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A few years ago the term "rheology" (flow) was familiar to 
only a few scholars and researchers; the term embraces the whole science 
of material mechanics -- elasticity, viscosity, creep, and relaxation. In a 
simpler sense, however, paving asphalts (bitumens) are glues or cements 
which hold aggregate particles together; if the glue were ideally elastic (Hookean), 

it could be represented as being analogous to a simple spring; but, inasmuch as 
bitumens are semi-solids and exhibit properties of both solids and liquids ·--

that is, elasticity and viscosity --, tractive or cohesive resistance necessarily 

becomes an extremely complex combination of mechanical moduli, temperature 
and time. A rheological model is, therefore, conceptually, a complete 
mechanistic analog of the behavior of a real material. Rheological coefficients 
are ultimately applicable to the design of paving mixtures and pavement structures. 

Although the ultimate objective has not yet been achieved, the true nature and 
quality of bituminous cements is best described in tese terms -- for example, 
there is considerable interest nationally in developing specifications in which 
asphalt cements will be designated according to ranges of viscosity. The report 
submitted herewith relates interim progress toward these objectives. 

Mr. Mossbarger resigned from the Department June 30, 1966; 
Dr. Deacon rejoined our research staff last August and has continued the study 
to its present stage. The report, of course, reflects their joint authorship and 

individual dedication. The investigative work continued while the report was in 
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preparation. Additional measurements at low temperatures are either in 
progress or are planned. 

Special attention is invited to the rational treatment of viscosity 
coefficients and to the evident necessity of discreet obedience to discrete de­
finitions and measurement techniques. The curve-fitting technique employed 
in the viscoelastic analysis is thought to be somewhat original and may be use­
ful in analyses of other types of data. The time-temperature superpositioning 

technique summarily pnrtrays the viscoelastic character of a material through­
out a given range of temperature. 

The report does not require any Departmental action at this 
time; it is being issued as reference information and is somewhat pertinent to 
matter of viscosity-grading of asphalt cements, as mentioned previously. 
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PREFACE 

The Kentucky Department of Highways in cooperation with the 

Bureau of Public Roads is conducting a continuing investigation 

of the fundamental mechanical properties of flexible pavement 

materials, The ultimate objective of this investigation is to 

gain sufficient knowledge of the fundamental mechanical behavior 

of these materials to support the establishment of a responsive 

flexible pavement design procedure. 

A preliminary report (!), issued in 1964, contained the 

results of the preparatory phase of this investigation, This 

report summarized from a theoretical point of view efforts that 

had been made to quantify the mechanical response of viscoelastic 

materials to known conditions of loading, In addition, it 

described the development of a rotating .coaxial cylinder viscom­

eter which was designed to measure the creep response in shear 

of solid or semi-solid bituminous materials, The usefulness of 

this viscometer was verified by testing a rubberized asphalt 

cement at several temperature and torque levels, It was found 

that rubber, when added to the asphalt cement in significant 

quantities, tended to increase, at the higher temperatures, the 

steady-state viscosity, the stiffness, the retardation time of 

the viscoelastic response, and the complexity of flow, 

The current report summarizes results of a second phase of 

the continuing investigation in which the preparatory efforts 

have been expanded to encompass the creep testing of 13 asphalt 
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cements  in a second rotating coax i a l  cylinder vis cometer.  The 

13 asphal t  cements were s e lected to represent a variety o f  crude 

s ources ,  penetration grade s , and manufacturing proce s s e s. Des i gn 

and con s truct i on o f  the viscome ter , which were accomplis hed a s  a 

portion o f  this pha�e ,  reflect the bas ic  features of  the earlier  

vis cometer  modified on  the bas i s  o f  the recommendat ions contained 

iri the f i r s t. report (!) . 
I n  analyzing the data reported here in , e fforts were made 

to apply exi s t ing theories  for  s impl e  ideal  matetirus such as the 

Newtonian.liquid  and the Bingham plast ic whenever the s e  theories  

p roduced results . in  reasonable accord wi th the actual data. · I n  

many ins t ance s , howeve r ,  i t  was necessary to  combine thes e  s imp le  

theories with s omewhat more compl ex concept s  of  l inear visco­

ela s t icity in order to adequately  characterize  the de format i on 

p roperties  o f  the materials,  
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INTRODUCTI ON 

In the p ast; flexible p avement design proce dures have been 

bas e d  largely upon empi rici sm; that i s , emp i r ical correlations 

between obse rved p avement performance and.various t raffic , 

p avement , and other parameters  thought to  be s i gn i ficant with 

respect .to thei r  effect s .  on p avement perform ance • .  Rec13ntly , however ,  

emphas i s  has shi fted  to analyses  of s tr e s s e s, s trains , and deflec­

t i ons in the p avement s tructure (!_,,2), The. bas ic  inten t i s  to 

limit  the magnitudes of the critical s t re s s es , s t rains; and deflec· 

tions t o  levels below those  thought to cause distress,  Becabse of 

thi s  emphas i s  on the mechanical behavior of the p avement s tructure 

and on the concept of critical levels . o f  s tres s e s  and s trains , thi s 

more fundamental approach i s  not  unlike that commonly employed in 

conventi onal _structur al analyse s , 

There -are at leas t  five major determinations to  be, made be fore 

the theoret i c al approach can be translated into a design criterion , 

The s e  include:.  (1) the development o f  a sui  t able technique for com­

puting the-mechanical response  o f·a·pavement structure t o  highway 

loads; (Z). ·the adoption·o£ s t andard methods of t e s t  for measuring 

the pertinent mechanical properties  of the ·component· layers; (3) 

the i dentification of  those cri t i cal s tresses�  s trains� and de flec­

t i ons· which . control the development of . various forms of di. s tress;  

( 4) the e s t ablishment-of tole rable levels of thes e  criti cal 

stresses , s train s , and deflections; and (5) .a characterizati on of 

the loading and· environmental variables� ·  It is to  the firs t· two of 

the s e  determinations that .. this- con tinuing study is  be ing d i rected.  
- 1 -
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The mos t suitab le . t e chnique currently avai lab le for computing 

the mechanical  response of a pavement s t ructure to  highway loads 

appears to b e  that which · · embodies the classical  concepts  o f  

e l a s t i c  analyses . Solut i ons . are current ly.avai lab le  f o r  the com­

putation of s tresse s , s trains , and deflections in mult i - layered 

e l as t i c  systems (�-�). Thes e  s olut i ons have been foun d  to  approx­

imate .· the behavior of p avement s  in s e rvi ce. p art;icuJ . a;r.ly for smal l  

s t re s s es , short durations o f  loading , and l imited s trains o r  defor­

mat ions (�, !• and!) , .  However ,  the con s t i tuent ·materials  which 

comprise  a flexible p avement system are known to  exhib i t  t ime-de­

pendent mechani cal behavio r ,  the . time- deplilndent character o f  wh ich 

is  not directly compatible  with the doctrines of elastic  theory, 

Thi s  apparent incompat ibi l i ty b e tween the t ime- dep,ndent 

mechani cal b ehavi o r . of the constituent mat erial s in a pavement 

s tructure and the t ime-independent assumpt ions of e l a s t i c  theory 

has turned the attention of s everal researchers to  theories  o f  

mechanical  .behavior which encompass  the t ime�dependent domain , 

O f  particular ·:signifi cance.is the theory o f  linear viscoe lasticity 

which0 despite b e ing relative ly new in i t s  app l i cation to p avement 

materials ,
· 

offers s ome .promise  in this regard • .  The m aj. o r  attention 

has focused on-inve s t igating convenient mathematical repres entations 

of vis coe lastic  behavior and:on developi ng methods·to measure this 

behavio r ,  Suitable- techniques .for computin g·the mechanical response 

of a vis coe l as t i c-pavement· s tructure to  highway loads. are. general ly 

unavai lable though s ome preliminary work has been accomp l i shed 

(2_ -1.1) . 
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=3= 
The general mechanical response of  l inear viscoela s t i c  

materials  h as been adequately .. reviewed C1J!.-1l,), Ferry (.!2,) has 

di s cus sed s uitab le techniques for meas uring viscoe las tic  be­

h avior and h as pointed:out di fficult ies wh ich o ften· arise in 

instrumentation, 

In 1 9 4 4 ,  · Traxler et a L  (lQ_) inve s t ig ated the flow character­

i stics  .. o f  s everal asphalts  from . di fferent s ources and proces sed 

by vari ous methods , They used a rotary viscometer and found that 

s ome asphalts  do exhib it complex flow.character i s t ics , the com­

p lexi ty being evaluated by the s lope of a doub le logarithmic 

plot  o f  s tres s . ag ainst rate  of strain, Van Der Poel CQ , .?1) 

s t udied the mechanical beh avior of  b i tumens under . both s tatic  

and dynami c tes t conditions and presen ted the . res ults  in  terms 

o f  static  and . dynamic s t i ffness moduli whi ch were defined to be 

the ratio . o f.stress to s train and the ratio o f  the amp litude of 

a lternating s t ress  to that of s train, respectively. His  results  

indi cated, as  s tated earlier by Saal  ( 23) ,that the c l as s i fication 

o f  bitumens , according to  their rheological properties at normal 

temperatures . ;  can generally  be divided into three groups:  ( l )  those 

that behave ent i rely or almost .entirely as .Newtonian l i quids , ( 2 )  

those which show elas t i c  effects  upon ini t i a l  deformation and 

Newtonian .f low·. thereafter , and (3) those which show . almost comp lete 

res i lience.  after comparat ively s l ight deformati on and for greater 

deformations cease to exhibit  proportionality between s t ress and 

rate· o f  strain. Brodnyan ( 2 4 ) , Gaskins et al� (ZS)i and Brodnyan 
- -

· et · al , (3!) inves tigated several. different· aspha lts rep resenting 
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a wide variety. of indus trial stocks and found that asphalt behavior 

is.ve:ry similar to that of.concent:rate:d solutions of high polymers, 

that is� typical viscoelastic .bodies, Corresponding studies by 

others (27•30) have indicated similar results, 

Application .of viscoelas c "techniques t<i the study of 

bi turninous mixes has also been attempt.e'L Wood and· Goet:�: (�d) 
studied a sand,asphalt mixture.snbjr,r,::ted .. to.static loa(ling. They 

·found that . the mixture exhibited instantaneous.elastic deformation, 

retarded elastic deformation, and flow" Upon removal of Ic,ad, 

instantaneous elastic recovery was obtained� · Pister and Monismith 

(32)reviewed the. limitations imposecL by elastic analyses of flex" 
- . 

ible pavements0· and presented experim,mtal data verifying the 

viscoelastic.nature of bituminous mixes. TheY' also. illustratt1d 

the use .of .mechanical .models to describe viscoelastic behavior 

and showed. the formulation .. and solution of boundary value problems. 

In a later publication, Secor and .Monismith.(33) nnaly:;;ed triaxial 

test data;obta:ined on an asphalt concrete mixture and suggested a 

simplified.mechanical model.representing its viscoelastic response, 

.The results".of Baker and Papaz.ian ('?j) indicated that elastic 

theory is sa tis fact.ory for small durations e of time; . however' they 

suggested that·a more systematic and less.emp±rical approach may be 

obtained by considering the behavior of flexibia.pavements to con-

sist. of both elastic and viscoelastic components, Papazian (2l) 
presented a general review.o£ linear viscoelastic theory and 

applied it to a ,study asphalt concrete" He discussed the con-

cept of complex material moduli, determined under dynamic test 

condi t:ions, and illustrated methods for· corre lat.ing dynamic with 
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static  tes t results , 

Recen t ly , advances have been made in the app l i cation of  

viscoelas t i c  concepts . to. the ·study ·of s oils c��Q) which 

indi cate that s ome s oils .exhibit· vis coelas tic  p roperties , 

As stated earlier , . it is  neces s ary to  fully understand the 

mechanical behavior . of  the cons tituent materials  in order to  

predict  the mechan i cal responsecof the p avement structure. For 

this reas on , attention has first  been directed toward a study of 

the mechanical behavior of asphalt cements , This report summa­

ri zes the work that·has been d i rected to this  phase of the s t udy . 

The foregoing li terature review dictated , in l arge measure , the 

approach that was taken, The: total mechani cal behavior  had t o  

be analyzed: vari ous common measuTements of  con s i s tency such as 

apparent viscosity and.penetrat ion. would·not suffice s ince they 

are p oint measurements and greatly· dependent upon the use of stan­

dardized tes t· procedures• and conditions , The rotating coaxial  

cyl inder vis cometer enabled the acc4mulat i on o f  data for a wide 

range of temperatures and s tress  levels and loading t imes which 

extended into the equil ibdum or steady - s tate flow reg ime . This 

vis cometer was also  particularly sui tab le for an analysis  of  the 

total  flow behavior b ased on a model. of. the. type illustrated in 

Figure 1 or s imp l i fications thereof ,  
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THEORET I CAL CONS I DERATIONS 

The creep behavior  o f  certain ideal  materials  in the rotating 

coaxial  cylinder vis cometer  can be re adi ly determined ,  I t  is 

convenient first , ho1�ever ,  to inves tigate the ;;tates of  stress 

and s train in the vis cometer  when a con s t ant torque is  app lied ,  

A cross s ection through a rotating coax i a l  cylinder vis cometer 

of the type employed in this  s tudy is  depicted  s chemat ically in 

Figure 2 ,  Whi le t est ing , the cup is he ld  s tationary and 'a torque 

Rotating Bob 

Stationary Cup 

Annulus of Material 

Figure 2 ,  Cross Section through Rotating 
Coaxial Cylinder Vis cometer. 

is app l i e d  t o  the rotating bob , The resulting s�ear  s t rain and 

rate of shear s train wi thin the test materi a l  are given by the 

fol lowing e quations Cl, �): 
y (r , t) = - rae ( r , t ) /ar 

- 7 -

(1) 
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and 

y (r , t ) = -raw ( r , t ) /ar ( 2 )  

where r = distance from axi s  of  rotat i on to  a poin t  within 
the tes t material  

t = elapsed time from beg inning of  test 

y ( r , t) = shear strain in tes t material  at distance,  r ,  
and t ime , t 

e ( r , t )  = ang le of  rotation of a point in the tes t material  
at distance , r ,  and t ime , t ,  whi ch is  a function 
of  both the ang le of  rotation of  the b ob relative 
to the cup and the response of  the materi a l  to 
shear s t ress 

t( r ,  t) = a y ( r ,  t )  I at = rate of  shear s t rain in tes t material  
at di s t ance , r ,  and t ime , t 

w ( r , t )  = ae ( r , t ) /at = angular velocity wi thin tes t mater i a l  
a t  dis tance , r ,  and t ime, t · .  

The shear s tres s result ing from the app li cation of  a cons tant 

torque is  des cribed by the fol lowing equati on: 

S (r )  = T/ 2rrr2 L 

where S (r )  = shear s t res s at distance , r 

T = constant torque appl ied to the bob 

( 3) 

L = the length or heigh t of  the annulus of tes t materi a l ,  

STEADY- STATE LIQUI DS 

The behavior  of certain i deal liquids is such that a s teady­

s tate flow condition is reached ins tantaneous ly after load app l i -

cation and the rate of  s train is dependent only on the shearing 

s t res s , Thi s  behavior may be des cribed in general by an equation 
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of  the fo l l owing form : 

y = f{S} ( 4 )  

where f(S} = s ome time- independent function of  s tres s, 

When these materials  are tes ted in a rotating coaxial  cy linder 

vis cometer , the rate of shear becomes: 

y (r )  �-rdw (r) /dr ,  (5) 

Comb ining Equations 4 and 5 ,  the fol lowing equatiort is  ob tained: 

f{S ( r ) }  = - rdw ( r ) /d r ,  ( 6 )  

Assuming n o  s lippage occurs a t  the surfaces of  the bob and cup , 

Equation 6 yields upon integration the fol lowing expres s i on 

for angular velocity at a point : 

r 
w ( r )  = - f f{S ( r ) }  dr (7) 

a
2 

r 

where a2 = radius of  the stationary cup, 

For the rotating coaxial  cy linder vis cometer , Equation 7 becomes: 

w ( r )  =- / f [ .T J � 
a2 21Tr2 L r ' (8 )  

Using the relationship, dr/r = - dS/ Z S, which was  derived from 

Equation 3, a change in the variable of integration of Equation 

8 yields: 

w ( r) 
1 

= -
2 

sr f{S} ! - dS 
sz 

s 

where Sr = shear s tress at radius r 

s2 = shear s t ress at the inner wall  of the cup , 

(9) 
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The angular velocity of the b ob relat ive to the cup can be 

ob t ained by select ing appropriate l imi ts of integrat i on in 

Equation 9 as fo l l ows : 

n = w ( a1) 
1 

= -
2 

s ! 1 f{S} 
s 

5

2 

dS 

where n • angul ar velocity of  the bob relat ive to the cup 

s
1 

= shear s t res s a t  surface of  the bob. 

( 1 0 )  

Since the angular velocity ,  n, i s  cons t ant  for s teady­

s tate liquids , the angle of rotation of the bob relat ive t o  the 

cup i s  given by the following equat ion: 

e = nt 

where e = ang le o f  rotation of  bob relat ive to cup 

t = elapsed t ime , 

( 1 1 ) 

Equations lO . and 11 yield the des i red Telationships for 

des crib ing the behavior of ideal , steady-s tate liquids when 

sub j ected t o  a constant torque in a rotating coaxial  cyl inder 

viscometer,  The first  o f  these ideal l i quids to be examined 

in detai l is the Newtoni an l iquid ,  

Newtonian Liquid 

The bas i c  flow equat ion for a Newtoni an l iquid is:  

Y • f{S} = S/ n 

where n = coefficient of  vis cos ity ,  

Sub s t i tut ing Equat i on 1 2  into Equat ion 1 0  one obtains upon 

int.egrati on 

n • CT/ n 

where C 
1 = 

4rrL 
( 1 / al

z - 1/az
z ) ,  

(12) 

(13) 
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The quantity, c, represents an instrument constant which is 

dependent upon the dimensions of the annulus of l iqui d ,  The 

ang le of rotation as a function o f  time can be found by com� 

b ining Equat i ons 1 1  and 1 3  as fol l ows : 

0 = CTt/u. ( 1 4 )  

The rate of  shear i s  found b y  subst i tuting Equat ions 3 

and 1 3  into Equation 1 2  and is given by 

Y (r)  = 
( z n  ) 2 1 / r  , 
1 / a

l
z � 1 / az 

2 

The average rate of  shear becomes : ( Z a1az ) y ( av)  = 
2 

n 
a � a 2 

2 1 

where t ( av) • average rate of  shear , 

( 1 5 )  

( 16 )  

Figure 3 dep icts the flow behavior o f  a Newtonian liquid  

in  terms of  the measurab le parameters o f  the rotating coaxial  

cy linder viscometer , T o  evaluate the coefficient of  viscos i ty 

for a Newtonian l iquid, suffi cient tests should be performed to 

enab le the construction of  curves similar  to  those shown on 

Figure 3 ,  ·The coefficien t of viscosi ty can be readily determined 

from the slope o f  the st raight line of Figure 3b . 

B ingham P lastic  

The b asic  flow equation for  a B ingham p l astic is  

and 

y "' 0 

"' 
s - s 

= y 

"p 

where Sy = yield stress 

f s < s · o r  , .:. , y 

for S > S y 

"P • coefficien t  o f  plastic viscosity . 

( 1 7a )  

( 17b) 



CD 

<Of 0 ·• +' " +' 0 � 
'H 0 v � bl) 0 � 

a 
,;: +' ·• u 0 

� v :> 
>< " � � 

- 1 2 -

T3 

T3>Tz>Tl 

I / / T2 

I / / � T
l 

I // � c...... Slope= n 

0 �----------------------------� 
Time, t 

a.. Angle of Rotation as a Function of Time for 
Differ-ent Levels of Torque 

Slope c 
n 

0 �------------------------�� 
Torque, T 

b. Angular Velocity as a Function of Torque 

Figure 3 ,  F low Behavior o f  Newtonian Liquid in Rotating 
Coaxial Cylinder Vis come t e r ,  

F low occurs in the s e  materials only when the app l ied shearing 

s tress exceeds the yield  stress . For this reason it  i s  

nece s s ary to  con s i de r  three dis tinct condi tions o f  loading when 
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a Bingham p las tic  i s  sheared in a rotating coaxial  cylinder 

vis cometer .  

The first  condition occurs when the applied  torque i s  s o  

small  that the maximum shear s tress  ( a t  the surface of  the bob ) 

is  less  than the yield  s t re s s . For th is  condition no £low occurs 

and 

n = o for s1 < S or  - y 

T 2 < 211a1 LSy• 

( 1 8a)  

The s e cond condi t i on occurs when the yield  s t ress is  b racket­

ed by a lower app li ed  stress  at the surface of the cup and a 

higher app lied  s t re s s  at the surface of  the bob, F low occurs 

only in-that layer of material 

the bob and a crit i cal  radius, 

located between the surface o f  

rc = (T/21TLSy )
112

• · The mate rial  

located be tween thi s critical  radius and the surfac� ?f the  cup 

remains stationary , The angular velocity of the bob relative to  

the  cup is. then given by: 

n = 1 / l f{S} 
2' -

s 
s 

y 

dS 

whi ch upon evaluat ion yie lds: 

(J = 1 
2 np [-I_ - s -y S ln ( T )] 

y 
Z11a1

2 LS y 

for s
1 

> Sy � s2 or  

2 
Z 1r a1 LSy < T 

2 
< 2rra2 LS

Y
, 

( 1 9 )  

( 1 8b) 
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The third condition occurs when the appl i e d  s tress  at the 

surface of the cup exceeds the yield  stress  and f l ow occurs 

throughout the annulus of the material , The angular ve locity 

becomes 

n = CT 
n · p· 

2 
n p 

ln ( :: ) for Sy < s2 or  

2 T > 2na2 LS
Y

, 

The ang le of rotat ion of  the bob rel ative t o  the cup is  

( 1 8c )  

s imp ly the p roduct o f  e l ap s e d  time and the approp riate angular 

ve locity of Equation 1 8. 

Figure 4 depicts  the flow behavior of  a B ingham p lastic  in 

terms of the measurab l e  parameters  of the rotat ing coaxial  

cy l inder vis come t e r ,  To eva l uate the consta:nts , np ·and S , . y 
s ufficient t e s ts should be  pe rformed to  enab l e  th& construct ion 

of  curves s imi l ar  to those shown on Figure 4 ,  The coefficient 

of  p las t i c  viscosity can be  readi ly  determined from the s lope 

of the inclined ,  strajgh t- l ine portion of Figure 4b, The yield  

str ess  i s  best  determined from the intercept at point B of Figure 

4b , I t  can a l so be  e s t imated from the torques corresponding to 

points A and C, The s e  torques are re l ated by the fo l l owing 

equation :  

T
A

ITe = ( al/ a
2

) 2 , ( 2 0 )  

Other Steady- State Liquids 

The p receding analys is  demons trates the procedures used for 

predicting the behavi or  of cert ain s teady - st ate l iquids , name ly , 

the Newtonian l iquid and the Bingham p lastic, in a rotating 
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Figure 4 .  Flow Behavior o f  Bingham P lastic in Rotating Coaxial 
Cylinder Viscometer. 
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coaxial  cylinder vis come t e r ,  While  other steady - s tate liquids 

do not exhibit the s ame l inear relationship between rate of she ar 

s t rain and shear stress  as do thes e  materi als , the procedures for 

deriving the equations whi ch predict the i r  behavi or  in this vis -

cometer  remain essentially the s ame and , hence , are not included 

herein , At the s ame time , it is use ful to define the basic  flow 

equations for s everal o f  thes e  materials  and to present the 

equations des cribing their  behavi or in the coaxial  cylinder vis -

cometer ,  

Pseudop l astic  l iquids obeying the power- law relationship C!l) 

are described by the fo l l owing basic  flow equation : 

' 

Y = (S/k) l/n ( 2 1 )  

where k = a material constant related  t o  the cons i s t ency o f  the 
liquid 

n = a  material· const ant assuming values less  than one , 

The non-Newtoni an properties  of these liquids become more pro-

nounced as n diverges from a value o f  one , Their  behavi or in 

the rotating coaxial  cy linder vis cometer is described by the 

following equation : 

(l = 
n ( Z/k )

l/n 
(CT) l/n 

( 1 / al
z 

- 1 / az
z )

l/n 
[( 1 / al

z ) l/n - ( 1/a
z

z )
l/n ] 

( 2 2 )  

The p s eudop l as tic  l iquids h ave no yield s tres s  and the ratio  o f  

shear stress  t o  rate o f  shear (the apparent vis cos ity) decre ases  

with increas ing shear rate s , 

Another o f  the steady - s t ate l iquids i s  the dilatent l iquid 

which conforms to the s ame powe r - l aw flow equation as pseudop lastic. 
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l iquids (Equat i on 2 1) with the exception that n exceeds the value 

o f . unity Cil), Dilatent liquids exhibit no yield s t res s but , in 

contrast to pseudop las t i cs , their apparent vis cos i t ies increase 

with increas ing rates of shea r ,  

The final steady - s tate l i quid t o  be considered is  one con­

forming to the fol lowing bas ic  flow equati on: 

"' =  (S/n . ) [1 + (S/G.)] 1 1 

where ni = vis co�ity cons t an t  defined as the l imiting va lue 
of  S/� 

Gi = constant with dimen s i ons of s t ress (termed the 
internal shear modulus ) ,  

( 2  3) 

This equation has been employed by Ferry (�) to describe the 

behavior  o f  po lymeric sys tems at low rates of shea r ,  The angular 

velocity for a creep tes t in the rotating coaxial cylinder vis· 

cometer is given by the following equation: 

rl = (CT) [1:. + 
"i 

CT 
cr;-. 1 

( al: + 

az - :::)] ( 2  4)  

The basic flow p roperties of the various s teady - s t ate liquids 

are graphically compared on Figure 5, Figure 6 depicts  the type 

o f  behavior experienced when tes t ing these materials  in the 

rot ating coaxial  cylinder vis cometer ,  I t  is  reca l led that , 

because of the s teady - s t ate nature of  these liquids , their ang les 

o f  rotation in the viscometer are linear functions of elapsed 

t ime , 
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VI SCOELASTI C MATERIALS 

When s teady - s t ate l iquids are sub j ected to a cons tant torque 

in the rotating coaxial cylinde r vis come t e r ,  a linear re lation-

ship is  observed between the ang le of rotation and time; that is , 

the angular ve locity i s  independen t of time , In contras t ,  a 

l iquid for which the angular ve loci ty is  dependent on e l apsed  

t ime may be called  a non - s t eady- s tate l iqui d ,  Such l iquids may 

exhibi t  e ither thixotropic or rheopectic behavior depending upon 

whether the shear s t rains· cause a respective breakdown or for-

mation of internal s t ructure , Howe ve r ,  nei ther of these two 

ba sic  types of liquids po�s e s s  properties of ins tantaneous and 

retarded.e l as ticity and ,  upon load removal ,  elastic  recovery , 

To- describe this s omewhat more comp lex behavior ,  i t  i s  

necess ary to  cons ide r  materials  which s imultaneous ly possess  

both elastic  and viscous p rope rt i e s , that  i s , viscoe lastic  

materi als , Of particular interest  i s  the special  case  where the 

ratio  of,s t ress  to s train is  a function only of e lapsed  t ime and 

not o f  the stress  magn itude , Viscoe las t i c  materials  demonstrat­

ing this property are termed linear and are of pri�ary importance 

s ince thei r  mechanical behavi or is mathemati cally tractab l e ,  

A linear  vis c'oelastic mate 'ria1 may b e  visual ized in t .erms of 

the generalize d  Voigt body of Figure 7 Cil), This mechanical 

mode l is  composed of a series  of e l ements ,  e ach of which cons i s ts 

o f  a spring and a dashpot which are connected in p ar a l le l ,  The 

relat ionship between strain and stres s  for a constant s tress or  

creep test  is  as fol lows: 

y ( t )  = s 0 
· n  

l: 
k= l  

J (1 - exp ( - t/ Tk ) ] 
k 

( 2 5) 
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Figure 7. Generalized Voigt Body , 

= shear s t rain at  time , t 
= const ant shear s tress 

= comp l i ance ( 1 /Gk) 
• vis cos i ty coefficien t  

= retardat i on t i me (n k/G
k) 

= elapsed  t ime 
= shear modulus ( rigidity modulus) 
= nwnber of e lements, 

The generalized Voigt body represents a linear vis coelast i c  

material  with a discre t e  spectrum of retardation t imes , As the 

numb e r  of e lement s  in this mode l approache s infinity (that is, 

n + •) , the s t re s s - s train relationship for  a creep t e s t  may be 

more conveniently specified  in te rms of  the fol lowing : 
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y ( t) • s r
�J (t) [ 1 • exp (·t/t) ] dt 0 0 

where J (t) = comp l iance . distribution function 
t = re tardation time ( cont inuous variable ) . 

( 2 6 )  

Thi s  concept o f  a distribut ion o f  retardation t imes simpli fies  

the mathematical  approach s ince the.mechanical  behavior of the 

mate rial c an be  des cribed in terms of the comp l i ance dist ribution 

function ,  J (r) , 

The relationship between angle o f  rotation and t ime for a 

linear vis coe lastic  material  subjected to a cons tant torque .in 

the coaxial cyl inder vis cometer c an be  derived us ing Equations 1 ,  

3 ,  and 2.5 and i s  given by .·:the following expre s s i on: 
n 

e(t) "' E CT Jk [1.. exp(·:t/tk) ] , 
k .. l 

The corresponding angular velocity i s  

n ( t) " d e(t) 
dt 

n 
., E 

k•l 

CTJ
k - [ exp ( - t/tk ) ] . 

' k 

(2 7 )  

(2 8 )  

The creep funct ion1'!' ( t ) ,  for a·linear viscoelas t i c  material  

i s  de fined as the ratio o f  s t rain to  s t.ress when the material is  

subj ected to  constant· loading , · Thus , from Equation 25 , the 

creep fun ction is  

n 
'!' ( t )  = y ( t ) / S = E Jk

[ l  - exp( ·th
k) ] 

0 k=l  

where  '!' ( t) " creep functi on, 

But , from Equation 27 , 

n 
e ( t ) /CT = E Jk [l - exp( •t/tk)] , 

k= l 

( 2  9) 

( 30) 
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On the b asi s  of Equations 2 9  and 30, the creep funct ion for a 

linear vis coe las tic  m aterial  may b e  evaluated us ingthe coaxial  

cylinder vis cometer  in the fol lowing way : 

'l'(t)  = e (t ) /CT ,  ( 3 1 )  

OTHbK MATERIALS 

There are other engineering materials  whose me chani cal  

behavior  may best  be  characterize d  by a series  combitiation o f  an 

e la stic  e lement (spring) ,  a viscous e l ement (steady - s t ate l iquid),  

and a vis coelas t i c  body (generalized Voigt b ody) , When these more 

comp lex materials are s ub j ected  to  a cons tan t  torque in the 

rotating coaxial  cylinde r vis cometer, a creep curve similar  to 

tha� i l lustrated in Figure 8 is  observed, The total  angle o f  

rotat ion o f  the b ob re lative t o  the cup i s  depi cted b y  curve 4 ,  
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Figure 8, Creep Curve for a Material ExhibitQng 
Instantaneous Elastic Deformation, 
Retarded ·Deformation, and Steady­
State Flow. 
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E ach ordinate .  on this curve may be  cons i dered to  equal the sum 

o f  the corresponding ordin ates on the remaining three curves. 

The equation of curve 1 ,  whi ch represents  an ins t antaneous 

ela stic  deformation , is  

e1 = CT/G0 ( 32 )  

where G0 = e l as ti c  shear modulus , 

Curve 2 represents . the s teady�s tate f l ow behavior o f  a steady­

state liqui d ,  I ts·equation i s  

e = n t ( 3 3) 
2 0 

whe re n0 • the s teady - s tate angular velocity given by Equation 
13, 1 8 ,  2 2 ,  or  2 4 ,  

From· Figure 8 and Equation 33 , the s t e ady�s tate portion o f  the 

ang le,of rotation i s  seen to l inearly increase with t ime , Curve 

3. represents the retarded elas tic f low of the viscoelastic  com­

ponents ,  Equation 2 7 ,  the refore , specifies the shape of this 

curve , 

The tot a l  ang le o f  rotat ion (curve 4 )  can be  computed as  

fo l l ows : 

or  

e = e 1 + e 2 + e 3 

e = CT/G + n t + 0 0 

( 3 4 )  

n 
); 

k= l 
CT Jk[l - exp ( •t/Tk) ] .  ( 35 )  

Equati on 35 represents  a general f l ow equation describ ing the 

response of a wide variety of engineering materials to creep 

loading in a rotating coax i al cylinder vis come t e r ,  The param­

eters of Equation 35  may be  evaluated·for a specific  material  by 

obtaining e - t  curves from a sui tably des i gned creep t e s t  program ,  

The procedures recommended for this type o f  evaluation are dis -

cussed in subsequent sections . 





APPARATUS1 MATERIALS, AND PROCEDURE 

APPARATUS 

The rot ·ating coaxial cylinder viscometer is a modified  

vers i on of one use d  in  the p reliminary phases  of the s tudy ( 1) ,  

I ts functi on is  to  �pp ly a creep stres s  in shear to  an annular 

specimen of s o l i d  or semi - so l i d  bitumen ove< a wide range o f  

s tres ses  and temperatures ,  Figure 9 shows the vis cometer  and 

related e quipment assemb led for tes ting, 

As dep i cted in Figure 10, the vis cometer con s i s t s  o f  an 

inne r  cyl inder (or  bob) and an outer cyl inde r ( or cup) which are 

moun ted concentricallY to  form an annulus, This annulus i s  

fi lled w i th the t e s t  material  whi ch is subj ected t o  shear 

stre s s es by app lying a torque to  the bob . The bob is rigidly 

attached to an axle  or  spindle which is supported by a ball  

be aring at  the upper p late of the apparatus, The torque is  gener­

ated by the suspen s i on o f  weights from the drive pul l ey at the 

upper end o f  the axle . Tn eliminate bending in the ax le , equal 

weights are s uspended over diagon a l ly opposite i dle pulley s ,  

The angie through whi ch the bob rotates i s  measured b y  a 

rotary vari ab l e  di fferential  transformer, type R3B 2 S , manufac­

tured by Schaevitz Engineering . Thi s  device p roduces a vol tage 

having a magnitude which varie s  l inearly with the angular pos it i on 

of  i t s  shaft fot a range o f  ! 40° f rom its  null pos i t i on. The 

voltag e  i s  monitored wi th a Sanborn, Model 3 2 1 ,  carr i e r - amplifier  

recorde r ,  An appropriate scale  and vernier are a lso  provided above 

the drive pulley for visual check ing and calibration, 
... zs .. 
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Figure 9, Vis cometer and Related Equipment Assembled for Testing, 

Figure 10 . Rotating Coaxial Cylinder Viscometer wi thout Weights 
(Large Cup and Bob). 
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In order to provide a wide range o f  shear rates , two di fferent 

cup-and•bob assemb lies  are used ,  For t e s t ing the less  vis cous 

asphalts , the l arge cup . and bob shown in Figure 10 may be use d ,  

The small cup and bob shown in F igure 1 1  are used for testing more 

viscous materials , .  For equal we ights of the suspended loads , a 

lower shear rate is . attained with the l arge cup • and-bob a s s emb ly ,  

Figure 1 2  shows the components o f  the l arge cup - and-bob 

assemb ly , The s tain les s  steel  bob contains a hardened s tee l ,  6 0 °  

conical bearing point whi ch bears on a hardened  steel  cap s crewed 

into the steel  base  pl ate , The cap contains a conical  depre s s i on 

which receives the bearing point o f  the bob , Thi s bearing 

arrangement is e s s entially . free of fri ction and provides an 

excel lent means for centering the bob ,  

During assembly the amalgamated brass  ring i s  p l aced within 

the groove of the base  p late , The s tainless  steel  cup also  f i ts 

within the groove and bears lightly again s t  its  outer edg e , The 

bob extends into the groove of the b as e .  p l ate but bears only on 

the hardened  s te e l  be aring cap ,  Sufficient c learance is  p rovided 

between the bob and the b rass  ring and between the bob and the 

base  p late to ins ure freedom of rotation. When assemb ly i s  com­

p leted ,  me rcury is poured into the annulus unt i l  i t s  level is  

s lightly above the lowe r edge.  o f  the bob , Thi s  prevents the test  

material from flowing beneath the bob  and provide s a comp lete ly 

flui d ,  floating . bearing for the · specimen whi ch virtually 

e l iminates end e ffects due to  adhe s ion ,  

The pouring mold shown in Figure 1 3  i s  used to  f i l l  the 

annulus of the large cup- and-bob as s embly wi th heated asphal t ,  
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Figure 1 1 .  Rotating Coaxial Cylinder Vis cometer with Weights 
(Small Cup and Bob), 

� 

L!l�,·d�rwd S(�El B�'" l\1g C<\p 

Figure 1 2 ,  Large Cup - and-Bob Assembly ,  
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Figure 1 3 .  Pouring Mo ld Used with Large Cup-and-Bob Assemb ly, 

' ;: 

Figure 1 4 .  Sma l l  Cup-and-Bob Assembly. 
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This mol d ,  whi ch i s . constructed in two semi - c i rcular sections , 

is  supported by and temporarily mounted on the .bob . I t s  narrow 

dis charge opening ( 3/ 32 inch) , which is centered over the annulus , 

permits ·  the annulus to be  progressively £i l led- from the b ot tom to 

· the t op�  This e liminates  the nece s s ity for heating the cup - and­

bob assembly  (which. would. be .ha�ardous due to the presence o f  

mercury) and p revents the inc lus ion of ·voids within the spe c i -

mens , 

Components  of  the small cup• and� bob · a s s embly are shown in 

Figure 1 4 ,  The cup and. bob are made of s tainless  steel  and the 

base  p late ·  of· brass ·. · · The· cup·, bob·· and base  p late are · assembled 

in•  much the s ame manner as for the l arger a s s embly with the 

excep t i on that no brass  ring is used� A pouring mold i s  

unneces s ary due t o .  the increased thicknes s  o f  the annulus . 

The two di ffdrent cup - and-bob a s s emb lies  were cons tructed 

in orde r to  extend . the ·  range . of  shear rates, Simi larly , two 

drive pulleys , which differ in . diamete r ,  were cons tructed in 

order to provide two di fferent torque s . by the suspension of a 

load of •  cons t ant we ight . The .larg e  pulley has an e ffective 

diameter  of 7. 8 7 5 inches and the smal l  pulley , 3., 8 7 5 inches , 

The idle  pul leys may• be • . properly aligned with e i ther o f  the two 

drive pulleys . Proper use· o f  these ·  pul leys · e l iminate s  the 

necess ity for s uspending either · exces s ive ly large or exces s ively 

smal l  weights from the loading system , 

Cups and bobs for .both· assemblies  are provided with l / 6 4 -
inch - deep vertical grooves extending . thei r  ful l lengths . These 

g rooves prevent . the formation of  s l ipp<!ge s urfaces at the inter-
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faces due t o  ins ufficient adhes i on between the cup o r  bob and the 

specimen , The e ffective dimens ions of the cup s , bobs , and 

specimens are shown in Tab le 1 .  

TABLE 1 

EFFECTIVE DIMENSI ONS OF  CUP , BOB , AND SPECIMEN 

I tem 

Cup 
Diameter  ( in , )  
Height ( in , )  

Bob 
Diameter ( in , )  

Specimen 
Thickness  ( in , )  
Heigh t  ( in , )  

MATERIALS 

Small  As s emb ly 

2 , 0 0 5  
2 .  02 3 

1 .  2 3 5  

0 , 3 8 5  
Variab le , 

2 , 0 2 3  Max , 

Large As s emb ly 

7 . 74 1  
L l l 5  

7 , 36 5  

0 , 1 8 8  
Vari ab l e ,  

1 . 1 1 5  Max . 

The 1 3  asphalt  cement s  used in this  s tudy were s e lected on 

the b a s i s  of the following factors : ( 1 )  crude s ource , ( 2 )  

penetration grade , and ( 3 ) manufacturing process . Tab le 2 

c l as s i fies  the asphalts  on the basis  of these  three factors . 

The asphalt numbe rs are identical to those used by the Bureau of 

Pub l i c  Roads ( 4 4 , 4 5 )  w i th the exception o f  asphalts PR- 1 0 3  and 
- -

PR- 1 3 2  whi ch were not evaluated by the Bure au,  However , the 

asphal t  s amples were ob tained from current p roduct ion runs for 

whi ch the refining processes  and crude s ources may h ave been 

s lightly a l tered,  There fore , direct comparison between the 

results of this s t udy and those of the earlier  s tudie s  ( 4 4 , 4 5 )  
- -

must be  avo ided,  



Asphalt 
Numbe r  

3 
1 3  
4 5  
5 3  
6 7  
7 1  
72  
9 1  

1 16 
12  7 
2 0 0  

PR- 1 0 3  
PR- 1 3 2  
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TABLE 2 

CRUDE SOURCES ,  PENETRATI ON GRADES ,  AND 
MANUFACTURING PROCESSES FOR ASPHALT CEMENTS 

Crude Penetration Method o f  
Source G rade Manufacture 1 

Mexico 8 5 - 1 0 0  s 
Vene zue la  8 5 - 10 0  v , s  
Arkans as 8 5 - 1 0 0  v , s  
Midcontinent 8 5 - 10 0  v , o  
Texas 8 5 - 10 0  v 
Midcontinent 8 5 - 1 0 0  V , P , B  
Oklahoma 8 5 - 10 0  V , P , O , F  
Cali fornia  8 5 - 10 0  V , S , B , O  
Wyoming 8 5 - 100  v 
Vene zue l a  6 0 - 70 v , s  
Vene zue l a  1 2 0 - 1 5 0  v , s  
Unknown 1 4 1 2 _ 3 

Unknown 2 42 _ 3 

1v = vacuum d i s t i l l ation ,  S = s t e am disti llation , 0 = b lowing 
( oxidation ) , B = b l ending (different g rade asphalt s ) , P = pro­
p ane fractionation ,  and F = fluxing (heavy o i l s ) , 

2 
Tes t  values . 

3
Petroleum pi tch res i due derived from cracking petroleum 

feed s tocks for the production of ethylene , 

Es s entially s ix di fferent crude s ources b ased  on geographical 

location were s tudied1 , To inve s t ig ate the variation in mechanical 

properties  as related to  penetration grade , three different 

g rades ( PAC- 3 ,  PAC - 5 , and PAC - 7 )  from the Venezuelan crude were 

s tudied ,  Attempts were made to obtain s amp les which represented 

s traight- run d i s t i l lation , s traigh t - run d i s ti llation with air  

b lowing , and cracking manufacturing proces se s , As s een in Tab le 

1Thes e  inc luded Midcontinent , Gulf-Coastal , Rocky Mountain , 
Califo rnian ,  Mex ican , and Vene zue lan crudes , 
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2 ,  the asphalts  are representative o f  the f i r s t  two o f  thes e  

three p roces ses .  Asphalts  manufactured by the cracking proces s  

were not ava i l ab l e  for testing . However ,  asphalts  PR- 1 0 3  and 

PR- 1 3 2  were inc luded in the test  program s ince the i r  properties  

are  s imilar  in  nature to  thos e  of  cracked asphalts  despite  the ir  

s omewhat gre ater te�perature susceptib i l i t ie s , 

The results o f  s t andard laboratory tests  pe rformed on the 

asphalt cements  are presented in Tab le 3 .  The 8 5 • 1 0 0  penetration 

grade asphalts  exhibi ted e s s en t i a l ly s imilar  properties  with the 

exception of the l ow Saybo1t  Furol  vis co s i t i e s  of asphalts  9 1  

and 1 1 6 ,  The thin f i lm oven loss  was s omewhat high for asphalt  

1 3  in comparison to  the othe r 8 5 · 1 0 0  p enetration asphalts but 

was p rope rly ordered wi th respect to asphalts  1 2 7  and Z O O  whi ch 

were ob tained from the s ame crude s ource and refining process , 

TEST PROCEDURE 

E ach asphalt was tested at temperatures o f  39 , 2 ,  7 7 ,  and 

1 0 4° F ,  At e ach temperature , a minimum of three intensities  o f  

torque were app l i e d ,  These intensities  yere chosen s o  a s  to  

provide s ignificant angular displacements  in  a reasonable period 

o f  time , I n  order to  avoid possible  e ffects o f  s t rain history ,  

a new specimen was used for e ach increment of torque. A s ingle  

specimen was  tested  for each comb ination of temperature and 

torque , 

T ab le . 4 ,  s ummarizes  most o f  the testing reported as a portion 

. .  o f  .. this  s tudy phase. Only the smal l  cup - and�bob assemb ly was 

employed for these tests , The l arge drive pulley was used for 



Asphalt 
Penetration 

Numbe r 
100 gm 2 0 0  gm 

G rade 5 s e c  6 0  s e c  
7 7 ° F  39 . 2 " F  
( . 1  mm) ( . 1  mm) 

3 8 5 - 10 0  8 7  4 3  
1 3  8 5 - 10 0  8 8  31 
4 5  8 5 - 100 9 2  2 9  
5 3  8 5 - 100 86 33 
6 7  8 5 - 100 90 41 
71  85 - 10 0  9 0  2 2  
7 2  8 5 - 10 0  9 5  3 7  
9 1  8 5 - 100 96 2 5  

116 8 5 - 10 0  8 8  2 8  

12 7 60 - 70 60 29 

2 0 0  1 2 0 - 1 5 0  12 2 40 

P R - 1 0 3  1 4 1  s o  
PR- 132 2 4  2 

TABLE 3 

RESULTS OF STANDARD TESTS ON ASPHALTS 

Duct i l i ty 
So ftening Spe·cific 

Point Gravity 

Pen. 5 em/min 1 em/min ( "F) @ 7 7 " F  

ratio 7 7 ° F  39 . 2 " F  
39 . 2 /7 7  ( em) (em) 

( % ) 

49 150+ 5 6  1 2 1  1 . 0 3 5  
35 150+ 84 1 2 5  1 .  0 32 
32 150+ 30 114 1.  020 
38 150+ 2 2  120 0 , 9 9 8  
46 150+ 14 1 2 2  1 . 0 3 1  
2 5  96 4 8  1 12 1 . 00 5  
39 150+ 24 116 0 . 9 9 4  
2 6  1 5 0 +  1 5 0 +  1 1 1  l .  0 1 3  
32 150+ 8 1 1 3  1 .  0 2  3 

49 150+ 16  119  l .  0 33 

33 150+ 110  113  1.  0 32 

35 - 1 1 0 +  106 1 . 16 7 
8 - - 1 3 4  1 . 16 3 

Sayb o l t  
Furol 

Vis cos i ty 
@ 2 7 S " F  

(sec)  

2 6  7 
2 5 3  
189 
1 5 9  
2 1 5  
146 
1 7 5  

84 
76 

348 

2 5 0  

2 2  
4 3  

Thin F i lm Oven Tes t  

Pen . Res . 
% Loss . 

Pen . Or1 g .  
( % )  

0 . 2 7  6 3  
0 . 7 3 3 7  

+ 0 . 0 9  6 2  
+0 . 2 8  6 7  

0 . 06 5 9  
+0 . 0 2  6 4  
+0 . 5 4  5 8  

0 . 0 9  6 9  
0 .  0 3 5 3  

0 . 6 5 5 0  

1 . 2 6 40 

10 . 9 8  5 
7 . 5 4 0 

I 
"' 
.,. 

I 
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TABLE 4 

TEST PROGRAM 

Total Approximate She aring S t ress  
Aspha l t  Temperature Load Max1mum Ave ra�e Minimum 
Numbe r  ( o F )  (gms)  (d /cmZ ) ( d/ em ) (d/cmZ ) 

All  
Aspha lts 1 39 ' 2 8 00  1 0 7 , 7 0 0  6 6 , 40 0  4 0 , 9 0 0  

1 , 40 0  1 89 , 80 0  1 1 6 , 2 0 0  7 1 , 50 0  
2 , 0 0 0  2 6 9 , 00 0  1 6 6 , 0 0 0  1 0 2 , 2 0 0  

7 7  4 5  2 , 9 2 0  1 , 80 0  1 , 1 1 0  
9 0  5 , 84 0  3 , 60 0  2 , 2 2 0  

1 3 5  8 , 7 60  5 , 40 0  3 , 330  
180  1 1 , 6  8 0  7 , 2 00 4 , 4 40 

1 0 4  10  6 49 400  2 46 
1 5  9 7 3  6 0 0  3 7 0  
2 0  1 , 2 9 8  8 00  4 9 2  
2 5  1 , 62 0  1 , 0 0 0  6 1 5  

32 39 ' 2  8 0 0  10 7 , 7 0 0  66 , 40 0  4 0 , 9 00  
1 , 20 0  1 6 1 , 40 0  9 9 , 60 0  6 1 , 40 0  
1 , 6 0 0  2 1 5 , 00 0  1 3 3 , 0 0 0  8 1 , 80 0  
2 , 0 0 0  2 6 9 , 0 0 0  166 , 0 0 0  1 0 2 , 2 0 0  

2 o o 2 39 , 2  4 0 0  5 3 , 8 0 0  3 3 , 2 0 0  2 0 , 40 0  
6 0 0  8 0 , 6 0 0  49 , 80 0  30 , 7 0 0  
8 0 0  10 7 , 7 0 0  6 6 , 4 0 0  4 0 , 90 0  

PR- 1 32 2 39 , 2  No Tests  

7 7  1 80 1 1 , 6  s o  7 , 2 0 0  4 , 440  
360  2 3 .  30 0 1 4 , 40 0  8 , 90 0  
540  35 , 00 0  2 1 , 6 o o · 1 3 .  300  
7 2 0  46 , 70 0  2 8 , 80 0  1 7 , 80 0  

1A l 1  asphalts were tested under these  conditions with the 
exceptions noted be low , 

2The tabulated data indi cate how the tes ting for spe c i f i c  
asphalts di ffered from the general tes ting program ,  
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tests  at  3 9 , 2 ° F ,  and the small pul ley was us e d  at  the remaining 

two t emperatures ,  The maximum and min imum shearing stresses  noted 

in Tab le 4 were located at  the surfaces of  the bob and cup , 

respective ly , and were computed using Equation 3 ,  The average 

shearing s tress  through the annulus of  the specimens was computed 

as follows : 

sav = T/ Z 1r a1 a2 1 .  ( 36 )  

The procedures for preparing the vis cometer  and specimens for 

test ing and for conducting the creep t e s ts are des cribed in 

Appendix A .  These  procedures were prepared t o  guide l aboratory 

personne l  by s tandardi zation . of the t e s t  methods . 

After e ach set  of tests  was completed ,  ari thmet i c  p lots of  

e vs . t and Q� vs . CT  were constructed,  Thes e  plots were 

analy zed  to  ascertain the characterist ics of  observed flow 

behavio r .  The detailed procedures of  data analysis  are more 

fully des cribed in subsequent sections , 

1n0 is  the s teady - s tate angular velocity of the bob relative 
to the cup . 



PRESENTATION OF RESULTS 

Creep curve s , which are p lots of the ang le of rotation of the 

bob relative to the cup and e lapsed  t ime , are the basic  form of 

output from the vis cometer ,  The graphs of such curve s for 

asphalt 7 2  are shown in F igure 1 5 , Thes e  graphs are s im i lar in 

shap e  to  thos e  for a l l  of  the othe r asphal t s  and ,  there fore , may 

be cons idered typical  creep curves .  One graph has been construc t ­

e d  f o r  e ach of  the three test  tempe ratures and an individual curve 

has been drawn for e ach value of the CT product � - that i s , e ach 

leve l o f  shearing stres s ,  The scales  for e ach of  these three 

g raphs were chosen so as to best  represent the extent of  testing 

accompl ished and ,  for thi s  reason ,  are not identicaL The curves 

do , however , retain their s ame re lative shapes  when i dentical  

s cales  are us e d ,  

I t  i s  readi ly apparent that the comp lexity of  flow i s  

influenced b y  the t e s t  temperature . For the duration of  each 

t e s t  at temperatures of 1 0 4 ° F  and 7 7 ° F ,  a linear relationship 

was obs e rved between the ang le of rotation and t ime , I n  each 

case , the experimental line may be  assumed to  pass  through the 

orig in , Thi s  behavior is indicat ive of s teady - s t ate flow, How­

eve r ,  at 39 ° F  a s ligh t  intercept with the ang l e - o f - rotation axis  

was obs e rved1 , a distinct curvature was noted for small time s , 

and a l inear condi tion was approached as the test  p rogres s e d .  

Thi s  b ehavio r  is  s imilar  t o  that depicted b y  Figure 8 which 

1This  is  not �e adily apparent fr�m Figure 1 5  because of the 
s cale  that was used for this presentation ,  
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represents a material  exhib i t ing instantaneous elastici ty , 

vi s coe lasticity , and s te ady - s tate flow" 

TESTS AT 1 0 4 ° F  

Ang le o f  rotation vs " time plots  were constructed for the 

tests  at 10 4 ° F ,  The form of these plots  revealed that a l l  o f  

th e asphalts  exhib i te d  s teady - s tate flow behavi or a t  this temp e r -

ature , The s teady - s tate , angular ve locity , n 0 ,  was then 

determined  from the s lope o f  the l inear e - t  p lot for e ach test  

condit i on ,  Figure 16  shows the re lationship between th� s te ady­

s t ate velocity and the CT product for each o f  the 1 3  asphal ts , 

The curves o f  this  f igure show dis t inct linear re lationships 

wi th  extrap o l ated intercepts on the CT axi s .  Comparing this  

obs e rved behavior  with that summarized  in F igure 6 for vari ous 

i de a l , steady - s t ate liquids , i t  i s  concluded that each of the 

asphalts behave e s s entially as Bingham plast ics at 1 0 4 ° F ,  The 

flow behavi or  of an i deal  Bingham p l as t i c  in a rotating coaxial  

cy linde r vis cometer  i s  more clearly dep i cted in  Figure 4 o  

After the manner suggeste d  in Figure 4 ,  the yield  stres s , 

Sy ' and the coefficient of plastic  viscos ity , np , were 

evaluate d  for e ach of the asphalts , The results o f  this  

evaluation are presented in Tab le 5 ,  The yield  stresses  are 

qui te small and range in value from 1 0 8  dynes / cm2 to  2 1 6  dynes / cm
2 , 

Since the minimum applied  shearing stress  o f  2 46 dynes / cm2 

(from Tab le 4 )  . exceeded a l l .  yield  s tres ses , f low occurred 

throughout . the annulus of the material  and Equation 1 8 c  adequate ly 

. de s cribes the flow behav i o r ,  
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Asphalt 
Number 

3 
1 3  
4 5  
5 3  
6 7  
7 1  
7 2  
9 1  

1 1 6  
1 2  7 
2 0 0  

PR- 10 3 
PR- 1 3 2  

- 4 1 -

TABLE 5 

MATERIAL PARAMETERS EVALUATED AT 1 0 4 ° F  

Yield  Stress , Sy 
( 10 2 dyne s / cm2 ) 

l. 9 R  
1 ,  7 3  
1 , 9 7 
1 , 82 
1 , 3 3 
1 .  7 3  
2 , 0 9  
2 , 0 0  
2 , 0 5  
2 , 09  
2 , 0 9  
1 .  0 8  
2 , 16 

Coeffi cient of  
Plastic  Vis c o s i ty , np 

( 1 0 4 p o i s e s )  

7 ' 0  3 
5 , 35 
3 , 5 4 
3 . 5 6 
6 , 1 3 
3 , 40 
3 , 66 
2 , 3 1 
2 ' 2  2 

10 ' 30 
2 , 49 
1 . 0 2 

2 5 , 5 0 

The coeffi ci ent of  plastic  viscosity exhibited con s i derab ly 

more variab i lity among the asphalts  than did  the yield  s t res s ,  

The coefficient of plastic  vi scos i ty ranged from a min imum of  

1 . 02 x 10
4 

poises  ( asphalt PR- 1 0 3) to  a maximum of 2 5 , 5 0 x 10 4 

poises  ( asphalt PR- 1 3 2 ) , No dis cernab le relationship was found 

to exi st  between the yield  s t ress  and the coefficient of p l as t i c  

viscosity , 

The p l as t i c  viscosity measurements may be  us ed to  classify 

or  group the asphalts  on the basis  of  the ir  cons i s tency at 1 0 4 ° F ,  

Such a clas s ification is  presented in Tab le 6 ,  The viscos i ty 

intervals were s e lected s o  that the i r  range s  were approximately 

i dentical  on a logarithmic  plot , I t  i s  interes t ing t o  note that 

two of  the PAC - 5  asphalts ( 9 1  and 1 1 6 )  were s light ly less  viscous 

at 1 0 4 ° F  than the PAC - 7  asphalt ( Z O O ) , I t  may be recalled that 
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TABLE 6 

CLASS I F I CATI ON OF ASPHALTS BY P LASTIC  
VISCOSI TY AT 1 0 4 ° F  

Vis cos �ty Interval 
( 1 0  p o i s e s )  

1 . 0 - 1 . 6  
1 . 6 - 2 , 6  
2 , 6 - 4 . 2  
4 . 2 - 6 , 8 
6 , 8 - 11 , 0  

� 1 1 .  0 

Asphalt Numbers 

PR- 1 0 3  
9 1 , 1 1 6 , 2 0 0  
4 5 , 5 3 , 7 1 , 72 
1 3 , 6 7  
3 , 1 2 7  
PR- 1 3 2  

thes e  two PAC - 5  asphalts had relative ly low Saybo l t  Furol 

vis cos i ties  and ring - and-b a l l  s o ft ening points . 

TESTS AT 7 7 ° F  

The test  results obtained at 7 7 ° F  were analyzed in a manner 

s imi lar to  those at  10 4 ° F ,  Once again all of  the asphalts  

exhibi ted  s t e ady- s t ate flow throughout the test  durat ion , Figure 

1 7  shows the re lationships b etween the steady - s t ate , angular 

ve locities  and the CT product for all  of  the asphalts tested  at  

h . 1 t 1s  t emperature , As before , a l l  of  the asphalts  (with the 

excep tion of asphalt  1 2 7 )  exhibited properties  indicative of a 

Bingham p l a s t i c ,  Asphalt 1 2 7  had no dis cernable yield  s tress  

and was , the refore , assumed t o  exhib i t  pure Newtoni an flow ,  

Tab le 7 s ummarizes  the value s o f  the material  paramete rs 

evaluated at 7 7 ° F ,  The yield  s tres s e s  are again quite low and 

-

lAsphalt PR- 1 32 , although tested at 7 7 ° F ,  was omitted  from 
this figure becaus e of  its  highly vis cous prbperties  when com­
pared wi th the other asphalts , However ,  i t  also  exhibited prop­
erties  character i s t i c  of  a B ingham p l as t i c ,  





Asphalt  
Numbe r  

3 
1 3  
4 5  
5 3  
6 7  
7 1  
7 2  
9 1  

1 1 6  
1 2 7  
2 0 0  

PR- 1 0 3  
PR- 1 32 

- 4 4 -

TABLE 7 

MATERIAL PARAMETERS EVALUATED AT 7 7 ° F  

Y i e ld Stre s s , Sy 
( 1 0 2 dynes/cm2 ) 

1 . 0 4  
3 , 66 
4 '  6 3 
1 .  4 5  
1 , 94 
3 , 7 3  
3 , 66 
2 , 9 1 
4 , 9 7  
0 
4 , 0 7  
8 , 56 

1 1 . 9 0 

Coefficien t  o f  
P las t l. c  Viscos i ty , np 

( 1 06 pois e s )  

l ,  4 7 
1 .  3 4  
0 , 94  
1 . 1 5 
l ,  5 1  
0 , 9 7  
L 2 4 
0 , 70 
1 . 1 2 
3 , 89 
0 , 5 3 
0 , 34 

2 1 . 6 0 

asphalts  3 ,  5 3 ,  and 1 2 7  had smaller  yield  s t resses at  this  

temperature than they h ad at 1 0 4 ° F ,  This  apparent inconsis tency 

is  attributed to a comb ination o f  experimental and g raphical  

e rrors magni fied  in effect due to  the smal l  yield s t ress  leve l s , 

Comparing the yield  stresses  o f  Tabl e  7 with the minimum app lied 

shearing s tresses  o f  Tab le 4 ,  i t  is  apparent that flow occurred 

throughout the annulus of e ach test  specimen wi th the exception 

of asphalt PR- 1 32 , Asphalt PR- 1 32 had a yield  stress  o f  1 , 1 9 0  

dynes / cm2 whi ch was s lightly in excess  o f  the min imum app l ied 

she aring stress  of 1 , 1 1 0  dynes / cm2 for one of the t e s ts , Again 

no discernab le relationship was found to  exi s t  between the 

y ield  stress  and the coefficien t  of plastic  visco s i ty ,  

The aspha l t s  are g rouped according to plastic  visco s i ty at  

7 7 ° F  in  Tab le 8 ;  The · asphalts maintained the i r  s ame relative 
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TABLE 8 

CLASSI FICATION OF ASPHALTS BY PLAST I C  
VI SCOSI TY AT 7 7 ° F 

Vis cos � ty Interval 
( 10 pois e s )  

0 , 3 - 0 , 5  
0 , 5 - 0, 8 
0, 8 - 1 . 4  

1 . 4 - 2 , 4  
2 , 4 - 4 , 0  

> 4 , 0  

Asphalt Numbers 

Pl� - 1 0 3  
9 1, 20 0  
1 3, 45, 5 3, 7 1, 
72  , 116  
3 .  6 7 
12 7 
PR- 1 32 

grouping as at  1 0 4 ° F (Table 6 )  with the exception of asphalts 3, 

1 3, and 1 1 6 ,  Asphalts 3 and 1 3  became relatively less viscous 

due to the i r  smaller tempe rature sus ceptibilities and asphalt · 

116  became relatively more vis cous due to its greater temper­

ature sus ceptibility , 

TESTS AT · 39 , 2 ° F 

All of the t e s t  results at 3 9 , 2 ° F showed ins t antaneous 

elasticity and a combination of s teady - s t at e  and vis coelas tic 

flow , The creep curves were s imilar to those depicted in Figure 

8 and Figure . 15 ( 39 , 2 °F ) , Each curve was analyzed by separating 

it into  the three basic components (as  shown in Figure 8 ) ;  e1 

which represent s ·  ins t antaneous elas tic deformation, e 2 which 

represent s · s teady - s t ate flow, and· e 3 which represents vis coelas tic 

flow, 

The ins t antaneous elastic deformation, e 1 , is described by 

Equation 32, This equation may be used to  evaluate the elastic 
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shear modulus , G0 , p roviding e 1 and CT are known , The ang le , 

e 1 , was dete rmined by rapi dly loading and unloading e ach s amp le 

a number of t imes and comput ing an average value for the ins t an­

taneous ang l e  of rotation , This  determination was  made after 

e ach creep test was completed  s ince e 1 is  time- independent and 

should not be influenced by previous stress  history . The e l as t i c  

shear modulus , G , was determined from the s lope of  the linear  0 

plot  of CT against  e1 , I ts value for each of the 1 2  asphalts  

tested  at  thi s t emperature is  summarized  in  Tab le 9 ,  

Asphalt 
Numbe.r. 

3 
1 3  
4 5  
5 3  
6 7  
7 1  
72  
9 1  

1 1 6  
12  7 
2 0 0  

PR- 1 0 3  
PR- 1 32 

TABLE 9 

ELASTI C  AND STEADY - STATE MATERIAL 
PARAMETERS EVALUATED AT 3 9 , 2 ° F  

Elastic  Modulus , G0 
( 1 0 7 dynes / cm2 ) 

2 , 6 7  
3 , 2 0 
3 , 0 4  
2 , 70 
2 , 2 6 
1 .  89  
2 , 0 8  
1 .  9 5  
2 , 0 4  
1 .  8 3  
1 .  5 6  
1 .  5 5  

Yie !d Stre s s  , sy 
( 1 0  dynes/cm2 J 

1 . 12 
1 .  46  
0 
0 
2 , 7 5 
1 .  86  
1 . 10 
0 , 3 7 
2 , 0 5 
0 , 90 
0 
0 

Not Tes ted 

Coefficient of  
Plastic  Vis cos ity , np 

( 10 8 poi s e s )  

3 0 32 
5 . 5 1 
8 , 6 6  
9 , 8 5 
5 0 1 1 
9 , 5 2 
9 , 6  3 
4 .  6 1  

19 , 40 
1 4 , 8 0  

2 , 4 7 
2 , 8 4 

The s teady - s t ate flow de formation ,  e2 , is  described by 

Equat i on 3 3 ,  The s te ady� s t ate , angular velocity of this  equation 

was determined by �omput ing the s l ope of  the s traight - line port i on 

of e ach creep curve . A plot  of  these steady- s tate , angular 

ve locities  against CT product was made for each asphalt t e s t e d  
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at 39 , 2 ° F ,  The resulting graphs are presented in Figure 1 8 .  

An analys is of these graphs indicates that the steady - s tate 

portion of  flow is simi lar in some cases to that of B ingham 

p last ics and in other cases to that of Newtonian materials . The 

distinction appears to be re lative ly ins ignificant , however ,  due 

to possible  errors occas ioned in extrapolation of the n0 - CT 

curve to its intercept on the CT axis  and the re l atively sma l l  

intercepts that were observed ,  

The yie ld  st ress , S , and the coefficient of p las tic  viscos ity , 
y 

np , were evaluated from the steady - s tate behavior of e ach asphalt  

us ing the curves of  Figure 1 8 ,  The results of  this eva luation 

are also  summari zed in Tab le 9 ,  The yield  stres ses  are 

re lative ly smal l  and are exceeded in every case by the minimum 

app lied shearing st re sses  (compare with Tab le 4 ) . Once again , 

this indicates that steady- s tate flow occurred throughout the 

annulus of the test materi a l ,  The s teady- st ate flow deformat ion ,  

e2 , may then be computed us ing Equat ions 18c  and 3 3 ,  

The asphalts are grouped according to their p l astic  viscos ity 

at 39 . 2 ° F  in Tab le 10 , Ag ain there were s l ight readjustments 

from the groupings at 1 0 4 ° F  (Tab le 6) and 7 7 ° F  (Tab le 8) which 

were caused by di fferent temperature susceptib i l i ties of  the 

various asphalts , 

The vis coe lastic  flow deformation , e 3 , is described by 

Equation 2 7 ,  To evaluate the cons tants , Jk and T k • of 

Equation 2 7 ,  the fol lowing procedure was employe d ,  First , 0 3 

was computed as fo l l ows : 

0 3 = 8 - CT/G - n t 0 0 ( 3 7) 
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TABLE 1 0  

CLAS S I F I CATI ON O F  ASPHALTS B Y  PLASTIC  
VISCOS I TY AT 39 , 2 ° F  

Vi s cos ity Interval 
( 1 0 8 p o i s e s )  

Asphalt  Numbe rs 

2 , 4 - 3 , 7 
3 ,  7 - 5 , 6  
5 , 6 - 8 , 5  
8 , 5 - 1 3 . 1 
1 3 . 1 - 2 0  

3 ,  PR- 10 3 ,  2 0 0  
1 3 , 6 7 , 9 1  

4 5 , 5 3 , 7 1 , 7 2 
1 16 , 12 7  

0 3 = viscoe las t i c  flow deformation 

8 = 

G = 0 

total  obs e rved angle  of  rotation 

expe rimen tally evaluate d  e lastic  shear modulus 

n0 = experimen tally evaluated s teady - s tate angular 
velocity , 

Equation 3 7  s imp ly s tates  that the viscoe lastic  flow deformation 

equals  the total  deformat i on less  i t s  components of  s teady - s tate 

flow and ins tantaneous elasticity ,  The quoti ent of 0 3 and the 

CT product is the creep funct i on ,  � .  for vis coe las t i c  flow 

b ehavior and is i deally independent of shearing stress  ( see  

Equati ons 2 9  and 3 1 ) , Thus , 

� ( t )  = ( 0  - CT/G0 - n0t ) / CT .  ( 38 )  

The experimental creep function for each o f  the asphalts  and 

e ach level of applied  shearing stress  was computed using the 

above procedures , Figure 1 9  shows the results for asphalt 72 , 

The creep functions for the three di fferent stress  levels should 

theoret ically coincide if the vis coe lastic  behavior were linear 

and there were no experimental  errors , Figure 1 9  shows that the 

experimental  creep functions for asphalt 72 are obvious ly not 

identica l ,  The data for this asph alt are repres entative o f  those 
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"" 

for the othe r asphalts . The results among the diffe rent asphalts  

were not predictab le ,  however ,  in that the larg e s t  creep function 

generally occurred at the smallest stress  leve l for s ix of  the 

asph"alts , at the int e rmed i at e  leve l for four of the asphalts , and 

at the larges t  leve l for two of the asphalts . 

S ince there was apparently no cons i stent relationship between 

creep function and s t re s s  leve l ,  it was fe l t  that the dis crepancies 

among the creep functions could probab ly be attributed t o  

experimental  and g raphical  errors rather than to  material  b ehavi o r .  

This  conc lus i on was s ub s t an t iated b y  comparing the creep ·funct ions 

computed on the bas is of the total  ang le of rotation ,  El , with 

those compute d  on the b as i s  of  e 3 • The abs olute value of the 
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diffe rences among the t ot a l - angle creep functions for the three 

s tres s  leve ls  averaged about 6 percent wh i l e  for the 0 3 creep 

functions this average diffe rence was about 2 5  percent . Since 

the dis crepancies in the total - angle creep functions were 

acceptab ly sma l l  ( average of 6 percent) and we l l  wi thin the 

limits of experimental erro r ,  the asphalts  appear to behave 

linearly under the conditions of test  emp loyed he rein , There fore , 

the l arger dis crepancies  observed in the 8 3 creep funct ions 

( average of 2 5  percent) are most  probab ly due to expe rimental  

and g raphical  e rrors . 

Despite the s e  e rrors , i t  i s  felt  that the creep funct i ons 

do furni sh a re l i ab l e  indi cation of the general viscoelas t i c  

p roperties  o f  the materials . Thus , an average creep function 

was calculated for e ach asphalt and this  average was us e d  in 

the evaluation o f  the vis coe lastic  parameters , Gk and 'k ' 

Figure 2 0  shows the ave rage creep functions , computed on the 

ba sis  of e 3 , whi ch were used in this analys is . 

On the bas i s  o f  Equation 2 9 , the creep function for l inear 

vis coe lastic  behavior is  as fol lows : 
n 

� (t )  = E [ 1  - exp ( - t / • k) ] /Gk ' 
k= l  

( 39 )  

A curve - fitting technique , which is  des cribed in detail  in 

Appendix B ,  was developed and used to evaluate the material  

p arame ters o f  Equation 39 , THe mat�Tial p arameters were 

s e lected so  that a b e s t  fit  by the least  squares criterion was 

achieved b e tween the theoretical  relationship of Equation 39 

and the observe d ,  average creep functions for the various 

asphalts , The numbe r  o f  Voi g t  e l ements , n ,  was varie d  beg inning 
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with one and increas ing by increments o f  one un t i l  t h e  comput e d  

values o f  the creep functi on were i n  s a t i s fa c t o ry agre eme n t  

wi t h  t h e  obs e rved v a l ue s , The t e chn ique was p ro g rammed for the 

I BM 7040 comp ut e r :  a di s cus s i on o f  this p r o g r am i s  i n c l uded 

as App endix C ,  

A p r int - ou t  o f  the r e s u l t s  for asph a l t  7 2  i s  inc luded f o r  

i l lus t r a t i on as F i g u r e  Z L  T h e  b a s i c  d a t a  f o r  the analy s i s  

are g i ven i n  the c o l umns a l igned b en e ath t h e  h e ading " D a t a  S h e e t " ,  

The values o f  the obs e rve d ,  t o t a l  ang l e  o f  r o t a t i on an d the e 3 
creep fun c t i on comp u t e d  for e a ch v a l ue o f  t he CT p roduct are 

printed for s e l e c t e d  values o f  e l ap s e d  t ime , Th e headings 

''THETA 1" and "CF 1" c o r re spond to the o b s e r v e d ,  t o t a l  ang l e  

o f  rotat i on and the computed creep fun c t i on r e s p e c t i v e l y  for the 

sm a l l e s t  CT p r o duct noted in the h e a d ing ; " THETA 2" and "CF 2 "  

c o r r e s p ond t o  t h e  i n t e rme d i a t e  CT p r oduct ; and , fin a l l y ,  " THETA 

3" and " C F  3" c o r r e s p ond t o  the l a r g e s t  CT produc t , Only t h r e e  

l eve l s  o f  the CT p roduct are p e rm i t t e d .  T h e  a v e r a g e  creep 

fun c t i on for the s e  three l e ve l s  i s  shown in t he l as t  c o l umn o f  

the " D a t a  She e t " , 

I n forma t i on c on c e rn ing the equat i on o f  b e s t  f i t  i s  g i ven in 

the s e t  of c o l umns a l igned beneath the heading , " E quat i on o f  

B e s t  F i t " , One s uch s e t  o f  c o lumns i s  shown for e ach v a l u e  o f  

n ,  the numb e r  o f  V o i g t  e l ements i n  the m o de l .  F o r  a two - e l ement 

mode l ,  for examp l e , "TAU l " , " G l " , and " V l S C l "  refer to the 

r e t ardation t im e , s h e a r  modulus , and c o e f t i c i en t  o f  v 1 s c o s i t y ,  

r e s p e c t i v e ly , for t h e  f i r s t e l ement wh i l e "TAU2 " ,  " G 2 " ,  and 

"VI S C 2 "  r e f e r  t o  t h e  s ame v a l u e s  f o r  the s e c ond e l ement , The 

values s h own for t h e s e  p a r am e t e r s are t h o s e  d e r i ve d  from the 
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least  squares criterion and ,  hence , represent the best  values for 

the two - e lement mode l .  The first  three pairs of  co lumns compare 

the obs e rved total  ang les of  rotation for the three stress  

leve ls wi th those  calculated on the  basis  of the  generalized  

model (Equat ion 3 5 ) , The last  two columns show a comparison 

between the observed average creep function and the creep 

function computed from Equat ion 39 us ing the t abulated values 

of  Gk and T k • The s t andard devi ations between the ob s erved 

and calculated value s are printed at the bottom of e ach pair  of 

" ob s e rved" and '' calculated" columns . As a matter  of record , the 

output for all  of the asphalts  tes ted at 3 9 , 2 ° F  is inc luded as  

Appendix D .  

The best  corre lation b e tween the obs e rved and computed creep 

funct i ons was obtained  for asphalt  7 2 . Fi gure 2 2  depicts the 

data for this asphalt . The agreement b e tween the observed creep 

function and that computed for the three - e l ement mode l is con­

s i dered qui te accep t ab le and no s igni ficant improvement can be  

rea l i z ed by  increas ing the numbe r  of  e l ements . The worst  

corre lation was obt ained for asphalt  3 ,  the data for which are 

shown in Figure 2 3 ,  The two - e l ement mode l i s  considered optimal 

in this ins t ance s ince further increases in the number o f  

e l ements do not s igni ficantly improve the correlation ,  

The viscoelastic  material  parameters for a l l  o f  the asphalts 

are summari zed  in Tab le 1 1 .  The optimal numbe r  of  Voigt e l ements 

was s e lected as that numb e r  beyond whi ch s ignificant increases  

in  the degree of  corre lation between the observed and computed 

creep funct i ons could not be achieve d ,  This s e lect ion was made by 



'· c 

"'§ I. 6 

! ;;; : 
� 
0 

• 

i .B 
� • 

. . ,  

� 0. 8 
u 

c. 4 

- 5 7 -

n = 3 

���-- n "  l 

/ �:;?' 
- --

/./_ . 
j// 

--- Observed 

___ Computed 

0 0,'------------+,"'----------�4�----------�,,-----------Js�c,----------nlotcc-----------�,----------c/4o 

Figure 2 2 ,  

i 
! 

3. 0 

z. ,4 

� 8 

• 

i "3 § 1. 2 
" 

: � 
0. 6 

T i m e , ·  -t (min) 

Comparison Be tween Observed and Computed Cre.ep Functions 
for Asphalt 72 . 

" 40 6C 80 

Time, t (min) 

100 

n � 2 
n = I 

Observed 

Computer! 

EO 140 

Figure 2 3 .  Comparison Between Observed and Computed Creep Functions 
for Asphalt 3 .  



TABLE 1 1  

VISCOELASTI C  MATERIAL PARAMETERS EVALUATED AT 39 . 2  ° F  

Optim-al 
Vis coe l as t i c  Parame t ers 

Standard 
Asphalt Nwnber F i rs t  E lement Second, E lement Thi r d  E lement 

Deviation of Numbe.r 
Voigt G l n l Gz n z G3 " 3 

E lements ( 10 6 d/cm2 ) ( 109 poises) ( 1 06 djcm2 ) ( 1 09 p o i s e s )  ( 1 06 d/cm2 ) ( 1 09 p o i s e s )  ( 1 0 " 8 rad/d/cm2 ) 

PR- 10 3 1 3 , 1 7 1 .  38 2 . 6 0  
3 2 0 . 4 1 , _ 1 2 .  2 7 0 , 15 4 .  35 

1 3  2 0 , 4 8 1 .  0 2  2 . 34 0 , 2 6 2 .  3 4  
5 3  2 0 .  6 8. 1 . 09 4 , 1 8  0 , 46 1 .  so ' 
7 l  2 0 . 6 4  1 .  2 6  5 .  82  0 , 6 2 0 , 9 4  V1 

00 
9 l  2 1 . 0 9  5 .  6 7 9 . 5 4 0 , 27 3 .  30 

1 16 2 0 , 86 1 .  4 7 7 .  76 0 , 6 3  3 . 4 1 
4 5  3 0 .  70 1 . 5 4 2 . 9 2  1 .  O S  7 . 9 2  0 .  2 1  0 , 6 4  
6 7  3 0 . 4 9 0 , 9 5 2 . 3 8 0 .  46 7. 6 4  0 . 10 1 .  4 9  
72 3 0 . 6 7  1 .  5 2  3 . 06 1 , 09 7 , 69 0 . 2 1 0 , 6 1  

12 7 3 0 , 8 1 1 .  6 8  3 . 8 2  0 , 92 12 . 10 0 . 2 1  0 .  90 
200 3 3 ,  7 1  0 , l l  0 , 5 3  1 .  0 7  0 , 8 7  0 , 3 3 2 .  9 2  

1 1 , 10 x 10 38 poises 
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ascert aining the minimum numbe r  o f  e l ements for whi ch the 

decrease in s t andard deviation due t o  an increase of one in the 

numbe r  of e lements  was less  than 2 0  p ercen t ,  

N o  part i cular phys ical s ignificance should be attached t o  

the optimal numbe rs of  e l emen ts g iven in Tab le  1 1  s ince the 

analysis  was based  on empirical  corre lat ions and curve - fitting 

t e chnique s ,  What is of importance , however ,  is the f�ct that 

the vi scoelastic  portion of the total flow behavior can be 

. c lo s e ly approximated by the genera l i z e d  Vo igt body cons i s t ing 

of a maximum of three e lements , 





ANALYSIS  OF RESULTS 

APPARENT VISCOSITY 

The method  for evaluating material  p arameters whi ch has 

been used in preceding s e ctions is  based  on an analys is  of  the 

comp lexity of flow exhibited  by e ach asphalt under each set  of 

t e s t  condi t i ons o At the s ame t ime , the rotating coaxial  cylinder 

vis cometer c an also  be use d  to obt ain a shear� dependent , apparent 

viscosity1 which does not require an evaluation of the comp lexity 

of  flow. The apparent viscosity  is computed as fol lows : 

n a = CT -
" 

( 40 )  

where n a = apparent vis cos ity 

n = angular velocity of  b ob re lat ive to cup o 

The corresponding rate of shear  and ave rage rate of  shear are 

g iven by Equations 15 and 1 6 ,  respective ly , which are repeated 

here for convenience • 

Y ( r) = - n 
. o [ 2 ] [ 1 ] 

l/a , 2 � l /a , 2 rZ 
( 15 ) 

1The app arent vis cos i ty ( 4 6 )  is  the ratio of  shearing s tress 
to  rate of shear and ,  for non�ewtonian liquids , is  dependent 

. upon rate of shear and ,  in s ome ins tances , upon she aring s tress . 
- 6 1 -
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2 al a2 
Y ( av) = Q ( 1 6 )  

2 2 az . - a l 

The angular ve locity in the s e  equat i ons may b e  defined 

s imply as the quot ient of the ang le of rotat i on and e laps ed t ime , 

Figure 2 4  shows a hyp othetical  creep curve that may b e  use d  to 

-
• � 
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"" 0 
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e z 

.('! 1 
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n = el / tl 1 
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n 1 > n 2 

� -- --- --- --- -- -- . --

tl 
Time, t ( seconds) 

t2 

Figure 2 4 .  Evaluation of Angular Ve locity by Secant Method. 

i l lus t rate this method of defining angular ve locity by the se cant 

method .  For a creep curve having this characteri s t i c  shape , the 

angular ve loc ity at point 1 exceeds that at p oint 2 .  According 
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to  Equations 1 5 ,  1 6 ,  and 40 , the apparent viscosity i s , thprefore 

larger  at  poin t  2 while  the· shear rate is larger at , point L Thus , 

for  this  type o f  creep t esting .. and· non -Newtonian materials , the. 

apparent vi s cos ity i s  obvious ly a function of she ar  rate , 

When the shearing s t ress  is  changed , an ent irely new . re l a -

t i onship i s  obt aine d .  This i s  i l lus trated in Figure 2 5  whi ch 

shows vis cos ities  ob tained for asphalt 3 at  39 , 2 ° F ,  At thi s  

temp erature , asphalt 3 has a creep curve s imilar  i n  shape . to 

4 

� 0 � '8 � 2 

' 

§ � 0 u � 
> 

lx10 8 

0 . 7 

- -

_,...----Apparent Viscosity (Steady-State Flow 

-L_ Method) ) 

--- _, --- - ___ , _ ___ ,_ -----
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0 . 2 

2 Say= 66, 400 d/ em 

0. 4 

I 2 Sav=o�9, 6 0 0  d/ em 

Sav = 1 3 3 ,  000 d/ cm2 

0, 7 

Ave rage Rate of Shear, Y (av) ( s e c -1 ) 

Apparent Viscosity (Secant Method) 

1. Oxlo- 3 

Figure 2 5 ,  Comparison of  Vis cos ities of' Asphalt 3 a t  3 9 , 2 ° F ,  
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that shown in Figure 2 4 ,  Examine now on ly those curves o f  

F igure 2 5  for whi ch the apparent viscos i t ies have b een computed 

us ing the previ ous ly exp lained se cant method o f  defining angular 

veloci ty , The secant , apparent vi s co s i ty i s  obvious ly a 

fun ct i on o f  b oth sh earing s t ress and shearing rat e .  

Be cause o f  th is dependence o f  the secant , apparent viscos ity 

on b oth sh earing s tre s s  and shearing rate , i t  is  usual to 

redefine the angular ve l o c i ty of Equation 40 as that ve locity 

corresponding t o  s te ady - s tate flow (il) , Figure 2 6  shows 

hypothet i cal creep curves wh i ch ext end int o  the reg i on of s teady -

s t ate f l ow - - that is , the region in whi ch there is  a l inear 

00 � � 
� 

<D 

.: 0 ·� ., s 0 
1>: 
'« 0 
� � 
"" 

.;j 

S3 > Sz > Sl 
((l0 )3= 6  e316 t3 
(oo

)z= 6 ez! A tz 

(o0\= A et/ " tl 

(o o l 3 > ( q, l z > (r�,,) 1 

s3 

s
z 

sl 

0�----------------------------------------� 

Time, t ( seconds ) 

Figure 2 6 ,  Evaluation o f  Angular Ve locity in Region o f  Steady- State 
Flow, 
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relationship between ang le of rotation and time , The steady­

s t at e , angular ve locity then equal s  the s lope of the creep curve 

in this  regi on ,  Both the angular ve locity and the shear rate in 

the s teady - s tate reg ion increase as the stress  level is incre ased ,  

Since the  s ecant , angular velocities for  a given shearing s t ress  

exceed the s teady - s t ate , angular veloci ties , the steady - state , 

apparent viscos it ies  generally exceed the secant vi scosities  

(Equati on 40 ) , This  is  also  depicted in
'
the actual data  o f  

Figure 2 5 ,  From t h i s  figure , the apparent vis co s i t i e s  evaluated 

by the s t e ady- state  f low method are s een to  be  dependent only 

upon she aring rate , By specifying a s t andard shear rat e , a 

vi s cos i ty measurement can be  obtained which i s  useful in c l a s s i ­

fying or  g rading asphalts  on the basis  of cons i st ency c�. ±I) , 
There are two othe r viscos i ty measurements  of interes t 

be cause o f  the ir  independence o f  both shearing rate and shearing 

s t re s s , The first  of thes e  is  the limit ing or ini t i a l  vis cos i ty 

whi ch occurs at low rates o f  shear and low shearing s tresses  - ­

that is , when the material  i s  beh aving in a Newtonian fashion - ­

and whi ch i s  generally considered to exceed the apparent vis cos ­

ities  evaluated in the she ar-dependent region Cil) , 
The second o f  these shear- independent vis cos ity measurements 

is  that of p l as t i c  vis cos ity , B efore evaluating the p las t i c  

vis cos ity ,  it  i s  necess ary to  firs t e s t ab l i sh that the behavior 

of asphalt cements in the s te ady - s t ate flow regime may be 

rep re s ented by that of a B ingham p las t i c ,  Figures 16 , 1 7 ,  and 

1 8  indicate that the 1 3  asphalt cements of this study generally 

behave as B ingham p l as t i cs in the steady- s tate reg ion (at  least  
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for tempe ratures between 39 . 2 ° F  and 1 0 4 ° F  and for moderate 

shearing s t resses ) .  Figure 2 7  shows the theoretical relat ionship  
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Figure 2 7 .  Theoretical Comparison of Steady-St ate , Apparent 
Vis cosity , "a • and Plastic Vi s co s i ty , np • 

between the s teady - s tate , apparent vi s cos i t ie s  and the plastic  

vis co s i t y ,  np ' I t  is  obvious from this  figure that the s t e ady­

s t at e , apparent vis cosities  should generally exceed the p l as t i c  

viscos ity and should approach i t s  value on ly at  high shearing 

s tres se s  or  high rates of shear1 • This is s upported by the actual 

data of Figure 2 5 ,  

1A word of caution i s  warranted at this point . This  obs e r ­
vation i s  b ased on the p remis e  that the s t e ady- s tate flow behavior  
may be  represented as a B ingham p l as t i c ,  Whi le this  p remise  is  
s upported by  the data  o f  this  s tudy , it  may be  in  error  i f  a 
wider range in shearing rates or t emperatures is  cons idered.  
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I t  is  o f  interest  to  compare the apparent vis cos ity 

measuremen ts obtained wi th the rotating coaxial  cyl inder vis com­

eter  with those obt a ined on identical  asphalts  but with a 

diffe rent type o f  viscometer .  To enab le s uch a comparison ,  the 

Bureau o f  Pub l i c  Roads furnished three s amp les o f  the ir  vis cos ­

ity-graded asphalts , These s amples  were a l l  o f  the AC - 1 0  g rade 

and were des ignated C - 1 0 , E - 10 ,  and 0 - 1 0 .  A comp lete descrip­

t i on o f  thes e  asphalts  and a summary o f  the viscos i ty measure­

ments  obt ained by the Bureau may be  found in Refe rence 4 8 .  

The Bureau used a s l i ding p late viscometer  whi ch was 

operated at  control led rates of shear . Computations of apparent 

viscos i ty were based  on the maximum load attained at e ach rate 

o f  shea r ,  The test  equipment and procedures are ful ly described 

in Reference 4 6 ,  

Figure 2 8  shows a compari s on b e tween the vi s cos ities  

obtained with the coax i a l  cylinder vis cometer  and those obt ained 

with the s l i ding p l ate vis cometer for asphalt C - 1 0  at  4 5 ° F ,  

These results are general ly indi cative o f  those ob tained for 

e ach of the three asphalts  at  all test tempe ratures . It was 

·impossible  to obtain a limi t ing viscos i ty for the tests  with 

the coaxial  cy linde r vis cometer  s ince a rather l imited range in 

shearing rates was emp loyed .  The apparent viscos ities  obt ained 

with the coaxial  cylinder vis cometer were larger than those 

obt ained with the s li ding plate v i scomet e r .  I deally, o f  course , 
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Ave rage Shear Rate, .f(av} ( s e c -1 ) 

Comparison Between Vis cosities Obtained with 
Rotating Coaxial Cylinder Vis cometer and 
S l i ding Plate Viscometer (Asphalt C - 1 0  at 
4 5 ° F) . 

thev should have been equa l .  The plastic  vis cos i ty was also  

larger  than the limiting vis cos i ty ,  The p receding rationale  

would indicate that ideally the  l imit ing viscos i ty should exceed 

the p l as t i c  vi scosity .  

The data  of  Tab le 1 2  may a l so bd used  t o  compare the two 

vis come ters , The apparent vis cos ities  at a speci fied shear 

rate of 0 , 0 0 1  s e c- 1  are tabulated for e ach of  the three asphalts . 

Ag ain the coaxial  cylinde r  vis cometer  generally yie lded viscos ­

ities  in excess of those obtained with the s liding p late 



Asphalt Tempe rature 
Numbe r  ( 0 1') 

C - 1 0  4 5  
C - 1 0  6 0  

E - 1 0  39 . 2  
E - 10 4 5  
E - 10 6 0  

0 - 1 0  39 . 2  
0- 1 0  4 5  
0 - 10 6 0  

TABLE 1 2  

COMPARISON B ETWEEN VISCOSITIES  OBTAINED 
WITH ROTATI NG COAXIAL CYLINDER VISCOMETER AND 

SLI DING P LATE VISCOMETER 

Apparent Vis cos i ty 

(Shear Rate o f  0 , 0 0 1  s e c- 1) 
Limiting 

S l i ding P l ate l 
Percentage 

Coax i a l  Cy l in de r  D i fference Vi s co s i t y! 

(megap o i s e s )  (megap o i s e s )  (%)  (megap o i s e s )  

7 3  1 0 7  + 4 7  7 7  
1 1 . 0  1 1 . 0  0 1 1 . 3  

2 5 7 70 - - 36 ' 0 0 0  
3 8 5 0  _ 2  - 1 2 , 0 0 0  

6 2 5  6 2 5  0 860 

9 5 0  1 2 0 0  + 2 6  9 5 0  
3 1 4  4 0 0  + 2 7  3 1 5  

2 1 . 5  2 6 . 5  + 2 3  2 2 . 0  

1obt ai n e d  from Reference 4 8 .  
2

Extrap o l at i on impos s i b le . 

P l a s t i c  
V i s c o s i t y  

(megap o i s e s )  

9 7 . 7 
7 . 1  

I 
"' 

45 , 40 0  <D 
2 2 , 9 0 0  

1 ,  0 3 0  

1 , 1 5 0  
396 

2 3 . 0  



- 7.0 -

vis come t e r .  The differences between t h e  two types of viscosity 

measurements , expre s s e d  as a percen t age o f  the vis cosities  obt ained 

with the s li ding p l ate vis comet e r ,  are a ls o shown on Tab le 12 . 

The average p ercentage difference b e tween the apparent vis cos ­

ities  i s  2 1  percen t .  Figure 2 9  compares the plastic  viscos i t i e s  

(coax i al cylinder data) with the limi ting vis cos ities  ( s l i ding 

p late data) , Again the plastic  vis cos ities  are generally in 

exces s  of the limit ing viscos i ties , 

The data that have been pres ented definitely indicate a 

dif ference in vis cos i ty measurements obtained using the two 

viscometers . The magnitude of the difference i s  not excess ive , 

howeve r ,  and may have been ant icipated due to  certain fundamental  

differences b e tween the two vis comet ers and thei r  operation by 

di fferent lab oratorie s , Several o f  the·se· differences are listed  

in Tab le 1 3 .  The pos s ib l e  e ffects o f  the s e  differences are 

generally unknown at this time . 

I t  is  concluded that the rotat ing coaxial  cyl inder vis cometer  

can be e ffective ly emp loyed to  evaluate apparent vis cos ities  of  

asphalt cemen ts at  relatively low t emperatures , Data obtained 

wi th this vis cometer compare favorab ly with s imi lar data ob atined 

with the s li ding p late viscome ter .  

TEMPERATURE SUSCEPT I B I LITY 

Data reported herein are s ufficient to compare the suscep t i ­

b i lities  o f  the cons i s tency o f  the various asphalts to  changes 

in temperature , Three of the technique s for defining the 

t emperature s us ceptib i lity of asphalt  cements are used in this  

comparis on inc luding the penetration rati o ,  the p ene trat ion index , 
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TABLE 1 3  

FUNDAMENTAL DI FFERENCES BETWEEN 
VISCOMETERS AND TEST PROCEDURES 

Variab le 

F i lm Thi cknes s ( in , )  
Stress  or Strain His tory 

Approximate Range in 
Shear Rates ( sec - 1 ) 

Specimen Preparat ion 
Approximate Mel ting 

Tempe rature ( ° F ) 
Time of Condi tion ing 

at Room Tempe rature 
(min) 

Time to  Re ach Temperature 
Equilibrium (min) 

Specimen Reus e 

Bas is  for Computations 

S l iding P l at e  
Vis cometer  

0 , 0 1 - 0 . 0 2 
Controlled  rate 

o f  shear 

1 0 - 3- 10 - l  

2 6 0 - 2 80 

6 0 - 90 

2 5 - 30 
Permitted  for 

s everal shear 
rates 

Maximum load 

Coaxial  Cyl inder 
Vis cometer 

0 .  3 8 5  
Creep 

10 - 6 - 1 0 - z  

2 90 

30 

6 0  
Not permi tted  

Steady - s tate 
flow 

and the s lope o f  the viscos i ty- temperature re lationship . 

The pene tration - ratio technique i s  b ased  on determining the 

cons is tency of an asphalt  cement at  39 , 2 ° F  and 7 7 ° F  by me ans o f  

the s t andard penetration t e s t .  The penetration ratio  is  computed 

as fol lows : 

Pen.  Ratio = 
Pen . @ 39 , 2 ° F  
Pen , @ 7 7 ° F  

X 1 0 0 , ( 4 1 )  

A large temperature sus ceptibi lity connotes a low penetration 

rat i o .  

The penetration - index technique i s  based  on two diffe rent 

cons is tency tests : the pen�tration test  i s  used at the lower 

temperature ( 7 7 °  F) and the· ring · and- ball  softening paint t e s t  is  

used  at the higher temperature . The penetration index is  computed 
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as fol lows : 

P I  = 
2 0  - SODA  

SOA  + 1 
( 4 2 )  

where PI  = p enetration index 

A 
_ 1 , 8 lo� ( 80 0 /Pen) 

liT 
log = common logarithm 

Pen = p enetration at 7 7 ° F  

liT = temperature di ffe rence ( ° F )  between the ring - and-ball  
tempe rature and 7 7 ° F ,  

The penetration index normally varies between - 2 , 5  and + 8  C±i) , 
A large temperature suscep t i b i l ity yie lds a low penetration 

index . 

The s lope . o f  the vis cos ity - t emperature relationship may also  

be  used as a measure o f  temperature susceptibi lity , Th is  s lope 

is normally determined from a plot  of log log vis cos i ty versus 

log abs o lute t emperature ,  The fol l owing equation has b een used 

in this determination : 

VTS = 

where  VTS 

np ( 1 )  

np ( 2 )  

Tl 

T2 

log log np ( l) 
-

log T2 -

log log n
p( 2 )  

log T1 

= viscosity-tempe rature s lope 

= p lastic  vis cos i ty in poises  at T 1 

= plastic  viscosity in poises  at  T2 

= larges t  tempe rature in ° R ( l0 4 ° F ) 

= smallest  temperature in ° R ( 39 , 2 ° F ) . 

( 4 3 )  

Naturally a larger  s lope is  associated wi th an asphalt  o f  higher 

t emperature s us ceptib i lity , This t echnique for evaluating 

temperature susceptib i l ity is normally employed for a higher 
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temperature range , for example , 1 4 0 ° F  t o  2 7 5 ° F ,  However ,  i t  may 

s t i l l  furnish a use ful measure o f  t emperature sus ceptibi l i ty 

wi thin a lower t empe rature range such as  that employed here 

( 39 , 2 ° F  to  1 0 4 ° F) , This is  p art icularly valid s ince the p l as t i c  

vi scosities  are independent o f  shear  rate at  a l l  t emperatures . 

The results o f  this analys is  are shown in Tab le 1 4 ,  Wi th 

the poss ib l e  exception o f  asphalt  PR- 1 3 2
1

, there  i s  not a g reat 

TABLE 1 4  

TEMPERATURE SUSCE PT I B I LITY 

Asphalt  Penetration Penetration Viscos ity -
Numbe r  Ratio Index Temperature 

S l ope 

3 49  + 0 , 1  4 . 5  
1 3  3 5  + 0 , 8  5 , 0  
4 5  32  - 0 , 8  5 . 4  
5 3  3 8  - 0 , 1  5 , 5  
6 7  46 0 , 0  4 , 8  
7 1  2 5  - 1 , 2  5 , 5  
7 2  39 - 0 , 7  5 . 4  
9 1  2 6  - 1 . 3  5 , 5  

1 16 32  - 1 . 1  6 , 1  
12 7 49  - 1 . 2  4 , 8  
2 0 0  3 3  - 0 . 1  5 , 2  

PR- 1 0 3  35  - 1 , 0  6 , 0  
PR- 1 3 2  8 - 1 . 2  

deal o f  di fference among the temperature sus ceptib i lities  of the 

vari ous asphalts , All o f  the asphalts  would b! �lassi fied  by 

P fe i ffer as norma l types · on · the b as i s · of the i r  pene trat ion 

indices ( - 2 , 0  < PI <  2 , 0 ) (�) . Asphalts  7 1  and 9 1  exhibited  

1Asphalt  PR- 1 3 2  was not tested  at 39 , 2 ° F  and ,  hence , the 
viscosity - temperattire s lope could not be  eva luate d ,  However ,  i t  
does have a low penetration ratio which would indicate a high 
temperature s usceptibility ,  
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perhaps the largest  t emperature sus ceptibi l i ties  and asphalt 3 ,  

the smalle s t , The viscosity-t emperature re lati onships for 

asphalts 3 and 9 1  are compared on the Walther plot  of Figure 

30 . 
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The data of Tab le 1 4  are not sufficien tly extensive to  

enabl e  a thorough evaluat ion of  the p o s s ible e ffects of  crude 

s ource and manufacturing proces s on temperature s us ceptibi l ity ,  

The Vene zue lan asphalts  ( asphalts 1 3 ,  1 2 7 ,  and 2 0 0 ) , whi ch di ffer 

only in p enetrat ion grade , exhib ited  essentially identical 
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t empe rature s u s ce p ti b i li t i e s , Asph a l t s  i n  wh i ch a i r  b l owing was  

us e d  ( asph a l t s  5 3 ,  7 2 , and 9 1) we re not  p ar t i cularly r e s i s t ant to  

chan g e s  in t empe rature , 1be C a l i f o rn i an crude ( as ph a l t  9 1 )  and a 

Mi dcontinent crude ( as p h a l t  7 1) exh ib i te d  t h e  h i g h e s t  t empe rature 

s us ce p t i b i l i t i e s  and the Mexi can crude ( as p h a l t  3 ) , the lowe s t , 

H owev e r ,  s in ce t h e  di f fe rences were n o t  l a r g e  and s ince o n l y  a 

s in g l e  asph a l t  f r om e ach c rude s ource was e v a l uat e d ,  a d e f in i t i ve 

conc lus ion r e l at ive t o  crude s ource c annot b e  drawn on the b as i s 

o f  t h e s e  dat a .  

VI SCOS I TY - PENETRAT I ON RELAT I ONSH I P  

F i g u r e s  3 1  and 3 2  s h ow the r e l at i on s h i p  b e tween p l a s t i c  

v i s cos i ty and pen e t r a t i o n  a t  t empe ratures o f  7 7 " F  and 3 9 . 2 " F ,  

r e s p e c t i ve ly . Both figures  indi c a t e  a c l e ar l y  defined t rend w i th 

increas ing p en e t r a t i on s  c o rr e s p onding t o  decreas ing vi s co s i t i e s . 

As exp e c te d ,  the variab i l i ty i s  g r e a t e r  w i th the 39 , 2 " F  me a s ur e -

men t s  than w i th t h e  7 7 " F  meas uremen t s ,  At  39 , 2 " F ,  t h e  p e n e t r a �  

t i ons a r e  r e  l a  t i  v e  l y  s ma l l  and w i th i n  t h e  l e n g t h  o f  t h e  t runc a t e d  

c o n e  p o rt i on o f  t h e  penetrat i on n e e d l e ,  

The vis c o s i ty meas uremen t s  are cons i de rab ly m o re s e n s i t ive 

than the p e n e t rat i o n  meas urements b oth in evaluating th e d i f f e r -

e n c e s  among a s ph a l t s  at  a s in g l e  t empe rature and in evaluat i n g  

the e f f e c t  o f  t empe rature f o r  a s in g l e  asph a l t , The v a r i ab i l i t y
1 

among asph a l t s  a t  a g i ven t empe r ature average d  ab out 8 4  p ercent 

for the penet r at i on meas urements and about 2 50 p e rcent f o r  the 

vi s co s i ty meas urement s ,  I n  g o in g  from 7 7 " P  to 39 , 2 " F ,  the mean 

penet r a t i on decre a s e d  ab out 6 4  p e rcent whi l e the mean v is c o s i ty 

i n c r e a s e d  ab o u t  6 3 , 0 0 0  pe rcent . 

l r n  t h i s  c as e ,  the var i ab i l i ty i s  expre s s ed as the ran g e  o f  
the m e a s urements  divided by the i r  ave rage values . 
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TIME-TEMPERATURE SUPERPO S I T I ON 

Asph a l t  5..3 was t e s t e d  at O " F  in addi t i on t o  the three tem­

peratures whi ch were employed for a l l  o f  the aspha l t s , Three 

levels of she aring s t r e s s  were app l i e d  at this temperatur e ,  The 

durat i on o f  e a ch of the three t e s t s  was approx imately two weeks , 

The characte ri s t i c  r e l at i onsh i p  b etween ang l e  o f  r o t a t i o n  and t ime 

was obs erve d ;  that i s , e l as t i c , s t e ady - s t a t e  f l ow ,  and vi s co e l a s t i c  

proce s s e s  were a l l  i n  evi denc e .  The s t eady - s tate f low cond i t i on 

was re ached a f t e r  a p e r i o d  o f  app roximat ely three t o  nine days 

depending upon the s t res: leve l ,  The m a t e r i a l  parame t e rs 

evaluated at this temp e rature are summari z e d  on T ab l e  1 5 ,  The 

two - e l ement v i s co e las t i c  mode l was found to s a t i s fact o r i ly describe 

the v i s coe las t i c  p o r t i on o f  f l ow ,  

TABLE 1 5  

MATERIAL PARAMETERS EVALUATED AT 
O " F  (ASPHALT 5 3 )  

P a:r arne till :r 

Blas t i c  Modulus , G 0 
Y i e l d  St:reu , S 
C o e f f i c i ent o f  �l as t i c  V i s co& i t y , n p Vi s co e l as t i c  P a rame ters 

G l  
� 1 G 2 
n z 

Value 

3 , 4 6 x 1 0 7 dynes / cm2 
. 

1 . 6 5 x 1 o 1 3p o i s e s  

1 , 7 1  x 1 0 7 dynes / cm
2 

5 , 0 5 x 1 0 1 2 p o i s e s  

3 , 3 9 x 1 0 7 dynes / cm2 

0 , 5 8 x 1 o 1 2p o i s e s  

The t e s t s  us ing a s pha l t  5 3  c overed a s uf f i c i ently wide range 

of temperatures and durat i on s  of l o ading to enab l e  inves t i g a t i on 

of the pos s i b l e  app l i c ab i l i ty o f  the t ime- temperature s up e rp o s i �  

t i on p r in c i p l e  in the low- t empe rature region, As a b a s i s  for th i s  

inves t ig a t i on ,  the ave rage creep fun c t i on a t  each o f  the four 
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temperatures was p lotted as shown on Fi gure 3 3 .  The total-

angle creep functions , averaged for  the three stress  levels , are 

shown on this figure , The ave rag ing process is thought to  be 

valid s ince no evi dence was found that the material  is non - l inear 

under the p articular test  conditions evaluated herein . The average 

creep function was reduced after the manner discus s e d by  Ferry ( 5 0 )  

by multiplying i t  by the ratio  o f  the abs olute value o f  the test  

temperature . to  the abso lute value of a suitab le reference temper­

ature ( in this  case  5 0 ° F) , 

The reduced average creep functions o f  Figure 3 3  were then 

shifted hor i z ontally unt i l  the i r  overlapping portions were made 

to coincide . The magnitude of trans lation is defined as log �T 

where �T is  the shift  factor . The s,hift  factor was then adj us ted 

to  the refe rence temperature o f  5 0 ° F ;  that i s ,  log  �T was  adj usted 

to zero at a temperature of 5 0 ° F ,  The re lationship between the 

shtft factor , thus obtained ,  and the t e s t  t emperature is shown 

on Figure 3 4 . 

The shift  factor may also  be compute d  from the following 

relationship (�) : 

�T = ( n T0 p 0 ) / (n 0 T p )  

where �T = shift  factor 

n = s teady- flow vi scosity at tempe rature , T 

n 0 = s teady- f low vis cosity at tempe rature , To 
T = any temperature .in ab s o lute uni t s  

T = 0 reference tempe rature in abs olute units  

p = den s i ty at  t empe rature , T 

p 0 = dens i ty at  temperature , To . 

( 44 )  
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This  exp res s i on is  theoreti cally valid for uncross - linked polymers  

of low mo lecular weight  and , in  certain instance s , for those of  

high molecular weight  (�) . The shift factor was evaluated us ing 

Equation. 44 whi ch was s lightly modified  by omitting the den s i ty 

terms because o f  thei r  minor importance , The coe fficients o f  

p las t i c  vis cos ity were used t o  repre sent the vi scos ity measure­

ments . A comparison between the computed and measured shift 

factors is  given in Tab le 16 , The agreement is  re lat ively sur ­

pris ing e ven though the range in test  tempe ratures is  somewhat 

l imited .  The comparison demonstrates that the measured shift 
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Temperature 
( o F )  

0 
l9 , 2 
7 7  

1 0 4  
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TABLE 16  

SHI FT FACTORS 

Computed 
Shift Facto r ,  aT 

( Equat ion 4 4 )  

1 , 6 3 X 1 0 5 
8 , 99 - 2  
0 , 9 8 X 1 0  
2 , 8 8 x lo - 4  

Measured 
Shift Factor , aT 

2 . 14 X 1 0 5 
8 , 70 2 1 , 2 6 X 1 0 -

5 , 0 0 x lo - 4  

factors are o f  the p rope r  order o f  magnitude and are p rope rly 

related to tempe rature within the low- t emperature range of thes e  

tests . 

Figure 35  shows the master  creep function for asphalt 5 3  at 

a reference temperature of 5 0 ° F  when the expe rimentally  dete rmined 

shift factors are app lied  to  the data of Figure 3 3 ,  The master 

creep funct i on s at i s factori ly fits  the data points  ob t ained at  

the  four different test  t emperatures ,  

Ferry (�) l i s ts the fol lowing three criteria  for determining 

the app licab i lity  of the t ime - t emperature sup e rposit ion princip le 

(method o f  reduced variab l e s )  to a g iven set of t e s t  dat a :  ( 1 )  

exact matching o f  the shapes o f  adj acent curves obtained at 

diffe rent test  temperatures ,  ( 2 )  superposi tion of the values of 

the shift factor . for di fferent vis coe lastic  functions , and 

( 3) a reasonab le form of the temperature dependence of the shift 

factor cons i s tent . wi th experience , A s tudy of Figure 3 5  l eads 

to the conclus ion that the first  criterion is s at i s fied  for 

these dat a ,  The s e cond criterion cannot be  evaluate d  s ince 

only one vis coel a s t i c  function i s  avai l ab l e  for comparison , · that 

is , the creep functi on ,  The third criterion seems to have been 
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s atis fied by the compari s on of  Tab le 1 6 ,  I t  i s  concluded ,  

therefore , that the t ime - t empe rature superp o s i tion princip le i s  

valid for asphalt 5 3  when tested in the low - temp erature range , 

A cursory evaluation o f  other of the asphalt cements tendt to  

s upport the exten s i on of  this  conclus ion to a l l  of  the  ma�erials  

of  this s tudy , 



CONCLUSIONS 

The fo l l owing conclus i ons are sub s tantiated by the data 

obtained in this phase of the s t udy : 

l ,  The rotating coaxial  cy linder vis cometer  is  a us e ful 

research tool  for examining the flow behavior of asphalt cements 

at relatively low temperatures ,  I t  may also  be  e f fectively 

emp loyed to  evaluate apparent viscos i t ie s  of these  materi als , 

2 ,  The curve � fitting technique for evaluat ing the parameters 

o f  vis coe las t i c  behavior has proven to  be extreme ly useful and 

r eliable , The principles underlying th is  technique may b e  

readi ly extended to  o ther types  o f  equations in which a b e s t  fit  

by the leas t squares criterion is  requi red,  

3 ,  Al l of  the asphalt cements exhibited s t e ady� s tate flow 

behavior at 7 7 ° F  and 1 0 4 ° F ,  At thes e  temperatures , the ir  flow 

behavior under creep loading could s atis factori ly b e  character�  

i ze d  by that o f  a B ingh am plast i c .  At 39 , 2 ° F ,  howeve r ,  all  

asphalts  exhibited ins t antaneous and retarde d elasticity,  s te ady­

s tate f low , and e l as t i c  recovery fo l l owing load removal .  Th is  

behavi or could s at i s factori ly be  characteri zed by  a generalized  

mode l cons i s ting o f  a series  comb ination o f  an elastic  e l ement 

( s p ring ) , a Bingham e l ement (s teady - s t ate liquid) , and a 

viscoe las t i c  body (gene rali ze d  Voigt b ody) , I t  follows , then , 

that the comp lexity o f  flow behavior increases as the temperature 

is re duced .  

4 .  The s t e ady- s tate flow behavi or o f  e ach o f  the asphalt 

cements . in the l01v� tempe rature range was found to  be  s imi lar to 

- 8 5 -
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that o f  a B ingham p la s t i c ,  The coefficient o f  p lastic  vis cos i ty 

is an appropr i ate me ans for defining a shear- independent measure 

of consistency for c l as s i f i cation purpose s , 

5 ,  Coefficients o f  plastic  viscos i ty in the range of 1 0
4 

to  

1o l 3  poises  were measured with  the rotating coaxial  cylinder 

viscomet e r .  In no case was a discernab l e  re lationship obse rved 

between the yield  s tress  and the coefficient of plastic  viscosity ,  

6 ,  For the  one s e t  o f  tests  conducted  at  0 ° F ,  s teady - s t at e  

flow was re ached after a period of approximately three t o  nine 

days , For tests  at 39 , 2 ° F ,  approximately one to five hours were 

nece s s ary to  achie ve the s teady - state  condition ,  Thi s  emphas i ze s  

the necess ity for a long - durat i on test  when evaluating the s te ady­

s tate flow behavi or o f  asphalt  cements at  re lative ly low t emper-

ature s , 

7 ,  All o f  the asphalts appeared to behave linearly under the 

conditions of test  employed herein , The tentative nature of this 

conc lus ion is  emphas i z e d ,  however ,  pending the outcome of a more 

exhaus t ive set  of t e s ts directed specifically to this det e rmination , 

8 ,  The t ime - temperature superpos ition principle (method o f  

reduce d . variab l e s )  appears to  be  app l i cab le to  the behavior o f  

normal asphalt  cements a t  leas t in the low- temperature range 

( 0 ° F  to 1 0 4 ° F ) , 

9 ,  A relationship exists  between p lastic  vis cos i ty evaluated 

with the rotating coax i al cylinde r vis cometer  and the results of 

standard penetration. tests  when both types  o f  tests  are conducted 

at . identical temperatures ,  The corre lation at 7 7 ° F  is superior 

to  that at 39 , 2 ° F· because of  the varying nature o f  the shear 

strains an� shear rates when the penetrations are sma l l  as they 
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'I;H� it�t� a t  , 2 • F ,  T h e  v i s c o s i t y  meas urements are con s i de rab ly 

mare s e n s i t i ve b o th t o  c h ange s  in t empe r a t ure and to  change s  in 

m at e r i a l  prop e r t i e s  t h an a re the pene t r a t i on measurements , 

1 0 , The effect o f  p e n e t r a t i on g r ade w a s  evaluated using the 

thJCee asph a l t s  o b t a i n e d  by vacuum and s t eam dis t i l l at i on from 

the Ven e zue l an crude , As ant i a t e d , the viscos ities  of thes e  

asphalts ware p r o p e r ly arranged in the o r d e r  indicated by the 

pene trat i on g ra de at a l l  temp e n1 t ure s , The t emperature s us cep t i �  

b i l i t i e s  o f  the s e  a s p h a l t s  w e re approx i m a t e l y  the s ame : this  

in d i c a t e s  t h a t  asph a l t s  p roduced f rom the s ame crude s ource by 

s im i l ar refining p r o c e s s e s  w i l l  have s im i l a r  temperature s uscepti -

b i l i t i e s Q 

1 1 .  Th� e ff e c t  o f  manufacturing p r o c e s s  on the viscos i ties  

of  m a t e ri a l s  of t h e  s ame p en e t r a t i on g r ade 1,ras s omewhat indeter-

m i n an t , Those aspha l t s  i n  t�h ich r blowing was use d ,  name l y ,  

aspha l t s  S 3 ,  7 2 , an d 9 1 ,  d i d  n o t  lw.'IHJ p a r t i c u l arly l ow tempera­

ture s u s ceptib i l i t i e s . Asph a l t  9 1  had a cons is tently low 

vi s c o s i ty a t  a l l  t em p e r a t u r e s  but as ph a l t s 5 3  and 72  were not 

s i gn i  c an t ly d i f f e r e n t  from the o th e r  8 5 - 1 0 0  penet ration mat-

e r i a l s  in t h i s  r e  • 

1 2 , The e ffect o f  crude s o u r c e  f o :r m a t er i a l s  of the s ame 

p e ne t r a t i on grade i s  a l s o  di f f i c u l t  t o  e v a l u at e ,  The C a l i forn i an 
., 

asph a l t  exhib i t e d  a l ow e r  v i s cos i ty t han most o f  the othe r asphalts 

a t  a l l  temp e ratures an d the h i g h e s t  temp e rature suscep t ib i l ity 

of t h e  g roup o T h e  Mex i can lt exh i b i t e d  re l at ive ly high 

vi s c o s i t i e s  at tho two h i  r t u r e s  and the l owest t empera-

t u r e  s us cept i b i l i ty of  the g r o up o Howev e r ,  s in ce the  diffe rence s 
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among asphalts  was not large and s ince only a s ingle asphalt  

from e ach of thes e  two crude sources was  evaluated ,  defini t ive 

conclus i ons as to the potential  importance of crude s ource mus t 

be  withheld ,  

1 3 ,  Two o f  the  8 5 - 10 0  penetration asphalts , name ly , asphalts 

91 and 1 1 6 , had s igni fi cantly  lower Saybolt Furol vis cos ities  

than the othe rs , This  lower con s i s tency at the highe;r tempera­

tures is  reflected in the fact  that the plastic  viscosities  of  

these  asphalts  at 10 4 ° F  were the lowes t  of the 8 5 - 1 0 0  penetration 

g rade asphalts , Due tp  the diffe rent temperature sus cept ibi lities  

of the . vari ous asphalts , however , they did not  maintain this 

relat ive ly low ranking at  the lower tempe ratures ,  Asphalts  9 1  

and 1 16 were also  less  vis cous at 1 0 4 ° F  than the one 1 2 0 - 1 5 0  

p enetration asphalt  that was tested ,  Thi s emphas izes  the 

nece s s i ty for specifying the cons i stency of asphalt cement s  at 

more than one temperature leve l ,  
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APPENDIX A 

TEST PROCEDURE 

The fo llowing speci ficat ion describes the procedures for 

tes ting with the rotating coaxial cy linder viscome ter ,  

L Wate r  Bath 

Temperature control sha l l  be provided by immers ing the spe c i �  

men and portions o f  the vi scometer in a suitable water bath , The 

bath shall be suffi ciently l arge to contain the v i s come ter and t o  

permit the specimen to  be  s ubmerged to  a depth o f  at  leas t 1 inch 

be low the: water surface , The temperature of the b ath shall  be 

allowed to vary not more than 0 , 5 ° F  from the specified  tes t 

temperature , 

2 ,  Preparat i on of  Vis cometer 

The appropri ate cup� and� bob assemb ly and drive pul ley shall  

be  s e lected,  The pulley , scale , and rotary di fferential  t r ans ­

former shall  then be  attached to  the ax le , The upper  surfaces o f  

the groove d  brass  base p late (used with the small cup � and�bob 

a s s embly} or the b rass ring (used wi th the large assemb ly) shall  

be  thoroughly amalgamated wi th mercury and properly positioned in 

the viscomete r ,  A sufficient quantity of mercury shall  be poured 

int o  the annulus of  the base  plate s o  that , when the b ob and cup 

are assemb l e d ,  the leve l of mercury wi l l  be s lightly above the 

lower edge of the bob , The cup shall  be rig idly affixed to the 

base  of the vis comet e r ,  I n  a l ike manner ,  the b ob sh a l l  be  

affixed . to  the  ax le of  the load  system and properly posit ioned 

" 9 5 �  
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in i ts bearing receptacle , 

3 ,  Special  Precaut ions for Handling Mercury 

Due to the pos s ible  danger to health if mercury i s  handled 

care les s ly ,  the fol lowing p recautions sha l l  be  observed at a l l  

t imes : 

a ,  Mercury shall  be  s tored in a closed  j ug or other 
suitab l e , unbreakab le containe r in a cool p lace , 

b ,  Extreme care shal l be exercised  to  avoid  spi l l ing any 
mercury , 

c ,  Me rcury vapors shall  be removed by working under a 
s ui tab le hood with adequate ven t i l at ion , 

d ,  The ama l g amated brass  p lates and other components o f  
the viscometer shal l b e  maintained at normal room 
temperature except when testing , 

4 ,  Weight At tachment 

After the cup and bob have been properly ass emb led on the 

vis comete r ,  the drive pul ley shall  be firmly anchored by p l ac ing 

the t rip . release  in the locked pos ition ,  The i dle pul l eys shall  

be  aligned wi th the drive pul ley , The weights necess ary to  pro�  

duce the des i red torque shal l then be attached to the drive 

pulley and s uspended over the idle pul leys , The weights shall  be 

attached symmetrically s o  as to produce a couple  and thus e l iminate 

the possibil ity of introducing bending in the ax l e ,  Caution 

should be exerci sed  at a l l  t imes to  prevent shearing the t e s t  

material p rior t o  the beginning of  a tes t .  

5 ,  Preparation o f  Tes t  Spe cimen 

A suitab l e  container holding the bituminous material  to be  

tested shall  b e  p laced in  an o i l  b ath maintained at a temperature 
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\ 6£ 2 90 ° F 1, (plus or minus 5 ° F )  0 During heating , the s amp le 

shall be  stir.re d  intermittently to maintain , as we l l  as poss ible , 

a uni form temperature dis tribution wi thin the s amp le , When the 

s amp le has been comp lete ly melted,  it shall  be thoroughly s t i rred 

to insure that it is homogenous and free from air bubb les , The 

as s emb led vis cometer , with we ights attach e d ,  shall  ' be  p l aced on 

a perfect ly · leve l surface , I n  f i l ling the annulus formed by the 

cup and b ob , the material  shall  b e  poured in a thin stream from 

two separate containers at p oints approximately 1 8 0 °  apart , 

During f i l l ing , e ach container  shall  be  moved back and forth over 

a 1 8 0 °  segment of the annulus unti l  the annulus i s  s lightly more 

than leve l ful l ,  · The vis cometer  and test materi al  shall  be 

cqoled  at room temp erature for a period  of  30 minutes ,  They 

shal l then be p l aced in the water b ath maintained at the 

specified tempe rature of tes t for an addi tional period of 30  
I 

minutes , The excess b itumen shall  then be  s truck off with a 

heated ,  s traight-edged spatula or knife , 

6 ,  E s tabl i s hment of  Temperature Equi librium 

After  t rimming the specimen . and p ri o r  to tes ting , the visco­

meter  shall  be  returned t o  the wat er b ath and maintained at  the 

specified  test temp e rature for a period of 30 minutes , 

7 ,  Testing 

The recording equipment shall  b e  s tarted and the test  shall  

1 
In no case sha l l  the s ample be  heated to a temp erature 

greater than 2 0 0 ° F  above its  s o ftening poin t ,  determined in 
accordan ce wi th the Method of Tes t  for Softening Point of  
Bi tuminous Materials  ( Ring - and- Ball  Metho d ,  ASTM Designation : 
D36) , 
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begin by actuating the trip re leas e , At sub sequent intervals of 

t ime , the angle  of rotation shall  be  read directly from the 

recording equipment , Checks shall  be  made by noting the ang le o f  

rotat ion from t h e  s cale  attached to  the vis come t e r .  The t e s t  sh a l l  

be  al lowed t o  continue unt i l  a s te ady - s tate o r  near steady- s tate 

condition is  reached ,  that is , unt i l  a linear relationship b etween 

the *ng le of rotation and time i s  observed.  After the steady­

s t ate condition has been reached , the load shall  be  instantaneous ly 

removed and the rebound ,  i f  present , shall  be recorded as a 

function o f  t ime , After rebound has been completed ,  the load 

shall be  quickly app lied and removed a numbe r  o f  t imes to  a s s i s t  

in determining the ins tantaneous ang le o f  rotation . 

8 ,  Procedures after Testing 

The vis come ter ·  shall  be disassemb led and the height of the 

specimen determined .  The apparatus shall  then be cleaned in 

p reparation for subsequent tes ting . 



APPENDIX B 
CURVE - F I TT I NG TECHNI QUE 

The f o l l owing d i s cus s i on d e s c r i b e s  a method f o r  de t e rmining 

v a l ue s  of the cons t ants , ak and bk , in an equa t i on of the f o rm 

n 
� = E ak [ 1  - exp ( - bkt ) ] 

k= l  
( B - 1 )  

t o  y i e l d  the equa t i on o f  a curve wh ich g ives the b e s t  f i t  b y  

l e a s t  squares c r i t e ri on f o r  a s e t  o f  experimen t a l  data known t o  

conform t o  a g ene r a l  equa t i on o f  t h i s  type . 

I n i t i a l  values f o r  the cons t an t s , ak and bk , 

a re a s s umed . I t  i s  p r e fe rab l e  that af and bf b e  

1 1 s ay ak and bk , 

c l o s e  t o  the 

b e s t  va lues of ak and b k " Equa t i on B - 1  i s  expanded in a Tay l o r ' s  

s e ri e s  about the v a l ue s  a£ and b� t o  y i e l d :  

�a = f ( � l ) + 
n 
E 

k= l  

H 
a ak 

Ll ak + 
a� , bf 

n 
wh ere f ( �1 ) = E a� [ 1  - exp ( - bft ) ] 

k= l  

Ll ak = ak - a� 
Llb k = b k - b£ , 

n 
E 

k� l  

3'¥ 
abk 

Llb k 
1 1 ak , bk 

( B - 2 )  

( B - 3 )  

( B - 4 )  

( B - 5 )  

Equa t i on B - 2  actual ly rep resents an app rox ima t i on t o  the Tay lo r " s  

s e r i e s  expan s i on b e cause t e rms con t a ining s e cond and h i gh e r  order 

quant i t i e s  h ave b e en neg l e c t e d ,  
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Performing t h e  operat i on s  indi c a t e d  in Equa t i on B - 2  on 

Equati on B - 1  y i e l ds : 

and 

3 '!'  
a ak 

3'!' 
a11k 

1 1 ak , bk 

1 1 ak , bk 

= [ 1 - exp ( - bf t )  ] 

= aft [ exp ( - b�t ) ] ,  

k= l , 2 , 3 , . , n 

k= l , 2 , 3  . .  , n  

( B - 6 )  

( B - 7 )  

Sub s t i tut ing the r e s u l t s  o f  Equa t i ons B - 3 ,  B - 6 , and B - 7  b a ck 

into Equ a t i on B - 2  i t  i s  s e en that 

n 
'�'a = E a� [ 1 - exp ( - b�t ) ] + 

k= l  

n 1 1 + E akt [ exp ( - bk t ) ] 6 bk . 
k= l  

n 1 E [ 1  - exp ( - bkt ) ] 6 ak k= l  

( B - 8 )  

Here the s ub s cript " a" i s  p l aced o n  '!' t o  den o t e  an approx imat i on 

t o  the t rue value , 

I f  the s e t  o f  dat a p o ints contains r o b s e rvat i ons , then 

Equation B - 8  may be writ ten : 

'�'
a ( i )  = 

n 
E 

k= l  
[ a� [ 1  - exp ( - b�t i ) ]  

+ af t i [ exp ( - b� t i ) ]  6 bk J 
whe r e  i = 1 , 2 , 3 , , , r . 

+ [ 1  - exp ( - b�t i ) l  6 ak 

( B - 9 )  

Thus from Equat i on B - 9 ,  one h a s  r l in e a r  equa t i ons i n  6 ak and 

6 bk . 
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Th e devi a t i on , o i • wh i ch rep resents the d i fference b e tween 

the � · s  c a l c u l a t e d  by Equat i on B - 9  and the actual o r  obs erved 

� · s  may be determined from the r e l at i onship : 

0 i • '  ( " )_ , . = � [ a 1 [ 1  � exp ( � b 1 t . ) ]  a 1 1 k= 1  
k k 1 

1 
+ [ 1 - exp ( - bkt i ) ]  6 ak 

1 1 ] + ak t i [ exp ( - b kt i ) ]  6b k � ' i · 

The s um o f  the squares o f  the dev i a t i ons , de fined by the 

re l a t i on s h i p  

r 
s ·  = E 

i = 1  
a ? 1 • 

b e comes 

( B - 1 0 )  

( B  - l l )  

r [ n [ 1 . 1 1 S = . E  E ak [ 1  - exp ( - bk t i ) ]  + [ 1  � exp ( - bk t i ) ]  6 ak 
1 = 1  k= 1  

+ a� t 1 [exp ( - bft i ) l  6b k] - ' i  J 2 ( B - 1

2
) 

Us ing the l e as t - s quares c r i t e r i on , in o r d e r  for Equat i on 

B " 8  t o  y i e l d  a curve wh ich f i t s  the dat a ,  i t  i s  n e c e s s ary that 

the p arameters i\ ak and 6 bk be cho s en so as to make the s um o f  

the s quares o f  the devi a t i ons a min imum , Thus i t  i s  n e c e s s a ry 

that the r e l a t i onships 

a s  
a( t� ak ) = 

b e  s a t i s f i e d ,  

0 and 
a s  

aTI'i15"k) • o ( B - 1 3) 
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F r om Equ a t i on B - 1 1 , i t  i s  s e en that 

a s  
a ( ll aj ) 

r 
= 2 :E 

i = l  
8 . l 

a o i 
a ( Lia j ) 

Re turning t o  Equa t i on B - 1 0 , 

3 6 ·  l 
a ( ll aj ) 

1 = [ 1 - exp ( - b j t i ) ] .  

( B - 1 4 )  

( B - 1 5 )  

Sub s t i tut i on o f  this  r e s u l t  a l ong w i t h  the resul t from Equa t i on 

B - 1 0  into Equa t i on B - 1 4  a f t e r  s imp l i f i c a t i on y i e l ds : 

r n 1 1 E E 
i = l  k = l  

[ 1 - exp ( - bk t i )]  [ 1 - exp ( - b j t i ) ] Llak 

r n 1 1 + E E ak t . [ exp ( - bk t .  ) ] 
i = 1  k= l  1 l 

r 1 = E ' ·  [ 1  - exp ( - b . t i ) ]  
i = l  l J 

1 
[ 1 - exp ( - b j ti ) ]  ll bk 

r n 1 l E E ak [ 1 - exp ( -b kt i ) ]  
i = l  k= l  

[ 1  - exp ( · b}t i ) ] ,  

j = 1 , 2 , 3 , , n ( B  - 16 )  

Simi l ar ly , by t ak ing the part i a l  de rivative o f  S w i t h  respe c t  

t o  ll bj • i t  i s  found that 

r n 
E E 1 1 1 [ 1  - exp ( - bk t i ) l  [ aj t i exp ( - bj t i ) ]  fl ak 

i = l  k = l  

r n 1 1 + E E akt i exp ( -b k t . ) 
i = l  k= l  l 

r 
= E ¥ .  

i = l  1 
1 1 [ aj t i exp ( - b j t i ) ]  

1 1 [ aj t i exp ( - b j t i ) ]  llbk 

r n 
E E 1 1 . 1 1 

ak [ 1 - exp ( - bkt i ) l  [ aj t i exp ( - b j t
i ) ] .  

i = l  k= 1  
j =  1 , 2 , � . , n ( B - 1 7 )  
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S i mu l t an e ou s  s o l u t i on o f  Equa t i on s  B - 16 and B - 1 7  wi l l  y i e l d  the 

fi ak ' s  and fi bk ' s  from which the ak ' s  and bk ' s  may b e  c a l c u l at e d  

us ing t h e  r e lat i onships g i ven by Equa t i ons B - 4  and B • S .  Once 

ak and b k are d e t e rmine d ,  they are s ub s t i tuted b ack into 

Equa t i on B - 1  and the s um o f  the s quares of the devi a t i on s  are 

c a l c u l a t e d  using the re l a t i on sh i p : 

r [ n 
s l = � � 

i =  1 k= 1 
ak [ l  - exp ( - bk t i ) ]  - '�' i J 2 

I f  s 1 i s  t o o  l a rg e , the v a l ue s  o f  ak and b k as 

are us e d  as new approx im a t i ons , 2 2 s ay ak and bk • 

(B - 1 8 )  

c a l c u l a t e d  ab ove 

and new values o f  

fi ak and fi bk are d e t e rmined us ing Equati on s  B - 16 and B - 1 7 ,  A new 

v a l ue f o r  the s um o f  the s quare s o f  the devi a t i ons , s 2 , i s  

c a l cu l ated wh i ch w i l l  b e  l e s s  t h an s 1 , Ag ain , i f  s 2 i s  t o o  l a rg e , 

the newly d e t e rmined v a l ue s  o f  ak and bk are u s e d  as new 

approxima t i ons , a� and b� , an d new values of 6 ak and fi bk are 

determine d ,  Thi s  p r o c e s s  is repe ated unt i l  the d i fference 

b e tween the s um of the s quare s of the devi a t i ons c a l c u l a t e d  for 

two success ive app rox ima t i ons is l e s s  than o r  equal t o  an 

a l l owab l e  d i fference , I n  equat i on f o rm ,  this  may b e  w r i tten : 

sb - l - sb s fi S a ( B - 1 9 )  

whe re Sb - l  and Sb = s um o f  the � quares o f . the . devi a t i on s  f o r  
two succe s s 1ve app rox 1ma t 1 ons 

fi S a = a l l owab l e  d i ffe rence , 

The accuracy w i th wh i ch Equat i on B - 1  f i t s  a s e t  o f  expe rimen t a l  

dat a · a ls o  depends on t h e  .va lue o f  n ,  that i s , the numb e r  o f  t e rms 

us e d  in th e summat i on , Of cours e ,  the s ma l l e r  the numb e r  o f  t e rms , 
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the s imp l e r  the equa t i on ; therefore , the f i r s t  l o g i c a l  value f o r  

n wou l d  b e  one ,  I f ,  a f t e r  determining the f in a l  value for ak and 

bk ( fo r  n� l ) , it is foun d  th a t  the s um o f  the s quare s o f  the 

devi a t i on s  ( Sb ) is g r e a t e r  th an s ome predetermined a l l owab l e  

value , s ay Sa , then i t  w i l l  b e  n e c e s s ary to a s s ume a new value 

f o r  n in Equa t i on B � l  an d de t e rmine the corresp onding values for 

the ak ' s  and bk ' s ,  Since it is de s i rab l e  that n b e  as sma l l  as 

pos s ib le and s t i l l  s at i s fy the condi t i on that 

sb � s a ( B - 2 0 )  

i t  i s  l o g i c a l  that s uc c e s s ive de t e rminat i ons b e  made for 

n = 2 ,  n = 3 ,  and so forth un t i l  Equat i on B - 2 0  is s at i s fi e d ,  

As s ta t e d  e ar l i e r , i n  order for t h i s  t e chni que t o  work i t  i s  

nece s s a ry that the a s s umed values f o r  the ak ' s  and bk ' s  be 

reas onab ly c l o s e· t o  the i r  t rue v a l ue s , I f  t h i s  c ondi t i on i s  not 

met , the p r o cedure y i e lds dive rging instead o f  conve rging v a l ue s  

for t h e  p ar ame t e r s . Th i s  a p ar adox whi ch c o u l d  l im i t  the ut i l i ty 

o f  the t echn ique , p a r t i c u l a r l y  i f  there i s  no p r i o r  kn owledge o f  

reas onab l e  values t o  as s ume . I n  order t o  e l iminate th i s  prob l em , 

a r a t i o  t e s t  i s  performed wh i ch c on s i s t s  of exam i n ing the two 

r a t i o s  6 ak/ ak and 6 bk /bk after each i t erat i on .  I t  has b e en 

foun d  from exp e r i ence that the a s s umed values are c l o s e  enough 

to the t rue value s  t o  y i e ld convergence i f  these r a t i o s  are 

b e tween the limits : 

- 1 , 0  < 6 ak/ ak < 5 , 0  (B  • 2 1 )  

� 1 . 0  < 6b k/ bk < 5 , 0 ,  ( B - 2 2 )  
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I f  a r a t i o f a l l s  outs i de the s e  l im i t s , the new o r  adj u s t e d  value 

of the p arame t e r  for the next i te ra t i on is evaluated f r om one of 

the f o l l owing re l a t i onship s : 

0 0 
ak = ak � , 4 0 ak ( B - 2 3 ) 

0 0 
bk = bk � , 4 0 b k ( B - 2 4 )  

0 0 
whe r e  ak and bk = p revi ous ly a s s umed values o f  ak and b k , 

I f  t he rati o i s  p o s i t i ve the p lus s i gn i s  us e d ; i f  i t  i s  n e g at ive 

the minus s ign is us e d ,  The factor o f  , 4 0 was foun d  by t r i a l ·  

and -error t o  b e  the most s at i s f a c t o ry adj u s t ing factor t o  us e ,  

O f  cours e ,  . i f  the r a t i o s  f a l l within the l im i t s  g i ven b y  Equa t i ons 

B � Z l  and B • 2 2 ,  the new or adj u s t e d  values for the next i t e ra ti on 

are evaluated from Equat i on s  B � 4  and B - 5 ,  

Us ing th i s  r a t i o - te s t  t e chnique , r e s u l t s  h ave b e en obtained 

us ing i n i t i a l ly a s s umed p arame t e r  v a l ue s  wh i ch d i ffered from the 

t rue value s  by as much as one m i l l i on time s ,  This  p e rm i t s  an 

extreme ly w i de r ange o f  " g ue s s e s "  f o r  the ini t i a l  values thus 

increas ing the u s e fulne s s  of the metho d ,  





I ,  Purpose 

APPENDIX C 

COMPUTER PROGRAM FOR 
VISCOELASTIC  ANALYS I S  

The vis coelastic · material  parameters for asphalts  tested in 

the rotating coax i a l  vis cometer  may be evaluated us ing a computer 

p rogram ,  This  prog ram was wri tten in FORTRAN I V  for proces s ing 

with the I BM 7 0 40 compute r  system,  The purpose  of this  p rogram 

i s  e s s en t i a l ly threefold ,  F i rs t ,  i t  computes that portion of  the 

total ang le of rotation wh ich may be properly attributed t o  

viscoe l a s t i c  flow,  Equati on 3 7  is  used for this computation ,  

Second , i t  evaluates the constants in Equation B � l  whi ch yield  

an  equation whi ch b e s t  fits  the vis coe lastic  portion of  flow by 

the l e as t  squares criterion ,  The techniques which are used in 

this ·  e valuat ion are described in Appendix B ·, The viscoe l astic  

parameters · are  ·computed · from � these con s t ants · by · me ans of the 

fo l lowing relat i onships : 

Gk = 1 / ak 

'k = 6 0 / bk 

and 

nk = Gk ( ' k) ,  

( C �  1 )  

( C � 2 )  

c c� 3)  

Thftd,  it assesses  the degree to which the equation of  best  fit  

approximates the experimenta l  dat a ,  Thi s  is  accompl i shed by 

calculating the square root of the average squared devi ations 

b etween the exp erimenta l  data and the equat i on of best  fi t ,  Such 

� 10 7 �  
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s t andard deviations are computed with respect t o  t he viscoelastic  

creep fun ction and the total  ang les  of rotation for  e ach of three 

stress  levels , 

I I ,  Limitations 

I t  is necess ary to provide , as input , data from the results 

of  three tests , e ach of  which is normal ly conducted at  a 

diffe rent stress  leve l ,  The numbe r  of  data points ( that  i s , p airs  

of obs e rvat ions b e tween time and total  ang le of  rotation)  may be  

any inte ger  not  exceeding 1 2 0 , The s ame numb er of  points ,  howeve r ,  

mus t b e  p rovided for each o f  the three tes t s ,  The numbe r  of  

Voigt e lements in  the vis coe lastic  mode l i s  limited to  a maximum 

of 1 0 , Any numbe r  less  than 1 0  may be  evaluate d ,  

I I I . Job Submis s ion 

To s ubmi t a j ob to  the University of Kentucky I BM 7 0 4 0  

comput e r ·  sys tem,  the fo l lowing items mus t b e  s ubmitted in the 

order indicated , 

A ,  $JOB Card 

B ,  $ I BJOB NOSOURCE Card 

C ,  Vi s coe las t i c  Obj ect Deck 

D ,  Mat inv Obj ect Deck 

E ,  $ENTRY Card 

F,  Data Cards for Firs t Asphalt 

1 ,  Asphalt  Header Card 

2 ,  S teady - Stat e  Angul ar Ve locities  Card 

3 ,  Load He ader Card (First  Load) 

4 ,  Data Cards (First  Load) 

5 ,  Load Header Card (Second Load) 
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6 ,  Data Cards (Second Load) 

7 ,  Load Header Card (Third Load) 

8 ,  Data Cards (Th i rd Load) 

9 ,  N � Card 

10 , Voigt Mode l Cards 

G , Data Cards for Other Asphalts as Des i red 

IV,  Input Data Cards 

A ,  Asphalt  He ader Card 

1 .  Format 

Columns S)::mb ol Subj ect Units  

1 - 3  N0 Asphalt  number  � -

4 - 7 L l  Small e s t  load gms 

8 � 1 3  L2 Intermediate load gms 

1 4 - 19  L 3  Larges t  load gms 

2 0 - 2 4  TEMP Tes t  temperature o F  

2 5 �  32  CT l Smal lest  CT product d/cm 2 

3 3 - 4 0  CT2 Intermediate CT product d/ cm2 

4 1 - 4 8  CT 3 Larg e s t  CT product d/cm2 

4 9 - 6 2  G0 Instantaneous e las t i c  2 
shear modulus d/ cm 

2 • Us e 

Format 

I 3 

I 4 

I 6 

I 6 

F 5 , 1  

F 8 , 0  

F 8 , 0  

F 8 , 0  

E l 4 , 7 

This  card serves to  ident i fy the t e s t  results  under 

cons i de ration and to  t ransmit the ins t antaneous e lastic  she ar 

modulus for internal computations , 

3 ,  Remarks 

The loads whi ch are indicated are the total  loads 

s uspended on both s ides of the pul ley . The ins t antaneous e las t i c  

shear modulus is  the load�independent modulus whi ch h as been 
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independently eva luated (see  "Presentation o f  Res ults " ) , 

B ,  Ste ady-State  Angular Velocities  Card 

L Format 

Columns Symb ol 

1 - 1 4  Wyjl 

1 5 - 2 8  W02 

2 9 - 4 2 W0 3 

2 .  Remarks 

Subj ect  

Steady - s tate angular 
ve loci ty unde r smallest  
load 

Steady - s tate angular 
ve locity under inter­
mediate load 

Steady - s tate angular 
ve locity under l argest 
load 

Units  

rad/ s e c  

rad/ sec  

rad/ sec  

Format 

E 1 4 , 7 

E 1 4 , 7 

E 1 4 , 7 

The s te ady- s tate angular ve locities  under the three 

test  conditions mus t be  evaluated independently prior to  the 

computer run ,  The techn iques for this evaluat ion are presented 

in the section entitled "Presentation of Results " ,  

C ,  Load Header Card 

1 .  Format 

Co lumns szmbol  Sub;! ect  Uni t s  Format 

1 - 1 5 Wyj Steady - s tate angular 
velocity for g i ven load rad/ s e c  F 1 5 , 0  

1 6 - 3 0  CT  CT product for g iven load d/ cm2 F 1 5 , 0  

3 1 - 40 T l  Corresponding t ime t o  
achieve steady - s t at e  flow min F 1 0 , 0  

4 1 - 5 0 THETF Corresponding ang le of 
rotation at Tl degrees F 1 0 , 0  

5 1 - 5 4 M Numb er of  data points  - - I 4 

2 ,  Use 

This 

the computation 

card furni shes the ne"cessary information to  enab le 

of  the viscoe lastic  creep function for the g iven 
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load leve l ,  I t  also  specifies  the numbe r  o f  data points whi ch 

follow on the data cards , 

3 ,  Remarks 

One load header card i s  necess ary for each of the 

three test  condi tions , 

D ,  Data Card 

L Format 

Columns srmbol  Subj ect Units  Format 

1 - 6  T ( I )  Time corresponding t o  I th 
data point min F 6 , 2  

7 - 12 1HETA(I,J) Ang le o f  rotat ion correspond� 
ing to  I th data point and 
J th load leve l degrees F 6 , 2  

T imes and ang les  o f  rotat ion are alternately punched 

to  and including column 7 2 , Six data points wi l l  thus b e  

include d  on e ach card except perhaps  the las t ,  

2 ,  Use 

The basi c  data for the analy s i s  are transmitte d  by 

means o f  thes e  data cards , 

3 ,  Remarks 

The data are punched in the order of increas ing times , 

The number  o f  cards necess ary will  be  precis e ly M/6 i f  th i s  

quot ient is  an integer o r  M / 6  ( expressed as the nearest  larger 

integer)  i f  the quotient is  not an integer ,  The cards mus t b e  

orde red b y  increas ing time s , 



E ,  N - Card 

L Format 

Columns Symb ol  

1 - 3  N 

2 ,  Use  
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Subj ect 

Min imum numbe r  o f  Voigt 
e l ements to cons ide r  

Units Format 

I 3 

This card e s tab lishes the minimum numbe r  of Voigt 

e l ements in the visco elastic  mode l ,  After evaluating the con-

s t ants  for the N - e lement mode l ,  the program proceeds to evaluate 

an (N + 1 ) - e lement mode l, and s o  forth unt i l  one o f  the 

fo l lowing condi t i ons occurs : ( 1) the p roduct of one of the 

as s umed B p arame ters and the t ime value corresponding to the 

s e cond data point exceeds 30 , ( 2 )  1 0 0  iterat i ons are t ried for a 

speci fic . numbe r  o f  elements  without convergence , ( 3) a spe cified  

maximum t ime is ex ceede d ,  o r  (4 )  the numbe r  of  Voigt e l ements 

exceeds 1 0 , The firs t condition is provided in orde r to 

e l iminate the inclus ion of nume rical  quantities  greater than 

those permitted by the computer , The s econd condition is  

provided as a means for  dis continuing execution if  divergence is  

occurrin g ,  

F ,  Voigt Mode l Card 

1 ,  Format 

Columns Symbol Subj ect Units  Format 

1 - 14 A (K )  Best  prior e s t imate o f  1 / Gk 
(the reciprocal o f  the 
she ar modulus of the kth 2 e l ement) em / d  E 1 4 , 7  

1 5 - 2 8  B (K)  Best prior e s t imate of 1 / Tk 
(the reciprocal of the 
retardat ion t ime of the k th 

min " 1 e lement)  E 1 4 , 7  
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2 ,  Use 

The N ,  Voigt mode l cards which are necessary are 

o rdered by increas ing e l ement numbers , The es timates o f  A (K )  and 

B (K )  s e rve as the in i t i al point for the iteration process , 

3 ,  Remarks 

The e s t imates of A(K)  and B (K )  may differ from the 

t rue value s  by a factor as large as 1 0 6 . The program us e s  an 

i teration process  whi ch evaluates a power series  at s ucce s s ive 

value s  o f  A (K)  and B (K)  unt i l  the s e ries  converges ,  However ,  i f  

the e s t imates of A (K) and B (K)  are g reatly in erro r ,  the iteration 

process  wi l l  not be  execute d  and the program w i l l  terminate ,  

I f  a value o f  N = 1 i s  specified  by  the N - Card , only 

one value o f  A (K)  and B (K)  mus t be e s t imate d ,  that i s ,  A (  1 )  and 

B ( l) , For the tests  reported herein ( asphalt cements at 39 , 2 " F) , 

good e s t imates o f  A ( l )  and B ( l )  are 0 , 2  x 10 - 5  and 0 , 5  x 1 0 - 1 , 

respect ively , The program then compute s  values o f  A ( l ) and B ( l )  

by  the iteration process  wh ich yield  the  best  fit  by  the least  

s quares criterion ,  From these value s , G
1 

and r 1 are  computed .  

The program then evaluates a two - e lement mode l , I t  f irst  

estimates A ( l ) , B ( I ) , A ( Z ) , and B (2 )  and then, by the iteration 

proces s ,  finds the best  values for the s e  four var i ab l es , G 1 , 

G z , ' 1' and ' Z are then computed , Thi s  process i s  repeated 

automatically unt i l  one o f  the four conditions o f  Section I V ,  

E , Z  is  encountered ,  

V ,  Output 

All  output from this p rogram i s  in the form of t abular 

printouts , The s ection enti t le d  "Presentati on of Results"  describes 
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the conten t and format o f  these printouts , Output data for al l 

of the asphalts  tested  at 39 , 2 ° F  are included as Appendix D ,  

VI , Source Program 

A l i s t ing of the source program for the vis coelastic  analys is  

is  included as  Figure C - 1 .  A l is t ing of the  s ourc• program for  

the Matinv s ubprogram i s  inc luded as Figure C- 2 ,  Thi s  s ubp rog ram ,  

whi ch was obt ained from the Univer s i ty o f  Kentucky Computing 

Center ,  is us e d  in the s olut ion of the s imultaneous equations 

(Equations B� l 6  and B - 1 7 ) , 
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D I ME N S I ON T l l 2 0 l r T H E T I 1 20 1 3 l 1 C F ! l 2 0 , 3 ) , A D I F F 1 1 2 0 l  
3 0  R F AD 1 5 . 1  l N O . I  I . 1 2,1 3 , JE,'.jp , C T 1 . CJ? . C T 3 . GO 

1 FORMA T I I 3 1 1 4 1 2 ! 6 , F 5 . 1 1 3 F 8 . 0 1 E l 4 . 7 l  
K E AD t 5 1 9 l WO l . WO Z . W Q 3 ,  

9 FORMAT I 3E l 4 � 7 l  
__ _I_ F_ I N O J  1 0 . 2 0 . 1 0 

1 0  W R I T E ( 6 1 8 )  N 0 1 L l 1 L2 1 L 3 1 T E M P , CT 1 1 C T 2 , CT 3  
B F ORMAT !1 H L 1 9 X . 4 D H  SliMMAHY SHEET fOR y i SCOF! A S T I C  ANAl ys r s . / / . 9 X .  

1 1 2 H  A S P HALT NO- , I 3 1 1 5 X , 7 H  LOADS- , I 4 r 2 I 6 , 3 H  G M , / , 9X , l l H T E S T  T E M P - ,  
2 F ? . l o 2H f , l z X , 6 H  C T S  , ] f 8 , Q , 8 H DY /SOC M . / / ,  8 8 H  T I M E T H E T A  1 
3 C F  1 T H E T A  2 CF 2 T H E T A  3 CF 3 A V G  

__ 4 __ (;_Etf • 89H M I N  RAD R A / 0 / SQCM _HAD R A / D /SOC M  
5 RAD R A / 0 / S Q C M  R A / 0 / SQCM , / / l  

R E AO I S , ZJ W O , C T  r T l ,  THET F r M  
2 FORMAT 1 2 F l 5 . 0 . 2 F J Q , Q , J 4 1 

wo "' wo -* 60 . 0  
OU 6 J ::: l,M,6 

6 REA D ( 5 1 3 l  T l l l r T H E T I I r J l , T I I + l J , T HE T ( I + l , J l 1 T ( I + Z J , T HET ( I + 2 , J l. , T ( 
l i +)l , !Hfi ! I t). ! I . T ! I t4 1 . T HFT ! T t 4 .  ! I . T / 1 ±51 - I HfT !  1±5, I I  

3 F O R M A T  ( 1 2 F 6 8 2 l  

5 0  
' 

A D I F F I I  l = I C F I I , l l +C F l l , 2 l + C F l l , 1 J l / 3 8  
6 0  W R I TE 1 6 .,_lt l T I J I , T H ET ! I ol ) , C f f l .l l . T HETI I , 2 l , C F ! I . 2 l . T HE T ! l t3 l . C F I I  

1 , 3 l r A O I F F ! I l  
_____!t_____E.O. T F 8  

D I M E N S I ON D I F F ( l 2 0 , l O J , A A l ( l O , l l , l 20 1 ,  B A l l l O r 1 2 0 ) ,  A A ( l 00 , 2 l l ,  
l A ! lQ ! , R ! J Q I . Df! T A ! Z O l . RATJOf?Ql .G! I O I .  TA\I ! J O \ ,  V I $C i l 0 J .  C I J Q ) ,  
20 1 1 0 )  1 .E D I F F  ( 1 2 0 1 ,  S ( 1 2 0 1  1 T H E f l  I 1 2 0 ) ,  T H E T 2 1  1 2 0 ) ,  T H E T 3 1 1 2 0 1  , $ 1 (  1 2 0 ) ,  

� . .JS2 I 1 2 0 ) ,  $ 3  U,�OCL-_________ ------� · 
K.EAO ( 5 , 1 2 1  N 

1 2  FORMAT I I 3  
00 7 0  K = 1  , N  

7 0  BEAD ! 5 . 131 A ! K l . B !  
1 3  FORMAT I E 1� . 7 , E l 4 . 7 l  

1 0 9 1 ( - o �  
26 N 1  = N + l  

I = T T + 
M2=M+ 1 

..... . 
L 2 = 2 • N + l  

.I.E...S..I= 
T E S T 2  = Q . O  

____QQ ����------------------------00 1 6  l - l , L 2  

G O  TO 204 

Figure C - 1 &  Source Program for Viscoe l astic Analys i s .  
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I F ( ( B I K ) * T __ { _[_) ) ___ ,_�:; _':._._j_il__.__Q_l__SliLT.�l �4�0h2 ____ _ 
X = l . / E X P ( R ( K ! li- T ( l ) )  
_(J Q _ _ll) ___ l_t_ 0 3 

4 0 2  X=O. O 
� J f ( ( fl [ ) ) <> T [ [ ) )  t; '0 , "jl) ,'] 

Y - l . / E X P ( S ( J ) * f ( [ } }  GD _ _f_Q_ 4 0 �-- __ _ 
404 Y = O . O  

��----� 

4 0 5  B fl. l ( J_1 l_ l = I'. O I F F _(__[ ) * ( l .  Y J  
A A  l ( J , 1\-;-1 I =tl. i f< )  * !-1 .  X l * ( 1 . --Y-I----.. 

BA I !  J , M + l  l - P ,\1 1  J ,  f l + f1 A l  I I . M + l  \ 
406 A A l ( J , K , M + l ) = A A l ! J , K , l ) + A I\ l ! J , K , M + l )  

_'±_0 7 AAl LJ_Lr:I.I_l .__t-1+ 1 t:c_lVlll_J . �-; _ _t___/:1_±__l__/IA�J , nUl_ 
R "�< 

4 0 8  A__A_j_J_ , _L 2 l :o  __ Lfi.i\_LLJ 1_� + l l / R l  A ,\ 1  I .J , ;I) +_L___M±_ll 
Utl 5 0 0  J = l  1 1\1 

':?00 

Figure C� L 

II[) 'jOG "K - !  Nl 
o n  s o o  I = L , ,'-12 
A A _I LJ_t__K_, _ _l l =:_'J___.___Q_ __ UO '5 0 2  J c= l  , I'� 
I)_Q ':l 0 2  _ _  K_::_l_ , •\j 

Source Program for Vis coelastic Analycs is (Cont ' d . ) .  



Figure C - 1 .  

- 1 1 7 -

00 5 0 1  I = l , M  
I F  ! A B S ! 6 ! K l • T ! l l  l . G E . 1 0 . 0 l  JLCLill 
Xo:: l . / E X P { B ! K ) * l" ( ! l )  

__ Q_Q__l.Q __ 5 c 'j ______ -------··- �-----------
5 0 4  X "' O . O  

.2_0 5 I F  ___ U B S ( 13 \_) ) * T ( [ l l , G.I-�_lil_.__lll ..Gll___ill_______2_A ---
Y "'- 1 ,  / E X P  I l"l ( J l * T I l ) )  

5 0 8  Y = O . O  

2_Q_2_J:i.l\_ll_,J_,K ,_I  l - { l .  _:'0 * A (  J l <> f !  I I ll- {  Y l 
5 0 3  A A 1 { J , K , M+ l l = A A L { J , K 1 ! )  + A � l ( J , K , M + l l  

- _______ J2=:N+ l_____ -----
5 0 2  A A ( J 2 1 K ) = A A l ( J , K , M+ l )  

D O  6 {] 0  K -= l  , N l  

- ____[)JJ______QQ_Q ___ i _., __ lLM01,. 1_ __ _ 
6 0 0  A A l l J , K , I l = O . O  

O f)  602 ) : ]  o N _  
lJU 6 0 2  K - l , N  
!JO 603 I ::: l . M  

I F- I A B S O � ! K l <�- T I I J J , G E . 3 0 . 0 )  GU T O  604 

_ _x_':'_L_L!;; X P  ( !:U K  l * Ti l l  l 
GO TO 6 0 5  

_6_Q!t_ )(_=Q. 0 
6 0 5  I F  ! AB S { R ( j ) ll- f ( l l ) . f; F; . J ,') . f) )  CO Tn 6 0 B  

y::: J I E Xp ! B f  l l -11-_ 

GO TO 6 0 9  

6 0 8  Y=_o._o_
��

-
��

-
6 0 9  AJ\ l ( J , K d l = A { K ) * T ( I ) * (  X l * A ( J l * T I I H · ! Y l  

Q_Q __ :)__l!.!J,_l_L) __ 1_K , ;�t_l 1 - A A l ( J , K ,JJ + f11\ l l  l . K . M + l  l 

L = N+K 

6 0 2  A A ! J 2 1 l ) = A A l ( J , K , M + l ) 

DO 7 0 0  J :'_L'-N_ ___ _ 
00 7 0 0  K = 1 , N l  

- - _ ____uo__?_O_O r_, 1._,�Ml2_ __________ _ 
7 0 0  A A l ( J 1 K , I l = O . O  

D O  7 0 )  ! - )  . N  

oci 1 0 1  r = 1 , �1 ?.  

7 0 1  U A l  ( J_ ,__l_l_:=_Q_._O ____ ... 
Dll 7 0 8  J '= l , N  

Q_O 7 0 7 -"' "o �l L':'------
0 0  7 0 6  J ·= l 1 M  

� .. -_LE1J fi( K l * I ! [ ) l  t. F  � 0  0 \  G O  [ Q  702 
X = l . / E X P ( B ( K ) II- T ( I l l  

_ _  GQ _ _LQ __ __703 

702 X = O . O  
7 0 3  l F ( ( B { j )  __ -o- T ! I l l . G E . 30 . 0 ) GO T O  7 0 4  

Y = l . / E X P I R I J ) II- T I I I I  

704 Y = O . O  

l_Q_ 5  l:l A l ! J . I l - A D l F F ! J ) -o- A !  ! 1 -o-T ! I ) -o- ! Y l  
A A l { J , K , I l = A ( K ) * ( l �  X ) * � ( J ) * T ( l ) * ( Y J  

. BA tLJ_,_�_±_l_L�.Al { J I I )  + I) A l  { j I M + 1 )  
7 0 6  A A l { J , K , M + l l = A A l ( J , K , J ) + A A l { J , K 1 M + l l 
7 0 7  AAl l ! . N + J .tl+ l l 6 {\ l l ) . K . M+ ) I +AA! l ! . N + l . M + I I  

J 2 = N + J  

- __ R::l':L__ 
7 0 8  A A I J 2 , L 2 ) = ( R A l ( J , M+ l ) / R l - A A l i J 1 N+ l , M + l )  

_on 4 3 J = 1 d 1 

Source Program for Vi scoe lastic Analys is (Cont ' d . ) .  



- l l 8 -

4 3  O t: L T A- I .J ) " !:\ 1\ I J , L l!  
___ L_ALL.Jojll. IlN.V . .JJ\A�_Ll_J_D£.LT.i1_d.o.lLU .. L 

Llll 1 0 0  1 =- l , N  
L = IH I 
P, A T l ll- ( f ) = (lt:L T A I I l / 11 1 1 )  

1 0 0  1-\ A f l O_ ( l )  = L'.f.L fl.d_U/_'H l J  
G U  1 06 l = t , r·-J 

-----L�.N .. t.L__�-- ------·-·· 
I F- ( H./1 1 1 0 l l l . G T . '' · l) )  (, '.J TCI 1 0 1  
I F  ( � i'I T l iJ _  ! U  __ • _ _k._L •.. t: l _, _() ) ) _ _  Gfi _ _T_))_ __ _t!)2._ 

G U  TO 1 0 3 
1 0 1  A l l l '= l\ ( j ) + . I• __ O*_!Hll 

T E S T ?  " ? . 0  

- [,_Q ___ "[_Q_�Jl.l. ___ _ 

1 0 2  A I  I l =- fl \ !  ) - . 4 0 * 1\ 1 I }  
T i:; S T2 = 2 • .  0 

1 0 3  I F  I R /I T I D  1 L l . G T . 5 . 1J l  G(l Til 1 0 4  
I F  ( T� I\ T I Ul U � .L L t - l � .O.Ll _ _  GJLJD 1 0 �1 

G O T O  1 0 6  

�B..LLl�_llL.Llt.�-�lliJ.lJ_J...l______._ -
T t 'l T Z  = 2 .. 0 

c;o r o L06 
1 0 �  ll ( I ) = H I ! ) - , 4 0 ., 1'1 { 1 )  

T � S T Z  � 2 . 0  
1 0 6  curn nruE 
___ _:lE____i_H.5J2..a.t.iL...2.JJ_._.Allil...J.L •. GJ .... _l J _L.LLJJl. . .5 _______ ---------· . -· ________ _ 

I r  I T E �, T Z . t u . 7 , )  r. n  TO 5 
l.lO 2 CJ  K= l , t� - - --------···-··----------------------­

L =fH K 
;: i- _{ !I.L'LS.J.D£ L I A l _f'.J_j__.__G_f____.___._Q!ll __ $.1UJU_J_G1Ll1L21. 
1 r:  f l\flS I DELH ( L ) ) . r;c  • •  O U J �(\ ( I<. ) ) Grl I n  Z 7  

___ _G_(!___J__u__z_a_ ________ --·------ ---
-
--

2 7  l E :. T = l .  
2 e  A ( K l 2 D I ' L T A ! K l + A ( K J  

2 9  H ! K l = D [ L T A ( L ) + H ( K )  
I f  t H S T • G T .JJ_�_ r]_._(J_R. T i:_ii2__._��-l_s;._Q_____l_[L_o __ _ 
Gn TO 7 

2 I E ! ! J . ! t- . 1 0 0 1  Gfl fll___2_6_ 
WP:.I T E  ! 6 1 3 1 )  

1 1  FrHH1AT ( l H l l  
DU ')CO K = l , N  

- ------ ------ --

900 W R  I If-- { 6 I 1_?Lt.-�..l�_foll'U_IS_L,!X.�_!_]$-.l:�AT 1 0  ( K L __ _ 
3 2  FO;(Nf-I T !  4 X , 6 H  O f: L T A , ! l 1 2 1l = 1 f: l 4 . 7 r 4X , 2 H ti, , I l 1 2H "' r E l 4 . 7 , 4 X r 6H R 

-��1��-��l�-------------------------------------------­
U(l 9 0 1  K -= l , N  

_l=N+K -----·· -----··--------

9 0 1  � R I T E ( 6 1 4 2 )  l 1 U E L T A { L ) 1 K 1 fl { K ) 1 L 1 H AT I IJ ( L )  
4 2  F O R "1_A T � t;._)l,__t_Q_Jj __ J;l_f,_h_llLLLlJ�E 1 4 . 7  r_4X • 2H Cl..LLh.ZJ::! __ :;_, _i:;_li__.__lJ .. ':t�-'-6H 1{/1 T I_Q_ 

1 1 J l , Z H  = 1 E l 4 . 7 l  

7 on 1 0 7  J o d , r'� 
G _ _LLL -�-1_.__/-.-A_UJ ___ ------------ - _ --�------
T A U ! T l -= 6 0 . / ll ( l )  

1_0 7 V I  SG U ) :::_G _ _lll . .!.IAlill-'-------------­
Wf U T F. t 6 , 9 1 0 l  

9 1 0  E!JR M A T  ! J H l l  
W R l f E I 6 , l 0 8 )  ( K , ( T I\U I K ) ) , K , ( G ( K ) ) 1 K , { V J S C I K } } , K"' l ' N l  

1 0 8  fQ_B,M_{'.,_L_il_f:J_flt l O X  r 4 H  T A l J ,  l l  r 2_ij __ ::_Ll.��._],�.£:�J..JUil •  2H - !  ��-'-
1 E l 4 . 7 , 1 2H nYNE S / S Q  C M 1 6 X 1 5 H V I SC , l l 1 2 H = , I X , E 1 4 . 7 , 7H P O I S E S )  

DO. _8_Ql ___ l-=-l_tl:L ______ - --------·"----.·--- ---�-�---------

Figure C - 1 .  Source Prog ram for Viscoelastic Ana lys is (Cont ' d . ) .  



oo a o 7  J = t , t o  
8 0 7  QTFF C I . ! I - 0 .. 0 

DO 8 0 8  1 = 1  , M  

- 1 1 9 -

0_0 8 0 9  J = l . N  
I F ( I T I I I * B I J J J . G E . 30 . 0 )  G O  T O  8 1 2  
z - L / E X P I T ! I J • tl 
GOTO 8 1 3  

8 1 3  D I F F ( I , J l = t  1 .  / G I J I I * ( l . - Z l  
809 D I F F  l l  ,_N± .. U - O I F F  ( I  . N + l  ) + D I F F  { I  I J )  

E D  I F F  I I l = D f F F  I I , N+ l  l 
THHl I I I =  I C T l / G O  l + I W O l •T I 1 1 •6 0 .  l + I C T J  • E D  I F F  I U J  
T H E T 2 1 I l = I C T 2 / G 0 l + I W U Z * T I I l * 60 . l + I CT 2 • E D ! F F I  I l l  

8 0 8  T H E B ! I l  I C B /GQI + I W O hT I ! I •6Q 1 + / C O �t E!)! F E I I I I  
WR I T E I 6 , 8 1 0 l  

8 1 0  FORMA_HJ !::L:: . .J..J 09H I l ME O !:I S E I W E D  C A l CJlLA.IfD O B S E R V E D  ( /l. I C ll 
l L A T E O  D e S E R V E D  C A L C U L A T E D  O B S E R V E D  C A L C U L A T E D  , J , l l OH 
2_LM I N  I T H E T A  I T HET A  l T H E T A  2 T H F T A  2 T HETA 
3 3 T H E T A  3 CP FUNCT I ON CP FUNC T I ON 1 / , 1 1 0 H  I R A O J  

5 I R A / 0 / S Q C M J  I RA / 0 / S Q C M l , / l  

8 5Q----�'ct�T�E,JJI';6-',,;B_rl�lJ<l 'oTct -;1 -:-,-, �T"H�E�T-;-1 :-,-, -;l c-1 -, =r ccH ;cE =r -;l :-, :-I "Cl -c, T;cH-;-E;cT;c,-t l;-,-c2;cl;-,-cT::HccEccT;c2;ctc-I:-I:-,-cT::HccEc:T;ctc;l;-,-c3:clc-,-cT:: 
_____l H E I 3 1  I l . A D I E F I  I l . F D I EF I  I l 
8 1 1  F O R M A T I F 8 . 1 , 8 E l 3 G 5 )  

'no an r - 1  .po 
S l i i J :Q , Q  

_ _____5_3 1 1 1 - I T H E T I I .J l  THFI3 1 I l l u 2 
S I I I - ( A D I F F I I I - f O I F F I I I  1 • •2 

S3 1 Mt l l -$3 1 Mt l l ±S3 
820 S I M+ l J : S t M+ l ) + S ( I I  

H.::M 
S D l : I S l ( M + l i / H I • • . 5  
S02- I S 2 1 M + l l / H l • • , 5  
S03= 1 S 3 1 M + l l / H I • • . 5  

• •  
WK I T E I 6 , 8 2 l l SO l , S0 2 , SD 3 , S D  

lUl _fORMA T I J H .JOH S T D  DEY = . 3X .tJ?a5.14X , E ! 2  .. 5 . 1 4X . E l 2 . 5,]4X . F l 2  .. �.d 
A I N+ l l  = A I N J • , l  

__ JHN+.l l B I N  l * 
N:N+l 

20 C A l l  E X I T  
.urn 

Figure C � l .  Source Program for Viscoelastic Analys is (Cont ' d . ) .  



C PROGRAM N O .  l 3 - 7 040-f4 
C T I T L E - M A T I NV SUBROUT I N E 
C SPEC I AL MACH REQ NONE 
C SUBROU T I N E S  R E Q U I R E D  - NONE 

- 1 2 0 -

C KEY WORK S _ - S I MUI TANEO\JS EOUAT I ON S , OETFR�! I NANT . I NV F R S E . M A T R I X  
c 
i i B E T C  C M V l  _flti_��--------�------------------------------------����­

SUBROU T I NE M A T I NV { A , N , B , M , D E T ERMl --�---- ���iQ�·�k�-�u·����NCOMPUTES THE I N V E R S E  AND D E T E R M I NANT OF MA�f"CR7I"X-cA
-
,
--------

-
C OF ORDER N . B Y  T H E  GAllS$- ! ORQAN M E T H O D .  A- I NV E R S E  REP! ACES A , AND 
C THE D E T E R M I NANT OF A I S  P L A C E D  IN D E T E R M .  I F  M = l  THE VECTOR B 
C CONTAINS T H E  CON SUNI Vf C T(!g WHEN MAI!NV I S  CAl l EO. ANO T H I S  I S  
C REPLACED W I TH T H E  SOL U T I ON VECTOR I F  M=0 9 NO S I MULTANEOUS 

E_QUA]___li}N_ SOI !JT I ON IS CAl I E D  F O R .  AND-Jl.....l.S._ N O T  pERT I N EN T . N IS NfJl ________ __ 

C TO E X C E E D  1 0 0 �  
� A . N, B . M . ANO D E T E R  M I N  T H E  ARG!JMFNT I l S I  ARE DIIMMy VAR I A B I  E S .  

D I M EN S I O N I P I VDT l l O O } , A i l O O , l OO ) , B i l OO , L OO ) � I NDE K l l 0 0 , 2 J , P I VOT ! l O O J  

1 0  
1.� DO 20. !-1 .. N 
20 l P I VO T  I J J -0 

-----cc--3.0 
.c 

4 5  DO l 0 5 J = l  , N  

ELEMENT 

5_Q __ l£JJP I VO T L l l nE 0 . 1 l  GO TO 1 0 5  
60 00 1 0 0  l< = l i N  

_____ JO I F I I P I VOT I K l  GI I 
I F I I P I V D I ! K I . E Q . l l  GO TO 100 

80 I f i A R S ! AMA)O .GE A B$ 1 4 1  ! . K l l ! GO T O  100 
8 5  I RQWo::: J 
90 I CO! lJM�-----
95 AMAX- A I J , K l  

1 0 0  CONTI NIJF 
105 C O N T I N U E  

TptyOT I I COl !JM l - I P I VOTI ICOllJMl+l 

��--·-··- · -

C .  J N TERCHANGE ROWS T O  PUT P I VOT E L E M E N T  Ot•{DIAGONAL 
------� �.!Ll_f l I ROW .. E O �  ICDLUM! GO TO 260 

" 

140 DETERM- DETERM 
. 

= 

00200 ����N��----------------------------------------------------------­SWAP=A I I ROW , L l  

60 

260 
----�'-lg I N D E X !  

3 1 0  � - · ·--· 
= 

c ELEMENT 

340 00350 L== l , N  
350 A I  I C O L U M . l ! - A O C O L U�UlJllilJ 
355 I F ( M ., L E . O l  GO T03BO 

----�3�60 D0370�.L�-�I�M�---------------------�------------------------------------

Figure C� 2 .  Source Program for Matinv Subprogram. 



- 1 2 1 -

-370 B t  I C O L U M , l l .: B (  I C O L UM , l l / P I V O T I  I l 
C RFD\JCE NON-piVOT ROWS 

380 00550 L l = l , N  
____ l_9_Q _ _IF ( l l . E Q . I C OLUM I GO TO 550 

400 T-A I L l , I C O L U M I  
4 2 0  A l l l , J C O L UM J = O . O  
430 00450 l= 1 ,  N 
450 AJi l ,j l :A ! I J . I  I - A I  I CO!  1/M , !  > • I 
455 I F I M . LE � O J  GO TO 550 

" __ ..!tf&_ _ _D_Q�tQ_Q __ L�t1':-:-c-;;-;-;-;==-:-;-cco-----5oo B ( l l , l ) =B ( l l , L I - B I I C O L U M , L l •T 
TINU 

C I N TERCHANGE COLUMNS 

610 L=N+l-1 
_, ___ ____Q_l_Q_ I F ONDE X I L . l l , E O .. I NDE X I L . ? l l GO T O  7 1 0  

6 3 0  J R O W - I N D E X I L , l l  

640 !CO�£�LLLL __________________ ___ 
650 DO 705 K= l , N  
660 5WAP-A f K .  IRDWl 
670 A I K , JROW J = A I K 1 JC O L U M J  
7 0 0  A I K  . .  !COLlJMJ .:SWAP 
705 CONTINUE 
7 1  0 CONTI Nllf� 
740 RETURN 

Figure c� 2 .  Source Program for Matinv Subprogram (Cont I d . ) .  





APPENDIX D 

VI SCOELASTIC  ANALYSIS  OF DATA 

All  of the t e s t  data t aken at 3 9 , 2 ° F  were analyz e d  us ing the 

computer p rogram t o  evaluate the viscoe l a s t i c  mater i a l  parameters , 

All  output from this  analys is  are s ummari z e d  he re in in t abular 

form .  The format of  thes e  figures i s  des cribed in the sect ion 

ent i t le d  ' ' Pre s en tation of  Res ul ts " .  

- 12  3 -
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EQUATION OF BEST FIT. n=3 EQUATION OF BEST FIT, n�4 
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F igure D- 1 .  Viscoelastic Analys i s  ·for Asphalt 3 at 39 . 2 ° F  ( Cont ' d . ) . 
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Figure D-4 . Viscoelastic Analysi s  for Asphal t  5 3  at 3 9 . 2 ° F .  
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F igure D-6 . Viscoelastic Analysis for Asphalt 7 1  at 3 9 . 2 ° F . 
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Figure D-7 . 
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Viscoelastic Analysis for Asphalt 7 2  at 3 9 . 2 ' F .  
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Figure D-7 . Viscoe lastic Analy s i s  for Asphalt 7 2  at 3 9 . 2 ° F  (Cont ' d . ) . 
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Figure D-8 . Viscoe l a stic Analysis for Asphalt 91 at 3 9 . 2 ° F . 
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Figure D-10 . 

EQUATION OF BEST FIT, n=1 EQUATION 01"" BEST F I T, n=2 
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Viscoelastic Analys i s  for Asphalt 1 2 7  at 3 9 . 2 ° F .  
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F igure D-10 . 

EOUATf0!\1 OF BEST FIT. n=4 "EQUATION OF BEST F!T, n=5 

Vi scoe l a s tic Analy s i s  for Asphalt 1 2 7  at 3 9 . 2 ° F  (Cont ' d . ) . 
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EQUATION OF BEST FIT. n=1 
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EQUATION OF BEST FIT, n=2 

Viscoe l astic Ana lysis for Asphalt 200 at 3 9 . 2 ° F . 
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