E-0	15 0.4341606E-0	0.73104E-01	6-90299E-01	0.11519E 00	0.149600 00	0.200716 00	D.238AfE 0	D D.95722L-00 D D.95722L-00	0.95089a-De
24.	0.759225-0	0,962172-	06 0-119036	03 0.91710E-0	6 0.207526 6 0.21328F	00 0.106365- 00 0.101446-	02 3*10005r9=-0	0.785408-01	0.95441E-D1	0.12305E 00	0.15404E 00	0.21328E 00	D.75736E 0	D 0.10002E-05	C.153201-09 0.105611-05
26.	6 0.81158E-0	0.10361E-	05 0.12736E 05 0.13090E	00 0.95001E-0 00 0.95807E-0	06 0.219918 0 0.22602E	00 0.1095eE- 00 0.1115eE-	05 3.10439D36-C	D.831765-01	1 0.10D456 D0	0.13090E 00	0-16625E 00	0.226022 00	0-26604E 0	C 2.304396-01	0.107935-05 0.11017:-05
28.	0 0-863944-0	0.10900E-	05 D.13474E	00 0.977036-0	0.232L3E	00 0.112568- 00 0.114285-	05 0.1064197E-0 05 0.1067222E-0	0.090120-0	0-105336 00	0.138936 00	0.17427E DO	0.738418 00	D.279428 0	D C_10A72E-0	0-11232(*09
30	0 0.91630E-0	01 0.11439E-	05 0-14294E 05 0-19027E	00 0.105595-0	05 0.244528 05 0.256748	DD D.11578E- DD D.118765-	05 3.1109585F-0 05 3.11670678-0	0.968666-0	L 0-112496 00	0.150278 00	0.165966 00	0.256746 00	2.29040E D	C 2.114716-C	0.110296-05
34-	0 0.10123E	0 0.12259E-	05 0.157782 05 0.105635	00 0.10706E-0	15 0.268438 15 0.279436	00 0.12113E- 00 0.12267E-	05.0.11/0901E-0 05.0.1212741E-0	5 0.10647E D	D-12167E DQ	0.16563E 00	0.200966 00	0.27943E 00	0.324255 0	0 C-121216-0	U-12526E-05
39.	0 0.111168	00 0.131426-	05 0-11279E	00 0.118058-0 00 0.118935-0	15 0.290776 15 0.301776	00 0.12463E- 00 0.1261/6-	05_0-1270849E-0	5 D.11606E D	0 e-130528 00	0.179948 60	0.21540E 00	0.301776 03	6.3486TE 0	5 5.12709E-0	0.131245-05
42-	0 0.12043E	00 0.13899E-	05 0.13E32E	00 0.123948-0	0.512416 25_0.322896.	00 0.12727E-	05_0.13057322-0 05_0.1322751E_0	5 D.12474E D	C D.134016 DO	0.195488 01	0 0.229306 00	0.322695 00	0-37239E 0	10 0.13227C-0	0.130360-05
46.	0 0.129156	00 0.14461E-	05 0.20263E	00 0.129695-0 60 0.13226E-0	15 0.333530 15 0.344166	00 0.12934E- 00 0.13046E-	05 0.1365463E-0 05 0.1367126E-0	5 0.133526 D	G 0.147396 DC	0.209616 0	D D.2429DE DO	0.344185 00	D-3954HE C	00 L-13671E-0	0.142726-05
50.	0 0-157860	06 0.150284-	01 0.21477E	00 0.135198-0	05 0.3543DE	00 0.13096E- 00 0.13291E-	09 D.133779DE-0 D3 D.1337643E-0	5 0.14224C 0	0 D-155496 DC	0.21502E 0	D 0.25508E 00	0.36530F 00	D.41605E 0	D 0.135998-0	0-144536=05 0-14621E=05
	0 0.146616	00 0.15585E-	05 0.230730	00 0.14027E-0	05 0.37577E	00 0.13342E- 00 0.134LH-	05_0.1451008E-0	0.19697E 0	0 0-16341E D	0-237546 0	0 0.260958 00	0.386070 00	D.44Dlaf	10 n.145(1)-0	U.14/761-05
	D 0.15533E	00 0.15147E-	05 0.244356	00 0.14480E-0	05 G.396366 05 J.406566	00 0.134845-	05 0.1470508E-0	5 0.155346 D	0 0.17118E D	0.251338 0	0 0.26156E 00	0.40566E 03	0-401#92 0	00 0.144210-0	5 0.15053C=05 5 0.15177V=05
	0 0.16319E	00 0.184518-	-05 0.258318 -05 0.26424E	DD 0.15967E-	05 D.417136 05 D.427616	00 0.13647E- 00 0.13739E-	05 0.1503057E-0 05 0.1517935E-0	5 0.16755E 0	G 0.176816 D	0.764746 0	6 D.293956 DC	0.427616 00	0.483/92	00 =-15179E=0	0.15791E-05
66	0 0.17104E	00 0.16755E-	-05 0.27105E	DD 0.15294E-0	05 0.431730	00 0.13794E-	05 0-1527923E-0 05 0-1560076E-0	0.171046 D	0 0.182986 D	0.277686 0	D 0.30414E 00	0.448205 00	6-504+1E	00 0-15469E=0	0-15-95t-95 0-15586F-05
70.	0 0.179776	GD 0.173176-	-05 0.29327E	00 0.15502E-	05 D.45885E	00 0-13994E- 00 0-14905E-	05 0.1560410E-0	0.179775 0	0 0-193746 D	0.289556 0	D D. 31817E DC	0.469141 00	0.575/87	0-3080110 0C	5 0.15670L-05 5 0.15748F-05
74	0 0.186758	00 0.17363E-	-05 0.295318	00 0.15680E-	05 0.47192% 05 0.488876	00 0-14073E- 00 0.14103E-	05 3.1570524E-0	0,100795_0	0 0-20107E D	0.30589E 0	0 D. 33005E D	0.48887E 00	0.545946	0 0-15013E-0	0.158206-05
	D D.195484	00 0.179258-	05 0.106656	00 0.19735E-	05 0.49914E 05 0.50964E	00 0.14874E- 00 0.14256E-	05 3.15944556-0	15 0.19348E D	0 0.20633E D	0.31259E 0	D 0.34182E 04	0 0.509548 00	0.508-25	00 0-1-007E-0	5 0.15999E-35
82	0 0.20246E	00 D.17971E	-05 0.318905	00 0.15791E-	05 D-52011E	00 0.143576-	-05 0.1603757E-	15 0.20246E 0	G 6.21194E D	0 0.31800E 0 0 0.32411E 0	0 0.3534766E 0	0 0.530231 0	0.506/56	00 0.160991-0	60-100590-05
66	0 0.20944E	00 D.150175	05 0.130048	DO D.15968E-	05 0.539568	00 0.14375E- 00 0.14446E-	05 0.1611994E-1	0.209446.0 0.212436.0	0 0.2226AE 0	0.33503E 0	0 D.35504E D	0 0.54995E 00	0.608456	00 0.161950-0	5 0.16154t-05
90	.0 D.21642	00 0.180431	-05 0.34174	00 0.16005E-	05 0.559388 05 0.568948	00 0.14413E	-05 0.1618686E-	0.321662E.0	0_0.22978E D	0.34174E 0	D 0.37653E 0	0 0.56898E 0	0.627038	00 0.163770-0	5 0.102351-05
- 94	.0 0.225155	00 0.186756	-05 0.35271	00 0.16110E-	05 0.57840E	00 D.14368E	-05 0-10307512-0 -05 3-1637204E-0	15 0.22615E 0	0 0.23684E 0	0 0.35832E 0	0 0.35796E 0	0 0.58810E 0	0.0471.26	00 0.103728-0	5 0.103041-05
- 96	-0 0-232136	DG 0.136716	-05 D.36425	E 00 0.16165E-	05 0.59830E	00 0.14427E	-05 0.16420932-	15 0.23213E 0	G D.24035E 0 D.243666 D	0 0.36425E 0	0 0.39933E 0	0 0.407554 0	0.666/25	00 0.164258-0	5 0.10364t-05 5 0.10577c-05
	-0 0.24435E	00 0.187525	-05 0.36397	E 00 0-16739E-	05 0.631816	00 0.14374E	05 0.1043499E- 05 J.167-889E-	15 0.24435E 0 15 0.25395E 0	10 D.201326 D	0 0.39968E 0	0 0.41347E 0	0 0.651996 0	0.716196	DO 0.167498-0	5 0.144795-05
-115	0.26354E	00 0.193835	-05 0.41364	CD 0. 146076	05 D.680686	00 0.154186	-05 9.1680244E- -05 9.1699204E-	0.263546 0	05 D.26994E 0 00 D.27864E D	0 0.41364E 0 0 0.43022E 0	D 0.45158E 0	0 0.705116 0	0.765956	D0 0.169924-0	5 D. 165574-05
120	-0 0.27227E	00 0.19498E	-05 0.44680	E 00 0.17586E-	05 0.729596	00 0.144615	-05 3.1710164E-	0.281006 C	0.20720E D	0 0.44680E 0	0 0.469526 0	0 0.729556 0	0.814308	00 0.172184-0	5 0.146105-05
- 135	0 0.29671E	00 0.19595E	-05 0.476-8	E 00 0.17954E	05 3.778428	00 0.143058	-05 0.1718510E-	05 0+296716 0 09 0+305438 0	0. 304496 D	0 0.+7648E 0 0 0.+8867E 0	D 0.49734E 0	0 0.77842E D	0.843%LE	00 0.170516-0	5 0.16646E-03
140	.0 0.305436	00 0.186966	-05 0.50178	6 00 0.175566	05 0.025540	06 0-143408	-05 3.16854668-	0.312418 0	0.321695.0	d 0,40178E 9	0_0.52508E_0	O G.AZYDAE O	a galarate	0	
							51	0 DEV + 0.1	11116-01	0.2	10-3116-01	0.4	45405-01	0.4	95496-07

Figure D-6. Viscoelastic Analysis for Asphalt 71 at 39.2°F.

ŝ Ē BEST EQUATION OF

d L

FIT,	
BEST	
Ч	
EQUATION	

AISES - 0'1011040E 10 - 013E

H2 05/53440 01 04465/20 CH 63 - 043131336E US DYNES/30 CM

- 73

TAU3 - 0-11091216 02 560 32084861-0 - 2041

> 3-6101113E 09 POLSES-CP FUNCTION CA FUNCTION CP FUNCTION CA FUNCTION IRA/O/SOCM1...(A+/D/SQCR1.

> > THETA 3

01568460 CALCULATED THETA 2 THETA 2

OBSERVED CALCULATED THETA 1 THETA 1 CRAD1 CRAD1 TAU2 -

- INH-

OBSERVED THETA 3 (RAD)

39.2°F (Cont'd.). ۵ ۲ Viscoelastic Analysis for Asphalt 71 Figure D-6.

- 9411 BE-08

1657*

- VER - ED

Figure D-7. Viscoelastic Analysis for Asphalt 72 at 39.2°F.

136-

DATA SHEET

EQUATION OF BEST FIT n=1

EQUATION OF BEST FIT, n=4

									<u>1801 -</u>	0.25051756 04	SEC.	it = 0.7150541	E D& CYNES/SC	CH VE	SEL - 0.17413	Saging 10 Motzes
	TAULS	\$-2282571E_0	5EC 01	- 0.866044	E OG DYNES/SC	с м v .	<u>1919</u>	HAZE LA POLISES	YAU2 ×	0.61343658 03	3 566 (2 = 0.2097 0 40	E CT DTHESTSU	-CH	22 - 21234	63: 10 PC(5:5
	TAU2 -	0.3563419E 0	SEC G2	• 0-305643	E OT OYNESTSQ	. เห ซา	5C2 = 0.1089)	THE TO POISES	T403 +	C.91441358 C	2 580 0	3 = 0.4468424	S OT DYNES/SO	.ce. vi	563 × 0.00976	472 OV POISES
	TAUN .	0.28900986 02	SEC 63	= D.7687294	E DT DYNES/SG	ca vi	SC3 - 0.20674	SAE ug putses	T404 >	0.75408516 31	1 SPC 0	· · 0.1094402	E DO DYNES/SQ	CM V!		iz se sa motses
TIRE. (AIR)	DESERVED THETA L LRADI	CALCULATED THETA 1 (RAD)	OBSERVED THETA 2 (RAD)	CALCULATED THET# 2 (RAC)	OBSERVED THETA 3 IRDDS	GALGULATED THE1A 3 TRAD	DATENANED CP FUNCTION TRAFUZSUCAT	CALCULATED CP FUNCTION TRA/S/SOCHI	UNSERVED THEFA L IRADI	CALCULATED THETA 1 (RAD1	COSEAVED THETA 2 18401	CALCULATED THETA 2 (RAD)	09568460 76674 3 (9401	CALCULATED THETA 3 TRADI	DBSERVED CP FUNCTION (RA/0/SQCM)	CALCULA(ED LP FUSCTION 144/0/SPLM3
	0.09513E-02	0.156426-02	0.174532-02 0.52340E=02	0.28250E-02 0.52175E+02	0.349076-62	0.400/RE+02	-0. -0.516765-52	*0. D. 31+035-07	0.698135-03	0-154428-02	0-114536-03	0-202508-02	0.349076-02	0.40093E-02	-0.	-0.
0.2	0.331610-02	0.40504E-02 0.50805E-02	0.498130-02 0.872676-02	C-729U36-02 0-91205E-02	0.120438-Cl	0.10475E-01 0.10132E-01	0.796276-07 5.957486-07	0.91349E-07	0.38397E-02	0-456788-02	0.69818E-02	0.811005-02	0.120438-01 0.139631-01	0.114288-01	0.794276-07	0.773176-07 0.102121-07
0.5	0.50615E-C2 0.52360E-62	0.599102-02	D.104726-01 C.116686-01	0.10757E-01 0.12224E-01	0.16057E-01 0.17977E-01	0.155016-01	0-121410-06 0-13368F-06	0.11377E-06 0.139420-06	0-506152-02	0-01532E-02 0-03364E-02	0.10572E-0 0.11660E=0	0-12269E-01	C.16D57E-01 0.17977E-01	0.159110-01 0.1770-01	0.12191±-Dá 0.13366±-06	0.114756-06 0.134200-06
0.7	0-59342E=62 0-66323E=02	0-75598E=02 0-82493E=02	C-104222-01 C-134635-01	0-11559E-01 0-14789E-01	0-21642E-01 0-21642E-01	0.19544E-01 0.21347E-01	0.131956-06 0.163296-06	0.150852-05	0.593415-02	0.86570E-02	0.106216-01	D-14513E-01	0.148975-01	C-193 0E-01 C+210C/E-01	0-103292-00	0.146415-06 0.105015-06
0.9	0.750+95-02	0.94451E-02 0.10067E+01	D-160575-01 C-174532-01	0.17007E-01 0.18025E-01	0.24784E-01	0.256125-01	a, 18544E-26 2,20305E-06	0.194606-06 0.20009c-06	0.75049E-02 0.83776E-02	0.92756E-02 0.98430E-02	C.15057E-0	C-16621E-31	D.24784E-01 D.265296-01	D.2410-1E-01	0.135442-06 0.203669-06	0-150925-06 0-150925-06
1.2	0-872676-02	0.1041+E-01 0.11140t-01	D.18675E-D1 D.193732-D1	0.199976-D1 0.1993CE-D1	0.279256-01	0.276u2E-01 0.289ko±-01	0.71414F-DA 0.77234E-C6	0.21693E-08	0.#7267E-02 0_90757E-02	0-103996-01 3-239416-01	0.18675E-0 0.15373E-0	0.1860aE-DI 0.19571E-DI	0.27925E-01 0.294966-01	0.27044E-01 C.20475E-01	5.21414E-06 3.22234E-06	G.310249-06 J.2/162e-D6
1-3	0.959635-02	0.11448E-01 0.12142E-01	C.207496-03 C.21293C-D1	0.21708E-D1	0.308026-01	0.303/46-01	0.24609E-06	0.741276-06	0.959935-02	0.114/3E-01 C.11595E-01	C.20769E→0 C.21293E→0	C-205146-CL C-214438-31	0.30692E-01 0.31940E-01	0.29679E-01 0.31244E-01	0.23560E-U6 0.24608E-06	2.232722-0a 2.242742-0a
	0.108218-01	0.130958-01	C-23562E-01	0.233996-01	0.349076-01	0.341425-01	0.263178-56	0.200426-06	0.104724-01 0.108214-01	2.13010F-01	0.235626-0	D.23744E-D1	0.34987E~01	0.3392/E-01	0-253291-06	5.252832-06 0.262786-05
1.0	0-12217E-01	0.1401+E-01 0.14044E-01	0.253C7E-D1 C.26180E+D1	0.250276-01	0.3/176E-01 0.38397E-01	0.3651-9E-01 0.37754E-01	0.285221-06	0.28255c-06	0.122176-01	0.13590E-01	D.25307E-01	D. 249846-D1	0.37176E-CL	0.365U7E-51 0.377708-01	D.28522E-06	0.231812-06 E.290915-06
2.0	0.12392E-01 0.12915E-01	C.14937E-01 C.19346E-01	3.27576(-D) 6.27925(-D)	0.26609E-01 0.27386E-01	0.39908E=01 0.41015E=01	0.38930E-01 0.40091E-01	6-29983E-00 1-30575E-06	0+306035+06	0.129922-01	0-14940E=01 0-15405E=01	C-27576E=01 C-27525E=01	D.2000RE=01 D.27491E=01	0.39966E-01 0-41015E-01	0.35014E-01 0.40240E-01	0.29983E-06 0.30575E-05	0.294906-05
2.3	0.13614E-01 D.13903E-01	0.157815-01 0.162116-01	C.291476-DL C.295316-C1	0.281550-01	0.420628-01	0.412408-01	0.31646E-96 0.32567E-06	0-31443t-06 D-322302-06	0.136146-01 0.139636-01	0.158638-01 0.16315E-01	C.291478-01	D.283010-01 D.29E036-DL	D.470628-CL D.43633E-CL	0.4145.8E-01	D.31640E-06 D.32562E-06	5.317142-05 5.32547=-05
2.5	0.14312E-01	0.17062E-01	0.31416E-CI	0.304218-01	0.45720E-01	0.446116-01	0.33626L-06	D. 329875-06 D. 337346-06	0.141375-01	0.157618-01	5.10543E-0	D.306720-01	D.45030E-GL	6.4497JE-01	0.33233E-06	C. 541628-05
2.7	0.15533E-01	C-17920E-01	C.331618-D1	0-319036-01	0.48171E-01 0.482718F-01	0-468512-01	0-357220-06	0+351996-06	0.155336-01	0.19692E-01	C. 43 C6 LE-C1	0.32204L-DL 0.32957E-DL	0.461716-01	C.472 file-GL	0.3340340-03 0.337221-05 0.342540-05	5. 30 / LGE-G6
2.9	0-15883E-01 D-16406E-01	0-187275-01 0-191376-01	0.34907F-01 0.35774E-01	0-33365E-01	0.50440E-01 0.51862E-01	0.490438-01 0.50174E-01	0-308555-06	0.306306-06	0.15883E-CI 0.104Co5-CI	C.109136-01 C.193306-01	6.39907E-01 0.357746-01	0.337026-01 0.344396-01	0.50440E-01 0.51462E-01	0.4952GE-01 0.50625E-01	D.358555-06 D.378146-06	D. 31202:-06 D. 319/30-06
5.0	0-23213E-01	0.231136-01 0.269016-01	0-43459E-01 0-50615E-01	0-+111%E-01 0-47797E-01	0.62308E-01 0.72431E-01	0.606/9E-01 0.75746E-01	0.50291E-06	0.500911-06	0.19897E-01 0.23213E-01	0-23305E-01 0-27021E-01	0.43459E-0: 0.50615E-0:	0.41441E-01 0.46013E-01	0.62306E-CL 0.724312-0L	0.011726-01 0.71053E-01	0.443436-06	0.445926-06 0.524596-06
2.0	0.205716-01	C. 10528E-01 8. 340166-01	0.63703L-01	0.603326-01	0.911061-01	0.804:12-01 0.89710E-01	0.556502-06	0.556866-0a 5.608556-06	0.24529E-01 0.296711-01	C-30909E=31 C-33970E=31	0.574212-0 0.63105E-0	0.54248E-01 0.60245E-01	0-822398-01	0.895016-01	0.554501-06 0.605868-06	0.40713F-06
9.6	C-329076-01	6-475436-01 6-406446-01	0.099886-01	0.56255E-01	0.100536 00	0.986186-01 0.107466 00	0.65704E-C6 0.70536E-06	0.656578-06	0.329876-01 0.35605E-01	0.404946-01	0.766202-01	0.717250-01	0.100538 00	0.107536 00	0.0570900-06	0-633276-96
11.0	8.41535E-01 0.43982E-01	C-46897E-01 C-49910E=01	C.88488E-21 0.94248E-01	0-82964E-01 0-88250E-01	0,12549E 00 0,13369E 00	0.124198 00	C-79127E-Co C-61572E-Co	0.762412-05	0-41539E-01	0.467256-01	C-084885-0	0.826555-01	0-12549E 00	G.123715 DO	0_781275-06 0_815726=06	0.77125-16
13.0	C-46949E-01 C-49393E-01	6.52858E-01 0.5574RE-01	0-99658E-01 0-10542E 00	0.93417E-01 0.98479E-01	0.14172E 00 0.14940E 00	0.140148 00 0.14748 00	G-85284E-06 0.88522E-06	0.854632-06	0-449495-01	0.527056-01	0-19656E-02 0-10542E CC	0.931418-01	0-141725 00 0-14740E 00	0-139758 D0	0.852865-06	0.849926-06 0.053666-06
15-0	0.52360E-01 0.54454E-01	C.\$8586E-01 C.61377E-D1	0.111030 CO 3.115850 CO	0.103458 00	0-15725E 00 D.16476E 00	0.155548 00	0.922051-05 0.94580E-05	0.919672=06 6.949%af=05	0-52360E-01 0-54454E-01	0.564772-01	0.111002 00	0.103256 00	0-157258 00 0-144768 00	0.1552n2 00 0.162042 00	0-945806-06	0.416321-06 0.44740E-06
17.0	0.59516E-01	0.64126E-D1	0.121656 00	0.117876 60	0.17209E 00 0.17507E 00	0.17046E 00 0.177/6E 00	0-986346-05	0.97894E+06 D.100672-05	0-57247E-C1 0-57516E-G1	0.64G87E-01 0.668346-01	0.121698 00	0.119036.00	0.17209E 00	0-177645 00	0.100176-05	0_100586-55
20.0	G-645776-01	0.72[\$ E-P1 5.76762E-F2	0.131236 CD 0.141376 00	0.12716E 00	0.19938E 00	0.193106.00	0.10554E-05 C.17882E-05	0.10593E-05	0.645776-01	0.721576-01	0.136218 CC	0.127194 D0 1 0.131786 D0	0.193386 00	G. (9214E 00 0.1992-5 00	0.10556e-05	0.103322-03 0.103966-05 0.103505-05
22.0	\$.65639E-C) 0.71733E-D)	0.773448-C1	0.146436 00 0.151496 00	0.13622E 00 0.14068E 00	0.207256 00	6.20613E 00 6.21304E 00	0.11000E-05 0.11100E-05	0.11077E-05 0.11306E-05	C.69639E-CL G.71733E-GL	C.778992-C1 0.799716-01	0.14643E 00	0.136326 00 0.140815 00	0.20735E 00 0.21415E 00	0.206278 00 0.213228 00	0.110665-05 0.113000-05	G.110946-05 G.113105-05
24.5 25.0	0.74700E-01 0.76795E-01	0.824326-01	0.156716 CD C.166746 CD	D.14510E 00 D.145476 00	D.227246 00	0.219676 DU 0.226676 00	0+117696-05 0+117466-05	D-115316-05 0-117576-05	0.74705E-01 0.74745E-01	0.825166-D3 0.850355-03	0.156216 D0 0.16674E C0	0.14525E 08) G.14964E 00	0.22724E 00	0.22697E 00	0.115695-05 0.11746E-05	0.115576-05 d.117765-05
26.0	d.318562-01	0.074276-01	0-14561E C0 0-17277E C0	0.15380E 00 0.15810E 00	0.23335E 00 0.23998E NO	0.23340E 00 0.24006 00	0-11049E-05 0-12227E+05	0-121595-05	0.79063E-01 D-81856E-01	0.875106-01 0.50001F-01	0.14501E 04 0.17087E 04	0.15399E 0E 0.15829E 0D	0.23355E 00 0.23998E 00	0.23367E 00 0.3+6025-0	0.11949E-05 0-12227F-05	8.115687405 8.171935-05
	0.83050E=01	0-94764t=Ct	0.17977E 00	0.16058E CD	0.257171 02 0.257171 02	0.258786 00	0.125541-05 0.125541-05	D. 125676-05	0.839500-01 0.862196-01	0.944005-01	0.179716 00	C.146796 00	0.262976 da	D-25354E 00	D-12351E-05	2.123635-05 2.123635-05 0.122645405
32.0	0.93201E-01	C.131946 CC C.120468 CC	0.193136 CD	0.179076 00 0.187246 00	0.271572 00 0.203626 00	0.272758 00	0-131498-05	0+130886-05 0-134836-05	0.93201E-01 0.97913E-01	0.102055 CG	0.20263E 0	0.19743E 00	0.27157E 00 0.26362E 00	0.2736.4E 00	6-13149E-05 6-13497E-05	C.131226-05
30.0	0.10228E CD 0.10047E CO	0.11128E SC 0.11507E CC	0.21138E 3D 0.22004E 30	0.20329E 00	0.29479E GD 0.30578E GC	0.298138 00 0.310+16 00	0-13/556-05 0.14009F-05	0.140417-05	0-10228E CC 0-10647E 00	0.111378 00	0_211148_0 0_220096_0	C_14540E 00 0.20342E 00	0.29479E 00 0.30570E 00	0.29634F 00	5.140096-05	0,117680-05 0,140641-05
40.0	0.11135E CO 6.11519E CO	0-12041E CO C-1249CE CO	0-228648 00 6-237298 00	0.218956 00	0.31695E 00 0.32777E 00	0.022V5E 00 0.3351/E 00	0.14320E-05 G.14511E-55	D.143258-05 D.145558-05	C.11135F 00 C.11519E CC	0.124545 CG	0./2864F 0	1 3.211278 00 C.219026 00	D.32717E 3D	0.33527E 00	5.14511E-05	D. 145015-05
46.0	0-11996E CC 0-12192E CO	0.12994E CU 0.13334E ED	0.25412E 0D	0.234245 00 0.234245 00	0.353435 00	0.359766 00	0-151508-05	U-15093E-05	0.123926 00	0.133745 00 0.133745 00	0.254125 00	1 0.234308 UD	0.35343E CD	0.359278 00	0.15150E-05	0.190940-05
50.0	0.13230F CO	0.142416 00 0.146696 00	0.274026 00	0.24933E 00 0.25675E 00	0.375945 00 0.38477E 00	0.362%38 00	0-19796E-05	0.155408-05	0-132366 CG	0.142396 00	0-27760E 00	C-24920E 00	0.37594E CO	0.38204E 00 0.39457E 00	D.15736E-25 D.15736E-25	0.19532E-05 D.157346-05
54.0	0.135586 CC	0.15554E 00	0.205346 00	0.264105 00	0.398815 DC	0-406725 D0 0-41774E 00	0.15899E-05	0.159438-05	C.13958E CC	0.15084E 00 0.15510E 00	2.28536E 01 2.79304F 01	D.264016 00	D.39801E CD D.409806 CD	0.406096 80 0.417966 80	0.15099E-05 0.1610[E-05	0+15-27L+05 0+1e110c+05
58-0	0.14835E CO 0.15237E CO	0.15934E 00 0.16350E CO	0.300206 00	0.270648 00	0.43080E 00	0.429156 00	0.163616-05	D.1.3958-05 D.164726-05	D.14835E CO D.15237E CO	0.155275 CC 0.16342E CC	0.30020E 0 0.307356 0	C.278526 CD	0.420808 60	0.429008 00 0.440348 00	0.162380-05	0-16/03/-05 0-16449-35
64.0	0.16074E CO	0.171726 00	0.321498 05	D.300065 05	0.454135 00	0.46306E 00	0.166875-05 0.168756-05	D. 16/026-05	D.14C746 CC	0.171646 DC	0.32149E 0	0.299416 CO	0.454136 00	0.46201E 00	0.160372-05	0.161567-05
	0.16930E CO	0.179850 CO	0.116508 0D	0.314105 00 0.321065 00	0.476136 00 0.486775 00	0.48517E 00 0.49610E 00	0-170536-05	D-170602-05 D-17269E-05	0.169806 CC	0.17976E CC 0.18379E CC	5.38650E 01 2.34331E 0	C.313456 00	0.476130 00	0.46510E 00 0.49615E 00	0.170538-05 0.17120E-05	0.1/0348-Ds 0.1/1636-D5
72.0	0.137676 CD	0.191376 CC	0.34959E 00 0.35657E 00	0.327996 00 0.334876 00	0.498295 00 0.508765 00	0.50135E 00 0.51923E 00	0-11299E-05 0-113876-05	0-173116-05 0-174266-05	0-10151E CO	0.18760E CC 0.19179E OC	0.34954E 0	0.32784 <u>6 CO</u> 0.334736 CO	0.508768 00	0.507146 00	0.17299E-05 0.17597E-05	0.172866-05 0.174036-05
76.0	0-18535E CO 0-19667E CO	0.19584E CO 8.19979E CO	0.363906 0D 0.370536 0D	0.341726 00 0.348546 00	D.5E941E 00 D.530D6E 00	0.529176 00	0-17501E-05 0-176668-05	0-175362-05 0-17641E-05	0.19007E 00	0.19577E 0C 0.19672E 0C	0.36390E C	5 0.34159E 50 0.34842E 60	0.519416 00 0.530068 CD	0.528/96 60	0.1/5316-05 0.1/5666-05	0-175150-55 0-17621L-05
80.0	0.19373E 00 0.19792E 00	0.20372E CO 0.20763E CO	0.371176 00	0.35532E 00 0.36208E 00	0-540538 00	0.550878 00	0-177162-05	0.177346-05	0.193738 00	0-20759E 05	C.377170 G	0.355220 D0	0.550835 00	0.56147E DC	0.175225-05	0-173195-05
B8.0	0.20595E DO	8-21542E E0 8-21929E FO	0.397598 00	0.375516 00	0.57072E 00	0.582V35 DG	0.(74326-05	0.18007E-05	0.205956 00 0.209796 00	0.21559E 00 0.21927E 00	0.09739E C	0.382168 00	0.57072E 00 0.58067E 00	0-58280E 00 0-59354E 00	0.179722-05	0.17459g-05 0.185825-05
90.0	4.21980E CO	4.223150 CO	0.41103E 00 0.418016 00	0.368535 GO	0.59079E 00	0.604178 00 0.614746 00	G.181018-C5 G.182216-C5	0.181636-95	0.213ED# 00 0.218176 00	0.22314E 00 0.227006 00	0.411036 D	0.348836 00	0.540748 00 0.600748 00	0.60410E 04 0.61476E 00	0.181078-05	3.141625-05 2.187385-05
94-0	0.22201E CO	0.23062E 00 0.23464E 00	0.42446E 00 0.43110E 00	0.402078 00	0.62134E 0D	0.625276 00	0.182596-05	0.183032-05	0.222018 00	0.230845 CD 0.234686 CC	0.42446E C	0.402118 00	0.61069E 00	5-62535E 00 D-63567E 00	0.18259E-05	3.103105-05 3.103796-05
100.0	0.23021E 00 0.23405E 00	6.23045E 00 0.24225E 00 0.25131E 00	0.44506E 00 0.44506E 00	0.42177E 00	0.641416 00	0.656725 00	0.10528E-05 0.10533E-05	0.18480E-05 0.18488E-05	0.234055 00	-0.242325 00 0.242325 00	0.445D6E 0	0.421585.00	3.641415 00 D.665678 00	Diastoure de	C.L8528E-05	2.10507c-05
110.0	0.25354E 00	C.25112E 00 B.27047E CO	0.478226 C0 0.473936 Q0	0.454285 CO 0.470376 CO	0.690985 00	0-708542 0C 0-734422 00	0.18681E-05 D.18685E-05	0.187346-05	0.254476 00	0.26125E 80 0.27064E 80	0.49393E 0	0.454505 0c 0.45676 00	0.715548 00	0.7669hE 00	0.15661E-05 C.18845E-05	5. (87795-05 5. 201926-05
570 A	EV- 0.71	\$13E-CZ	0.1421	5£-01	5-072	\$7t-02	0,600	LIVE-UN	0.71	495E-02 TEREC CH SYSTI	S-L-	4266€−01, E+	0.67	136E-02	0,58	77uE=08

Figure D-7. Viscoelastic Analysis for Asphalt 72 at 39.2°F (Cont'd.).

-137-

. . в

Figure D-8. Viscoelastic Analysis for Asphalt 91 at 39.2°F.

EQUATION OF BEST FIT, n=1

EQUATION OF BEST FIT. n=2

139-

Figure D-9. Viscoelastic Analysis for Asphalt 116 գ t ω 9 ·2°F

DATA

SHEET

EQUATION

7

Figure D-9. Viscoelastic Analysis for Asphalt 116 at 39.2°F (Cont'd.).

	·
570-DEV -	
0.11020	
01-02	
- 330356-0	
•	

EQUATION OF BEST FIT n=2

 $\psi_{\mathcal{B}_{12}}$

EQUATION OF BEST FIT. n=2

DATA SHEET

TAUL = 0.1941745E 04 SEC 01 = 0.7842194E 06 0YN85/SD CM V1361 = 0.1522793E ED P01555 COMPANY SUSSET THE OFFICE ANTIC ANALYSIS. TAU2 < 2_3144141E 03 SEC 62 + 0.34786495 07 0785750 SH VISC2 + 0.19954516 09 P01565 TAUS - D. 1710775F GA SEC GJ + D. 6775013E D6 DMAES/SQ CH VISEL . 0.0943914E 09 #0(SE
 OBSERVED
 CALCULATED
 CALCULATED
 OBSERVED
 CALCULATED
 < CALCULATED DISERVED CALCULATED DISERVED CALCULATED C2 FUNCTION THEFA 1 THEFA 1 THEFA 2 0-104285-01 0-10711E-01 0+75316E-07 STD DEV = . 0-23785E-02 U-91778€-02

Figure D-10. Viscoelastic Analysis for Asphalt 127 at 39.2°F.

2. \sim

D.136755-07

EQUATION OF BEST FIT. n=4

- A set with the set of the set of

EQUATION OF BEST FIT, n=3

																		0.21108396.05	، متالف	1 0.825809	AE 06 DYNES/SC	CN VI	\$C1 = 0.17494	ANT IN POINCS
									TAUJ -	0.2112545E.04	Sec G	L . C. 8295480	06 DANKE120	CHY1	<u>\$61 v 0.1752</u>	SHE LO POISES	TAU2 =	0_3381285E 03	SEC C	2 = 0-437642	76 07 DYNES/30	CH VI	562 × 0.14749	644 10 POISES
		0,20681916 05	<u>. SEC</u>	<u>a p_6143129</u>	E_00_DYNES/SQ	cn v150	<u>[0.168415</u>	OF ID POISES	1402 -	0.34559566 23	SEC C	2 - 0.4400631	E D7 DYNES/30	CH VI	562 - 0.1541	STIC ID POISES	taus	0.72164465 02	586 0	3 = 0.105e41	<u>AF 00 DYNES/SU</u>	CH VI	553 - 0-74235	SING 19 POISES
	TAU2 -	0.24021746 03	SEC 63	- 0.3817010	C 07 04465/50	CH V150	C2 + 0.917106	66 04 PU13ES	14U3	0.77750518 03	5 6G	3 = 0.1D27€04	E DA OVNES/SO	CH VE	SC3 = 0.7950	TARE ON POISES	TAU4 #	0.69774958 0]	SEC C	4 = 0.256129	IS DA DVNES/50	ζμ VJ	SC4 = 0.17962	772 09 Parses
	Tau3 -	D.17035536 02	SHC GT	- 0.1209943	E GR DYNES/SO	CM VISI	2) - 0 <u>-206105</u>	<u>an as viulses</u>	f=U4 =	0.69724958 0	SEC D	* 0.2090773	IE OH OVNES/50	CH VI	504 = 0.34611	rass as pùises	3105 -	0_25409976_00	.355	5 - 0.15 <u>75</u> 1	26 DM DYNHS/SQ	<u>ce (U</u>	5 <u>C5 7 0.39032</u>	Sef of Pulses
11/16	THETA L	CALCULATED THETA_L	UDSERVED SHETA 2	CALCULATED THETA 2 (#A77)	DUSERVED THETA 3 (R40)	CALCULATES THETA 3	UBSENVER CP FUNCTION (RAJD/SDCAL	CALCULATED	THETA 1	GALCIN ATED. FINETA L	Udaeaved 2 anant 2 (ana)	CALCULATE:	OUSERVED THETA 3	CALCULATED THETA 3	DASERVED SP FUNCTION	CALCULATED CP FUNCTION	Raservea THETA	CALCULATED THEYA L	CRSERVED THETA 2	CALCULATED THETA 2	ONSERVED THETA 3	CALCOLATED THE TA 3	DESCRAFD CP FUNCTION	CALCULATED CP FUNCILGN
	0.598136-03 0.174538-02	5.17263E+02 0.20115E=02	0.349072-02	0.826385-02	D.64013E-02 D.10821E-01	0.444146-02 0.756166-02	-0.00000E-38 -	u_000001-38	0.61633E-03	0+17260E+02	0.349078-37	0,32638E-C2		0+94914E-02	-0.40005E-38	- 1. 003005-39	0.69E13E-03	0.172696-02	0-34407E-07	0-32630E-52	D. 4 9813E-02	0.444146-02	-0.000008-38	-9.00000L-34
0.2 0.3	0-251905-02 5-316166-02 0-366576-02	0.394122+02 5.47(422+07 5.514878-02	0.67247E-52 0.10121E-51 0.122176-51	0.136916-67 0.387576-07 0.121546-01	D.12392E-GL D.13963E-GL D.157D4E-C1	0-100776-01 0-121046-01 0-13946E-01	0.643972-07 U.R4308E-07 0.001196-06	0.016572-07 - 0.034706-07 - 0.101928-06	0.201-08-22 0.314148-02 0.304028-02	0.+09296-02 0.+78496-02 0.537018-02	0.105235-01 0.122176-01	0.7775at=C/ 5.90281E-C2 0.101294-01	0,123920-01 0-139616-01 0.157088-01	0.105717-01 0.123725-01 0.136996-01	0_84388E-07 0_201178-06	0+671605-07 0+86028c-07 0+100735-08	0.263305-02 0.314165-02 0.366520-02	0.4/19705-02 0.4/7066-02 0.5352ap-02	0.87267E-02 0.L08212-01 0.L22176-02	0.773336-62	D.123926-61 3-1123926-61 3-112696-61	0.105918-01 0.123358-01 0.125358-01	0.553972-01 0.053856-07 0.102197-06	3.476496-07 3.455376-07 3.102371-36
0.5	0.40114F-02 0.47124E-02 0.906156-02	0.5960352-02 0.652696-02 0.702145-02	0.13514F-01 0.196616+01 0.15/08F-01	0.123056-D1 0.132346-01	0.10330E-01 0.19330E-01	0.15510E+01 0.16717E+01 0.14213E+01	0.11400E-05 0.120545-05 0.130676-05	D. 110312-05 D. 120312-05 D. 142332-05	0,401432-02 0,4712-6-92 0-506146-02	0.545156-03	0.136145=01 0.140035=01 0.157045=01	<pre>c.lll2aE-ci c.l2q698-cl c.l29718-01</pre>	0.16930E-DU 0.19199E-DU 0.19199E-DU	0.192672-01 D.165%02-01 0.178932-01	0.11403E-06 0.12054E-06 0.13667E-06	0.114135-06 (1.126355-06 (0.137976-06	0.401435-02 0.471245-62 0.506155+82	0.011Fort-07 0.03905E-02 0.08/45F-02	0.136165-01 0.146#16-01 0-157066-01	0.130992-61 0.123472-61 0.129575-61	1_14930F-01 0_101512-01 0_10199F+01	0+167635-01 0+167635-01 0-170346-01	0.11605F-06 0.126545-06 0.1166/F-06	0-113641-05 0.125990-05
0.0	0,941356-02 0,975366-02 0,626326-02	0.1993139-05 0.1993199-05	0.185518-01 2.175538-01 0.185798-01	0.149256-01 0.149256-01 0.157190-01	0.204205-01 R.214585-01 C.27689F-01	0.20509E-01 0.21570E-01	0.14555E-06 0.157725-06 0.171385-06	L. 163332-05 _ L. 163365-05 L. 163365-05	0.575966-02 0.628326-02	0.77976E-02 0.77976E-02 0.82168H-02	0.165815*01 0.174535*01 0.189795*01	0.138436-01 0.146918-01 0.199196-01	0.214686-01 0.214686-01 0.226990-61	0.100x85.01 0.202506-01 0.714016-01	0.15771E-06 0.15771E-06 0.17138E-08	0.169982-Da D.159938-Da D.159938-Da	D-54105E-02 .0-57590E-02 .0-67590E-02	D-73424E-07 D-779e4E-02 D-82390E-02	D. 14581E=01 D. 17453E=01 D. 18675E=01	0.130368-01 0.196885-01 0.195165-01	0.744701-01 0.714685-01 0.725595-01	5.10054E-01 4.20247E-05 4.214095-05	0.148556-36 0.1577JF-06 0.17153E-05	0_149651-05 0_199597-06 0_109965-06
1.7	0.715545-02	0.91420e-07 0.957798-07	5.29759E-01 5.29759E-01 5.21793E-01	n, 172556-01 0, 172556-01 0, 179498-01	0.244355-01 0.244355-01 0.254826-01	0.237735401 0.237735401 0.247875-01	0.142065-05 0.142065-05 0-194260-05	L. 182430-06 1- 151298-06 1- 199876-06	0.580645-02 0.719545-02 0.798495+02	0.000325-02 0.000366-02 0.000366-02	0.100489-01 0.2075999-01 0.212988-01	0.17106~01 0.17106~01 0.179736~01	0.23562E-01 0.24535E-01 0.25502E-01	D.22525E-D: D.23623E-D: D.26696E-D:	0.19167E-05 0.19206E-05 0.19926E-05	0.179936-06 0.109446-96 0.198766-96	0.11559E-02 0.12049E-02	0.900806-02 0.900806-02 0.949296-02	0.1954dF-01 6.20769c-01 0.21393E-01	0.15326F-11 0.171146-11 0.173036-11	0.235575-03 0.244358-02 0.254525-08	0.225352-01 0.235462-01 0.247102-01	3-181876-05 0.192055-05 0-199265-05	0,17773F-06 0,10558F-06 0,15558F-06
1.4	0.8233F-02 0.85533E-02	0-910656-03 0-102796-01 9-106466-01	0.22493E-01 0.22494E-01 0.23734E-01	0.13550-01 0.19344E-01 0.200466-01	0.274228-01 0.274228-01 0.279258-01	0.257626-01 0.267636-01 0.277265-01	0.207445-06 0.215685-06 0.222895-06	0.216370-06 0.216370-06 0.224366-06	D. 05465+02 0.920312-02 0.955715-02	0.102092-01 0.102092-01 0.106702-01	0.226946-01 0.226946-01	0.19361E-01 0.200376-01	0_274020-01 0_274020-01 0_279298-01	6-257486-01 6-257786-01 6-277986-01	0.219568-06 0.219568-06 0.222898-06	0.210976-06 0.210976-06 0.225116-06	0.795409-02 0.820495-02 0.855211-02	4_989878-02 0_102938-01 0_108758-01	0-21993E-01 0-228046-01 0-237366-01	2.188366-01 2.193725-01 3.200936-01	0.205296-DL 0.274026-DL 5.279256-DL	0.25752E-01 0.25793E-01 0.27003C-01	0.20744E-05 0.21568E+05 0.22289E-06	C. 257506-06 6. 210766-06 2. 225296-06
	0.907575-37	0.1115074-01 0.117186-01	0.2%550E-01 2.20180E-01	0.211256-01 0.225976-01	6-104928-01	0.305595-01	0.250365-06 0.260365-06 0.2605/5-06	0.247376-08 0.247376-08	0.407575-02	5.114.72-01 5.114172-01 5.117815-01	0.2460 xE-01 0.255556-01 0.261828-01	0.201096-01 0.214946-01 0.221476-01	0.105705-01	0.20735E-01 0.20754E-01 0.307528-01	0.2+0345-06 0.2+0345-06	1.241476-06 0.244381-06	0.907976-02 0.907976-02 0.999939-02	0+114225-01 0+114225-01	1-246005-01 0-2461805-01 0-2461805-01	0-21494E-01 0-21494E-01 0-27175E40L	5.24972F-BL 5.300256-31 5.306320-31	0.20762F+01 0.30762F+01 0.30773E+01	0.24034c-06 0.24034c-06 0.24857L-06	5.21458E-26 5.24166E-06 3.24552E-56
2.1	0.1029/9-91 0.10057C-01	0.12419E-01 0.12/55E-01	1,27576L-01 3,242748-01	0.233501-01	9.376366-01	0-373798-01 0-342808-01	0.2530148-00	0.267091-06 0.267291-06 0.269291-06	0.10247E+01 0.10047E+01	0.124387-01 0.124387-01	0.28574E-01 0.28274E-01	0.734986-11	0.33361-01	0.329616-01 0.329616-01 0.314946-01	0.26500E-06 0.27434E-06	1.204582-05	0.10(37)-01 0.10(37)-01	0-1/9996-01 0-1/8406-01	0.265764-01	0.22245E-11 0.233042-11 0.231535-11	5-31765E-61 5-326396-01 0-33336F-01	0.33203E-01	5.2561 1E-06 3.25360F-06 5.27036F-06	0,257941-26 0,279941-26 0,279941-26
	0.113455-01 5-116766+01	0.134286-01 0.137606-01	3.25649Fe01 3.60d 37=-61	0.25254(-61	0.3508(4-0) 0.35779(-0)	0.150578-01 5.359378-03	0,286291-06	4.29331-0A 4.29331-0A 4.295240-30	0.113498-01 5.116946-01	0.1151NP-01 0.1164x8-01	3_30642E=01	0.254200-11	0.150517-01	0-301980-01 0-301938-01	0.28625E-06 0.28625E-06	0.202905-06 0.202905-06	0.119456-51 0.119456-51 0.116946-51	0.13517E-01 D.176-8E-01	U. 290455-01 U. 356-26-01	0.254216-01 0.250425-01	0.3920015-01 0.392015-01	0. 34 0015-01 0. 07845-01 0. 361535-04	0.24625E+05 0.24625E+05	0, 206131-05 0, 206131-05 0, 207533-05
2.7	C-122178×01 C-12306c×01	0.14415E+71 0.14415E+71 0.14718E+01	0, 1221++-01	0.271038-CL 2.477988-CL	0-37175E-01 0-38558E-01	6.376600-01 0.305126-03	0.3040598-05 0.314055-05	0. 313651-36 0. 3142301-36	0.122176-01 0.125566-01	0.145008-01 0.145008-01 0.148258-01	0.122076-01	0.278635-01	D.373766-D1 5.380486-D1 5.380486-D1	0-378742+01 0-378742+01 0-377722-01	0.30694E-06 0.31406E406	1, 309341-05 0-11/025-05	D.122171-01 D.122171-01 D.125660-01	0.144946-01 0.144946-01 0.148176-01	0.3278/02-01 5.3278/8-51	0.2865962-01 0.275562-01 0.275562-01	0.371765-03	0.376216404 0.377137-01 2.337137-02	0-306546-00 0-306546-00 0-336068-00	01770705-08 64 312745-05
3.0	0-130305-01 5-15756-01 5-15750-01	0.133750-01 0.134078-01 0.134078-01	5.44.0945-01 5.471436-01	5.289028-61 3.445798-61	0-39611E+01 0-47124E-05	0.401946-01 5-482386-03	0.42642E-06 0.37997F-06	1-325131-16 1-32551-16	5.130%08+01 0.15708-01 5.15708-03	0.194490-01 0.194536-01	0, 5510 (0, -0) 0, 5510 (0, -0) 0, 5510 (0, -0)	0.70241F-01 0.34501E-01	5.396170-01 0.673240-01	0.403826-01 0.402236-03	0.376478-06 0.37997E+06	0.121191-00	0.1J0301-01 0.157086-01	0.19449E-01 0.19449E-01 0.19469E-01	0.94703E-01 0.40143E-01 0.40143E-01	0.790338-91 5.34574E-91	0.146191-01	0.401775-V1 0.402005-01	0.179472-01 0.179472-01	0, 319285-04 6, 325321-66 5, 382590-66
6.0 7.0	5.209/45-01 0.233975-01 8.203795-01	0.234546-01 0.201476-02 0.201476-02	0-313135+01 0-313135+01 0-510471=01	0.441690-01	0.55500F-DL 0.64323E-DL 0.72087F-01	5-626691-01 0-6269215F-01 0-65691-01	0.47507E-05 0.42531E-06	0.64724F-36 1.52463F-36	5.259446-D3 5.213576-D3 2.261496-D3	0.2474(8+0) 0.2420st-51 0.285765-53	0.520142-01 0.562052701	0.445546-01 0.401616-01 0.535646401	5.962905-01 5.962905-01 5.962935-51	0.623576-01 0.623576-01 0.752318-55	0.615076-05 0.651835E-05	0. 678565-06 0. 526235-06	0-201940-01 0-20194E-01 0-20367E-01	2.23/366-01 0.202036-01	4_911316-01 5156206Es01	0.445420-71	0.1000/-01 0.56123E-01 0.56123E-01	0.623406-01 0.623406-01 0.669056-01	0.4750/6-00	5.47543)-65 3.325115-36 3.525115-36
10.5	0.264492-01 0.305432-01 0.320122-01	0.113036-01 9.132010-03 0.153366-03	1.02020-01 0.010135-01 2.50000-01	0.08119E-01 0.027245-01 0.062916-01	0.741412-01 0.537750-01 0.84012E-01	0.816/98-01 0.675536-01 0.932546-01	0.008942-05 0.63527E-06	5,591110-06 5,532270-06 6,6532270-06	0,284446-03 8-305436-03 2,3255436-03	0.406610-01 0.33077F-01 0.35737F-01	0.294145401	6.57853E-01 5.51389E-01 5.51389E-01	2.781916-81 2.837746-01 5.837746-01	0.813162-03 0.872336-03 0.929516-61	0.598935-05	0. 599450-06 0. 626336-06 0. 626336-06	0.28469E+01 0.30563E+01 0.32E126=01	0-309625-01 0-359605-01	0.855247-01 9.698137-01 0.76852r=53	0-575502-11 0-575502-11 0-619945-11	5.(0193h-01 3.437546-01	0-31256-01 9-372416-01	0-59891E-06 0-59891E-06 0-51027E-06	0.53×705-05 0.53×705-05 0.624432-05
12-0	0.344678-01 0.366576-01 0.303978-01	0.14910F-71 0.19437E-71 9.65923F-01	0.745608+01 0.921318-01 0.850498-02	0.150712-01 0.136496-01 0.179476-01	5.045976-01 6.100145 05 5.105426 05	0.9560#F-01 0.109245 00 0.109565 00	0.095302-05	0.492940-06 0.720225-06 3.746357-05	0.549078-01 0.566528-01 0.566528-01	0.3/3/20-01 0.3/3/36+01 0.413918+01	0.7054aF-01 0.45031E-01 1.555455-01	5.550043-61 5.737495-61 5.774515-61	0.1554710-01 0.15547F 50	0.986586-01 0.164106 60 0.109666 00	0.575300-06 0.752035-06 0.76226-09	3.0100.6-86 5.116538-86 5.16598-86	0,349676-01 0,306526-05 0,35527-05	0.3/3367-01	0.705402-03 0.820310-01 0.820310-01	0.043635-91 0.7375*e-91 0.7375*e-91	3_V4V976+01 9_100185-00	0-99629E-01 0-99629E-01 0-10411E 02	0.00530b-36 0.11905L-65	0. 0.00217-00 0. 190217-00 0. 11907-00
	0.401435-01 0.413985-01 0.413985-01	6.431sdb-31 0.457875-31 2.974565-31	1.803848-01 0.945/36-11 7.97586-11	0.811740-01 0.847340-01 0.847840-01	0.11083L 05 0.115895 00 0.120780 05	0.114708 35 0.11992e 45 9.12992e 45	0.761235-06 0.794725-06 0.817635405	0. //1/00-06 7. 195792-06 2. 416532-06	0.40143F-5U 0.41889F-51 0.43959L-51	0-453662-01 0-452928-01 0-452928-01	0.375.45-01 0.375.45-01	3.813545-01 5.947506-01 0.982966-01	5.110330 d0 0.115846 00 0.125786 00	0.119765 00 0.119955 00 0.129055 00	0.769235-06 0.794782-06 0.817436-06	1.771431 1.75522L-06 2.81977L-06	0.461430+01 0.41686+01 0.436688+01	0.435636-01	0.940736-01 0.940736-01 0.92006-01	0.013596-02 0.0575465-02 5.0675465-02	0.1104422 00 0.110435 00 0.1155946 00	0.11477F 00 0.11477F 00 0.11455E 00 0.12555E 00	0.764235-06 0.794725-05 0.537641-05	2. 771540-06 5. 771540-06 5. 755210-04
18.0 	0.455515-01 5_472985-01 0.492180-01	0.490225-91 0.50494E-01 0.526626-01	5.10124F 00 0.104785 00 0.10421F 00	0.017020+01 0.051108+01 0.051108+01	00 36451.0 00 36961.0 00 26561.0	0.129975 05 0.134961 05 0.143766 00	5.859265-06 0.061565-05 0.862165-06	2,041200-05 2,352662-06 3,693512-06	0.435531-01 0.47293E-01 0.49713F-01	0.495526-01 0.509041-01 0.527218-01	0.101248-00 0.10472-00 0.106214-00	3,017775-01 0-95205-01 0,985966-01	0-12565E 00 0-13094E 00 0-13528E 00	0.13037E 00 0.13534E 00 0.13941E 00	0.811126E-06 0.86155E-06 0.86216E-05)- 6+7+72+04 0-605206+04 0.605285-06	0.455536-01 0.472996-31 6.492106-01	0.57721F-01	0.101216 00 .0.104726 00 0.106216 00	0.017956-02 0.952386-30 0.952386-31	0.125667 00 0.135867 00 0.135867 00	0.130560 00 0.130560 00 0.13056 00	0.83%75-06 0.861535-05 0.862165-09	5.462521-06 0.916412-06 0.916412-06
	6.30619E-01 .5-323596-01 0.341_0K-01	5.564482-01 0.562142-01 2.579515-01	9.111746 30 9.12514F 30 No1146AE 30	0.101006 00 0.105006 00 0.100306 50	5.140505 00 0.14522E 00 0.150105 00	0.144578 00 0.144338 00 0.194648 00	0.900755-06 0.520002-06 0.955766-06	5, 00 541,8-06 6, 922968-06 74 94 Laber-56	0.505156261 0.523600201 0.561058201	0.54513L-01 0.56253E-01 0.56311E-01	0.115178 80 0.115198 05 0.117008 80	0.10142F F0 4.105216 F0 0.108466 F0	0.15050E 02 0.15010E 02 0.15010E 00	0.15475E 30 0.24951E 60 0.255227 00	0.900758-06 0.920898-08 0.941768-05	0.93557-05 0.92504E-95 0.94 (907-05	0-50225E-01 0-523636-01 0-541056-01	5154514F-01 01962K2E+01 01580108-01	0-111736 00 0-115195 00 0-115195 00	C.108936 PD G.1953216 PD G.1053216 PD	0.14056E 00 0.145216 00 0.15036E 00	0.14474£ 00 0.149511 00 0.15422£ 00	0.900755-05 0.970995-05 0.951768-06	3.015 ([t-55 925)([t-55 925)([t-26
24-0 25-0 25-0	0+356510-01 0+376456-03 0+530410-01	01530976-01 01613976-01 01610935-01	0.121628-00 0.124476-00 0.124101-00	0.111540 10 0.1154780 10 0.117678.60	0.154465 00 0.154465 00 0.154056 00	0.15370E 03 0.16331E 03 0.16331E 00	0,953526-06 0,974158-66 0,95648-66	1.95-4658-06 1.977500-06 3.996601-06	0.55851516401 0.575902401	0.597605-01 0.514706-01 0.631636/01	1.121902 00 1.124075 00 0.126115 00	0.511586 F0 0.114866 F0 0.316006 F0	0-15440F 00 0-15452E 00 0-16506F 00	0-1556680 4D 0-153936 4D 0-168976 4D	0.958526-D0 D.974356-D0 D.97436-D0	3-962125-06 0-970755-09 0-970615-05	0.550510-01 0.575900-01 0.993410-01	0.597592-01 5.634695-01 0.631615-01	0.121620 00 0.12597F 00 0.1251115 00	0.111686 95 0.114655 96 0.119667 99	2.194438 00 2.199528 00 2.159528 00	0.156ANC 30 0.16345E 90 0.1660aE 90	0.950572-06 0.970551-06 0.995636-06	0.007075-05 d.4755005 d.695540-05
27.0 28.0 29.0	0.6108/E-01 0.6260/E-01 0.645*(5-01	0.647715-01 0.646335-01 0.640815-01	0.11547± 00 0.12449E 00 0.11449E 00	0.12599E CD 0.1289AE CO 0.12714E CO	0.1148956 60 0.173650 00 0.178026 50	0-172426 MG 0-172426 MG 0-191566 GU	0+15155E-85 0+10327E+85 0+10505E-05	3.10112+-25 3.102731-25 3.1093/1-05	0.619677+01 D.628371-01 D.645773-01	0.548346-01 0.564976-01 0.664976-01	C.13425 00 7,104306 00 5,107710 00	0.121128 00 0.124256 10 0.127256 (0	0.149955-00 0.173568-00 0.173025-00	0.17259f 00 0.177070 00 0.171926 00	0.103276-05 0.103276-05 0.105038-75	0.101352-05 3.107932-05 3.109909-05	0.410675-01 0.628126-01 0.645775-01	0.649165-01 0.664945-01 0.661386-01	0.1314.5 00 0.134395 00 0.137711 00	0.121110 00 0.124106 00 0.127158 00	3-158356 03 .0-174026 03 0-174026 00	D.17254F AG D.177015 US D.191511 US	J.1221546-05 0.13827F-09 0.12505e-35	0,101331-05 0-102331-05 0-106686-05
10.0 12.5 14.5	10-30-10-30-0 10-305506-0 10-3725555-0	0.72(386401 0.72(386401 0.72(1866401	0.140015 00 0.146015 00 1.140015 00	0.130175 L0 0.136165 62 0.147056 60	0.132910 3D 5.191996 50 0.193665 00	0.18579F 80 8.194506 80 	0.10-75E-05 0.107595-05 0.127055-05	0+105611-05 0-105725-05 0-1114/02/05	0.54240C-01 0.722577-01	5.729843-01 5.729843-01 5.761467-01	SLIWONNE DO SLIWONTE DO GLIDZARE DO	0.13629E 40 0.13629E 40 0.14217E 50	0.182911.00 0.191940.00 0.199840.00	0.185927 00 0.194625 00 0.203145 00	8_10993E-05 8_10993E-05 8_11303E-05	0+105096-05 0-165076-05 0+111576-05	0.651486-01 0.692908-01 0.732576-01	0.091076-01 0.779926-05 0.76146F-01	0.14085: 50 0.140813 50 0.152095 60	0.135375_00 0.135746_00 0.145126_00	0.197444 00 0.197444 00	0-109355 00 0-194655 00 0-704046 00	0.105755-05 0.105595-05 0.112050-05	5, 105185-05 5, 105185-05 5, 111570-05
10.0	0.755738-31 0.787148-31 0.625315-21	0.202348+01 0.823118+01 0.8534448+01	0-15917E 00 0.185496 00 0.17104C 00	0.193566 E3 0.193566 E3	5.207642 06 5.2289208 06 5.222708 06	0.21158E UD 0.21940E GU 0.22814E 30	D.12484L-05 0.11732e-05 0.119595-05	0_11454F=05 0_1156Az=05 0_1157Az=05	D.755738-01 D.767148-01 D.820418-01	0.732565+03 0.873275-01 0.053927-01	0.355476 20 C.185486 20 Sci7104f 20	0.153598 CD 0.153598 CD 0.159708 CD	0.207625 00 0.215205 00 5.222706 00	0-211030 02 0-210996 02 0-220168 00	0.117326-05 0.117326-05 0.117996-05	0.114135-05 0.116538-05 0.116866-05	0.754736-DS 0.754146-D1 0.820316-D1	0.792586-01 0.823266-01 0.853518-01	0.159176 00 0.171046 00	0.147875 00 0.153595 00 0.153206 00	0.20769= 00 0.215200 00 0.222700 Du	0.211626 00 0.210460 00 0.224160 P0	0.114845-05 0.117328-05 0.114595-05	5.216221-25 7.216541-55 3.216441-55
42.0	0.205236-31 0.679632-31 0.967366-31	0.813376-02 0.953918-01 0.853918-01	3.276205 50 0-012040 00 0.102655 00	0.164748 63 0.170210 63 0.375620 01	0.730032 35 5.737845 36 5.237845 35	0.236476 00 0.244308 00 0.24238 00	0.121785-05 0.123165-05 0.123/65-05	12-125745-05 0-125205-05 0-125736-05	0,055212×01 0,074552×01 0,074552×01	0.012376-03 0.012836-03 0.0412856-03	0.075086 00 G.087046 00 G.087446 00	0.104/46 15 0.170208 10 0.175595 60	5.23023F 60 5.23/166 60 5.246356 60	0-236262 00 0-244206 00 0-292196 00	0.12170E-05 0.12116E-05 0.124575-05	0.120956-05 0.124976-05 0.124986-05	0.855216-01 0.879#55=01 0.80357F=0;	0.012036-01 0.012036-01 0.941945-01	0.13745F 00 0.13745F 00	0.154736 10 0.176206 10 0.175506 60	0.234536 50 0.237366 50 0.237366 50	0.234266 30 0.244276 30 0.24236 30	0.121786-05 0.125166-05 0.125166-05	2,120 (41-15 0,122971-05 0,126001-05
- 48-0 50-0 58-0	0.942435-31 0.972138-31 0.49535-01	0.97392E-01 0.99343E-01 0.102765 00	h,192951 20 0,194096 20 0,204896 50	0.186296 63 0.186296 63 0.191476 75	3.203909 US 0.208908 00 3.205998 03	0.260095 00 0.267645 00 0.275535 00	0.126795-05 0.126355-05 0.129826-05	5.126758-05 5.128478-05 5.130396-05	0.942488-D3 0.972148-03 0.958328-D3	3_970720+01 3_947106+01 3_102736_00	0.19986F 05 0.19669E 03 0.20435c 05	0.18620L 60 0.18620L 60 0.19162E 60	3.29150E SD 3.29866E SD 5.26539E SD	0.267768 00 0.27545F 00	0.121356-05 0.121356-05 0.121525-05	0.126096-03 3.126096-05 3.130006-05	0-94240E-01 0/97215E+01 0-998698-01	0-34273E 00	0.19204E 00 0.19809E 00 0.20151E 00	0.186286 10 0.186286 10 0.195426 10	0.251566 SD 0.254567 DU 0.2659301 S0	0.250038 50 0.267788 50 0.235455 00	0.125716-0 5.124396-05 5.129626-55	5, 125, 17-05 6, 125107-05 6, 1805(5-05
56.0 56.0	0.107970 10 0.108990 10 0.10855 10	0.10036E 30 0.10032E 30 0.111260E 00	1,299578 20 9,217458 00 <u>9,217458 00</u>	0-2017#6 60	G-274955 00 0-256385 00	0.290589 05 0.290589 05 0.290165 05	0-131176-05 0-132255-05 0-134455-05	1,1310305 1,131076-05 1,1316-37-03	0110524/F P0	0.111026 00 0.111026 00	0.7134%E 00 0.7134%E 00 0.714526 00	5,20169E (0 3,20676E (0	0.27995C 00 0.27995C 00	0.298566 00	0.142236-03	3,13296E=05 3,13296E=05 3,13432E=05	0.102976 00 0.102596 05 0.108566 05	0.105526.09. 0.108285.00 0.11107F.00	0.218576 00 0.219576 00 0.219576 00	0.196586 10 0.201706 15 .0.205765 10	0.27995E 00 0.27995E 00 0.21658E 00	0.243050 00 0.248050 00 0.248055 00	0.13137F-00 0.132230-05 0.131606×05	0,133532k-06 0,14296(-05 0,14632,-05
62.0	0.114976 00 0.114976 00 0.111296 00	0.11377E 00 0.11646E 00 0.11415E 00	0.221405 05 0.274446 02 0.234005 03	0.21954E CU 0.22379E CO	0.2193520 00	0.305575 00 0.312426 00 0.320226 00	0.13493E-06 0.13608E-05 0.13602E-65	0. (3577)-05 0. (3597)-05 0. (35086-05	0.1173E 50 0.11467E 50 0.11729F 00	0.11170E 06 0.116426 00 0.13909F 06	0.2234681 00 0.2234681 00 0.234581 00	0.210788 CO	0-29985E 00	0.31242E 30 0.31242E 30 0.32012F 40	0.134985-05 0.134985-05 0.134985-05	1.1358005 C.136818-05 J.137955-06	4-11/05 03 4-11/09 00 0-11/295 00	0.11975E 00 0.116635 00 0.11910E 00	0.223401_06 0.2238402_06 0.2335035_06	0.211791 48	0.298225 00 1.2998555 00 0.306515 00	0.309478 (0 0.357628 (9 0.370175 00	0-134831-05 0-155048-05 0-15508-05	0.115000-05 0.116410-05 0.157166-05
61-0 Ye.u	0.123056 DJ 0.123056 DJ	1.125915 05 0.127535 05	0.747605 0.747605 0.0.40765	0.231941 00	0.319406 L0 0.126386 D0	D.344668 DG 5.341318 DD	0-136500-05	N_14019E-35	0.12305F 0D D.12584E 0D	0.124970 05 0.124970 05	0.242648 00	0.23147F F0 0.23430F F0	0.319402 00	D-314566 0D D-341116 0D	0.13456E-05 0.13487E-05	0.140042+05 0.141222+05	0.171052 00 0.171052 00 0.175856 00	a.124366 00 a.124366 00 a.124996 00	0.242605 DH 0.247845 60	0.241476 00 0.25030E 00	0.32036F D0	0.334572 00 0.341772 00	0.139562-05	3.140001-35 d.141021-05
74.0 30.0	0.131600 00	0.53476E 03	0.75 FU/5 60 3.255105 00	5,24594E 00 1,298565 00	0.139996E GD 0.34715E GD	G. 355976 00 G. 355976 00	0_141055-05 0_142346-05	N=142912-09 N=142912-09 N=143721-09	0.151m0C 00 0.15439C 00	0.13216k 00 0.13276k 00	0.751000 D0	0.245876 L0 1.250626 10	0.1319910 04 0.147165 00	0-35509E 00 0-36292E 00	0.141958-05	0.142794-05 0.143512-05	0.13:00E D0 0.13:00E D0 0.13:00E D0	0.192178 40 0.192178 40	0.25/09E 00 0.25190E 00 0.25190E 00	0.24598E 30 0.25082E 30 0.25082E 30	0.147156 00	0.162925 SD	0.141090-09 0.142946-05	0.147801-05 0.145815-05
85-0 52-0 64-0	0.110430 00 	5.14245F 00 5.142375 00 0.14486F 00	0.272105 00 6.2765175 00 0.265175 00	5.264745 GD	D.36124E CO D.36826E CO D.36826E CO	0.37045E 00 0.34347E 00 0.34987E 00	0.14516E-05 0.14516E-05 0.14590E-05	0.145204-05 0.145882-05	0.13353F 00 0.142242 05 0.146864 UD	0.139822 ()5 0.142340 ()5 0.142340 ()5	0.270176 50 0.270136 00 0.281176 00	0.26502E 10 0.26409E 10 0.26533E 10	0.361202 00 0.368265 00 0.375076 00	0.3336076 00 0.333805 00 0.336696 00	0.145168-35 0.14593E-35 0.14598E-35	0.145106-05 0.145796-05 0.146448-05	0.139638 00	0.13902E 00 0.14234F 00 0.14234F 00	0.272106 00 0.276636 00	D.26403E 10 D.26404E 10 D.26433G 10	5.14\288 60 0.168268 00 0.168268 00	0.17657E 00 0.19380F 05	0-045100-09 0-14500F-09 0414650E-05	0.100110-05
0.00 0.00	0.147450 02 0.150105 00 0.152625 02	0.14/360 00 0.14/07E 00 0.15235F 00	0.285KVF 00 0.290255 00 0.294965 00	0.27400F CD 0.27460E 00 0.283186 GD	0.381356 60 0.381346 00 0.395326 60	0.397e2F 00 0.404466 00 0.41126E 00	0.147298-05	0-147132+05 0.147702+05 0.14924e-05	0.147651 00	0.147368 00 0.14786 00 0.147856 00	5.285856 00 5.250756 00 5.2959465 00	0.27375E FD 0.27576E LD 0.20314E LD	0-341358 00 0.368347 00 0.395328 00	8.347562 00 6.40460-00 0.403218 00	G_14729E-05 G_14775E-05 0.14876E-05	0.147056-05 0.147636-05 0.146186-05	0-14165E 00 0-15015E 00 0-15289E 00	D.14755E GD D.14765E GD D.14765E GD	0.28569F 00 0.29075E 00 0.29496E 00	0.271965 10 0.276565 10 0.281845 10	0.)01355 02 0.108346 00 0.395325 00	0.397565 00 0.404405 00 0.411216 00	0.14724F-05 3.147755-05 0.140765-05	0.147350-09 5.14783F-25 5.148296-25
92.0 94.0 96.0	0.155134 00 0.157456 05 0.110576 05	0.194828 00 0.15726F 05 0.157738 00	0.29415E 04 0.45459E 04 0.300235 00	5.28.7745 GD 5.242235 GD 5.246818 G3	D.402308 00 D.405286 00 D.415266 00	0.41805E 00 0.47480F 00 0.43154E 00	0-149126-05 0-149156-05 0-196596-05	5.145751-05 1.149236-05 0.149688-05	0.157955 00	0-10-008 08 0-15727- 00 0-159728 00	4-23615F 90 8-30364E 90 0-30821E 90	0.287718.60	6.40710E 00 6.40928E 00 0.41526E 00	0.419005 00 0.424775 00 0.431555 00	0.149175-05 0.149655-05 0.150592-05	0.14507E-05 0.14718E-05 0.14964E-05	0.159396 00 0.157956 00 0.150976 00	D.15460E 00 3.151215 NF	6.29919E 00 0.30357E 00 0.30929E 00	0.207716 30 0.292266 30 0.295792 30	0.40230E D0 0.40528E D0 0.41626E D0	0.410005 00. 0.424776 00 0.431575 00	0.149120-05 0.14985E-05 0.150596-05	G. 14864F+55 G. 147182-35 G. 14764F-05
00-00 107-0	D.16319E 04 D.16581± 03 0.17207± 00	0.16218E 00 0.164612 00 0.17067E 00	0.312415 00 0.318765 00	5. 101 325 05 3. 305926 05 5. 31 7516 05	5-431276 00 5-431276 00 5-468555 00	0.43826E 00 0.464095 00 0.461625 00	0.152136-05 0.152206-05 0.153496-05	0,100110-05 0.150510-05 0.151420-05	0.16319E 00 0.16581E 00 0.17209E 00	0.142175 00 0.144805 00 0.176676 00	0.312418 00 0.31670E 00 0.327666 00	0.30130E 40 0.30581E 40 0.31701E 40	6.42324E 00 6.43127E 00 0.44855E 00	0.43823E 00 0.44443E 00 0.46161E 00	0.151135-05 0.152205-05 0.15319E-05	0.13008E-05 0.13049E-05 0.15142E-05	0.103196 00	0.162135 00 0.164605 00 0.110877 00	0.315/88 00 0.315/88 00 0.327608 00	0.301302 00 0.305816 00 0.317018 00	0.423246 00 0.431278 00 0.448556 00	0.430236 00 0.444946 00 0.461626 00	0.15114-05 0.152201-05 0.151490-05	0.155085-05 0.150695-05 0.151676-05
110-0	D.175375 05 0.165305 07 3.190349 00	0.17049E 00 0.182585 00 0.193546 00	0.33459E 00 0.34559E 00 0.34559E 00	5.329126 06 6.433176 05 0.350176 05	D.46548E 05 D.48171E 0D D.49742E 0D	0.470187 00 0.470187 00 0.494668 00 0.511065 00	0.15454E-05 0.15578E-05 0.155778-05	0.157216-05 3.152816-05 3.193480-05	0.178372 05 0.165002 00 0.190749 00	0.17.705 03 D.182695 09 Q.109655 09	0.138586.00 0.349595 00 0.360415 00	0.32913E 00 0.33919E 00 0.35020E 00	0.465486_00 5.481715_00 4.497426_60	0.47419E D0 0.49469E 00 0.5111LE D0	0.154543-05 0.155706-05 0.155726-05	3.15223E-05 3.15293E-05 3.15354E-05	C. LT037E GD C. L9500F 03 G. 1952+E 00	0.176705 00 0.182696 00 0.108656 00	0.339592 00 0.349596 00 0.360416 00	0.329136 10 0.339196 00 0.350206 50	0-465466 00 0-465716 00 0-461716 00	0.479196 30 0.49469F 06 0.511908 00	0.15+546-55 5-155778E-05 0.155221-05	0.152236-05 0.152236-05 0.153540-05
125-0	D.195488 05 D.207465 05 D.207698 00	0.194575 30 0.203485 00 0.204376 00	0.371765 05 0.387235 03 0.392706 00	0.361116 00 0.372026 03 0.382496 00	5-513487 03 5-579718 00 0-549428 00	0.52740E 00 0.54368E 00 0.5599Eb 00	0.15010E-05 0.156416-05 0.156416-05	0.15495-05 0.154625-05	0.195485 00 0.202465 00 0.207695 00	0.194545 00 0.200515 00 0.206416 00	0.391766 00 0.392756 00 0.397706 00	0.322085 /0 0.322085 /0 0.382966 00	0.513486 00 0.529716 00 0.545426 00	0.52746E 00 0.54375E 00 0.56000E 00	0-15510E-05 0-15641E-05 0.15586E-05	0.19407E-05 0.194532-05 0.194922-05	0.195486 00 0.202466 00 0.207698 00	4.104596 00 0.200512 00 0.200415 00	0.371766 50 0.302239 30 0.192796 80	0.301166 30 0.372086 30 0.382966 30	D.513485 00 D.529716 00 D.544428 00	0.52146E 30 0.54315E 00 0.56000E 00	0-15613E-05 0-15643E-05 0-155668-05	0.114070-05 0.154530-05 0.154920-05
140-0 146-0 150-0	0-212735 00 0-210127 00 0-214772 00	0.21225E 30 0.214135 00 0.22396E 00	0.40317E 00 0.413545 00 0.424126 00	0.393735 CD 0.404558 60 0.415348 C0	D. 50112E 00 D. 57083E 00 D. 59254E 00	0.576105 00 0.592266 00 0.600386 00	6.15491E-D5 6.15415E-D5 0.15415E-D5	1-15515E-05 1-15543E-05 1-19568E-05	0.212935 00 0.218175 00 0.244479 00	0.212296 DD 0.218196 DD 0.228196 DD	0.40317F 00 0.41364E 00 0.47412F 00	0.404635 00	0.56112E 00 0.57683E 00 5.49256E 00	0.57620E 00 0.59237E 00 0.60850E 00	0.154916-05 0.154156-05 0.155336-05	0.155276-05 0.155576-05 0.155876-05	0.212935 D0 0 214176 D0 0.224278 D0	0-21227E 00 0-21815E 00 0-22401E 00	0.40517E 00 0.41464E 00 0.42412E 00	0.39361E 10 0.40463E 10 0.415450 10	D.54112E 05 D.576836 0D D.59254E 0D	0.57620E 00 0.592375 00 0.668505 00	0.1549(E-05 0.15415E-05 0.154110-05	6.155271-05 0.155970-05 0.155828-05
(55-0 (55-0	0.229512 0D 0.235526 0D	0.27988E 00 0.23563E 00	0.433712 00	0.426116 CD 0.43866E CO	0.023046 00	0.624486 00	0-15287E-05 0-15241E-05	0.155898-95 U.ISn098-95	0-229515 00 0-235626 00	0.22995E 00 0.23568E DD	0.44331E 00 0.44331E 00	0.426218 08	0.02708E 80	0.62461E 00 0.640696 00	0.15287E-05 D.152419-05	0.156052-05 0.156252-05	0.2245LE 00 0.23562E 00	0-23968E 00	0.43371E 00 0.44331E 00	0.43696E JD	0.623095 00	0.624615 JU 0.640698 DO	0.152078-05	5.136056-85 9.13624(-85
ST R -I	HEN - 0.23/	1306-02	n.942	1316-05	0,909	20-30-02	0.8984	16 - 0 H	0.24	1836-05	5.49	295F-D2	0.908	94E-95	u., 874	-2%E =UB	0.2386	36-07	6.63	2356-02	0+9003	5E-02	0.6740	16-09

Figure D-10. Viscoelastic Analysis for Asphalt 127 at 39.2°F (Cont'd.).

EQUATION OF BEST FIT, n=2

DATA SHEET

TAUL . 0.1542356E D.1 SEC 61 . 0.3819554E 07 DYNES/SO (A VISC1 - 0:15929078 09 20 SUMMARY SHEET FOR VISCOELASTIC ANALYSIS 11501 + 9.26457568 09 POISES FAUR + 0.15974198 04 SEC C2 + 0.45856498 06 DYNES/SQ EM TAU1 _ 0.81267396 03 SEC _____ 51 - 0.3255618E 06 DYNES/SO CM 400 600 800 6H 14957, 25425, 33254, DV/SQCH DESERVED CALCULATED DESCRIPTION CALCULATED DESCRIPTION OF DUALCULATED CALCULATED DOSERVED CALCULATED RASERVED DBSERVED CALCULATED CUSERVED CALCULATED
 THETA :
 CF :
 THETA :
 CF :
 DOSERVED

 HAD
 4A/D/SOCH
 RAD
 RAD
 AVG CF
 DOSERVED
 TTHE THETA CF I THETO 3 THE TO 3 CP FUNCTION CP FUNCTION (RED) (RE/O/SUCH) (RE/O/SUCH) THETA Z THE FA 2 THEIA 1 IRAD) (RAD) 1940
 (A40)
 <th 0.0 0.1745M-02-0.000006-18 0.10478-02-0.000008-18 0.1745M-02-0.000008-18-0.000008-18-0.00000808-18-0.000008-18-0.000808-18-0.0008-18-0.000808-18-0.0008-18-0.000808-18-0.00
 A. D. MARTING D. B. MERLING S. ALTERNO. 20. ALT

Figure D-11. Viscoelastic Analysis for Asphalt 200 at 39.2°F.

Figure D-11. Viscoelastic Analysis for Asphalt 200 at 39.2°F (Cont'd.).

_ 2 Ś

EQUATION OF BEST FIT, n=3

•

EQUATION OF BEST FIT, n=1

		SUMMART S	HEET FOR VI	SCORLASTIC AN	ALY515			-							
	ASPHALT TEST TE	MD-103 NP- 3912 F		UADS-800 14 15- 33826.	08 2000 GA 58692, 84	020. · DY/50CH		- FAU1 -	0.4355672E 0:	a sec é	I = 0,316904	NE OT DYNES/SC	ICN VI	SC1 - 0.13803	3 ME LO POLSES
AIN	THETA L RAD	CF 1 RA/D/SOCH	THETA 2 RAD	CF 2 R4/0/50CM	THETA 3	CF 3 RA/D/SOCH	AVG CF RA/D/SUCH	THE TA IRAD]	CALCULATED THETA 1 (RAD)	COSERVED THETA 2 (RAD)	GALCULATED THETA 2 (RAD)	DESERVED FHE7A 3 TRADI	CALCULATED THETA 3 (RA7)	DRSERVED CP FUNCTION IRA/D/SQCm)	CALGOLATED CP FUNCTION (RA/D/SQCN)
0.0	0.26180E-0	2-0.00000E-30	0.261806-0	2-0.00000E-38	0.34907E+0	2-0-000000-38	D. 1612159E-07	D-26180E-02 0.34907E-02	0-217608-02	0.20100E-02 0.52360E-02	0.37790E-02 0.53119E-02	0.34907E-02 0.69813E-02	0-545986-02	-D.000005-36	-U-00000E-38
0.2	0.43633E-0	2 0+91360E-08 2 0+146046-01	D.872675-0	10-35/15-01 10-34946-07	0.10472670	2 0.206000-07	0.20367146-07	0.436335-02 0.523605-02	0.38840E-02 0.47341E-02	0.698136-02	0+68487E=02 D+83664E=02	0.87267E-02 0.10472E-DI	0.117-12-01	0.205636-07 9.24604E-07	0.837495-08 0.127755-07
0.4	0.52360E-0 0.610876-0	2-0.63266E-08 2-0.L4586E-08	0.104728-0	1 0.46636E-07	D-1274JE-0 D-14835E-0	1 0.307278-01	0.22322176-01 0.2794877E-01	0-523605-02	D. 558226-02 D. 642846-02	0.10472E-01 0.12217E-01	D.95887E-02 0.11408E-01	0.12741E-01 0.14835E-01	0.138428-01 0.159178-01	0.22323E-07 0.27949E-07	0.16917E-07 0.21002E-07
0.7	0.785406-0	2 0.34074E-D8 2 0.82774E-08	0.130905-0	11 0.476525-07	0.16581E-0 0.183268-0	1 0.305405-07	0.27233736-07	0+698136-02	0.721276-02 D.ALL512-02	0.130905-01	0.129236-01 0.14436E-01	0.155816-01 0.15326E-01	0.180/9E-01 0.20115E-01	0-27234E-07 0-26519E-07	0+25032E-07 0+27006E+07
0.9	0.959936-0	2 0.18013E-07	0.15708E-0	1 0.566098-07	0.235628-0	1 0.51154E-D1	D.4142525E-01	0.959932-02	0.995576-02	0.17453E-01	0.15945E-01 0.1745LE-01	0.21817E-01 0.23562E-01	0.22177E-01 0.242/5E-01	0.46264E-DJ 6.41925E-DJ	0. 129776-07
1.1	D_11345E-0	1 0.271496-07	D-20955E-0	0.724938-07	0.270530-0	1 0.50980E-01	0.50407958-07	0-113456-01	0.11+676-01	0-20944E-01	0-20454E-01 0-20454E-01	0.270538-01	0.203406-01	9-504080-07	0.4446010-01
1.1	0.130908-0	1 0.3/485E-07 1 0.42353E-07	0.244356-0	11 0.88377E-07	0.314168-0	L 0.011945-01	0.6235126-07	0.13090E-01 0.139636-01	D.13:32E-01 D.13962E-01	0.24435E-01 0.261808-01	0.234456-01 0.249366-01	0.31414E-01 0.33161E-01	0.32541E-01 0.345768-01	0.62352E-07 0.66593E-07	0-517376-07
1.5	0.139638-0	1 0.21423E-07 1 0.26291E-07	0.27925E-0	0.13426E-06	0.346525-0	1 0.61020E-01 1 0.60934E+07	0.62234/2E-01 0.66475KIE-07	0.139635-01	D.14791E-01 D.15617E-01	0.27925E-01 0.27671E-01	0.26424E-01 0.27910E-01	0.34907E-01 0.34652E-01	0.366486-01	3.62235E-DI 9.66676E-D7	0.58996E-07 0.67416E-07
1.7	0-15708E-0 0-16581E-0	1 D.31159E-07 1 D.360275-07	0.305438-1	01 0.105280-06 01 0.98350E-07	0.383971-0 0.41888E-0	1 0.608476-01	0.65760435-07	0.157085-01	0-16442E-01 0-17266E-01	0.314102-01	0.29392E-01 9.30072E-01	0.418882-01	0.407196-01 0.427/96-01	0.01110E-07	0-99296E-07
2+0	0.17453E-0 0.10326E-0	L 0.40845E-07	0.331018-0	0.10629E-06	0.453796-0	E D.8144 PE-01	0.76211716-07	D-10326E-01	0.189086-01	0.349078-01	0.32349E-01 0.338236-01	0.43633E-01	0.468466-01	0.16711E-07 0.30452E-01	0-72665E-07 U-75906E-07
2.2	0.20071E-0	L 0.55499E-07	0.388397E-	D. 130126-06	0.50515E-0	1 0.101968-04	0.95830726-07	0.200716-01	D. 20549E-01	0.366522-01	0+36763E=01	0.50619E-01	0.508996-01	0.846945-07	D. 732656-07
	0.209446-0	L 0. 39436E-07	D.410156-0	0. 0.131135-06	0.541050-0	L 0.10179E-04	0.90785485-07	0.20944E-01 0.219176-01	D.221759-DI	0.41015E-01 D.41015E-01	0-39693E=01	0+54105E-01	0.54916E-UE	0.90785E-01	D_31931E-D1
2.0	0.22689E-0 0.23562E-0	L 0.49172E-07	0.43613E-1	1 0.13215E-05	0.51594E-D 0.593416-D	1 0.101616-06	0.94311592-57	0.22689E-01 0.23567E-01	0-237990-01 0-246096-01	0.43633E+01 0.45379€-01	0.42618E-01 0.44070E-01	0.575966-01	D.589.9E-DI D.60995E-DI	0.943128-07	0.94492E-07
2.8	0.24+35E-0 0.2478+E-0	1 0.58908E-07 1 0.48297E-07	0.47124E-1 0.486896-1	01 0.14803E-06 01 0.19597E-06	0.610870-5	1 D.1014+8-De	0.10217395-06	0.24435E-01 0.24784E-01	0-244186-01 0-262255-01	0.47124E-01 0.48869E-01	0-45924E-02 0-46975E-01	0.61067E-01 0.62032E-01	0.629-78-01 0.64957E-01	0.10279E+06 U.LD188A-06	0-10099E-06 0-103926-06
	0.25307E-0	L 0.42845E-07 1 0.65721E-07	0-694502-1	01 0.14905E-06 01 0.19873E-06	0.045176-D 0.837768-D	1 0.101216-00	0.9772045E-37	0.253076-01 0.331618-01	0.270316-01	0.49742E-01 0.6545DE-D1	0.48424E-DL 0.62793E-01	0-0-5772-01 0-037762-01	D.06951E-D1 D.96745E-D1	0.91/205-07	D_105826-06
	0-401435-0	1 0.598920-07	D. 765405-1	11 D.22375E-06	0.10210F D	0 0.130702-04 0 0.140222-90	G.13243798-D6	0.471245-01	D.4289(E-0) D.50661E-01	0.18540E-01 0.12502E-01	0.76958E-01 0.90947E-01	0.120435 00	0.10424E 00 0.12548E GO	0.141295-05	5.15708E-06 0.11747E-06
	0.045772-0	1 0.15725E-00	D.12043E	00 0.26364E-36	0-158836 0	0 0.140035-06	0.20030365-36	0.645776-01	0.05946E-01 0.05946E-01	0.120436 00	0.104766 00	0.158836.00	0.14410E 00 0.16332E 00	0-167346-05	0.210736-06
10.0	0.77657E-0	1 0.125020-00	D.148356	0 0.30353E-06	0.199736 0	0 0.17830E-0	0.20248941-06	0.77667E-01	0.009606-01	0.148358 00	0.14555E 00	D.193736 00	D-200101 00	0-202496-00	6.23597E-06
12.0	0.925022-0	1 0.145586-06	0.176281	10 0.34343E-00	D.230386 0	G 0.19794E-00	0+2267645E=00 0-2361402E=00	0.925026-01	0.957586-01 0.103116 00	0.176286 D0 0.1893/6 D0	0.172245 00	0.233366 00 0.24956E 00	0-23716E 00	0.228785-06	0.255136-06
14.0	0.108216 0 0.115196 0	0 0.19(356-06	0.20256E	00 0.35358E-00	0.266168 0	0.236298-06	0.2503036E-06	0.10821£ 00 0.11519€ 00	D.110426 00 D.117706 00	0.20246E 00 0.21817E 00	0.19070E 00 0.211836 00	0.26616E 00 0.286236 00	0.21343E 00 0.29149E 00	0.25031E-06 0.27850E-06	3.264686-06
10.0	0.122178 0	0 0.18551E-06 0 0.20839E-06	0.23038E	0 0.39347E-06 0 0.41342E-06	0.322896 0	0.225046-02	0.2923018E-06	0.12217€ 00 D.13003€ 00	0.12495E 00 0.13219E 00	0.230386 00 0.244356 00	0.224936 00 0.23/98E 00	0.302816 DO	0.327326 00	0.200016-06	0.20073E-00
18.0	0.13768£ 0	0 0.231276-04	0.29744E	10 0.41849E-06 50 0.42357E-06	0.342968 0	0 0.28963E-00 0 0.79515E-00	0.31179926-06 0.31569276-06	0.137886 00	0.13940E 00 0.14059E 00	0.25744€ 00 0.27053€ 00	0.25100E 00 0.26400E 00	0.36120E 00	0.445178 00 0.462488 30	D.311808-06 D.31567E-D6	0.293126-05
20.0	6.15863E C	0 0.225448-06	0.282746	00 0.41378E-06	0.399686 0	0 0.304876-00	0.33040426-06	0.158835 00	0-160946 00	0.296718 00	0.289908 00	0.3796LE 00	C 38DISE CD	D.330406-06	G. 295483-06
23.0	0.17453E C	0 0.268285-06	2.32114E	60 D.414145-05	0.438086 0	D 0.37476E-00	0.35240268-06	0.124536 00	D.17524E DD	0.32114€ 00 D.33356 00	0-31574E 00	0.438086 00	0.43340E 00	D-352406-06	0. 302285-06 (L-303566-06
25+0	0.18050E 0	0.262458-06	0.345585	00 0.394565-06 00 0.384776-06	0.47473E 0	0 0.39382E-04	0.35027/76-06	0.18850E 00 0.19548E 00	0.189516 D0 0+196636 D0	0.34556E 00 0.35779E 00	0-34151E 00 0-35438E 00	0.47473E 00 0.49336E 00	0.409236 00	0-350200-06	0.30347E-06
27-0 20-0	0.20420E C	0 0.305306-06	0.370016 0.387236	00 D.374976-06 00 D.365188-06	0.51188E 0 0.529716 0	0 0.412876-08 0 0.422395-08	0.36535116-06 0.36428858-06	0.20420E 00 0.21118E 00	0.20375E 00 0.21087E 00	0.37001E 00 0.38223E 00	0-36723E 00 0-38005E 00	0.51136E 00 0.52971E 00	0-504488 06	0-36535E-06 0-36429E-06	0.30790E-06 6.30988E-06
30.0	0.22515E 0	0 0.299468-06	2.39444F 9.40841E	00 0.35539E-06 00 0.37534E-06	0.548036 D	0 0.43)915-0 0 0.431045-0	0.3632259E-36 0.3686136F-06	0.21817E 00 0.22515E 00	0.217986 D0 0.225086 D0	0.39444E 00 0.40841E 00	0.39293E 0D 0.40576E 00	0.54003E 00 0.56949E 00	0.535+9E 00 0.5555+2.0	0.36323E-06 0.348618-06	0.309756-06 (1.310496-06
	0.239LIE 0	0.339391-06	D.457286	00 D.355755-06 00 D.33617E-08	0.60214E 0	0 0.450095-0	0.36649831-06	0.239116 00	0.23928E D0 0.25347E D0	0.43284E D0 0.45728E DD	0.43142E 00 0.43706E 00	0-402146 00	0.992438 00 0.677568 60	0.30649E-06 0.36771E-06	0.31371E-06 0.312N3E-06
38.0	0.282746	C 0.32772E-06	D. 50789E	00 0.326745-06	0.794246 0	0 0.41373E-0	0.35606518-06	0.282746 00	0.281836 DO	0.50789E DD	0.50830E 00	D. 10424E DD	0.697775 05	1.35607c-06	0.31347E-06
42.0	0.31067E 0	G 0.31605E-06	0.556768	00 0.287576-06	0.774056 D	0 0.410272-0	0.3379661E-06	0.310676 00	D. 31016E D0	0.55676E DD	0-559516 00	0.77505E 00 0.80722E 00	0.76793E 00	40-319100-06	D. 314586-06
46.0	D-33605E 0	D 0.25278E-DA	0.601376	00 0.278148-06 00 0.25856E-06	0.941256 D	la 0.375656-01 la 0.40508E-01	0.2063320F-06	0.336855 00	0.35268F 00	0.43737F DO 0.43181E DO	0.61070F 06 0.63629E 08	0-84125E 00 0-87677E 00	0,838078 00 0,873136 00	0.296330-06	6.314996-D6 0.515136-06
50.0	0-36303E 0	0 0.18952E-06	0.657995 0.684176	00 0.268716-06 00 0.278876-06	D.91281E D	0 0.345476-01	0.2831328E-06	0.363038 00	0.38100E 00	0.68417E 00	0-60188E 00 0-60747E 00	0.91281E A0 0.94597E 00	0.900206 00 0.943256 00	0.29373E-05 0.294876-06	0. 51523E-06 D. 515516-06
54.0	0.392705 0 0.405662 0	0 0.22945E-06	0.703508	00 0.25929E-06 00 0.29918E-06	0.96262E D	0.349508-0	0.29274546-06	0.39270E 00 0.406465 00	0.19517E D0 0.40933E D0	0.73653E 00	0.713068.00 0.738648.00	0.10104E 01	0.101J4E 01	0.292756-05	0.315378-06 0.515418-06
	0.434596 0	0 0.211766-06	0.788895	00 0.21959E-00 00 0.31948E-00	0.108736_0	1 0.384316-0	5 G. 3052465E-06	0.434596 00	0.43765E 00	0.738395 00	0.789818 00	0.106736 01	0.105348 01	0-291016-05 0-305256-06	0.315458-36 0.315476-06
<u></u>	0.46251E (0 0.200276-04	0.039500	00 0.31005E-04	D.115378 0	1 0.3173U-0	0.2852114F-06 0.28507652-06	0-4625LE 00	0.46597E 00 D.480230 00	0.639508 00	0.840486 00	D. LISATE OL	0.115366 DI	0.283225-06	D. 919515+0A
- 60.0	0.492186 0	0 0.240205-06	0.010126	00 0.300636-08	0.122175 0	11 0.315076-00	0.2852998E-D6	0.49210E 00	Q.49429E 90 0.50845E 00	0.69012E DD	0.89215E 08 0.917746 00	0.12217E 01 0.1255HE 01	0.12237E DE 0.12587E SL	0.285305-06	0.31553E-06
12.0	0.521856 0	0 0.280136-06	0.94248E	00 0.320936-00 90 0.301458-04	0.128095 0	11 0-200456-0	0.29383448-06 0.30178808-06	0.52185E 00 0.53756E 00	9.52261E D0 0.53677E 00	0.94248E 00 0.96691E 30	0.943326 DU 0.964916 DO	0.132386 01	0.129386 DE 0.132486 DI	0.293846-06 9.10394E-0a	0.31554E-06 0.31554E-06
76.0	0.55152E C	0 0.32006F-06	0.10193E	60 0.3115DE-06 81 0.32166E-06	0.135795 0	11 0-25550E-0	0.36025176-06	0.55152E 00 0.56549E 00	0.55093E 00 0.56509E 00	0.99309E 0D 0.10193E 01	0.99449E DD 0.10201E 01	0.13579E GI 0.13925E DI	0.136398 01 0.139498 01	0.29939E-06 0.303255-06	0.319542-06 G.319552-06
	0.57945E (0 0.302558-00	0.107156	01 D.341976-06	0-146436 0	1 0.282196-0	0.3084017E-06	0.593416 00	0.579256 00	0.104950 01	0.10457E 01 0.10712E 01	0.14277E 01 0.14643E 01	D.14350E 01	0.301116-06	0.31555e-06 0.31555e-06
66+0	0.62134E 0	0 0.290898-00	0.111888	01 0.273065-06	0.153664 0	11 0.309486-0	0.2912769E-D6	0.62134E 00	0.62173E 00 0.63589E 00	0-11-32E 01	0.10968E 01 0.11224E 01 0.114006 01	0-153646 01	0.15322F 01	D.291288-06	0.315552-06 0.315552-06 0.315552-06
98.0	0.64926E 0	0 0.279228-00	0.116946	01 0.263635-04 01 0.264056-04	0.161010 0	11 0-34797E-D	6.29693895-D6 0.3066622E-V6	0.649266 00	0-65005E 00 0-66421E 00	0.11694E 0L 0.11938E 01	0,11736E 01 0,11992E 01	0.161012 01	0.150336 31	0.796966-D6 0.306666-D6	0.313555-06
94.0	0.67719E 0 0.69119E 0	16 0.26755E-01	0.121026	DL D.224476-06 D1 0.254888-06	0.108168 0	11 0-36526E-0	0.2857642E-00 5 0.2801768E-06	0.67719E 00	0.678378 00	0.17187E 01 0.124276 01	0.122476 01	0.168165 01	0.15794E 01 0.17144E 01	0.28576E-06	0.31555E-06
100.0	0.705148 C	0 0.25588E-00	6.12654E 0.12933E	01 0:15556E-01 D: 0.19545E-06	0.175418 0 0.179077 0	11 0.39298E-0 11 0.412026-0	5 0.2601374E-06 D.285H370E-06	0.705116 00 D.719086 00	0.706596 00 0.720856 00	0.126548 01	0.127598 01 0.13015E 01	0.1754)6 0) 0.179076 01	D.17495E 01 D.17645E 01	D-26014E-D6 D-28584E-D6	0.31555C-00 0.31559E-00
110.0	0.753986 0 0.792386 0	0 0.23546E-0/	0.13561E 0.147426	01 0,17623E-04 01 0,24672E-04	0.138065 0 0.19644E 0	0.43985E-D	5 0.32108776-06 0.32108776-06	0.753985 00 0.79230E 00	0.75625E 30 0.79165E 00 0.82706E 00	0.135618 01 0.142428 01 0.149238 01	D.13055E 01 D.14294E D1	0.19806E 01 0.19844E 01 0.20525E 01	0.19598E 01 D.204745 01	0.321096-D6	0.315556-06
	,							00	-396.0070 00	**********		VILUXENC UL		0- 371 /0C-UD	00010000-00
							STD [JEV = 0.L7	12×=-02	0.34	928E-02	0.+30	09E-02	3.260	1 36-07
							580-BF	MUDICAL ANCOUN	TÉRÉO DN SYSTI	H INPUT FILE					

Figure D-12. Viscoelastic Analysis for Asphalt PR-103 at 39.2°F.

	·								
		·		r					
				·					
1									

.