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ABSTRACT OF DISSERTATION 

 

 

 

 

Human metapneumovirus (HMPV) is a leading cause of respiratory tract 
infections worldwide across all age groups, and is particularly devastating in the 
pediatric, elderly and immunocompromised populations. Despite its high prevalence and 
burden on human health, there are currently no treatments or vaccines against HMPV 
infections. HMPV is an enveloped virus that belongs to the paramyxovirus family. 
Paramyxoviruses in general form by assembly of virus components at the plasma 
membrane followed by budding and release of virus particles into the extracellular matrix 
to spread infection. The process of forming new virus particles requires complex 
interactions between viral and cellular components and the requirements for particle 
production differ substantially among paramyxoviruses. Several key aspects of the life 
cycle of HMPV remain unknown. The work presented here provides significant advances 
in understanding the mechanisms underlying assembly and spread of HMPV in human 
bronchial airway epithelial cells. We provide evidence that HMPV induces 
reorganization of the actin cytoskeleton and microtubules at late stages of infection 
leading to the formation of complex networks of branched filaments and intercellular 
extensions, structures that have not been previously reported for paramyxoviruses. Our 
results indicate a novel mode of HMPV spread directly from cell-to-cell across 
intercellular extensions. We identified an important role of actin and the Rho GTPases 
Rac1 and Cdc42 in direct cell-to-cell spread of HMPV. While roles for paramyxovirus 
matrix and fusion proteins in membrane deformation have been previously demonstrated 
for several paramyxoviruses, we show that the HMPV phosphoprotein (P) associates with 
actin and induces formation of membrane extensions, suggesting a role for the P protein 
in HMPV exit from the cell. Additionally, infection of differentiated, polarized human 
airway tissues showed that release of HMPV particles at the apical side is inefficient and 
revealed that spread of HMPV in these tissues can occur in the presence of neutralizing 

LATE EVENTS OF HUMAN METAPNEUMOVIRUS INFECTION: INSIGHTS INTO 
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antibodies. HMPV infection also resulted in reorganization of the actin cytoskeleton in 
these tissues mainly at the apical side. Collectively, the data provided in this dissertation 
reveal a novel mechanism by which HMPV uses the cytoskeleton for cell-to-cell 
transmission and provide critical insights into spread of respiratory viruses within the 
airway epithelium. 

 

KEYWORDS: Paramyxovirus, Human metapneumovirus, respiratory epithelium,   
   assembly, spread 
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CHAPTER 1: BACKGROUND AND INTRODUCTION 

 

Portions of this chapter were adapted from: Paramyxovirus Glycoprotein 

Incorporation, Assembly and Budding: A Three Way Dance for Infectious Particle 

Production. Farah El Najjar, Anthony P. Schmitt
 

and Rebecca Ellis Dutch. 

Viruses 2014, 6(8), 3019-3054. 

 

Paramyxoviruses: Classification and medical significance. The Paramyxoviridae is a 

family of enveloped viruses with negative strand, non-segmented RNA genomes that 

causes significant disease in humans and animals. Important human pathogens within this 

family include measles virus (MeV), mumps virus (MuV) and human respiratory 

syncytial virus (HRSV), which is the single largest cause of respiratory tract infections in 

the pediatric population [1]. In addition, several paramyxoviruses have recently been 

identified, including the respiratory pathogen human metapneumovirus (HMPV) and the 

deadly zoonotic Hendra (HeV) and Nipah (NiV) viruses [2-4]. Paramyxoviruses also lead 

to high burdens on agriculture and the global economy by infecting avian species 

(Newcastle disease virus (NDV) and avian metapneumovirus (AMPV) [5,6]), cattle 

(rinderpest virus), as well as pigs (NiV) [3] and horses (HeV) [4]. Based on 

morphological characteristics, sequence homology and protein function, paramyxoviruses 

are further classified into two subfamilies: the Paramyxovirinae and the Pneumovirinae. 

 

Paramyxovirus particles (depicted in Figure 1.1) are pleomorphic in shape. For 

many family members, particles are primarily spherical, and range in size from 150 nm to 

300 nm in diameter; however, a filamentous form predominates for some viruses such as 

HRSV and the parainfluenza viruses, and these particles can reach up to 10 μm in length 

[7-12]. The viral membrane of paramyxoviruses contains two major glycoproteins 

required for virus entry into target cells: the attachment protein (termed HN for 

hemagglutinin-neuraminidase, H for hemagglutinin, or G for glycoprotein, depending on 

the virus) and the fusion (F) protein. These glycoproteins are densely packed on the viral 

envelope and form spike layers as seen under cryo-electron microscopy [13,14].  A 

subset of paramyxoviruses have an additional surface glycoprotein, the small 
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hydrophobic (SH) protein whose function in the viral life cycle is less clear since it is 

dispensable for virus replication in vitro [15-19]. Inside the viral envelope, the RNA 

genome is encapsidated by the nucleocapsid proteins (N or NP), forming the flexible, 

loosely coiled nucleocapsid structure, termed ribonucleoprotein complex (RNP), to which 

the viral RNA-dependent RNA polymerase complexes, made of large polymerase (L) 

protein and phosphoprotein (P), are bound. The RNA genomes of paramyxoviruses are 

15-19 kb in length and contain six to ten genes. As is the case for most negative-strand 

RNA viruses, association of the paramyxovirus RNP with the viral membrane is 

mediated by the matrix (M) protein.  

 

Human metapneumovirus and its significance to human health.  Human 

metapneumovirus (HMPV) is a major cause of acute upper and lower respiratory tract 

infections worldwide [12,20-25]. HMPV was originally identified in 2001 in the 

Netherlands in patients with symptoms similar to human respiratory syncytial virus 

(HRSV) infection [2]. Since its initial report, studies have shown that HMPV has been 

circulating in human populations for more than 50 years [26,27]. Two lineages, A and B, 

exist for HMPV and they are further subdivided into two sub-lineages, A1, A2, B1 and 

B2 [2]. A number of reports indicate that there are no differences in disease severity 

between the two lineages [28,29]. Virtually all children are exposed to the virus by the 

age of five [2,30]. However, the virus induces incomplete immunity and recurrent 

infections can occur throughout life [31], thus HMPV can infect all age groups. Severe 

disease associated with HMPV infection occurs in young children, elderly and 

immunocompromised individuals. Between 5 and 20% of hospitalization rates due to 

respiratory infections in young children are caused by HMPV and it is generally 

considered as the second or third leading cause of severe respiratory diseases in this age 

group [32,33]. HMPV is also a significant cause of morbidity and mortality in 

immunocompromised and elderly populations [31,34], and a recent report indicated that 

hospitalization rates for HMPV infection in older adults are similar to those of influenza 

infections [35].  
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The most common clinical presentations of HMPV infection in children include 

cough, fever, rhinitis, wheezing, and otitis media [36,37].  More severe infections can 

also occur and common complications include bronchiolitis, croup, asthma exacerbation, 

and pneumonia [37-43]. Elderly that require hospitalization due to HMPV infection 

present with bronchitis, pneumonia, COPD exacerbations, and congestive heart failure 

[44]. Though mainly restricted to the respiratory tract, a few reports have associated 

HMPV with infections in the central nervous system [45-47]. Currently, there are no 

specific antiviral treatments or vaccines for HMPV infections. Besides ribavirin and 

monoclonal antibodies to the virus that have marginal anti-HMPV activity, the only form 

of treatment is supportive. 

 

Paramyxovirus assembly and budding.  The process by which paramyxovirus 

particles are formed and released at the cell membrane involves a series of highly 

coordinated and organized events that eventually result in the production of fully 

infectious virus particles. Figure 1.2 depicts the general life cycle of paramyxoviruses, 

which culminates in newly synthesized virus particles being assembled and released into 

the extracellular matrix. Infection is initiated upon binding of the attachment protein to a 

cell surface receptor, followed by fusion of the viral membrane to a host cell membrane, 

a step promoted by the F protein. The viral genome is then released into the cytoplasm 

where all the steps of the replication cycle occur. Primary transcription of the negative 

sense RNA genome by the viral RNA-dependent RNA polymerase follows the “stop-

start” model resulting in a gradient of mRNA abundance such that genes at the 3’end are 

transcribed in higher amounts than genes at the 5’end [1]. Replication of the full-length 

genome occurs only after accumulation of viral proteins and involves production of 

positive sense anti-genomes which act as templates for the synthesis of new negative-

sense genomic RNA. Progeny genomes can then be used for further replication, for 

secondary transcription, or for incorporation into virus particles. The newly synthesized 

RNPs are then transported to selected sites at the plasma membrane where interaction 

with the viral integral membrane glycoproteins occurs, followed by membrane scission 

and release of virus particles. Incorporation of RNPs and envelope glycoproteins into 

infectious virus particles is a highly complex and coordinated process that requires 
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cooperation among the three main structural components of the virus:  the surface 

glycoproteins, the RNPs and the matrix proteins. While the majority of paramyxoviruses 

fit with this overall model, studies on the molecular mechanisms involved in the assembly 

and budding of paramyxovirus particles revealed significant differences between members 

of this family.  

 

Viral proteins involved in paramyxovirus particle production.  The three key 

components in production of infectious paramyxovirus particles, the surface 

glycoproteins, the matrix proteins and the RNPs, must coalesce at the plasma membrane 

to initiate budding. Interactions among these three components are critical for 

glycoprotein incorporation and particle assembly. The matrix protein is generally 

considered the main driver of paramyxovirus assembly and can interact with both the 

glycoproteins and the core RNPs in an orderly manner. However, paramyxovirus surface 

glycoproteins are not simply bit players in this process, but instead can play important 

roles in directing the process of particle formation. 

Matrix proteins as coordinators of paramyxovirus assembly and budding. The 

M protein, the most abundant protein in the virion, plays a fundamental role in 

paramyxovirus assembly through its ability to interact with multiple partners. M proteins 

can self-assemble, bind directly to cellular membranes, and interact with the RNP 

complex and the cytoplasmic tails of glycoproteins, thus allowing the RNP core to 

associate with a region at the plasma membrane where the surface glycoproteins are 

concentrated, which will become the budding site. The importance of M proteins for 

paramyxovirus particle production was originally shown in Sendai virus and measles 

virus, where mutations in the M gene encoding an unstable M protein was correlated with 

severe defects in infectious particle  production [48-51]. Our understanding of the role of 

M protein in the process of paramyxovirus assembly was enhanced by studies involving 

virus-like particle formation (VLPs) and reverse genetics, as recombinant viruses with 

mutations or deletions in the M gene revealed the significance of the matrix protein in 

incorporation of other viral components and in viral budding. For example, deletion of 

the measles virus M protein led to an increase in cell-associated virus and the loss of co-

localization of the surface glycoproteins with the RNPs [52]. A recent study by Mitra et 
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al. showed that infection with an M-null HRSV resulted in impairment of infectious 

particle release and alterations in the intracellular localization of the RNP complex as 

well as in the distribution of  glycoproteins on the plasma membrane, further 

demonstrating the essential role of M in the assembly and budding of virus particles [53]. 

For many paramyxoviruses, including Sendai virus (SeV) [54,55], MeV [56,57], NiV 

[58,59], hPIV1 [60], and NDV [61], transient expression of M protein by itself is 

sufficient to promote budding of VLPs, indicating that the M protein of these viruses has 

the ability to efficiently associate with membranes, induce membrane curvature and 

promote scission. Although matrix proteins of different paramyxoviruses display similar 

functions, they vary greatly in length and amino acid sequences.  

Despite the essential role of the M protein in paramyxovirus particle production, 

the mechanisms by which M regulates the assembly and budding processes vary among 

different members of the family. Unlike SeV, MeV, NDV, NiV and hPIV3, where the M 

protein is sufficient for VLP formation, other paramyxoviruses require interactions of M 

with the surface glycoproteins or with the RNP for particle formation, indicating that 

there are significant variations in the function of M and in the strategies that different 

family members employ for efficient particle production. Differences in the role of M in 

the assembly of paramyxoviruses were also demonstrated by electron cryo-tomography 

showing the 3D structures of virus particles. While the general ultrastructural model of 

paramyxoviruses depicts M protein as lining the inner leaflet of the viral envelope, recent 

cryo-tomography data show that this structure does not apply to all paramyxoviruses. For 

RSV, NDV and SeV, M forms a layer under the viral membrane only in a small 

percentage of virus particles. In the majority of particles, M was observed to be 

dissociated from the membrane and disassembled, potentially to allow the conformational 

changes of the F protein from the pre-fusion to the post-fusion form by releasing 

interactions with the F cytoplasmic tail [62-64]. A recent study revealed that for RSV the 

surface area of the virion membrane which is covered by M varies significantly 

depending on the morphology of the virus particle with the highest coverage (86%) 

detected in filamentous particles and the lowest (24%) in spherical viruses [65]. The 

arrangement of the surface proteins and the matrix proteins in the 3D structures of NDV 

and RSV suggest an interaction between these two viral components. In MeV, on the 
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other hand, M protein was not located under the viral membrane but was found to 

assemble on the RNP forming a bundled two-layer helical structure inside the virion [66]. 

These findings suggest significant mechanistic differences in the way M interacts with 

the RNPs and envelope proteins to assemble virus particles. 

Interaction of ribonucleoprotein complex with glycoproteins and M. During 

replication, the newly synthesized genomic RNA is tightly wrapped with the 

nucleoprotein for protection from degradation, forming a helical RNP complex [67]. 

Encapsidation of RNA by N does not depend on specific nucleotide sequences, as 

expression of N in the absence of infection can result in the formation of nucleocapsid-

like structures resulting from N non-specifically binding host-cell RNAs [55,60,68-70]. 

Prior to virus budding, newly synthesized RNPs must assemble with the surface 

glycoproteins and the M protein at the plasma membrane. While multiple copies of the 

RNA genome can be packaged within a single particle [64,65,71,72], incorporation of 

RNPs into virions is selective and depends on species homology between M and the 

nucleocapsid protein, genome length, and to a lesser extent on the polarity of the genome 

[73-75]. Targeting of RNPs to the plasma membrane assembly sites is primarily mediated 

by the M protein. M proteins of several paramyxoviruses, including SeV, MeV and PIV5, 

are known to interact with the nucleocapsid protein to mediate incorporation of the RNPs 

into virions [73,76,77]. Studies using recombinant viruses also demonstrated that 

deletions or mutations of the M gene can block RNP complex transport to the plasma 

membrane during infection, further supporting the important role of M protein in RNP 

inclusion into virus particles [53,57]. Within the pneumovirinae subfamily, association of 

M with the RNP can occur through interaction of M with the transcription elongation 

factor, M2-1 protein, which is also considered a component of the RNP complex 

[62,65,78]. M can also bind RNA directly or can bind to the large polymerase L protein 

[79,80]. In addition to interacting with M to facilitate their incorporation into virions, in 

some cases the paramyxovirus nucleocapsid proteins play a role in increasing efficiency 

of VLP budding [14,69]. Co-imunoprecipitation experiments showed that the fusion 

protein of NDV interacts with the NP protein in purified VLPs and not with the M 

protein, suggesting that interaction of F with NP may be involved in localization of NP at 

plasma membrane assembly sites [61]. In other cases, such as SeV, interaction of the M 
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protein with a viral glycoprotein is required for concentration of the RNPs at the plasma 

membrane and their subsequent assembly into particles [81].   

Active role of glycoproteins in paramyxovirus particle formation. While the role of 

M proteins as organizers of paramyxovirus assembly has been well established, the 

important function of membrane proteins in the late phases of paramyxovirus infection 

has gradually become clearer. Surface glycoproteins of paramyxoviruses are well 

characterized for their significance in membrane fusion and viral entry; however, 

substantial evidence implicates an active role of these membrane glycoproteins in the end 

stages of the virus replication cycle (reviewed in [82,83]). Paramyxovirus glycoproteins 

can specify the location for viral budding through interactions with lipids, associate with 

the M protein to aid in assembly, and in some cases, interact with RNPs as part of virus 

assembly. For assembly of infectious particles, M must target the cytoplasmic RNPs to 

the budding site at the plasma membrane where the viral integral membrane 

glycoproteins are concentrated, thus paramyxovirus M proteins are suggested to bind 

membranes at areas enriched with the envelope proteins. Consistent with this view, the 

ultrastructure of NDV revealed that the M protein forms a grid-like array where the 

glycoproteins were densely packed [63]. In addition, an inner layer of membrane-bound 

M was associated with regular spacing of the pre-fusion F protein in RSV virions, further 

supporting an interaction between M and F [62]. Studies have demonstrated that 

membrane proteins interact with the matrix protein for a number of paramyxoviruses, and 

this interaction is needed to organize assembly and for the incorporation of glycoproteins 

into budding virus particles, but many differences exist between various members with 

respect to the contribution of this interaction to particle formation and the individual roles 

of the attachment and fusion proteins. For SeV, M can interact with both F and HN [84-

86] but only the fusion protein is important for virus production and its function is as 

critical as that of M since alterations in F can attenuate virus production up to 70% [86-

88]. Expression of glycoproteins was also shown to be important for budding of VLPs. 

Loo et al. have recently shown that while HMPV M interacts with both F and G proteins, 

expression of HMPV G facilitates formation of VLPs [10]. Specific interactions between 

M and HN of NDV have also been reported; however, this interaction does not have an 

effect on efficiency of VLP release [61]. Similar results were seen for MeV, NiV and 
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RSV, indicating that glycoproteins can enhance budding efficiency for only a subset of 

paramyxoviruses [56,58,59,89].  

In addition to their contribution to the budding process, paramyxovirus glycoproteins 

are also implicated in assembly of other viral components. The fusion protein of RSV 

was shown to be responsible for incorporation of G and SH proteins into budded virions 

and for their co-localization with N at plasma membrane assembly sites; however, F 

deletion had no effect on M assembly into virions [89]. A key function for the fusion 

protein in SeV assembly was shown, as mutations in F altered cellular localization of 

both HN and M, although interaction of F with M was not affected [81]. These findings 

indicate that the paramyxovirus glycoproteins can play significant roles in the assembly 

and budding processes, but different paramyxoviruses utilize their glycoproteins 

differently. 

Paramyxovirus surface glycoproteins contain short cytoplasmic tails which extend on 

the inner side of the plasma membrane. Several studies have demonstrated that the role of 

paramyxovirus glycoproteins in particle formation depends on their cytoplasmic tails, as 

these regions are required for glycoprotein incorporation into packaged particles and for 

glycoprotein interactions with M. Biochemical and co-localization studies revealed that 

M can interact with the cytoplasmic tail of the homotypic attachment proteins for RSV, 

HMPV, NDV and measles [10,61,90,91]. These finding are surprising for the 

pneumoviruses RSV and HMPV since G is dispensable for viral replication in vitro 

[92,93]. This suggests that while interaction of M with G is dispensable for virus 

production in these cases, the presence of G may contribute to optimal virus production 

manifested by an increase in HMPV VLP formation [10] and a role for G in SH 

incorporation into RSV particles [89]. For other paramyxoviruses, the cytoplasmic tail of 

F protein plays an important role in late stages of viral infection. The cytoplasmic tails of 

MuV and hPIV1 F proteins are involved in particle assembly [14,94]. For RSV, 

formation of viral filaments depends on the cytoplasmic tail of the fusion protein [89,95]. 

For measles virus, truncations in the cytoplasmic tails of F and H do not alter assembly of 

viral components at the cell membrane but do affect the incorporation of F, M and H into 

released particles [96]. Deletion of the cytoplasmic tail of measles virus F protein is 
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associated with increased cell-cell fusion, similar to what is seen for the MeV strain 

obtained from subacute sclerosing panencephalitis (SSPE) patients. It has been suggested 

that interaction of M with the cytoplasmic tails of F locks F in the pre-fusion 

conformation during the process of assembly; thus removal of the cytoplasmic tail, and 

loss of the M interaction domain, facilitates fusion [52,62,97].   The importance of the 

glycoprotein cytoplasmic tails for particle assembly appears to be a common feature of 

many RNA viruses, as truncations in the cytoplasmic tails of the glycoproteins 

hemagglutinin [98] (HA) and neuraminidase (NA) of influenza A virus or of the 

rhabdovirus G result in severe defects in particle formation [99,100].  

Intracellular trafficking of paramyxovirus components. During paramyxovirus 

replication, the glycoproteins, matrix proteins and RNPs are synthesized  

at distinct sites in the cytoplasm and must be transported to the plasma membrane for 

coordinated assembly. The different viral components reach the plasma membrane by 

different mechanisms and interact with each other in an orderly manner either during 

trafficking or at the cell surface prior to packaging into virions. Paramyxovirus proteins 

are carried to the cellular plasma membranes by utilizing various cellular machineries 

including endocytic and exocytic pathways, in addition to vesicular trafficking and the 

cytoskeleton. 

Trafficking of viral glycoproteins. Paramyxovirus glycoproteins are synthesized 

in the endoplasmic reticulum (ER) and traffic through the secretory pathway, and in some 

cases through endocytic pathways, to the plasma membrane. Proper trafficking is needed 

for incorporation into budding virions or induction of cell-cell fusion for direct cell-to-

cell transmission of virus particles. For some paramyxoviruses, data indicate that the 

fusion and attachment proteins can interact following their synthesis in the ER, and thus 

are transported to the cell surface as a metastable protein complex. This has been 

suggested to occur for NDV, MeV and human parainfluenza viruses 2 and 3 [101-103]. 

Alternatively, the F protein and the attachment protein can traffic separately and only 

associate after reaching the plasma membrane, which is the case for HeV and NiV 

[104,105]. For PIV5, F and HN also associate at the cell surface but formation of the F-

HN complex requires receptor binding [106]. During their synthesis in the ER, 
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glycoproteins must undergo proper folding and oligomerization prior to trafficking to the 

cell surface. Mutational analyses showed that mutations which interfere with proper 

folding or assembly of the final oligomeric structure of paramyxovirus glycoproteins 

generally result in their retention in the ER and prevent their transport through the 

exocytic pathway to the cell surface [107-110]. The contribution of the ectodomain in 

proper folding and stability of the trimeric fusion protein or the tetrameric attachment 

protein is well established, but substantial evidence also indicates an important role of the 

transmembrane domains and cytoplasmic tails in the oligomerization process and folding 

of the ectodomain [109,111-113]. Mutation of a TYTLE motif in the cytoplasmic tail of 

SeV F protein prevented its transport to the PM, and the protein was instead retained in 

the ER.  This failure to traffic was hypothesized to be due to the failure of the F mutant to 

trimerize [81]. Similar findings were reported for  the PIV5 HN protein, as deletion of the 

cytoplasmic tail prevented its assembly to an oligomer and transport to the cell surface 

[110].  In addition to their role in protein oligomerization, the cytoplasmic tails are 

thought to facilitate proper trafficking of glycoproteins to the cell surface by binding 

cellular factors that direct protein targeting to the plasma membrane and by harboring 

residues that facilitate interaction with negatively charged lipids at the plasma membrane. 

N-glycosylation can also be essential for the proper folding, stability, intracellular 

transport, and surface expression of the paramyxovirus glycoproteins. Removal of N-

glycans from the glycoproteins of NDV, CDV, PIV5, SeV, HeV and NiV had a 

significant effect on their exocytic transport and surface expression [114-120]. However, 

removal of all three N-glycans did not affect transport of the RSV F protein to the cell 

surface indicating that the degree to which N-glycosylation influences proper folding and 

transport varies among paramyxovirus glycoproteins [121,122].  

Trafficking of viral glycoproteins has been demonstrated to involve tyrosine-

based and di-leucine motifs which are involved in protein trafficking in both secretory 

and endocytic pathways. Several paramyxovirus glycoproteins have endocytic signals 

and can undergo internalization following trafficking to the plasma membrane [123-127]. 

For instance, the cytoplasmic tails of NiV and HeV F proteins contain a tyrosine-based 

motif (YXXΦ), where X is any amino acid and Φ is a residue with a bulky hydrophobic 

side chain, that is required for internalization of the protein from the cell surface 
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[126,127]. PIV5 HN is internalized from the plasma membrane by clathrin-coated pits 

but its internalization depends on a single glutamic acid residue at the boundary between 

the transmembrane domain and the ectodomain [124,128]. Henipavirus fusion proteins 

are the only paramyxovirus glycoproteins that have an absolute dependence on 

endocytosis for proteolytic activation by cathepsin L [126,129-131]. With the exception 

of Henipaviruses, the relevance of endocytic signals in viral envelope glycoproteins is not 

yet well established. It has been proposed that down-regulation of attachment and fusion 

protein expression on the cell membrane may be a post-translational regulatory 

mechanism that plays an important role in viral pathogenicity through minimizing 

recognition of antigens on the infected cells by the immune system. Endocytic signals in 

viral glycoproteins can also affect efficiency of glycoprotein incorporation into virions 

and virus assembly. Mutation of the internalization signal in PIV5 HN has been shown to 

affect the incorporation of both F and HN into budded virions [132]. Interaction of the 

surface glycoproteins with the core matrix proteins may regulate expression of the 

paramyxovirus glycoproteins on the cell surface and decrease internalization of the 

glycoproteins, thus favoring their incorporation into assembled virus particles over 

endocytosis [52,97,133,134]. 

Intracellular transport of matrix proteins and ribonucleoproteins. Though 

originally synthesized in the cytoplasm, the matrix protein and the RNPs must 

subsequently translocate to viral budding sites at the plasma membrane; however, very 

little is currently known on the mechanisms underlying transport of these critical viral 

structural components. In the classical model for paramyxovirus assembly, the matrix 

protein is thought to interact with the RNP at the cell membrane to mediate its insertion 

into budding sites for the production of infectious virus particles. Substantial data, 

however, support an alternative model in which the matrix protein associates with the 

RNP complex in the cytoplasm prior to translocation to the plasma membrane. Data on 

both MeV and SeV suggest that the M protein binds to the RNP in the cytoplasm, and the 

two components are then co-transported to the plasma membrane [57,135]. Further 

support for an interaction of M with the RNP in the absence of membrane interactions 

was provided by the 3D structure of MeV particles, which showed that measles M protein 



 

12 
 

did not form a layer underneath the viral envelope, but instead associated with the RNPs 

to form a helical matrix-covered nucleocapsid structure inside the virion [66].  

Data from live cell imaging revealed an important role of the host cytoskeleton in 

the trafficking of paramyxovirus RNP complexes. Filamentous RNPs of RSV show 

myosin-motor driven directional movement on the actin cytoskeleton [136]. In the case of 

SeV and MeV, RNPs are transported along microtubules using Rab11A containing 

vesicles, key regulators of trafficking within the recycling endosomal pathways and Golgi 

to the plasma membrane [137,138]. Rab11 endosomes are also part of the apical 

recycling endosome (ARE) pathway which controls apical transport of proteins in 

polarized cells, suggesting that this pathway may be particularly important in polarized 

cells. However, a requirement for Rab11A in assembly of SeV is observed in both 

polarized and non-polarized cells. In contrast, Rab11A dependent transport of measles 

RNPs is only critical for virus production in polarized epithelial cells and is not a general 

requirement for measles RNP trafficking. The Rab11-mediated recycling pathway is also 

important for budding of RSV particles from the apical surface [139]. In the course of 

RSV infection, the matrix protein localizes in cytoplasmic bodies containing the RNP 

complex proteins N, P, L, and M2-1, which are thought to be assembly bodies. Deletion 

of the matrix gene prevents the translocation of the viral RNP from the cytoplasmic 

inclusions to the cell surface suggesting that for RSV, trafficking of the RNPs depends on 

trafficking of M [53,140]. These findings indicate that large differences exist in the 

trafficking mechanisms of paramyxovirus RNPs. It is yet to be determined whether the 

Rab11 mediated pathway is utilized by other paramyxoviruses to transport the RNPs 

prior to assembly and if M is associated with the viral RNPs in the Rab11 containing 

endosomes to facilitate its trafficking. A recent study demonstrated that the incorporation 

of HIV1-Env protein into budding particles is dependent on the interaction of the Rab11-

interacting proteins FIP1C/RCP and Rab14 with the cytoplasmic tail of the protein [141]. 

This raises the question of whether sorting of paramyxovirus glycoproteins to the plasma 

membrane can be mediated by components of the Rab11 pathway and this requires 

further investigation.  
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Although the entire replication cycle of paramyxoviruses occurs in the cytoplasm, 

the matrix proteins of HRSV, SeV, NDV and NiV have been shown to traffic through the 

nucleus early during virus infection. In the case of RSV, localization of M in the nucleus 

occurs through interaction of a nuclear localization signal (NLS) with the nuclear import 

receptor, importin β1, and its exit to the cytoplasm at later stages of infection is mediated 

by a nuclear export signal (NES) that directs Crm-1dependent nuclear export [142]. 

Nuclear-cytoplasmic trafficking of NiV M was also dependent on a NLS and a leucine-

rich NES [143]. In contrast to both RSV and NiV, the matrix protein of NDV is present 

in the nucleus throughout infection, and recent studies indicate that NDV M localizes in 

the nucleolus primarily due to interaction with the nucleolar phosphoprotein B23 [144-

149]. In all cases, trafficking of M to the nucleus and its localization there was necessary 

for later virus budding and efficient virus production. Although more studies are needed 

to clarify the biological function of M protein nuclear localization, it is proposed that M 

transits to the nucleus at early stages of infection to allow optimal transcription and 

translation of viral components, since the M protein of several paramyxoviruses has been 

shown to bind RNA directly and inhibit viral transcription [76,80].  Transition of M 

through the nucleus may also affect host transcription to enhance virus replication 

(similar to the matrix protein of vesicular stomatitis virus [150,151]) remove this?). The 

M protein of RSV has been shown to    induce cell cycle arrest in lung epithelial cells by 

regulating p53 expression suggesting a role of M in influencing cellular transcriptional to 

control p53 levels [152]. 

Role of viral and cellular factors in paramyxovirus budding. Budding of enveloped 

viruses is a complex process that requires induction of membrane curvature followed by 

membrane scission and release of virus particles. Induction of membrane curvature and 

the final membrane fission event requires manipulation of the lipid-lipid interactions 

within cellular membranes, and is driven by interactions of viral proteins with membrane 

lipids in addition to viral-viral and viral-host protein interactions [153]. The mechanisms 

underlying budding of paramyxoviruses are still largely unknown, but it is evident that 

various paramyxoviruses exit infected cells using different mechanisms (reviewed in 

[82,83]). Budding of paramyxovirus particles is driven primarily by the matrix protein. 

The M protein binds membranes and homo-oligomerizes underneath the plasma 
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membrane to drive membrane deformation and promote the needed curvature. As 

previously mentioned, the M protein of a number of paramyxoviruses can induce 

formation of VLPs when expressed by itself [54]. In this case, self-association of M 

under the membrane may be sufficient to drive membrane deformation and outward 

budding of VLPs. It is equally possible that host proteins are recruited by M to the 

plasma membrane and thus the host machinery drives the membrane deformation and 

outward budding. One of the primary mechanisms involved in the release of nascent virus 

particles of many enveloped viruses, such as HIV-1, Ebola virus, and VSV requires a 

short stretch of amino acids in the matrix protein with a late budding function known as 

the “L” domain. These L domains, which vary among different viruses (P(T/S)AP, PPxY, 

YxxL), function by recruiting and interacting with cellular proteins of the endosomal 

sorting complex required for transport (ESCRT), which are part of the vacuolar protein 

sorting (VPS) pathway and are involved in promoting membrane fission steps that lead to 

the release of virus particles [154]. The paramyxoviruses PIV5 [69], NDV [149] and 

mumps virus [14] rely on the host ESCRT machinery during virus exit, as release of 

particles was inhibited by expression of a dominant negative VPS4A. Budding of PIV5, 

NDV and mumps virus is dependent on a FPIV-like motif in the M protein [14,149,155],  

which does not resemble canonical L-domain sequences, suggesting that these 

paramyxoviruses may utilize different components of the host ESCRT that can recognize 

and bind to a different amino acid sequence. There is increasing evidence that a growing 

number of viruses, including influenza virus and VSV, can bud from host cells 

independent of ESCRT machinery (reviewed in [153,156]). Budding of RSV [139], NiV 

[157], MeV [158], AMPV [159] and HMPV [160] has also been demonstrated to occur in 

an ESCRT-independent manner. The mechanisms used by ESCRT-independent viruses 

to bud from infected cells are still unknown for many of these viruses. Interestingly, 

budding and virus release of HRSV is dependent on Rab11-FIP2, and the Rab11 pathway 

was also shown to play a role in influenza virus production, suggesting that viruses may 

utilize the Rab11 endosomal pathway in a previously uncharacterized manner to achieve 

their exit from host cells [139,161]. 

Although M proteins are considered the driving force for budding of 

paramyxoviruses, increasing evidence demonstrates that the glycoproteins can also play a 
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role. Several paramyxovirus glycoproteins can induce VLP formation by themselves or 

must be present with the M protein for efficient VLP formation, indicating that surface 

glycoproteins in these cases are needed either to recruit M to assembly sites or to initiate 

budding. A major role of glycoproteins in paramyxovirus budding is well characterized 

for the SeV fusion protein. Sendai F induces VLP release when expressed alone in cells, 

and silencing of the F gene reduces virus production by 70% [86]. The ability of F to bud 

from the plasma membrane depends on a TYTLE motif in the cytoplasmic tail of the 

protein [81,162]. This suggests that the TYTLE motif may be needed to bind a cellular 

factor that facilitates budding. Sendai F also interacts with M in the ER and is responsible 

for carrying M to the plasma membrane. Interestingly, both proteins were found to 

contain amino acid sequences that resemble actin binding domains [54]. The host 

cytoskeleton has been shown to play an important role in the life cycle of several 

paramyxoviruses, and it is thought that cytoskeletal components are involved in 

paramyxovirus budding. Large amounts of actin were found associated with SeV 

particles and, interestingly, mutations of the actin binding domain in F resulted in a 

significant reduction in SeV VLP production, indicating that binding of SeV F protein to 

actin is important for budding of the virus. The requirement of the cytoplasmic tail 

domains of glycoproteins for budding of several paramyxoviruses may indicate that these 

domains are involved in binding cellular factors that usually are involved in exocytic 

pathways. Another significant role of paramyxovirus glycoproteins in paramyxovirus 

particle production is manifested in RSV production. Short filament-like structures 

containing F and G were seen in cells infected with M-null virus suggesting that RSV 

glycoproteins are capable of deforming the cell membrane and initiating bud formation 

[53]. Clustering of glycoproteins in lipid raft microdomains may create a pulling force on 

the plasma membrane and thus induce an initial membrane deformation that is further 

elongated by oligomerization of the matrix protein [62]. These observations suggest that 

the glycoproteins of paramyxoviruses can actively contribute to the budding process 

leading to virus egress from infected cells.  

Current models for paramyxovirus assembly. Fundamental differences exist among 

the different family members in the mechanisms that underlie coordinated targeting to the 

assembly site, and three different models for paramyxovirus assembly can at present be 
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deduced (Figure 1.3). What factors determine which mechanism is employed by specific 

paramyxoviruses for completion of their life cycle are not currently known. It may be 

possible however that some members can employ more than one assembly mechanism 

either simultaneously or at different times during infection depending on cellular factors 

or in vivo conditions. In the first model, the fusion and attachment proteins interact 

following their synthesis in the ER and are co-transported to the plasma membrane as a 

complex. The matrix protein associates with the RNP in the cytoplasm and carries it to 

the plasma membrane where it assembles with surface glycoproteins. This model can be 

deduced mainly from studies done on MeV. Alternatively, the fusion and attachment 

proteins can traffic separately to the cell surface. In some cases, like SeV (model 2), the 

fusion protein can bind the matrix protein in the ER, and the two are transported as a 

complex to the plasma membrane where they create a nucleation site for assembly. 

Incorporation of the attachment protein likely occurs though interactions with M or with 

F. The RNP can traffic by itself to the assembly site and is packaged within particles 

upon binding to M or one of the glycoproteins. Studies of RSV suggest a third model of 

paramyxovirus assembly, where the formation of an assembly complex containing F, M 

and the RNP core occurs in inclusion bodies in the cytoplasm, with a role of the 

cytoplasmic tail of F in targeting M-RNP to assembly sites.   

 

The actin cytoskeleton and its importance in viral infection.   

Overview of the actin cytoskeleton. Actin was first isolated in 1887 from muscle tissues 

as a coagulating factor [163], but it was not until 1940 that filamentous actin was 

observed and “actin” was given its name . The actin cytoskeleton is involved in pivotal 

functions in the cell from controlling cell shape and motility to organelle distribution, 

transport of cargo within the cells and intercellular communication. Actin exists in two 

forms in the cell: monomeric globular actin (G-actin) and polymeric filamentous actin (F-

actin). Monomeric G-actin is a 43-KD protein that is highly conserved in eukaryotic cells 

from yeasts to humans and is often considered the most abundant protein in non-muscle 

cells. The atomic structure of G-actin contains two main domains and two subdomains 

that form two prominent clefts: a large nucleotide-binding cleft and a hydrophobic cleft 

that mediates interactions of actin with most actin binding proteins (ABPs) [164-166]. 
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Three isoforms of G-actin that differ only by few amino acids mainly at the N-terminus 

of the protein are expressed in mammalian tissues: α-actin in muscle tissues, β- and γ-

actin in non-muscle and muscle tissues [167]. Actin is in a dynamic state between its 

monomeric and filamentous forms with actin monomers assembling and disassembling at 

a continuous basis. Actin is an ATPase and the transition between the two states is 

controlled primarily by ATP hydrolysis and ions (K
+
, Mg

2+
). Assembly of actin filaments 

from G-actin occurs in two steps, an initial lag phase involving nucleation and formation 

of ATP-bound G-actin dimers and trimers followed by a rapid polymerization phase, 

ATP hydrolysis and dissociation of phosphate. The resulting actin filament is flexible, 

consists of two strands of parallel actin monomers with a right-handed helical twist and 

two ends that are dynamically different: a fast growing (+) barbed end to which ATP-

bound G-actin is spontaneously added and a pointed (-) end where ADP-actin monomers 

dissociate and the filament shortens [168]. This process of actin 

polymerization/depolymerization known as actin filament treadmilling is tightly 

controlled by other cellular factors that are involved in regulating actin dynamics in the 

cell: ABPs and the Rho-family GTPases, in particular Cdc42, Rac and Rho [169-172].  

 

ABPs are a family of proteins that can bind G-actin, F-actin or both and are 

involved in regulating actin filament nucleation, elongation, capping, crosslinking, 

severing, depolymerization and actin-associated motor activity (myosins). Polymerization 

of actin filaments is initiated when actin monomers are stabilized by an initiation 

complex. The first initiation complex to be identified and the most studied is the Arp2/3 

complex, which consists of seven proteins including the actin related proteins Arp2, Arp3 

and ARPC-1. By itself, the Arp2/3 complex has low polymerization-stimulating activity 

[173], but this activity is activated through interaction with Nucleation Promoting Factors 

(NPFs) such as members of the Wiskott–Aldrich syndrome protein (WASP)/WAVE 

family and WASP-interacting proteins (WIPs) [174-176]. NPFs, in addition to Arp2/3 

biding motif, also have WH2 domain(s) that allow binding to monomeric actin, thus 

NPFs recruit actin and induce a conformational change in Arp2/3 to activate its 

nucleating activity [177,178]. In addition to the Arp2/3 complex, other actin nucleating 

factors include formins and tandem-monomer-binding nucleators [179]. Following 
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nucleation, filament elongation and stabilization is mediated by other ABPs such as 

profilin, cortactin, tropomyosin and the Ena/VASP family. In addition, once actin 

filaments are formed, a number of F-actin binding proteins can mediate the formation of 

more complex structures. Crosslinking proteins including fascins, fimbrins and spectrins 

promote formation of actin networks such as the cortical actin underlying the plasma 

membrane [180-182]. Actin filaments can also bundle with other proteins to form parallel 

or anti-parallel filaments [183]. Actin filaments are also subject to further branching by 

actin-nucleating protein. For example, when activated by NPFs, Arp2/3 can form a 

branched network from the side of an existing actin filament and proteins known as 

“capping proteins”, such as gelsolin, can block the branching filament at the (+) barbed 

end, thus resulting in short, rigid branched networks that form entangled meshworks. 

However, in the absence of capping proteins, branched actin filaments can grow longer 

and form parallel or anti-parallel bundles  [184]. Myosin motor proteins can bind actin 

and move unidirectionally along the actin filaments with some myosins (I or V) moving 

toward the barbed end and the cell periphery and others like myosin VI or IXb move to 

the cell center. Actin filaments can be disassembeled and depolymerized by the action of 

proteins such as ADF/cofilin and gelsolin [185,186].  These different configurations of F-

actin are integrated in the cell to form four main structures: sheet-like structures 

containing branched and crosslinked actin networks (lamellipodia, ruffles and blebs), 

structures containing tight parallel actin bundles (filopodia and microvilli), contractile 

antiparallel bundles (stress fibers) and crosslinked networks (cortical actin directly linked 

to the plasma membrane by integral and peripheral membrane proteins). Stress fibers are 

essential for mediating attachment to the substratum and providing mechanical strength, 

lamellipodia comprise the leading edge of migrating cells while filopodia contain 

receptors for signaling as well as adhesion molecules. 

 

The organization of the actin cytoskeleton in a cell is highly dynamic and it is 

mainly regulated by signaling proteins of the Rho GPTase family. More than 20 Rho 

GTPases regulate actin organization and rearrangement in the cell, but the most 

extensively studied ones include Rac1, Cdc42 and RhoA [187].  Rho GTPases are 

monomeric, low molecular weight proteins that act as molecular switches as they cycle 
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between a GTP-bound active form to a GDP-bound inactive form. Rho GTPases are 

strictly controlled by three sets of proteins: Guanine nucleotide exchange factors (GEFs) 

that catalyze GDP to GTP exchange, guanine nucleotide-dissociation inhibitors (GDIs) 

which prevents GDP to GTP exchange and Rho activation by binding the GDP-bound 

Rho and GTPase activating proteins (GAPs) that activate intrinsic GTPase hydrolysis 

activity. Rho GTPases regulate signaling pathways linking membrane receptors to the 

actin cytoskeleton. In their active GTP-bound form, Rho GTPases act by binding and 

activating actin nucleators. A large number of proteins that interact with Cdc42 and Rac1 

contain a short amino acid motif (around 18 residues) that is known as the Cdc42/Rac1 

Interactive Binding (CRIB) motif. Binding of Rho GTPases to their direct downstream 

effectors result in activation and membrane recruitment of the effector protein. Figure 1.4 

summarizes the signaling pathways activated by the Rho GTPases Cdc42, RhoA and Rac 

[188]. Cdc42 can directly bind and activate the NPFs WASP and WAVE, thus activating 

the Arp2/3 complex downstream. Cdc42 also activate the formin mDia and DAAM1 as 

well as the p21 activating kinase (PAK). Activation of Cdc42 through these pathways 

result in formation of protrusive filopodia [189,190]. Similar to Cdc42, Rac1 also 

activates WASP and Arp2/3, PAK and the formins FMNL1 and FHOD1, mainly 

inducing membrane ruffling and lamellipodia as well as adhesion signaling [191-193]  . 

Activation of RhoA in general results in cellular effects which opposes those induced by 

Cdc42 and Rac1. RhoA activates the formins mDia and DAAM1 as well as Rho 

associated kinase (ROCK) and cofilin downstream, leading to formation of stress fibers 

and focal adhesions. In addition, RhoA activates ROCK/myosin light chain (MLC) 

pathway leading to acto-myosin contractility and integrin adhesion. Thus, activation of 

these pathways in response to various upstream signals results in time and space-

dependent remolding of the actin cytoskeleton which is essential to may cellular 

processes including migration, division and membrane trafficking. 

  

Viruses and the actin cytoskeleton. Due to the important roles of the actin cytoskeleton 

in maintaining a plethora of cellular processes, it is perhaps not surprising that viruses 

have evolved various ways to manipulate the structure and function of the actin 

cytoskeleton to establish successful infection. The first reports linking virus infection 
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with an effect on the actin cytoskeleton were described in the 1970s with the 

identification of transforming viruses Rous sarcoma virus [194], Simian virus [195] and 

adenoviruses [196] where virus infection resulted in cell rounding, loss of contact 

inhibition, disruption of stress fibers and increase in cortical rigidity. Today, a large 

number of studies support an important role of actin at different stages of the viral life 

cycle from entry and replication to assembly and egress.  

Virus infection of a host cell begins with attachment of a virus particle to the cell 

surface, and some viruses can induce alterations in the actin cytoskeleton at this step, 

even prior to entry.  A process known as “virus surfing” have been described where some 

viruses, including retroviruses, papillomaviruses, herpesviruses, dengue virus and others, 

can bind cell surface receptors or extracellular matrix components and move along the 

plasma membrane by actin-driven motion [197-201] . In some cases, such as herpes 

simplex virus-1 (HSV-1) and dengue, interaction of virus with a cell surface receptor 

activates downstream signaling including Rac1 and Cdc42, inducing formation of 

filopodia and virus surfing on these structures. Following attachment, viruses have to 

overcome the plasma membrane and the three-dimensional network of cortical actin 

underneath to gain access to the cell. For viruses that take advantage of endocytosis to 

enter the cell, cortical actin does not create a barrier. However, studies have shown that 

actin filament dynamics and actin-associated signaling play an important role in entry of 

those viruses indicating the involvement of the actin cytoskeleton in endocytic virus entry 

[202-206] . The role of actin in entry of viruses that enter though membrane fusion is still 

not well understood. For paramyxoviruses, it has been shown that disruption of actin 

filaments reduces entry and cell-cell fusion and syncytia formation by RSV [207]. In 

addition, previous work in our lab indicated a role of Rac1 and Cdc42 in syncytia 

formation induced by HeV and PIV5 and a role for actin dynamics in fusion pore 

formation by PIV5  [208,209]. A role for actin has also been associated with replication 

of negative strand RNA viruses including the paramyxoviruses HRSV and canine 

distemper virus, although no clear mechanism has been described [210,211]. The actin 

cytoskeleton is also involved in later stages of the infection cycle and viruses mostly 

utilize the scaffolding and force-generating function of actin for particle assembly, 

release and spread. Recent studies revealed an important role of the actin cytoskeleton in 



 

21 
 

the trafficking of paramyxovirus RNP complexes. Filamentous RNPs of RSV show 

myosin-motor driven directional movement on the actin cytoskeleton [212].  In addition, 

actin was shown to be involved in co-transport of M-RNP complexes of measles virus to 

the cell surface [213], indicating role of actin in paramyxovirus assembly. Several reports 

also implicate a role of the actin cytoskeleton in last step of virus infection: exit and 

spread. Actin was shown to play a role in budding of several viruses including influenza 

virus, HIV-1 and the paramyxoviruses RSV, Sendai virus and measles virus [207,213-215]. 

In addition, a number of viruses has been shown to manipulate the actin cytoskeleton in 

fascinating ways to mediate their exit from the cell and spread from cell-to-cell. Viruses of 

different families including HIV-1, herpes simplex virus (HSV) and rotavirus can induce 

formation of actin extensions to disseminate infection over long distances  [216-218]. 

These viruses were shown to encode proteins that manipulate the actin cytoskeleton by 

different mechanisms. HIV-1 Nef protein modulates PAK2 activity [219] while alphavirus 

US3 kinase binds and phosphorylates PAK1 and PAK2 [220]. Actin manipulation by 

rotavirus involves two proteins NSP4 that inactivates cofilin and VP4 that associates with 

actin [218,221]. Vaccinia virus represents another example of an extensive manipulation of 

the actin cytoskeleton where the virus can modulate the three Rho GTPases Cdc42, Rac1 

and RhoA by different mechanisms to promote direct cell-to-cell spread of virus particles 

[222].  

A role of the actin cytoskeleton at different steps of the infection cycle has been 

described for a large number of viruses to this date. Although viruses do not usually encode 

actin cytoskeleton components, they encode proteins that can modulate actin-associated 

signaling or actin-modulating proteins directly to manipulate actin structures in the cell. 

However, for paramyxoviruses little is known about virus interactions with the actin 

cytoskeleton and the specific roles of actin during infection. 

 

Dissertation overview 

 

The dissertation focuses on understanding the mechanisms involved in the 

formation and spread of HMPV particles. As a recently discovered virus, several aspects 

of the life cycle of HMPV are not well understood. Previous work in our laboratory and 

others has provided important information on early stages of HMPV infection involving 



 

22 
 

mechanisms of viral membrane fusion and HMPV binding to the cell surface. However, 

the late stages of infection by which the different virus components assemble and exit the 

cell as infectious virus particles have not been thoroughly investigated and only a few 

reports have provided information on the late stages of HMPV infection. Similar to other 

paramyxoviruses, HMPV M was shown to be required for budding of virus particles 

[160]. In addition, both F and M are needed for production of VLPs suggesting an 

important role for these two proteins in the assembly and budding steps of HMPV 

infection [10], and budding occurs in an ESCRT independent manner [160].  However, 

most of these studies were done in non-respiratory cells, which do not represent the best 

model for studying HMPV infection. To gain better insight about the infection cycle of 

HMPV, I initially performed imaging analysis on human bronchial epithelial cells 

(BEAS-2B) infected with HMPV and identified structures including branched 

filamentous networks of budding viral filaments and long intercellular extensions, 

structures that have not been described for other paramyxoviruses. Thus, my dissertation 

work focused on investigating the mechanisms underlying the formation of these 

structures and their functional significance for HMPV infection with my major 

hypothesis being that viral and cellular factors contribute to the formation of unique 

structures that are needed for HMPV assembly and spread.  My results indicate that the 

actin cytoskeleton plays an important role in the budding of branched filamentous 

networks, in the formation and elongation of intercellular extensions and in production of 

HMPV particles, while microtubules contributed to elongation of cellular extensions but 

not in formation of branched filaments. Further studies indicated a role of intercellular 

extensions in direct cell-to-cell spread of virus particles, which in contrast to cell-free 

HMPV infection, does not depend on heparan sulfate and can evade neutralizing 

antibodies. This work suggested several possible models for spread of HMPV infection in 

a monolayer of human bronchial epithelial cells that differ from the models available for 

paramyxovirus assembly and spread. In addition, I also performed studies of HMPV 

infection in a human airway epithelium (HAE) model that closely resembles the airway 

epithelium. Results from these studies revealed important insights in the mode of spread 

of HMPV within airway tissues. HMPV infection was concentrated at the apical side of 

tissues, which is in accordance to its localized infection in the respiratory tract. However, 
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in contrast to several other respiratory paramyxoviruses, release of HMPV particles at the 

apical side was inefficient. Furthermore, the actin cytoskeleton was involved in HMPV 

spread in HAE. We also identified a novel role for HMPV P, and for a paramyxovirus P 

protein, in membrane deformation at late stages of infection. These findings reveal novel 

features of late steps of HMPV replication and represent a step forward in our 

understanding of the mechanisms by which this respiratory pathogen can spread infection 

from cell-to-cell. We hypothesize that HMPV activates signaling pathways associated 

with the actin cytoskeleton to promote efficient spread within the human airway 

epithelium. Further investigation of the late stages of infection involving HMPV 

interaction with the actin cytoskeleton could contribute to the knowledge that is required 

for moving forward toward developing anti-HMPV treatments.  
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Figure 1.1 Schematic of a paramyxovirus particle.  

The viral envelope, containing two main surface glycoproteins: fusion protein (purple) 

and attachment protein (magenta), surrounds the single stranded RNA genome (gray) 

which is encapsidated by the nucleocapsid protein (brown) and bound by phosphoprotein 

(orange) and the large polymerase protein (yellow). Underlying the membrane is a layer 

of matrix proteins (green). Some paramyxoviruses have an additional surface protein 

termed the small hydrophobic protein (SH). The RNA genome with the sequence of 

genes from the 3’end to the 5’ end is depicted. 
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Figure 1.2. Schematic illustration of the life cycle of paramyxoviruses.  

Transcription and replication of the viral genome occurs in the cytoplasm by the action of 

the viral RNA-dependent RNA polymerase. The newly synthesized viral components 

translocate to discrete sites at the infected cell plasma membrane where assembly and 

budding of infectious virus particles occur. For details, refer to text. 
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Figure 1.3. Models of paramyxovirus assembly.  

 

Model 1: F protein and attachment protein are co-transported to the plasma membrane, 

and M associates with the RNP in the cytoplasm and carries it to the plasma membrane. 

Model 2: F protein and the attachment protein traffic separately to the cell surface, the 

RNP traffic by itself to assembly sites and is packaged within particles upon binding to M 

or one of the glycoproteins. Model 3: an assembly complex of F, M and the RNP core 

form in the cytoplasm and traffic to assembly sites. F protein shown in purple, attachment 

protein in magenta, M protein in green and the RNP complex in brown. 
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Figure 1.4. Rho-family GTPase signaling regulates actin dynamics.  

Upstream signaling pathways modulate guanine nucleotide exchange factors (GEFs), 

GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors (GDIs) 

which in turn regulate activity of Rac1, Cdc42 and RhoA. Rac1 activates WAVE/Arp2/3, 

the formins FHOD1 and FMNL1 and PAK/LIMK to promote lamellipodia formation. 

Cdc42 activates WASP/Arp2/3, PAK/LIMK and the formin mDia that contribute to 

filopodia formation. RhoA activates ROCK/LIMK, ROCK/MLC and mDIA1/2 to 

promote stress fiber formation and contractility. 
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CHAPTER 2: MATERIALS AND METHODS 

 

Cell lines. BEAS-2B cells, obtained from ATCC, were grown in Bronchial Epithelial 

Cell Growth Medium (BEGM) containing all the recommended supplements (Lonza). 

16HBE cells [223], kindly provided by Dieter C. Gruenert, University of California, San 

Francisco, were grown in Minimum Essential Medium w/ Earle’s salt (Invitrogen) plus 

10% fetal bovine serum (FBS) and 2mM L-glutamine (Invitrogen). A549 cells were 

maintained in Roswell Park Memorial Institute medium (RPMI; Lonza) supplemented 

with 10% FBS. COS-7 cells and Vero cells were grown in Dulbecco's modified Eagle's 

medium (DMEM; Gibco) supplemented with 10% FBS. CHO-K1 and pgsA745 cells, 

obtained from ATCC, and pgsD677, (provided by Jeff Esko, University of California, 

San Diego, CA) were grown in HyClone Ham's F-12, Kaighn's modification medium 

(Thermo Scientific, Waltham, MA) supplemented with 10% FBS.   

 

Plasmids, antibodies and reagents. A codon optimized HMPV N gene in pCAGGS was 

kindly provided by Ursula J. Buchholz, (NIAID). The coding sequence for HMPV M was 

synthesized in a puc57 vector (Genetech, Arcade, NY) and subcloned into pCAGGS. Full 

length cDNA for HMPV P was amplified by RT-PCR from RNA isolated from HMPV 

CAN97-83 and cloned into pCAGGS. Antibodies for HMPV N protein (ab94801), P 

protein (ab94803) and F protein (ab94800) were obtained from ABCAM. A polyclonal 

antibody against the avian metapneumovirus C M protein, kindly provided by Sagar M. 

Goyal (University of Minnesota, Minneapolis, MN), which has been shown to cross-react 

with HMPV M, was used to detect HMPV M protein [160]. Filamentous actin was 

detected using phalloidin, and the antibody for tubulin was purchased from the 

Proteintech group (66031). A monoclonal Ab 12CA5 to the HA tag was obtained from 

Roche. Secondary antibodies conjugated with Fluorescein isothiocyanate (FITC) or 

Tetramethylrhodamine (TRITC) were obtained from Jackson ImmunoResearch. Drugs 

for disruption of the actin cytoskeleton or microtubules were purchased as indicated: 

cytochalasin D (C8273; Sigma), latrunculin A (428021; Calbiochem), jasplakinolide (sc-

202191; Santa Cruz), paclitaxel (580556; Calbiochem), nocodazole (487928; 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwiO-cjtzerHAhWHz4AKHWWaAyE&url=https%3A%2F%2Fwww.thermofisher.com%2Fus%2Fen%2Fhome%2Flife-science%2Fcell-analysis%2Ffluorophores%2Ftritc-dye.html&usg=AFQjCNG4GVXbSxQ61MZa8-txjQZKk-oCRA&bvm=bv.102022582,d.eXY
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Calbiochem), rhosin (555460; Calbiochem), NSC 23766 (sc-204823; Santa Cruz), ML 

141 (4266; Tocris), wiskostatin (681660; Calbiochem), and CK-666 (SML0006, Sigma).    

 

Transient transfections. HMPV proteins N, P, F, M, SH-HA and SH-HA were 

transiently expressed using the mammalian expression vector pCAGGS [224]. Cells were 

transiently transfected with the plasmid DNA using lipofectmaine plus according to the 

manufacturer’s protocol (Invitrogen, Carlsbad, CA). 

           

Virus propagation and titer determination. HMPV and recombinant, green fluorescent 

protein (GFP)-expressing HMPV (rgHMPV) strain CAN97-83 (genotype group A2), 

kindly provided by Peter L. Collins and Ursula J. Buchholz (NIAID), were propagated in 

Vero cells or LLC-MK2. Cells were infected at a multiplicity of infection (MOI) of 0.02, 

incubated at 37ºC with Opti-MEM supplemented with 200mM of L-glutamine and 

0.3µg/ml of L-1-Tosylamide-2-phenylethyl chloromethyl ketone (TPCK) trypsin with the 

trypsin replenished every day. After a period of 4-6 days, cells and media were collected 

and centrifuged at 2500 rpm for 15 minutes at 4 ºC on a Sorvall RT7 tabletop centrifuge. 

The supernatant was then subjected to centrifugation on a 20% sucrose cushion for 2 

hours and a half hours at 135,000 x g 4°C using a SW28 swinging bucket rotor on a 

Beckman Optima L90-K ultracentrifuge. The pellet was resuspended in Opti-MEM and 

left at 4°C overnight. Aliquots of the samples were made the next morning and stored at -

80°C. Titers of rgHMPV were determined by performing serial dilutions of the virus 

samples on a 96-well plate, incubation for 24 hours followed by counting the number of 

GFP positive cells. For determination of titers of non-GFP expressing HMPV, virus 

samples were subjected to serial dilution, 100µl of virus was added to LLC-MK2 cells, 

incubated at 37ºC for 1 hour followed by overlay with Opti-MEM containing 0.75% 

metylcellulose. After 4-5 days, cells were fixed in 10% formalin, incubated with anti-

HMPV F antibody followed by a peroxidase-conjugated secondary antibody. Peroxidase 

substrate was added and plaques were then counted. To determine cell-associated virus 

titers, cells were scraped, 1x sucrose phosphoglycerate was added  followed by three 

freeze-thaw cycles. For determination of titers of released virus, cell culture media was 

collected, centrifuged at 2,500 rpm for 15 min at 4°C on a Sorvall RT7 tabletop 
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centrifuge followed by centrifugation on a 20% sucrose cushion at 135,000 x g and 4°C 

for 2 hours and 30 minutes using a sw41 swinging bucket rotor on a Beckman 

ultracentrifuge 

 

HMPV purification by sucrose density gradient centrifugation for mass 

spectrometry analysis. BEAS-2B cells were mock infected or infected with HMPV and 

virus propagation was performed as described above. Cell culture media was collected 

and centrifuged at 2500 rpm for 15 minutes on a Sorvall RT7 tabletop centrifuge. The 

supernatant was then subjected to centrifugation on a 20% sucrose cushion for 2 and a 

half hours at 135000 x g, 4°C using a SW28 swinging bucket rotor on a Beckman Optima 

L90-K ultracentrifuge. Virus pellets were then resuspended in 1x Tris-sodium-EDTA 

(TNE) buffer, layered onto a 30%-45%-60% (weight/volume) discontinuous sucrose 

gradient and centrifuged at 35000rpm for 90 minutes at 4ºC. The band containing the 

virus at the 30%-45% interface was collected and centrifuged on a 30% to 60% 

continuous sucrose gradient for 18 hours at 35000rpm and 4ºC. The virus-containing 

band was pelleted on a 20% sucrose cushion. The pellet was resuspended in 1x TNE 

buffer and centrifuged at 400 x g for 10 minutes using an Amicon Ultra Filter Unit 100 

000 to get rid of low molecular weight contaminants. The ultrapure virus was then 

subjected to mass spectrometric analysis. Analysis was also done on virus propagated in 

COS-7 cells and purified as mentioned above.    

 

Mass spectrometry for detection of HMPV-associated cellular proteins. Mass 

spectrometry analysis was performed by Jing Chen. The virus solution was denatured 

with 8M urea and subjected to dithiothreitol reduction and iodoacetamide alkylation. The 

sample was then diluted to a 2M final concertation of urea and digested in-solution with 

trypsin. The tryptic peptides were subjected to shot-gun proteomics analysis as previously 

described [225]. LC-MS/MS analysis was performed using an LTQ-Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA) coupled with an Eksigent 

Nanoflex cHiPLC™ system (Eksigent, Dublin, CA) through a nano-electrospray 

ionization source. The peptide samples were separated with a reversed phase cHiPLC 

column (75 μm x 150 mm) at a flow rate of 300 nL/min. Mobile phase A was water with 
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0.1% (v/v) formic acid while B was acetonitrile with 0.1% (v/v) formic acid. A 50 min 

gradient condition was applied: initial 3% mobile phase B was increased linearly to 40% 

in 24 min and further to 85% and 95% for 5 min each before it was decreased to 3% and 

re-equilibrated. The mass analysis method consisted of one segment with eight scan 

events. The 1st scan event was an Orbitrap MS scan (300-1800 m/z) with 60,000 

resolution for parent ions followed by data dependent MS/MS for fragmentation of the 7 

most intense ions with collision induced dissociation (CID) method. For identifying host 

proteins in purified HMPV particles, the LC-MS/MS data were submitted to a local 

mascot server for MS/MS protein identification via Proteome Discoverer (version 1.3, 

Thermo Fisher Scientific, Waltham, MA) against Homo sapiens (human) taxonomy 

subset of Swissprot database. Typical parameters used in the MASCOT MS/MS ion 

search were: trypsin digest with maximum of two miscleavages, cysteine 

carbamidomethylation, methionine oxidation, a maximum of 10 ppm MS error tolerance, 

and a maximum of 0.8 Da MS/MS error tolerance.  A decoy database was built and 

searched. Filter settings that determine false discovery rates (FDR) are used to distribute 

the confidence indicators for the peptide matches. Peptide matches that pass the filter 

associated with the strict FDR (with target setting of 0.01) are assigned as high 

confidence. For MS/MS ion search, proteins with two or more high confidence peptides 

were considered unambiguous identifications without manual inspection. Proteins 

identified with one high confidence peptide were manually inspected and confirmed. 

 

Immunofluorescence and confocal microscopy. Cells grown in 6-well plates or 35 mm 

dishes containing coverslips were infected with HMPV and at various times post 

infection, cells were washed in phosphate buffer saline (PBS) and fixed in 4% 

paraformaldehyde for 15 minutes at room temperature. Cells were then permeabilized in 

1% Triton X-100 for 15 minutes at 4°C followed by blocking in 1% normal goat serum 

and incubation with the corresponding primary antibody overnight at 4°C. The following 

day, cells were washed with 0.05% tween-PBS, secondary antibodies were added, and 

cells were incubated at 4°C for one hour. Coverslips were then mounted on glass slides 

using Vectashield mounting media (Vectorlabs, Burlingame, CA). Pictures were taken 

using a Nikon 1A confocal microscope and analyzed with the NIS-Elements software. 
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All images were processed in Adobe Photoshop, with equivalent adjustments made to all 

panels.   

 

Immunostaining for Stochastic Optical Reconstruction Microscopy (STORM). 

BEAS-2B cells grown in glass bottom 35mm dishes were fixed in 3% paraformaldehyde 

for 15 minutes followed by reduction in 0.1% sodium borohydride (NaBH4) for 7 

minutes at room temperature. Cells were then washed three times with PBS, five minutes 

per wash while shaking, and permeabilized in 0.2% Triton X-100 for 15 minutes prior to 

blocking in 10% NGS/0.05% Triton for 90 minutes at room temperature. Primary 

antibodies diluted in 5% NGS/0.05% Triton were then added and incubated for 60 

minutes followed by washing five times in 1%NGS/0.05% Triton and incubation with the 

secondary antibody for 30 minutes. Washes using 1%NGS/0.05% Triton was then 

performed for five times followed by post fixation in 3% PFA for 10 minutes, three 

washes with PBS and two washes with distilled water. Cells were stored at 4°C until 

imaging using a Nikon Super Resolution Microscope N-STORM and image processing 

was performed using NIS-elements software.     

 

Co-culture assay for direct cell-to-cell-spread of HMPV. BEAS-2B cells were infected 

with rgHMPV at an M.O.I. of 1 for 48 hours and then incubated with 7µM of cell tracker 

orange CMRA (Life Technologies, # C34551) for 30 minutes at 37ºC, 5% CO2. Cells 

were then washed 5 times with PBS to remove any bound virus particles, lifted up with 

trypsin and added to uninfected BEAS-2B target cells at a ratio of 1:1.Neutralizing 

antibodies, DS7 and 54G10, were then added and cells incubated for additional 24 hours. 

Afterwards, cells were collected, fixed in 1% formaldehyde and analyzed by flow 

cytometry. Direct cell-to-cell spread was defined as the percentage of GFP-only positive 

cells normalized to percentage of double positive (GFP/cell tracker CMRA orange) donor 

cells. To test the role of heparan sulfate in direct cell-to-cell spread of HMPV, BEAS-2B 

donor cells were infected and stained with cell tracker orange CMRA as mentioned above 

and incubated with CHO, pgsD677 or pgsA745 cells at a ratio of 1:1 and co-cultured for 

24 hours. 
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Flow Cytometry Analysis. For determination of percentage of target cells infected in the 

coculture assay, cells were fixed in 1% formaldehyde diluted in PBS with 50mM EDTA, 

and analyzed with a BD FACSCalibur (BD, Franklin Lakes, NJ). Expression of GFP and 

cell tracker CMRA orange of at least 50,000 cells was determined and data analysis was 

performed using BDFACS software (BD Biosciences). The percentage of GFP-

expressing cells was normalized to percentage of double positive donor cells in each 

condition followed by normalization to control samples. 

 

Infection of Human Airway Epithelium (HAE) tissues. Human tracheal bronchial 

differentiated airway (Epiairway) tissues were purchased from MatTek (Ashland, MA) 

and maintained in 5ml of AIR-100 media at 37°C for one week prior to infection, with 

the media changed and apical surface washed with 0.9% NaCl every other day to remove 

mucus. Prior to infection, the apical surface was washed three times with 200µl of HBS 

buffer supplemented with 75 µg/ml of  lysophosphatidylcholine, each wash for 10 

minutes, and 1 ml of HBS was added to basolateral side and left for 30 minutes. Tissues 

were then infected at the apical or basolateral side with HMPV or rgHMPV for 2 hours at 

37°C while shaking every 15 minutes. Tissues were then washed once with HBS and 

incubated in 5ml of media containing 0.5 μg/ml TPCK-trypsin at 37°C. Images were 

taken daily using a 5x objective of a Zeiss Axiovert 100 microscope. For determination 

of percent infection, tissues were washed once with PBS, followed by a wash in 7 mM 

EDTA and incubation in trypsin for 15 minutes at room temperature. Cells were collected 

with DMEM, filtered through a 70 µM nylon mesh and centrifuged at 200g for 5 min. 

Cells were then resuspended in a 1% formaldehyde fixation solution and the percentage 

of GFP positive cells was determined by fluorescence-activated cell sorting (FACS) 

analysis. To prepare tissues for immunofluorescence, tissues were fixed in 4% PFA for 

20 minutes at room temperature, removed from the plastic wells, embedded in Optimal 

Cutting Temperature (OCT) and frozen on dry ice prior to sectioning using a microtome 

cryostat. Sections were permeabilized in 0.5% Triton for 15 minutes at room temperature 

and processed for immunofluorescence as described above. 
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Cell shedding. Cell shedding at the apical surface of HAE was quantified by determining 

the amount of dsDNA using the Quant-It PicoGreen dsDNA kit (Invitrogen). Apical 

surfaces of HAE were washed with 150 μl of Opti-MEM for one hour at 37°C. Washes 

were then stored at –80°C until analysis. Samples were diluted 5-fold in 1x Tris-EDTA 

buffer, reagent was added following the manufacturer’s instructions using a 96-well plate 

format and fluorescent intensity was measured on a SpectraMax Gemini XPS plate reader 

(Molecular Devices). The concentration of dsDNA for each sample was calculated based 

on fluorescence of a titrated dsDNA standard. 

 

Western blot analysis for virus protein detection. Cells were lysed in 2x sodium 

dodecyl sulfate (SDS) loading buffer and homogenized using cell Qiashredders 

(QIAGEN # 79656) following the manufacturer’s protocol. Lysates were then boiled for 

10 minutes, loaded onto a 10% SDS-polyacrylamide gel, and proteins were transferred 

onto a polyvinyl difluoride (PVDF) membrane. Membranes were blocked in 5% nonfat 

milk in TBST and incubated with the indicated primary antibody followed by IRDye680-

conjugated goat anti-rabbit antibody or IRDye800-conjugated goat anti-mouse antibody. 

Membranes were visualized using Odyssey infrared imagining system (Li-Cor 

Biotechnology, Lincoln, NE) and band intensities were quantified using ImageQuant TL 

(GE Healthcare, Piscataway, NJ). 

 

Stellaris Fluorescent in situ hybridization (FISH) for viral RNA detection. 48 DNA 

probes targeting the HMPV vRNA genome between nt 1-5467 were obtained from 

BioSearch Technologies (Novato, CA) and designed using the software provided by the 

company. Each probe is 20 nt long and linked at the 3’end to Quasar 570 fluorophore. 

BEAS-2B cells grown in 8-well chamber slides were infected with HMPV at an MOI of 

1. 24, 48 and 72 h.p.i, cells were fixed for 10 min with 4% PFA and then permeabilized 

overnight with 70% ethanol at 4°C. The next day cells were washed once with 2X SSC-

10% formamide buffer, and then incubated overnight at 25°C in hybridization buffer (4X 

SSC, 1X Denhardt’s solution, 150 µg/mL ssDNA, 2mM EDTA, 50% formamide in 

DEPC treated water) containing the probes at a concentration of 2.5 mM. After 24 hrs, 
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cells were washed two times for 20 min with 2X SSC-10% formamide buffer and slides 

were then mounted using Vectashield mounting media. 

  

Proximity ligation assay (PLA). BEAS-2B cells grown on 10mm coverslips were mock 

infected or infected with HMPV at an M.O.I. of 2 and 24 h.p.i., cells were fixed with 4% 

PFA and permeabilized with 1% Trition X-100-PBS. Cells were then incubated in 

blocking solution at 37ºC for 2 hours. A mouse primary antibody for HMPV P and a 

rabbit beta actin antibody were added and incubated overnight at 4ºC. Proximity ligation 

assay was then performed using Duolink In Situ red mouse/rabbit kit (Sigma, 

DUO92101). PLA probes diluted 1:5 were added and cells were incubated for 1 hour at 

37ºC in a humidified chamber and processed for ligation for additional 30 minutes at 

37ºC. Cells were then washed twice, polymerase was added and DNA was amplified with 

a florescent substrate for 100 minutes at 37ºC. Coverslips were then mounted on glass 

slides using Vectashield and images were taken on a Nikon A1 confocal laser 

microscope. Images were processed and analyzed for total florescent intensity using 

BlobFinder software. 

 

Electron microscopy on HAE. Mock or HMPV infected HAE were fixed in 2% PFA 

and & 1.25% glutaraldehyde overnight at 4 ºC. Tissues were then post-fixed in 1% 

osmium oxide followed by dehydration in graded ethanols. Resins were then added 2x 

and allowed to polymerize at 60ºC overnight. Araldite resins were used to tissues. 

Sections were then cut and cells were examined using a Hitachi 7100 transmission 

electron microscope. 

 

Metabolic labeling and immunoprecipitation. Eighteen to twenty-four hours post-

transfection, cells were starved in cysteine- and methionine- deficient DMEM media for 

45 minutes followed by labeling in Tran
35

S-label (100 μCi/ml; Perkin Elmer, Waltham, 

Massachusetts). To determine total expression of proteins, cells were labeled for the 

indicated time at 37°C and lysed immediately. Cells were then washed and lysed in 

radioimmunoprecipitation assay (RIPA) lysis buffer (100 mM Tris-HCl ,pH 7.4, 150 mM 

NaCl, 0.1% SDS, 1% Triton X-100, 1% deoxycholic acid) containing 0.15 M NaCl and 
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supplemented with protease inhibitors. Lysates were then clarified by centrifugation at 

136,000xg for 15 minutes at 4°C and supernatants were immunoprecipitated with anti-

peptide sera to the F protein or monoclonal Ab 12CA5 to the HA tag and protein-A 

conjugated sepharose beads. Immunoprecipitated proteins were analyzed on 10% sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and visualized using the 

Typhoon imaging system (Amersham Biosciences/GE Healthcare Life Sciences, New 

Jersey). ImageQuant TL (GE Healthcare, Piscataway, NJ) was used to determine band 

densitometry. 

 

Cell permeability test. COS-7 or Vero cells were transfected using Fugene 6. The day 

after transfection, cells were starved in Cys-Met-DMEM in the presence or absence of 

500 μg/ml hygromycin B (Sigma) for 45 min. Cells were subsequently labeled with 

Tran
35

S for 1, 2, or 3 h in the presence or absence of 500 μg/ml hygromycin B. After 

being labeled, the indicated proteins were immunoprecipitated as described above. 

 

Cell cytotoxicity test. Vero or COS-7 cells were plated in a 96-well plate to allow 

processing of quadruplicate samples. The following day, cells were transfected with 

HMPV F, SH-HA, or HA-SH (empty vector as the control). The next day, cells were 

washed and a mix of 80 μl of Opti-MEM and 20 μl of cell titer solution was added 

according to the manufacturer's instructions (Promega, Madison, WI). The absorbance of 

each well was measured every 10 min using μQuant (Bio-Tek Instruments Inc., 

Winooski, VT) until the optical density (OD) reached 1.0. 

 

Cell tracker staining. COS-7 cells were transfected using Fugene 6. Twenty-four hours 

posttransfection, cells were washed once with PBS and incubated with 10 μM 

CellTracker green 5-chloromethylfluorescein diacetate (CMFDA) (Molecular Probes) in 

prewarmed culture medium for 45 min at 37°C. After incubation, the staining solution 

was removed and the cells were washed once with culture medium and incubated for an 

additional 30 min at 37°C. Cells were then washed with PBS, fixed with 3.7% 

formaldehyde for 15 min at room temperature, and processed for immunofluorescence as 
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described below. A secondary goat anti-mouse antibody conjugated with tetramethyl 

rhodamine isocyanate (TRITC) was used to detect HA-tagged HMPV SH protein. 
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CHAPTER 3: HMPV INDUCES REMODELING OF THE ACTIN CYTOSKELETON FOR DIRECT 

CELL-TO-CELL SPREAD OF VIRUS PARTICLES 

 

Introduction 

 

Human metapnemovirus (HMPV) is a major cause of acute upper and lower 

respiratory tract infections worldwide [12,21-25]. HMPV was originally identified in 

2001 in patients with symptoms similar to human respiratory syncytial virus (HRSV) 

infection [2]. Since its initial report, studies have shown that HMPV has been circulating 

in human populations for more than 50 years [26,27]. Between 5 and 20% of 

hospitalization rates due to respiratory infections in young children are caused by HMPV 

and it is generally considered as the second or third cause of severe respiratory diseases 

in this age group [32,33]. HMPV is also a significant cause of morbidity and mortality in 

immunocompromised and elderly populations [31,34] and a recent report indicated that 

hospitalization rates for HMPV infection in older adults are similar to those of influenza 

infections [35] . Clinical presentation of HMPV infection can range from cough, fever, 

rhinitis and wheezing to more severe infections including bronchiolitis, croup, asthma 

exacerbation, and pneumonia, and disease severity may be increased by co-infection with 

other respiratory pathogens [37-43]. Currently, there are no specific antiviral treatments 

or vaccines for HMPV infections, and ribavirin and monoclonal antibodies to the virus 

have been shown to have marginal anti-HMPV activity, so the only form of treatment is 

supportive [226,227]. 

 

HMPV is a member of the Paramyxoviridae family, genus Pneumovirinae, which 

includes enveloped viruses with a negative sense, single stranded RNA genomes. HMPV 

particles, similar to other paramyxoviruses, are highly pleomorphic in shape with both 

spherical and filamentous morphologies reported [2,12,34]. The HMPV genome is 

approximately 13,000 nucleotides in length and encodes for three surface glycoproteins: 

the fusion protein (F), the attachment protein (G), and the small hydrophobic protein 

(SH) that are densely packed on the viral envelope; a matrix protein (M), and five 

proteins that are associated with the RNA genome: nucleocapsid protein (N), 
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phosphoprotein (P), large polymerase protein (L), M2-1 and M2-2 proteins. 

Paramyxovirus infection is initiated upon fusion of the viral membrane with a host cell 

membrane, which is driven primarily by the F protein [228,229]. The entire replication 

cycle occurs in the cell cytoplasm and the newly synthesized virus components are 

transported to specific sites at the plasma membrane where assembly occurs followed by 

release of progeny virions from the infected cell into the extracellular matrix to spread 

infection [82,230,231]. Studies on the molecular aspects of HMPV infection over the past 

decade resulted in a better understanding of the mechanisms of entry and fusion of this 

pneumovirus [232-234]. However, the late stages in the replication cycle during which 

viral components assemble and exit the cell are not well understood. Efficient production 

of infectious particles involves coalescence of internal viral components including the 

viral genome, its associated proteins and the M protein with the integral membrane 

surface glycoproteins. The HMPV M protein, similar to other paramyxovirus M proteins, 

has been shown to play an essential role in production of virus particles and virus spread 

[160]. In addition, it has been demonstrated that formation of HMPV virus like particles 

(VLPs) occurs following co-expression of the F and M proteins, with the G protein 

enhancing this process, thus indicating an important role of these protein in the HMPV 

assembly process [10,233]. Assembly is followed by membrane budding and a scission 

process that allows release of particles into the extracellular matrix and spread of 

infection. Several enveloped viruses, including HIV and Ebola virus, and some 

paramyxoviruses such as mumps virus, parainfluenza virus 5 and Newcastle disease 

virus, utilize components of the endosomal sorting complex required for transport 

(ESCRT) pathway to exit the cell [14,69,154,235]. However, HMPV and a number of 

other viruses, including influenza virus, RSV and measles virus, bud in an ESCRT 

independent manner [139,158,236,237]. Several reports indicated an important role of the 

actin cytoskeleton and microtubules in assembly and budding of paramyxovirus particles. 

Sendai virus and measles virus utilize microtubules to transport their ribonucleoproteins 

(RNPs) to the cell surface [137,138], and release of human parainfluenza virus 3 is 

dependent on microtubules [238]. The actin cytoskeleton was also shown to play an 

important role in assembly and budding of measles virus, Sendai virus, and RSV 



 

40 
 

[136,213,239]. The role of actin in Sendai virus budding was recently revealed where it 

was shown that M protein induces remodeling of both β- and γ-actin [239] 

 

Although release and subsequent entry of free virus particles into a new target cell is 

considered the primary route of infection for enveloped viruses, a substantial body of 

evidence indicates that spread of a number of viruses can occur directly from cell-to-cell 

without diffusion through the extracellular environment. Viruses that can move directly 

for cell to cell include hepatitis C virus,  rabies virus and several members of the 

herpesvirus, retrovirus, poxvirus families [216,240-249]. The mechanisms by which these 

viruses subvert cellular processes for cell-to-cell spread can vary substantially; however, 

one of the main mechanisms involved is manipulation of the cell cytoskeleton 

[197,218,250-252]. For paramyxoviruses, cell-to-cell spread of viruses independent of 

particle release occurs for measles virus across neuronal synapses and fusion pores in 

epithelial cells and for RSV through syncytia formation [253-257]. Recently, it was 

reported that influenza A virus and the paramyxovirus parainfluenza virus 5 (PIV5) can 

also spread directly between cells in a neutralizing antibody independent manner [258].  

 

In this study, we sought to characterize the late steps of HMPV infection in human 

bronchial epithelial cells and to identify host factors critical to this stage of the replication 

cycle. We demonstrate that HMPV infection results in remodeling of the cell 

cytoskeleton leading to the formation of extensive branched networks of cell-associated 

virus filaments and stimulation of intercellular extensions where the major viral structural 

proteins and viral RNA localize. Our results indicate that active actin dynamics are 

critical for the formation of these structures since treatment of cells with actin 

depolymerizing or stabilizing drugs or targeted inhibition of the major regulators of actin 

dynamics, the Rho GTPases Rac1, Cdc42 and RhoA, decreased the formation of 

branched viral filamentous networks and intercellular extensions. We also show that 

microtubules play a role in elongation of intercellular extensions. Studies of HMPV 

spread in a co-culture assay revealed a novel mode of direct cell-to-cell spread of HMPV 

which, in contrast to cell-free infection, is independent of neutralizing antibodies and 

does not require heparan sulfate. Analysis of the involvement of the cell cytoskeleton in 
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direct cell-to-cell spread of HMPV showed a major role for an intact actin cytoskeleton, 

Cdc42, Rac1 and microtubules in HMPV spread in the co-culture assay, thus supporting 

the association of intercellular extensions and branched viral filamentous networks with 

enhanced intercellular spread. These results provide evidence for a novel mechanism by 

which HMPV utilizes the cell cytoskeleton for direct cell-to-cell spread.   

 

Results 

HMPV buds primarily as cell-associated filamentous networks 

Production of paramyxovirus particles is generally a multistep process that occurs 

in the cytoplasm of an infected cell and culminates in the assembly of virus components 

at the plasma membrane followed by budding and release of infectious virus particles 

[82,230]. HMPV lacking the envelope proteins G and SH, has been shown to be 

infectious in vitro and in vivo [16,93] indicating that assembly of infectious HMPV 

particles does not require G and SH proteins. To investigate the late stages of the 

replication cycle of HMPV, we determined the cellular localization of the main viral 

structural proteins in human bronchial epithelial cells, BEAS-2B: the N and P proteins, 

which are bound to the viral genome and are part of the ribonucleoprotein (RNP) 

complex, the internal protein M, and the envelope F protein. By 18 h.p.i., viral proteins 

were primarily at the plasma membrane and in filaments protruding from the plasma 

membrane (white arrowheads, Figure 3.1A). In addition, P protein can be seen in discrete 

cytoplasmic structures or inclusion bodies (Figure 3.1A, 18 hpi, inset). Inclusion body 

formation has been associated with infection of a number of negative sense RNA viruses. 

The precise role of inclusion bodies in paramyxovirus infection is not well understood; 

however, some studies indicate the presence of RNA genome in these bodies suggesting 

that these are sites of active RNA replication [259-261].  Several respiratory viruses, 

including influenza virus, RSV and PIV3 form filaments at the plasma [9,262,263], and it 

was recently shown that HMPV VLPs bud as filamentous structures in LLC-MK2 cells 

[10]. However, interestingly, by 24 h.p.i., viral proteins were seen primarily in cell-

associated branched filaments (red arrowhead, Figure 3.1A) that formed an extensive 

filamentous network between cells as infection progressed to 48 h.p.i. (Figure 3.1B). 

Viral proteins also localized in extensions that ran between infected cells, which we 



 

42 
 

termed intercellular extensions (Fig 3.1A. white arrows). These extensions were seen 

extending from opposite sides of a cell, indicating that they are not retraction fibers. 

Filaments containing viral proteins were also seen projecting from these intercellular 

extensions. Staining with the plasma membrane marker wheat germ agglutinin (WGA) 

showed that both intercellular extensions (arrow) and filaments (inset) are extensions of 

the plasma membrane (Figure 3.1C). To clearly differentiate between filaments and 

intercellular extensions, we measured the diameter of these structures using ImageJ 

analysis tool. Intercellular extensions were thicker, ranging from 850 nm to 1840 nm, 

with an average diameter of 1.1 µm compared to 0.47 µm for the filaments with a range 

252 nm to 660 nm (Figure  3.1D). 

 

To further examine the structure of the filaments and intercellular extensions, 

super-resolution microscopy was performed using a STORM (Stochastic Optical 

Reconstruction Microscopy) imaging system. A cellular extension is seen protruding 

from the cell body (Figure 3.1E, arrow) with M and N localized throughout the length of 

the extension. M and N also localized in branched filaments protruding from the cell 

body and the cellular extension. An organized localization of M and N is seen within the 

filaments, with the N protein observed in the core of the filament surrounded by the M 

protein (Figure 3.1E, inset).  Filamentous structures budding at the surface of cells 

infected with influenza virus and RSV were shown to be consistent with virus particles 

having a filamentous morphology termed viral filaments [262] . Thus, the organized 

localization of M and N in the branched filaments revealed by STORM suggests that 

these structures are associated with filamentous budding HMPV. Determination of 

HMPV titers at different hours post-infection showed that titers of cell-associated virus 

were 0.5 – 1 log higher than those of released virus particles throughout the infection 

period in BEAS-2B cells, indicating that HMPV is primarily cell associated (Figure 1E). 

Previous studies of HMPV infection in LLC-MK2 cells indicated that the virus was 

mainly cell-associated and that budding particles were filamentous [264,265]. However, 

the extensive branched networks and intercellular extensions visualized during HMPV 

infection in a more physiologically relevant model of human bronchial epithelial cells 

represent a new paradigm for paramyxoviruses.  
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Cell-associated branched HMPV filaments are actin based 

Several respiratory viruses, including influenza virus, RSV and parainfluenza 

virus 2, form filaments at the plasma membrane; however very little is currently known 

about the mechanisms by which filamentous viruses assemble and their relevance to virus 

pathogenesis [9,95,262,266-268]. The process of virus budding depends on both viral 

products and cellular factors. Our results indicate that HMPV infection results in the 

formation of more complex filamentous structures at late stages of infection, but the 

factors responsible for their formation are unknown.  

Change in the shape of the plasma membrane is regulated by the cell cortex which 

is composed mainly of F-actin, thus induction of membrane extensions should require 

reorganization of the cortical F-actin. In addition, recent studies indicate a role of 

microtubules in regulating the structure of cortical F-actin further contributing to plasma 

membrane dynamics [269]. Viruses can manipulate the cell cytoskeleton in fascinating 

ways at different stages of the replication cycle and a number of viruses, including 

retroviruses and alphaviruses, has been reported to induce formation of actin- or tubulin-

based cellular extensions during their exit from the cell [270,271]. For paramyxoviruses, 

a role of actin has been described in the release of measles virus, RSV and Sendai virus, 

and microtubules were involved in release of PIV3 [136,138,207,213,238,239,264]. To 

determine the contribution of the cell cytoskeleton to the formation of the cell-associated 

branched filaments and intercellular extensions, infected BEAS-2B cells were co-stained 

for viral proteins and F-actin or tubulin. Both tubulin and F-actin co-localized with 

HMPV N (as well as with M, P and F (data not shown)) in budding viral filamentous 

networks (Figure 3.2A, inset). Tubulin and F-actin were also present in intercellular 

extensions (Figure 3.2A, arrows). The staining for N and F-actin was more intense in the 

intercellular extensions and branched filaments than in the cell body, while that of tubulin 

was faint in these structures. In addition, high resolution microscopy showed localization 

of actin (green) in a viral filament budding from the cell body (Figure 3.2B arrow) as 

well as in the branched filaments along with viral proteins M and P (red), respectively 

(Figure 3.2B arrowhead) indicating the close association of F-actin with the budding 
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structures in HMPV-infected cells. This is in contrast to what has been reported for RSV 

since F-actin was excluded from the viral filaments in RSV infected cells [272]. To 

further investigate if the formation of HMPV filamentous networks was dependent on 

actin or microtubules, cells were infected for 2 hours and then treated with either DMSO 

or with inhibitors of actin or microtubule dynamics until fixation at 24 h.p.i. Disruption 

or stabilization of microtubule polymerization using nocodazole or paclitaxel, 

respectively, did not prevent the formation of branching HMPV filamentous networks 

indicating that microtubule dynamics are not required for budding of cell-associated 

filamentous HMPV (Figure. 3.3A, arrows). In contrast, disruption of actin polymerization 

using cytochalasin D or latrunculin A or treatment of cells with jasplakinolide to stabilize 

actin filaments resulted in loss of the extensive filamentous HMPV networks seen in 

DMSO control treated cells (arrow), indicating an important role of active actin dynamics 

in the budding of the complex filamentous networks (Figure 3.3A). However, filaments 

containing HMPV N were seen in cells treated with cytochalasinD, latrunculinA and 

jasplakinolide (Figure 3.3A, arrowheads). Upon disruption of actin polymerization 

(cytochalasinD or latrunculinA), the filaments were smaller than in control DMSO cells, 

but they were in close proximity with intracellular actin (Figure 3.3A, cytochalasinD, 

inset). In cells treated with jasplakinolide, there was colocalization of N and F-actin in 

filamentous structures that were also different than those seen in control cells. The 

HMPV M, P and F proteins were seen in similar filaments upon inhibition of actin 

dynamics (data not shown). To obtain a quantitative measurement of the effect of the 

different inhibitors on the formation of branched filaments, we performed Scholl analysis 

on infected cells. This method of image quantitation is commonly used to measure the 

complexity of dendritic branching in neurons by creating concentric circles around the 

cell body and determining the number of intersections at a defined distance from the 

center of the cell body [273]. Consistent with the microscopic images, disruption of 

microtubules did not affect level of filamentous branching, whereas inhibition of actin 

dynamics prevented branching of filamentous networks (Figure 3.3B). STORM imaging 

showed intracellular filaments containing N and M in cells treated with cytochalasinD 

and the localization of N and M in these filaments resemble that of control cells (Figure 

3.1E) with the N protein on the inside and M on the outside (Figure 3.3C).  These 
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filaments can deform the plasma membrane since WGA staining showed deformation of 

the plasma membrane coinciding with budding filaments (Figure 3.3D). These 

observations indicate that assembly of HMPV into initial filamentous structures is driven 

primarily by viral proteins or other host factors but does not require actin polymerization. 

However, actin polymerization is required for efficient budding of HMPV filamentous 

networks from the plasma membrane.  

A role actin in HMPV infection cycle was further supported by the detection of 

large amounts of actin in ultrapurified HMPV particles by mass spectrometry (Table 1). 

Briefly, HMPV was propagated in BEAS-2B cells, cell culture media containing released 

virus particles was then collected, purified by discontinuous and continuous sucrose 

gradients and analyzed by LC-MS/MS. To confirm that the cellular proteins detected in 

the purified HMPV particles are specific and are not contaminants from released 

exosomes, we performed the same purification steps on media collected from uninfected 

cells. As seen in Table 2, mostly keratin was detected in supernatants collected from 

mock infected cells and actin was present in very small amounts (total number of 

peptides is 2). However, actin was detected in high amounts in purified HMPV (more 

than 20 peptides). In addition, several other actin associated proteins, including actinin 

and myosin were present in purified HMPV further supporting the involvement of actin 

in the formation of HMPV particles. Tubulin, vimentin and other cytoskeleton associated 

proteins were also found suggesting their involvement in HMPV replication (Table 1).  

 

HMPV-induced elongation of intercellular extensions requires active actin and 

microtubule dynamics 

Intercellular extensions have been identified as a means of intercellular 

communication in different cell types and research over the past decade has provided 

important information on their nature and function [274,275]. These cellular structures, 

sometimes termed cytonemes or tunneling nanotubes depending on their function and 

composition, are membrane bridges that contain actin, and in some cell types also 

microtubules. It has been previously demonstrated that primary human bronchial 
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epithelial cells can form bridges between individual cells. These bridges were found to 

contain both F-actin and microtubules, and varied greatly in their length (range 50 µm - 1 

mm) and diameter (1 µm - 20 µm) [276]. Our results demonstrate that both F-actin and 

tubulin were detected in intercellular extensions containing HMPV proteins and staining 

with the plasma membrane marker wheat germ agglutinin showed that they are 

extensions of the plasma membrane (Figure 3.2A, Figure 3.3C). To determine whether 

the intercellular extensions observed in HMPV-infected BEAS-2B cells are induced or 

altered by HMPV infection, mock infected cells were stained for F-actin. Intercellular 

extensions were seen in uninfected cells (Figure 3.4A); however, the percentage of cells 

with intercellular extensions significantly increased upon HMPV infection indicating that 

these cellular structures exist in non-infected cells but HMPV infection induce their 

formation (Figure 3.4B). In addition, quantification of the length of the intercellular 

extensions showed that while extensions in uninfected cells averaged 40 µm, the majority 

of extensions in HMPV-infected cells were longer, with the average length in HMPV-

infected cells of 80 µm, double that in uninfected cells (40 µm) (Figure 3.4C). To 

investigate the role of actin and microtubules in the formation of these intercellular 

extensions in HMPV-infected BEAS-2B cells, inhibitors of cytoskeleton dynamics were 

added 2 hours after infection and left on cells until fixation at 24 h.p.i.. The formation of 

intercellular extensions was not blocked by addition of nocodazole or paclitaxel 

indicating that microtubule dynamics are not required for the formation of intercellular 

extensions (Figure 3.4D and 3.4E, arrows). Inhibition of actin polymerization by 

cytochalasin D and stabilization of actin by jasplakinolide significantly reduced 

formation of intercellular extensions in infected cells (Figure 3.4E). Figure 3.4D shows 

the majority of cells treated with actin drugs lacking intercellular extensions. Thus, even 

though both tubulin and F-actin are present in intercellular extensions, only actin 

polymerization is essential for intercellular extension formation Collectively, these results 

indicate that HMPV can induce actin reorganization to induce elongation of intercellular 

extensions and that the formation of intercellular extensions seen in HMPV-infected cells 

depends on actin polymerization.  
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Rho GTPases involved in actin remodeling are involved in the formation of actin-

based structures induced by HMPV infection 

The actin cytoskeleton is highly dynamic and is under the control of complex 

signaling pathways involving three main Rho family GTPases, Cdc42, Rac1 and RhoA. 

Activation of Cdc42, Rac1 and RhoA results in formation of protrusive filopodia, 

lamellipodia and stress fibers, respectively [277,278]. To address the role of these 

signaling pathways in the co-opting of the actin cytoskeleton during HMPV infection, we 

utilized cell permeable, targeted inhibitors for these GTPases and assessed the effects on 

the budding of branched filamentous networks and on formation of intercellular 

extensions. DMSO or inhibitors were added to cells 2 h.p.i. and 22 hours later, cells were 

fixed and stained for F-actin to visualize changes in the actin cytoskeleton and N protein. 

Inhibition of Cdc42 (ML141) resulted in a dramatic loss of filamentous structures at the 

cell periphery compared to control cells and N was mostly cytosolic with faint staining in 

the cellular extension (Figure 3.5A, ML-141 arrowhead).  In cells that were treated with 

the Rac1 inhibitor (NSC-23766), N was localized in intercellular extensions, and short 

filaments were seen protruding from the main extension (Figure 3.5A, NSC-23766, 

arrow). Upon inhibition of RhoA, N had a punctate localization pattern in the 

intercellular extension (Figure 3.5A, rhosin arrowhead) and in some cells, short branched 

filaments were seen (Figure 3.5A, rhosin arrowhead). These observations indicate that 

inhibition of the three GTPases did not prevent intercellular extension formation, contrary 

to what we saw with disruption of actin dynamics (Figure 3.3); however inhibition of all 

three Rho GTPases resulted in a significant decrease in the percentage of infected cells 

with extensions compared to DMSO treated cells, with inhibition of Cdc42 and Rac1 

having a higher effect than RhoA inhibition (Figure 3.5B). This suggests that induction of 

these extensions in HMPV-infected cells involves activation of the Rho family GTPases 

signaling pathways that control actin dynamics in the cell. In addition, inhibition of RhoA 

and Rac1 resulted in partial budding of filaments whereas inhibition of Ccdc42 

drastically decreased formation of branched filaments (Figure 3.5A). Equivalent to what 

was seen in microscopic imaging, inhibition of all Rho GTPases resulted in decrease in 

the degree of branching compared to control cells (Figure 3.5C). The highest level of 

inhibition was seen for Cdc42 followed by RhoA and Rac1. Thus, these results indicate 
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that formation of HMPV branched filamentous networks and induction of intercellular 

extensions involves signaling pathways mediated by Cdc42, RhoA and Rac1, although to 

varying extents. Cdc42 is essential for the formation of not only the filamentous networks 

but also budding of HMPV filaments suggesting an important role of Cdc42 in assembly.  

Rac1 is involved in the branching of filamentous networks but is not required for the 

assembly of filaments since short filamentous structures were observed in cells treated 

with the Rac1 inhibitor (Figure 3.5A, arrow, NSC-23766). Both Cdc42 and Rac1 are 

critical for induction of intercellular extensions which is consistent with their role in 

promoting actin polymerization required for extension formation.  Treatment of cells with 

the RhoA/C inhibitor rhosin led to decrease in branching of filaments and reduction in 

extension length thus indicating a role of this GTPase in HMPV-induced actin 

remodeling. In addition, the effects of Rho GTPase inhibition on filament assembly is 

different from that of inhibition of actin polymerization indicating that actin by itself is 

not required for the assembly of HMPV filaments but rather other effectors of signaling 

related to regulation of actin dynamics are involved. Proteomic analysis of ultrapurified 

HMPV particles indicated the presence of Cdc42 and RhoA (Table 1) further suggesting 

their importance for the HMPV replication cycle. Our results thus suggest that 

coordination of activation of the three Rho GTPases, Rac1, Cdc42 and RhoA is involved 

in actin cytoskeleton rearrangement induced by HMPV to induce formation of 

intercellular extensions and budding of filamentous networks. 

Intercellular extensions play a role in direct cell-to-cell spread of HMPV particles 

Our data above indicate that HMPV infection results in elongation of existing 

intercellular extensions in BEAS-2B cells (Figure 3.4). To assess if these extensions are 

generally associated with HMPV infection or are specific for BEAS-2B cells, other cell 

types including 16HBEs (human bronchial epithelial cells), A549 cells and Vero cells 

were infected and cells were immunostained for the HMPV N protein and F-actin. Figure 

3.6A shows that intercellular extensions containing HMPV viral proteins exist in these 

different cell types, indicating that utilization of these structures during HMPV infection 

is not restricted to BEAS-2B cells. The filamentous network of branching filaments was 

also seen in 16HBE cells (Figure 3.6A arrowhead) suggesting that formation of these 

structures may be common to human bronchial epithelial cells. In addition, extensions 
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were seen in live BEAS-2B cells extending from an infected cell to an uninfected cell 

(Figure 3.6B) confirming that they are not artifacts of immunofluorescence processing 

and that they are associated with live infection of HMPV. As seen in Figure 3.6B, 

extensions from infected cells are not always directed to the closest neighboring cells but 

can extend over long distances to reach another cell. Our results indicated that they can 

reach over 300 µm in length (Figure 3.4).  Several viruses have been shown to induce the 

formation of cellular extensions as a mechanism of direct cell-to-cell spread of virus 

particles [197,216,250,251,258,279]. To determine the potential role of intercellular 

extensions on transmission of virus particles, we tested virus spread in the presence of a 

viscous methyl cellulose overlay media to prevent diffusion of cell-free virus particles. 

Cells were infected with a GFP-expressing HMPV (rgHMPV) and two hours later, 

infection media was removed and replaced with regular media or media with 1% 

methylcellulose and spread was monitored for a period of 5 days. HMPV spread, seen as 

GFP expressing cells (Figure 3.6C), occurred in the presence of methyl cellulose 

suggesting that HMPV can spread even when diffusion of released virus particles is 

compromised. 

 

To verify that HMPV can spread directly from cell-to-cell, we developed a co-

culture assay (Figure 3.7A). Cells were infected with rgHMPV (M.O.I. 2) for 48 hours 

and then stained with 7µM of the cell tracker orange CMRA dye for 30 minutes before 

lifting with trypsin. The infected donor cells were then added to unstained target cells at a 

ratio of 1:1 and 24 hours post co-culture, cells were collected and analyzed by flow 

cytometry. GFP-only positive cells represented the newly infected target cells. To test 

direct cell-to-cell spread of HMPV, cells were co-cultured in the presence of two 

neutralizing antibodies, DS7 and 54G10 targeted against the fusion protein. These 

antibodies have been shown to inhibit infection by cell-free HMPV particles [280,281]. 

Consistent with this, pre-incubation of HMPV with DS7 or 54G10 prior to addition to 

cells significantly inhibited cell-free infection of HMPV up to 90% (Figure 3.7B).  

However, inhibition of HMPV infection by the neutralizing antibodies was only 

approximately 60% under co-culture conditions, indicating that HMPV can spread in the 

presence of either DS7 or 54G10 and has a neutralizing antibody-independent mechanism 
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of infection. This finding is consistent with direct cell-to-cell spread of HMPV virus 

particles.  

 

Previous work in our laboratory demonstrated that binding and entry of HMPV 

requires expression of heparan sulfate on the surface of target cells [232]. To determine 

whether spread of HMPV in the co-culture assay was dependent on heparan sulfate, we 

utilized CHO cells derivatives, psgD677 and pgsA745. pgsD677 cells lack N-

acetylglucosaminyl- and glucuronosyl-transferase enzymes and are thus incapable of 

synthesizing heparan sulfate. pgsA745 cells lack all glycosaminoglycans (GAGs) due to 

mutation in the xylosyltransferase gene [282,283]. Consistent with previous studies, cell-

free HMPV infection requires heparan sulfate (Figure 3.7C). However, HMPV efficiently 

infected target cells that lack heparan sulfate under co-culture conditions. These data 

combined with the results from the neutralizing antibodies strongly indicate that HMPV 

has two modes of infection: cell-free infection that is blocked by neutralizing antibodies 

and is requires binding to heparan sulfate moieties, and cell-to-cell infection that is 

neutralizing antibody- and heparan sulfate independent. 

 

Intercellular extensions can transfer cellular components between cells including 

cytoplasmic materials, organelles, membrane proteins and signaling molecules 

[274,275,284]. To verify that the GFP expression in target cells was not due to passive 

diffusion of soluble GFP from infected donor cells to target cells, we performed the co-

culture assay in the presence of cycloheximide to inhibit new protein translation and 

synthesis. Addition of cycloheximide diminished GFP expression in target cells 

indicating that active protein synthesis is required (Figure 3.7E).  

 

We next determined the effect of the different cytoskeletal drugs, which interfered 

with the elongation of these extensions, on spread of HMPV in the presence of 

neutralizing antibodies. Infected donor cells were pretreated for one hour with the 

specific drug prior to incubation with naïve target cells and DS7 antibody was used for 

neutralization of released virus particles. Manipulation of microtubule dynamics by 

nocodazole or paclitaxel reduced intercellular spread of HMPV. Disruption of actin 
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polymerization with cytochalasin D, which dramatically decreased formation of 

intercellular extensions (Figure 3.4), resulted in a significant decrease in spread of HMPV 

(Figure 3.7D). Actin stabilization with jasplakinolide also led to a decrease in HMPV 

intercellular spread but to a lower extent. Interestingly, inhibition of both Rac1 (NSC-

7366) and Cdc42 (ML-141) significantly reduced cell-to-cell of HMPV; however, 

inhibition of RhoA with the inhibitor rhosin did not influence intercellular spread of 

HMPV (Figure 3.7D). Thus, our results indicate that inhibition of actin polymerization, 

Cdc42 and Rac1, which result in significant decrease in the formation of intercellular 

extensions, also decrease intercellular spread of HMPV, indicating a role of the 

extensions in cell-to-cell of HMPV. 

 

To further examine the role of intercellular extensions in HMPV spread, FISH for 

detection of viral RNA was performed. Viral RNA was detected in discrete cytoplasmic 

structures (Figure 3.8 arrowhead) that resemble the inclusion bodies where HMPV P 

localized (Figure 3.1A). Inclusion bodies have been detected for several paramyxoviruses 

and are thought to be sites of active RNA replication[259,285]. The detection of HMPV 

RNA in these structures further supports this hypothesis for paramyxovirus RNA 

replication. Viral RNA was detected in intercellular extensions in cells infected with 

rgHMPV (Figure 3.8 arrow). Interestingly, structures similar to replication bodies were 

seen in the extensions suggesting that they can be transported across intercellular 

extensions between cells (Figure 3.8 arrowhead). The localization of the main HMPV 

structural proteins N, P, M and F and of viral RNA in intercellular extensions provides 

additional evidence for the involvement of extensions in HMPV spread. Interestingly, 

structures similar to replication bodies were seen in the extensions suggesting that they 

can be transported across.  

 

Discussion 

 

As a recently discovered virus [2], several aspects of HMPV replication cycle are 

poorly understood. In this study we reveal two distinct features of late stages of HMPV 

infection that constitute a new paradigm for paramyxovirus assembly and egress from the 

cell. Similar to other respiratory viruses, we show that HMPV can form filamentous 
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structures at the surface of infected cells, however, the filamentous structures induced by 

HMPV are more complex than what has been previously reported for respiratory viruses, 

to date, where a complex network of branched filaments formed in infected cells that 

contained all major virus components. The budding of these structures was largely 

dependent on actin polymerization and on actin associated signaling involving Rho 

GTPases Cdc42, Rac1 and RhoA. In addition, we show a novel mode of HMPV 

transmission from cell-to-cell across intercellular extensions that occurs independent of 

heparan sulfate and neutralizing antibodies.   

 

Formation of filamentous virus particles has been reported for several respiratory 

viruses including RSV and influenza virus [262,266-268]; however how these structures 

are assembled and their significance for viral infectivity is not well understood. For 

influenza viruses, the filamentous morphology of the virus depends on actin 

polymerization as disruption of actin largely inhibits formation of filamentous viruses 

[262]. Conversely, for RSV actin and tubulin were not required for assembly of viral 

filaments, but actin was involved in anchoring the filaments to the cell surface and for 

virus replication [286]. HMPV has been shown to form filaments in infected LLC-MK2 

cells [10,264]. Here we show that HMPV assembles into a complex network of branched 

filaments at the surface of BEAS-2B cells (Figure 3.1A) and these structures were also 

seen in 16HBE cells (Figure 3.7A) indicating that these are specific features of HMPV 

infection in bronchial epithelial cells. Budding of the filamentous networks was 

dependent on actin polymerization and not on microtubules (Figure 3.3A); however the 

initial assembly of a filamentous structure that can deform membranes does not require 

intact actin (Figure 3.3B,C). HMPV M has been shown to self-assemble into higher order 

structures, forming flexible helical filaments upon binding to lipids, and it is thought that 

the dimer subunits of M can associate through different side-by-side interactions which 

influence that curvature of the matrix arrays and thus virus morphogenesis [287]. In 

addition, HMPV P protein can form tetramers [288]; thus it possible that self-

oligomerization and assembly of viral proteins can drive the formation of filamentous 

structures that constitute assembly intermediates and that polymerization of actin is 

needed to further drive the assembly and budding of the extensive branched filaments. 
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However, as actin was seen in close proximity with the filaments (Figure 3.3 inset), actin 

may be playing an accessory role. Interestingly, our results indicate that the Rho GTPases 

involved in controlling actin dynamics and structure in the cell, Cdc42, Rac1 and RhoA 

play an important role in the production of branched filaments (Figure 3.5). Cdc42 is 

required for the assembly of filaments since inhibition of Cdc42 abolished formation of 

filaments in HMPV infected cells. Short filamentous structures were seen in cells treated 

with inhibitors of Rac1 and RhoA (Figure 3.5A) and inhibition of these two GTPases 

decreased filamentous branching (Figure 3.5B) indicating a role in promoting further 

budding of the filaments but not necessarily in the initial assembly. One of the common 

downstream effectors of Rac1 and Cdc42 is the Arp2/3 initiation complex which 

activates actin polymerization as well as formation of branched actin filaments. Inhibition 

of Arp2/3 also decreased formation of branched filaments and localization of HMPV N 

was mainly intracellular, similar to Cdc42 inhibition (Figure 3.5A). Cdc42 activates 

Arp2/3 via WASP, so a role of WASP still needs to be determined. Taken together, these 

results indicate that assembly of HMPV filamentous intermediates does not depend on 

actin polymerization but rather on actin-associated signaling regulated mainly by Cdc42, 

and budding of branched filaments requires actin polymerization, Rac1 and RhoA. Rho 

GTPases have been shown to be involved at different stages of the infection cycle of 

several viruses and both RhoA and Rac1 were shown to be involved in the formation of 

filamentous RSV particles, suggesting that both of these pneumoviruses may utilize 

similar cellular pathways during virus assembly and egress [263,272]. RhoA had a role in 

localization of RSV F to discrete locations at the plasma membrane and it had been 

previously demonstrated that localization of F at the cell surface is required for assembly 

of RSV filaments and for coalescence of other viral components indicating an important 

role of RhoA in cellular localization of F and F in filament assembly [95]. Rho GTPases 

have a large number of downstream targets, thus it remains to be investigated how the 

different Rho GTPases are affecting HMPV proteins and how they regulate the assembly 

and budding process of HMPV filamentous branches.  
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The formation of cell-associated branched networks in HMPV infected cells 

raises questions about their importance for HMPV infection. First, it remains to be 

determined whether HMPV buds and is released from the cell in the form of this complex 

networks of filaments. Budding in this form may provide stability of virus particles as 

they exit the cell and are released into the extracellular matrix. Electron microscopic 

images of purified HMPV show pleomorphic particles with both mostly spherical 

morphology and also filamentous forms [289]. Thus, whether the filamentous 

morphology is maintained after release of virus particles from BEAS-2B cells is not 

known. Recent electron tomography images of the closely related RSV show that the 

position of M protein under the plasma membrane drives the filamentous morphology of 

the particles but as some of the virus gets released, M no longer forms a layer under the 

plasma membrane and the filamentous form is lost [62]. In addition, since branched 

filaments were seen in human bronchial epithelial cells and not in other cell types 

(Figures 3.1 and 3.7) indicates the effect of cell origin on virus assembly, and thus the 

relevance of this form of branched HMPV filaments for infection in the airway 

epithelium remains to be addressed. 

An increasing number of reports show that some enveloped viruses can transmit 

from cell-to-cell, and between hosts, in novel ways beyond release of individual virus 

particles into the extracellular matrix [245,250,257,258,279,290-293]. Viral induction or 

modification of cellular structures to allow cell-to-cell spread is an intriguing theme of 

several recent studies, and our work supports a model where HMPV infection induces 

intercellular extensions that are key elements in direct cell-to-cell spread of this 

respiratory virus. For paramyxoviruses, cell-to-cell spread of viruses independent of 

particle release occurs for measles virus across neuronal synapses and fusion pores in 

epithelial cells and for RSV through syncytia formation [253-257]. Recently, intercellular 

spread independent of neutralizing antibodies was reported for PIV5 [258]. These studies 

indicate that mechanisms of paramyxovirus spread can vary greatly and shift the more 

generally accepted mode of spread by single particle release to more complex models. 

Direct cell-to-cell transmission of virus particles overcomes the rate limiting step of 

diffusion of particles across the extracellular space and also provides a means by which 

particles can be transferred in a way that evades the immune response. Our data from the 
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co-culture assay indicate that HMPV particles can spread in a neutralizing antibody 

independent manner, and that spread is dependent on formation of intercellular 

extensions (Figure 3.7). Disruption of actin polymerization or influencing HMPV-

induced elongation of intercellular extensions by Cdc42 and Rac1 inhibition decreased 

intercellular spread of HMPV (Figure 3.7B) indicating the involvement of these cellular 

structures in intercellular spread of HMPV. Formation of plasma membrane extensions 

by actin polymerization is driven mainly by activation of Rac1 and Cdc42 and their 

downstream effectors, and several viruses, including vaccinia virus and pseudorabies 

virus, induce actin-based cellular extensions by activating these signaling pathways 

[176,220]; however this is the first report of a paramyxovirus that depends on Rho 

GTPase signaling to induce actin-based cellular extensions for intercellular spread. 

Inhibition of RhoA did not affect cell-to-cell spread of HMPV relative to control cells. 

The effect of RhoA on HMPV cell-to-cell spread could be related to other effects of 

RhoA signaling on cell migration or cell-cell adhesion. In addition, the role of RhoA 

signaling in regulating actin dynamics is highly complex and involves several 

downstream effectors, including the actin binding proteins formins, cofilin as well as the 

ezrin/radixin/moesin (ERM) proteins that are the main regulators of the cell cortex by 

linking the cortical actin to the plasma membrane. In addition, RhoA contributes to 

membrane blebbing and can also alter microtubule dynamics [294,295]. Cofilin-1 and 

ERM proteins were detected in purified HMPV particles (Table 1), potentially indicating 

further the involvement of rhoA mediated signaling in HMPV infection. In addition, 

microtubules played an important role in HMPV spread (Figure 3.7D). For several RNA 

viruses, microtubules are involved in transport of the RNP complex to assembly sites at 

the plasma membrane [138], but this remains to be investigated for HMPV. 

Several models currently exist for direct cell-to-cell spread of virus particles 

across cellular extensions [271]. Our results show that intercellular spread of HMPV does 

not depend on heparan sulfate and can evade neutralizing antibodies (Figure 3.7). In 

addition, vRNA rich structures that resemble inclusion bodies were seen traveling along 

the intercellular extension (Figure 3.8). This raises the possibility of whether intercellular 

spread of HMPV may not involve transfer of whole virus particles, but just the viral RNP 

complex. Intercellular spread independent of infectious particle production was suggested 
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for measles virus in epithelial cells and in neurons. Whether this can also occur with 

HMPV requires further investigation.  

Collectively, our results show that HMPV infection involves manipulation of the 

actin cytoskeleton and actin-associated signaling resulting in the induction of two 

different structures, an extensive network of budding branched filaments and intercellular 

extensions that represent novel features for paramyxovirus assembly and spread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*FISH experiments were performed by Nicolas Cifuentes and mass spectrometric 

analysis was done by Jing Chen.  
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 Figure 3.1. HMPV infection in BEAS-2B cells results in the formation of branched 

filamentous networks and intercellular extensions.  

A) and B) Human bronchial epithelial airway cells, BEAS-2B, were infected with HMPV 

and at 24 h.p.i. (hours post infection) or 48 h.p.i., cells were fixed and processed for 

immunofluorescence staining. Images were taken using a Nikon CLSM. White arrows 

indicate intercellular extensions, red arrowheads indicate branched viral filaments and 

white arrowhead indicate viral filaments. . C) BEAS-2B cells were infected with HMPV 

at M/O.I. of 3 and at 24 h.p.i, cells were fixed and stained with the plasma membrane 

marker wheat germagglutinin or incubated with antibody for N. D) Cells were infected 

with HMPV for 24h, processed for Stochastic Optical Reconstruction Microscopy 
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(STORM) and stained with an anti-N antibody (green) and an anti-M antibody (red). 

Inset shows filaments with a central core of N protein surrounded by matrix protein. E) 

BEAS-2B cells were infected with rgHMPV at M.O.I. of 1 and at different times post 

infection, cells or culture media were collected and virus titers determined. 
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Figure 3.2. Actin and tubulin are present in intercellular extensions and branched 

filamentous networks.  

A) BEAS-2B were infected with HMPV and 24 h.p.i. cells were fixed and stained for 

HMPV N, tubulin or F-actin. Inset shows colocalization of actin and tubulin with N in 

branched filaments. Arrows indicate intercellular extensions and insets show branched 

filaments. Scale bar = 50µm. B) Cells were infected with HMPV for 24h, processed for 

Stochastic Optical Reconstruction Microscopy (STORM) and stained with an anti-P or 



 

60 
 

anti-M antibody (red) and phalloidin (red). Arrow shows filament and arrowhead shows 

branched filaments. 
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Figure 3.3. Actin and microtubules have different roles in formation of branched 

filamentous networks and intercellular extensions.  
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A) BEAS-2B, were infected with HMPV and 2 h.p.i. DMSO vehicle or drugs were added 

and cells were incubated for additional 22 hours. Cells were then fixed and processed for 

immunofluorescence staining. Arrows indicate branched filamentous network and 

arrowhead indicates viral filaments. . B) Cells were infected with HMPV for 2 hours and 

treated with cytochalasin D. 24 h.p.i. cells were processed for Stochastic Optical 

Reconstruction Microscopy (STORM) and stained with an anti-N antibody (green) and 

an anti-M antibody (red).  C) BEAS-2B cells were infected with HMPV and drugs were 

added 2 h.p.i. and 24 h.p.i, cells were fixed and stained with the plasma membrane 

marker wheat germagglutinin (WGA) and antibody for N. Scale bars = 10µm. 
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Table 1: Protreomic Analysis of Purified HMPV Particles 

 
Description, Human Protein # Peptides 

Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 28 

Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1 - [ACTG_HUMAN] 28 

Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 - [ANXA2_HUMAN] 23 

POTE ankyrin domain family member E OS=Homo sapiens GN=POTEE PE=1 SV=3 - 

[POTEE_HUMAN] 

11 

Tubulin beta chain OS=Homo sapiens GN=TUBB PE=1 SV=2 - [TBB5_HUMAN] 26 

Tubulin beta-2C chain OS=Homo sapiens GN=TUBB2C PE=1 SV=1 - [TBB2C_HUMAN] 25 

Integrin beta-1 OS=Homo sapiens GN=ITGB1 PE=1 SV=2 - [ITB1_HUMAN] 29 

Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - 

[G3P_HUMAN] 

19 

Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 - [TBA1B_HUMAN] 21 

Tubulin beta-4 chain OS=Homo sapiens GN=TUBB4 PE=1 SV=2 - [TBB4_HUMAN] 22 

Tubulin alpha-1C chain OS=Homo sapiens GN=TUBA1C PE=1 SV=1 - [TBA1C_HUMAN] 21 

Tubulin beta-2B chain OS=Homo sapiens GN=TUBB2B PE=1 SV=1 - [TBB2B_HUMAN] 21 

Tubulin beta-2A chain OS=Homo sapiens GN=TUBB2A PE=1 SV=1 - [TBB2A_HUMAN] 20 

Putative annexin A2-like protein OS=Homo sapiens GN=ANXA2P2 PE=5 SV=2 - 

[AXA2L_HUMAN] 

13 

HLA class I histocompatibility antigen, A-1 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A01_HUMAN] 

11 

HLA class I histocompatibility antigen, A-3 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=2 - [1A03_HUMAN] 

11 

HLA class I histocompatibility antigen, A-11 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A11_HUMAN] 

11 

HLA class I histocompatibility antigen, A-36 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A36_HUMAN] 

11 

HLA class I histocompatibility antigen, B-57 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B57_HUMAN] 

11 

HLA class I histocompatibility antigen, B-58 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B58_HUMAN] 

11 

Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1 PE=1 SV=1 - [ACTC_HUMAN] 19 

Tubulin alpha-1A chain OS=Homo sapiens GN=TUBA1A PE=1 SV=1 - [TBA1A_HUMAN] 20 

Actin, alpha skeletal muscle OS=Homo sapiens GN=ACTA1 PE=1 SV=1 - [ACTS_HUMAN] 18 

HLA class I histocompatibility antigen, A-24 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=2 - [1A24_HUMAN] 

12 

HLA class I histocompatibility antigen, B-15 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=2 - [1B15_HUMAN] 

11 

HLA class I histocompatibility antigen, B-46 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B46_HUMAN] 

10 

HLA class I histocompatibility antigen, B-56 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B56_HUMAN] 

10 

HLA class I histocompatibility antigen, B-53 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B53_HUMAN] 

10 

HLA class I histocompatibility antigen, B-35 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B35_HUMAN] 

10 

Actin, aortic smooth muscle OS=Homo sapiens GN=ACTA2 PE=1 SV=1 - [ACTA_HUMAN] 17 

Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM2 PE=1 SV=4 - 

[KPYM_HUMAN] 

15 

4F2 cell-surface antigen heavy chain OS=Homo sapiens GN=SLC3A2 PE=1 SV=3 - 

[4F2_HUMAN] 

16 

Actin, gamma-enteric smooth muscle OS=Homo sapiens GN=ACTG2 PE=1 SV=1 - 

[ACTH_HUMAN] 

16 

Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 - [TBB3_HUMAN] 15 

Sodium/potassium-transporting ATPase subunit alpha-1 OS=Homo sapiens GN=ATP1A1 PE=1 

SV=1 - [AT1A1_HUMAN] 

24 

HLA class I histocompatibility antigen, A-23 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A23_HUMAN] 

11 
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Tubulin alpha-4A chain OS=Homo sapiens GN=TUBA4A PE=1 SV=1 - [TBA4A_HUMAN] 14 

HLA class I histocompatibility antigen, B-59 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B59_HUMAN] 

9 

HLA class I histocompatibility antigen, B-54 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B54_HUMAN] 

9 

HLA class I histocompatibility antigen, B-55 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B55_HUMAN] 

9 

HLA class I histocompatibility antigen, Cw-12 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=2 - [1C12_HUMAN] 

7 

HLA class I histocompatibility antigen, B-51 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B51_HUMAN] 

8 

HLA class I histocompatibility antigen, B-52 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B52_HUMAN] 

9 

HLA class I histocompatibility antigen, B-78 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B78_HUMAN] 

8 

HLA class I histocompatibility antigen, A-30 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=2 - [1A30_HUMAN] 

8 

Integrin alpha-3 OS=Homo sapiens GN=ITGA3 PE=1 SV=4 - [ITA3_HUMAN] 22 

HLA class I histocompatibility antigen, Cw-16 alpha chain OS=Homo sapiens GN=HLA-C PE=2 

SV=1 - [1C16_HUMAN] 

6 

HLA class I histocompatibility antigen, Cw-17 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=1 - [1C17_HUMAN] 

4 

Tubulin alpha-3C/D chain OS=Homo sapiens GN=TUBA3C PE=1 SV=3 - [TBA3C_HUMAN] 14 

Tubulin alpha-8 chain OS=Homo sapiens GN=TUBA8 PE=1 SV=1 - [TBA8_HUMAN] 10 

Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 - [ENOA_HUMAN] 15 

Tubulin alpha-3E chain OS=Homo sapiens GN=TUBA3E PE=1 SV=2 - [TBA3E_HUMAN] 11 

HLA class I histocompatibility antigen, B-49 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=2 - [1B49_HUMAN] 

10 

HLA class I histocompatibility antigen, B-50 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B50_HUMAN] 

10 

HLA class I histocompatibility antigen, A-2 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A02_HUMAN] 

6 

HLA class I histocompatibility antigen, A-32 alpha chain OS=Homo sapiens GN=HLA-A PE=2 

SV=2 - [1A32_HUMAN] 

6 

HLA class I histocompatibility antigen, A-74 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A74_HUMAN] 

6 

POTE ankyrin domain family member F OS=Homo sapiens GN=POTEF PE=1 SV=2 - 

[POTEF_HUMAN] 

9 

Annexin A6 OS=Homo sapiens GN=ANXA6 PE=1 SV=3 - [ANXA6_HUMAN] 16 

HLA class I histocompatibility antigen, B-45 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B45_HUMAN] 

10 

Annexin A1 OS=Homo sapiens GN=ANXA1 PE=1 SV=2 - [ANXA1_HUMAN] 9 

Putative HLA class I histocompatibility antigen, alpha chain H OS=Homo sapiens GN=HLA-H 

PE=5 SV=2 - [HLAH_HUMAN] 

7 

HLA class I histocompatibility antigen, A-29 alpha chain OS=Homo sapiens GN=HLA-A PE=2 

SV=2 - [1A29_HUMAN] 

6 

Beta-actin-like protein 2 OS=Homo sapiens GN=ACTBL2 PE=1 SV=2 - [ACTBL_HUMAN] 10 

HLA class I histocompatibility antigen, B-82 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B82_HUMAN] 

9 

Sodium/potassium-transporting ATPase subunit alpha-3 OS=Homo sapiens GN=ATP1A3 PE=1 

SV=3 - [AT1A3_HUMAN] 

12 

HLA class I histocompatibility antigen, A-25 alpha chain OS=Homo sapiens GN=HLA-A PE=2 

SV=1 - [1A25_HUMAN] 

5 

HLA class I histocompatibility antigen, A-26 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=2 - [1A26_HUMAN] 

5 

HLA class I histocompatibility antigen, A-31 alpha chain OS=Homo sapiens GN=HLA-A PE=2 

SV=2 - [1A31_HUMAN] 

5 

HLA class I histocompatibility antigen, A-34 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A34_HUMAN] 

5 

HLA class I histocompatibility antigen, A-43 alpha chain OS=Homo sapiens GN=HLA-A PE=2 

SV=1 - [1A43_HUMAN] 

5 

HLA class I histocompatibility antigen, A-66 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=1 - [1A66_HUMAN] 

5 

HLA class I histocompatibility antigen, A-68 alpha chain OS=Homo sapiens GN=HLA-A PE=1 5 
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SV=4 - [1A68_HUMAN] 

HLA class I histocompatibility antigen, A-69 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=2 - [1A69_HUMAN] 

5 

HLA class I histocompatibility antigen, Cw-4 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=1 - [1C04_HUMAN] 

5 

Erythrocyte band 7 integral membrane protein OS=Homo sapiens GN=STOM PE=1 SV=3 - 

[STOM_HUMAN] 

7 

Putative beta-actin-like protein 3 OS=Homo sapiens GN=POTEKP PE=5 SV=1 - 

[ACTBM_HUMAN] 

5 

HLA class I histocompatibility antigen, B-13 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B13_HUMAN] 

9 

HLA class I histocompatibility antigen, B-38 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B38_HUMAN] 

7 

HLA class I histocompatibility antigen, B-27 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=2 - [1B27_HUMAN] 

7 

HLA class I histocompatibility antigen, B-37 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B37_HUMAN] 

8 

HLA class I histocompatibility antigen, B-39 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B39_HUMAN] 

7 

HLA class I histocompatibility antigen, B-40 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B40_HUMAN] 

8 

HLA class I histocompatibility antigen, B-47 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B47_HUMAN] 

9 

HLA class I histocompatibility antigen, B-67 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B67_HUMAN] 

7 

Sodium/potassium-transporting ATPase subunit alpha-2 OS=Homo sapiens GN=ATP1A2 PE=1 

SV=1 - [AT1A2_HUMAN] 

10 

Tubulin beta-6 chain OS=Homo sapiens GN=TUBB6 PE=1 SV=1 - [TBB6_HUMAN] 14 

HLA class I histocompatibility antigen, A-33 alpha chain OS=Homo sapiens GN=HLA-A PE=1 

SV=3 - [1A33_HUMAN] 

3 

HLA class I histocompatibility antigen, B-44 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B44_HUMAN] 

9 

HLA class I histocompatibility antigen, Cw-14 alpha chain OS=Homo sapiens GN=HLA-C PE=2 

SV=2 - [1C14_HUMAN] 

4 

HLA class I histocompatibility antigen, Cw-15 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=1 - [1C15_HUMAN] 

6 

Myosin-9 OS=Homo sapiens GN=MYH9 PE=1 SV=4 - [MYH9_HUMAN] 13 

HLA class I histocompatibility antigen, B-7 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=3 - [1B07_HUMAN] 

5 

HLA class I histocompatibility antigen, B-8 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B08_HUMAN] 

5 

HLA class I histocompatibility antigen, B-14 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B14_HUMAN] 

5 

HLA class I histocompatibility antigen, B-18 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B18_HUMAN] 

5 

HLA class I histocompatibility antigen, B-41 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B41_HUMAN] 

6 

HLA class I histocompatibility antigen, B-42 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B42_HUMAN] 

5 

HLA class I histocompatibility antigen, Cw-7 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=3 - [1C07_HUMAN] 

5 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Homo sapiens GN=GNB1 

PE=1 SV=3 - [GBB1_HUMAN] 

12 

HLA class I histocompatibility antigen, B-48 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B48_HUMAN] 

5 

HLA class I histocompatibility antigen, B-81 alpha chain OS=Homo sapiens GN=HLA-B PE=2 

SV=1 - [1B81_HUMAN] 

4 

HLA class I histocompatibility antigen, Cw-5 alpha chain OS=Homo sapiens GN=HLA-C PE=2 

SV=1 - [1C05_HUMAN] 

4 

HLA class I histocompatibility antigen, Cw-8 alpha chain OS=Homo sapiens GN=HLA-C PE=2 

SV=1 - [1C08_HUMAN] 

4 

HLA class I histocompatibility antigen, Cw-6 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=2 - [1C06_HUMAN] 

5 

Alpha-actinin-4 OS=Homo sapiens GN=ACTN4 PE=1 SV=2 - [ACTN4_HUMAN] 7 

Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 - [ACTN1_HUMAN] 7 

Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 - [CLH1_HUMAN] 5 
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Elongation factor 1-alpha 1 OS=Homo sapiens GN=EEF1A1 PE=1 SV=1 - [EF1A1_HUMAN] 12 

Putative elongation factor 1-alpha-like 3 OS=Homo sapiens GN=EEF1AL3 PE=5 SV=1 - 

[EF1A3_HUMAN] 

12 

HLA class I histocompatibility antigen, B-73 alpha chain OS=Homo sapiens GN=HLA-B PE=1 

SV=1 - [1B73_HUMAN] 

3 

Tubulin beta-8 chain OS=Homo sapiens GN=TUBB8 PE=1 SV=2 - [TBB8_HUMAN] 10 

Cofilin-1 OS=Homo sapiens GN=CFL1 PE=1 SV=3 - [COF1_HUMAN] 5 

Fructose-bisphosphate aldolase A OS=Homo sapiens GN=ALDOA PE=1 SV=2 - 

[ALDOA_HUMAN] 

10 

Annexin A5 OS=Homo sapiens GN=ANXA5 PE=1 SV=2 - [ANXA5_HUMAN] 7 

HLA class I histocompatibility antigen, alpha chain F OS=Homo sapiens GN=HLA-F PE=2 SV=2 

- [HLAF_HUMAN] 

4 

L-lactate dehydrogenase A chain OS=Homo sapiens GN=LDHA PE=1 SV=2 - [LDHA_HUMAN] 7 

Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Homo sapiens GN=GNAI2 PE=1 

SV=3 - [GNAI2_HUMAN] 

10 

HLA class I histocompatibility antigen, A-80 alpha chain OS=Homo sapiens GN=HLA-A PE=2 

SV=1 - [1A80_HUMAN] 

6 

Putative tubulin-like protein alpha-4B OS=Homo sapiens GN=TUBA4B PE=5 SV=2 - 

[TBA4B_HUMAN] 

1 

Tubulin beta-8 chain B OS=Homo sapiens PE=1 SV=1 - [TBB8B_HUMAN] 9 

Thy-1 membrane glycoprotein OS=Homo sapiens GN=THY1 PE=1 SV=2 - [THY1_HUMAN] 4 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 OS=Homo sapiens GN=GNB2 

PE=1 SV=3 - [GBB2_HUMAN] 

12 

Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=2 - [TPIS_HUMAN] 7 

Protein S100-A10 OS=Homo sapiens GN=S100A10 PE=1 SV=2 - [S10AA_HUMAN] 4 

Beta-2-microglobulin OS=Homo sapiens GN=B2M PE=1 SV=1 - [B2MG_HUMAN] 5 

Heat shock protein HSP 90-alpha OS=Homo sapiens GN=HSP90AA1 PE=1 SV=5 - 

[HS90A_HUMAN] 

7 

Heat shock cognate 71 kDa protein OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - 

[HSP7C_HUMAN] 

9 

Histone H4 OS=Homo sapiens GN=HIST1H4A PE=1 SV=2 - [H4_HUMAN] 5 

Heat shock protein HSP 90-beta OS=Homo sapiens GN=HSP90AB1 PE=1 SV=4 - 

[HS90B_HUMAN] 

10 

14-3-3 protein zeta/delta OS=Homo sapiens GN=YWHAZ PE=1 SV=1 - [1433Z_HUMAN] 4 

Putative tubulin beta-4q chain OS=Homo sapiens GN=TUBB4Q PE=5 SV=1 - 

[TBB4Q_HUMAN] 

7 

Histone H2A type 1-B/E OS=Homo sapiens GN=HIST1H2AB PE=1 SV=2 - [H2A1B_HUMAN] 2 

Histone H2A type 1-C OS=Homo sapiens GN=HIST1H2AC PE=1 SV=3 - [H2A1C_HUMAN] 2 

Histone H2A type 1-D OS=Homo sapiens GN=HIST1H2AD PE=1 SV=2 - [H2A1D_HUMAN] 2 

Histone H2A type 1-H OS=Homo sapiens GN=HIST1H2AH PE=1 SV=3 - [H2A1H_HUMAN] 2 

Histone H2A type 1-J OS=Homo sapiens GN=HIST1H2AJ PE=1 SV=3 - [H2A1J_HUMAN] 2 

Histone H2A type 1 OS=Homo sapiens GN=HIST1H2AG PE=1 SV=2 - [H2A1_HUMAN] 2 

Histone H2A type 2-A OS=Homo sapiens GN=HIST2H2AA3 PE=1 SV=3 - [H2A2A_HUMAN] 2 

Histone H2A type 2-C OS=Homo sapiens GN=HIST2H2AC PE=1 SV=4 - [H2A2C_HUMAN] 2 

Histone H2A type 3 OS=Homo sapiens GN=HIST3H2A PE=1 SV=3 - [H2A3_HUMAN] 2 

Histone H2A.J OS=Homo sapiens GN=H2AFJ PE=1 SV=1 - [H2AJ_HUMAN] 2 

Protein S100-A11 OS=Homo sapiens GN=S100A11 PE=1 SV=2 - [S10AB_HUMAN] 2 

Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 - [FAS_HUMAN] 12 

5'-nucleotidase OS=Homo sapiens GN=NT5E PE=1 SV=1 - [5NTD_HUMAN] 6 

Histone H2B type 1-H OS=Homo sapiens GN=HIST1H2BH PE=1 SV=3 - [H2B1H_HUMAN] 2 

Histone H2B type 1-O OS=Homo sapiens GN=HIST1H2BO PE=1 SV=3 - [H2B1O_HUMAN] 2 

Histone H2B type 2-F OS=Homo sapiens GN=HIST2H2BF PE=1 SV=3 - [H2B2F_HUMAN] 2 

Histone H2B type 1-B OS=Homo sapiens GN=HIST1H2BB PE=1 SV=2 - [H2B1B_HUMAN] 2 

Histone H2B type 1-C/E/F/G/I OS=Homo sapiens GN=HIST1H2BC PE=1 SV=4 - 

[H2B1C_HUMAN] 

2 

Histone H2B type 1-D OS=Homo sapiens GN=HIST1H2BD PE=1 SV=2 - [H2B1D_HUMAN] 2 
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Histone H2B type 1-J OS=Homo sapiens GN=HIST1H2BJ PE=1 SV=3 - [H2B1J_HUMAN] 2 

Histone H2B type 1-K OS=Homo sapiens GN=HIST1H2BK PE=1 SV=3 - [H2B1K_HUMAN] 2 

Histone H2B type 1-L OS=Homo sapiens GN=HIST1H2BL PE=1 SV=3 - [H2B1L_HUMAN] 2 

Histone H2B type 1-M OS=Homo sapiens GN=HIST1H2BM PE=1 SV=3 - [H2B1M_HUMAN] 2 

Histone H2B type 1-N OS=Homo sapiens GN=HIST1H2BN PE=1 SV=3 - [H2B1N_HUMAN] 2 

Histone H2B type 2-E OS=Homo sapiens GN=HIST2H2BE PE=1 SV=3 - [H2B2E_HUMAN] 2 

Histone H2B type 3-B OS=Homo sapiens GN=HIST3H2BB PE=1 SV=3 - [H2B3B_HUMAN] 2 

Histone H2B type F-S OS=Homo sapiens GN=H2BFS PE=1 SV=2 - [H2BFS_HUMAN] 2 

78 kDa glucose-regulated protein OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - 

[GRP78_HUMAN] 

7 

Brain acid soluble protein 1 OS=Homo sapiens GN=BASP1 PE=1 SV=2 - [BASP1_HUMAN] 5 

Transgelin-2 OS=Homo sapiens GN=TAGLN2 PE=1 SV=3 - [TAGL2_HUMAN] 2 

Elongation factor 1-alpha 2 OS=Homo sapiens GN=EEF1A2 PE=1 SV=1 - [EF1A2_HUMAN] 6 

Solute carrier family 2, facilitated glucose transporter member 1 OS=Homo sapiens GN=SLC2A1 

PE=1 SV=2 - [GTR1_HUMAN] 

6 

Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 4 

Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6 - [K2C1_HUMAN] 6 

Ras-related protein Rab-10 OS=Homo sapiens GN=RAB10 PE=1 SV=1 - [RAB10_HUMAN] 3 

HLA class I histocompatibility antigen, Cw-2 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=1 - [1C02_HUMAN] 

3 

Putative tubulin beta chain-like protein ENSP00000290377 OS=Homo sapiens PE=5 SV=2 - 

[YI016_HUMAN] 

5 

Peptidyl-prolyl cis-trans isomerase A OS=Homo sapiens GN=PPIA PE=1 SV=2 - 

[PPIA_HUMAN] 

8 

Ezrin OS=Homo sapiens GN=EZR PE=1 SV=4 - [EZRI_HUMAN] 5 

Moesin OS=Homo sapiens GN=MSN PE=1 SV=3 - [MOES_HUMAN] 7 

Radixin OS=Homo sapiens GN=RDX PE=1 SV=1 - [RADI_HUMAN] 5 

Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4 - [EF2_HUMAN] 4 

HLA class I histocompatibility antigen, Cw-18 alpha chain OS=Homo sapiens GN=HLA-C PE=2 

SV=1 - [1C18_HUMAN] 

4 

Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 3 

Integrin alpha-5 OS=Homo sapiens GN=ITGA5 PE=1 SV=2 - [ITA5_HUMAN] 2 

Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - 

[K22E_HUMAN] 

2 

HLA class I histocompatibility antigen, Cw-3 alpha chain OS=Homo sapiens GN=HLA-C PE=1 

SV=2 - [1C03_HUMAN] 

2 

Chloride intracellular channel protein 1 OS=Homo sapiens GN=CLIC1 PE=1 SV=4 - 

[CLIC1_HUMAN] 

2 

L-lactate dehydrogenase A-like 6B OS=Homo sapiens GN=LDHAL6B PE=1 SV=3 - 

[LDH6B_HUMAN] 

1 

Transforming protein RhoA OS=Homo sapiens GN=RHOA PE=1 SV=1 - [RHOA_HUMAN] 5 

Rho-related GTP-binding protein RhoC OS=Homo sapiens GN=RHOC PE=1 SV=1 - 

[RHOC_HUMAN] 

3 

Myosin-11 OS=Homo sapiens GN=MYH11 PE=1 SV=3 - [MYH11_HUMAN] 2 

Sodium/potassium-transporting ATPase subunit alpha-4 OS=Homo sapiens GN=ATP1A4 PE=1 

SV=3 - [AT1A4_HUMAN] 

6 

Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas OS=Homo sapiens 

GN=GNAS PE=1 SV=2 - [GNAS1_HUMAN] 

3 

Guanine nucleotide-binding protein G(s) subunit alpha isoforms short OS=Homo sapiens 

GN=GNAS PE=1 SV=1 - [GNAS2_HUMAN] 

3 

Potassium-transporting ATPase alpha chain 1 OS=Homo sapiens GN=ATP4A PE=2 SV=5 - 

[ATP4A_HUMAN] 

3 

Histone H3.1 OS=Homo sapiens GN=HIST1H3A PE=1 SV=2 - [H31_HUMAN] 2 

Myosin-Ib OS=Homo sapiens GN=MYO1B PE=1 SV=3 - [MYO1B_HUMAN] 1 

14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 SV=1 - [1433E_HUMAN] 2 

HLA class I histocompatibility antigen, alpha chain E OS=Homo sapiens GN=HLA-E PE=1 SV=3 

- [HLAE_HUMAN] 

2 

Large neutral amino acids transporter small subunit 1 OS=Homo sapiens GN=SLC7A5 PE=1 1 
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SV=2 - [LAT1_HUMAN] 

Serine/threonine-protein phosphatase PP1-beta catalytic subunit OS=Homo sapiens GN=PPP1CB 

PE=1 SV=3 - [PP1B_HUMAN] 

2 

Serine/threonine-protein phosphatase PP1-gamma catalytic subunit OS=Homo sapiens 

GN=PPP1CC PE=1 SV=1 - [PP1G_HUMAN] 

2 

Serine/threonine-protein phosphatase PP1-alpha catalytic subunit OS=Homo sapiens GN=PPP1CA 

PE=1 SV=1 - [PP1A_HUMAN] 

2 

Ras-related protein Rab-1A OS=Homo sapiens GN=RAB1A PE=1 SV=3 - [RAB1A_HUMAN] 2 

Ras-related protein Rab-35 OS=Homo sapiens GN=RAB35 PE=1 SV=1 - [RAB35_HUMAN] 2 

Ras-related protein Rab-8B OS=Homo sapiens GN=RAB8B PE=1 SV=2 - [RAB8B_HUMAN] 2 

Ras-related protein Rab-15 OS=Homo sapiens GN=RAB15 PE=1 SV=1 - [RAB15_HUMAN] 2 

Ras-related protein Rab-8A OS=Homo sapiens GN=RAB8A PE=1 SV=1 - [RAB8A_HUMAN] 2 

Ras-related protein Rab-1B OS=Homo sapiens GN=RAB1B PE=1 SV=1 - [RAB1B_HUMAN] 2 

Putative Ras-related protein Rab-1C OS=Homo sapiens GN=RAB1C PE=5 SV=2 - 

[RAB1C_HUMAN] 

2 

Alpha-actinin-2 OS=Homo sapiens GN=ACTN2 PE=1 SV=1 - [ACTN2_HUMAN] 2 

Macrophage migration inhibitory factor OS=Homo sapiens GN=MIF PE=1 SV=4 - 

[MIF_HUMAN] 

2 

Intercellular adhesion molecule 1 OS=Homo sapiens GN=ICAM1 PE=1 SV=2 - 

[ICAM1_HUMAN] 

2 

14-3-3 protein beta/alpha OS=Homo sapiens GN=YWHAB PE=1 SV=3 - [1433B_HUMAN] 4 

Alpha-actinin-3 OS=Homo sapiens GN=ACTN3 PE=1 SV=2 - [ACTN3_HUMAN] 1 

Calmodulin OS=Homo sapiens GN=CALM1 PE=1 SV=2 - [CALM_HUMAN] 2 

Myristoylated alanine-rich C-kinase substrate OS=Homo sapiens GN=MARCKS PE=1 SV=4 - 

[MARCS_HUMAN] 

2 

Cofilin-2 OS=Homo sapiens GN=CFL2 PE=1 SV=1 - [COF2_HUMAN] 2 

Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Homo sapiens GN=GNAI1 PE=1 

SV=2 - [GNAI1_HUMAN] 

3 

Guanine nucleotide-binding protein G(k) subunit alpha OS=Homo sapiens GN=GNAI3 PE=1 

SV=3 - [GNAI3_HUMAN] 

2 

Guanine nucleotide-binding protein G(t) subunit alpha-1 OS=Homo sapiens GN=GNAT1 PE=1 

SV=5 - [GNAT1_HUMAN] 

2 

Guanine nucleotide-binding protein G(t) subunit alpha-2 OS=Homo sapiens GN=GNAT2 PE=1 

SV=4 - [GNAT2_HUMAN] 

2 

Guanine nucleotide-binding protein G(t) subunit alpha-3 OS=Homo sapiens GN=GNAT3 PE=2 

SV=2 - [GNAT3_HUMAN] 

2 

Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN] 1 

Myosin light chain 6B OS=Homo sapiens GN=MYL6B PE=1 SV=1 - [MYL6B_HUMAN] 2 

Heat shock-related 70 kDa protein 2 OS=Homo sapiens GN=HSPA2 PE=1 SV=1 - 

[HSP72_HUMAN] 

4 

Ubiquitin-like protein ISG15 OS=Homo sapiens GN=ISG15 PE=1 SV=5 - [ISG15_HUMAN] 2 

Tubulin beta-1 chain OS=Homo sapiens GN=TUBB1 PE=1 SV=1 - [TBB1_HUMAN] 4 

Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - [PRDX1_HUMAN] 4 

Endoplasmin OS=Homo sapiens GN=HSP90B1 PE=1 SV=1 - [ENPL_HUMAN] 1 

Sodium/potassium-transporting ATPase subunit beta-1 OS=Homo sapiens GN=ATP1B1 PE=1 

SV=1 - [AT1B1_HUMAN] 

3 

CD9 antigen OS=Homo sapiens GN=CD9 PE=1 SV=4 - [CD9_HUMAN] 2 

Proteasome activator complex subunit 1 OS=Homo sapiens GN=PSME1 PE=1 SV=1 - 

[PSME1_HUMAN] 

1 

14-3-3 protein gamma OS=Homo sapiens GN=YWHAG PE=1 SV=2 - [1433G_HUMAN] 3 

Guanine nucleotide-binding protein subunit alpha-12 OS=Homo sapiens GN=GNA12 PE=1 SV=4 

- [GNA12_HUMAN] 

1 

Guanine nucleotide-binding protein subunit alpha-13 OS=Homo sapiens GN=GNA13 PE=1 SV=2 

- [GNA13_HUMAN] 

1 

Guanine nucleotide-binding protein G(olf) subunit alpha OS=Homo sapiens GN=GNAL PE=1 

SV=1 - [GNAL_HUMAN] 

1 

Guanine nucleotide-binding protein G(o) subunit alpha OS=Homo sapiens GN=GNAO1 PE=1 

SV=4 - [GNAO_HUMAN] 

1 

Putative heat shock protein HSP 90-alpha A4 OS=Homo sapiens GN=HSP90AA4P PE=5 SV=1 - 

[HS904_HUMAN] 

1 
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Heat shock 70 kDa protein 6 OS=Homo sapiens GN=HSPA6 PE=1 SV=2 - [HSP76_HUMAN] 2 

Heat shock 70 kDa protein 1A/1B OS=Homo sapiens GN=HSPA1A PE=1 SV=5 - 

[HSP71_HUMAN] 

2 

Heat shock 70 kDa protein 1-like OS=Homo sapiens GN=HSPA1L PE=1 SV=2 - 

[HS71L_HUMAN] 

2 

Putative heat shock 70 kDa protein 7 OS=Homo sapiens GN=HSPA7 PE=5 SV=2 - 

[HSP77_HUMAN] 

2 

Ras-related protein Rab-37 OS=Homo sapiens GN=RAB37 PE=1 SV=3 - [RAB37_HUMAN] 1 

Ras-related protein Rab-33B OS=Homo sapiens GN=RAB33B PE=1 SV=1 - [RB33B_HUMAN] 1 

Ras-related protein Rab-12 OS=Homo sapiens GN=RAB12 PE=1 SV=3 - [RAB12_HUMAN] 1 

Ras-related protein Rab-14 OS=Homo sapiens GN=RAB14 PE=1 SV=4 - [RAB14_HUMAN] 1 

Ras-related protein Rab-30 OS=Homo sapiens GN=RAB30 PE=1 SV=2 - [RAB30_HUMAN] 1 

Ras-related protein Rab-3A OS=Homo sapiens GN=RAB3A PE=1 SV=1 - [RAB3A_HUMAN] 1 

Ras-related protein Rab-3B OS=Homo sapiens GN=RAB3B PE=1 SV=2 - [RAB3B_HUMAN] 1 

Ras-related protein Rab-3C OS=Homo sapiens GN=RAB3C PE=2 SV=1 - [RAB3C_HUMAN] 1 

Ras-related protein Rab-3D OS=Homo sapiens GN=RAB3D PE=1 SV=1 - [RAB3D_HUMAN] 1 

Ras-related protein Rab-43 OS=Homo sapiens GN=RAB43 PE=1 SV=1 - [RAB43_HUMAN] 1 

Ras-related protein Rab-4A OS=Homo sapiens GN=RAB4A PE=1 SV=2 - [RAB4A_HUMAN] 1 

Ras-related protein Rab-4B OS=Homo sapiens GN=RAB4B PE=1 SV=1 - [RAB4B_HUMAN] 1 

Ras-related protein Rab-39B OS=Homo sapiens GN=RAB39B PE=1 SV=1 - [RB39B_HUMAN] 1 

Putative Rab-43-like protein ENSP00000330714 OS=Homo sapiens PE=5 SV=3 - 

[RB43L_HUMAN] 

1 

Ras-related protein Rab-6A OS=Homo sapiens GN=RAB6A PE=1 SV=3 - [RAB6A_HUMAN] 1 

Ras-related protein Rab-6B OS=Homo sapiens GN=RAB6B PE=1 SV=1 - [RAB6B_HUMAN] 1 

Ras-related protein Rab-39A OS=Homo sapiens GN=RAB39 PE=2 SV=2 - [RB39A_HUMAN] 1 

Eukaryotic initiation factor 4A-I OS=Homo sapiens GN=EIF4A1 PE=1 SV=1 - [IF4A1_HUMAN] 3 

Eukaryotic initiation factor 4A-II OS=Homo sapiens GN=EIF4A2 PE=1 SV=2 - 

[IF4A2_HUMAN] 

3 

Lysosome-associated membrane glycoprotein 1 OS=Homo sapiens GN=LAMP1 PE=1 SV=3 - 

[LAMP1_HUMAN] 

1 

EGF-like repeat and discoidin I-like domain-containing protein 3 OS=Homo sapiens GN=EDIL3 

PE=1 SV=1 - [EDIL3_HUMAN] 

1 

Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens GN=VDAC1 PE=1 SV=2 

- [VDAC1_HUMAN] 

2 

Rho-related GTP-binding protein RhoB OS=Homo sapiens GN=RHOB PE=1 SV=1 - 

[RHOB_HUMAN] 

1 

Sodium/potassium-transporting ATPase subunit beta-3 OS=Homo sapiens GN=ATP1B3 PE=1 

SV=1 - [AT1B3_HUMAN] 

2 

Thioredoxin OS=Homo sapiens GN=TXN PE=1 SV=3 - [THIO_HUMAN] 1 

Heat shock protein beta-1 OS=Homo sapiens GN=HSPB1 PE=1 SV=2 - [HSPB1_HUMAN] 2 

Clathrin heavy chain 2 OS=Homo sapiens GN=CLTCL1 PE=1 SV=2 - [CLH2_HUMAN] 1 

Basigin OS=Homo sapiens GN=BSG PE=1 SV=2 - [BASI_HUMAN] 2 

Phosphoglycerate mutase 1 OS=Homo sapiens GN=PGAM1 PE=1 SV=2 - [PGAM1_HUMAN] 2 

Histone H2A type 1-A OS=Homo sapiens GN=HIST1H2AA PE=1 SV=3 - [H2A1A_HUMAN] 1 

Histone H2A type 2-B OS=Homo sapiens GN=HIST2H2AB PE=1 SV=3 - [H2A2B_HUMAN] 1 

Histone H2A.V OS=Homo sapiens GN=H2AFV PE=1 SV=3 - [H2AV_HUMAN] 1 

Histone H2A.x OS=Homo sapiens GN=H2AFX PE=1 SV=2 - [H2AX_HUMAN] 1 

Histone H2A.Z OS=Homo sapiens GN=H2AFZ PE=1 SV=2 - [H2AZ_HUMAN] 1 

Guanine nucleotide-binding protein subunit beta-4 OS=Homo sapiens GN=GNB4 PE=1 SV=3 - 

[GBB4_HUMAN] 

5 

14-3-3 protein sigma OS=Homo sapiens GN=SFN PE=1 SV=1 - [1433S_HUMAN] 3 

Fructose-bisphosphate aldolase C OS=Homo sapiens GN=ALDOC PE=1 SV=2 - 

[ALDOC_HUMAN] 

1 

Stonin-2 OS=Homo sapiens GN=STON2 PE=1 SV=1 - [STON2_HUMAN] 1 

Tubulin alpha chain-like 3 OS=Homo sapiens GN=TUBAL3 PE=1 SV=2 - [TBAL3_HUMAN] 3 



 

70 
 

Proteasome subunit alpha type-6 OS=Homo sapiens GN=PSMA6 PE=1 SV=1 - [PSA6_HUMAN] 1 

Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 - [PROF1_HUMAN] 5 

Pyruvate kinase isozymes R/L OS=Homo sapiens GN=PKLR PE=1 SV=2 - [KPYR_HUMAN] 1 

Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 - [K2C6B_HUMAN] 1 

ADP-ribosylation factor 3 OS=Homo sapiens GN=ARF3 PE=1 SV=2 - [ARF3_HUMAN] 1 

ADP-ribosylation factor 1 OS=Homo sapiens GN=ARF1 PE=1 SV=2 - [ARF1_HUMAN] 1 

Phosphoglycerate kinase 1 OS=Homo sapiens GN=PGK1 PE=1 SV=3 - [PGK1_HUMAN] 4 

Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 - [VIME_HUMAN] 2 

Rho GDP-dissociation inhibitor 1 OS=Homo sapiens GN=ARHGDIA PE=1 SV=3 - 

[GDIR1_HUMAN] 

2 

Protein disulfide-isomerase A3 OS=Homo sapiens GN=PDIA3 PE=1 SV=4 - [PDIA3_HUMAN] 2 

Myosin-10 OS=Homo sapiens GN=MYH10 PE=1 SV=3 - [MYH10_HUMAN] 3 

D-3-phosphoglycerate dehydrogenase OS=Homo sapiens GN=PHGDH PE=1 SV=4 - 

[SERA_HUMAN] 

1 

CD151 antigen OS=Homo sapiens GN=CD151 PE=1 SV=3 - [CD151_HUMAN] 1 

Probable phosphoglycerate mutase 4 OS=Homo sapiens GN=PGAM4 PE=1 SV=1 - 

[PGAM4_HUMAN] 

1 

Phosphoglycerate mutase 2 OS=Homo sapiens GN=PGAM2 PE=1 SV=3 - [PGAM2_HUMAN] 1 

Importin subunit beta-1 OS=Homo sapiens GN=KPNB1 PE=1 SV=2 - [IMB1_HUMAN] 1 

Charged multivesicular body protein 4b OS=Homo sapiens GN=CHMP4B PE=1 SV=1 - 

[CHM4B_HUMAN] 

1 

Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 - [FLNA_HUMAN] 1 

Ras-related protein Rab-13 OS=Homo sapiens GN=RAB13 PE=1 SV=1 - [RAB13_HUMAN] 1 

Leukocyte surface antigen CD47 OS=Homo sapiens GN=CD47 PE=1 SV=1 - [CD47_HUMAN] 1 

Potassium-transporting ATPase alpha chain 2 OS=Homo sapiens GN=ATP12A PE=2 SV=3 - 

[AT12A_HUMAN] 

3 

Ubiquitin OS=Homo sapiens GN=RPS27A PE=1 SV=1 - [UBIQ_HUMAN] 1 

Putative heat shock protein HSP 90-alpha A2 OS=Homo sapiens GN=HSP90AA2 PE=1 SV=2 - 

[HS902_HUMAN] 

1 

Putative heat shock protein HSP 90-beta 2 OS=Homo sapiens GN=HSP90AB2P PE=1 SV=2 - 

[H90B2_HUMAN] 

2 

GTP-binding nuclear protein Ran OS=Homo sapiens GN=RAN PE=1 SV=3 - [RAN_HUMAN] 1 

CD97 antigen OS=Homo sapiens GN=CD97 PE=1 SV=4 - [CD97_HUMAN] 1 

Myosin-Ic OS=Homo sapiens GN=MYO1C PE=1 SV=3 - [MYO1C_HUMAN] 3 

Histone H3.1t OS=Homo sapiens GN=HIST3H3 PE=1 SV=3 - [H31T_HUMAN] 1 

Histone H3.2 OS=Homo sapiens GN=HIST2H3A PE=1 SV=3 - [H32_HUMAN] 1 

Histone H3.3 OS=Homo sapiens GN=H3F3A PE=1 SV=2 - [H33_HUMAN] 1 

Histone H3.3C OS=Homo sapiens GN=H3F3C PE=1 SV=3 - [H3C_HUMAN] 1 

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 OS=Homo sapiens 

GN=GNG12 PE=1 SV=3 - [GBG12_HUMAN] 

2 

Ras GTPase-activating-like protein IQGAP1 OS=Homo sapiens GN=IQGAP1 PE=1 SV=1 - 

[IQGA1_HUMAN] 

4 

HLA class I histocompatibility antigen, alpha chain G OS=Homo sapiens GN=HLA-G PE=1 

SV=1 - [HLAG_HUMAN] 

1 

L-lactate dehydrogenase B chain OS=Homo sapiens GN=LDHB PE=1 SV=2 - [LDHB_HUMAN] 1 

L-lactate dehydrogenase A-like 6A OS=Homo sapiens GN=LDHAL6A PE=2 SV=1 - 

[LDH6A_HUMAN] 

1 

L-lactate dehydrogenase C chain OS=Homo sapiens GN=LDHC PE=2 SV=4 - [LDHC_HUMAN] 2 

Dynactin subunit 1 OS=Homo sapiens GN=DCTN1 PE=1 SV=3 - [DCTN1_HUMAN] 1 

Acetyl-CoA acetyltransferase, cytosolic OS=Homo sapiens GN=ACAT2 PE=1 SV=2 - 

[THIC_HUMAN] 

1 

Phosphoglycerate kinase 2 OS=Homo sapiens GN=PGK2 PE=1 SV=3 - [PGK2_HUMAN] 1 

Gamma-enolase OS=Homo sapiens GN=ENO2 PE=1 SV=3 - [ENOG_HUMAN] 1 

Monocarboxylate transporter 4 OS=Homo sapiens GN=SLC16A3 PE=1 SV=1 - 

[MOT4_HUMAN] 

1 

Myosin-14 OS=Homo sapiens GN=MYH14 PE=1 SV=1 - [MYH14_HUMAN] 2 
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Myosin-13 OS=Homo sapiens GN=MYH13 PE=1 SV=1 - [MYH13_HUMAN] 1 

Myosin-1 OS=Homo sapiens GN=MYH1 PE=1 SV=3 - [MYH1_HUMAN] 1 

Myosin-2 OS=Homo sapiens GN=MYH2 PE=1 SV=1 - [MYH2_HUMAN] 1 

Myosin-3 OS=Homo sapiens GN=MYH3 PE=1 SV=3 - [MYH3_HUMAN] 1 

Myosin-4 OS=Homo sapiens GN=MYH4 PE=1 SV=2 - [MYH4_HUMAN] 1 

Myosin-6 OS=Homo sapiens GN=MYH6 PE=1 SV=4 - [MYH6_HUMAN] 1 

Myosin-7B OS=Homo sapiens GN=MYH7B PE=2 SV=2 - [MYH7B_HUMAN] 1 

Myosin-7 OS=Homo sapiens GN=MYH7 PE=1 SV=5 - [MYH7_HUMAN] 1 

Myosin-8 OS=Homo sapiens GN=MYH8 PE=1 SV=3 - [MYH8_HUMAN] 1 

Protein NDRG1 OS=Homo sapiens GN=NDRG1 PE=1 SV=1 - [NDRG1_HUMAN] 1 

CD44 antigen OS=Homo sapiens GN=CD44 PE=1 SV=2 - [CD44_HUMAN] 1 

Neuroplastin OS=Homo sapiens GN=NPTN PE=1 SV=1 - [NPTN_HUMAN] 1 

Destrin OS=Homo sapiens GN=DSTN PE=1 SV=3 - [DEST_HUMAN] 1 

Solute carrier family 2, facilitated glucose transporter member 14 OS=Homo sapiens 

GN=SLC2A14 PE=2 SV=1 - [GTR14_HUMAN] 

1 

Solute carrier family 2, facilitated glucose transporter member 3 OS=Homo sapiens GN=SLC2A3 

PE=1 SV=1 - [GTR3_HUMAN] 

1 

Ras-related C3 botulinum toxin substrate 1 OS=Homo sapiens GN=RAC1 PE=1 SV=1 - 

[RAC1_HUMAN] 

2 

Syntenin-1 OS=Homo sapiens GN=SDCBP PE=1 SV=1 - [SDCB1_HUMAN] 1 

Histone H2B type 1-A OS=Homo sapiens GN=HIST1H2BA PE=1 SV=3 - [H2B1A_HUMAN] 1 

Class E basic helix-loop-helix protein 41 OS=Homo sapiens GN=BHLHE41 PE=2 SV=1 - 

[BHE41_HUMAN] 

1 

Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3 OS=Homo sapiens GN=GNB3 

PE=1 SV=1 - [GBB3_HUMAN] 

3 

Inositol 1,4,5-triphosphate receptor-interacting protein-like 1 OS=Homo sapiens GN=ITPRIPL1 

PE=1 SV=1 - [IPIL1_HUMAN] 

1 

Myosin light chain 3 OS=Homo sapiens GN=MYL3 PE=1 SV=3 - [MYL3_HUMAN] 1 

Ras-related C3 botulinum toxin substrate 2 OS=Homo sapiens GN=RAC2 PE=1 SV=1 - 

[RAC2_HUMAN] 

1 

Rho-related GTP-binding protein RhoG OS=Homo sapiens GN=RHOG PE=1 SV=1 - 

[RHOG_HUMAN] 

1 

Ras-related C3 botulinum toxin substrate 3 OS=Homo sapiens GN=RAC3 PE=1 SV=1 - 

[RAC3_HUMAN] 

1 

Cell division control protein 42 homolog OS=Homo sapiens GN=CDC42 PE=1 SV=1 - 

[CDC42_HUMAN] 

1 

Rho-related GTP-binding protein RhoJ OS=Homo sapiens GN=RHOJ PE=1 SV=1 - 

[RHOJ_HUMAN] 

1 

Rho-related GTP-binding protein RhoQ OS=Homo sapiens GN=RHOQ PE=1 SV=2 - 

[RHOQ_HUMAN] 

1 

Ras-related protein Rap-1A OS=Homo sapiens GN=RAP1A PE=1 SV=1 - [RAP1A_HUMAN] 2 

Ras-related protein Rap-1b OS=Homo sapiens GN=RAP1B PE=1 SV=1 - [RAP1B_HUMAN] 2 

Neutral amino acid transporter B(0) OS=Homo sapiens GN=SLC1A5 PE=1 SV=2 - 

[AAAT_HUMAN] 

1 

14-3-3 protein theta OS=Homo sapiens GN=YWHAQ PE=1 SV=1 - [1433T_HUMAN] 2 

14-3-3 protein eta OS=Homo sapiens GN=YWHAH PE=1 SV=4 - [1433F_HUMAN] 2 

Cysteine and glycine-rich protein 1 OS=Homo sapiens GN=CSRP1 PE=1 SV=3 - 

[CSRP1_HUMAN] 

1 

Myosin light chain 1/3, skeletal muscle isoform OS=Homo sapiens GN=MYL1 PE=1 SV=3 - 

[MYL1_HUMAN] 

2 

Eukaryotic initiation factor 4A-III OS=Homo sapiens GN=EIF4A3 PE=1 SV=4 - 

[IF4A3_HUMAN] 

1 

Zinc finger protein 638 OS=Homo sapiens GN=ZNF638 PE=1 SV=2 - [ZN638_HUMAN] 2 

Exportin-2 OS=Homo sapiens GN=CSE1L PE=1 SV=3 - [XPO2_HUMAN] 1 

Ubiquinone biosynthesis monooxygenase COQ6 OS=Homo sapiens GN=COQ6 PE=1 SV=2 - 

[COQ6_HUMAN] 

1 

Serine/threonine-protein kinase Nek10 OS=Homo sapiens GN=NEK10 PE=2 SV=2 - 

[NEK10_HUMAN] 

2 

Probable Xaa-Pro aminopeptidase 3 OS=Homo sapiens GN=XPNPEP3 PE=1 SV=1 - 1 



 

72 
 

[XPP3_HUMAN] 

Transmembrane channel-like protein 1 OS=Homo sapiens GN=TMC1 PE=1 SV=2 - 

[TMC1_HUMAN] 

1 

Leucine-rich repeat-containing protein 40 OS=Homo sapiens GN=LRRC40 PE=1 SV=1 - 

[LRC40_HUMAN] 

1 

Lactadherin OS=Homo sapiens GN=MFGE8 PE=1 SV=2 - [MFGM_HUMAN] 3 

Calnexin OS=Homo sapiens GN=CANX PE=1 SV=2 - [CALX_HUMAN] 2 

Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens GN=AHNAK PE=1 

SV=2 - [AHNK_HUMAN] 

1 

Glyceraldehyde-3-phosphate dehydrogenase, testis-specific OS=Homo sapiens GN=GAPDHS 

PE=1 SV=2 - [G3PT_HUMAN] 

1 

Cytochrome P450 2J2 OS=Homo sapiens GN=CYP2J2 PE=1 SV=2 - [CP2J2_HUMAN] 1 

Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 OS=Homo sapiens 

GN=GBF1 PE=1 SV=2 - [GBF1_HUMAN] 

1 

Troponin I, cardiac muscle OS=Homo sapiens GN=TNNI3 PE=1 SV=3 - [TNNI3_HUMAN] 1 

WD repeat-containing protein 33 OS=Homo sapiens GN=WDR33 PE=1 SV=2 - 

[WDR33_HUMAN] 

1 

Troponin I, fast skeletal muscle OS=Homo sapiens GN=TNNI2 PE=1 SV=2 - [TNNI2_HUMAN] 1 

WD repeat-containing protein 92 OS=Homo sapiens GN=WDR92 PE=1 SV=1 - 

[WDR92_HUMAN] 

1 

WD repeat-containing protein 46 OS=Homo sapiens GN=WDR46 PE=1 SV=2 - 

[WDR46_HUMAN] 

1 

RasGAP-activating-like protein 1 OS=Homo sapiens GN=RASAL1 PE=1 SV=2 - 

[RASL1_HUMAN] 

1 

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-5 OS=Homo sapiens 

GN=GNG5 PE=1 SV=3 - [GBG5_HUMAN] 

1 

CD59 glycoprotein OS=Homo sapiens GN=CD59 PE=1 SV=1 - [CD59_HUMAN] 1 

Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] 2 OS=Homo sapiens 

GN=GFPT2 PE=1 SV=3 - [GFPT2_HUMAN] 

1 

Fumarylacetoacetate hydrolase domain-containing protein 1 OS=Homo sapiens GN=FAHD1 

PE=1 SV=2 - [FAHD1_HUMAN] 

1 

Tropomyosin alpha-3 chain OS=Homo sapiens GN=TPM3 PE=1 SV=1 - [TPM3_HUMAN] 2 

Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 SV=3 - [TPM4_HUMAN] 2 

Myosin-Ia OS=Homo sapiens GN=MYO1A PE=1 SV=1 - [MYO1A_HUMAN] 1 

Tropomyosin alpha-1 chain OS=Homo sapiens GN=TPM1 PE=1 SV=2 - [TPM1_HUMAN] 1 

Tropomyosin beta chain OS=Homo sapiens GN=TPM2 PE=1 SV=1 - [TPM2_HUMAN] 1 

17-beta-hydroxysteroid dehydrogenase type 6 OS=Homo sapiens GN=HSD17B6 PE=1 SV=1 - 

[H17B6_HUMAN] 

1 

Ras-related protein Rap-1b-like protein OS=Homo sapiens PE=2 SV=1 - [RP1BL_HUMAN] 1 

Prospero homeobox protein 2 OS=Homo sapiens GN=PROX2 PE=2 SV=2 - [PROX2_HUMAN] 1 

Putative upstream-binding factor 1-like protein 1 OS=Homo sapiens GN=UBTFL1 PE=5 SV=1 - 

[UBFL1_HUMAN] 

1 

G2 and S phase-expressed protein 1 OS=Homo sapiens GN=GTSE1 PE=1 SV=2 - 

[GTSE1_HUMAN] 

2 

Inversin OS=Homo sapiens GN=INVS PE=1 SV=2 - [INVS_HUMAN] 1 

Zinc finger protein 782 OS=Homo sapiens GN=ZNF782 PE=2 SV=1 - [ZN782_HUMAN] 1 

Eukaryotic translation initiation factor 3 subunit C OS=Homo sapiens GN=EIF3C PE=1 SV=1 - 

[EIF3C_HUMAN] 

1 

DnaJ homolog subfamily C member 25 OS=Homo sapiens GN=DNAJC25 PE=2 SV=1 - 

[DJC25_HUMAN] 

1 

Coiled-coil domain-containing protein 28A OS=Homo sapiens GN=CCDC28A PE=1 SV=1 - 

[CC28A_HUMAN] 

1 

Cytochrome P450 27C1 OS=Homo sapiens GN=CYP27C1 PE=2 SV=1 - [C27C1_HUMAN] 1 

Cell division control protein 6 homolog OS=Homo sapiens GN=CDC6 PE=1 SV=1 - 

[CDC6_HUMAN] 

1 

Proto-oncogene serine/threonine-protein kinase mos OS=Homo sapiens GN=MOS PE=1 SV=1 - 

[MOS_HUMAN] 

1 

Ribonucleases P/MRP protein subunit POP1 OS=Homo sapiens GN=POP1 PE=1 SV=2 - 

[POP1_HUMAN] 

1 

Titin OS=Homo sapiens GN=TTN PE=1 SV=2 - [TITIN_HUMAN] 3 
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DNA excision repair protein ERCC-8 OS=Homo sapiens GN=ERCC8 PE=1 SV=1 - 

[ERCC8_HUMAN] 

1 

Acetyl-CoA acetyltransferase, mitochondrial OS=Homo sapiens GN=ACAT1 PE=1 SV=1 - 

[THIL_HUMAN] 

1 

UPF0027 protein C22orf28 OS=Homo sapiens GN=C22orf28 PE=1 SV=1 - [CV028_HUMAN] 1 

THO complex subunit 3 OS=Homo sapiens GN=THOC3 PE=1 SV=1 - [THOC3_HUMAN] 1 

Pleiotropic regulator 1 OS=Homo sapiens GN=PLRG1 PE=1 SV=1 - [PLRG1_HUMAN] 1 

WD repeat-containing protein 5B OS=Homo sapiens GN=WDR5B PE=2 SV=1 - 

[WDR5B_HUMAN] 

1 

Coiled-coil domain-containing protein 63 OS=Homo sapiens GN=CCDC63 PE=1 SV=1 - 

[CCD63_HUMAN] 

1 

Leishmanolysin-like peptidase OS=Homo sapiens GN=LMLN PE=2 SV=1 - [LMLN_HUMAN] 1 

WD repeat-containing protein 86 OS=Homo sapiens GN=WDR86 PE=5 SV=2 - 

[WDR86_HUMAN] 

1 
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Table 2: Proteomic Analysis of Exosomes Purified from Mock Infected Cells 

Description, Human Proteins # Peptides 

Keratin, type II cytoskeletal 1 OS=Homo sapiens GN=KRT1 PE=1 SV=6 - [K2C1_HUMAN] 48 

Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] 45 

Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN] 38 

Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - [K22E_HUMAN] 33 

Keratin, type II cytoskeletal 6A OS=Homo sapiens GN=KRT6A PE=1 SV=3 - [K2C6A_HUMAN] 31 

Keratin, type II cytoskeletal 6C OS=Homo sapiens GN=KRT6C PE=1 SV=3 - [K2C6C_HUMAN] 30 

Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 - [K2C6B_HUMAN] 30 

Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - [K1C14_HUMAN] 35 

Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 - [K1C16_HUMAN] 32 

Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3 - [K2C5_HUMAN] 29 

Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2 - [K1C17_HUMAN] 25 

Hornerin OS=Homo sapiens GN=HRNR PE=1 SV=2 - [HORN_HUMAN] 8 

Keratin, type II cytoskeletal 75 OS=Homo sapiens GN=KRT75 PE=1 SV=2 - [K2C75_HUMAN] 11 

Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 - [DESP_HUMAN] 10 

Keratin, type II cytoskeletal 2 oral OS=Homo sapiens GN=KRT76 PE=1 SV=2 - [K22O_HUMAN] 10 

Protein S100-A9 OS=Homo sapiens GN=S100A9 PE=1 SV=1 - [S10A9_HUMAN] 8 

Keratin, type I cytoskeletal 15 OS=Homo sapiens GN=KRT15 PE=1 SV=3 - [K1C15_HUMAN] 9 

Keratin, type II cytoskeletal 3 OS=Homo sapiens GN=KRT3 PE=1 SV=3 - [K2C3_HUMAN] 9 

Keratin, type I cytoskeletal 13 OS=Homo sapiens GN=KRT13 PE=1 SV=4 - [K1C13_HUMAN] 6 

Keratin, type II cytoskeletal 8 OS=Homo sapiens GN=KRT8 PE=1 SV=7 - [K2C8_HUMAN] 5 

Protein S100-A7 OS=Homo sapiens GN=S100A7 PE=1 SV=4 - [S10A7_HUMAN] 4 

Keratin, type II cytoskeletal 1b OS=Homo sapiens GN=KRT77 PE=2 SV=3 - [K2C1B_HUMAN] 5 

Keratin, type I cytoskeletal 19 OS=Homo sapiens GN=KRT19 PE=1 SV=4 - [K1C19_HUMAN] 7 

Keratin, type I cytoskeletal 28 OS=Homo sapiens GN=KRT28 PE=1 SV=2 - [K1C28_HUMAN] 4 

Keratin, type II cytoskeletal 72 OS=Homo sapiens GN=KRT72 PE=1 SV=2 - [K2C72_HUMAN] 3 

Keratin, type II cytoskeletal 79 OS=Homo sapiens GN=KRT79 PE=1 SV=2 - [K2C79_HUMAN] 6 

Protein S100-A8 OS=Homo sapiens GN=S100A8 PE=1 SV=1 - [S10A8_HUMAN] 4 

Keratin, type II cytoskeletal 4 OS=Homo sapiens GN=KRT4 PE=1 SV=4 - [K2C4_HUMAN] 4 

Calmodulin-like protein 5 OS=Homo sapiens GN=CALML5 PE=1 SV=2 - [CALL5_HUMAN] 3 

Keratin, type II cytoskeletal 7 OS=Homo sapiens GN=KRT7 PE=1 SV=5 - [K2C7_HUMAN] 6 

Keratin, type I cytoskeletal 25 OS=Homo sapiens GN=KRT25 PE=1 SV=1 - [K1C25_HUMAN] 2 

Keratin, type I cytoskeletal 27 OS=Homo sapiens GN=KRT27 PE=1 SV=2 - [K1C27_HUMAN] 2 

Annexin A2 OS=Homo sapiens GN=ANXA2 PE=1 SV=2 - [ANXA2_HUMAN] 4 

Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - 

[G3P_HUMAN] 

3 

Keratin, type I cytoskeletal 20 OS=Homo sapiens GN=KRT20 PE=1 SV=1 - [K1C20_HUMAN] 3 

Keratin, type II cytoskeletal 73 OS=Homo sapiens GN=KRT73 PE=1 SV=1 - [K2C73_HUMAN] 5 

Keratin, type II cytoskeletal 74 OS=Homo sapiens GN=KRT74 PE=1 SV=2 - [K2C74_HUMAN] 4 

Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN] 4 

Protein S100-A7A OS=Homo sapiens GN=S100A7A PE=1 SV=3 - [S1A7A_HUMAN] 2 

Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 - [PLAK_HUMAN] 3 

Fatty acid-binding protein, epidermal OS=Homo sapiens GN=FABP5 PE=1 SV=3 - [FABP5_HUMAN] 2 

Keratin, type II cuticular Hb4 OS=Homo sapiens GN=KRT84 PE=2 SV=2 - [KRT84_HUMAN] 3 

Keratin, type I cytoskeletal 24 OS=Homo sapiens GN=KRT24 PE=1 SV=1 - [K1C24_HUMAN] 2 

Putative annexin A2-like protein OS=Homo sapiens GN=ANXA2P2 PE=5 SV=2 - [AXA2L_HUMAN] 3 

Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 2 
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Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1 - [ACTG_HUMAN] 2 

Keratin, type I cytoskeletal 12 OS=Homo sapiens GN=KRT12 PE=1 SV=1 - [K1C12_HUMAN] 2 

Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 - [GFAP_HUMAN] 1 

Keratin, type II cytoskeletal 80 OS=Homo sapiens GN=KRT80 PE=1 SV=2 - [K2C80_HUMAN] 2 

Keratinocyte proline-rich protein OS=Homo sapiens GN=KPRP PE=1 SV=1 - [KPRP_HUMAN] 3 

Neurofilament heavy polypeptide OS=Homo sapiens GN=NEFH PE=1 SV=4 - [NFH_HUMAN] 2 

Keratin, type I cytoskeletal 26 OS=Homo sapiens GN=KRT26 PE=1 SV=2 - [K1C26_HUMAN] 1 

Keratin, type II cytoskeletal 71 OS=Homo sapiens GN=KRT71 PE=1 SV=3 - [K2C71_HUMAN] 2 

Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 - [FILA2_HUMAN] 1 

Keratin, type II cytoskeletal 78 OS=Homo sapiens GN=KRT78 PE=2 SV=2 - [K2C78_HUMAN] 2 

Keratin, type I cytoskeletal 23 OS=Homo sapiens GN=KRT23 PE=1 SV=2 - [K1C23_HUMAN] 1 

Keratin-like protein KRT222 OS=Homo sapiens GN=KRT222 PE=2 SV=1 - [KT222_HUMAN] 1 

Cathepsin D OS=Homo sapiens GN=CTSD PE=1 SV=1 - [CATD_HUMAN] 1 

Protein S100-A11 OS=Homo sapiens GN=S100A11 PE=1 SV=2 - [S10AB_HUMAN] 1 

Actin, alpha skeletal muscle OS=Homo sapiens GN=ACTA1 PE=1 SV=1 - [ACTS_HUMAN] 1 

Actin, gamma-enteric smooth muscle OS=Homo sapiens GN=ACTG2 PE=1 SV=1 - [ACTH_HUMAN] 1 

Actin, alpha cardiac muscle 1 OS=Homo sapiens GN=ACTC1 PE=1 SV=1 - [ACTC_HUMAN] 1 

Actin, aortic smooth muscle OS=Homo sapiens GN=ACTA2 PE=1 SV=1 - [ACTA_HUMAN] 1 

POTE ankyrin domain family member I OS=Homo sapiens GN=POTEI PE=3 SV=1 - [POTEI_HUMAN] 1 

POTE ankyrin domain family member F OS=Homo sapiens GN=POTEF PE=1 SV=2 - [POTEF_HUMAN] 1 

POTE ankyrin domain family member E OS=Homo sapiens GN=POTEE PE=1 SV=3 - [POTEE_HUMAN] 1 

Alpha-enolase OS=Homo sapiens GN=ENO1 PE=1 SV=2 - [ENOA_HUMAN] 1 

Beta-enolase OS=Homo sapiens GN=ENO3 PE=1 SV=5 - [ENOB_HUMAN] 1 

Gamma-enolase OS=Homo sapiens GN=ENO2 PE=1 SV=3 - [ENOG_HUMAN] 1 

Arginase-1 OS=Homo sapiens GN=ARG1 PE=1 SV=2 - [ARGI1_HUMAN] 2 

Microtubule-associated protein 1B OS=Homo sapiens GN=MAP1B PE=1 SV=2 - [MAP1B_HUMAN] 2 

Keratin, type I cytoskeletal 18 OS=Homo sapiens GN=KRT18 PE=1 SV=2 - [K1C18_HUMAN] 1 

Keratin, type I cuticular Ha7 OS=Homo sapiens GN=KRT37 PE=2 SV=3 - [KRT37_HUMAN] 1 

Keratin, type I cuticular Ha3-II OS=Homo sapiens GN=KRT33B PE=2 SV=3 - [KT33B_HUMAN] 1 

Keratin, type I cuticular Ha6 OS=Homo sapiens GN=KRT36 PE=1 SV=1 - [KRT36_HUMAN] 1 

Keratin, type I cuticular Ha8 OS=Homo sapiens GN=KRT38 PE=2 SV=3 - [KRT38_HUMAN] 1 

Keratin, type I cuticular Ha1 OS=Homo sapiens GN=KRT31 PE=2 SV=3 - [K1H1_HUMAN] 1 

Keratin, type I cuticular Ha5 OS=Homo sapiens GN=KRT35 PE=2 SV=5 - [KRT35_HUMAN] 1 

Keratin, type I cuticular Ha2 OS=Homo sapiens GN=KRT32 PE=1 SV=3 - [K1H2_HUMAN] 1 

Peroxiredoxin-1 OS=Homo sapiens GN=PRDX1 PE=1 SV=1 - [PRDX1_HUMAN] 1 

Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5 - [PRDX2_HUMAN] 1 

Calmodulin-regulated spectrin-associated protein 2 OS=Homo sapiens GN=CAMSAP2 PE=1 SV=3 - 

[CAMP2_HUMAN] 

1 

Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 OS=Homo sapiens 

GN=ASAP2 PE=1 SV=3 - [ASAP2_HUMAN] 

1 

Transmembrane and coiled-coil domain-containing protein 6 OS=Homo sapiens GN=TMCO6 PE=2 SV=2 - 

[TMCO6_HUMAN] 

1 

Transcription factor 15 OS=Homo sapiens GN=TCF15 PE=2 SV=3 - [TCF15_HUMAN] 1 

DnaJ homolog subfamily C member 15 OS=Homo sapiens GN=DNAJC15 PE=1 SV=2 - 

[DJC15_HUMAN] 

1 

Plasminogen activator inhibitor 2 OS=Homo sapiens GN=SERPINB2 PE=1 SV=2 - [PAI2_HUMAN] 1 

Cyclin-dependent kinase 7 OS=Homo sapiens GN=CDK7 PE=1 SV=1 - [CDK7_HUMAN] 1 

Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing) OS=Homo sapiens 

GN=DAK PE=1 SV=2 - [DHAK_HUMAN] 

1 

Zinc finger protein 878 OS=Homo sapiens GN=ZNF878 PE=3 SV=2 - [ZN878_HUMAN] 1 

ETS homologous factor OS=Homo sapiens GN=EHF PE=2 SV=1 - [EHF_HUMAN] 1 
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FCH and double SH3 domains protein 2 OS=Homo sapiens GN=FCHSD2 PE=1 SV=3 - 

[FCSD2_HUMAN] 

1 

Amiloride-sensitive sodium channel subunit delta OS=Homo sapiens GN=SCNN1D PE=1 SV=2 - 

[SCNND_HUMAN] 

1 

Serpin B3 OS=Homo sapiens GN=SERPINB3 PE=1 SV=2 - [SPB3_HUMAN] 2 

Serpin B4 OS=Homo sapiens GN=SERPINB4 PE=1 SV=2 - [SPB4_HUMAN] 1 

Nesprin-2 OS=Homo sapiens GN=SYNE2 PE=1 SV=3 - [SYNE2_HUMAN] 1 

AF4/FMR2 family member 4 OS=Homo sapiens GN=AFF4 PE=1 SV=1 - [AFF4_HUMAN] 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. HMPV-induced elongation of intercellular extensions involves both actin 

and microtubules 
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A) BEAS-2B were mock infected or infected with HMPV and 24 h.p.i. cells were fixed 

and stained for HMPV N or F-actin. Arrows indicate intercellular extensions. B) BEAS-

2B, were either mock infected or infected with HMPV and 24 h.p.i. cells were fixed and 

processed for immunofluorescence staining. Images were taken and extension length for 

100 cells was determined using image J analysis tool. C) Cells were infected with HMPV 

for 2 hours and incubated with DMSO or the indicated drug. 24 h.p.i., cells were 

processed for imaging. D and E) Images were analyzed using image J analysis tool and 

the percentage of cells with extensions was determined. 
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 Figure 3.4. Rho GTPases Cdc42, Rac1 and RhoA contribute to assembly and 

budding of branched filamentous networks.  

A) Cells were infected with HMPV and drugs added 2 hours later. 24 h.p.i. cells were 

fixed and stained for HMPV N or F-actin. Arrows indicate intercellular extensions. 

Images were then processed using neuron j analysis tool for determination of percentage 

of infected cells with extensions (B) or degree of branching (C).  

 

 

 

Figure 3.5. Actin cytoskeleton rearrangement induced by HMPV infection involve 

signaling mediated by cdc42, rac1 and rhoA GTPases.  

A) Cells were infected with HMPV and drugs added 2 hours later. 24 h.p.i. cells were 

fixed and stained for HMPV N or F-actin. Arrows indicate intercellular extensions. 

Images were then processed using neuron j analysis tool for determination of percentage 

of infected cells with extensions (B) or degree of branching (C). Statistical analysis was 

done using One-ay ANOVA, **p<0.01, ***p<0.001. 
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Figure 3.6. Intercellular extensions exist in live cells and HMPV can spread in the 

presence of methylcellulose.  

A) A549, Vero or 16HBE cells were infected with HMPV and 24 h.p.i., cells were fixed 

and stained for N protein. Arrows indicate intercellular extensions and arrowhead shows 

branched filaments. Scale bar = 20 µm. B) BEAS-2B cells were infected with rgHMPV 

and 24 h.p.i. live cells were imaged on Axiovert100 microscope. Arrow shows 

intercellular extension. C) BEAS-2B cells were infected with rgHMPV at an M.O.I. of 1 

and 2 hours later, infection media was removed and replaced with regular media or media 

containing 1% methylcellulose (MC). Images were taken every 24 hours for 5 days 
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Figure 3.7. HMPV can spread directly from cell-to-cell.  

A) Schematic of the coculure assay. BEAS-2B cells were infected with rgHMPV at an 

M.O.I. of 2 and 48 h.p.i., cells were stained with cell tracker CMRA orange dye for 30 

minutes. Infected donor cells were then collected and incubated with naïve target cells at 

a ratio of 1:1. To study direct cell transmission, assay was done in the presence of 

neutralizing antibodies (B) or using target cells that lack heparan sulfate binding factor 

for HMPV infection (C) 24 hours post coculture cells were collected and analyzed by 

flow cytometry. (D) Donor cells were treated with the indicated inhibitor 1 hour prior to 

coculture and maintained in the media for 24 hours. Cells were collected and analyzed by 
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flow cytometry. (E) Cyclohexamide was added to cells either 2 hours post infection by 

cell-free particles or directly following coculture. 24 hours later, cells were collected and 

analyzed by flow cytometry. Error bars indicate mean ± standard deviation. Statistical 

analysis was done using ANOVA, *p<0.05, **p<0.01.  
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Figure 3.8. HMPVvRNA is present in intercellular extensions.  

72 hours post infection with rgHMPV, cells were fixed in 70% ethanol and incubated 

with the FISH probes targeting viral RNA overnight. Cells were then washed with 

2xSCC buffer and mounted with vectashield. Arrow indicates intercellular extension and 

arrowhead shows replication body.  

 

 

 

 

 



 

84 
 

CHAPTER 4: HMPV INFECTION IN A HUMAN AIRWAY EPITHELIUM MODEL 

 

Introduction 

 Human metapneumovirus (HMPV) is a respiratory pathogen of the 

Paramyxoviridae family that was first isolated in 2001 in the Netherlands [2]. Today, 

HMPV is considered the second or third most common cause of hospitalization in 

children following respiratory pathogen behind human respiratory virus (RSV) [41] and 

causes respiratory tract disease worldwide [12,21-24,296]. The most common symptoms 

caused by HMPV include cough, fever, rhinitis and wheezing [38]. More severe 

infections occur mainly in infants, elderly and immunocompromised patients, resulting in 

bronchiolitis, croup and pneumonia. A few reports have associated HMPV with 

infections in the central nervous system [45-47]; however, studies of HMPV infection in 

small animal models and nonhuman primates show that HMPV infects the upper and 

lower respiratory tract, with no evidence for dissemination of infection to internal organs, 

thus indicating a primary tropism of HMPV for the respiratory epithelium [226,297,298]. 

HMPV was shown to infect airway epithelial cells from nasal tissues to the bronchioles, 

and viral replication occurred mainly in ciliated epithelial cells in macaques [297-300]. 

Progress of infection is associated with disruption to the architecture of the epithelium, 

sloughing of cells, loss of ciliation and lung inflammation [297-299,301]. The airway 

epithelium functions as an important line of defense against respiratory pathogens due to 

the ability of epithelial cells to create a permeability barrier at the mucosal surface, elicit 

innate immune recognition, and release cytokines, chemokines, mucus and a variety of 

antimicrobial substances. Epithelial cells are a specialized cell type characterized by their 

polarized plasma membrane which is divided into two discrete domains, the apical 

domain and the basolateral domain, established by the sorting of proteins and lipids in the 

trans golgi network or secretory pathways and recycling endosomes [302]. In addition, 

these cells form special cell-cell junctions including gap junctions, desmosomes and the 

apical junction complex made up of tight junctions and adherens junctions that are 

critical for epithelial barrier function [303]. The mechanisms that contribute to the 

polarized nature and the permeability barrier function of epithelial cells can influence 

virus infections and viruses in turn have evolved different mechanisms for manipulating 
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these pathways during infection. Several paramyxoviruses utilize epithelial surfaces as 

important replication sites and studies of these viruses in polarized cells revealed 

important information about different aspects of the viral life cycle and mechanisms of 

pathogenesis [139,304-306]. Very little is currently known about the characteristics of 

HMPV infection in polarized human respiratory epithelial cells. We utilized a model of 

well-differentiated, polarized and pseudostratified human airway epithelium (HAE) to 

study HMPV infection and spread. Our results show that HMPV infection in HAE 

cultures is short-lived, does not result in decrease in transepithelial electric resistance 

(TEER) but was associated with enhanced cell shedding from the apical side. Viral 

structural proteins localize to the apical surface of the airway epithelium; however 

budding of virus particles at this side is inefficient. Interestingly, addition of neutralizing 

antibodies at the apical surface of HAE cultures did not inhibit spread of HMPV. In 

addition, infection of HAE tissues by HMPV resulted in reorganization of the cortical 

apical actin network and disruption of actin polymerization inhibited spread of infection, 

thus supporting a role of actin cytoskeleton in HMPV infection and spread in polarized 

epithelial cells. Collectively, our data provide novel insights into budding and spread of 

HMPV in HAE cultures and indicates a novel role of the actin cytoskeleton in HMPV 

infection in these tissues.   

 

Results 

HMPV infection at the apical side of polarized human airway epithelial tissues is associated 

with cell shedding and inefficient particle release 

To examine HMPV infection in polarized epithelial cells, we obtained a model of 

highly differentiated, pseudostratified cultures of human-derived tracheal/bronchial 

epithelial cells that resemble the mucociliary phenotype and functions of the human 

airway epithelium with moving cilia and mucus production. HAE cultures (depicted in 

Figure  4.1A) obtained from Mattek Corporation were received and maintained for one 

week prior to conducting the infection studies while changing media at the basolateral 

side and washing the mucus on the apical side every other day. We first determined 

whether HMPV can infect the apical side or basolateral side of the HAE tissues. Cultures 

were inoculated with a recombinant GFP-expressing HMPV (rgHMPV) at a multiplicity 
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of infection (M.O.I.) of 3 at either surface for 2 hours, washed and incubated for different 

hours post infection to monitor spread of infection. Trypsin was added to media on the 

basolateral side and replenished every other day. Images were taken every 24 hours using 

a florescence microscope to detect GFP expression as an indication of rgHMPV 

infection. Figure 4.1B shows that inoculation of the virus from the apical side resulted in 

productive HMPV infection, whereas no infection was seen when the virus was added to 

the basolateral side. This suggests that at least one receptor(s) used by HMPV for entry, 

which has not been identified yet, exists at the apical side of the human airway 

epithelium. As a control for virus infection in HAE cultures, we infected tissues with 

GFP-expressing parainfluenza virus 5 (rgPIV5) at M.O.I. of 3 and monitored progress of 

infection. Infection by rgPIV5 was more productive than HMPV and persisted for a 

longer period of time (Figure 4.1C) indicating significant differences between these two 

viruses. For cultures that were infected with HMPV at the apical side, an increase of GFP 

expression was seen as infection progressed from 24 hours post infection (h.p.i.) to 48 

h.p.i. indicating spread of HMPV infection. However, at day 3 post infection, there was 

decrease in GFP expression and the decrease persisted to 7 days post infection (Fig 4.1B).  

This suggested that GFP-positive HMPV infected epithelial cells were being lost from the 

epithelium. To test this possibility, we quantified shedding of cells at the apical side by 

determining the amount of dsDNA that was present in the apical washes at different days 

post infection in both uninfected and HMPV-infected tissues. Shedding of cells was seen 

in both tissues and the pattern of shedding was the same suggesting that this is an 

intrinsic characteristic of these tissues; however, at 3 day post infection shedding of cells 

was significantly increased in tissues infected with HMPV (Figure  4.1D), which would 

correlate with decrease in GFP-positive cells in HAE tissues at this timepoint. The 

increase in shedding of cells in mock-infected tissues at 3 d.p.i. could be related to our 

experimental setup and handling of the tissues. An increase in shedding of ciliated cells 

from the airway epithelium was recently reported for RSV and was shown to be induced 

by the nonstructural protein NS2 [307]. HMPV lacks nonstructural proteins NS1/NS2 

that are present in RSV particles suggesting that these two related viruses may utilize 

different ways for inducing shedding of infected cells that would contribute to airway 

obstruction which is a symptom of both viral infections.  
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To test whether the increased sloughing of cells upon HMPV infection resulted in 

disruption to the epithelium cultures, we examined changes in the ultrastructure of mock-

infected and HMPV-infected tissues using transmission electron microscopy. Briefly, 48 

hours after infection, tissues were fixed in glutaraldehyde/osmium oxide, dehydrated in 

ethanol to preserve the luminal surface and embedded in epoxy resins. Following 

overnight polymerization, sections were cut and tissues were examined using a 

transmission electron microscope. The architecture of the tissues showed 

pseudostratification with cilia on the apical surface (Figure 4.1E, arrow). No major 

differences were observed in the structure of tissues suggesting that HMPV infection, 

which peaked at 48 h.p.i. in HAE did not result in major cytopathology in these tissues 

(Figure 4.1E).  

 

Assembly and budding of paramyxoviruses in polarized cells depends primarily 

on polarized sorting of viral envelope glycoproteins or the matrix protein (M) [308-312]. 

HMPV particles contain three envelope glycoproteins, fusion protein (F), attachment 

protein (G) and small hydrophobic protein (SH), an internal matrix protein (M) and 

proteins of the polymerase complex, large polymerase (L), polymerase cofactor 

phosphoprotein (P) and the RNA-encapsidating nucleocapsid protein (N).  We 

determined location of M, N and F in HAE cultures at 24 h.p.i..HMPV F, M and N all 

localized to the apical side of the epithelium (Figure 4.2A arrows). Epithelial cell cultures 

are composed of different types of epithelial cells including ciliated and nonciliated cells 

in addition to mucus producing cells that face the apical surface as well as intermediate 

and basal cells at the basolateral side. HMPV was shown to preferentially infect ciliated 

cells in macaques [298] . To verify that HMPV infects ciliated cells in HAE, cultures 

were infected with HMPV and 24 hours later, tissues were fixed, frozen and 

cryosectioned. Immunofluorescence was then performed using antibodies for HMPV N 

protein and sentan (also termed sntn), a structural protein of apical cilia. HMPV N was 

located in cells that express the sntn protein indicating that HMPV infects ciliated 

epithelial cells in HAE (Figure  4.2B arrow), however N was also detected in cells that 
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didn’t express sntn protein (Figure 4.2B arrowhead) suggesting that infection of non-

ciliated cells can also occur.  

 

  The localization of HMPV M, N and F at the apical side suggests that budding of 

HMPV particles takes place at this surface of the epithelium. To determine titers of 

HMPV released at the apical surface, 150 µl of media was added on this side at different 

times post infection, incubated at 37ºC for 1 hour and flash frozen to preserve virus 

particles. Titers were then determined on LLCMK2 cells. We could not detect infectious 

HMPV particles at the apical side prior to 72 h.p.i. and virus titers were low at this time 

point, with an average of less than 1.5 log10 pfu/ml (Figure 4.2C). The low titers suggest 

that if HMPV particle release occurred at the apical side prior to 3 days post infection, it 

was below our detection limits in the plaque assay.  As detection of very low amounts of 

virus may require a more sensitive assay, RT-PCR for the HMPV M gene was utilized, 

and low levels of the HMPV genome at the apical side at 24 and 48 h.p.i. was detected 

(Figure 4.2D). These results indicate that despite accumulation of HMPV structural 

proteins at the apical side of HAE, HMPV particles are released with low efficiency at 

the apical surface.  

 

HMPV spread in HAE can occur independent of neutralizing antibodies 

Our results above indicate that HMPV particles are released from the apical side 

of HAE cultures at low levels and we were unable to detect released particles prior to 3 

days post infection; however rgHMPV spread was most evident from 24 to 48 h.p.i. 

(Figure 4.1B). Several respiratory paramyxoviruses have been studied in HAE cultures 

and results from these studies indicated significant differences between different family 

members; however, for these viruses including RSV, Sendai virus and measles virus, 

particles were efficiently released at either the apical side [313-315]. The low amounts of 

HMPV particles released at the apical side, in contrast to the efficient spread observed, 

suggests HMPV spread within HAE tissue may occur horizontally, i.e. directly from cell 

to cell without virus release and reentry. To test this interesting possibility, we analyzed 

HMPV spread in the presence of neutralizing antibodies. Tissues were infected with 

rgHMPV for 2 hours, washed and 100 µl of media alone or media containing neutralizing 
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antibodies was added to the apical side and spread was monitored while replenishing the 

antibodies every 24 hours. Two neutralizing antibodies, DS7 and 54G10, which target the 

fusion protein, were used. These antibodies have been shown to inhibit cell-free infection 

of HMPV in vitro [280,281]. Pre-incubation of HMPV with either DS7 or 54G10 

antibodies before inoculation at the apical side showed a major decrease in infection 

(Figure  4.3A) indicating that these antibodies can neutralize cell-free HMPV infection in 

HAE tissues. Interestingly, spread of HMPV in these tissues was not inhibited in the 

presence of neutralizing antibodies (Figure 4.3B) suggesting that HMPV has a 

neutralizing antibody independent mode of transmission in airway epithelial tissues.  

HMPV infection induces remodeling of the cytoskeleton in HAE cultures 

The ability of epithelial cells to establish and maintain cell-cell junctions and 

polarity depends in large part on the organization of the actin cytoskeleton and actin-

associated signaling [316-318]. Actin in epithelial cells has a distinct organization that 

depends on interactions of actin with the cell junctions. The highly organized distribution 

of actin at the apical and lateral membranes of polarized epithelial cells often creates a 

barrier for the entry or exit of viruses that replicate at epithelial surfaces and viruses have 

evolved different mechanisms to manipulate the actin cytoskeleton in epithelial cells to 

establish infection [319]. Recent studies show that infection of both Sendai virus and 

RSV in polarized epithelial cells results in remodeling of the actin cytoskeleton 

[239,320]. For Sendai virus, reorganization of actin was associated with efficient release 

of virus particles and for RSV, actin remodeling induced disruption of apical junctional 

complexes. We have shown that HMPV infection in BEAS-2B cells leads to 

rearrangement of the actin cytoskeleton. In addition actin was present in large amounts in 

HMPV particles and played an important role in intercellular spread of HMPV and also 

contributed to release of virus particles. To determine the role of the actin cytoskeleton in 

HMPV infection in polarized epithelial cells, we infected HAE cultures with HMPV and 

2 hours post infection, cytochalasin D and latrunculin A, drugs that disrupt 

polymerization of actin, were added to media at the basolateral side and infection was 

evaluated 48 hours later. Whereas initial infection was established in tissues that were 

treated with cytochalasin D and latrunculin A, spread of rgHMPV in these tissues was 

decreased compared to control DMSO treated HAE (Figure  4.4A), thus indicating that 
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an intact actin cytoskeleton plays an important role in spread of HMPV in the airway 

epithelium. 

We next examined the effect of HMPV infection on the structure of the actin 

cytoskeleton in HAE. Tissues were either mock infected or infected with HMPV and 24 

or 72 hours later, tissues were fixed and processed for immunofluorescence using 

phallodin to detect filamentous actin and antibodies for HMPV proteins to distinguish 

infected cells. In polarized epithelial cells, cortical actin filaments in association with 

tight and adherens junctions form an actin belt at the apical membrane which provides 

support between the subapical membrane and the junctional complex. In addition, 

filamentous actin, usually in conjunction with myosin I, is also present along the lateral 

membranes between tight junctions [318].  A normal organization of the actin 

cytoskeleton can be seen in mock infected tissues at both 24 and 72 hours post infection 

showing the terminal actin belt at the apical side (Figure  4.4B white arrow) and actin 

filaments along the lateral membrane (Figure  4.4B white arrowhead). However, tissues 

infected with HMPV exhibited a marked disruption of the apical actin belt (Figure 4.4B 

red arrow) mainly at sites where viral proteins localized. In addition, alterations in F-actin 

structure can be also observed at the lateral membrane (Figure 4.4B red arrowhead) in 

HMPV infected tissues. This reorganization of the actin cytoskeleton was seen at 24 h.p.i. 

and persisted to 72 h.p.i. indicating that HMPV induced alterations to the actin 

cytoskeleton occurred throughout this time (Figure  4.4B). Since the actin cytoskeleton 

plays a major role in establishment and stability of cell-cell junctions in polarized cells, 

we determined whether the changes in the organization of F-actin in HAE tissues upon 

HMPV infection were associated with disruption of the apical junction complex and loss 

of epithelial barrier function. Tissues were either mock infected or infected with HMPV 

and at different hours post infection, transepithelial electric resistance (TEER) was 

measured using a volt-ohm meter. Despite slight decrease in TEER in HMPV infected 

tissues compared to mock infected cultures during the first three days of infection, HAE 

cultures that were infected with HMPV maintain high TEER. In addition, epithelial 

resistance remains constant during the 7 day period of HMPV infection indicating 

functional tight junctions. Thus, these results indicate that HMPV infection in HAE 
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depends on an intact actin cytoskeleton for efficient spread and induces remodeling of the 

actin cytoskeleton organization but does not affect the epithelial barrier function. 

 

Discussion 

 HMPV is an important human respiratory virus that causes upper and lower 

respiratory tract diseases ranging from cough and rhinorrhea to bronchiolitis and 

pneumonia. Several animal models have been used to study HMPV infection, including, 

mice, ferrets, cotton rats as well as nonhuman primates [298,299,321,322], and results 

from these studies have shown that HMPV infects primarily airway epithelial cells. Since 

its initial discovery in 2001, most experiments modeling HMPV infection have been done 

in non-polarized and non-respiratory cell types that do not represent the best 

physiological model to mimic HMPV infection in the airway epithelium. Thus, very little 

is currently understood about the interaction of HMPV with the airway epithelium. In this 

study, we utilized well differentiated, polarized human-derived bronchial/tracheal 

epithelial cells (HAE) that closely resemble the authentic human airway to study late 

stages of HMPV infection involving budding and spread. We show that HMPV infects 

the apical surface of HAE cultures, resulting in limited infection that is associated with an 

increase in cell shedding at day 3 post infection but does not efficiently release virus 

particles at the apical surface. In addition, HMPV infection in HAE resulted in 

remodeling of the actin cytoskeleton at the apical side within 24 hours post infection 

without significant effects on the architecture of the infected tissues or epithelial barrier 

function.  

 

 Evidence from experimental HMPV infection in macaques indicated that virus 

replication is short lived and restricted to airway tissues [298]. In that study, it was shown 

that HMPV excretion peaks two days following infection and that infected cells are lost 

from the epithelium starting 5 days post infection. Our data show similar observations 

with HMPV infection in HAE tissues. Infection was limited with the highest level of GFP 

expression detected 48 h.p.i. followed by decrease in GFP-expressing cells from days 3 to 

7 post infection (Figure 4.1A).  The decrease in GFP expression at 3 d.p.i. was associated 

with significant increase in cell shedding compared to mock infected tissues indicating an 
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enhanced loss of GFP-positive infected cells (Figure 4.1B). Detection of cells at the 

apical side in both mock and HMPV infected tissues is likely related to turnover of apical 

epithelial cells in HAE cultures. Shedding of cells in association with virus infection in 

HAE models has been shown for other respiratory viruses including PIV3, RSV and 

influenza virus [307,323,324]. Recently, it has been shown that sloughing of cells in RSV 

infected HAE was induced by the NS2 protein [307]. However, shedding of cells was 

significantly higher than non-infected tissues from days 3 to 7 after initial infection. This 

is in contrast to what we see for HMPV in that the pattern of shedding of cells is the same 

in mock and HMPV infected tissues but is enhanced with infection suggesting differences 

in the mechanisms by which these two viruses induce clearance of cells from HAE.  In 

addition, our results show that HMPV does not induce changes in TEER during the 

course of infection for 7 days (Figure  4.4C) indicating that the epithelial barrier function 

is not disrupted, in contrast to what was recently reported for RSV [320]. Decrease in 

TEER during RSV infection was correlated with disruption of the apical junctional 

complex and is associated with changes in the actin cytoskeleton. Interestingly, HMPV 

induced alterations in the actin cytoskeleton that were manifested in disruption of apical 

actin belt at sites where HMPV proteins localized as well as changes in actin filaments at 

the lateral membranes (Figure 4.4B). The apical actin belts between adjacent cells 

interact with each other through the apical junctional complexes and studies have shown 

that changes in the cortical actin organization in epithelial tissues can alter the structure 

of tight junctions and barrier function [325,326]. Our results show that HMPV induced 

alteration to apical actin organization did not result in disruption of barrier function 

(Figure 4.4C), thus it remains to be determined if the alterations in actin organization 

during HMPV infection affect apical junction complex formation.  

  

HAE models have been used to study several respiratory paramyxoviruses 

including PIV3, PIV5, RSV and Sendai virus [313-315,323]. Results from these studies 

showed that virus particles of these different family members bud preferentially from the 

apical side consistent with localized infection in the lungs. Interestingly however, our 

results show that although HMPV proteins M, F and N accumulate at the apical surface at 

24 h.p.i., infectious particles could not be detected until 3 d.p.i. (Figure 2C). RT-PCR 
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revealed the presence of HMPV RNA genomes at 24 and 48 h.p.i. in apical washes of 

HAE (Figure 4.2D), indicating that the amount of particles released at these time points is 

below our detection limit in the plaque assay. In addition, the low titers of released 

HMPV at 3 d.p.i. (Figure 4.2C) show that release of HMPV at the apical side of HAE is 

not efficient. The inefficient release of HMPV particles at the apical side at 24 and 48 

hours post infection, however, was coupled with an increase in virus spread from 24 to 48 

hours (Figure 4.1B). Interestingly, detection of HMPV shedding in adults experimentally 

challenged with HMPV infection was shown to occur starting 4 days after infection and 

peaked at day 8-9 d.p.i. [327], which is later than most paramyxoviruses [328,329]. These 

observations raise important questions about the spread of HMPV within the airway 

epithelium. Our results show that HMPV can spread in HAE even in the presence of 

neutralizing antibodies (Figure 4.3B) and that spread requires cytoskeletal dynamics 

(Figure 4.4A). Spread of respiratory viruses within the epithelium is primarily thought to 

occur by release of virus particles at the apical side followed by reinfection of 

neighboring cells. However, alternative mechanisms of spread have been shown to occur 

for different viruses, including measles virus and herpes simplex virus (HSV), that 

involve either budding of viruses at the intercellular space between apical junction 

complexes or intercellular spread of viral genomes without extracellular particle release 

[257,330].  

 

Collectively, our results suggest three possible models for HMPV spread in the 

airway epithelium. We have shown that HMPV release can occur at the apical face, 

although it is inefficient, indicating that at least some HMPV spread in the airway may 

result from particles budding out form the apical side which then re-infect neighboring 

cells (Figure 4.5, model 1). Examination of infected tissues using transmission electron 

microscopy allowed visualization of virus-like bodies in aggregates released at the apical 

side infected tissue but not in mock tissues, suggesting that HMPV release does not 

involve single particles but complexes of several virions, consistent with our observation 

of large networks of branched filaments in BEAS-2B cells (Figure 3.1A). Release of 

particles in this form may help stabilize viruses for transmission from host-to-host. The 

second model (Figure 4.5C model 2) posits spread of virus at the intercellular space 
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between cell-cell junctions. Changes in the apical actin belt at 24 and 72 h.p.i. indicate 

that these are not induced only by initial infection but persist during the infection process. 

It is possible that HMPV particles are released into the intercellular space where they 

gain access to a receptor there and this binding process may induce downstream signaling 

leading to changes in actin organization. In this case, virus infection would spread from 

cell-to-cell within the epithelium without release of particles at the luminal space, 

decreasing access by neutralizing antibodies difficult.  In addition, this model would be 

consistent with the increase in GFP positive cells from 24 to 48 h.p.i. and the low 

amounts of HMPV genomes that were detected at these time points.  One other 

alternative mode of spread of HMPV in HAE is the passage of particles between apical 

junction complexes (Figure 4.5 model 3), which would allow spread without release of 

extracellular particles and thus evade neutralizing antibodies. Figure 4.5 B shows a virus-

like body at an intercellular junction. Several respiratory viruses use components of the 

apical junction complex as their receptors [257,331,332]. Due to the tight connection 

between the actin cytoskeleton and proteins of tight junctions or adherens junction, 

binding to these proteins can induce changes in actin that were seen in HMPV infection 

at the apical and lateral membranes. Furthermore, it has been shown that disruption of 

actin polymerization in epithelial tissues results in endocytosis of proteins of the apical 

junction complexes [325]. Thus, it is possible that HMPV utilizes a component of these 

cell-cell junction complexes for entry and inhibition of actin polymerization in HAE 

cultures led to internalization of that receptor and thus spread of HMPV was inhibited.  

How viruses transmit from cell to cell is determined by the location of the receptor in the 

polarized epithelium, thus identification of HMPV receptor will help uncover the 

mechanism of HMPV spread within the airway tissues and this requires further 

investigation. 
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Figure 4.1. HMPV infection in polarized human airway epithelial cells (HAE).  

A) Schematic of HAE. B) HAE tissues were washed three times with 75µg/ml of 

lysophosphatidylcholine (LPC) in hepes buffer saline (HBS) at the apical side or HBS 

only at the basolateral side. rgHMPV was then inoculated at either side at a multiplicity 

of infection (M.O.I.) of 3. 24 hours later, tissues were analyzed for GFP expression using 

a florescence microscope and pictures were taken at the indicated hours post infection. C) 

HAE were infected with rgPIV5 and images were taken at 48 and 120 h.p.i.  D) To detect 

shedding of epithelial cells at the apical side of HAE, 150 µl of Opti-MEM media was 

added to apical surface at different hours post infection in mock- or HMPV- infected 

tissues followed by incubation at 37ºC for 1 hour.  Apical washes were then analyzed for 

the amount of dsDNA. Statistical analysis was performed using one-way Anova. * 

indicates p<0.01. E) 48 hours post infection, HAE cultures were fixed and processed for 

imaging on a transmission electron microscope. Scale bar, 1µm. 
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Figure 4.2. HMPV infection at apical surface of HAE is associated with inefficient 

virus release.  

A) HAE tissues were infected with HMPV at an M.O.I. of 3 and 24 hours later, cultures 

were fixed in 4 % paraformaldehyde followed by embedding in OCT. Tissues were 

frozen, cryosectioned and processed for immunofluorescence staining with antibodies for 

the indicated viral protein. Images were taken on a confocal microscope. Arrows indicate 

protein localization at the apical side. Green line is autofluorescence from membrane. B) 

24 hours post infection, HAE were fixed, embedded and cryosections were stained for 

HMPV N and SNTN. Arrow indicates colocalization of N with SNTN in ciliated cells 

and arrowhead indicates non-ciliated cell expressing N. C) To determine titers of 

rgHMPV released at the apical surface, 150µl of media was added to apical side and 

titers were determined. D) RNA extraction was performed on apical washes of HAE 
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followed by reverse transcriptase-PCR using primers for HMPV M. Scale bars, 50 µm. 

Error bars represent mean ±standard deviation of two independent experiments. 
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Figure 4.3. HMPV can spread in the presence of neutralizing antibodies in HAE.  

A) Infection media with rgHMPV at M.O.I. of 3 was preincubated in the absence or 

presence of neutralizing antibodies DS7 (10µg/ml) and 54G10 (0.4µg/ml) for 1 hour at 

37ºC while rotating every 15 minutes. HMPV was then inoculated at apical side and 

incubated for 2 hours. Infection media was then removed, apical surface washed once and 

images were taken on a florescence microscope 24 hours later. B)  HAE tissues were 

infected with HMPV for 2 hours followed by addition of 100µl of control media or media 

containing the indicated antibody DS (10µg/ml) and 54G10 (0.4µg/ml). Images were 

taken every 24 hours to monitor spread of rgHMPV and media with antibodies was 

replenished every 24 hours. Cells were then collected with trypsin and analyzed with 

flow cytometry to determine percentage of GFP positive cells. Error bars represent mean 

±standard deviation of two independent experiments. One-way ANOVA, non-significant. 
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Figure 4.4. Actin cytoskeleton is involved in HMPV infection in HAE.   

A) HAE cultures were infected with rgHMPV at an M.O.I. of 3 and 2 hours later media 

containing DMSO control, cytochalasinD (2µM) or latrunculinA (100nM) was added to 

the basolateral side. Images were taken 24 and 48 hours post infection on a florescence 

microscope   B) HAE tissues were infected with HMPV and 24 or 72 hours later, tissues 

were fixed and processed for immunofluorescence. Arrows indicate apical actin belt and 

arrowheads indicate actin on the lateral membrane. C) TEER was measured before 

infection and at different times post infection in mock and HMPV infected HAE cultures 

using an ohm-meter. Error bars represent mean ± standard deviation for three 

experiments. Scale bar, 10µm. 
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Figure 4.5. Possible models for HMPV spread in HAE.  

Electron microscopy images show HMPV infected HAE and arrows indicate virus-like 

bodies. 
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CHAPTER 5: ROLE OF HMPV PHOSPHOPROTEIN IN LATE STAGES OF INFECTION 

 

*This work was initiated by Brent Hackett who contributed intellectually to the project, 

generated the pCAGGS-P and pCAGGS-P-FLAG constructs. The pCAGGS-N construct 

was generated by Ursula Buchholz and pCAGGS-M by made by Andrea Eastes. The 

experiments shown in the figures in this chapter were performed by me. 

  

Introduction 

 

 Paramyxovirus particles are generally formed by a budding process that follows 

assembly of virus components at the plasma membrane [82,83,333]. The matrix protein 

(M) is considered the driver of assembly and budding of paramyxoviruses due to its 

ability to bind and deform membranes and to bind to envelope proteins and inner 

ribonucleoprotein complex components (RNP) and several host factors that aid in the 

assembly and budding process; however, other virus components including surface 

glycoproteins, nucleocapsid (N) proteins or accessory protein C have been shown to 

contribute to the assembly and budding processes of different paramyxoviruses 

[14,54,55,69]. HMPV M protein has been shown to play an essential role in production of 

virus particles and virus spread [334]. In addition, it has been demonstrated that 

formation of HMPV virus-like particles (VLPs) occurs following co-expression of the F 

and M proteins, with the G protein enhancing this process, thus indicating an important 

role of these protein in the HMPV assembly process [10,233]. We have shown that 

HMPV assembly and spread in human bronchial epithelial cells involves manipulation of 

the cell cytoskeleton leading to the formation of branched networks of filaments and 

induction of intercellular extensions, structures that have not yet been reported for any 

members of the paramyxovirus family. Thus, we sought to determine what viral proteins 

contribute to the formation of these structures that are seen during HMPV infection. 

Interestingly, our results indicate that HMPV phosphoprotein (P)  co-localizes with actin 

and reveal a novel role of P in inducing plasma membrane deformation and cellular 

extensions similar to those seen at late stages of HMPV infection.  
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Results 

HMPV P protein induces remodeling of the plasma membrane 

The ability of enveloped viruses to bud infectious particles at cell membranes 

requires induction of membrane curvature and envelopment of viral components with a 

cell-derived membrane. For paramyxoviruses, membrane budding is driven principally 

by matrix protein, at least partly due to its ability to bind and deform membranes, but 

efficiency can increase with envelope proteins or N proteins [82,83]. We have shown that 

the late stages of HMPV infection involve budding of complex structures of branched 

filaments from the plasma membrane and intercellular extensions. To determine what 

viral proteins contribute to membrane remodeling during HMPV infection, we performed 

single transfections of N, P, M and F in BEAS-2B cells. We did not include G and SH in 

our single transfection studies since branched filaments were seen in BEAS-2B cells 

infected with HMPV lacking G and SH (ΔG/ΔSH) (Figure  5.1B) indicating that G and 

SH proteins are not required for the formation of these structures. Expression of F or M 

proteins induced formation of short membrane extensions (Figure 5.1A insets) whereas N 

protein was primarily cytosolic, and no alteration of the membrane was observed with N 

expression. HMPV M protein has been shown to bind lipid membranes and self-assemble 

into long helical filaments and co-expression of both M and F induces filamentous VLP 

formation at the surface of Vero cells, thus it is not surprising that both F and M can 

induce membrane extensions [10,233,287]. Interestingly, expression of the HMPV P 

protein induced changes to the plasma membrane and formation of membrane extensions 

that resemble those seen in HMPV infection, in contrast to what has been seen for other 

paramyxovirus P proteins (Figure 5.1A arrow). In addition, branched filaments were seen 

in some cells expressing P (Figure 5.1A arrowhead). To determine whether P can induce 

membrane extensions in another cell line, we transfected P into A549 cells. Expression of 

P also resulted in deformation of the plasma membrane and induction of membrane 

ruffling (Fig 5.1C, inset). This indicates that P can induce changes to the plasma 

membrane morphology in two different human airway cell lines, A549 and BEAS-2B, 

thus suggesting a novel role of HMPV P in HMPV exit from the cell.  
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Spatio-temporal dynamics of cellular localization of HMPV P during the course of HMPV 

infection 

Paramyxovirus P proteins are known for their role in regulating viral RNA 

transcription and replication due to their ability to bind both the viral polymerase L and 

the RNA encapsidating protein N. However, our results above suggest a role for HMPV P 

in late stages of the infection cycle. Production of infectious virus particles is a highly 

complex and coordinated process that requires spatio-temporal coordination of the 

different viral components. To examine the involvement of P at different stages of 

HMPV replication cycle and its possible involvement in assembly and budding stages, 

we investigated the dynamics of the distribution of M and P during HMPV replication 

cycle. Cells infected with HMPV were fixed at various times post infection, and 

immunolabeled with antibodies to detect viral proteins. At 6 hours post infection (h.p.i.), 

P was located in small punctate bodies in the cytoplasm (Figure 5.2A, P inset) and 

surprisingly P co-localized with M in short filaments within the cell (Figure 5.2A, merge, 

inset). To more closely examine these structures, high resolution STORM microscopy 

was performed.  P was visualized in branched filaments, whereas M had a more diffuse 

localization (Figure 5.2B). Paramyxovirus P proteins are characterized by the presence of 

a central oligomerization domain, and recently a core tetramerization domain has been 

identified in HMPV P [335]; thus it is possible that oligomerization of P resulted in the 

formation of branched filaments or that P binds a host factor that promotes filament 

formation. By 9 hours, P was present in inclusion bodies in the cytosol (Figure 5.2A, 

inset), which are thought to be sites of viral RNA synthesis and we have shown earlier 

that they contain viral RNA (Figure 3.). At this time, P was also detected at the cell 

periphery along with M (Figure 5.2A arrow). Localization in inclusion bodies (inset) and 

at the cell periphery (arrow) was also seen by 12 h.p.i., but at this time point, both M and 

P localized in short cellular extensions (Figure 5.2A, arrowheads). By 18 h.p.i., P and M 

were primarily at the plasma membrane and also in filamentous structures (arrowheads). 

In addition, M was located in inclusion bodies with P possibly forming M-RNP 

complexes (inset). As infection progressed, both P and M were detected in intercellular 

extensions (red arrow) and in branched filaments (red arrowhead) at 24 h.p.i. These 

results show distinct localization patterns of P during the course of HMPV infection. 
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While P was detected in cellular inclusions as was previously reported [285] and which 

would correlate with its role in viral transcription and replication, P co-localized with M 

at different cellular locations throughout the infection cycle including intracellular 

branched protein filaments within the cell during early infection, which has not been 

previously reported for paramyxovirus replication. In addition, P was seen at the cell 

periphery, along with M, early in the infection cycle (9 h.p.i). A virus egress assay 

revealed that release of virus particles occurred between 12 and at 18 h.p.i. and not prior 

to that (Figure 5.2C) suggesting that localization of P at the cell periphery precedes viral 

budding. The coordinated localization of P and M during the course of infection and the 

peripheral localization of P early during infection implicate a role of P in HMPV 

assembly and egress. Taken together, these observations suggest that HMPV P has 

different roles during the infection cycle. 

 

Addition of FLAG-tag at the C-terminus favors membrane deformation role of P  

 It has been previously demonstrated that co-expression of HMPV N and P in the 

absence of infection results in the formation of cytoplasmic bodies that resemble 

inclusion bodies in infected cells and that the two proteins interacted within the inclusion 

bodies [285]; however single expression of P protein induces membrane deformation 

(Figure  5.1A,C). We have shown that P during infection is present in inclusion bodies, in 

filaments and at the plasma membrane (Figure 5.2A) indicating that in infected cells, 

HMPV P may be interacting with other viral or cellular factors that alter its cellular 

distribution. Paramyxovirus phosphoproteins vary greatly in length, ranging from 241 

amino acid residues for RSV P to 709 residues in Nipah P; however several reports have 

demonstrated that P proteins share a common domain organization with  central 

oligomerization domains and regions of high intrinsic disorder, consistent with the ability 

of P proteins to bind multiple interaction partners during the course of infection [336]. In 

an attempt to further characterize the role of P in HMPV infection, we generated a 

FLAG-tagged construct of HMPV P with the FLAG tag at the C-terminus. To examine 

whether addition of the tag had an effect on the function of P protein, we transfected 

A549 cells with untagged or tagged P constructs alone or with a plasmid expressing 
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HMPV N. As was documented before [285], co-expression of P and N resulted in 

inclusion body formation (Figure  5.3 inset); however, interestingly, addition of the 

FLAG tag at the C-terminus of P prevented formation of inclusion bodies upon co-

expression with N, and N was localized predominantly at the cell periphery (Figure  5.3, 

arrow). Thus, expression of P-FLAG with N, while preventing inclusion body formation, 

did not abrogate association of P and N, as seen by the predominant peripheral 

localization of both P-FLAG and N. In addition, P-FLAG induced more pronounced 

membrane extensions than the untagged P protein (Figure 5.3, arrowhead). This suggests 

that presence of the FLAG at the C-terminus of P enhances the role of the protein in 

inducing membrane deformation and thus mimicked the role of P at late stages of HMPV 

infection.  

 

HMPV P co-localizes with actin 

The ability of HMPV P to induce curvature and deformation of the plasma 

membrane raises two possibilities, either that P can bind membranes and its 

oligomerization at the plasma membrane induces membrane curvature or that P can 

interact with cellular factor (s) that induce changes in the shape of  the plasma membrane. 

We have shown that the ability of HMPV to induce budding of branched filaments and 

elongation of intercellular elongation depends primarily on the actin cytoskeleton. The 

actin cytoskeleton plays an important role in regulating the shape and dynamics of the 

plasma membrane and thus we wanted to test the association between P and actin. 

Immunostaining showed co-localization of P with F actin in transfected cells in structures 

that resemble stress fibers (Fig 5.4A, inset) and in cell extensions (Fig 5.4A, arrow). To 

further demonstrate the association between P and actin, we performed a proximity 

ligation assay using antibodies against the P protein and beta actin. Figure 5.4B indicates 

that the percentage of cells with a positive red signal where each signal represents a 

single positive reaction for two proteins in close proximity. For paramyxoviruses, virus 

proteins that were shown to bind actin include M proteins of Sendai virus and NDV 

[231,337]. While our data show the first example of a paramyxovirus phosphoprotein that 

co-localizes with actin during infection and transfection, further studies are clearly 

needed to understand the role that HMPV P is playing at late stages of infection. These 
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results show a close association between P and actin in transfected and infected cells 

suggesting a possible role of actin in P-induced changes to the cell membrane; however 

whether P binds actin directly or an actin-binding protein remains to be demonstrated. 

 

Discussion 

Paramyxovirus P proteins are major components of the viral replication complex 

and can interact with both N and the polymerase L to regulate viral RNA transcription 

and replication [338]. P proteins are also characterized by the presence of intrinsically 

disordered regions, thus supporting interaction with multiple partners during the course of 

infection [336].  Recently, it has been shown that paramyxovirus P proteins can have 

roles beyond regulating viral RNA synthesis. The P protein of HPIV3 was found to bind 

SNAP29 protein and inhibit autophagosomal degradation to enhance release of virus 

particles [339]. In this chapter, we report a novel role for a paramyxovirus P protein in 

deforming the plasma membrane, suggesting the involvement of P in late stages of 

HMPV infection. The intracellular localization of P changed dramatically at different 

times post infection and had localization patterns in coordination with M, the master 

regulator of particle assembly. In addition, expression of P by itself resulted in formation 

of membrane extensions that resemble those seen at budding and egress steps of HMPV 

infection. Interestingly, addition of a FLAG epitope tag at the C-terminus of P enhanced 

the membrane deforming properties of the P protein and prevented the formation of 

inclusion bodies upon co-expression with N, while still allowing co-localization of P-

FLAG and N at the cell periphery. Recent structural analyses of HMPV P revealed a 

domain organization similar to other paramyxovirus P proteins. N-terminus residues 1-30 

form a conserved domain with predicted α-helical propensity, residues 31-157 and 238-

294 are predicted to be disordered, residues 158-237 are predicted to form an α-helical 

region, while the region between residues 171 and 194 is the core tetramerization 

domain. Sequence alignment of HMPV P with the P protein of respiratory syncytial virus 

RSV showed that, similar to other paramyxoviruses,  putative L and N binding regions 

are located at the C-terminus region [335]. Several reports support a role of the carboxy 

terminal region of paramyxovirus P in binding L and N:RNA complexes and the C-

terminus end in binding the soluble form of N protein, acting as a chaperone [340-344]. 
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Co-expression of P-FLAG and N was associated with strong co-localization of the two 

proteins at the cell periphery, in membrane extensions and membrane blebs, but not in 

inclusion bodies. This suggests that the FLAG peptide might be preventing or displacing 

binding of P to a host factor(s) at the carboxy terminus that is involved in inclusion body 

formation while at the same time favoring an interaction with other host factor(s) that 

might play a role in the ability of HMPV P to deform membranes. The presence of an 

intrinsically disordered region at the C-terminus (residues 238-294) of P would be 

consistent partner binding to this region. However, it is also possible that the FLAG 

peptide affects the overall conformation of the protein, altering its function and its 

interaction with N. Thus, how addition of the FLAG peptide alters the conformation of P 

and its ability to bind N or cellular factors requires further investigation. In addition, very 

little is currently known about inclusion bodies and the cellular factors that contribute to 

their formation; P-FLAG presents a tool for future studies aiming at the identification of 

host factors that can play a role in inclusion body formation at early stages of the 

replication cycle and other factors that promote the ability of P to deform membranes by 

comparing cellular proteins that can bind P and P-FLAG.   

 

While our attempts to identify possible interaction partners for P-FLAG and P that 

can play a role in membrane deformation by doing co-immunoprecipitation were not 

successful (data not shown), we were able to show close association of P with cellular 

actin. A large number of viruses encode proteins that directly bind actin, actin binding 

proteins or other effectors of actin mediated signaling [216,345]. For paramyxoviruses, 

virus proteins that were shown to bind actin include M proteins of Sendai virus and NDV 

[231,337]. Our data show the first example of a paramyxovirus phosphoprotein that can 

deform membranes and co-localizes with actin during infection and transfection; further 

studies are clearly needed to understand the role that HMPV P is playing at late stages of 

infection, whether HMPV P can bind actin directly or actin-binding proteins, how the 

association of P with actin is regulated during infection and what role actin is playing in 

the ability of P to induce membrane remodeling.  
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Figure 5.1. HMPV P induces remodeling of the plasma membrane in BEAS-2B and 

A549 cells.   

A) BEAS-2B cells were transfected with pCAGGS plasmid encoding F, N, M or P. 24 

hours after transfection, cells were fixed in 4% paraformaldehyde, processed for 

immunofluorescence and stained for the indicated protein and DAPI (4’,6-diamino-2-

phenylindole) to stain the nucleus. Images shown are merged images for the viral protein 

(green) and nucleus (blue). Insets show membrane extensions in cells transfected with F 

and M, arrow indicates a long membrane extension and arrowhead shows a branched 

filament. B)  BEAS-2B cells were infected with HMPV lacking G and SH proteins 

(ΔG/ΔSH) and 24 hours post infection (h.p.i.), cells were fixed and stained for P protein 

(green) and nuclei (blue). C) A549 cells were transfected with pCAGGS plasmid 

encoding HMPV P and 24 hours later, cells were fixed, processed for 

immunofluorescence and stained for P. Inset shows membrane deformation induced by P. 
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Figure 5.2. Spatio-temporal analysis of cellular localization of P during the course of 

HMPV infection.   

A) BEAS-2B cells were infected with HMPV and at various hours post infection, cells 

were processed for immunofluorescence and stained with an anti-HMPV P antibody 

followed by a FITC-conjugated antibody (green) and an antibody that recognizes HMPV 
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M followed by a TRITC-conjugated secondary antibody (red). Scale bars = 10µm. B) 

BEAS-2B cells were infected with HMPV and 8 h.p.i., cells were fixed and processed for 

Stochastic Optical Reconstruction Microscopy. Cells were stained with antibodies for 

HMPV M (red) and P (green) and images were taken on a Nikon N-STORM super 

resolution microscope. C) Virus egress assay: BEAS-2B cells were infected with HMPV 

and at different h.p.i., culture media was collected and released virus was then pelleted by 

centrifugation on a 20% sucrose cushion. Virus pellets were suspended in 2x SDS 

(sodium dodecyl sulfate) loading buffer and analyzed by SDS-PAGE followed by 

western blotting, Band corresponds to HMPV P protein in released virus particles.  
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Figure 5.3. Addition of FLAG epitope tag at the C-terminus of P alters function of 

HMPV P.  

A549 cells were transfected with plasmids encoding HMPV N, P and P-FLAG or the 

indicated plasmids. 24 hours later, cells were fixed and processed for 

immunofluorescence using antibodies for HMPV P or FLAG (red) and HMPV N (green). 

Inset shows inclusion –like body in cells coexpressing P and N.  Arrowhead indicates 

membrane extensions induced by P-FLAG and arrow shows colocalization of P-FLAG 

and N at the cell periphery. Scale bars=10µm. 
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Figure 5. 4. HMPV P colocalizes with actin in transfected and infected cells.  
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A) BEAS-2B cells were transfected with pCAGGS-HMPV P and 24 hours later, cells 

were fixed and stained with P (green) and F-actin (red). Inset shows colocalization of P 

and F-actin in structures that resemble stress fibers and arrow indicates colocaliation of P 

and F-actin in a cellular extensions. Scale bars=10µm. B) BEAS-2b cells were infected 

with HMPV and 24 h.p..i, cells were fixed and proximity ligation assay was performed 

using antibodies for HMPV-P and beta actin. Each red signal signifies a reaction due to 

proximity of P and actin. Scale=50µm. 
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CHAPTER 6: HMPV SMALL HYDROPHOBIC PROTEIN HAS CHARACTERISTICS 

CONSISTENT WITH A PUTATIVE VIROPORIN 

 

*Parts of this chapter are Adapted from the published paper: Copyright © American 

Society of Microbiology , [Journal of Virology, 88, 2014, 6523-6433, 

10.1128/JVI.02848-13].  Masante C, El Najjar F, Chang A, Jones A, Moncman CL, et al. 

(2014). The human metapneumovirus small hydrophobic protein has properties consistent 

with those of a viroporin and can modulate viral fusogenic activity. J Virol 88: 6423-

6433 [346]. I started this work as a rotation project under the supervision of Cyril 

Masante [346]. Experiments for testing cell viability and permeability were done partly 

by me and statistical analysis was performed by Cyril Masante. Cellular localization of 

SH and cell tracker experiments were performed by me.  The gene for HMPV F was 

provided by Ursula Buchholz. The HA-tagged SH constructs were generated by Angela 

Jones 

  

Introduction 
 

  Human metapneumovirus (HMPV) is an enveloped virus that belongs to the 

Pneumovirinae subfamily of the Paramyxoviridae family. Entry of paramyxoviruses into 

target cells requires the concerted effort of two glycoproteins on the viral membrane: the 

attachment protein and the fusion protein (F). The attachment protein is generally 

responsible for primary adsorption of the virus to the cell surface by binding 

proteinaceous or sialic acid receptor, while the F protein promotes fusion of the viral 

envelope to a target cell membrane, a process that is driven by very large conformational 

changes in the F protein [228]. Similar to other paramyxoviruses, HMPV has two surface 

glycoproteins on its envelope, the putative attachment protein G and the F protein. 

Studies have shown that HMPV and other pneumoviruses can be infectious in the 

absence of the attachment protein G and previous work in our laboratory and others 

indicated that F is sufficient for attachment and entry of HMPV [16,232]. Interestingly, 

some paramyxoviruses including members of the Pneumovirinae subfamily, 

rubulaviruses, and the unclassified J virus have an additional glycoprotein on the viral 
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membrane, termed SH for small hydrophobic protein. Studies have shown that SH is 

dispensable for virus replication in vitro; however deletion in vivo can attenuate viral 

replication and pathogenicity [17-19]. 

 

SH proteins are all type II integral transmembrane proteins, but the size and proposed 

function of these proteins differs between viruses. For some paramyxoviruses, SH can 

inhibit apoptosis by interfering with TNF-α signaling [15,347]. In addition, the SH 

protein of RSV has been proposed to function as a viroporin, as it can oligomerize into 

pentamers and/or hexamers, create ion channels in artificial membranes and also change 

the membrane permeability in bacteria [348-351]. Viroporins in general are small, 

hydrophobic viral proteins that form homo-oligomers in membranes, creating channels 

which allow passage of ions and small molecules [352]. HMPV has the largest SH within 

paramyxoviruses and can exist in three different glycosylated forms: unglycosylated, N-

glycosylated and heavily glycosylated [16]. Recombinant HMPV lacking SH was shown 

to replicate efficiently in hamsters and in nonhuman primates [16,93], indicating that SH 

is not required for HMPV infectivity in these systems. In addition, a recent study 

indicated that SH does not affect viral replication or host gene expression [353]. 

However, every clinical isolate for HMPV to this date has SH [354], indicating that the 

protein plays a role during HMPV infection. Previous studies revealed that HMPV SH 

can modulate the host immune response and contribute to viral pathogenicity by 

inhibiting NF-κB [355], and recently it has been shown that SH inhibits HMPV uptake in 

dendritic cells [356]. 

 

We have shown that HMPV SH transmembrane domains can form higher order 

oligomers, consistent with the properties of a viroporin [346]. Thus, to test potential 

viroporin activity of HMPV SH, we determined the cellular localization of HMPV SH 

and its effect on cell viability and cell permeability. HMPV SH was expressed in 

intracellular organelles and at the cell periphery. In addition, expression of SH increased 

cellular permeability of Hygromycin B and altered the intracellular localization of a 

fluorescent dye without affecting cell viability. Taken together, these results suggest that 

HMPV SH has viroproin-like activity.   
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Results 

HMPV SH localizes at the cell periphery and in intracellular organelles 

 To examine the cellular localization of HMPV SH and determine whether 

infection altered the location of SH, BEAS-2B cells (human bronchial airway epithelial 

cells) were transfected with plasmids encoding SH with the HA tag inserted at the N 

terminus (HA-SH) or the C-terminus (SH-HA). Twenty four hours later, cells were either 

mock infected or infected with HMPV. Cells were then fixed and processed for 

immunofluorescence analysis using antibodies for the HA tag and HMPV M protein. 

Both HA-SH and SH-HA were mainly distributed internally and had partial localization 

at the cell periphery (Figure. 6.1). In addition, infection did not alter the cellular 

distribution of HMPV SH suggesting that location of SH in the cell is not determined by 

the presence of other viral proteins.  

 

Expression of HMPV SH increases the cellular permeability to hygromycin B without 

affecting cell viability 

To test the possible activity of HMPV SH as a viroporin, we tested the effect of 

SH expression on cellular permeability to hygromycin B. Hygromycin B is an antibiotic 

that does not penetrate cells when present at low concentrations; however, when 

membrane integrity is compromised, hygromycin B can enter cells and block cellular 

protein synthesis. COS-7 cells were transiently transfected with plasmids encoding 

HMPV HA-SH, SH-HA and as a control, F. Twenty-four hours post-transfection, cells 

were metabolically labeled for 1,2 or 3 hours in the absence or presence of 500 µg/ml of 

hygromycin B. HA-tagged  SH or F were then immunoprecipitated and levels of the 

newly synthesized proteins were analyzed by SDS-PAGE followed by imaging on the 

Typhoon (Figure. 6.2A). As seen in Figure 6.2B, a minor reduction in the protein levels 

of F was seen after 1 hour of hygromycin B treatment (around 15%) compared to the 

control non-treated sample. However, reduction of protein synthesis was seen to a higher 

extent in cells expressing either HA-SH or SH-HA with further decreases seen after 2 or 

3 hours of hygromycin B treatment (Figure. 6.2B). This indicates that the cell 
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permeability to hygromycin B increases with the expression of HMPV SH, thus 

supporting a potential role of SH as a viroporin. 

To demonstrate that the effects on protein levels seen with hygromycin B 

treatment were not a result of a decrease in cell viability induced by SH, we determined 

whether SH induced cell cytotoxicity. Vero or COS-7 cells were transfected with 

plasmids encoding HA-SH, SH-HA, F or empty vector as a control and 48 hours later, a 

CellTiter96 assay was performed. The average slope of the increase in optical density 

(OD) was calculated and normalized to that of control cells transfected with the empty 

vector. Expression of SH did not result in any significant differences in the number of 

viable cells compared to cells expressing F or cells transfected with the empty vector 

(Figure. 6.3). In addition, no differences in cell viability were seen when similar analysis 

was done on cells infected with wild type HMV or HMPV lacking G and SH proteins 

(data not shown). Thus, these data indicate that HMPV SH does not induce cell 

cytotoxicity. 

 

HMPV SH alters the localization of an intracellular fluorescent dye 

To further examine the activity of HMPV SH as a viroporin, we determined the 

effect of expression of SH on CellTracker green CMFDA, a cell permeable dye that is 

normally processed into an impermeable fluorescent form once it enters the cells 

resulting in low diffuse florescence signal in the cytoplasm and in the nucleus. This 

staining pattern was seen in cells transfected with the empty plasmid (Figure. 6.4A and B, 

MSC); however, expression of SH resulted in alteration to the fluorescent pattern of the 

CellTracker green CMFDA. A more intense green signal was seen in cells expressing SH 

(Figure. 6.4A); in addition, the florescent signal was mainly localized in discrete 

structures near the plasma membrane in SH-expressing cells (Figure. 6.4B). These 

structures could correspond to vesicles or endosomes. SH was shown to localize both at 

the cell surface and in intracellular organelles (Figure. 6.1), thus it is possible that SH is 

altering permeability of the plasma membrane and membranes of internal organelles.  

 

Discussion 
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Studies done in vitro and in animal models in vivo indicate that HMPV particles 

lacking SH protein can replicate efficiently with a minor reduction in viral titers in a 

nonhuman primate model [93,353]; however SH is present in all primary isolates of 

HMPV so far indicating a functional importance for this protein [357]. Previously 

documented functions of SH include modulation of the immune response by altering NF-

κB activity [355] and inhibition of virus uptake in dendritic cells [356]. In addition, 

recent results from our laboratory show a role of SH in reduction in HMPV F-mediated 

membrane fusion [232]. The results presented here suggest an additional role of HMPV 

SH associated with a viroporin-like activity. 

 

Viroporins have been described for a number of viruses of unrelated families and 

the functional role of these viral proteins in affecting pathogenicity can vary. HRSV, the 

closest human pathogen to HMPV, also encodes an SH protein with activities that are 

similar to those seen here for HMPV SH. HRSV SH was shown to increase membrane 

permeability [349], similar to the increase in hygromycin permeability upon HMPV SH 

expression (Figure. 6.2A). In addition, both HMPV SH and HRSV SH have similar 

cellular localization in intracellular compartments and at the plasma membrane (Figure. 

6.1). Recent work indicated that HRSV can form a cation-selective ion channel and that it 

plays a role in inflammasome activation [348,350]. The exact role of a viroporin in the 

infection cycle of HMPV remains to be determined. Interestingly, recent structural 

analysis of HMPV matrix protein M revealed the presence of a calcium binding site in 

the N-terminal domain of the protein [287], which have not been reported for other 

paramyxovirus M proteins with solved structures. Calcium binding was shown to 

increase the thermal stability of the protein and it was hypothesized that intracellular 

calcium levels may play a role in regulating interaction of M with other proteins and with 

lipid membranes. Localization of SH at the plasma membrane and intracellular organelles 

suggest possible involvement of SH in altering membrane integrity to modulate calcium 

levels in the cell. Thus, further studies are needed to determine how HMPV SH can affect 

calcium homeostasis during the course of infection and what the effects of the absence of 

SH are on matrix protein localization and function. 
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Figure 6.1. Cellular localization of HMPV SH at plasma membrane and internal 

organelles.   

BEAS-2B cells transfected with plasmids encoding HA-tagged HMPV SH were infected 

with HMPV 24 h post transfection. The following day, cells were fixed and stained with 

anti-HA antibody followed by a FITC-conjugated secondary antibody (green) and an 

antibody that recognized HMPV M followed by a TRITC-conjugated secondary antibody 

(red). DAPI (4’,6-diamino-2-phenylindole) stain was sued ti satin the cell nucleus (blue). 
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Control images of cells expressing HA-tagged HMPV SH in the absence of infection are 

shown.    
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Figure 6.2. HMPV SH increases cellular permeability to hygromycin B.   

A) COS-7 cells were transfected with empty vector (MCS) or with plasmids encoding 

HMPV F or an HA-tagged HMPV SH protein. Twenty hours post transfection, cells were 

treated with 500 µg/ml of hygromycin B (no treatment as the control) followed by 

radiolabeling for 1, 2 or 3 hours (h) in the absence or presence of hygromycin B. Proteins 

were then immunoprecipitated using antibodies for HMPV F or HA and analyzed by DS-

PAGE. B) Bands were quantified and the signal intensity of the band for samples treated 

with hygromycin B was normalized to that of untreated samples at the same time point. 

White column: F only, grey column: HA-SH, white column: SH-HA. Significance was 

analyzed by Student’s t test and is indicated by asterisks (*, P<0.09, **, P<0.05). Error 

bars=standard errors of the means (SEM) for n=3. 
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Figure 6.3. HMPV SH does not affect cell viability.  

Cell titer viability assay was performed on COS-7 cells transfected with empty plasmid 

or with plasmids encoding HMPV F, G or a tagged HMPV SH protein. Transfected cells 

in a 96-well plate were treated with a substrate to detect metabolic activity and formazan 

product detection was measured at 10-min intervals until the optical density (OD) of 

control cells transfected with empty vector reached 1. Graph represents the slope increase 

normalized to cells transfected with HMPV G for four independent experiments. 

Statistical analysis was performed using analysis of variance (ANOVA).  
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Figure 6.4. HMPV SH alters membrane permeability to a fluorescent dye. 

A) COS-7 cells were transfected with a plasmid encoding an HA-tagged HMPV SH 

protein, and 24 h post-transfection, cells were incubated with 10μM CellTracker CMFDA 

for 30 min at 37°C. Cells were then incubated for an additional 30 min in culture 

medium, fixed with 3.7% formaldehyde, and stained with an anti-HA antibody followed 

by a TRITC-conjugated secondary antibody (red). B) COS-7 cells were transfected with 

empty plasmid or plasmids encoding HA-tagged HMPV SH protein and processed as 

described for panel A. DAPI stain was used to stain the cell nucleus (blue). 
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CHAPTER 7: DISCUSSION AND FUTURE DIRECTIONS 

 

Substantial progress has been made in understanding the mechanisms of 

paramyxovirus particle production. Paramyxoviruses form by a budding process at 

selected sites of the plasma membrane of host cells as a result of coordinated interactions 

between viral components and between viral and cellular factors. Although most 

paramyxoviruses fit this general model, studies on the molecular mechanisms involved in 

the assembly and budding of paramyxovirus particles revealed significant differences 

between members of this family [82,83]. Since its initial discovery in 2001 [2], very few 

studies have focused on investigating the late stages of HMPV infection. Budding of 

HMPV depends on the M protein and occurs in an ESCRT-independent manner [160]. In 

addition, HMPV buds in a filamentous form in LLC-MK2 cells and co-expression of F 

and M proteins results in production of VLPs that resemble the filamentous morphology 

of HMPV in infected cells [10,358], indicating an important role of these two proteins in 

HMPV assembly. Beyond this, very little is known about the mechanisms underlying 

HMPV assembly and budding and the host factors involved in these late stages of the 

replication cycle. Work within this dissertation uncovered unique features for the exit 

pathway of HMPV in human bronchial airway epithelial cells which differ from other 

paramyxoviruses and elucidated an important role of the actin cytoskeleton in late stages 

of HMPV infection. We showed that HMPV infection induced distinct structures 

(branched filamentous networks and intercellular extensions) during late infection and 

was associated with direct cell-to-cell spread of particles (Chapter 3). We explored 

mechanistically the formation of these structures and provided evidence for an important 

role of the cell actin cytoskeleton and the HMPV P protein (Chapters 3 and 5). 

Furthermore, we studied HMPV infection in a model of human airway epithelium and 

showed that HMPV releases particles at low levels at the apical side and that the actin 

cytoskeleton is involved in HMPV spread in this model (Chapter 4). These studies 

represent a significant step forward in understanding how HMPV particles are formed 

and transmitted and pave the way for several areas of investigation that can potentially 

provide targets for development of therapeutic agents.  
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HMPV assembly and spread: a new paradigm for paramyxoviruses. As with every step 

during the replication cycle, virus egress from the cell is faced with several barriers 

including the cortical F-actin meshwork and the plasma membrane. Viruses have evolved 

fascinating ways to manipulate the actin cytoskeleton to promote their exit pathway. The 

involvement of the actin cytoskeleton in paramyxovirus budding was initially proposed 

based on the detection of large amounts of actin in Sendai virus and measles virus 

particles [359,360]. Later studies revealed that Sendai virus M protein can interact with 

actin and induce actin remodeling for efficient release of virus particles [239,361]. In 

addition, electron microscopic images showed a close association between budding 

measles and RSV with actin [272,362] and disruption of actin polymerization decreased 

release of both viruses [207,213]. How the actin cytoskeleton is involved in the budding 

process is not well understood. Budding of RSV, measles virus, Sendai virus and HMPV 

occur in an ESCRT independent manner [139,158,160,363]. It is likely that the forces 

generated by the scaffolding and polymerization of actin in combination with the 

clustering of the glycoproteins creating a pulling force and the matrix protein underneath 

the plasma membrane allowing a pushing force are sufficient for membrane budding. For 

HMPV, clustering of the viral proteins induced membrane deformation independent of 

actin polymerization, but release of virus particles was significantly reduced. A question 

thus remains regarding the final membrane scission step that allows release of virus 

particles from the cell. Influenza A virus also buds in an ESCRT independent manner 

[236,237] and recent studies indicated a role of Rab11 in release of virus particles and of 

Rab11-FIP3 (family interacting protein 3) in the maturation of viral filaments at the 

plasma membrane [161,364]. Rab11 was also shown earlier to play a role in release of 

RSV particles as expression of a dominant negative form of Rab11-FIP2 resulted in 

retention of long filamentous structures at the plasma membrane [139]. Interestingly, 

while Rab11-mediated transport of viral RNPs along microtubules was shown for several 

viruses including influenza virus, Sendai virus and measles virus [137,138,364], RNPs of 

RSV showed characteristics of actin-based motility [136]. Rab11-FIP2 forms a complex 

with Rab11a and myosin Vb to regulate plasma membrane recycling [365,366] . Thus, it 

would be interesting to determine whether HMPV utilizes Rab11-FPI2 or any other 

components of the Rab11 pathway in RNP transport, budding and release. Rab11 is 
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involved in directing vesicular transport from the trans-golgi network and perinuclear 

endosomes to apical recycling endosomes (ARE) [302] and thus can sort viral 

components to the apical side of polarized epithelial tissues favoring localized viral 

infections. HMPV proteins were localized primarily at the apical surface of HAE (Figure. 

4.2A); thus the role of Rab11 in polarized sorting of HMPV proteins also remains to be 

elucidated.     

 

The studies obtainable in Chapter 3 present a novel role for the actin cytoskeleton 

in late stages of HMPV infection that has not been reported for paramyxoviruses to date. 

HMPV induced formation of branched filamentous networks and elongation of 

intercellular extensions, unique elements of assembly and direct cell-to-cell spread, 

respectively. The extensive remodeling of the plasma membrane and the cortical actin 

underneath most likely involves manipulation of several factors that act to control cell 

shape at the plasma membrane. The actin cytoskeleton and Rho GTPase signaling 

controlling actin dynamics are involved in maintaining plasma membrane shape and 

inducing remodeling. Inhibition of actin polymerization and each of the main Rho 

GTPases (RhoA, Cdc42 and Rac1) involved in actin dynamics resulted in decreased 

branching of filamentous networks in HMPV infected cells indicating a specific role for 

each in the formation of the extensive networks of filamentous branches. While it was 

originally thought that each of the GTPases could have isolated effects, an accumulation 

of studies indicates that specific and precise interrelationships exist between the different 

GTPases to exert a coordinated effect on the cell [277]. A number of viruses have been 

shown to manipulate signaling mediated by the Rho GTPases to induce actin 

reorganization. One of the most extensively studied viruses is the poxvirus, vaccinia 

virus. The F11 protein of vaccinia was shown to inhibit RhoA resulting in stress fiber 

disassembly and increased actin polymerization [367,368]; whereas the A36 protein, 

initially activated by Src kinase upon binding of cell-associated virus particles, was 

shown to activate Ccdc42/N-WASP-WIP cascade and Arp2/3 downstream [176]. In 

addition, it was recently revealed that actin-based motility of vaccinia is driven by Rac1 

and its downstream effector formin-type actin nucleator FHOD1 [369]. HIV-1 Nef 

protein can interact with and activate diaphanous interacting protein (DIP), a regulator of 



 

127 
 

RhoA and Rac1, activating Rac1 and inhibiting RhoA [370], while other viruses such as 

baculuvirus can activate Arp2/3 directly by encoding a WASP-like protein [371]. This 

indicates the complexity of the actin-associated signaling that is manipulated by viruses 

to reorganize the actin cytoskeleton for exit from the cell. While all three GTPases were 

involved in filamentous branching, inhibition of Cdc42 and Arp2/3 or N-WASP 

downstream had the most prominent effect on formation of budding branched 

filamentous networks indicating an important role of this pathway in HMPV-induced 

actin remodeling for budding of these structures. It was interesting however that 

inhibition of actin polymerization did not have the same effect as inhibition of Rac1, 

RhoA or Cdc42, as in the presence of cytochalasinD or latrunculinA, smaller filamentous 

structures were seen retained at the cell while these filaments were not seen in cells 

treated with the GTPase inhibitors, indicating the involvement of factors other than actin 

itself. In addition, actin polymerization, Cdc42 and Rac1 were needed for HMPV-

induced elongation of intercellular extensions. How HMPV is able to coordinate 

activation of these different pathways requires further investigation. First, activation 

assays are needed to demonstrate activation of the different Rho GTPase in HMPV 

infection and the temporal regulation of this activation. In addition, the mechanism by 

which HMPV activates the different pathways is needed. It is likely that each of the 

GTPases are manipulated by different viral components at various times during the 

course of the infection cycle. Previous work in our laboratory revealed that HMPV F 

protein binds heparan sulfate proteoglycans (HSPGs) at the cell surface [232].  

Interactions between specific HSPGs and integrins at the cell surface can activate 

downstream signaling pathways that activate Rho GTPases and remodel the actin 

cytoskeleton [372,373]. To test the involvement of HSPGs binding at the cell surface on 

the different Rho GTPases, the effect of virus binding on activation of Rac1, Cdc42 and 

RhoA should be tested. In addition, one main observation for HMPV infection in BEAS-

2B cells was that, while filaments were seen at the cell surface at 18 h.p.i., the formation 

of the extensive branched filamentous networks in infected cells was mostly prominent 

later during infection starting at 24 h.p.i. and developing further at 48 h.p.i.. This suggests 

that the actin remodeling associated with these cellular changes was mediated by an 

accumulation of viral products. Single expression of HMPV P resulted in plasma 
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membrane remodeling and formation of cellular extensions having characteristics similar 

to those seen in late stages of HMPV infection (Figure. 4.1) and P was found in close 

proximity to actin. In addition, levels of P protein were shown to increase at later stages 

of infection (48 h.p.i.) more than the levels of N protein (data not shown). These results 

indicate a possible role of P in inducing the prominent changes in the actin cytoskeleton 

at this time of infection.  Viruses have the ability to manipulate the actin cytoskeleton by 

encoding viral proteins that can directly bind actin or actin binding proteins or upstream 

mediators of actin signaling, the Rho GTPase family. For paramyxoviruses, virus proteins 

that were shown to bind actin include the M proteins of Sendai virus and NDV [231,337]. 

Here we provide the first example of a paramyxovirus P protein that can associate with 

actin and induce changes to the plasma membrane (Figure. 5A).  Interestingly, US3 

kinase of alphaviruses was shown to induce formation of structures similar to those that 

were seen cells transfected with HMPV P and it was later revealed that the ability of US3 

kinase to cause changes to the actin cytoskeleton is due to activation of PAK1 

downstream of Rac1 [220,250]. Whether P is binding actin directly or an ABP or whether 

it is activating actin-associated signaling requires further studies. Identification of 

interaction partners of P may help uncover the mechanism behind P-induced plasma 

membrane remodeling. In addition, it is important to address how the function of P is 

regulated during the course of infection from viral RNA synthesis at early stages of 

infection to inducing plasma membrane deformation and possibly contributing to HMPV 

exit from the cell at the end of the replication cycle. The localization of P changed at 

different times post infection including localization in inclusion bodies to short 

cytoplasmic filaments followed by localization at the cell periphery and in cellular 

extensions and branched filaments, while upon single transfection P was cytosolic and in 

cellular extensions. This indicates that presence of other viral proteins alters the cellular 

distribution of P. Our results show that the cellular expression levels of P increase as 

infection progresses from 24 to 48 h.p.i., to a greater extent than the increase in N levels. 

It is possible that as the global concentration of P in the cell increases at late times after 

infection, which would mimic levels seen in transfected cells, the effect of P on 

membrane deformation becomes more prominent. In addition, mass spectrometric 

analysis of P from infected and transfected cells showed the presence of a truncated form 
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of P, with truncation at the N-terminus. Since the C-terminus region of P is thought to be 

responsible for binding both L and N, it is possible that the truncated form of P can bind 

L and N, and thus can function mainly in RNA transcription and replication while the 

intact full length P may be interacting with some cellular or viral factors (M protein) that 

would promote the function of P at late stages of infection. In addtion, differnt 

phosphorylation states of P may regulate its function during infection. Furthermore, the 

role of membrane lipids in HMPV-induced remodeling remains to be addressed. Several 

studies have reported that assembly of different paramyxoviruses is selectively targeted 

to raft microdomains in cellular membranes [84,374,375]. Association between actin, 

rafts and assembly of viral filaments have been shown for influenza and RSV [214,376]. 

Co-localization between HMPV and glycoproteins and the lipid raft ganglioside GM1 has 

been recently indicated [264]. Thus, it would interesting to determine how rafts affect 

assembly of HMPV into the branched filamentous structures.   

 

The actin rearrangements seen upon HMPV infection must require coordinated 

effects of different viral and cellular effects of different viral and cellular factors at 

different times during the infection cycle While several aspects of this process remain to 

be elucidated, we have shown a role for HMPV-induced intercellular extensions in direct 

cell-to-cell spread of particles, presenting a novel mechanism by which paramyxoviruses 

can spread infection. Several models have been proposed for direct cell-to-cell spread 

that could be applicable to our findings with HMPV. One model involves budding of 

particles at the plasma membrane and their movement across intercellular extensions 

from an infected cell to a donor cell. This process, known as virus surfing, has been 

documented for several viruses including HIV-1, and MLV [197,377]. However, binding 

of virus to a cell surface receptor is required for entry and infection in this model, and our 

results demonstrate that infection of HMPV by direct cell-to-cell spread occurs 

independently of heparan sulfate which was shown to be an important binding factor for 

cell-free HMPV infection [232]. Studies for cell-to-cell spread of viruses revealed 

differential requirements for receptor binding in cell-free and cell-to-cell infection. For 

example, cell-to-cell transmission of hepatitis C virus was shown to occur independent of 

the scavenger receptor class B type I (SR-BI) in contrast to cell-free infection. Thus, it is 
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possible that movement of particles across the extensions from one cell to another does 

not require HMPV binding to heparan sulfate. In this case, however, a prerequisite for 

transmission would entail downregulation of the virus receptor at the surface of the 

infected cell, high affinity binding of the virus on the receptor of the target cell and 

transfer of particles by actin-flow. Another model is that intercellular extensions are 

open-ended and act as tunnels through which HMPV particles travel along actin filaments 

on the inside of the extension, allowing entry into the target cell. One other possible 

mechanism by which HMPV can spread infection directly from cell-to-cell is by transfer 

of the RNP complex from an infected cell to a donor cell. Detection of vRNA by FISH 

analysis showed the presence of structures similar to replication bodies at the tips of 

extensions approaching another cell. Spread of genetic material without release of 

infectious virus particles has been suggested to occur for measles virus, both in neurons 

and in epithelial tissues [254,257]. We have shown that P can associate with actin and 

STORM imaging revealed that P is present on the outside of the inclusion body (data not 

shown); thus transport of an RNP along actin could be mediated by P protein while 

further inducing elongation of the intercellular extensions as our data revealed a role of P 

in cell extension formation. The last two models of spread would protect the virus from 

neutralizing antibodies and bypass the need for receptor binding. Our data show that 

passive diffusion of GFP from donor to target cells does not occur (Figure. 6G), arguing 

against an open-ended connection. However, intercellular extensions have shown to 

selectively transport cellular cargo from one cell to another [284] and thus further studies 

are needed to demonstrate whether intercellular extensions are open or close ended.  The 

movement of virus particles or RNP complex on actin filaments would require motor 

proteins. Different myosin motor proteins, myosin 9, 11 and Ib, were identified in HMPV 

particle and thus their role in possible actin-based motility of HMPV or HMPV RNPs 

requires further investigation. In addition, if virus particles or components are moving 

along F-actin, it is not clear how they “break free” to enter a new cell. One possibility 

would be that myosin-based movement creates enough force to release particles. It is also 

possible that factors promoting actin depolymerization or disassembly may have a role. 

We identified cofilin in purified HMPV particles. 
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Although several respiratory viruses, including influenza virus [267], RSV [268] 

and PIV3 [9] are known to form filamentous particles, HMPV formed networks of 

branched viral filaments, with a central core of N surrounded by M protein, in two human 

bronchial epithelial cells, BEAS-2B and 16HBE cells. We did not detect these structures 

in A549 or Vero cells and previous studies showed that HMPV forms filamentous 

structures, but not networks, at the plasma membrane of 293T and LLC-MK2 cells 

[10,264]. This suggests that these structures are unique for bronchial epithelial cells, the 

more physiologically relevant model for HMPV infection. Interestingly, electron 

microscopic images of HMPV shows aggregates of virus particles [34,289] and imaging 

single HMPV particles in our preparation in Vero cells proved to be challenging (data not 

shown). In addition, the apical surface of infected HAE showed the presence of 

aggregates of virus-like bodies in infected tissues. These observations raise the possibility 

that HMPV is budding as “networks” of particles. Interestingly, a recent report showed 

the formation of a branched network of extracellular viral assemblies in HTLV-1 infected 

lymphocytes, “viral biofilms” [291], that were involved in viral spread and stability. 

Electron microscopic images of BEAS-2B cells infected with HMPV (data not shown) 

revealed the high similarity between the biofilms seen in HTLV-1 infected cells and the 

branched filamentous structures seen at the surface of HMPV infected cells. Examination 

of the content of the branched filamentous networks in HMPV infected cells by laser 

dissection microscopy could help uncover whether these structures are consistent with 

viral biofilms. A central paradigm that has recently emerged is defining an infectious 

unit. It had been thought that all viruses exit the cell as single particles with each particle 

acting as an independent infectious unit. However, research over the past several years 

provided evidence that viruses of different families can exit the infected cell as multiple 

virus particles and that the fate of these particles is related. It was recently shown that 

clusters of mature enterovirus particles are released from the cell within phosphatidyl-

serine rich vesicles and that this mode of transmission enhances efficiency of infection 

[290]. In addition, poliovirus was found to exit the host in a bacteria-bound form that 

provided fitness benefits to the virus [378]. These different forms of virus transmission 

units enhance the stability of virus particles as they transmit infection and provide an 

opportunity for genetic diversity and viral evolution as multiple particles infect a single 
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cell. Our results indicate that HMPV buds primarily as a network of cell-associated viral 

filaments and that titers of cell-associated particles are higher than that of released 

particles. Infection of HAE showed inefficient release of HMPV at the apical side, but 

was associated with spread. Thus, this raises the question of how host-to-host 

transmission occurs if HMPV remains mainly cell-associated. One possibility is that 

HMPV could be shed from the epithelium in a cell-bound form. Enhanced cell shedding 

and loss of GFP-positive cells were seen at 3 d.p.i. in HAE indicating loss of infected 

cells from the tissues, thus it is possible that cell-associated HMPV that is shed from the 

apical surface is the transmitted form of the virus. Clusters of virus-like bodies were seen 

at the HAE apical surface that could be in association with cell-remnants. This form of 

cell-associated clusters of HMPV could help increase stability of the virus particles and it 

has been postulated that cell-associated viruses can enter the mucosal barrier easier 

through transmigration [271].  

 

HMPV and the actin cytoskeleton: implications for spread in the airway epithelium. 

One important question that arises from the results presented here is how actin 

remodeling via activation of Rho GTPases is involved in HMPV assembly and spread in 

a human airway epithelium. While the observed structures in BEAS-2B cells or other 

respiratory cell lines in culture do not directly translate to what is observed in a human 

airway model, the ability of HMPV to reorganize the actin cytoskeleton and evidence of 

cell-to-cell spread was observed in both systems. Cell-to-cell spread of virus particles 

independent of particle release to the extracellular surface would be favored in the 

environment of the airway epithelium where cells are in close contact, providing a way 

for coordinating release and entry in space and time. This mechanism of spread would 

also provide a way for infection to spread while evading the immune response and the 

relatively harsh environment of the mucosal surface. However, the tight contacts between 

epithelial cells, either adherens junction or tight junctions, can create a barrier for direct 

cell-to-cell spread of particles. The actin cytoskeleton anchors the apical junction 

complex (AJC) to the plasma membrane; however the AJC is not stable but dynamic and 

requires complex remodeling mediated, in part, by Rho GTPase induced rearrangements 

of actin. Rho GTPases, Cdc42, Rac1 and RhoA play an important role in establishing 
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epithelial cell polarity and in epithelial junction formation. Thus, intercellular spread of 

viruses in the epithelium would require remodeling of the actin and thus the AJC via 

activation of Rho GTPases. Several reports indicate that some important human viruses, 

including HSV-1 and measles virus, use proteins of the AJC as their receptors and both 

viruses have a direct cell-to-cell mode of transmission [257,379]. Moreover, the bacteria 

Listeria monocytogenes and Shigella flexneri represent examples of intracellular 

pathogens that have been known to utilize F-actin for propelling the pathogen from cell-

to-cell and recent studies have revealed that both bacteria have distinct mechanisms for 

manipulating epithelial cell-cell junctions for direct spread [380], further supporting the 

link between actin cytoskeleton rearrangement, epithelial cell junctions and spread. 

During infection in HAE, HMPV induced remodeling of actin at apical and lateral 

membranes and the evidence suggests intercellular spread. Thus, it would be interesting 

to hypothesize that HMPV-induced activation of Rho GTPases that in cell-culture 

manifests as production of actin-based branched filaments and intercellular extensions is 

a way by which the virus manipulates the airway epithelium to mediate its assembly and 

spread. Influenza virus and PIV5, two respiratory pathogens were recently shown to 

spread intercellularly [258]; but this mode of spread has not been investigated in an HAE 

model, so whether other respiratory viruses can induce actin remodeling to mediate 

intercellular spread in the airway epithelium needs further investigation. 

 

Key unanswered questions for paramyxovirus assembly, budding and spread. 

For a long time, it was thought that enveloped viruses spread infection from cell to 

cell and host to host by budding through a cellular membrane followed by 

membrane-scission and release of single particles into the extracellular matrix. 

However, strong evidence over the years indicates that the mechanisms of virus 

spread is more complicated than what was previously thought.  We have provided 

support for a novel mechanism for paramyxovirus spread from cell-to-cell 

independent from particle release. The results presented in this dissertation raise 

additional questions for the late stages of paramyxovirus infection, in addition to 

some general questions that remains to be addressed for paramyxovirus particle 
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formation in general.  Recently it was revealed that PIV5 can spread in a 

neutralizing antibody independent manner, however the role of the actin 

cytoskeleton has not been addressed. In addition, RSV filaments have been 

proposed to play a role in intercellular virus spread. Thus whether RSV, PIV5 or 

other paramyxoviruses have a direct cell-to-cell spread mechanism similar to 

HMPV involving remodeling of the actin cytoskeleton remains to be answered. In 

addition, while a role of M protein and glycoproteins in virus assembly and 

budding have been well-elucidated, the role of other viral proteins in late stages of 

infection should be investigated further as we have revealed a role of HMPV in 

membrane deformation.  

One of the key unanswered questions in paramyxovirus assembly is how are 

assembly sites initiated? Is the clustering of surface glycoproteins in membrane raft 

domains sufficient to create an outward bud in the plasma membrane to which other 

viral components are recruited, or is the interaction of M with the cytoplasmic tail 

of glycoproteins and its self-oligomerization the main driver for the formation of 

assembly nucleation sites? The requirements for the formation of budding precursor 

sites may vary among different paramyxoviruses. For RSV, the fusion protein 

seems to be the significant contributor for the formation of short viral filaments. On 

the other hand, the actin cytoskeleton and the interaction between M and the 

cytoplasmic tail of F appear to drive SeV particle formation at the plasma 

membrane. Another significant area of study is to determine the cellular pathways 

that are utilized by the matrix proteins and the RNP core that allows their delivery 

to assembly sites and subsequent packaging of the RNA genome into virions. 

Important questions also remain regarding how membrane budding and the final 

scission process are established for paramyxoviruses, particularly for those viruses 

that do not utilize the well-characterized ESCRT proteins. What are the cellular 

factors that play a role in budding of paramyxoviruses, and how are they recruited 

by viral proteins? Thus, further studies are still required to clarify multiple aspects 

of paramyxovirus particle production and to uncover the differences that exist in 

the molecular mechanisms utilized by different paramyxoviruses to form new 

infectious particles.  
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Since its initial identification in 2001, studies on different aspects of HMPV 

provided evidence that the entry pathway of HMPV differs from other 

paramyxoviruses. Only F protein is required for virus entry, cleavage of F occurs 

by an exogenous protease and F triggering of some strains requires low pH. In this 

dissertation, we provide evidence that HMPV also has unique features at late stages 

of infection that involves manipulation of the cell cytoskeleton to spread infection 

in a way previously undocumented for paramyxoviruses. A better understanding of 

the mechanisms involved in HMPV-induced actin remodeling involving viral and 

cellular factors will significantly advance our knowledge of the life cycle of this 

important respiratory virus, paving the way for identification of new targets for 

antiviral therapeutic development. 
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Figure 7. 1. Possible models for HMPV cell-to-cell spread across actin based extensions. 
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Appendix 1  

 

List of Abbreviations 

HMPV  Human metapneumovirus 

RSV  Respiratory syncytial virus 

HIV-1  Human Immunodeficiency virus-1 

HSV  Herpes simplex virus 

NDV  Newcastle disease virus 

RNP  Ribonucleoprotein  

N  Nucleoprotein 

P  Phosphoprotein 

F  Fusion 

L  Large polymerase 

M  Matrix 

VLPs  Virus like particles 

G   Attachment 

SH  Small hydrophobic 

ESCRT Endosomal sorting complex required for transport 

FIP  Family interacting protein 

NLS  Nuclear localization signal 

NES  Nuclear export signal  

VPS  Vacuolar protein sorting 

F-actin  Filamentous actin 

G-actin Globular actin 

WASP  Wiskott–Aldrich syndrome protein 

NPFs  Nucleation Promoting Factors 

GFPs  Guanine nucleotide exchange factors  

GDIs  Guanine nucleotide-dissociation inhibitors 

GAPs  GTPase activating proteins 

FISH  Fluorescent in situ hybridization 
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Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion 

Protein Activation in Cells of the Bat Reservoir Host 
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Abstract 

Bats of different species play a major role in the emergence and transmission of highly 

pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. 

These viruses require proteolytic activation of surface envelope glycoproteins needed for 

entry, and cellular cathepsins have been shown to be involved in proteolysis of 

glycoproteins from these distinct virus families. Very little is currently known about the 

available proteases in bats. To determine whether the utilization of cathepsins by bat-

borne viruses is related to the nature of proteases in their natural hosts, we examined 

proteolytic processing of several viral fusion proteins in cells derived from two fruit bat 

species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells 

have homologs of cathepsin and furin proteases capable of cleaving and activating both 

the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F 

proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases 

from other mammalian species showed a high degree of conservation; however 

significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further 

analysis of furin-like proteases from fruit bats revealed that these proteases are 

catalytically active and resemble other mammalian furins in their response to a potent 

furin inhibitor. However, kinetic analysis suggests that differences may exist in the 

cellular localization of furin between different species. Collectively, these results indicate 

that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not 

due to the lack of active furin-like proteases in these natural reservoir species; however, 

differences may exist between furin proteases present in fruit bats compared to furins in 
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other mammalian species, and these differences may impact protease usage for viral 

glycoprotein processing. 

 

Introduction 

In the past twenty years, bats of different species have been recognized as important hosts 

of viruses from different families including rhabdoviruses [1–3], coronaviruses [4–9], 

filoviruses [10–12], flaviviruses [13,14], orthomyxoviruses [15–17], paramyxoviruses 

[18,19] and others [20,21]. Numerous studies have shown that bats not only harbor a 

large number of viruses, but are also a major source for the emergence and transmission 

of viruses that cause highly pathogenic infectious diseases in humans, most importantly 

Severe Acute Respiratory Syndrome-like coronavirus (SARS-like CoV) [7], Ebola virus 

[10,22] and the henipaviruses, Hendra virus [23–26] and Nipah virus [27–29], which are 

members of the paramyxovirus family. Hendra virus first emerged in 1994 in Australia in 

an outbreak that occurred in horses [30], and more than thirty subsequent outbreaks have 

occurred, with a total of four human deaths associated with the virus infection [31,32]. 

Another closely related virus, Nipah virus was identified in Malaysia in 1999 causing an 

outbreak of viral encephalitis [33]; with additional outbreaks showing high mortality 

rates that reached 70%. Several species of bats within the genus Pteropus, commonly 

known as flying foxes, have been confirmed as the natural primary reservoir of 

henipaviruses [23,25,27,34–36]. Cedar virus, a novel henipavirus that does not seem to 

cause clinical disease in several animals which are known to be susceptible to Hendra and 

Nipah viruses, was identified recently and also has Pteropus bats as its natural reservoir 

[37]. Recent evidence suggests that henipaviruses are also present in non-Pteropus fruit 

bats in Africa [38,39]. Despite the important role of bats in the emergence of 

henipaviruses and other highly pathogenic viruses, very little is known about the viral life 

cycle or virus-host interactions in this natural reservoir. 

 

Entry of henipaviruses into host cells requires fusion of the viral envelope with the cell 

membrane. The fusion event is mediated by two glycoproteins present on the viral 

envelope, the attachment protein, G, required for initial binding of the virus, and the 

fusion protein, F, which drives subsequent fusion of the two membranes by undergoing a 
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series of conformational changes [40–42]. The fusion protein of paramyxoviruses is 

synthesized as an inactive precursor F0 that is cleaved by host proteases into the 

fusogenically active disulfide-linked heterodimer F1+F2. For the majority of 

paramyxoviruses, including measles virus [43], parainfluenza virus 5 (PIV5) [44] and 

Newcastle disease virus [45], this cleavage is mediated by the protease furin in the 

medial- and trans-golgi network (TGN). For some paramyxoviruses, an extracellular 

protease is responsible for the proteolytic activation (reviewed in [46]). However, 

henipaviruses are unique in that they utilize the endosomal/lysosomal protease cathepsin 

L, and in some cases cathepsin B, to cleave and activate the fusion protein [47,48]. This 

unusual role of cathepsins in the henipavirus life cycle requires a complex trafficking 

pathway for the activation of F protein in which the protein is synthesized and traffics to 

the plasma membrane in the uncleaved precursor form, F0. The protein is then 

endocytosed, cleaved in the endosomal compartments by cathepsin L or B and recycled 

back to the plasma membrane as the fusogenically active F1+F2 heterodimer [47–54]. 

The reason for this complex method of proteolytic activation remains unclear, but the 

cathepsin activation of henipavirus F proteins cannot be functionally replaced by other 

proteases, as a Nipah F protein mutant containing trypsin- or furin- cleavable sites 

displays reduced F processing [55]. Cleavage of the Hendra and Nipah F proteins occurs 

at a monobasic cleavage site GDV-K/R [56,57]; however, mutagenesis studies 

demonstrated that mutation of the basic residue at the cleavage site or of amino acids 

upstream of this site did not eliminate F protein processing [57,58], contradictory to other 

viral fusion proteins [59–62]. 

 

Cathepsins have been shown to be involved in the processing of several viral proteins. 

Cathepsin L proteolysis of the spike protein S of SARS-CoV is necessary for membrane 

fusion activation [63]; in addition, Ebola virus utilizes cathepsin L and B for processing 

and priming of the GP glycoprotein [64,65]. Interestingly, bats have been recently 

confirmed as the primary reservoir for SARS-CoV [8], SARS-like CoV [7] and the 

filovirus Marburg virus [11], while serological evidence suggests that Rousettus 

aegyptiacus fruit bats are potential reservoirs for Ebola virus [66]. This raises the 

question of whether the unique utilization of cathepsins by henipaviruses may be an 



 

141 
 

evolutionary adaptation to the nature of proteases present in their natural reservoirs, the 

fruit bats. To address this, we examined the proteolytic processing of the cathepsin-

dependant Hendra virus F protein and the furin-dependent PIV5 F in cells of two species 

of fruit bats, Pteropus alecto and R. aegyptiacus. Our results show that cell lines from 

fruit bats have both active cathepsin and furin-like proteases capable of cleaving and 

activating viral fusion proteins. In addition, we demonstrate that the dependence of 

Hendra virus on cathepsin L and vesicular trafficking for proteolytic processing of its 

fusion protein also occurs in cells of its natural fruit bat reservoir. Comparison of amino 

acid sequences of P. alecto cathepsin L and furin proteases to those of different 

mammalian species revealed that both cathepsin L and furin show a high degree of 

conservation among mammals but there are bat-specific amino acid changes, primarily in 

the C-terminus of P. alecto furin. Closer examination of furin-like proteases revealed that 

fruit bats have active furins that resemble other mammalian furins in terms of activity and 

response to protease inhibitors, but our results suggest differences in intracellular 

localization of furin in fruit bats which may influence accessibility of viral proteins to 

furin proteases in these natural reservoir hosts. 

 

Materials and Methods 

Cell lines and reagents 

Vero cells, baby hamster kidney (BHK) cells and P. alecto bat cells derived from 

different organs, Kidney (PaKi), brain (PaBr), lung (PaLu) and fetus (PaFe) [67] were 

grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco Invitrogen) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin. R. 

aegyptiacus fetus body cells (R06E) or head cells (R05T) [68] were maintained in 

DMEM-F12 media (Gibco Invitrogen) supplemented with 10% FBS and 500μg of 

gentamicin. A549 cells were grown in Roswell Park Memorial Institute medium (RPMI; 

Lonza) supplemented with 10% FBS and 1% penicillin and streptomycin. BEAS-2B 

cells, a human lung/bronchial epithelial cell line, obtained from ATCC were maintained 

in BEGM medium containing all the recommended supplements (Lonza). The protease 

inhibitor E64d was obtained from Sigma, cathepsin L inhibitor I and furin inhibitor, 

decanoyl-RVKR-chloromethylketone (dec-RVKR-CMK), were purchased from 
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Calbiochem EMD Millipore. Fluorogenic furin substrate was obtained from Calbiochem 

EMD Millipore. 

 

Plasmids and antibodies 

Hendra virus F and G coding sequences were subcloned into the pCAGGS mammalian 

expression plasmid as previously described [52]. pCAGGS vectors containing PIV5 F 

and HN genes were kindly provided by Robert Lamb (Howard Hughes Medical Institute, 

Northwestern University). Polyclonal antibodies (commercially produced by 

GenemedCustomPeptide Antibody Service, San Francisco, CA) to amino acid residues 

526–539 or 516–529 in the cytoplasmic tails of Hendra virus F or PIV5 F, respectively, 

were used to immunoprecipitate the F protein [52]. 

 

Expression of Hendra virus and PIV5 fusion proteins 

Subconfluent monolayers of Vero cells and bat cells: R06E and PaKi were transfected 

with the expression vectors pCAGGS-Hendra F or pCAGGS-PIV5 F, encoding the 

Hendra virus F or PIV5 F proteins, using Lipofectamine Plus (Life Technologies) 

according to manufacturer’s protocol. Vero cells in 35-mm dishes were transfected with 2 

μg of plasmid DNA, 6 μl of plus reagent and 4 μl of lipofectamine in 0.8 ml of Opti-

MEM (Gibco Invitrogen). The transfection efficiency in bat cells in general was much 

lower than Vero cells, so transfections were performed in 100mm dishes to allow for 

sufficient protein expression. For expression of fusion proteins in bat cells, 12 μg of 

DNA, 18 μl of plus reagent, 12 μl of lipofectamine and 1.2 ml of Opti-MEM (Gibco 

Invitrogen) were combined and added to cells grown in 100-mm dishes. At 3–4 hours 

post-transfection, cells were washed with phosphate buffered saline (PBS) and incubated 

overnight at 37°C in DMEM or DMEM-F12 media supplemented with 10% FBS and 

antibiotics. 

 

Metabolic labeling and immunoprecipitation 

Twenty-four hours post-transfection, cells were starved in cysteine- and methionine- 

deficient DMEM media for 45 minutes followed by labeling in Tran35S-label (100 

μCi/ml; Perkin Elmer, Waltham, Massachusetts). To determine total expression of fusion 
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proteins, cells were labeled for 3 hours at 37°C and lysed immediately. For pulse chase 

experiments, cells were labeled for 30 minutes, washed twice with PBS, normal DMEM 

or DMEM-F12 media was then added, and cells were chased for varying times. At the 

end of the chase periods, cells were washed and lysed in radioimmunoprecipitation assay 

(RIPA) lysis buffer (100 mM Tris-HCl [pH 7.4], 150 mM NaCl, 0.1% SDS, 1% Triton 

X-100, 1% deoxycholic acid) containing 0.15 M NaCl and supplemented with protease 

inhibitors. Lysates were then clarified by centrifugation at 136,000xg for 15 minutes at 

4°C and supernatants were immunoprecipitated with anti-peptide sera to the F proteins 

and protein-A conjugated sepharose beads [69]. Immunoprecipitated proteins were 

analyzed on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and visualized using the Typhoon imaging system (Amersham Biosciences/GE 

Healthcare Life Sciences, New Jersey). ImageQuant TL (GE Healthcare, Piscataway, NJ) 

was used to determine band densitometry and results were expressed as percent cleavage 

defined as F1/(F1+F0). 

 

Syncytia assay 

Vero cells or PaKi cells in 35-mm dishes were transiently transfected with Hendra virus F 

or PIV5 F alone or in combination with the homotypic attachment protein (G or HN). The 

F:G/HN ratio used was 1:3 for Hendra virus and 1:1 for PIV5. Twenty-four to 48 hours 

post transfection, syncytia formation was examined and photographs were taken using a 

Nikon digital camera mounted atop a Nikon TS100 microscope with 10x objective. 

 

Furin-like enzyme activity 

A furin-like enzyme activity assay on whole cell lysates was performed as described [70] 

with minor modifications. 2×106 cells were collected, washed with PBS and lysed for 10 

minutes on ice in 200 μl of 5× lysis/reaction buffer (500 mM HEPES, pH 7.0, 2.5% 

Triton X-100, 5 mM calcium chloride, 5 mM β-mercaptoethanol). Cells were then 

sheared with a 23-gauge needle followed by centrifugation at 13,000xg for 10 minutes at 

4°C, and supernatants were stored at -80°C. For determination of furin-like enzyme 

activity, cell lysates were diluted 2 fold in 5x lysis buffer. In a black opaque 96-well 

plate, 20 μl of cell lysates were added to 70 μl of ultrapure water and the plate was 
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incubated for 15 minutes at 37°C. After incubation, 10 μl of 1 mM furin fluorogenic 

substrate, previously pre-warmed at 37°C for 30 minutes, was added and fluorescent 

intensity was immediately measured on a SpectraMax Gemini XPS plate reader 

(Molecular Devices) every 3 minutes for 240 minutes with excitation at 355 nm and 

emission at 460 nm. For determination of the effect of a furin inhibitor on furin-like 

activity, cell lysates were incubated with increasing concentrations of the inhibitor for 3 

hours at 37°C and cells were then processed for the enzyme activity assay as mentioned 

above. 

 

Multiple sequence alignment of mammalian furin and cathepsin L 

Sequences of P. alecto furin and cathepsin L were identified using BLAST searches of 

the P. alecto genome and transcriptome databases generated previously [71,72]. 

Sequences of other mammalian proteases were obtained from GenBank. Multiple 

sequence alignment of mammalian proteases was generated using ClustalW [73]. P. 

alecto bat furin or P. alecto cathepsin L was used as a standard reference for amino acid 

numbering. 

 

Results 

The Hendra virus and PIV5 fusion proteins are efficiently cleaved in fruit bat cells 

Several cell lines derived from different bat species have been established, 

providing a valuable tool for in vitro studies of virus life cycles in their natural reservoir. 

In this study, we utilized cells previously established from two pteropid fruit bats, P. 

alecto [67] and R. aegyptiacus [68]. P. alecto cells derived from different tissues were 

shown to be permissive to henipavirus replication and cells derived R. aegyptiacus 

permitted filovirus infection, indicating that these cells contain the necessary host factors 

required for virus replication [67,74]. However, very little is currently known about the 

nature of proteases present in these bat species. To assess the ability of pteropus host cell 

proteases to proteolytically process viral fusion proteins, we examined the proteolytic 

processing of the cathepsin-dependent Hendra virus F protein and the furin-dependent 

PIV5 F protein in P. alecto kidney cells (PaKi) and R. aegyptiacus cells obtained from 

body tissues (R06E). Bat cells and Vero cells, used as a control, were transiently 
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transfected to express the Hendra virus F or PIV5 F protein and metabolically labeled. 

The fusion proteins were subsequently immunoprecipitated and analyzed on 10% SDS-

PAGE. As seen in Figure 1A, both fusion proteins were proteolytically processed into the 

F1 and F2 heterodimer in R06E and PaKi cells. This indicates that cells from both P. 

alecto and R. aegyptiacus have active cathepsin-like and furin-like proteases capable of 

cleaving the Hendra viurs and PIV5 F proteins. To assess whether the processed proteins 

were fusogenically active, syncytia assays were performed. Syncytia formation was not 

observed in the presence of the attachment (Hendra G or PIV5 HN) protein alone, 

consistent with the role of the F protein in promoting fusion. However, syncytia were 

observed in all three cell types upon expression of the fusion and attachment proteins of 

either Hendra virus or PIV5 (Figure 1B, arrows). Syncytia formed in R06E and PaKi 

were smaller in size compared to syncytia seen in Vero cells and the total number of 

syncytia observed in the two fruit bat cell lines was less than in Vero cells, likely as a 

result of lower transfection efficiency in bat cells versus Vero cells. These results indicate 

that P. alecto and R. aegyptiacus fruit bat cells can cleave and activate cathepsin-

dependent and furin-dependent viral fusion proteins. 

 

Kinetics of PIV5 F processing differs between Vero cells and fruit bat cells 

The Hendra virus fusion protein undergoes a complex trafficking pathway for 

cleavage and activation [47,51,52], while PIV5 F is cleaved by furin as it passes through 

the TGN [44]. It has been previously shown that the majority of Hendra virus F cleavage 

occurs within 4 hours of protein synthesis [52]. To compare the kinetics of processing of 

Hendra virus and PIV5 F proteins in bat cells versus Vero cells, cleavage was monitored 

by pulse chase analysis. Vero cells or fruit bat cells were labeled for 30 minutes, washed 

and incubated for 0 to 4 hours in chase media. Directly following labeling (0 hours), 

almost only the uncleaved F0 form of Hendra virus F was detected in all cell types, while 

a small percentage of PIV5 F0 was cleaved to F1 in bat PaKi and R06E cells (Figure 2A). 

Cleavage of F0 to F1 increased during the 4 hour chase period in all cell types for both 

Hendra virus F and PIV5 F. For Hendra virus F, R06E and PaKi cells showed similar 

processing kinetics to Vero cells, with no significant difference in percentage of cleavage 

observed at any point following synthesis. In contrast, PIV5 F was cleaved more rapidly 
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in both bat cell types compared to Vero cells. After one hour of synthesis, more than 40% 

of PIV5 F0 had been proteolytically processed in both PaKi and R06E fruit bat cell lines, 

a significantly higher level than the 17% cleavage observed in Vero cells (Figure 2B). As 

similar processing kinetics were observed for Hendra virus F protein, it is unlikely that 

the differences observed for PIV5 F are due to changes in the rate intracellular of 

trafficking in fruit bat cells. Cleavage of PIV5 F by furin generally occurs in secretory 

vesicles budding from the TGN. Thus, these data suggest a potential difference either in 

the intracellular localization or expression of furin present in PaKi and R06E cells 

compared to Vero cells. 

 

Hendra virus F cleavage in fruit bat cells depends on vesicular trafficking and 

cathepsin L 

The requirements for the activation of henipavirus fusion proteins differ 

remarkably from other paramyxovirus F proteins. Cleavage of Hendra and Nipah F 

proteins occurs by the action of cathepsin L at a monobasic cleavage site GDV-K/R 

[56,57]. While the kinetics of processing in bat cells were consistent with cleavage 

following trafficking to the endosome (Figure 2), the dependence of henipaviruses on the 

endosomal cysteine protease cathepsin L in their natural reservoir was verified using non-

specific and specific cathepsin inhibitors. Treatment of PaKi and R06E bat cells with the 

general cysteine protease inhibitor E-64d, which inhibits calpain and cathepsins B, H and 

L [75] prevented cleavage of Hendra virus F in all cell types (Figure 3A). To verify that 

cathepsin L is specifically involved in Hendra F proteolytic processing in bat cells, an 

inhibitor that targets cathepsin L was used. Similar to Vero cells, inhibition of cathepsin 

L also ablated cleavage of F0 into the F1 and F2 heterodimer, indicating that processing 

of Hendra virus F protein is under the control of cathepsin L in its natural reservoir host 

(Figure 3A). Interestingly, in PaKi cells, an extra band of higher molecular weight, which 

is not detected in other cell lines, was seen above F0 upon inhibition of Hendra F 

processing. A similar band was seen when a cell line derived from P. alecto brain (PaBr) 

was treated with E64-d and cathepsin L inhibitor (data not shown). This suggests that 

additional post translational modifications may occur in the uncleaved Hendra F protein 

in its natural reservoir P. alecto. 
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Proteolytic activation of Henipavirus F protein requires endocytosis [49–52], 

cleavage by cathepsin L and recycling of the cleaved F1-F2 heterodimer to the cell 

surface [47,48]. Temperature block experiments have been used to influence both 

exocytic and endocytic transport [76,77]. We therefore determined the effect of reduced 

temperature on the cleavage of Hendra virus F and PIV5 F. Cells expressing Hendra virus 

F or PIV5 F were metabolically labeled and chased for 3 hours either at 20°C or 37°C. 

The cleaved F1 product of Hendra F and PIV5 F was observed following incubation at 

37°C. While a background band of slightly lower molecular weight than Hendra F1 was 

seen, incubation of R06E and PaKi at 20°C abolished proteolytic processing of Hendra F 

in bat cells (Figure 3B), as was previously shown in Vero cells [52], consistent with the 

cleavage of Hendra F depending on temperature-sensitive vesicular trafficking in bat 

cells. Interestingly, while incubation of Vero cells at 20°C abolished PIV5 F processing, 

the F1 cleavage product could still be observed in PaKi and to an even greater extent in 

R06E cells (Figure 3C). To determine whether this was specific for bat cells, we utilized 

an additional mammalian cell line from baby hamster kidney cells, BHK. Similar to fruit 

bat cells, incubation of BHK cells at 20°C did not completely inhibit PIV5 F proteolytic 

processing. In addition, while the majority of PIV5 F0 was cleaved to F1 in BHK, PaKi 

and R06E cells upon incubation for 3 hours at 37°C, F0 was clearly visible in Vero cells 

at this time point. Furin is primarily located in the Golgi and TGN, and it can also 

circulate between the cell surface and the TGN [78–80]. Inhibition of Hendra virus F 

cleavage by lowering the temperature to 20°C (Figure 3B) indicate that endosomal 

trafficking is blocked in R06E and PaKi cells under this condition; however the varying 

effects of lower temperature on PIV5 F processing in different cell types suggest that the 

temperature dependence of trafficking through the TGN may differ between different cell 

types. These results, combined with our previous findings on the more rapid furin 

processing of PIV5 F in bat cells, suggest that subtle differences in cellular distribution 

and localization of furin or trafficking through TGN may exist between different 

mammalian species. 

 

Effect of dec- RVKR-cmk on furin-like proteases in fruit bat cells 



 

148 
 

Results in Figure 1A demonstrated that bat cells can cleave the fusion protein of PIV5, 

which is proteolytically processed by furin in other cell types [44], suggesting that bat 

cells have active furin or furin-like proteases. To verify the involvement of a furin 

protease in the cleavage of the PIV5 fusion protein, we utilized a small molecule inhibitor 

of furin, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (dec-RVKR-cmk), which binds 

the catalytic sites of all seven mammalian proprotein convertases and inhibits their 

activity [81,82]. This inhibitor has also been shown to be effective in inhibiting Kex-2, 

the yeast endoproteinase homologue of furin as well [83]. Vero cells and fruit bat cells 

were treated with inhibitors of furin and cathepsin L, and cleavage of PIV5 fusion protein 

was assessed. Addition of cathepsin L inhibitor to Vero, PaKi or R06E cells had no effect 

on proteolytic processing of PIV5 F protein (Figure 4A). In Vero cells, addition of the 

potent furin inhibitor dec-RVKR-cmk resulted in a marked decrease in cleavage of PIV5 

F0 to F1. In contrast, the effect of the inhibitor on processing of PIV5 F in PaKi and 

R06E cells was minimal (Figure 4A). Dec-RVKR-cmk has been widely used to prevent 

the proteolytic activation of a variety of viral glycoproteins [84–87], and inhibition of 

cleavage usually requires a concentration range from 25 μM to over 40 μM. In the 

presence of 50 μM dec-RVKR-cmk, the percentage of inhibition of PIV5 F cleavage in 

Vero cells was approximately 70% compared to the control without inhibitor, while only 

20% inhibition in PaKi and RO6E cells was observed compared to the control. We next 

determined the effect of the inhibitor on furin-like enzyme activity in cell lysates from 

different fruit bat cells and other mammalian cells, Vero cells, A549, and BEAS-2B. Cell 

lysates prepared from equal number of cells for each cell type were incubated with 

increasing concentrations of dec-RVKR-cmk (50 μM, 80 μM, 100 μM,150 μM) for 3 

hours at 37°C prior to the addition of the flourogenic furin substrate, Pyr-Arg-Thr-Lys-

Arg-AMC, and release of the fluorescent AMC product was subsequently determined. 

All cell types showed a dose-dependent response to the drug, and as shown in Figure 4B, 

there were no significant statistical differences in the effect of the inhibitor between the 

different cell types at all the tested concentrations, indicating that binding of the 

competitive inhibitor dec-RVKR-cmk to the catalytic site of furin-like proteases is 

comparable in the different cell types. The observed differences in the response to the 

potent furin inhibitor in fruit bat cells seen in Figure 3A may therefore reflect differences 
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in the accessibility of the inhibitor to the enzyme, i.e. the level of uptake and metabolism 

between the different cell types, or differences in the expression or localization of furin-

like proteases. 

 

Bat lung cells display slower kinetics of furin-like enzyme activity than human lung 

cells 

Fruit bat cells have functional furin-like proteases, and processing of PIV5 F 

occurs more rapidly in these cells than in Vero cells (Figure 2A). To compare the 

enzymatic activity of furin homologs present in bat cells to that present in other 

mammalian cell types, we performed a furin-like enzyme activity assay. This assay, 

which is not specific for furin but determines the activity of all proprotein convertases, 

allows determination of endogenous enzymatic activity of furin-like enzymes in whole 

cell lysates [70], and was used to compare the kinetics of the protease activities per cell in 

different cell lines. Cell lysates from 2×106 cells of each cell type were added to the 

flourogenic substrate, Pyr-Arg-Thr-Lys-Arg-AMC, and fluorescence was monitored for 4 

hours. The progress curves obtained for each cell type allowed determination of 

differences in total furin-like enzyme activity (Figure 5). P. alecto fetus cells (PaFe) 

generated the lowest total amount of fluorescent product at each time point, indicating 

that both the rate and extent of furin processing per cell is lowest in these cells. R. 

aegyptiacus cells R06E and R05T displayed the next lowest furin-like activity. Statistical 

analysis showed that there was no significant difference in furin-like activity between 

Vero and PaKi cells suggesting that the total cellular furin-like activity is comparable in 

these two kidney cell lines. However, comparison of AMC release in R06E to Vero or 

PaKi cells showed significant difference starting 18 minutes after addition of the 

substrate (p value <0.05) and during the 4 hour incubation period, with a p value <0.0001 

between 30 and 90 minutes. Furin-like activity in cells obtained from P. alecto brain 

(PaBr) was significantly higher than the other fruit bat cells P. alecto lung (PaLu) and 

PaFe, R06E and R05T one hour post incubation with the substrate. Interestingly, the 

progress curves for the total furin-like activity in the two lung human cell lines, A549 and 

BEAS-2B, were different from other tested cell lines. Release of AMC was faster and 

fluorescence reached maximum levels by 30 minutes or 60 minutes in A549 and BEAS-



 

150 
 

2B, respectively. In contrast, this rapid proteolysis of the Pyr-Arg-Thr-Lys-Arg-AMC 

substrate was not observed in PaLu cells and the total furin-like activity in the P. alecto 

lung cells was significantly lower than that of A549 and BEAS-2B cells at all timepoints, 

with a p value <0.0001 during the first three hours. These data reveal that bat cells have 

functional and active furin-like enzymes that can recognize and cleave a furin substrate, 

with variation seen in the total furin-like enzyme activity between cells derived from 

different tissues. Furin-like pro-protein convertases are expressed differently in various 

body tissues and the variation seen in the total furin-like activity between the different 

cells types is expected. However, the significant difference between the processing of the 

furin substrate between P. alecto lung cells and the two human lung cells suggest 

differences either in the activity or in the expression levels of the furin-like proteases in 

the lungs of the two species. 

 

Bat furin and cathepsin L proteases have specific amino acid sequence variations 

not detected in other mammalian counterparts 

To compare amino acid sequences of bat cathepsin L and furin to other 

mammalian proteases, we performed multiple sequence alignment analysis. Whole 

genome sequencing of different bat species has been performed [72,88]; however the 

furin sequences from both P. vampyrus and Myotis davidii were not complete. Sequences 

of furin and cathepsin L from the P. alecto transcriptome were previously generated [71]. 

Multiple sequence alignments of furin and cathepsin L1 amino acid sequences from P. 

alecto and a variety of other mammals were performed using ClustalW [89]. Both furin 

and cathepsin L1 showed a high level of conservation among different mammalian 

species however, furin showed a higher degree of conservation. The sequence alignment 

for mammalian cathepsin L1 proteases (Figure 6) shows amino acid changes between the 

different species spread across the whole protein sequence, with some amino acid 

changes that are specific to P. alecto cathepsin L (marked in yellow). Compared to 

cathepsin L1, furin from various mammalian species had fewer amino acid changes 

across the entire sequence (Figure 7). Furin is a type I membrane protein composed of an 

N-terminal pro-peptide followed by a catalytic site, a P/homo B domain which is 

essential for activity of the catalytic domain, and a C-terminal region containing a 
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transmembrane domain [90]. The N-terminal region of P. alecto furin contained one 

amino acid change not observed in any other mammalian furin, as the leucine at position 

57 in other mammalian furins is substituted by glutamine in P. alecto. The catalytic site 

(shown in gray), encompassing amino acid residues G146 to L382 [45,90] was extremely 

conserved, with a single glutamate to aspartate change in the catalytic site of Pteropus 

furin at position 299. The highest degree of variation observed for P. alecto furin 

occurred at the C-terminus, including the following unique amino acid changes: A at 

position 619 in P. Alecto furin in contrast to P at this position in all other mammalian 

furins (P619>A), D623>A, S627>N, P642>R, Q651>R, T673>K, G781>R, K788>R, 

A792>V, deletion of N at position 496 and deletion of E at position 768 (highlighted in 

green). The cytoplasmic tail controls the trafficking and cellular localization of furin. The 

sequences at the cytoplasmic tail of furin that are known to be critical for intracellular 

trafficking of furin include the acidic cluster (EECPpSDpSEEDE) and the two membrane 

proximal motifs YKGL and LI [78,79,91–93]. The YKGL and LI motifs are conserved in 

P. alecto; however, the first aspartate (position 768) in the acidic cluster sequence, which 

is required for phosphorylation by casein kinase II, is absent in P. alecto furin. It is 

possible that the deletion of the acidic aspartate affects the phosphorylation of serine 772 

and thus alters the intracellular localization or distribution of furin in P. alecto. 

 

Discussion 

Bats have recently been shown to carry a number of novel viruses [94]; however, 

our knowledge of the natural history of viruses in their bat reservoir host and the special 

features of bats that allow them to co-exist with this wide range of viruses is limited. Bats 

and bat-derived cells are susceptible to infection by many viruses including filoviruses, 

paramyxoviruses, coronaviruses and influenza virus [74,95] indicating that bats have the 

necessary cellular factors to mediate many viral infections. Cellular proteases play an 

essential role in proteolytic activation of the majority of viral glycoproteins and in the 

spread of infection, but very little is currently known about the protease profile of the bat 

hosts. Interestingly, a number of bat-borne viruses utilize the endosomal cathepsin 

proteases during their life cycle [47,48,63–65], in contrast to the more common use of 

furin proteases for intracellular viral glycoprotein processing. To address the ability of 
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bat cells to proteolytically process viral fusion proteins, we examined the proteolytic 

processing of the PIV5 F protein, normally cleaved by furin, and the Hendra virus F 

protein, normally cleaved by cathepsin L, in cells derived from two species of bats of the 

Pteropodidae family. We showed that P. alecto and R. aegyptiacus have homologues of 

cathepsin and furin proteases capable of cleaving and activating cathepsin-dependent 

(Hendra virus F) and furin-dependent (PIV5 F) viral fusion proteins. This finding is 

consistent with previous studies showing that cells from different bat species can cleave 

glycoproteins of some viruses such as Ebola virus [96], and an African henipavirus 

[97,98]. Our data also indicate that the requirements for proteolytic processing of Hendra 

virus F in bat cells are analogous to those previously determined in Vero cells [47,52]. 

Temperature reduction experiments or inhibition of cathepsin L prevented both cleavage 

of Hendra virus F and syncytia formation (data not shown), indicating that vesicular 

trafficking and a bat homolog of cathepsin L are involved in activation of Hendra virus F 

in bat cells. In addition, we did not detect a significant difference in the kinetics of 

Hendra F cleavage in PaKi or R06E compared to Vero cells and levels of cleaved F1 on 

the cell surface of Vero cells and bat cells were similar (data not shown). These results 

indicate that Hendra virus F trafficking in bat cells is analogous to that in Vero cells, 

suggesting that Hendra virus evolved its dependence on cathepsin L to mediate infection 

through adaptation in its bat natural host. 

 

Cleavage of PIV5 F protein and the furin-like enzyme activity assay indicate that 

bat cells from P. alecto and R. aegyptiacus have active furin-like proteases capable of 

recognizing and cleaving the furin consensus site R-X-K/R-R in PIV5 F protein and in 

the fluorogenic furin substrate. These results support recent evidence that R06E cells and 

other cells derived from different Pteropodidae bat species are sensitive to infection of 

viruses that utilize furin for mediating infection including filoviruses and 

paramyxoviruses [74,95,96]. However, kinetics of PIV5 F cleavage indicated that 

proteolytic processing of the furin-dependent PIV5 F is more rapid in bat cells than in 

Vero cells with the most rapid cleavage seen in R06E cells; however, the total furin-like 

enzyme activity assay showed lower total cellular furin-like activity in R06E cells 

compared to Vero cells. A more rapid cleavage of PIV5 F even with less furin activity 
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per cell could result from differences in the cellular localization of the furin homologues 

in the bat cell types. Consistent with this, we found that reduction of temperature to 20°C 

did not completely inhibit cleavage of PIV5 F in R06E cells and PaKi cells, but 

significantly reduced proteolysis of PIV5 F in Vero cells as was previously shown [52]. 

Furin is a membrane-bound protease that circulates between the cell surface and the TGN 

through endosomes [79]; however, the cellular localization and distribution of furins may 

vary between the different cell types. Specific motifs in the cytoplasmic tail at the C-

terminus of furin control its intracellular trafficking [78,91]. Amino acid sequence 

alignment of P. alecto furin and multiple other mammalian furins shows that the two 

membrane proximal motifs YKGL and LI required for trafficking of furin from the TGN 

to endosomes and the CPpSDpSEEDE motif that is important for retention of furin in the 

TGN are conserved in P. alecto furin [91,99]. The phosphorylated acidic cluster 

(EECPpSDpSEEDE) which directs trafficking from endosomes to the TGN [92] lacks the 

first glutamate in furin from P. alecto. In addition, several differences in specific amino 

acid residues occur at the C-terminus of P. alecto furin compared to other mammalian 

furins that may influence the localization of furin in P. alecto cells and possibly other 

members within the pteropodidae family. 

 

Our data also show differences between the total cellular activity of furin-like 

enzymes in various cell types. Furin is ubiquitously expressed at different levels in all 

tissues [100,101]. The mRNA levels of furin determined in different tissues of an African 

monkey showed highest levels in kidney and liver, lower levels in brain, spleen and 

thymus and lowest levels were detected in tissues from lung, heart and testis [101]. Our 

results show that P. alecto kidney cells had higher activity than other Pteropus cell types, 

followed by brain cells (PaBr), lung cells (PaLu) and fetus cells, which showed the 

lowest furin-like activity. Interestingly, furin-like activity in PaLu cells was significantly 

lower and showed slower kinetics relative to the two human lung cell lines, A549 and 

BEAS-2B. This finding could indicate either that human lung cells have a greater number 

of active furin-like enzymes than P. alecto lung cells, or that the individual furin 

proteases in human lung cells have increased proteolytic activity. BEAS-2B cells are 

isolated from human bronchial epithelium, A549 are type II alveolar basal epithelial cells 
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while the PaLu cells are mainly cuboidal epithelial cells derived from lung tissues [67]. 

Differences in cell type between these three cell lines may also contribute to the 

differences seen in the total furin-like activity. 

 

In conclusion, our results show that bats have cathepsin-like and furin-like 

proteases analogous to their counterparts in other mammalian species, suggesting that the 

utilization of cathepsins for viral glycoprotein processing in a number of bat-resident 

viruses is not due to a lack of furin-like enzymes in the bat reservoir host. However, 

potential alterations in furin localization or activity in the bat host may affect virus 

replication. Newly emerging viruses can be major threats to public health, so further 

investigation of virus biology in bat reservoirs is needed to provide a global perspective 

on the changes that occur in viruses within their natural hosts that contribute to the 

emergence of the virus and transmission to other species. 
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Figure 1. Bat cells cleave cathepsin-dependant Hendra virus F and furin-dependant 

PIV5 F. 

(A) Cells were transfected with pCAGGS-Hendra virus F or pCAGGS-PIV5 F and 18–24 

hours post transfection, metabolically labeled with Tran 
35

S for 3 hours at 37°C. 

Following labeling, cells were lysed and immunoprecipitated. Proteins were analyzed by 

10%SDS-PAGE and visualized by autoradiography. (B) Cells were transfected with 

Hendra virus F or PIV5 F alone or in combination with Hendra virus G or PIV5 HN. 24 

to 48 hours post transfection, cells were washed and images were taken using a Nikon 

digital camera mounted atop a Nikon TS100 microscope with 10x objective. Arrows 

indicate syncytia. 
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Figure 2. Kinetics of PIV5 Fusion protein cleavage is faster in bat cells compared to 

Vero cells. 

(A) Cells transiently transfected with pCAGGS-Hendra virus F or pCAGGS-PIV5 F were 

metabolically labeled with Tran 
35

S for 30 minutes and chased for the indicated times. 

Cells were immediately lysed and cell lysates were immunoprecipitated. Proteins were 

migrated on 10% SDS-PAGE and analyzed by autoradiography. (B) Quantification of F1 

densitometry was done using ImageQuant, TL software (GE Healthcare, Piscataway, NJ) 

and results are represented as percent cleavage defined as F1/(F1+F0). Error bars represent 

the mean ± standard deviation for three independent experiments. Two-way ANOVA, 

**p<0.01, ***p<0.001. 
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Figure 3. Inhibition of cathepsin L and vesicular trafficking prevent cleavage of 

Hendra virus F. 

(A) Vero cells or bat cells were transfected with pCAGGS-Hendra virus F and 24 hours 

post transfection, cells were metabolically labeled with Tran 
35

S in the absence or 

presence of the indicated inhibitor. E64-d and cathepsin L inhibitor I were added at 

20μM. Cells were lysed, immunoprecipitated and anaylzed on 10% SDS-PAGE. Arrow 

indicates the position of a novel band. (B, C) Cells transiently transfected with Hendra 

virus F (B) or PIV5 F (C) were labeled with Tran 
35

S for 45 minutes and then chased for 

3 hours at either 20°C or 37°C. Following lysis and immunoprecipitation, proteins were 

run on 10% SDS-PAGE and visualized by autoradiography. 
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Figure 4. Effect of dec-RVKR-cmk on PIV5 F cleavage and furin enzyme activity in 

fruit bat cells. 

(A) Cells transfected with pCAGGS-PIV5 F were labeled with Tran 
35

S for 3 hours in the 

absence or presence of cathepsinL I (20μM) or dec-RVKR-cmk (50 μM). Prior to SDS-

PAGE analysis, cells were lysed and subject to immunoprecipitation. Images were 

visualized by autoradiography. (B) 2×10
6
 cells of each cell type were lysed for 10 

minutes on ice followed by shearing with a 10-gauge needle. Cell lysates were incubated 

with increasing concentrations of dec-RVKR-cmk for 3 hours at 37°C prior to addition of 

Pyr-Arg-Thr-Lys-Arg-AMC furin substrate. End-point fluorescence was measured after 4 

hours using an XPS plate reader. Error bars represent the mean ± standard deviation for 

three independent experiments. 
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Figure 5. Different mammalian cell types show differences in furin-like enzyme 

activity. 

2×10
6
 cells of each cell type were lysed for 10 minutes on ice followed by shearing with 

a 10-gauge needle. Clarified lysates were then incubated with 10 μM of Pyr-Arg-Thr-

Lys-Arg-AMC furin substrate for 4 hours at 37°C with fluorescence measured every 3 

minutes. Each cell type was assayed in duplicate and the progress curves are 

representative of 3 separate experiments. 
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Figure 6. Sequence alignment of Pteropus alecto cathepsin L1 and cathepsin L1 of 

other mammalian species show Pteropus-specific amino acid changes. 

Sequence alignment was generated using ClustalW. (GenBank accession numbers are 

given in parentheses): human (P07711.2), rhesus macaque (EHH24212.1), horse 
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(XP_001494409.1), dolphin (XP_004320974.1), dog (Q9GL24.1), cow (P25975.3), 

mouse (NP_034114.1). Yellow indicates amino acid changes that are specific to P. alecto 

cathepsin L. The asterisk “*” indicates identical residues, “:” indicates conserved 

substitutions and “.” semi-conserved substitutions. 
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Figure 7. The C-terminus region of P. alecto furin has the highest degree of amino 

acid variation compared to furin proteases from other mammalian species. 

Sequence alignment was generated using ClustalW. (GenBank accession numbers are 

given in parentheses): human (NP_002560.1), rhesus macaque (EHH27600.1), horse 

(XP_005602832.1), dolphin (XP_004322334.1), dog (XP_850069.2), cow 

(NP_776561.1), mouse (NP_001074923.1). Highlighted in gray is the catalytic site of 

furin and in green the changes in amino acid residues in P. alecto compared to other 

mammalian furins. The asterisk “*” indicates identical residues, “:” indicates conserved 

substitutions and “.” semi-conserved substitutions. 
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